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ABSTRACT 

Mitochondrial disorders are amongst the most common groups of inborn errors of 

metabolism. They are caused by deficiencies in the final pathway of the cellular energy 

production, the mitochondrial respiratory chain. The disorders are clinically and genetically 

heterogeneous and the aetiology can be found in the mitochondrial, or in the nuclear genome.  

This thesis describes children with mitochondrial disorders, with focus on clinical symptoms, 

disease courses, biochemical abnormalities and genetic causes of disease. The research aimed 

to increase the understanding of the clinical phenotypes and pathophysiological mechanisms. 

We also aimed to identify novel disease-causing variants in mitochondrial (mtDNA), as well 

as nuclear, DNA in order to generate better tools for genetic counselling.  

In a study of patients with deficiencies of complex I of the mitochondrial respiratory chain, 

we observed a variety of clinical presentations. Early-onset of disease and muscle weakness 

were features in common. Developmental retardation and failure to thrive were seen in a 

majority of the patients. Causative variants in mtDNA were identified in six of the 11 

patients. 

Leigh syndrome (LS) is a severe, neurodegenerative disease of early childhood. The genetic 

aetiology is heterogeneous. In a study of 25 children with LS, we observed early onset of 

disease, in 80% before six months of age. A subset of patients had a rapidly progressive 

disease and early death, 60% survived beyond the age of five years. Eight of the patients had 

a disease causing variant in mtDNA. The age of onset, clinical symptoms or prognosis did 

not differ significantly between patients with mitochondrial and nuclear mutations in this 

cohort.  

A defect in the POLG gene was detected in a patient with Alpers syndrome. He had a 

heterozygous variant on one allele, the other allele being entirely deleted. The patient had 

rapid disease progression and died in a valproate induced liver failure. 

Massively parallel sequencing of the entire human genome and its implementation in clinical 

use is a diagnostic leap in the field of mitochondrial disorders. In a cohort of patients with 

combined deficiencies of the mitochondrial respiratory chain, 31 patients were subjected to 

whole genome/exome sequencing. A genetic diagnosis was established in 16 of these (52%), 

so far. Two novel gene defects were identified; SLC25A26 and COQ7. The latter gene 

encodes an enzyme of the Coenzyme Q (CoQ) biosynthesis. These disorders are responsive 

to CoQ10 treatment. We demonstrated a new mechanism of treatment using 2,4-

dihydroxybenzoic acid in order to bypass the deficient step.  

In conclusion, paediatric mitochondrial disorders are severe, progressive and usually multi-

systemic. The most common symptoms are often non-specific and the diagnostic procedure is 

a challenge. The genetic aetiology is heterogeneous, a substantial proportion of the causative 

variants are found in mtDNA. The phenotype-genotype correlation is poor, making whole 

genome sequencing an excellent diagnostic tool.   
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1 BACKGROUND  

1.1 INTRODUCTION 

The first patient with a mitochondrial disease was described in 1962 by the Swedish 

endocrinologist Rolf Luft at Karolinska Institutet and the biochemist Lars Ernster at 

Stockholm University (1). The patient was a woman with hypermetabolism. Symptoms had 

already started in childhood and consisted of profuse perspiration, polydipsia, polyphagia, 

decreased body weight, progressive asthenia and muscle weakness. Biochemical and 

morphological studies clearly indicated a mitochondrial disorder. Professor Luft and 

colleagues were able to demonstrate an uncoupling of the respiratory chain from the final step 

of adenosine diphosphate (ADP) phosphorylation to adenosine triphosphate (ATP). The 

genetic cause of this first mitochondrial disease has never been established. 

Since then, there has been a remarkable expansion of knowledge in the field of mitochondrial 

medicine and many patients have been diagnosed. Today, defects in the mitochondrial 

respiratory chain (RC) are considered to be amongst the most common groups of inborn 

errors of metabolism, with an estimated lifetime  risk of developing disease of approximately 

1/5000 live births (2). 

Mitochondrial disorders are highly heterogeneous with regard to the 

clinical phenotype, as well as the genotype. The clinical spectrum is 

extremely broad, from multi-organ, life-threatening disease at birth to 

single symptoms with onset in middle age.   

The genetic cause of a mitochondrial disease can be found either in the 

mitochondrial or in the nuclear genome. We expect approximately one 

third of the paediatric patients to have disease-causing variants in 

mitochondrial DNA (mtDNA) (3) and the rest to carry pathogenic 

variants in nuclear genes. To date, more than 250 nuclear genes have 

been linked to mitochondrial disease (4). 

Once a mitochondrial disorder is suspected, the diagnostic procedure 

is a challenge. There is no specific test to exclude or confirm the 

diagnosis. 

Nevertheless, it is of great importance for these patients and their families to establish a 

definite diagnosis on the genetic level. 

This thesis illustrates the exceptional evolution in the possibilities of settling the exact genetic 

diagnosis, the most important step being the introduction of next-generation sequencing in 

clinical use. The techniques for investigating all genes in parallel have not only facilitated the 

diagnostic work-up, but have also revealed novel genes and new disease mechanisms (4). 

 ‘Respiratory chain 

defeciency can 

theoretically give 

rise to any 

symptom, in any 

organ or tissue, at 

any age, with any 

mode of 

inheritance’ 

A. Munnich 
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1.2 STRUCTURE AND FUNCTION OF THE MITOCHONDRIA  

Mitochondria are organelles that are present in the cytoplasm of all human cells, except the 

mature erythrocyte. They are structures enclosed in a double membrane consisting of 

phospholipids. The inner membrane is highly convoluted, which increases the membrane 

surface and allows a higher capacity for ATP generation (Figure 1).  

The outer membrane is permeable to most ions and small molecules. The inner membrane is, 

in contrast, impermeable to most charged and hydrophilic substances, such as ADP, ATP and 

pyruvate. Specific carriers are required to transport metabolites that are essential for the 

intramitochondrial processes across the inner membrane (5).  

 

Figure 1. The mitochondrion. The mitochondrial matrix is enveloped in a double membrane, 

the inner part of which is highly convoluted into so called cristae. The name mitochondrion 

originates from the Greek ‘mitos’ (thread) and ‘chondros’ (granule or grain-like) (6). 

The mitochondria are not separated structures, but a dynamic network, continuously dividing 

and fusing into new units. The mechanism of mitochondrial fission and fusion is complicated 

and several proteins are required for the process to work smoothly (7). The fission-fusion 

machinery is essential for generating new mitochondria, eliminating the old or damaged ones 

and for distributing mitochondria throughout the entire cell. It also enables an exchange of 

substrates and energy between mitochondria in the cell.  

The crucial function of the mitochondria is to produce energy (ATP) by oxidative 

phosphorylation. Mitochondria are also highly involved in other cellular processes, such as 

intracellular calcium homeostasis (8), regulation of programmed cell death (apoptosis) (9), 

production of reactive oxygen species (ROS) (10), cellular growth (11) and cell signalling 

(12). 

The term mitochondrial disorder usually refers to deficiencies in the final common pathway 

of aerobic energy production, the oxidative phosphorylation (OXPHOS) process, which takes 

place in the mitochondrial RC. The five enzyme complexes of the RC are embedded in the 

inner mitochondrial membrane (Figure 2).  
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1.2.1 The oxidative phosphorylation and generation of ATP 

In the cytosolic process of glycolysis, glucose is converted to pyruvate, which can be either 

converted to lactate or transported into the mitochondrial matrix. Inside the mitochondria, 

pyruvate is oxidised by the pyruvate dehydrogenase (PDH) complex to form acetyl-CoA, 

which enters the tricarboxylic acid cycle, which, in turn, generates nicotinamide adenine 

dinucleotide (NADH) and flavine adenine dinucleotide (FADH2). Acetyl-CoA, NADH and 

FADH2  are also provided by the β-oxidation of fatty acids (13).  

NADH and FADH2 each donate a pair of electrons to the respiratory chain, when oxidised by 

NADH dehydrogenase (complex I) and succinate dehydrogenase (complex II), respectively. 

The electrons are then transported to cytochrome b (complex III) by the mobile carrier 

coenzyme Q (CoQ) and, further on, to cytochrome c oxidase (complex IV) by the other 

mobile carrier, cytochrome c. The electrons are finally accepted by oxygen to form water. 

Concomitant with the electron transport, protons are pumped into the intermembraneous 

space, creating a proton gradient across the mitochondrial inner membrane which, in turn, is 

used by ATP synthase (complex V) to generate ATP from ADP and inorganic phosphate 

(14). 

Figure 2. The mitochondrion houses several metabolic processes, such as the 

pyruvate dehydrogenase complex, the tricarboxylic acid cycle (Krebs cycle), the β-

oxidation of fatty acids, parts of the urea cycle, haeme synthesis, the biosynthesis of 

steroid hormones and the RC. Illustration: Rolf Wibom 
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1.3 MITOCHONDRIAL GENETICS 

The OXPHOS process is under dual genetic control and the genetic cause of a mitochondrial 

disorder can therefore be found in either the nuclear DNA (nDNA) or in the mitochondrial 

DNA (mtDNA). 

1.3.1 Mitochondrial DNA 

The mitochondrial genome is double stranded, circular and consists of 16 569 base pairs 

(Figure 3). The sequence was determined throughout its entire length in 1981 by Anderson et 

al.(15).  

 

 

 

 

The mitochondrial genome is present in multiple copies in each cell, varying from 

approximately 100 in the sperm cell to more than 100 000 in the mature oocyte (16). The 

DNA circles are compacted into small protein-DNA clusters called nucleoids (17).  

The replication of mtDNA is independent of the cell cycle and also occurs in post-mitotic 

tissues. The process is tightly regulated by a number of factors. Essential in this regulation are 

not only the proteins of the replication fork, but also enzymes involved in the supply of 

nucleotides (deoxynucleoside triphosphates, dNTPs) and proteins for the structural 

stabilisation of mtDNA (18).  

Figure 3. The mitochondrial genome. The included 37 genes encode 13 polypeptides, 22 

transfer RNAs (tRNAs) and two ribosomal RNAs (rRNAs). Unlike the nDNA, no introns 

intervene with the coding parts of mtDNA. The proteins encoded from mtDNA are subunits of 

the complexes I, III, IV and V of the respiratory chain.  
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A certain number of mtDNA copies are needed for survival of the cell. A defect in any part of 

the replication machinery can result in depletion of mtDNA, which is linked to a number of 

severe mitochondrial disorders of infancy and childhood (19). 

The mtDNA transcription, likewise the replication, relies on nuclear encoded proteins. The 

translation is partly autonomous, using mtDNA encoded ribosomal and transfer RNAs (20). 

An increasing number of disorders are caused by defects in mtDNA transcription, translation 

or posttranslational modifications (21). 

Normally, all mtDNA copies within a cell have identical sequences, a situation called 

homoplasmy. When a mutation occurs in one copy of mtDNA, it can eventually result in 

heteroplasmy, which means that mixed populations of mutant and wild type DNA coexist in 

the same cell (22). During mitosis, these populations are randomly segregated to each of the 

daughter cells. This phenomenon affects both disease expression and inheritance of the 

disease. 

Disease from an mtDNA mutation occurs when a certain fraction of mutant mtDNAis present 

in the cell. This threshold represents a level when the amount of remaining wild type mtDNA 

is not enough to maintain the OXPHOS process, resulting in cellular dysfunction. 

Commonly, the threshold is reached at a level of 60-90% mutated mtDNA, but it varies with 

the mutation, the tissue involved and probably also between individuals (23). 

MtDNA has a higher mutation rate than nuclear DNA, possibly due to its proximity to the RC 

complexes and the mutagenic free radicals they generate, the lack of non-coding regions and 

protective histones or a less efficient repair system (24).  

Pathogenic variants in mtDNA can be point mutations or rearrangements (deletions or 

insertions). Mitochondrial tRNA gene mutations account for a major portion of mtDNA-

linked disease (25).  

From a biochemical perspective, mutations in genes encoding subunits of the RC complexes 

give rise to isolated enzyme deficiencies, whereas mutations in tRNA genes result in 

combined enzyme deficiencies. The enzyme deficiencies in cases of tRNA mutations usually 

include the complexes I, III, IV and V, since they contain subunits encoded from mtDNA 

(Figure 4). 

The genotype-phenotype correlation for a certain mtDNA mutation is generally poor, but 

there are exceptions. Large scale deletions of mtDNA usually present with clinical features of 

Pearson syndrome (26), Kearns-Sayre syndrome (27) or chronic progressive external 

ophthalmoplegia (CPEO) (28) Clinical features will be described later. 
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Complex I II III IV         V           Total 

Subunits encoded from mtDNA 

Subunits encoded from nDNA 

Total 

7 

37 

~44 

0 

4 

4 

1 

10 

11 

3 

11 

14 

        2               13 

      17               79 

      19               ~92 

Figure 4. The enzyme complexes of the mitochondrial RC consist of several subunits 

encoded from specific genes in mtDNA, as well as nDNA. To date, ~92 subunits have been 

identified (29). Illustration: Rolf Wibom. 

The majority of patients with mitochondrial encephalomyopathy, lactic acidosis and stroke-

like episodes (MELAS) carry the, above all, most common point mutation in mtDNA: the 

tRNA mutation 3243A>G in the MT-TL1 gene. A syndrome involving myoclonic epilepsy 

with ragged red fibres (MERRF) is commonly caused by an A>G transition at m.8344 in MT-

TK. Leber’s hereditary opticus neuropathy (LHON) is caused, in at least 90% of cases, by one 

of three different point mutations in three genes encoding subunits of complex I (m.3460G>A 

in MT-ND1, m.11778G>A in MT-ND4 or m.14484T>C in MT-ND6) (30). 

High mutation loads (95-100%) of a number of different mtDNA mutations may result in the 

clinical presentation of Leigh syndrome. This has been reported in mutations located in genes 

encoding RC subunits as well as tRNAs. The most frequently occurring ones are the 

m.8993T>G/C mutations in the MT-ATP6 gene. Lower levels of heteroplasmy in these 

particular mutations often present as neuropathy, ataxia and retinitis pigmentosa (NARP) 

syndrome. 

Mutations in mtDNA are maternally inherited. The paternal mtDNA in the sperm cell is 

labelled with a ubiquitin tag, which induces rapid targeted proteolysis on entering the oocyte 

(31). 

Large scale deletions are mainly sporadic and usually are not transmitted to the offspring, 

although inherited deletions have been described (32). 

Maternal mtDNA mutations are transmitted to an offspring through a genetic bottleneck, 

which occurs during the oogenesis. The copy number of mtDNA molecules is highly reduced 

in each primordial egg cell and consequently a small number of mtDNA molecules (wild-

type and mutated) become founders of the entire population of mtDNA in the offspring. This 
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explains why the children of a mother carrying an mtDNA mutation, display a variety of 

different mutation loads (33). 

1.3.2 Nuclear DNA 

The majority of patients with mitochondrial disorders have a genetic defect in the nuclear 

genome. Approximately 1500 nuclear gene products are necessary for proper mitochondrial 

function and maintenance (34).  

Nuclear encoded proteins essential for the mitochondrial function participate in several 

pathways, including: ( i) subunits and assembly factors for the five RC enzyme complexes, 

(ii) mtDNA maintenance and expression, (iii) mitochondrial biogenesis and dynamics and 

(iv) import and export across the mitochondrial membrane (29). Examples of additional 

pathways are those for the biosynthesis of different factors that are necessary in the OXPHOS 

process, such as CoQ, haeme and iron-sulphur clusters (35-37). 

The overall most frequently affected nuclear gene in mitochondrial disease is POLG, which 

encodes the catalytic subunit of polymerase γ, the sole polymerase replicating mtDNA. The 

first POLG variant associated with disease was described in a family with autosomal 

dominant CPEO in 2001(38). Since then, more than 150 disease-causing variants have been 

identified (http://tools.niehs.nih.gov/polg). 

The mode of inheritance when the disease is caused by defects in a nuclear gene is usually 

autosomal recessive. Autosomal dominant or X-linked inheritance is also seen.  

 

1.4 CLINICAL FEATURES OF MITOCHONDRIAL DISEASE 

Mitochondrial disorders are clinically heterogeneous. Symptoms can emerge from any organ 

or tissue, although the central nervous system and skeletal muscles are the above all most 

frequently affected tissues, owing to their high energy demands.  

In infancy and early childhood, the disease is often multi-systemic, with involvement of not 

only the central nervous system (CNS) and muscles, but also the liver, heart, kidneys and 

bone marrow, to mention the most frequently involved organs. Early onset of the disease 

indicates a severe defect in the mitochondrial respiratory chain, and this is related to a poorer 

prognosis (39). Mitochondrial disorders, with an onset in the adolescence or adulthood, are 

more often single-organ diseases, such as CPEO, or LHON. 

1.4.1 Symptoms and signs from the central nervous system  

Symptoms from the CNS are seen in the majority of children with mitochondrial diseases 

(39). The most frequent symptom is a developmental delay (40), which is usually global and 

affects cognitive, language and motor skills. The end-point cognitive level varies, from mild 

learning disabilities to severe mental retardation. There is probably no specific cognitive 

profile since mitochondrial disorders are, in all aspects, extremely heterogeneous. A study by 

http://tools.niehs.nih.gov/polg
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Turconi et al. indicated a greater impairment in the non-verbal area, particularly the visuo-

spatial abilities. Impairment of the verbal short term memory (working memory) was also 

seen (41). Symptoms from the autism spectrum are seen as well, and one hypothesis is that 

mitochondrial dysfunction can be part of the disease mechanism in autism spectrum disorders 

in general (42).   

Seizures are a frequent complication of mitochondrial disease at all ages. The exact 

prevalence is not known, but it is estimated to be approximately 40% (43). Various seizure 

types may occur and a substantial proportion of patients have mixed seizure-type epilepsy 

(44). Partial seizures, with or without secondary generalisation, were the most common 

seizure types in a study by Khurana et al., 2008. Recurrent status epilepticus was seen in as 

many as 60% of the patients. Also epileptic syndromes, such as West syndrome and Lennox- 

Gastaut syndrome have been reported (45). Alpers syndrome (AS), due to recessive 

mutations in the POLG gene, is one of the most common mitochondrial syndromes 

associated with epilepsy (46). Patients with AS often present with focal, myoclonic or 

complex seizures. Status epilepticus is common, sometimes starting with epilepsia partialis 

continua, followed by a generalised, therapy-resistant status. Electroencephalography (EEG) 

may initially show characteristic unilateral, occipital, high-amplitude, slow waves with 

superimposed polyspikes, evolving into a generalised pattern (47). Apart from what is seen in 

AS, EEG changes are not specific for certain mitochondrial syndromes. 

The underlying pathomechanisms of mitochondrial epilepsy are not known. The energy 

failure is an important factor, but other aspects of a mitochondrial dysfunction, such as ROS 

production, disturbed calcium homeostasis and apoptosis are likely to contribute (48). It has 

also been hypothesised that GABA-ergic inhibitory interneurons are more vulnerable to 

respiratory chain dysfunction, thereby causing an imbalance of neuronal excitation and 

inhibition (49).  

Movement disorders are seen in a substantial proportion of the patients with mitochondrial 

diseases. In the paediatric population, dystonias are the most frequent symptoms, and are seen 

particularly in Leigh syndrome (50). This is not surprising, as the syndrome includes lesions 

in the basal ganglia and other extrapyramidal structures, from which these types of symptoms 

arise. Ataxia is not classified as a movement disorder, but it is a common symptom in several 

mitochondrial phenotypes caused by mutations in either mtDNA or nDNA (51).  

Neurological symptoms in mitochondrial disease are often progressive, and sometimes rapid, 

with developmental arrest and loss of skills. The progression can also be stepwise, with a 

preceding infection or other catabolic situation. Some patients have a very slow progression, 

appearing like a static condition.  

A considerable proportion of patients suffer from acute neurological events, such as 

strokelike episodes, status epilepticus, coma, vomiting or lethargy.  
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1.4.2 Symptoms from skeletal muscle 

Myopathy is the above all most common single symptom in mitochondrial disease. It is often 

part of an encephalomyopathy with additional symptoms from other organs, but pure 

myopathic presentations are seen in the adult, as well as the paediatric population. 

 The isolated mitochondrial myopathy typically presents with axial and proximal muscle 

weakness. Distal weakness has been reported in sporadic cases in the myopathic group and 

occur regularly in the group of patients with mitochondrial polyneuropathies and neurogenic 

muscle weakness (52). Exercise intolerance and a general fatigue are other hallmarks of the 

mitochondrial myopathy.  

Infantile-onset mitochondrial myopathies are usually severe disorders with pronounced 

weakness, hypotonia and a need for ventilation support and intensive care. It is important to 

be aware of a subset of patients with this severe phenotype and a cytochrome c oxidase 

(COX)-deficiency, who turn out to have a reversible disease. This phenotype was reported by 

Di Mauro et al in 1981 (53) and was recently shown to be caused by the mtDNA mutation 

m.14674T>C in the MT-TE gene (54).   

1.4.3 Ophthalmological manifestations 

Ophthalmological findings in mitochondrial disease are common, although the frequency 

remains unclear. The prevalence reported in three different studies was 81%, 53% and 35% , 

respectively (40, 55, 56). Grönlund et al included visual impairment due to refraction defects, 

which is prevalent in the healthy population, and which might explain the high prevalence 

(81%) in their study. 

The extraocular muscles are strongly dependent on a sufficient energy supply, with 

mitochondria occupying approximately 60% of the cell volume (56). It is therefore not 

surprising, that external ophthalmoplegia is a common finding in patients with mitochondrial 

disorders. CPEO may constitute the presentation of a late-onset mtDNA deletion disease and 

is usually seen in autosomal dominant disorders of mtDNA maintenance.  

 

Optic atrophy is often part of a systemic disease with CNS involvement, as in Leigh 

syndrome. It can also appear in isolation, such as in patients with LHON. In this disease, the 

function of the retinal ganglion cells is specifically affected, which results in subacute, 

painless, bilateral visual failure (57). Occasionally, additional symptoms can be seen, 

preferentially from the nervous system (58). The onset of disease usually occurs in young 

adulthood, but childhood onset is also seen.  

 

Pigmentary retinopathy is another rather common finding and was seen in 16% of the patients 

in a recent study by Zhu et al.(55). It is a non-specific sign of retinal dysfunction which has 

been associated with a variety of mtDNA and nDNA mutations.  

Other abnormalities of the eye and/or vision to be mentioned are cataract, cortical blindness 

and homonymous hemianopsy. 
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1.4.4 Hepatopathy and gastrointestinal symptoms 

Gastrointestinal and hepatic symptoms are frequently seen, but they are rarely the sole 

symptom of disease.  

Hepatic disease is estimated to occur in 10-20% of patients with mitochondrial disease and 

usually presents in early childhood (59, 60). The spectrum of severity ranges from transient 

elevated liver transaminases to acute, fatal liver failure early in life. 

The causes of mitochondrial hepatopathies are mainly: (i) disorders of mtDNA maintenance, 

(ii) defects in mitochondrial protein synthesis, (iii) defects of RC complex assembly and (iv) 

disorders of the mitochondrial lipid membranes (61).  

The first group includes the so-called hepatocerebral mtDNA depletion syndromes, which are 

characterised by early onset liver failure, hepatomegaly, hypoglycaemia and jaundice. The 

syndromes are also associated with a spectrum of neurological symptoms, such as seizures, 

developmental delay or regress, nystagmus and other abnormal eye movements. Among the 

genes linked to these syndromes are: POLG, DGUOK, PEO1, MPV17 and SUCLG1 (62). In 

POLG-associated disease, the acute liver failure is sometimes triggered by antiepileptic 

medication with valproic acid (63).  

The second group includes gene defects in mtDNA (the tRNA or rRNA genes), as well as in 

nDNA. The nuclear gene TRMU encodes the enzyme mitochondrial tRNA 5-

methylaminomethyl-2-thiouridylate-methyltransferase, which is essential for the 

posttranscriptional modification of mitochondrial tRNAs. Mutations in TRMU have been 

linked to infantile onset liver failure, with the unique feature of spontaneous recovery in a 

substantial proportion of the patients (64). 

Patients with intrauterine growth retardation, aminoaciduria, cholestasis, iron overload, lactic 

acidosis and early death (GRACILE syndrome) (65) belong to the third category of 

mitochondrial disorders with hepatic involvement. The syndrome was linked to mutations in 

BCS1L, encoding an assembly factor for complex III (66). 

The last group is the most recently defined one and consists of defects in the biosynthesis and 

remodelling of mitochondrial phospholipids. Examples from this group are the patients with 

3-methylglutaconic aciduria, deafness and Leigh-like encephalopathy (MEGDEL), due to 

mutations in the SERAC1 gene (67). Some of these patients exhibit early-onset liver disease 

with hepatomegaly, elevated liver transaminases and hypoglycaemia.  

Gastro-intestinal symptoms are common in mitochondrial disorders, regardless of the genetic 

backgrounds, although they are more prominent in association with certain defects. The 

mechanism behind the symptoms varies and is sometimes caused by a combination of 

different tissue/organ involvements. 

Mitochondrial neuro-gastro-intestinal encephalomyopathy (MNGIE), caused by a deficiency 

of thymidine phosphorylase, due to mutations in TYMP, is characterised by severe 
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gastrointestinal dysmotility, and even a chronic intestinal pseudoobstruction (68). The 

syndrome frequently presents in adolescence or young adulthood and additional features are 

cachexia, peripheral neuropathy and/or ophthalmoplegia. Hearing impairment is common and 

most patients develop a leukoencephalopathy in adulthood (69). Similar phenotypes, with 

severe gastrointestinal dysmotility, have been reported with mutations in other genes 

involved in mtDNA maintenance, POLG being one example (70). 

Diarrhoea, owing to exocrine pancreas insufficiency, is a cardinal feature of Pearson 

syndrome. Pearson syndrome is the most frequently seen phenotype in the early onset of a 

disease caused by a large-scale deletion in mtDNA. Additional symptoms in Pearson 

syndrome are transfusion-dependent anaemia and lactic acidosis (26). Liver failure, renal 

tubular acidosis and diabetes mellitus can further complicate the clinical picture.  

Patients with Leigh syndrome, described in detail below, often have more diffuse 

gastrointestinal symptoms, such as failure to thrive, feeding difficulties and vomiting. The 

causative factors behind these symptoms are probably multiple in nature, including 

involvement of the CNS, gastrointestinal tract, muscles and peripheral nerves. 

1.4.5 Endocrine dysfunction 

Steroid hormones are synthesised within the mitochondria and a dysfunction of ATP 

production leads to impaired hormone production and endocrinological symptoms. Overall, 

endocrinological manifestations seem to be most common in the phenotypes caused by 

defects of mtDNA, particularly large-scale deletions and point mutations in tRNA genes. 

Patients with nuclear gene defects may also present with these symptoms, most frequently 

involving gene defects affecting mtDNA maintenance and translation (71). 

Diabetes mellitus is the best described endocrine manifestation. The mechanism of diabetes 

in mitochondrial disease is not only a matter of decreased insulin secretion owing to a 

deficient ATP supply, but is also caused by the impairment of the mitochondrial role as a 

glucose sensor, connecting glucose metabolism to insulin release (72). Diabetes is reported in 

a substantial proportion of patients carrying the mutation m.3243A>G in MT-TL1, either as a 

dominant feature in the syndrome of maternally inherited diabetes and deafness (MIDD) or as 

a part of MELAS. The m.3243A>G mutation is estimated to cause 0.5-2.9% of diabetes 

mellitus in the population (73, 74). Diabetes mellitus is also frequently seen in Kearns-Sayre 

syndrome, caused by large scale deletions in mtDNA. In Pearson syndrome, exocrine 

pancreas dysfunction is a more prominent feature, but diabetes is seen as well (75). 

Short stature is common in patients with mitochondrial disorders. In some of these patients a 

growth hormone deficiency can be established. In other patients, the underlying mechanisms 

are yet unknown.  

Additional endocrinological manifestations that should be mentioned are hypothyroidism, 

hypoparathyroidism, adrenal insufficiency and hypogonadism. 
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1.4.6 ‘…any symptom from any organ or tissue’ 

Kidney 

The kidney is highly dependent on aerobic metabolism and is therefore vulnerable to 

OXPHOS dysfunction. The cortical tubule is especially sensitive, the proximal tubule in 

particular, since it lacks the capacity to synthesise ATP anaerobically (76).  

Renal manifestations of mitochondrial disease have been reported in association with mtDNA 

mutations, as well as numerous nuclear genes. Most usual is a tubular dysfunction, varying 

from a mild hyperaminoaciduria, which may only occur during illness or other catabolic 

situations, to a complete de Toni-Debré-Fanconi syndrome. The more pronounced 

tubulopathies are frequently associated with large-scale deletions in mtDNA and the clinical 

features of Pearson or Kearns-Sayre syndrome (77). 

A subset of patients develops a glomerular disease. Focal segmental glomerulosclerosis, for 

one example, has been reported in patients with the mtDNA mutation m.3243G>A (78). 

Some defects in the CoQ biosynthesis pathway are also associated with glomerular disease 

and may respond to treatment with CoQ10 (79).  

Heart  

Cardiomyopathies are the most frequent cardiac manifestations of mitochondrial disease and 

are estimated to occur in 20-40% of the patients (40, 80). Hypertrophic cardiomyopathies are 

most common, but dilated, restrictive and other types are also seen. The severity ranges from 

asymptomatic, sometimes spontaneously reversible conditions, to a severe cardiomyopathy 

with an early, even prenatal, onset that causes death in early infancy. The presence of a 

cardiomyopathy in a mitochondrial disorder, regardless of its severity, is associated with a 

poorer prognosis (80).  

Arrythmias, conduction defects and pulmonary hypertension are examples of other more rare 

cardiac manifestations (81). 

Hearing  

Hearing impairment/deafness is a symptom of several mitochondrial phenotypes, caused by 

mutations in mtDNA, as well as in nDNA. The prevalence varies in different studies, but a 

minimal frequency is approximately 20% (40) (82). In contrast, hearing loss was found in 

80% of patients in a study of 40 children with mitochondrial disease (83). Hearing 

impairment is not always part of a multi-systemic disorder. Nonsyndromic hereditary hearing 

loss sensitive to exposure to aminoglycosides, is an example. This clinical entity is caused by 

the mtDNA mutation m.1555G>A in MT-RNR1 (84).  

1.4.7 Leigh syndrome 

Leigh syndrome (LS), or subacute necrotising encephalopathy, is a progressive 

neurodegenerative disorder of infancy and early childhood. It is the most common paediatric 

mitochondrial syndrome. In a study from Western Sweden the preschool incidence of LS was 

1/ 34 000 (59). 
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The syndrome was first described in 1951 by the pathologist, Denis Leigh (85). He reported 

unique findings in the brain of an eight month-old boy that died of a rapidly progressive 

neurological disease. He had focal, bilaterally symmetrical necrotic lesions extending from 

the thalamus to the pons and the posterior columns of the spinal cord. Later reports have 

confirmed that LS is primarily a disease of the deep grey matter and sometimes involving the 

white matter. Lesions are characteristically seen in the basal ganglia, thalami, brainstem, 

cerebellum and spinal cord and consist of areas of demyelination, gliosis, necrosis, spongiosis 

and vascular proliferation (86).  

In modern imaging techniques, the clinical diagnosis of the Leigh/Leigh-like syndrome is 

based on typical findings of bilateral, symmetric lesions in the basal ganglia and/or brainstem 

and other central structures seen on Magnetic Resonance Imaging (MRI) or Computed 

Tomography (CT) of the brain (Figure 5). 

   

 

 

 

 

Widely used additional clinical criteria for the diagnosis are: (i) progressive neurological 

disease with motor and/or cognitive delay and (ii) clinical signs or symptoms indicating 

brainstem and/or basal ganglia dysfunction. A third criterion initially included elevated serum 

or cerebrospinal fluid (CSF) lactate, indicating abnormal energy metabolism (87). Since the 

lactate levels are sometimes normal in patients with severe RC disease, the following revision 

of the criteria (iii) has been suggested: abnormal energy metabolism indicated by a severe 

defect in OXPHOS or PDH complex activity, a molecular diagnosis in a gene related to 

mitochondrial energy generation, or elevated serum or CSF lactate (88). 

Figure 5. MRI of the brain in a boy with Leigh syndrome. The left picture shows axial 

T2 weighted images with bilateral symmetrical lesions in the putamen and caput nucleus 

caudatus. The right picture is a coronal FLAIR image showing bilateral symmetrical 

abnormalities in the putamen and corpus nucleus caudatus. Signs of atrophy.  
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The onset of the disease is usually early, in the majority of patients before two years of age 

(89). Later forms do exist, although rarely (90). 

In the typical clinical course, the initial development is normal. Symptoms often present 

during infections or other illnesses. The neurological symptoms include developmental 

delay/arrest, followed by loss of skills, axial hypotonia, increasing tonus in the arms and legs, 

ataxia and dystonia. Ophthalmological abnormalities, such as nystagmus and optic atrophy, 

are frequently seen (91), as well as sensorineural hearing impairment and epilepsy. 

Additionally, a diversity of non-neurological symptoms, such as cardiomyopathy, 

hepatopathy, renal tubular dysfunction or hormonal deficiencies, may constitute parts of the 

phenotype.  

Leigh syndrome is most usually caused by a dysfunction of the mitochondrial respiratory 

chain, although the syndrome can be seen in other inborn errors of metabolism. It is a 

common phenotype in different conditions that causes severe failure of oxidative metabolism 

in the mitochondria of the developing brain. 

The underlying genetic causes are heterogeneous. More than 75 different nuclear genes are 

reported to be causative (88). A number of mtDNA mutations are also known to cause LS. 

The phenotype is usually associated with high levels of heteroplasmy (>90 %). Most well-

characterised are the mutations m.8993T>C/G in MT-ATP6 (92) (93). 

1.4.8 Alpers syndrome 

Alpers syndrome (AS), also named Alpers-Huttenlocher syndrome, is another 

neurodegenerative mitochondrial encephalopathy of infancy and early childhood (94) (95). 

The phenotype is characterised by intractable epilepsy, developmental regression and 

hepatopathy with or without liver failure.  

The disease primarily affects grey matter in the brain, particularly the cerebral cortex, 

cerebellum and thalami. Pathology in the brain includes spongiosis, astrocytosis and neuronal 

loss. In the liver, hepatitis with fatty degeneration, hepatocyte loss, bile duct proliferation and 

fibrous scarring, with or without cirrhosis, have been described (96).  

The onset of the disease typically occurs in infancy, but later presentations also occur (97). 

Birth and initial development are usually normal, although some patients have a slight 

developmental delay. Failure to thrive and episodes of frequent vomiting are other unspecific, 

early signs of the disease. The onset may be acute/subacute, often with a preceding infection. 

Similar to LS, psychomotor developmental arrest and progressive loss of skills are common. 

In contrast to LS, patients with AS have a more pronounced loss of cognitive abilities owing 

to the cortical neurodegeneration. Seizures are the presenting features in 50% of the patients 

(98). Mixed types of seizures are seen. Focal motor seizures and myoclonia are the most 

common seizure types. A substantial proportion of the patients experience generalised or 

focal status epilepticus (99). Hepatopathy is usually not a presenting symptom, but occurs 

later in the disease. In approximately 50 % of the patients, the liver involvement is associated 
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with exposure to sodium valproate (100). Additional symptoms such as hypotonia, ataxia and 

cortical blindness are frequently present in the phenotype (101).  

In 1999, AS was found to be associated with recessive mutations in the POLG gene (102). 

Although POLG mutations underlie the major portion of AS, mutations in other nuclear 

genes affecting replication, transcription or translation of mtDNA, have been reported to 

cause the phenotype (103). In several cases, the genetic aetiology remains unidentified. 

 

1.5 DIAGNOSING MITOCHONDRIAL DISEASE 

The diagnostic procedure, following a suspicion of mitochondrial disorder, is an 

extraordinary challenge owing to the extreme heterogeneity of the clinical and biochemical 

features and the fact that there is no single, specific test to confirm or exclude a diagnosis of 

mitochondrial disease. Relevant findings have to be merged to give a general picture. 

1.5.1 Clinical phenotyping 

A detailed medical and family history and a thorough examination 

are essential for the further diagnostics. The family history may 

help to discriminate between maternal (indicating an mtDNA 

defect) and Mendelian inheritance of the disease.  

Clinical investigations include neurological, cardiac and 

ophthalmological evaluations and assessments of hearing, growth 

and psycho-motor development. The finding of multiple organ 

involvement, especially the brain and muscles, further strengthens 

the suspicion of a mitochondrial disorder. The mapping of clinical 

symptoms and signs also serves to establish the extent of disease in 

order to plan the management and follow-up of the specific 

individual. 

Many of the more frequent symptoms, such as developmental 

retardation, hypotonia and failure to thrive, are non-specific and 

seldom raise the suspicion of a mitochondrial disorder. Other 

symptoms, or constellations of symptoms, are less frequent and 

more specific and point directly to the mitochondria. Ataxia, external ophthalmoplegia and 

renal tubulopathy are examples of ‘red flags’, signalling a potential mitochondrial disorder 

(104). Certain constellations of symptoms may even be clues to a specific mitochondrial 

syndrome, such as a combination of stroke-like episodes, diabetes and hearing impairment, 

strongly suggesting the MELAS syndrome. 

1.5.2 Neuroimaging 

Neuroimaging is important in all patients with CNS involvement. Structural MRI is the 

standard investigation. Modern functional brain imaging methods, such as magnetic 
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resonance spectroscopy, diffusion weighted imaging and perfusion MRI may provide 

valuable information regarding brain metabolism (105, 106).   

Non-specific findings of cerebral atrophy or leukodystrophy are common. Certain imaging 

patterns are more distinct, and may be helpful in further biochemical and genetic 

investigations, such as identification of typical features of Leigh syndrome or Alpers 

syndrome. Stroke-like lesions, predominantly located in grey matter and not following 

vascular territories, suggest a MELAS syndrome (107, 108).  

1.5.3 Clinical chemistry  

Routine parameters, such as a full blood count, glucose, creatine kinase (CK) and laboratory 

parameters of liver, parathyroid, thyroid and renal function are evaluated to characterise the 

systemic involvement of the disease.   

Lactic acid is an important, although non-specific biomarker of mitochondrial disease. A 

substantial proportion of patients may have consistently normal, or minimally elevated, 

lactate levels in the blood, as well as the CSF (39). Conversely, elevated blood or CSF lactate 

levels are seen in a range of conditions not linked to RC disorders. Inappropriate collection or 

handling of the samples may also result in a high concentration of lactate in the sample (109). 

The more specific metabolic work-up serves to exclude other metabolic differential diagnoses 

and to find abnormalities, which further strengthen the suspicion of a mitochondrial disorder. 

Urinary organic acids are included in the diagnostics of virtually all types of metabolic 

disorders. Patients with mitochondrial disorders may have normal excretion, although 

abnormalities frequently occur. Most common is a non-specific increased excretion of lactate. 

Metabolites from the Krebs cycle, such as fumarate and malate, may indicate an RC 

dysfunction, but they are also found in normal urine, especially in catabolic situations (110). 

Excretion of 3-methyl glutaconic acid is normally hardly detectable in urine and is highly 

suggestive of an OXPHOS disorder (111). Dicarboxylic aciduria may occur owing to a 

secondary inhibition of mitochondrial fatty acid β-oxidation (112). The opposite scenario, a 

primary fatty acid oxidation disorder with secondary OXPHOS dysfunction, is also well-

known. (113). 

Quantitative analyses of amino acids can be performed in urine, plasma and CSF. 

Generalised hyperaminoaciduria is the sign of a tubulopathy, which is the most typical renal 

manifestation of mitochondrial disease (78). Alanine levels in plasma and/or CSF may be 

elevated, since alanine, like lactate, is derived from pyruvate in situations of metabolic de-

compensation (12). 

Carnitine levels in plasma may be low, occurring secondarily to a renal tubulopathy which 

causes carnitine loss via the urine. Another loss may result from increased consumption due 

to binding of acyl groups from acylCoA and excretion of acylcarnitine esters in the urine 

(114). 
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Acylcarnitine profiles may reveal primary organic acidaemias, primary fatty acid oxidation 

disorders or a secondary fatty acid oxidation dysfunction due to the OXPHOS defect (115).  

1.5.4 Muscle biopsy  

Muscle biopsy is the golden standard procedure in investigations of mitochondrial function. 

Skeletal muscle is readily available for a percutaneous biopsy, being rich in mitochondria and 

among the most frequently affected tissues. We perform biopsies from M. Tibialis anterior, 

under local anaesthesia. Approximately 50 mg is the minimum for the complete investigation 

(Figure 6). A skin biopsy specimen is taken at the same time to obtain fibroblasts for future 

biochemical and molecular analyses. 

 

 

Muscle morphology is studied by means of light and electron microscopy, using 

histochemical and immunohistochemical methods (116). The finding of ‘ragged red fibres’ 

(RRF) is strongly suggestive of a mitochondrial disorder. RRF is a pattern caused by 

subsarcolemmal accumulation of mitochondria. The presence of fibres deficient in COX 

activity is another hallmark of mitochondrial disease. Neither RRF nor COX-negative fibres 

are specific for a mitochondrial disorder, but they may appear secondarily to other, non-

mitochondrial myopathies (117). Sequential staining for COX and succinate dehydrogenase 

(SDH) (complex II) is used to better see the sometimes mosaic pattern of COX-negative 

fibres (118). Electron microscopy may demonstrate a variety of abnormalities associated with 

mitochondrial disease. The mitochondria may appear enlarged, with abnormal shapes, absent 

cristae and paracrystalline inclusions (119). 

Figure 6. Percutaneous muscle biopsy. The tissue sample is used for (from the left): 

( i) Morphological investigations. A pattern of ragged red fibres is seen in the picture.  

(ii) Measurements of MAPR, results presented in filled bars, compared to healthy controls 

in open bars. (iii) Enzyme activity of the mitochondrial RC, results presented in red bars. 

Normal average +2SD indicated. (iv) MtDNA analyses.  
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The mean ATP production rate is determined in mitochondria from a fresh muscle sample. 

The analysis has to be performed within one hour from the biopsy, because the method 

requires intact, respiring mitochondria. A sensitive bioluminescence method is used (120).  

Polarographic studies of oxygen consumption are an alternative for assessing the OXPHOS 

rate (121). 

Spectrophotometric methods are used to analyse activities in isolated and combined enzyme 

complexes of the respiratory chain. At our centre, we measure activities of complex I (NADH 

coenzyme Q reductase), I+III (NADH cytochrome c reductase), II (succinate dehydrogenase), 

II+III (succinate cytochrome c reductase) and IV (cytochrome c oxidase). The results are 

reported in relation to citrate synthase, a mitochondrial matrix enzyme having good 

correlation with the mitochondrial mass (122). 

1.5.5 Molecular genetics 

Further genetic tests are performed based on the findings in the muscle biopsy. Isolated 

enzyme complex deficiencies indicate mutations in genes encoding subunits of the complex 

or assembly factors. Complexes I, III, IV and V contain subunits encoded by mtDNA as well 

as nDNA, whereas a complex II deficiency is expected to be caused by mutations in nuclear 

genes. Combined enzyme deficiencies including complexes I, III, IV and V indicate a 

deficiency of mtDNA expression or maintenance. Causative mutations may be found in 

mitochondrial tRNA genes, but more often in nuclear genes.  

Occasionally, genetic analyses are performed without a preceding mitochondrial assay in 

muscle tissue. LHON is an example of that, with a specific clinical picture which, in more 

than 90% of the patients, is caused by one of three different mtDNA mutations. 

Sequence analysis of the entire mitochondrial genome is usually the first step in the 

molecular part of the diagnostic procedure. It is relatively easily done and, if negative, rules 

out maternal (mitochondrial) inheritance of the disease. MtDNA mutation analyses are 

preferably performed in muscle tissue, since mtDNA molecules harbouring point mutations 

or large deletions tend to accumulate in non-dividing cells, such as muscle and nerve cells, 

but are eliminated in the rapidly dividing blood cells (123). Urinary epithelial cells and buccal 

mucosa cells are alternative cell types, with the advantage of a non-invasive sample 

collection (124). 

A Southern blot analysis of mtDNA from muscle is often included. The analysis detects 

rearrangements (deletions and insertions) or mtDNA depletion in comparison with a normal 

control (125). 

Once a causative mutation in mtDNA is excluded, hundreds of nuclear genes remain to be 

investigated. Sanger sequence analyses of selected genes are seldom cost-effective since 

identical signs and symptoms may be caused by mutations in many different genes.  
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The new techniques of massively parallel DNA sequencing have greatly increased our ability 

to establish a genetic diagnosis in patients with mitochondrial disorders, and have recently 

been implemented in the clinical setting (126, 127). The human genome contains three billion 

base pairs, approximately 1-2% of these being located in coding regions and are translated 

into proteins (128). The majority of disease-causing mutations are located in these coding 

regions (exons) and, therefore, whole exome sequencing (WES) was the analysis first 

introduced for clinical use. The method requires sequence capture (enrichment of specific 

regions of the genome) before sequencing (129). As prices have fallen and techniques have 

further developed, the use of whole genome sequencing (WGS) is preferred and has gradually 

been implemented at many centres for mitochondrial diagnostics. WGS enables variant 

detection also in non-coding regions, such as the introns. A WES analysis identifies 

approximately 20 000 single nucleotide variants (SNVs) per genome, whereas WGS 

identifies as many as four million. This large amount of data requires powerful bioinformatic 

tools. We use an in-house tool: Mutation Identification Pipeline (MIP) 

(https://github.com/henrikstranneheim/MIP), described in detail in Paper IV. In this pipeline, 

variants are scored according to allele frequency using dbSNP 

(https://www.ncbi.nlm.nih.gov/SNP/, (130)), Exome aggregation consortium (ExAC, 

http://exac.broadinstitute.org, (131)) and an in-house database. Variants with an allele 

frequency of >0.01 in the normal population are considered to be unlikely to cause these rare 

autosomal recessive disorders. The potentially damaging properties of a variant are 

determined in silico, using different software tools e.g., Combined annotation-dependent 

depletion (CADD, cadd.gs.washington.edu (132)), Sorting intolerant from tolerant (SIFT, 

http://sift.jcvi.org/ (133)) and Polymorphism phenotyping v.2 (PolyPhen-2, 

genetics.bwh.harvard.edu/pph2/ (134)). Filtered and scored genomic data are eventually 

evaluated in relation to the patient’s clinical symptoms, biochemical findings and pattern of 

inheritance at weekly multidisciplinary meetings with clinicians, geneticists and 

bioinformaticians.  

The clinical WES/WGS analysis is targeted on genes which have previously been described 

and validated as causative of mitochondrial or other metabolic disorders (135). We use an in-

house, manually created, continuously updated database of currently >680 genes (dbCMMS, 

http://www.karolinska.se/for-vardgivare/kliniker-och-enheter-a-o/kliniker-och-enheter-a-

o/karolinska-universitetslaboratoriet/cmms---centrum-for-medfodda-metabola-

sjukdomar/genetisk-diagnostik/). If no causative variants are detected, the analysis can be 

expanded to all known monogenic disease genes. With the written informed consent of the 

parents, the full genome can be analysed in the search for yet unknown genetic causes of 

disease, as part of a research project. 

1.5.6 Prenatal diagnostics 

Prenatal diagnostic analyses of mitochondrial disease are usually based on genetic findings, 

although prenatal biochemical analyses of OXPHOS function have been used (136). 

http://exac.broadinstitute.org/
http://www.karolinska.se/for-vardgivare/kliniker-och-enheter-a-o/kliniker-och-enheter-a-o/karolinska-universitetslaboratoriet/cmms---centrum-for-medfodda-metabola-sjukdomar/genetisk-diagnostik/
http://www.karolinska.se/for-vardgivare/kliniker-och-enheter-a-o/kliniker-och-enheter-a-o/karolinska-universitetslaboratoriet/cmms---centrum-for-medfodda-metabola-sjukdomar/genetisk-diagnostik/
http://www.karolinska.se/for-vardgivare/kliniker-och-enheter-a-o/kliniker-och-enheter-a-o/karolinska-universitetslaboratoriet/cmms---centrum-for-medfodda-metabola-sjukdomar/genetisk-diagnostik/
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In families with a disorder caused by identified mutations in a nuclear gene, molecular 

analyses in a chorionic villus sample (CVS) or cultured amniocytes can be performed in a 

customary manner. A preimplantatory genetic diagnosis (PGD) may also be an option for 

these families. 

Prenatal diagnostics of mtDNA mutations are more complicated owing to the fact that most 

pathogenic mtDNA mutations are heteroplasmic. The fraction of mutated mtDNA in a CVS 

may not reflect the level of mutation in other fetal tissues. The mutation load may also change 

during development and throughout life (137). The more common mutations m.8993T>C/G 

are known to show an even tissue distribution and the mutation load of these variants does 

not appear to change significantly over time. The thresholds for a severe clinical expression 

in these mutations are reported to be 60-70% for the T>G and 80-90% for the T>C (138). 

Several prenatal diagnostic analyses have been performed successfully in families with these 

mutations (139). 

Preimplantatory genetic diagnostics are currently used to a limited extent. Different 

percentage levels of mutated mtDNA are used as cut-offs in the decision to transfer an 

embryo to the uterus (140).  Hellebrekers et al. studied mutation levels of different pathogenic 

mtDNA mutations in several families. They found that mutation levels of 18% or less were 

associated with a 95%, or higher, chance of being clinically unaffected (137).  This 

percentage level may be used as a rather safe cut-off level in a PGD (141).  
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2 AIMS 

The aims of the research presented here were: 

 To increase understanding of the clinical phenotypes and 

pathophysiological mechanisms in patients with mitochondrial disease 

 To identify correlations between genotypes and phenotypes in cohorts of 

patients with mitochondrial disease in order to generate better tools for 

predicting disease development and prognosis 

 To identify novel disease-causing variants in mitochondrial, as well as 

nuclear, DNA in patients with mitochondrial disease in order to generate 

better tools for genetic counseling 
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3 PATIENTS AND METHODS 

3.1 PATIENTS 

Patients in all the studies were collected from a total of approximately 1200 children, 

admitted to the Centre for Inherited Metabolic Diseases (CMMS) with a suspected 

mitochondrial disorder.  

Mitochondrial investigations have been performed at CMMS since 1990. A total of more 

than 2200 patients have been admitted for muscle biopsies, more than half of them being 

children under 18 years of age. Approximately 20-25% of the children were diagnosed with a 

verified or highly suspected mitochondrial disorder. 

All results have been discussed at regular meetings with clinicians from paediatric, 

neuropaediatric and neurological units, pathologists, biochemists and molecular biologists. A 

plan for proceeding with genetic and other laboratory analyses, in order to establish the 

diagnosis, was made. Since the beginning, 25 years ago, there has been an amazing evolution 

regarding the possibilities of finding the genetic cause of the disease, especially with the 

introduction of Next Generation Sequencing (NGS) on a clinical platform. 

In order to facilitate and organise the long-term, ongoing investigations of a considerable 

number of patients, we have built up an in-house clinical database for all patients admitted to 

the CMMS for a muscle biopsy. The database includes information on clinical signs and 

symptoms, neuroimaging findings, biochemical abnormalities, morphological and 

biochemical results from muscle biopsies and genetic findings. Data are collected from 

referral notes. We also contact the local doctor to obtain additional information. When a 

causative diagnosis is established, we include that in the database. In this database, we can 

search for patients with a particular phenotype, biochemical abnormality or genetic defect, in 

order to proceed with further analyses or to include patients in clinical studies. 

Patients in Paper I were all under 18 years of age and had decreased activity of complex I 

(NADH dehydrogenase) of the mitochondrial respiratory chain.  

In Paper II, we studied a group of 25 children (under 18 years of age at the time of 

investigation) with Leigh syndrome. We used the following inclusion criteria: (1) progressive 

neurological disease with motor and/or cognitive developmental delay, (2) signs or symptoms 

of brainstem and/or basal ganglia disease and (3) characteristic neuropathological findings at 

autopsy or characteristic features on neuroimaging. Typically seen abnormalities on imaging 

were either bilateral, symmetrical hypodensities in the basal ganglia/brainstem on CT or areas 

of hyperdensity in the basal ganglia/brainstem on T2-weighted MRI.  

The patient in Paper III was a boy with Alpers syndrome, clinically defined by psychomotor 

developmental delay/arrest, epilepsy and hepatopathy.  

In Paper IV, we studied a cohort of 55 children with combined enzyme deficiencies of the 

mitochondrial respiratory chain. We used the following inclusion criterion: activities below 
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the control range (+2 SD of the average activity) of more than one of the enzyme complexes, 

measured in isolated mitochondria from muscle tissue. The patients in Papers V and VI 

belonged to the group described in Paper IV. 

3.2 METHODS 

3.2.1 Clinical history, neuroimaging and routine clinical chemistry 

Patients in all studies were clinically characterised by reviewing their medical records. A 

substantial proportion of children came to our clinic for examination and a detailed history of 

the child and family was obtained. A careful neurological examination was performed in all 

patients and several were also subjected to ophthalmological and cardiac investigations. 

Depending on the clinical picture, selected cases were subjected to audiography, 

electromyography, nerve conduction studies and measurements of the visual evoked 

potential. 

Magnetic resonance imaging of the brain was performed in most patients with symptoms 

from the CNS. A few patients in the first studies were only subjected to computed 

tomography.  

The results of biochemical analyses performed at local laboratories, such as blood and liver 

function parameters, CK and lactate in blood and/or CSF, were obtained and documented. 

3.2.2 Organic acids in urine 

Organic acids in urine were analysed in a major portion of the patients in all studies. All 

analyses were performed and interpreted at the CMMS. We used gas chromatography 

combined with mass spectrometry, as described previously (142). 

3.2.3 Mitochondrial investigations in muscle 

All patients were subjected to a percutaneous muscle biopsy, except for two patients in Paper 

II. One of these patients was diagnosed with Leigh syndrome at autopsy. The other patient 

was a monozygotic twin brother of a patient included in the study. 

ATP production rate and respiratory chain enzyme activities 

A sensitive bioluminescence method was used to determine the mitochondrial ATP 

production rate (MAPR) in mitochondria isolated from muscle (120). Different substrates 

from the metabolism of carbohydrates and fat are used in the reaction below. Light is 

measured in a luminometer and the values correlate with the ATP production rate. 

 

 

 

 



 

 25 

 

 

 

 

 

 

Respiratory chain complex activities were determined with standard spectrophotometric 

methods (122). 

In patients investigated between 1991 and 2000, MAPR, respiratory chain enzyme activities, 

glutamate dehydrogenase and citrate synthase activities were determined according to the 

methods described by Wibom et al 1990 (120). Patients investigated later than 2000 were 

analysed with an improved set using the same method (122), which included the 

determination of complex I activity (NADH-coenzyme Q-reductase). Results diverging more 

than +2 standard deviations from the control group were considered pathological. 

In Paper VI, mitochondrial oxygen consumption was determined in fibroblasts, instead of 

MAPR, as described in the Supplement of the paper.  

Morphological analyses 

Morphological examinations of skeletal muscle, including electron microscopy and enzyme 

histochemical stainings, were performed as described previously (116). 

3.2.4 TK2 enzyme assay 

In Paper V, an assay to measure TK2 activity was used, with the recombinant wild type 

enzyme and the enzyme translated from the mutated gene (mutation c.388C>T). The method 

is described in detail in Paper V. 

3.2.5 Measurement of ubiquinone levels 

Ubiquinone was quantified in mitochondria isolated from muscle biopsies, cultured 

fibroblasts and total cell extracts of fibroblasts (Paper VI). The analysis was performed using 

ultra-pressure liquid chromatography (UPLC)-tandem mass spectrometry. The method is 

described in detail in the Supplement of Paper VI.  

3.2.6 Molecular genetics  

The methods used for the genetic analyses are described in detail in the original publications. 

DNA extraction 

Total DNA (mtDNA and nDNA) was extracted from whole blood, cultured fibroblasts and 

skeletal muscle using standard commercial extraction kits. 

Substrate + ADP + Pi + O2  ATP + CO2 + H2O  

luciferase from firefly is added 

ATP + Luciferine + O2   

AMP + PPi + CO2 + H2O + Oxyluciferine + light
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Mitochondrial DNA analyses 

Complete mtDNA sequence analyses were performed in patients in Papers I, II, IV and VI. 

We used muscle tissue preferentially, but occasionally fibroblasts as a DNA source. A 

previously described standard method was employed (143). Sequence data were compared 

with the revised Cambridge reference sequence for human mtDNA 

(https://www.ncbi.nlm.nih.gov/nucleotide/?term=NC_012920.1). Variants were searched for 

in the human mitochondrial genome databases: MITOMAP (A Human Mitochondrial 

Genome Database, www.mitomap.org 2016) and the mtDB Human mitochondrial genome 

database (www.mtdb.igp.uu.se, (144)). A blood sample from the mother was requested, when 

a variant suspected to be disease-causing was identified.  

Six patients in Paper I were screened for mtDNA mutations by conformation-sensitive gel 

electrophoresis and subsequent sequence analysis (145). 

Mitochondrial DNA in muscle tissue was analysed using Southern blot, to detect large-scale 

deletions and other rearrangements, after cleavage with the restriction enzyme PvuII (Paper 

IV). The method has been described previously by Larsson et al., 1990 (125). 

Mutation levels were quantified with last-hot-cycle restriction fragment length polymorphism 

(RFLP) analyses. The method is described in detail in the Supplement of Paper II. 

Sequence analyses of nuclear genes 

Nuclear genes were sequenced by amplification of both strands of all coding exons with 

flanking intron regions, using M13-tailed primers. To validate findings from WES or WGS 

(Paper IV), only exons containing the variants were amplified and sequenced. 

Multiplex Ligation-dependent Probe Amplification Analysis (MLPA) 

An MLPA analysis was used in Paper III, to detect deletions or duplications in the POLG 

gene. We used the MLPA kit P010 (MRC Holland, Amsterdam, The Netherlands). 

Whole exome and whole genome sequencing 

Massively parallel WES or WGS was employed in the study on children with combined 

enzyme deficiencies of the respiratory chain (Paper IV). Sequencing was performed as 

previously described (146, 147). Data were analysed using the Mutation Identification 

Pipeline (MIP) (148). MIP performs quality control, alignment, coverage analysis, variant 

discovery, recalibration and annotation, sample/data integrity checks and ranking of the 

detected variants according to the disease potential. MIP also separates ‘clinical variants’ in 

genes known to cause inborn errors of metabolism from ‘research variants’ in genes not 

previously known to cause a metabolic or any other disease. The ‘clinical’ genes are included 

in an in-house database (dbCMMS), which is updated continuously. Genomic data from MIP 

are integrated with clinically relevant data in a visualisation tool (Scout: 

https://github.com/Clinical-Genomics/scout), with a user-friendly web browser-based 

interface for clinical evaluation. 

 

http://www.mitomap.org/
http://www.mtdb.igp.uu.se/
https://github.com/Clinical-Genomics/scout),%20with
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4 RESULTS 

Children with complex I deficiencies (Paper I) 

This group of 11 patients, from seven families, was clinically heterogeneous. They had some 

features in common, such as early onset of disease, muscle weakness and exercise 

intolerance. All patients, except for patient 11 had, in addition, a progressive course of the 

disease, developmental delay and failure to thrive. Patients were classified into four different 

clinical subgroups. Three patients had Leigh or Leigh-like syndrome. Another three patients 

had neonatal lactic acidosis, encephalomyopathy and hypertrophic cardiomyopathy. Four 

siblings had varying degrees of encephalomyopathy, neuropathy, optic atrophy, hearing 

impairment and cardiac involvement. Patient 11 differed from the others in having a rather 

stable myopathic condition with hearing loss, cataract and hypertrichosis. There was no 

correlation between the clinical phenotype and residual complex I enzyme activity or MAPR. 

Biochemically, all patients had a moderate decrease in MAPR, on average, 31% (range 0-

63%), with substrates entering at the level of complex I (glutamate + malate). Other 

substrates yielded normal MAPR. The patients also had a reduced mean maximal MAPR 

(average 22%, range 0-56%). An increased succinate oxidation rate (in complex II) was seen 

in the absence of rotenone. The addition of rotenone did not result in any further increase in 

the rate. Elevated urinary excretion of malate and fumarate was observed in five of the 

patients.  

Table I Clinical phenotypes and genetic findings. 

Patients Clinical phenotype mtDNA mutation 

1♀ Leigh-like syndrome 
 

2♀ Leigh syndrome m.10191T>C MT-ND3 

3♀ Leigh syndrome m.14487T>C MT-ND6 

4♂ Neonatal lactic acidosis, encephalomyopathy,  hypertrophic 
cardiomyopathy  

5♂ Neonatal lactic acidosis, encephalomyopathy,  hypertrophic 
cardiomyopathy  

6♂ Neonatal lactic acidosis, encephalomyopathy,  hypertrophic 
cardiomyopathy  

7♂ Encephalomyopathy, hearing loss, optic nerve atrophy m.11778G>A MT-ND4 

8♂ Encephalomyopathy, hearing loss, optic nerve atrophy, cardiac 
involvement 

m.11778G>A MT-ND4 

9♂ Encephalomyopathy, hearing loss, optic nerve atrophy m.11778G>A MT-ND4 

10♀ Encephalomyopathy, cardiac involvement m.11778G>A MT-ND4 

11♀ Muscle weakness, hearing impairment, cataract, hypertrichosis   

- 
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All probands were screened for mtDNA mutations. Pathogenic mutations were found in six 

patients from three families. The mutations m.10191T>C and m.14487T>C have been 

reported previously in patients with Leigh syndrome. The m.11778G>A mutation is one of 

the three most common ones in LHON. Patients with additional neurological symptoms have 

been described previously as LHON+, which was the clinical picture of the four siblings 

(patient 7-10). 

 

Children with Leigh syndrome (Paper II) 

During a period of eighteen years (1989-2006), a total of 25 children were clinically 

diagnosed with LS and referred to the Centre for Inherited Metabolic Diseases, Karolinska 

University Hospital, for further investigations. 

Despite the use of the same diagnostic neurological criteria for LS, the cohort displayed a 

broad spectrum of clinical features (Figure 7). Developmental delay/intellectual disabilities, 

hypotonia, dyskinesia, failure to thrive and gastrointestinal symptoms were present in the 

majority of the children. Epileptic seizures were reported in 64% of the patients and 

progressed to drug resistance in a few of them. Different ophthalmological manifestations 

were present in 68 % and hearing impairment in 20%. A third of the patients had liver 

involvement. Renal tubulopathy was seen in 12 % of the patients. 

 

 

 

 

The onset of disease was early, before six months of age in 80%. At two years of age, all but 

one patient had signs of disease. The patient presenting with symptoms at the oldest age 
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Figure 7. Clinical symptoms. Failure to thrive and/or gastrointestinal symptoms were 

frequent (84%). Non-neurological symptoms were seen in a substantial proportion of 

the patients. None of the patients had cardiac involvement.  
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displayed mild motor problems at the age of seven. Disease progression varied considerably 

among the patients. Two brothers had only a couple of weeks between onset and death, 

whereas one patient had an onset at birth and is still living as a young adult with a rather 

stable condition. Seventeen patients are no longer alive. Ten of them died before five years of 

age and the remaining seven before the age of 15.  

Lactate levels in blood and/or CSF were elevated in 21 of 25 patients (84%). Organic acids in 

the urine were analysed in all patients and abnormalities were detected in 15 out of 25 (60%). 

Metabolites from the Krebs cycle were observed in 11 patients. Three patients excreted 3-

methylglutaconic acid and shared clinical features of developmental delay, hypotonia, 

dyskinesia, hearing loss and liver involvement. High excretion of methymalonic acid, not 

responding to treatment with vitamin B12, was detected in one patient. 

Muscle biopsies were performed in 23 of the patients. Morphological investigations of these 

biopsies were mainly normal. None of the patients had COX-negative or RRF.  

Biochemical analyses showed decreased MAPR in seven patients, increased in two and 

normal rates in the remaining 14 patients. A total of ten patients had deficiencies of RC 

enzyme activities (Figure 8). 

 

 

 

 

 

We performed complete mtDNA sequence analyses in all patients (only one of each pair of 

identical twins). Pathogenic mtDNA mutations were identified in eight (32%). All of these 

(six different mutations) had been previously reported to cause LS. One patient carried 

mutations in POLG, reflecting the phenotypic overlap between LS and AS. 

We found no correlations between age of onset, rate of progression or survival on one hand, 

and genetic aetiology (mtDNA or nDNA) on the other 

  

Mean ATP production rate 

Normal 

Decreased 

Increased 

RC enzyme activities 

Normal 

Complex I 

deficiency 

Combined 

enzyme 

deficiencies 

Figure 8. Biochemical measurements of MAPR and RC enzyme activities in muscle 

biopsies were normal in more than half of the cohort. Complex I deficiency was the most 

common defect. We did not find any patients with complex II, III or IV deficiency. 
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Genetic studies in a patient with Alpers syndrome (Paper III) 

The patient presented at 18 months of age with epilepsy of the absence-type. He was treated 

with valproic acid and responded well. Three months later he developed a rapidly 

progressive, fatal liver failure. MRI of the brain showed the characteristic features of Alpers 

syndrome: cortical atrophy, cerebellar atrophy and bilateral, symmetrical high-signalling 

abnormalities in the thalami and the basal ganglia. 

A muscle biopsy was performed. Morphological and biochemical investigations were normal. 

In a sequence analysis of the entire POLG gene, the patient appeared to be homozygous for 

the previously described pathogenic mutation p.Trp748Ser. His father was a heterozygous 

carrier of the mutation, whilst his mother lacked the mutation. This caused us to proceed with 

an MLPA analysis in order to search for deletions or insertions in the gene. We detected a 

deletion comprising the entire maternal POLG-allele. The same deletion was detected in his 

mother.  

Children with combined defects of the mitochondrial respiratory chain 

(Papers IV, V and VI) 

The study included 55 children with deficiencies in more than one of the five enzyme 

complexes comprising the respiratory chain.  

The cohort displayed a variety of clinical symptoms and presentations of disease. The onset 

of disease was generally early in life, at a median age of six weeks (range, birth-13 years). 

Details are shown in Figure 1, Paper IV.  

The clinical presentations varied with the age of onset. Lactic acidosis was seen in five 

patients, all presenting in the first month of life. The patients with LS and AS presented with 

symptoms within the first year of life, whereas the patients with MELAS, MELAS/MERRF-

overlapping syndrome and CPEO+ had a later onset (later than four years) (Figure 2, Paper 

IV). The majority of children could not be categorised into distinct mitochondrial syndromes.  

Most of them had a non-specific encephalopathy or encephalomyopathy, with additional 

symptoms from other organs. 

The most frequently reported symptoms in the group were muscle weakness (80%), 

hypotonia (76%) and developmental delay/intellectual disability (71%). A variety of 

ophthalmological presentations were seen in 60% and 45% of the patients had epilepsy. 

Symptoms from organs outside the nervous system were common. Cardiac symptoms were 

seen in 13 patients, liver involvement in 12 and renal manifestations in 11 (Figure 3, Paper 

IV). 

Metabolic clinical chemistry determinations included lactate. Blood lactate levels were 

elevated in 72% of the patients. Lactate levels in the CSF were analysed in 21 patients and 

were increased in five. 
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Urinary organic acids were analysed in 45 patients and abnormalities were found in 18. 

Elevated excretion of lactate was the most common finding. Elevated excretion of Krebs 

cycle intermediates were seen in seven patients and in another seven we detected elevated 

levels of 3-methylglutaconic acid. One patient excreted increased amounts of intermediates 

from the fatty acid oxidation, especially 3OH-compounds. Another patient excreted thymine, 

dihydrothymine, uracil and dihydrouracil, which are normally hardly detectable in the urine. 

Muscle morphology, including histochemical stainings, was normal in 31 of the patients. 

COX-negative fibres were found in 13 samples and RRF in five of them. Ultrastructural 

abnormalities were observed in five patients.  

The MAPR was decreased in 33 of the 55 patients. Four patients had a slightly abnormal 

ATP production rate from certain substrates, but, in total, a normal rate. Decreased activity in 

enzyme complexes I, III and IV or I and IV were seen in 26 of the patients. The remaining 

patients displayed deficiencies including complex II.  

Genetic findings are summarised in Figure 9. In total, a genetic diagnosis was established in 

34 of the 55 patients (62%). In six of these, we detected pathogenic point mutations in 

mtDNA. One patient harboured a large-scale deletion in mtDNA. 

 

 

 

 
Figure 9. Mutations were identified in 19 different nuclear genes and five 

mitochondrial ones. One patient had a large-scale deletion of mtDNA. 

Illustration: Christoph Freyer. 
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In a subset of patients, single genes were sequenced, based on clinical and/or biochemical 

findings. Two patients in the group suffered from a thymidine kinase-2 (TK-2) deficiency, an 

early onset fatal skeletal myopathy, caused by mutations in the TK2 gene. One of these 

patients is reported on in Paper V. The girl presented, at less than three weeks of age, with 

failure to thrive, fatigue and muscle weakness. Seizures were observed from six weeks and 

she rapidly deteriorated into refractory epilepsy. Levels of CK were markedly increased in 

the blood and biochemical analyses in muscle showed pronounced deficiencies in complexes 

I, III, IV and V. Severe depletion of mtDNA was seen, with less than 5% of the levels present 

in an age-matched control. A suspicion of TK-2 deficiency was raised and sequence analysis 

of the gene revealed two novel mutations. The parents were heterozygous carriers. The first 

mutation, a CG insertion in exon 3 (c.219insCG), resulted in a frameshift and a subsequent 

downstream stop codon, leading to an inactive protein. The other was a missense mutation in 

exon 6 (c.388C>T). This second mutation resulted in a protein with virtually no residual 

activity in vitro. 

Thirty-one patients in the cohort were subjected to WES/WGS. In 16 of these (32%), 

causative variants were found. Among the 19 different genes, in which we found disease-

causing variants, eight had not been previously linked to primary or secondary dysfunction of 

the mitochondrial respiratory chain. 

We diagnosed two patients with novel mitochondrial gene defects, SLC25A26 (149) and 

COQ7 (Paper VI). The patient in Paper VI was a boy who presented already in utero with 

fetal lung hypoplasia and growth retardation. He was born full-term but small for gestational 

age. He had a muscular hypotonia and respiratory distress with persistent pulmonary 

hypertension. Lung hypoplasia was confirmed, and ultrasound revealed small dysplastic 

kidneys. Secondary to that, there was a systemic hypertension and left ventricular cardiac 

hypertrophy. Within the first year of life, blood pressure and renal and lung function 

normalised and the cardiac hypertrophy regressed. The boy had moderate developmental 

retardation and, at the current age of ten years, he has a mild intellectual disability. 

Additionally, he has hearing and visual impairments and progressive weakness due to a 

sensori-motor polyneuropathy of the axonal and demyelinising type. Whole exome 

sequencing revealed a homozygous mutation, c.422T>C (p.Val141Glu), in the COQ7 gene. 

The gene encodes a di-iron oxidase, which is part of the biosynthesis pathway of coenzyme 

Q. CoQ10 levels were severely reduced in isolated mitochondria from skeletal muscle and 

fibroblasts, as well as in total cell extracts from fibroblasts. Transfection of patient cells with 

wild type COQ7 resulted in improved function of the mitochondrial respiratory chain.  

Benzoic acid derivatives have previously been shown to bypass certain deficient steps in the 

CoQ biosynthesis (150). We used resorcylic acid, 2,4-dihydroxybenzoic acid (2,4-dHB), 

which is known to bypass the enzymatic step performed by CoQ7, as a supplement to the 

culture medium of the patients fibroblasts. After seven days of incubation, we could 

demonstrate increased cellular CoQ10 levels and improved mitochondrial respiration.
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5 DISCUSSION 

In this thesis we have studied children with mitochondrial disorders, with a focus on 

symptoms, clinical courses, biochemical abnormalities and genetic causes of the disease. 

Patients and patient groups with certain clinical phenotypes, or biochemical features, have 

been selected from our in-house clinical database. 

The diagnostic procedure has undergone considerable development during the more than 25 

years we have investigated patients with suspected mitochondrial disorders at the CMMS. 

The implementation of WES and WGS in clinical use has been the most revolutionary 

advance.  

Clinical phenotyping and family history are still the foundation of the diagnostics. Whole 

genome analyses generate a large number of potentially disease causing variants, which need 

to be evaluated in relation to the clinical picture. Other inherited disorders may mimic 

mitochondrial RC defects clinically and may be diagnosed via WES/WGS analyses. 

The clinical chemistry may add important clues to the diagnosis, as exemplified in the 

discussion of urinary organic acids below. Differential diagnoses, such as peroxisomal 

disorders, CDG syndromes, biotinidase deficiency or defects in the fatty acid β-oxidation can 

be excluded before more invasive investigations are performed. Findings of elevated levels of 

lactate in the blood or the CSF strengthen the suspicion of a mitochondrial disease, but lactate 

is not a very sensitive or specific biomarker for RC dysfunction. New, more reliable 

biomarkers have been introduced recently, although further studies are needed before they 

can be used more widely in the clinic. Fibroblast Growth Factor 21 (FGF21) in serum has 

proved to be a useful biomarker for mitochondrial disorders involving muscles (151). Growth 

Differentiation Factor 15 (GDF15) in serum is another promising candidate (152). 

The muscle biopsy continues to be the golden standard investigation in the diagnostic 

procedure. The method used at the CMMS does not require general anaesthesia and is, by all 

accounts, a rather uncomplicated procedure. The fact that the biopsy specimen has to be taken 

immediately before analysis brings the opportunity to meet and examine the patient and 

complete the clinical history. Abnormal muscle biopsy findings steer further analyses. The 

mitochondrial assay in muscle may, however, be completely normal, despite a severe 

mitochondrial disease. We then rely on clinical symptoms, neuroimaging features or 

biochemical abnormalities in the continued search for the genetic diagnosis.  

Complex I deficiency 

Isolated complex I deficiency is the most common biochemical defect in our total cohort of 

children with mitochondrial disease. This is consistence with reports from other centres that 

have found defects in complex I to account for approximately one third of the biochemical 

findings in mitochondrial patients (153). Complex I is the largest enzyme of the RC, built up 

from approximately 37 nDNA- and seven mtDNA-encoded subunits. A number of nuclear 

encoded assembly factors are also needed. Mutations in genes encoding the subunits and 



 

34 

assembly factors result in an isolated complex I deficiency. Also, complex I contains the 

highest number of mtDNA encoded subunits of all RC complexes. Therefore, dysfunction in 

mtDNA replication, transcription and translation may initially show up as a complex I 

deficiency. This is seen in defects of mitochondrial tRNA genes, as well as nuclear gene 

defects, such as POLG and MTFMT (154). Later in these disorders, a deficiency of multiple 

enzyme complexes may evolve. Complex I deficiency has also been reported as a secondary 

phenomenon in various neurodegenerative and neuromuscular disorders, such as Parkinsons 

disease (155, 156).  

Patients with a complex I deficiency display a variety of clinical pictures. The spectrum 

ranges from early-onset fatal disorders with multi-organ involvement, to single-organ 

presentations, as in the classical LHON syndrome. More frequently recognised phenotypes 

are fatal infantile lactic acidosis, Leigh syndrome, cardiomyopathy, non-specific 

leuokoencephalopathy and MELAS syndrome (157). This is consistent with the clinical 

phenotypes we observed in our study of complex I patients (Paper I). One patient in the 

cohort (patient 11) had a phenotype clearly differing from the other ones. Her condition has 

been stable, including a moderate muscle weakness, hearing loss, cataract and hypertrichosis. 

She was investigated before we analysed isolated complex I activity. She had a defect in 

NADH-cytochrome c reductase (complex I+III). A whole exome analysis has later revealed 

two causative mutations in BCS1L, a nuclear gene encoding an assembly factor of complex 

III. Her clinical picture had similarities with the Bjornstad syndrome, which is a clinical 

presentation at the milder end of the disease spectrum of BCS1L defects (158). 

Urinary organic acids in patients with mitochondrial disorders 

The analyses of organic acids in the urine have provided valuable information in many of the 

patient investigations reported in this thesis. The analysis is considered to be an important 

part of the diagnostic procedure in patients with a suspected mitochondrial disorder (110). 

Elevated levels of metabolites from the Krebs cycle, such as malate and fumarate, were 

observed in several of the patients with complex I deficiency, Leigh syndrome or combined 

enzyme deficiencies. In Paper I, we suggest that the increased NADH/NAD
+
 ratio in complex 

I deficiency affects the Krebs cycle negatively. NAD
+
 is required for the conversion of malate 

to oxaloacetate. Since oxaloacetate acts as a complex II feedback inhibitor, the reduced levels 

probably explain the increased succinate oxidation rate seen in the patients (Paper I, Figure 

2). This altered regulation of the Krebs cycle may contribute to the disease mechanism in 

patients with complex I defects. 

The finding of 3-methylglutaconic aciduria is clearly suggestive of a mitochondrial disease 

and may sometimes pin-point a specific gene defect (111). Four patients included and 

described in Paper II (patients 1, 23 and 24) and Paper IV (patients 7, 8, 9 and 10) excreted 

high levels of 3-methylglutaconic acid in repeated urine samples. They had similar clinical 

phenotypes, including developmental retardation, hypotonia, dyskinesia, hearing loss, hepatic 

disorder and features of Leigh syndrome in MRIs of the brain. This phenotype was 
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previously described as a MEGDEL association (159). In collaboration with Wortmann et al., 

we were able to establish a SERAC1 deficiency in these patients (67).   

High excretion of methylmalonic acid (MMA) was found in the urine of patient 12 in Paper 

II. The levels were not lowered by treatment with high doses of vitamin B12. Disorders of 

cobalamin metabolism were excluded and the patient has later been diagnosed as having a 

SUCLA2 defect. The gene encodes a β-subunit of the enzyme, succinate CoA-ligase. The 

constellation of elevated levels of MMA in urine and Leigh/Leighlike syndrome is also seen 

in SUCLG1 defects, the gene encoding the α-subunit of the same enzyme (160). 

Intermediates of the nucleotide metabolism are hardly detectable in normal urine. Among the 

OXPHOS disorders caused by an imbalance in the nucleotide pools, is the thymidine 

phosphorylase (TP) deficiency, causing the MNGIE syndrome. Patients with this condition 

excrete thymidine and deoxyuridine in the urine, which is a key to the diagnosis. Patient 19 in 

Paper IV excreted thymine, dihydrothymine, uracil and dihydrouracil, which indicated a 

defect in the pyrimidine metabolism. Further genetic analyses detected causative variants in 

DPYS, the gene encoding the dihydropyrimidinase (DPYS) enzyme. Her dominant clinical 

symptom was gastrointestinal dysmotility, which is typically also seen in MNGIE patients. 

We hypothesise that DPYS defects, similar to TP defects, could induce an imbalance in the 

nucleotide pool, resulting in impaired replication of mtDNA. It could be the same for other 

defects in purine or pyrimidine metabolism, and OXPHOS dysfunction might then be a part 

of the disease mechanism in these disorders. In accord with the findings of Frangini et al., we 

did not find increased excretion of thymidine in the urine of our patient with TK2 deficiency. 

Frangini et al. demonstrated unaltered cytosolic and mitochondrial dTTP pools, as well as a 

normal composition of total dNTP pools in fibroblasts from patients with TK2 deficiencies 

(161). 

There are pitfalls in the interpretation of urinary organic acid abnormalities. Patient 20 in 

Paper IV excreted high amounts of intermediates from the fatty acid oxidation, particularly 

long-chain 3OH-compounds. He had a multi-systemic disorder including muscle weakness, 

cardiomyopathy, hypothyroidism, nephrotic syndrome, liver involvement and failure to 

thrive. His clinical picture was highly suggestive of a primary RC disorder. He also had 

COX-negative fibres in muscle, further strengthening the suspicion. The abnormal findings in 

urine were initially interpreted as being secondary to his RC disorder, which has been 

described previously (112). Further genetic analyses identified variants in the HADHA gene, 

resulting in a long chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency. This 

secondary OXPHOS dysfunction in a primary fatty acid β-oxidation disorder has also been 

reported previously (113). It is hypothesised that the accumulated fatty acid metabolites and 

their carnitine esters act as detergents and dissolve membrane structures, thereby 

compromising the respiratory chain. 

POLG disease 

The POLG gene is the most frequently affected gene in mitochondrial disorders. POLG is a 

nuclear gene encoding the polymerase replicating mtDNA (162). The first report of a POLG 
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mutation associated with disease described a family with CPEO (38). Since then, a wide 

spectrum of phenotypes has been associated with POLG mutations, Alpers syndrome being at 

the severe end (163). Patient 17 in Paper II was compound heterozygous for three mutations 

in POLG, previously described as causing AS. He was included in the Leigh study, since he 

was considered to fulfil the criteria for Leigh syndrome, although he had a more Alpers-like 

clinical picture. The phenotypic overlapping of these two different mitochondrial 

encephalopathies of childhood is not surprising. Both are conditions resulting from a severe 

failure of oxidative metabolism within the mitochondria of the developing brain. 

To date, more than 150 pathogenic mutations have been identified in the POLG gene 

(http://tools.niehs.nih.gov/polg). Most cases of Alpers syndrome are caused by either of the 

two mutations, p.Trp748Ser or p.Ala467Thr, in compound heterozygosity with another 

POLG mutation. Patients who are homozygous for the mutation p.Trp748Ser tend to have a 

milder disease, with a later onset (164). The patient described in Paper III had one deleted 

POLG allele and the p.Trp748Ser mutation on the other allele. In comparison with patients 

homozygous for the p.Trp748Ser mutation, he had an earlier onset of disease at 18 months. 

On the other hand, he did not display the typical severe phenotype seen in patients who are 

compound heterozygous for the mutation p.Trp748Ser and another POLG mutation. This is 

in agreement with previous reports on the occurrence of Alpers syndrome in patients with 

monoallelic expression of p.Ala467Thr, owing to nonsense-mediated decay of the transcripts 

from the corresponding allele. These patients had a much earlier onset than patients 

homozygous for the p.Ala467Thr mutation (165, 166). The authors suggest that gene dosage 

plays an important role in the later onset of symptoms in homozygous p.Ala467Thr patients, 

while the clinical course in patients who are compound heterozygous with p.Ala467Thr is 

steered by the mutation on the corresponding allele. Our findings in Paper III support the 

hypothesis that the POLG gene dosage is an important determinant of the phenotype in 

POLG disease. 

The patient described in Paper III died from liver failure, induced by medication with 

valproic acid (VPA). Bicknese et al described VPA toxicity in children with Alpers syndrome 

as early as in 1992 (63). Since then, numerous cases have been reported (167). The 

mechanisms of VPA-induced liver failure are not fully understood. VPA is known to affect 

mitochondrial RC function by inhibition of the β-oxidation of fatty acids (168). In a recent 

study, Li et al used induced pluripotent stemcell-derived hepatocyte-like cells from patients 

with Alpers syndrome to study mechanisms of VPA toxicity. They demonstrated that the 

Alpers-derived cells were more sensitive, than control cells, to VPA-induced apoptosis. This 

was mediated by opening of the mitochondrial transition pore.  

The case reported in Paper III highlights the importance of considering POLG disease in 

paediatric seizure disorders of unknown aetiology. Typical, but not obligatory, signs of 

POLG disease are refractory focal or generalised status epilepticus, an initial EEG with an 

occipital lobe predilection, developmental arrest or regression, stroke-like episodes or ataxia. 

Mutation analyses of POLG should be performed liberally. Hopefully, in this era of 

http://tools.niehs.nih.gov/polg
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massively parallel sequencing, a substantial proportion of epilepsy patients will be 

investigated genetically. Patients with POLG variants will be diagnosed and VPA treatment 

can be avoided.   

MtDNA mutations 

In Paper I, we studied seven probands (11 patients) with complex I deficiency. Three of the 

probands (43%) carried pathogenic mutations in mtDNA. In the group of patients with Leigh 

syndrome, studied in Paper II, causative mtDNA mutations were identified in 32% (8 out of 

25). Among the children with combined deficiencies of the respiratory chain, seven patients 

(13%) harboured a pathogenic mutation in mtDNA. In several larger cohorts, the prevalence 

of causative mtDNA mutations has amounted to 20-30% (169, 170). Altogether, these 

prevalence figures emphasise the importance of including mtDNA sequence analyses in the 

diagnostic procedure, regardless of the clinical phenotype. This enables confirmation or 

exclusion of maternal (mitochondrial) inheritance in the genetic counselling of the family.  

Nuclear gene defects 

The broad spectrum of clinical presentations, the diversity of underlying genetic defects and 

the large number of proteins involved in the OXPHOS make the mitochondrial disorders 

suitable for massively parallel sequencing. A number of studies show a considerably higher 

yield of specific genetic diagnoses after implementation of WGS/WES in the diagnostic 

procedure (171-173). 

Sanger sequencing of single genes may, occasionally, still be rational. In a few mitochondrial 

entities, the clinical and/or biochemical phenotype is strongly suggestive of a specific genetic 

defect. Two patients in Paper IV (patients 22 and 45) suffered from a TK2-deficiency. They 

both had hypotonia and severe muscle weakness, although refractory epileptic seizures were 

the dominant feature of patient 45 (case reported in Paper V). Mitochondrial assays in muscle 

showed pronounced deficiencies of complexes I, III, IV and V in both patients. CK levels 

were 5-20 times normal ones, which is unusually high, compared to other patients with 

mitochondrial myopathies. These biochemical findings led us to sequence the TK2 gene, in 

which causative mutations were found. Patient 22 had a typical clinical phenotype, with onset 

of disease at six months of life, pronounced muscle weakness, but no obvious signs of CNS 

disease. He died from a respiratory insufficiency at the age of 11 months. In a mutation 

analysis of TK2, the previously described mutation, c.368G>C (p.Arg123Pro), was detected 

in homozygosity. The other patient (45), reported on in Paper V, had two novel mutations in 

the TK2 gene. The mutation c.219insCG generated an early stop codon, which prevented the 

synthesis of a functional protein. The second mutation, c.388C>T (p.Arg130Trp), resulted in 

an enzyme with severely reduced activity (<4%, Figure 4A in Paper V). We suggest that the 

severe and atypical clinical presentation of the disease, including overwhelming CNS 

symptoms, was due to a virtual lack of mitochondrial TK2 activity. 

In the study on children with combined enzyme deficiencies of the mitochondrial RC (Paper 

IV), we used massively parallel sequencing in a subset of patients. Thirty-one of them have, 
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so far, been subjected to WES and/or WGS. In 16 of these patients (52%), we have thereby 

established a genetic diagnosis. We expect more cases to be solved. 

We identified disease-causing variants in two novel genes, COQ7 and SLC25A26. 

Patient 29 in Paper IV has been reported also in Paper VI. He was investigated with WES and 

was diagnosed with a homozygous variant in COQ7, a gene encoding one of the enzymes of 

CoQ biosynthesis. The defect resulted in severely reduced levels of CoQ. The patient had an 

intrauterine presentation of disease, with growth retardation, foetal lung hypoplasia and 

oligohydramniosis. Postnatal investigations revealed renal dysplasia and dysfunction. The 

boy successively developed a multi-systemic disorder. Remarkably, his renal function 

normalised within the first week and follow-up ultrasounds of the kidneys showed normal 

growth and appearance within one year. There are no signs of glomerular or tubular 

dysfunction so far. Renal manifestations, particularly glomerular dysfunction, have been 

reported in other patients with primary CoQ deficiencies (174, 175). Most of the previously 

reported patients suffered from a glomerular disease with nephrotic syndrome and 

progression to chronic renal failure. There are no reports of spontaneous recovery from the 

renal disease. The response to supplementary CoQ10 was not as successful for the renal 

manifestations, as it was for other symptoms. One exception was a girl with a COQ2 defect 

who received treatment very early on in the course the disease (176). An early start of 

treatment, with doses of 30-50 mg/kg/day, has been recommended (79). It is not known why 

renal involvement is prevalent in primary CoQ deficiencies. The findings in our patient 

support the hypothesis that CoQ is particularly important for renal function and development.  

The other novel gene defect, identified in WES, was the pathogenic variants in SLC25A26. 

The gene encodes the transport protein for S-adenosylmethionine (SAM) into the 

mitochondria (149). SAM is an essential donor of methyl groups and we were able to 

demonstrate that a lack of SAM influences several important processes, among them, RC 

function, the activity of the PDH complex and CoQ biosynthesis. 

In summary, we were able to establish a definite genetic diagnosis in 34 of the 55 patients 

(62%) in our cohort with multiple enzyme deficiencies (Paper IV). The most frequently 

affected genes were SERAC1 (four patients) and PDHA1 (four patients). The global incidence 

of SERAC1 disease is not known, but it is believed to be very low. Ongoing multicentre 

studies will shed more light on this question. PDH complex deficiency is a more common 

metabolic disease, in most cases caused by mutations in the gene PDHA1. This gene is 

located on the X-chromosome, but a high percentage of female carriers develop a 

neurological disease. The disorder is not strictly a mitochondrial RC disorder, but it is usually 

included in this group. Clinically, there are many similarities and, in Paper IV, we could also 

demonstrate decreased activities of several OXPHOS enzyme complexes in the patients.  

The patients described in Paper IV had disease-causing variants in 19 different nuclear genes. 

Defects in SERAC1, MPV17, SLC25A4, TK2, POLG and PUS1 have previously been 

reported to cause a primary defect in the mitochondrial RC. Defects in the genes, HADHA, 

CHKB and SLC52A2, result in the disorders LCHAD-deficiency, congenital muscle 
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dystrophy of the megaconial type and Brown-Vialetto-van Laere syndrome type 2 (a 

riboflavin transporter deficiency), respectively, and have been previously reported to cause a 

secondary RC dysfunction (113, 177, 178). 

A substantial proportion of the children had causative mutations in genes encoding proteins 

active outside the mitochondria and not previously linked to OXPHOS dysfunction. One boy 

(Patient 44) had a de novo mutation in the DNM1 gene. He had the clinical features of early 

infantile epileptic encephalopathy, which is the phenotype reported in patients with this gene 

defect (179). Mitochondrial analyses in muscle showed decreased activity in complexes II, III 

and IV. Blue Native Gel electrophoresis showed clearly diminished amounts of complexes II 

and IV. DNM1 encodes dynamin-1, a GTP:ase, mainly expressed in the CNS and known to 

have a critical role in endosomal trafficking and synaptic vesicle recycling in the nerve 

terminals (180). DNM1 belongs to the dynamin family of GTP-ases, which mediate 

membrane remodelling in a variety of cellular processes. Otsuga et al. demonstrated (in 

1998), that the DNM1 protein in Saccharomyces cervisiae is essential for the maintenance of 

mitochondrial morphology and that disruption of the DNM1 gene caused severe 

abnormalities in the mitochondrial membrane network of yeast cells (181). We can, so far, 

only speculate that this might be the mechanism of the OXPHOS dysfunction seen in our 

patient. Further studies on mitochondrial function and morphology have to be performed in 

patients with DNM1 defects to clarify this matter.  

Two patients in our cohort (patients 39 and 31) were homozygous for a mutation in the TBCK 

gene. The families were of Syrian ancestry, but they were not known to be related with each 

other. Patient 39 presented at one month with respiratory difficulties. He is now 16 years old 

and has a severe intellectual disability, profound muscle weakness and hypotonia, prominent 

strabismus and visual impairment. His respiratory insufficiency, owing to hypoventilation, 

has continued. The mitochondrial assay in muscle demonstrated decreased activity of 

complexes I, II and III. The ATP-production rate was reduced. Patient 31 presented in a 

similar manner, at two months of age, with respiratory symptoms. She had the same features 

of muscle weakness, hypotonia, intellectual disability, strabismus and visual impairment. At 

the current age of eight years, she requires nocturnal ventilatory support. A normal ATP-

production rate was observed in analyses of mitochondrial function in muscle, but the 

activities of complexes I and IV were decreased. MRI of the brain demonstrated signs of a 

white matter disease in both patients. Previous reports of patients with pathogenic variants in 

TBCK describe clinical phenotypes strikingly similar to what is seen in the two patients in our 

cohort. Moderate mitochondrial dysfunction, without further details, has been described in a 

few patients by Chong et al. (182, 183). The TBCK gene encodes a GTPase-activating 

protein, TBCK, which plays a role in cell proliferation, cell growth and actin-cytoskeleton 

dynamics, by modulation and regulation of components of the mammalian target of 

rapamycin (mTOR) complex (184). Activation of the mTOR complex stimulates cell growth, 

cell proliferation and mitochondrial biogenesis (185), whereas autophagy and mitophagy are 

down-regulated (186). A loss of function in TBCK could potentially lead to the opposite 

scenario. Chong et al hypothesise that OXPHOS dysfunction, caused by decreased 
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mitochondrial biogenesis and increased mitophagy, might contribute to the disease progress 

in TBCK deficiency. Our findings support this hypothesis. 

Disease-causing variants in other genes, not previously linked to mitochondrial disease, will 

be identified in whole genome analyses in this group of patients. New mechanisms of disease 

remain to be elucidated. 
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6 CONCLUSIONS 

Mitochondrial disorders are clinically heterogeneous. Identical biochemical deficiencies or 

molecular defects result in a broad variety of clinical presentations. Conversely, a specific 

clinical phenotype may be caused by variants in a diversity of genes. 

The most common symptoms are often non-specific. More specific signs or symptoms are 

often present and are discovered in the clinical characterisation.  

Lactate levels in blood and CSF are widely used biomarkers of mitochondrial disease. 

Several patients display normal lactate levels. We therefore conclude that lactate cannot be 

used as a criterion for the diagnosis of Leigh syndrome or any other mitochondrial disease.  

An analysis of organic acids in urine is helpful in the diagnostic procedure.  

Deficiencies of complex I cause secondary alterations of Krebs cycle metabolism and impair 

the feed-back inhibition of complex II. This may influence the disease process in patients. 

Alpers syndrome is, in a certain proportion of the patients, caused by mutations in the POLG 

gene. The mutation analyses of POLG ought to include methods capable of detecting copy 

number changes and intragenic deletions. Gene dosage plays a role in the severity of the 

phenotype.  

Liver failure, induced by valproic acid, is a severe complication of Alpers syndrome. The 

possibility of a POLG disease in paediatric seizure disorders of unknown aetiology has to be 

considered before starting treatment with valproic acid. 

MtDNA mutations are a common cause of severe disease in Leigh syndrome and in children 

with complex I deficiency. It is also fairly common in other groups of mitochondrial 

disorders, such as the combined enzyme deficiencies. Sequencing of the entire mtDNA is 

therefore recommended, irrespective of the severity of the disease, biochemical defects or 

morphological findings. 

Age of onset, clinical symptoms and prognosis did not differ significantly between patients 

with mitochondrial and nuclear mutations among the patients with Leigh syndrome. 

Massively parallel sequencing of the whole human exome/genome is an excellent tool for the 

diagnosis of mitochondrial disorders. The clinical phenotyping and biochemical 

investigations continue to be essential elements, since they are prerequisites for the 

interpretation of the results of WES/WGS.  

CoQ deficiencies are treatable disorders and are therefore important to diagnose as early as 

possible.  
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7 FUTURE PERSPECTIVES 

Complex I deficiency is the most common biochemical defect in our cohort of patients with 

confirmed or suspected mitochondrial disease. Some of these patients have a genetic 

diagnosis, while the diagnosis remains unknown in others. We will employ the same strategy 

as for the patients with combined enzyme deficiencies. The patients will be subjected to 

WGS and the genetic data will be, in the first step, evaluated in the dbCMMS. In selected 

cases we can continue on a research basis. 

The participation in the Mitochondrial Clinical Research Network (MCRN) will enable 

collaborative studies on clinical phenotypes, biochemical features and genetic disease 

mechanisms also in more rare conditions of OXPHOS dysfunction. 

The future use of WES/WGS in clinical diagnostics will continue to reveal novel genes 

causing OXPHOS disease. New mechanisms of disease will also be elucidated.  

Following the ‘diagnostic revolution’, we look forward to a ‘therapeutic revolution’. New 

therapies are under development, targeting different disease mechanisms. Various small 

molecules are currently being evaluated in clinical studies (187) .  

Future therapies will probably be individually tailored, depending on the specific gene defect 

and disease mechanism in each patient. An example from our own studies is the CoQ7 defect, 

in which we demonstrated a bypass of the particular enzymatic step by the use of 2,4-dHB. 

The results encourage continuation with a clinical trial in humans suffering from this defect.  

The role of autophagy and mitophagy in mitochondrial health and disease is an area of 

interest. Two patients with combined enzyme deficiencies had causative mutations in TBCK. 

Their disease process is suggested to be influenced by inhibition of the mTOR complex and 

the regulation of autophagy, mitophagy and mitochondrial biogenesis. This opens up 

possibilities for new treatment strategies. 

Clinical trials are, in general, difficult to perform, owing to the broad spectrum of clinical 

pictures, clinical courses, biochemical features and genetic aetiologies. There is also a lack of 

biomarkers and other objective, validated outcome measures, suitable for this group of 

patients. Collaboration in the MCRN will create larger cohorts of patients with similar 

phenotypes or genetic causes of disease, for inclusion in future clinical trials. 

Supplementation with CoQ10 is widely used in the treatment of mitochondrial disorders. 

Clinical trials show diverging results of the effect. It would be interesting to study the effect 

in defined groups of patients with different mitochondrial disorders. A hypothesis could be 

that certain individuals suffer from secondary CoQ deficiency and would therefore benefit 

more than others from supplementary CoQ10. 
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8 SVENSK SAMMANFATTNING 

Mitokondrier är små enheter i våra celler. De brukar liknas vid kraftverk. Här omvandlas 

beståndsdelar från nedbrytningen av kolhydrater, protein och fett i födan, med hjälp av syre, 

till adenosintrifosfat (ATP), koldioxid och vatten. ATP är cellens energivaluta. 

Energibildningen sker via ett stort antal kemiska reaktioner. Processen avslutas i den 

mitokondriella andningskedjan (även kallad elektrontransportkedjan). 

Den energialstrande processen är beroende av ett stort antal (ca 1500) proteiner/enzymer. 

Bristfällig funktion i något av dessa ger en energibrist i kroppens celler, en mitokondriell 

sjukdom. Generna för dessa proteiner finns i kärnans DNA (nDNA) eller i mitokondriens 

eget DNA (mtDNA). Det mitokondriella genomet innehåller 37 gener och finns i ett stort 

antal kopior i varje cell. I kärnans DNA finns över 20 000 gener. Vi har två kopior av dessa, 

undantaget de som är belägna på X- eller Y-kromosomen. Cirka 75 % av de mitokondriella 

sjukdomarna orsakas av mutationer i nDNA.  

Avhandlingen handlar om mitokondriella sjukdomar hos barn och målsättningen var att öka 

kunskapen om olika sjukdomsbilder och bakomliggande mekanismer. Vi ville studera 

mitokondriella sjukdomar orsakade av olika genetiska defekter, för att bättre kunna bedöma 

patienters sjukdomsförlopp och prognos. Vi använde nya genetiska metoder för att finna nya 

gener kopplade till mitokondriell sjukdom 

Mitokondriella sjukdomar kan ge mycket varierande sjukdomsbilder, med vilket symptom 

som helst, från vilket organ som helst. Framför allt drabbas de organ som förbrukar mest 

energi, till exempel hjärnan och muskulaturen. Andra organ/funktioner som ofta drabbas är 

hjärta, njurar, syn och hörsel. När sjukdomen debuterar tidigt i livet är den i regel svårare, 

med engagemang av många olika organ och med en sämre prognos. 

I det första delarbetet studerade vi 11 barn med nedsatt aktivitet i det första enzymkomplexet 

i den mitokondriella andningskedjan. De hade varierande sjukdomsbilder, alla med tidig 

sjukdomsdebut och symtom från musklerna i form av svaghet och ansträngningsintolerans. 

Tio av elva patienter hade en psykomotorisk utvecklingsförsening och svårigheter med 

födointaget. Sex patienter visade sig ha en mutation i mtDNA, vilket är en relativt hög andel. 

Vid tiden för studien undersöktes inte patienterna avseende mutationer i kärnans gener. 

Biokemiska analyser av mitokondrier isolerade från muskel, visade hos samtliga patienter en 

nedsatt aktivitet i komplex I och nedsatt ATP-produktion från de substrat som är beroende av 

komplex I. ATP-produktionen från substrat via komplex II var däremot ökad och vi 

spekulerar i mekanismerna bakom detta. 

Leighs syndrom är den vanligaste, enhetligt beskrivna, sjukdomsbilden vid mitokondriell 

sjukdom hos barn. Det är en svår, fortskridande neurologisk sjukdom med karaktäristiska 

skador i hjärnans djupare strukturer. I delarbete II studerade vi 25 barn med Leighs syndrom. 

Vi kunde bekräfta att sjukdomen drabbar tidigt i livet, då 80 % av barnen debuterade före sex 

månaders ålder. Sjukdomen kan i vissa fall vara snabbt fortskridande och leda till tidig död. I 

vår grupp avled 40 % före fem års ålder. En andel av patienterna uppvisade en mer stationär 
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sjukdomsbild och har överlevt in i vuxen ålder. Vi kunde fastställa mutationer i mtDNA hos 

åtta patienter (32 %). Dessa patienter hade en lika svår sjukdomsbild som de övriga i 

gruppen. Hos 16 patienter förblev den genetiska orsaken okänd.  

Alpers syndrom drabbar också tidigt i livet. Jämfört med Leighs syndrom ger den ofta mer 

påverkan på den mentala utvecklingen, samt en svår epilepsi. Alpers syndrom beror, i många 

fall, på mutationer i POLG-genen. POLG styr bildningen av det polymeras som ser till att 

mtDNA kopieras och repareras. I delarbete III beskriver vi en patient med Alpers syndrom, 

vars sjukdom orsakats av en mutation i en genkopia av POLG och ett bortfall av hela den 

andra genkopian. Ett bortfall av hela POLG-genen har inte beskrivits hos någon patient 

tidigare. Patientens sjukdomsbild var något mildare än hos patienter som har olika mutationer 

i respektive genkopia, men svårare än hos patienter med samma mutation i båda genkopiorna. 

Patientens sjukdom försämrades akut vid behandling med epilepsiläkemedlet valproat. Han 

avled vid två års ålder i en svår leversvikt. Vi vill betona risken för leversvikt av detta 

läkemedel hos patienter med sjukdom orsakad av mutationer i POLG-genen. 

Delarbete IV är en studie av 55 barn med bristande funktion i flera av de enzymkomplex som 

bygger upp den mitokondriella andningskedjan. Man vet att mutationer i ett stort antal olika 

gener kan orsaka denna typ av sjukdom. Vi använde en ny genetisk teknik, där man med en 

parallell sekvensanalys undersöker alla gener i kärnans DNA. Vi fastställde de 

sjukdomsorsakande mutationerna hos totalt 34 av patienterna i gruppen. Två patienter hade 

mutationer i gener som inte tidigare beskrivits ge sjukdom. Hos sjutton patienter fann vi 

mutationer i gener som tidigare är kända att orsaka en primär eller sekundär påverkan på den 

mitokondriella andningskedjan. Nio patienter visade sig ha sjukdomar utan tidigare känt 

samband med mitokondriell sjukdom, där vi nu kunde visa en sekundär påverkan på 

mitokondriens energiproduktion.  

Tymidinkinasbrist ger en obalans i tillgången på byggstenar till mtDNA (nukleotider). Detta 

ger en svår mitokondriell sjukdom med bl.a. uttalad muskelsvaghet. Vi beskriver i delarbete 

V en flicka med tymidinkinasbrist orsakad av två, tidigare icke beskrivna, mutationer i genen 

TK2. Hennes sjukdomsbild var ovanlig, med en tidigt debuterande mycket 

behandlingsresistent epilepsi. 

Ny genetisk teknik gör att mutationer i nya gener successivt visar sig orsaka sjukdom och att 

nya sjukdomsmekanismer upptäcks. I delarbete VI rapporterar vi en ny sjukdom; Coenzym 

Q7-brist. Bristen orsakar en dysfunktion i bildningen av coenzym Q10 som är en viktig 

cofaktor i den mitokondriella andningskedjan. Sjukdomen kan förbättras med tillskott av 

coenzym Q10, vilket var fallet för vår patient. Vi kunde i odlade hudceller från patienten 

också visa hur substansen 2,4-dihydroxybensoat kan överbrygga defekten. Detta kan bli en ny 

form av behandling vid denna sjukdom.  

Avhandlingen illustrerar, och bidrar till, den stora kunskapsutveckling som sker inom 

området mitokondriella sjukdomar. Nya genetiska tekniker förbättrar diagnostiken så att fler 
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patienter kan få en specifik sjukdomsdiagnos. Nya gener upptäcks och därmed nya 

mekanismer för mitokondriell sjukdom.
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