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ABSTRACT 
Small intestinal neuroendocrine tumors (SI-NETs) may cause symptoms due to excess 
secretion of hormones and peptides. The molecular mechanisms behind development of SI-
NETs are not well understood. Copy number alterations, especially loss of chromosome 18q, 
have been reported and recently p27 mutations were implicated in SI-NET tumorigenesis. 
Somatostatin analogs (SSAs) have long been used to alleviate the symptoms and have 
recently been shown to arrest SI-NET growth by unknown molecular mechanisms.  

In Study I, copy number alterations were investigated in 30 SI-NETs, using array 
comparative genomic hybridization. Recurrent alterations and minimal overlapping regions 
were observed, including losses on chromosomes 18, 16, 11 and 9 and gains on chromosome 
20 and 14, 5 and 4. Using qPCR-based TaqMan assays, losses on chromosome 18, 16 and 11 
were verified in an extension cohort, comprised of 43 SI-NETs, in total. Using unsupervised 
hierarchical clustering, a group of tumors was identified that was enriched with gains of 
chromosomes 20, 14, 7, 5 and 4. Gain in 20pter-p11.21 was associated with shorter survival 
and loss of 16q and gain of chromosome 7 were associated with metastases.  

In Study II, quantitative Pyrosequencing assays were used on 44 SI-NETs for promoter 
methylation analysis of candidate genes. Promoter hypermethylation was found for WIF1, 
RASSF1A, CTNNB1, CXCL14, NKX2–3, p16, LAMA1, and CDH1, but not for APC, CDH3, 
HIC1, P14, SMAD2, and SMAD4. Hypermethylation of WIF1 was concomitant with its 
mRNA downregulation in SI-NETs vs. normal intestine. Downregulation of RASSF1A and 
p16 was associated with a worse patient outcome. Global genome hypomethylation was 
demonstrated in SI-NETs. One group of tumors was identified with hypermethylation of 
WIF1, global hypomethylation and loss of chromosome 18 and another group with 
hypermethylation of RESSF1A and CTNNB1 and loss of chromosome 16. 5-azacytidine 
treatment of the SI-NET cell lines HC45 and CNDT2 reduced the methylation of 
hypermethylated genes and restored their mRNA expression. 

In Study III, the molecular mechanisms behind SSA treatment of NETs was examined using 
HiRIEF LC-MS/MS in HC45 and H727 cells treated with lanreotide at different time points. 
The results were confirmed for selected candidates using Western blot. The expression of 
Adenomatous polyposis coli (APC) was increased and survivin was decreased after 2 and 6 
hours of treatment. Using shRNA against APC, the expression of survivin was elevated and 
siRNAs against somatostatin receptor 2 (SSTR2) suppressed APC-survivin regulation. In 
conclusion, lanreotide induced APC specifically through binding to SSTR2 and APC 
inhibited survivin. Immunohistochemistry on a tissue microarray comprised 112 NETs 
showed that survivin expression was associated with worse patient outcome.  

In Study IV, HiRIEF LC-MS/MS was used to study the mechanisms behind liver metastasis 
of SI-NETs. The proteome was compared between SI-NETs with and without liver 
metastasis at diagnosis. Higher expression of ubiquitin-like NEDD8 was seen in cases that 
had liver metastasis at the time of diagnosis. The NET cell lines BON-1, CNDT2, HC45 and 
H727 were treated with MLN4924, an inhibitor of the neddylation activating enzyme, NAE1. 
The proliferation of all cell lines was inhibited in a dose-dependent way. The proteome of 
CNDT2 and HC45 after treatment with MLN4924 was investigated using HiRIEF LC-
MS/MS. Neddylation seems to play a role in the progression of SI-NET and MLN4924 
treatment is a promising strategy in the management of these tumors. 
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1 INTRODUCTION 
 

1.1 TUMORS AND THE BIOLOGY OF CANCER 

“Normal cells are carefully programmed to collaborate with one another in constructing the 
diverse tissues that make possible organismic survival. Cancer cells have a quite different 
and more focused agenda. They appear to be motivated by only one consideration: making 
more copies of themselves.” ― Robert A. Weinberg (Weinberg 2014) 

The general developmental rule ever since multicellular organisms evolved on earth is that 
each cell retains all necessary genetic information to build any other differentiated cell types 
in the body. This versatility is critical for several normal processes of the organism such as 
wound healing, cell replacing, homeostasis and tissue maintenance. The human body is 
composed of 3.72×1013 cells (Bianconi, et al. 2013) of which as many as 2×1011 are replaced 
in one day (E 1995). The fundamental point for every single cell is to accurately protect the 
genetic reservoir and to maintain the genetic integrity throughout life.  

Mutations, on the other hand, are inevitable and may occur throughout the genome including 
non-coding regions as well as the 3% of the human genetic content that is involved in 
generation of proteins or regulation of expression. Alterations of the integrity of DNA are 
characteristic of cancer cells and many different types of genetic alterations can cause or 
contribute to tumor development. In fact, even tiny modifications in genetic information or 
regulatory epigenetic modulators can lead to aberrant proliferation and spreading of cancer 
cells. (Weinberg 2014) 

 

1.1.1 Abnormal growth and tumor development  

Under normal conditions, cells in a multicellular organism are strictly organized. Tumor 
development is a multistep process where the cellular organization becomes disturbed. The 
time frame from tumor initiating event(s) to the development of symptomatic disease is 
variable and may proceed during years. In addition to established cancers, there are several 
other types of aberrant growth. (Weinberg 2014)  

Exaggerated cell proliferation is the first step. As a result of the abnormal growth and cell 
division, increasing numbers of that particular cell type accumulate in the tissue. These cells 
maintain their original cytological characteristics. The histopathological appearance of the 
tissue architecture seems normal and no threat has been posed to the organism. This kind of 
abnormal growth is called “hyperplastic”. (Weinberg 2014) 

In “metaplasia” cytologically normal cells replace other cell types, which has been associated 
with increased risk of subsequent cancer development. For example in “Barrett’s Esophagus” 
the secretory stomach epithelium extends towards the esophagus where it replaces the 
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squamous epithelium. This phenomenon can increase the risk of esophageal cancer up to 30 
times. (Weinberg 2014) 

In “dysplasia”, cytological alterations also appear. The dysplastic tissue may exhibit 
increased mitotic index and over-expression of the proliferation marker Ki-67, altered nuclear 
shape and increased nucleus to cytoplasm ratio. Dysplasia can be a transient phase between 
non-spreading and safe “benign” lesions and established cancers. (Weinberg 2014) 

A “cancer” represents a new type of tissue, which can invade nearby tissues and spread to the 
entire body. A cancer in its original location is termed “primary tumor” and when it has 
spread to a new location it is referred to as “metastasis”.  (Weinberg 2014) 

 

1.1.2 The biology of cancer 

The two main types of cancer genes are “oncogenes” that after activation promote cell 
proliferation, escape of cell death and metastasis and “tumor suppressor genes” that normally 
prevent tumor initiation and progression. The first and best examples are the RB1 tumor 
suppressor gene and the RAS oncogenes (Cox and Der 2010; DeCaprio 2009; Shih, et al. 
1979). “Gain of function” mutations such as point mutations and chromosomal 
rearrangements activate oncogenes while “loss of function” mutations silence tumor 
suppressor genes, both of which can drive tumorigenesis. Epigenetic alterations can 
sometimes play the same role in tumorigenesis (Lee and Muller 2010). 

In 1971 Alfred G. Knudson reported that two mutational hits are required for the 
development of retinoblastoma –later, this was clarified as the two alleles of the tumor 
suppressor RB1. He observed that children with bilateral retinoblastoma tumors had an earlier 
age of onset as compared to children with unilateral tumors. Through a mathematical 
calculation he showed that this could correspond to the mutation rate for two alleles of RB1 in 
unilateral compared to only one allele in bilateral retinoblastoma (Knudson 1971). 
Commonly bilateral disease occurs in children with familial disease (inherited or de novo 
mutation), while unilateral disease is seen in sporadic disease. This study funded the 
important notion of “Knudson’s two-hit” theory. Accordingly, for each loss of function 
alteration of a tumor suppressor gene there are two alleles that need to be inactivated. The 
alterations could involve genetic and/or epigenetic events. 

A myriad of studies on the biology of cancer has revealed the universal laws to govern 
cancerous cells that are identified as hallmarks of cancer. There are six core hallmarks: 
sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling 
replicative immortality, inducing angiogenesis, and activating invasion and metastasis 
(Hanahan and Weinberg 2000). Lately, two non-generalized and non-validated “emerging 
hallmarks” has been added, i.e. deregulating cellular energetics and avoiding immune 
distraction. Finally, two hallmarks are introduced as “enabling hallmarks” since they facilitate 
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acquisition of other hallmarks, including “genome instability and mutations” as well as 
“tumor-promoting inflammation” (Hanahan and Weinberg 2011). 

 

1.1.3 Tumor classification  
Tumors usually arise from “epithelia”, which are layers of cells that cover the surface of other 
tissues. Malignant tumors of epithelial origin are called carcinomas and are responsible for 
80-90% of cancer-related deaths (https://training.seer.cancer.gov/disease). Squamous cell 
carcinomas originate from protective epithelium that for example covers the skin, mouth and 
esophagus. Adenocarcinomas arise from epithelia that secrete different substances into the 
lumen of for example the lung or intestine. 

“Sarcomas” are another main group of tumors that originate from mesenchymal tissues. 
Osteosarcoma, liposarcoma, angiosarcoma are some examples of sarcomas. Sarcomas 
comprise approximately 1% of all malignancies. (Burningham, et al. 2012) 

“Hematopoetic malignancies” are derived from hematopoietic cell lineages and comprise 
“leukemias” and “lymphomas”. 

“Neuroectodermal” tumors are derived from cells within the nervous system. This group 
includes tumors such as “glioma” and “medulloblastoma”.  

Finally, some tumors are derived from neuroendocrine cells. They include tumors with a 
wide range of aggressiveness from indolent, low or intermediate grade and well or 
moderately differentiated neuroendocrine tumors (NETs) to aggressive, high grade, 
moderately or poorly differentiated neuroendocrine carcinomas. (Rindi and Wiedenmann 
2011) 

 

1.2 NEUROENDOCRINE TUMORS 

Hyperplastic growths can occur anywhere in the body and usually are not life threatening. 
Benign tumors in the colon for example or papilloma on the cervix of the uterus do not 
usually pose a direct problem except they can provide the precursor cells of cancers. 
However, benign tumors may cause symptoms due to hormonal production and secretion, as 
exemplified by pituitary adenomas with increased growth hormone levels and development 
of acromegaly. 

Many NETs can remain indolent and stay silent for several years. Most NET tumors can 
secrete various peptides, which depending on the level and type may lead to symptoms. 
Cases with a “non-functioning” tumor or lack of symptoms might not be identified at all or be 
found only by chance during a CT (computerized tomography) scan for example. Cases with 
a “functioning NET” may exhibit symptoms due to excess hormone secretion as seen in SI-
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NET patients with “carcinoid syndrome” characterized by diarrhea, flushing and carcinoid 
heart failure.  

Gastrointestinal NETs (GI-NETs) originate from endocrine cells of endodermal origin such 
as serotonin secreting cells (traditionally known as enterochromaffin cells) in the small 
intestine. Other types of NETs such as pheochromocytoma (derived from chromaffin cells) 
and medullary thyroid carcinoma (from calcitonin-producing C cells) originate from cells of 
the neural crest (Adams and Bronner-Fraser 2009). Neuroendocrine cells and neurons share 
several features. The two types of storage-release organelles, called “large dense-core 
vesicles” and “small synaptic-like vesicles”, are also observed in neurons (Figure 1). 
Moreover, development of both neuroendocrine and neuronal cells is controlled by Notch 
pathway transcription factors such as neurogenin 3 and neuroD/β2 (Schonhoff, et al. 2004). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. A general demonstration of a neuroendocrine cell, facing the lumen at the top 
and secreting to stromal cells (paracrine) or to a blood vessel (endocrine) at the bottom. 
Small synaptic-like vesicles and large dense-core vesicles (shown at left and right electron 
micrographs, respectively) are the characteristics of neuroendocrine cells. The small 
synaptic-like vesicles are comparable with their counterparts in neurons (ne in right). 
n=nucleus. (Courtesy of Rindi and Wiedenmann 2011) 
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SI-NETs are generally known as sporadic malignancies. However, there are several reports of 
families with two or more affected members supporting a familial form of the disease in a 
subset of cases (Eschbach J 1962; Kinova S 2001; Moertel CG. 1973; Pal, et al. 2001; Wale 
RJ 1983). In one of these reports family members from three generations developed SI-NET 
(Jarhult, et al. 2010). Additionally, there are epidemiological studies that suggest familial 
forms of SI-NET (Babovic-Vuksanovic, et al. 1999; Hemminki and Li 2001). Cunningham et 
al. studied a group of SI-NETs with a family history of the disease and found similar 
aberrations in DNA dosage and gene expression patterns as in sporadic cases, suggesting 
common mechanisms of pathogenesis (Cunningham, et al. 2011). Neklason et al. investigated 
384 SI-NETs and found a 13.4-fold (P<0.0001) and 6.5-fold (P=0.143) risk rate for siblings 
and parents, respectively. Furthermore, for third-degree relatives a 2.3-fold risk rate was 
revealed (P=0.008), suggesting a genetic influence (Neklason, et al. 2016). 

In 1907, Siegfried Oberndorfer a German pathologist at the University of Munich suggested 
the term karzinoide for 6 cases of carcinoma-like indolent tumors in the small intestine, a 
tumor type that was later on referred to as midgut carcinoids and more recently as SI-NETs 
(Figure 2). (Soga 2009) 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Immunohistochemistry staining for serotonin expressing cells showing SI-NET 
to the right and normal intestinal epithelium to the left (The immunohistochemistry 
micrograph courtesy of Anders Höög). 
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SI-NET is the largest subgroup of NETs. They are often already metastasized at diagnosis. 
Regional metastases are present in 36% and distant metastases in 48% of SI-NET patients. 
(Niederle, et al. 2010)  

The incidence of SI-NETs in Sweden is 1.12 in 100,000 (Landerholm, et al. 2010). Based on 
the WHO 2010 guidelines patients with Stage I, II and IIIA have localized disease, with 
Stage IIIB have regional metastases, and with Stage IV distant metastases. Grading is based 
on both Ki-67 proliferation index and “mitotic index”. Tumors with a Ki-67 of 3-20% and a 
mitotic index of 2-20 are considered as Grade 2 (G2), tumors with lower values are defined 
as G1 and those with higher values as G3 (Klimstra DS 2010).    

The prognosis has been reported based on both staging and grading. The 5-year tumor-
specific survival is 100% for Stage I and II, 97.1% for Stage III and 84.8% for Stage IV. The 
corresponding 5-year survivals according to grading are 93.8% for G1, 83% for G2 and 
50.0% for G3 (Jann, et al. 2011). However, the prognosis is overall better for SI-NET than 
for other small intestinal malignancies including carcinomas, sarcomas and lymphomas 
(Lepage, et al. 2006). 

The most frequent clinical presentation of asymptomatic SI-NET is vague abdominal pain or 
weight loss that is seen in 37% of the patients (Niederle et al. 2010). Moreover, in functioning 
tumors or symptomatic cases, the “carcinoid syndrome” is also present due to excess 
secretion of serotonin and/or tachikinins, substance-P, TGF-beta (Transforming growth factor 
beta) and connective tissue growth factor (CTGF). The carcinoid syndrome is characterized 
by secretory diarrhea, flushing, intermittent wheezing and most dangerously “carcinoid heart 
disease” (CHD or Heidinger syndrome) in up to 25-50% of the patients with carcinoid 
syndrome. Carcinoid syndrome is detectable in 95% of patients with liver metastasis, due to 
bypassing of the serotonin degradation in the portal circulation (Niederle, et al. 2016). 

The diagnosis of NET is based on detection of diagnostic markers such as 5-HIAA (5-
Hydroxyindoleacetic acid, the degradation product of serotonin) and Chromogranin-A (CgA), 
together with symptoms. The diagnosis is then verified by CT or MRI imaging followed by 
histopathological classification, according to strict criteria. The accuracy of imaging has been 
significantly improved after the introduction of somatostatin receptor (SSTR) imaging. In this 
method radionuclides are linked to somatostatin analogs (SSAs) that can be detected by PET 
scan (positron emission tomography) upon binding to SSTR2 on the tumor cell membrane. 
Other markers have been suggested to have diagnostic values but are not established in 
clinical practice, such as CDH1, p53, p27 and VEGF (Vascular endothelial growth factor). 
(Niederle et al. 2016) 

Ki-67 index, CgA and synaptophysin determined by immunohistochemistry are applied in the 
clinical practice as prognostic markers of NETs. SSTR2 has been suggested as a predictive 
marker in SSA therapy. (Niederle et al. 2016) 
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1.3 GENETIC BACKGROUND  

“Yet to define genes by the diseases they cause is about as absurd as defining organs of the 
body by the diseases they get…. This is a pitifully small thing to know about a gene, and a 
terribly misleading one”. ― Matt Ridley (Ridley 1999) 

The term “Genome” was first used by Hans Winkler in 1920. It means the whole information 
that is carried by the haploid chromosomal set of an organism. “Genomics” refers to the study 
of the entire information harbored by an organism’s genome (Graham Dellaire 2014; SP 
2007). Recent studies suggest the existence of approximately 19,000 identified protein-
coding genes in the human genome (Ezkurdia, et al. 2014). 

Cancer cells are characterized by a background of genetic aberrations such as point 
mutations, chromosomal rearrangements and abnormal DNA copy numbers. In addition, 
epigenetic modifications are common. As a result of these abnormalities, cells with selective 
advantages may proliferate and propagate throughout the body, thus contributing to initiation 
and progression of cancer.  

Targeted and genome-wide sequencing is commonly used in cancer genetic studies. DNA 
based arrays are also useful methods to compare the DNA copy numbers of the whole 
genome in cancer and normal tissue specimens. By this method recurrent copy number 
alterations (CNA) can be identified and evaluated as diagnostic and prognostic markers. 
Moreover, narrow regions of recurrent copy number aberrations may indicate the location of 
cancer genes involved in the disease. (Pinkel and Albertson 2005)  

DNA microarrays were developed in the mid-1990s. They have played a major role in 
identifying the genetic background of many diseases including cancers. They have also been 
used as additional tools to improve diagnostic, predictive and prognostic accuracy for 
different cancer subgroups.  (Laura 2008)  

In classical Comparative Genomic Hybridization (CGH) normal and cancer DNA samples 
are labeled with different fluorescent dyes and co-hybridized to normal metaphase 
chromosomes (Pinkel and Albertson 2005). The ratio between the two fluorochromes is 
measured along all chromosomes to create ideogram profiles of regions with loss, gain or 
normal copy numbers. In array-CGH instead, sheared genomic DNA is introduced to 
bacterial artificial chromosomes (BACs) generated from Escherichia coli, or more lately 
oligonucleotides or single nucleotide polymorphism (SNP) probes, to identify DNA dosage 
alterations at an increased resolution of up to 1kb (Martin and Warburton 2015). 

The first reports of genetic investigations of SI-NETs were published in the 1990s. Using loss 
of heterozygosity (LOH) analyses Jakobovitz et al. reported in 1996 that most carcinoids 
show LOH around the MEN1 (Multiple endocrine neoplasia type 1) locus in chromosomal 
region 11q13. Using genome-profiling methods in the beginning of the millennium, recurrent 
CNAs were identified in a limited number of chromosomal regions. (Jakobovitz, et al. 1996) 
Recurrent alterations are most frequently observed in the form of losses within chromosomes 
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18, 16 and 11 and gains within chromosome 14. The results from fine mappings performed in 
Study I as well as in the literature using different approaches are illustrated in Figures 3, 4, 5 
and 6. Overlapping CNAs are considered as important sources of information for the location 
of important cancer genes (Kim, et al. 2008; Stancu, et al. 2003; Walsh, et al. 2011). In Study 
I, TaqMan copy number assays were selected among overlapping CNAs. 

Kytölä et al. studied CNAs in a subset of SI-NETs (that was extended later in this thesis as 
Study I), using metaphase CGH. That was one of the first reports that showed a striking 
proportion of loss of chromosomal region 18q, and less frequently loss of 11q, loss of 16q 
and gain of chromosome 4. More numerical aberrations were detected in metastases 
compared with primary tumors. Loss of 18q and 11q were detected in similar frequencies in 
primary tumors and metastasis, unlike other alterations such as loss of 16q and gain of 
chromosome 4 that were associated to metastasis. In this study, SI-NET CNAs were 
compared with available reports on lung NETs, reporting similar loss on chromosome 11q in 
both diseases. Candidate genes within frequently lost regions were suggested to be SMAD2 
(Sma- And Mad-Related Protein 2) and SMAD4 (Sma- And Mad-Related Protein 2) and 
DCC (Deleted in colorectal cancer) located in chromosomal region 18q and the MEN1, 
SDHD (Succinate dehydrogenase complex subunit D), ALL-1 (acute lymphoblastic leukemia 
1) and PPP2R1B (Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A beta 
isoform) genes in 11q. (Kytöla, et al. 2001)  

Taking a similar approach Zhao et al. had compared gastrointestinal with bronchial NETs and 
found a significant difference between groups for some of the recurrent alterations, for 
example loss of chromosome 18 was overrepresented in the first group and loss of 
chromosome 11 in the second one (Zhao, et al. 2000). Löllgen et al. also found a high 
proportion of samples with LOH in chromosome 18 and in an attempt to identify the target 
tumor suppressor gene in this chromosomal region, they sequenced SMAD4 and DCC, 
however, no mutation was found (Löllgen, et al. 2001). 

Wang et al. found frequent LOH on chromosomes 11, 16 and 18 but did not detect any BRAF 
mutation in a series of 47 NET including a subgroup of SI-NETs (Wang, et al. 2005). Using 
SNP-based array screening, Kulke et al., found recurrent loss of chromosomes 18, 9p and 11q 
and a minimal region of gain on chromosome 14q encompassing the DAD1 (Dolichyl-
diphosphooligosaccharide—protein glycosyltransferase subunit) gene. In subsequent 
immunohistochemical analyses over-expression of DAD1 was demonstrated in SI-NETs 
compared to normal ileum (Kulke, et al. 2008). 

In 2009, Andersson et al. suggested that gain within chromosome 14 may contribute to the 
morbidity of SI-NETs, based on the association between this abnormality and worse patients’ 
outcome. The study also found frequent loss of chromosome 18 and suggested that there are 
two distinct patterns of CNAs in these tumors, i.e. loss of chromosome 18 or gain of 
chromosome 14. Given the high frequency of loss of chromosome 18, this alteration was 
proposed to have a role in the initiation of SI-NETs (Andersson, et al. 2009). Recently, the 
same group reported a more detailed study, by which they confirmed the adverse effects of 
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gain of chromosome 14 on SI-NETs’ outcome. Based on gene expression profiling SI-NETs 
were suggested to fall into clinical subgroups with different molecular characteristics. The 
study also found a correlation between gain of chromosome 14, higher grades of the disease 
and over-expression of cell cycle-promoting genes (Andersson, et al. 2016).   

Cunningham et al. profiled DNA copy numbers and global mRNA expression in sporadic SI-
NETs and a group of SI-NETs with familial background. They detected loss of chromosome 
18 in 100% of sporadic SI-NETs compared with 38% in the familial group. They further 
suggested an autosomal dominant inheritance pattern for the familial form and proposed the 
term “Familial Ileal Endocrine Carcinoma (FIEC)”. A tentative common disease gene for 
sporadic SI-NET and FIEC was suggested to be located in the distal part of 18q (Figure 3). 
(Cunningham et al. 2011) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Summary of recurrent regions of loss of chromosome 18 observed in Study I and 
from the literature. 
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The application of high throughput sequencing techniques has led to promising results in 
determining the genetic etiology of SI-NETs and other cancers. Banck et al. used exome 
sequencing and verified previous reports of recurrent copy number losses in chromosomes 11 
and 18 and gains in chromosomes 4, 5, 19, and 20. Furthermore, an overall low mutation 
frequency was noted. However, single nucleotide variants (SNVs) predicted to induce protein 
missense alterations were detected in a set of known cancer genes (FGFR2 (Fibroblast 
growth factor receptor 2), MEN1, HOOK3 (Hook microtubule tethering protein 3), EZH2 
(Enhancer of zeste homolog 2), MLF1 (Myeloid Leukemia Factor 1), CARD11 (Caspase 
recruitment domain family member 11), VHL (Von Hippel–Lindau), NONO (Non-POU 
Domain Containing, Octamer-Binding), and SMAD1). In cases with involvement of 
PI3K/AKT (phosphatidylinositide 3-kinases / Serine/threonine-specific protein kinase) 
signaling genes, amplification of either AKT1 or AKT2 also occurred. (Banck, et al. 2013) 

Francis et al. only few months later published the first recurrently mutated gene in SI-NETs 
ie CDKN1B (or p27) based on whole-exome and -genome sequencing. Heterozygous 
frameshift mutations of small deletions or insertions predicted to truncate the p27 protein 
were identified in 14/180 (8%) of SI-NETs. Copy number losses of CDKN1B/p27 were also 
detected. They further hypothesized that p27 can function as a haploinsufficent tumor 
suppressor in SI-NETs. (Francis, et al. 2013) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Overlapping regions of copy number losses in chromosome 16. A comparison 
between the results in Study I with similar previous studies in the literature. 
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Figure 5.Regions with recurrent copy number losses in chromosome 11 revealed in Study I 
and the literature.  
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1.4 EPIGENETIC BACKGROUND 

“There’s more to heredity than genes … You are what your grandmother ate” ― Lisa 
Melton (Melton 2004) 

The term epigenetics is used to describe heritable cellular information other than the DNA 
sequence itself. One example of epigenetic modification frequently studied in cancer is DNA 
cytosine methylation that may lead to gene expression dysregulation (Feinberg and Tycko 

 

Figure 6. Summary of frequently observed regions with copy number gains in chromosome 14. 
There were 2 different regions of gains in Study I that also overlapped with previously reported 
CNAs of SI-NETs. 
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2004). Initially DNA methylation studies based on methylation-sensitive restriction enzymes 
and Southern blotting demonstrated hypomethylation of cancer cell DNA in comparison with 
DNA from normal counterpart tissues (Feinberg and Vogelstein 1983). Other researchers 
used high-performance liquid chromatography to compare DNA methylation levels in cancer 
and normal DNA, and obtained similar results with hypomethylation in tumor DNA that was 
particularly pronounced in metastases (Gama-Sosa, et al. 1983). To search for functional 
effects of the aberrant DNA methylation, researchers focused on oncogenes known to be 
over-expressed in cancer, and could thus show recurrent hypomethylation in promoter 
regions of e.g. KRAS (Kirsten rat sarcoma viral oncogene homolog), CAGE (Cancer-
associated gene) and Cyclin D2 (Feinberg 1983; Oshimo, et al. 2003). 

The first proof for the significance of promoter hypermethylation in cancer gene down-
regulation (Figure 7) came from studies of the tumor suppressor gene RB1 (Greger, et al. 
1989). Studies showed that RB1 promoter activity is reduced to only 8% in methylated 
samples (Ohtani-Fujita, et al. 1993). In subsequent studies, down-regulation of multiple 
tumor suppressor genes has been associated with increased promoter methylation, for 
example concerning VHL, BRCA, RASSF1A (Ras Association Domain Family Member 1A) 
and p16 (CDKN2A) (Catteau, et al. 1999; Dammann, et al. 2003; Herman, et al. 1996; Merlo, 
et al. 1995). The involvement of promoter methylation in human cancer has since been 
increasingly recognized, and is today implicated for diagnostic, prognostic and therapeutic 
purposes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Inactivation of a tumor suppressor gene in cancer by hypermethylation of a CpG 
island in the promoter region leading to inhibition of the transcription machinery, inhibition 
of expression and promotion of cancer development. 
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Both promoter DNA methylation and global genome hypomethylation has been described in 
SI-NETs. Methylation of repeat elements that are frequent in the human genome such as long 
interspersed nucleotide elements (LINE-1) and Alu have been employed as an indicator of 
the global DNA methylation level. Since methylation of LINE-1 is associated with 
retrotransposon suppression, hypomethylation can also be attributed to transposon over-
expression and hyperactivation and genomic instability. (Daskalos, et al. 2009; Lander, et al. 
2001) 

In a study of 35 NETs (15 ileal, 11 pancreatic and 9 others) all tumor samples were found to 
be hypomethylated compared to normal tissue at LINE-1 and Alu repeats. In the SI-NET 
subgroup, LINE-1 hypomethylation was associated with shorter survival, regional metastasis 
and loss of chromosome 18. (Choi, et al. 2007)  

Previous studies have investigated promoter methylation status of selected genes in NETs. 
The results indicate that aberrant DNA methylation can play a role in NET tumor 
development; however, non-quantitative methods were commonly used. Pizzi et al. in 2005 
reported that RASSF1A promoter hypermethylation occur together with LOH in 3p and over-
expression of Cyclin D1 in foregut carcinoids (duodenal, pancreatic and gastric endocrine 
tumors) -but not in midgut (ileal NET) and hindgut carcinoids (colorectal NET) (Pizzi, et al. 
2005). In another study, RASSF1A and CTNNB1/β-Catenin promoter methylation were more 
frequently observed in metastasis compared to primary SI-NETs (Zhang, et al. 2006). DNA 
methylation has also been reported for RARb, MGMT (O-6-Methylguanine-DNA 
Methyltransferase), p16, COX2 (Cyclooxygenase 2b), p14, THBS1 (Thrombospondin 1), and 
ER (Estrogen receptor) based on methylation specific PCR (MSP) or combined bisulfite 
restriction analysis (COBRA) in varying frequencies of SI-NETs (25-63%) (Chan, et al. 
2003). Recent studies have employed global genome analyses of DNA methylation using 
array technology, which have identified new candidates for further epigenetic analysis (How-
Kit, et al. 2015; Verdugo, et al. 2014). In a very recent study whole genome sequencing and 
DNA methylation array analyses were combined. This Study Identified a set of 21 
epigenetically dysregulated genes, including among others CDX1 (Caudal type homeobox 1) 
(86%), CELSR3 (Cadherin EGF LAG seven-pass G-type receptor 3) (84%), FBP1 (Fructose-
Bisphosphatase 1) (84%), and GIPR (Gastric Inhibitory Polypeptide Receptor) (74%) 
(Karpathakis, et al. 2016). Moreover, bioinformatic analyses with integration of data for 
CDKN1B/P27 mutation status and copy number alterations identified three subgroups of SI-
NETs with different patient outcome (Karpathakis et al. 2016).  

In Study II, global genome methylation and candidate gene promoter methylation was 
compared to normal ileum, using quantitative Pyrosequencing in SI-NETs. The candidate 
genes were chosen based on the following criteria:  

WIF1 (WNT Inhibitory Factor 1) and β-catenin: The Wnt/beta-Catenin axis has been 
implicated in SI-NETs and other tumors of neuroendocrine origin (Sulaiman, et al. 2013; 
Zhang et al. 2006). WIF1 is an antagonist of Wnt ligands such as WNT1, and may thereby 
inhibit Wnt signaling with effects on cell proliferation and survival, as well as on 
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differentiation and cell migration in tumor development. In cancer, the Wnt pathway plays a 
role in Cancer Stem Cell (CSC) homeostasis. A complex network of agonists and antagonists 
are involved in the regulation of the Wnt pathway (Hsieh, et al. 1999; Ramachandran, et al. 
2014).  

WIF1 promoter methylation, which can be one of the mechanisms involved in down-
regulation of WIF1 and activation of Wnt signaling, is found in several different cancer types 
including cervical, breast, bladder, colorectal, nasopharyngeal, esophageal and non-small cell 
lung carcinoma (Ai, et al. 2006; Chan, et al. 2007; Delmas, et al. 2011; Kim, et al. 2013; 
Roperch, et al. 2013; Urakami, et al. 2006).  

Kim et al. studied epigenetic modifications of Wnt pathway components in the NET cell line 
BON-1 (Evers, et al. 1991) based on their previous observations of nuclear accumulation of 
β-catenin in 25% of NETs (81). They also identified down-regulation of Wnt signaling 
inhibitors that could be restored by treatment of BON-1 with the demethylating agent 5-aza-
CdR. However, using MSP, they did not detect WIF1 promoter methylation (Kim et al. 
2013). In Study II, the WIF1 promoter was highly methylated in SI-NET tumors and the cell 
lines CNDT2 and HC45. This inconsistency between the two studies can be due to 
differences between the cell lines studied and the methodology. 

In another report based on MSP analyses, Zhang et al. studied promoter methylation of β-
catenin and other candidate genes. The authors reported increased gene expression and 
promoter methylation of CTNNB1 in metastases as compared with primary tumors (Zhang et 
al. 2006). Similar studies also indicate a possibly non-canonical role for β-catenin as a tumor 
suppressor protein (Ebert, et al. 2003). This can be explained by the function of this protein in 
cell-cell binding and the effect that its down-regulation can play in dissociation and 
metastasis. It has also been demonstrated in Epithelial-mesenchymal transition (EMT), in 
which E-cadherin (CDH1) becomes down-regulated and its association with β-catenin in 
membranous adherence junctions is disrupted. β-catenin becomes degraded in the 
proteasomal system unless it is protected for instance by Wnt signaling (Lamouille, et al. 
2014).  

RASSF1A: Independent studies by Liu et al. and Zhang et al. have shown that in metastases 
compared to primary SI-NETs, the RASSF1A promoter is hypermethylated and RASSF1A 
expression is concomitantly down-regulated (Liu, et al. 2005; Zhang et al. 2006). Indeed, 
RASSF1A is a typical tumor suppressor for which down-regulation is caused by promoter 
hypermethylatyion in cancer. RASSF1A was shown in lung carcinoma to suppress cell cycle 
at G1. This is achieved by suppressing cyclin D1, which is mediated by down-regulation of 
JNK (Jun amino-terminal kinases) pathway (Whang, et al. 2005). Moreover, RASSF1A plays 
an important pro-apoptotic role binding to and activating MST1 (Mammalian Sterile Twenty 
1) (Oh, et al. 2006). Another tumor suppressor function of RASSF1A includes its affinity to 
microtubules with inhibition of cell migration and tumor progression (Dallol, et al. 2005). 
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CXCL14 (Chemokine (C-X-C motif) ligand 14) and NKX2-3(NK2 Homeobox 3): These genes 
are among the top down-regulated genes in a microarray comparing metastases with primary 
SI-NETs (Leja, et al. 2009). CXCL14 is a is epigenetically down-regulated in prostate cancer 
cell lines where its expression can be restored by 5-aza-CdR in those cells and leading to an 
increased chemo-attraction for dendritic immune cells (Song, et al. 2010). In lung cancer cell 
lines CXCL14 is down-regulated by DNA methylation. Ectopic expression of the gene in 
these cells induces necrosis and tumor shrinkage in xenograft models (Tessema, et al. 2010).  

NKX2-3 is a homeodomain-containing transcription factor. In melanoma cell lines, the 
NKX2-3 promoter is hypermethylated (Tellez, et al. 2009). In colorectal cancer cell lines 
siRNA suppression of the gene alters proliferation, growth and tumorigenesis, characteristics 
of the cells that are predicted to be regulated by Wnt pathway (Yu, et al. 2010). 

P16/CDKN1A is a putative tumor suppressor located on chromosome 9p that was found 
recurrently lost in Study I. p16 is a CDK4 inhibitor and arrests the cell cycle at G1 through 
regulation of the retinoblastoma protein (Nobori, et al. 1994; Serrano, et al. 1993). 

P16 promoter methylation and gene expression suppression has been widely detected in 
many cancers (Shima, et al. 2011; Yu, et al. 2014). Epigenetic regulation of this gene in SI-
NETs, however, is disputed (Arnold, et al. 2007; Chan et al. 2003; Liu et al. 2005). This 
raises the possibility of false positive results produced by low-tech PCR-based DNA 
methylation assays. 

P16 can unexpectedly be over-expressed in more advanced cancer stages. This phenomenon 
is attributed to either onco-viral infection such as Human Papillomavirus (HPV), age 
associated (replicative) senescence or oncogene-induced senescence (OIS) (Romagosa, et al. 
2011). OIS can be a factor to suppress an otherwise rapid tumor progression in often non-
invasive, indolent SI-NETs. 

CDH1 (cadherin 1) and CDH3 were among candidate genes due to their location on 
chromosome 16q, a recurrently observed loss in SI-NETs based on Study I. Aberrant 
promoter methylation of these genes has been reported in other cancers (Esteller, et al. 2001; 
Milicic, et al. 2008). 

LAMA1 (Laminin Subunit Alpha 1), SMAD2 and SMAD4 are located on chromosome 18, 
which recurrent loss is a hallmark of SI-NET. Along with CDH1 and CDH3, the candidate 
selection approach was based on Knudson’s two-hit hypothesis, where the first hit was 
already detected in CNA analysis in Study I (Knudson 1971).  

APC (Adenomatous polyposis coli), HIC1 (Hypermethylated In Cancer 1), p14 and all above 
mentioned genes have been reported as hypermethylated in SI-NETs or other tumors, often 
using low-resolution PCR-based methods (Arnold et al. 2007; Chan et al. 2003). 

LINE-1 constitutes 17% of the human genome (Lander et al. 2001). Only a proportion of 
LINE-1 has maintained its original retrotransposon potential and the rest is not functional and 
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is considered as molecular fossil. LINE-1 hypomethylation and over-expression are common 
phenomena in cancer. Hence, analyzing methylation of LINE-1 gives an estimation of the 
global genome methylation and integrity as well as retrotransposon activity that is an 
important cause of many mutations (Beck, et al. 2010). Hypomethylation activates expression 
of LINE-1 that is a driver of genome instability and may lead to tumorigenesis. In many 
cancers including breast, colon, lung, head and neck, bladder, esophagus, liver, prostate, and 
stomach cancers, LINE-1 is hypomethylated. 

1.4.3. Demethylation analyses  

5-aza-CR (Azacytidine) and 5-aza-CdR (5-Aza-2′-deoxycytidine) are therapeutic agents 
targeting epigenetic abnormalities in cancer. These agents are derivatives of cytidine, to 
which DNMT (DNA methyltransferase) can bind and get trapped. Thus, they prevent DNA 
methylation in the newly synthesized DNA strand. This phenomenon is being used in the 
management of myelodysplastic syndrome. 5-aza-CR and 5-aza-CdR, also known as Vidaza 
and Dacogen were approved by FDA in 2004 and 2006, respectively (Matoušová , et al. 
2011). 

In epigenetic studies, these agents are often used to examine the implication and causality of 
promoter hypermethylation in transcription regulation. This also provides hope in therapeutic 
epigenetic agents targeting reversible alterations in comparison with permanent genetic 
alterations.  

 

1.5 SOMATOSTATIN ANALOGS IN SI-NET THERAPY 

1.5.1 Somatostatin and its pharmaceutical analogues 

In 1972, researchers at Salk institute, while searching for growth hormone releasing factor in 
sheep hypothalamus, incidentally found a growth hormone inhibitory hormone that was 
named somatostatin (Brazeau, et al. 1973). In vitro addition of somatostatin to pituitary 
isolated cells inhibited growth hormone secretion. Further investigation revealed the peptide 
sequence of the molecule. It was composed of 14 amino acids (Burgus, et al. 1973).  

Somatostatin is also called somatotropin-release inhibiting factor (SRIF). It is now known 
that there are two different types of somatostatin with 14 and 28 amino acids, both C-terminal 
products of proto-somatostatin. Either of these somatostatin isoforms can potentially agonize 
5 different somatostatin receptors (SSTRs) -1 through -5. SSTRs are intronless except SSTR2 
that encodes 2 splice variants SSTR2-A and SSTR2-B with different C-terminals. Five 
distinct SSTRs are classified in 2 groups, based on their structural and pharmacological 
features: SRIF1 is comprised of SSTR2, SSTR3 and SSTR5 that show a nano-molar 
sensitivity to somatostatin and its analogs, while the range of somatostatin sensitivity for 
SRIF2 including SSTR1 and SSTR4 is micro-molar. (Weckbecker, et al. 2003) 
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Somatostatin is expressed by normal endocrine, gastrointestinal, immune and neuronal cells 
and also some tumors such as SI-NETs. Somatostatin is a neurotransmitter in the neural 
system and it inhibits a broad range of hormones such as growth hormone, insulin, glucagon, 
gastrin, cholecystokinin, vasoactive intestinal peptide (VIP) and secretin as well as exocrine 
secretion of gastric acid, intestinal fluid and pancreatic enzymes. (Weckbecker et al. 2003)  

Its pan-antisecretory features have made somatostatin an attractive candidate in a variety of 
disorders including NETs and acromegaly. Plasma half-life of natural somatostatin does not 
exceed 3 minutes; hence attempts have been made to generate clinical somatostatin analogues 
that sustain its pharmacophore (crucial amino acids tryptophan and lysine), whilst modified 
to resist degradation. (Harris 1994)   

1.5.2 Signal transduction 

“The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Chemistry 
for 2012 to Robert J. Lefkowitz and Brian K. Kobilka, for groundbreaking discoveries of G-
protein–coupled receptors (GPCRs)”. ― Nobelprize.org 

GPCRs constitute a large group of cell membrane receptors. G proteins have three subunits, 
Gα, Gβ and Gγ. The classification of GPCRs is based on 4 different types of G-alpha namely 
Gαs, Gαi, Gαq/11 and Gα12/13. 

SSTRs are GPCRs. Signaling through SSTRs is cell context dependent and complex. 
Besides, SSTRs vary in terms of the downstream activators and pathways that they govern. 
SSTR2 and SSTR5 are the main targets of somatostatin analog therapy. Receptor stimulation 
occurs in nano-molar blood concentrations of the ligand. (IPSEN 2011; Weckbecker et al. 
2003)  

Upon somatostatin or SSA – SSTR binding, both pertussis-toxin-sensitive G proteins such as 
Gαi and Gαo and pertussis-toxin-insensitive Gαq, Gα14 and Gα16 proteins become activated. 
The most famous pertussis-toxin-sensitive downstream enzyme for all SSTRs is adenylyl 
cyclase. SSTR activation inhibits this enzyme and reduces signal transduction through 
cAMP. The best-documented downstream effector of cAMP is protein kinase A (PKA). PKA 
can phosphorylate and activate transcription factors such as cAMP response element-binding 
protein (CREB), thereby render therapeutic potential of somatostatin analogs (Tentler, et al. 
1997). Marked up-regulation of both cAMP and CREB in SI-NETs suggests the possible 
importance of this pathway (Drozdov, et al. 2011).  

Another secondary messenger that is also down-regulated upon SSTR activation is Ca2+. This 
can be a direct inhibition of Ca2+ channel and reduced Ca2+ influx and intracellular release or 
may proceed indirectly, through K+ channel activation and cell membrane hyperpolarization. 
This pathway is associated with Phospholipase C inhibition and Inositol 3 Phosphate down-
regulation. (Weckbecker et al. 2003)    
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Another proposed mechanism for anti-tumor activity of somatostatin and SSAs is activation 
of protein tyrosine phosphatases, such as the Src homology phosphatases, SHP-1 and SHP-2, 
which can counteract tyrosine kinases by dephosphorylation of target proteins. (Reubi and 
Schonbrunn 2013)  

For unknown reasons, SSAs play an anti-proliferative role in contexts such as pituitary 
adenoma, but not on many NETs. It seems that different SSTR expression signatures or other 
unknown factors in the downstream signaling machinery can cause distinct effects. Cytosolic 
Ca2+ is generally reduced in somatostatin treated cells such as pituitary adenoma cells, 
whereas it is elevated in pancreatic tumor cells. SSAs inhibit ERK (Extracellular signal–
regulated kinase) phosphorylation in pituitary adenoma and medullary thyroid carcinoma 
cells, but stimulate it in many of examined NET cells (Figure 8). (Reubi and Schonbrunn 
2013)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.5.3 Adenomatous polyposis coli and survivin 

APC plays a critical role in the maintenance of the intestine crypts and their homeostasis. 
Mutations in this gene are accompanied by a high ratio of colorectal cancer that occurs via 
pathways for β-catenin phosphorylation and stabilization. (Morin, et al. 1997)  

 

Figure 8. Possible direct mechanisms of somatostatin. (Courtesy of Gisbert et al. 2003) 
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BIRC5 (Baculoviral IAP Repeat Containing 5)/survivin is an inhibitor of caspase 9, thereby 
playing an important role in inhibition of apoptosis. Survivin also plays an important role in 
Anaphase through cytokinesis by attaching to mitotic spindles and kinetochores, contributing 
to chromosomal dissociation. Therefore, over-expression of survivin promotes tumorigenesis 
in many cancer types. (Mita, et al. 2008)  

An association between loss of APC and survivin expression has long been known and is 
attributed to cancer stem cell characteristics. (Zhang, et al. 2001)   

 

1.6 TARGETING NEDDYLATION IN SI-NETS 

1.6.1 Ubiquitination system and cancer 

Ubiquitin is a 76 amino acid protein that binds to target proteins in a complex post-
translational regulatory process known as ubiquitination and plays an important role in cell 
homeostasis. In some lethal disorders, such as cancer, it is often dysregulated. One or several 
ubiquitin molecules bind to a target protein and direct diverse downstream pathways. Mono-
ubiquitination occurs when only one molecule of ubiquitin binds to a lysine residue of a 
substrate. This process regulates endocytosis, DNA repair, protein transfer, and histone 
regulation. (Woelk, et al. 2007)   

Multiple ubiquitin molecules may each bind to a distinct lysine residue in the target protein in 
a process called multi-ubiquitination, which is involved in endocytosis. A ubiquitin itself has 
seven lysine residues (Lys6, Lys11, Lys27, Lys29, Lys33 Lys48 and Lys63) that can function 
as substrates of other ubiquitin molecules. In a process known as poly-ubiquitination a 
ubiquitin chain binds to a target protein. Depending on which lysine in the ubiquitin structure 
is ubiquitinated, the fate of the target will be different. Poly-ubiquitination on lysine 63 
directs endocytosis of the target protein, DNA repair and protein assembly in the signaling 
pathways such as NF-κB (Nuclear factor-κB). Poly-ubiquitination on lysine 48 (and to some 
extent on lysine 11) is best characterized and involved in proteolysis through the ubiquitin-
proteasome system (UBS). (Groettrup 2010; Ikeda and Dikic 2008; Skaar, et al. 2014)  

Ubiquitination starts with a ubiquitin activating enzyme (E1). Two ubiquitin molecules bind 
to an E1 and activate it to transfer one molecule of ubiquitin to a ubiquitin conjugating 
enzyme (E2) in a transthiolation reaction. E2 transfers ubiquitin to a target protein when in a 
complex with one of several hundred ubiquitin ligases (E3s), which in turn catalyze the 
ubiquitination of the substrate on one of its lysine residues. (Frescas and Pagano 2008)  

E3 ligases are classified in 3 groups, each containing a distinct domain in their core protein: 
1- HECT (homologous to E6-AP carboxy terminus); 2- U-box E3s; 3- RING (Really 
interesting New Protein) finger. Classic RING-finger ligases contain domains to bind to both 
substrate and E2-ubiquitin and to directly proceed with substrate ubiquitination. The main 
subgroup of RING finger ligases contains a scaffold protein, cullin, that binds to a substrate at 
its N-terminus. At the C- terminus, cullin binds to a RING finger domain containing protein, 
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RBX1 or RBX2 (RING-box protein) that binds to an ubiquitin loaded E2. This class of E3s is 
called cullin-RING ligase (CRL) (Petroski and Deshaies 2005; Soucy, et al. 2010) and is the 
largest family among more than 600 putative E3 ligases in humans (Wang, et al. 2014). Ring-
finger proteins including CRLs are the most studied ubiquitin ligases. CRLs are responsible 
for 20% of cellular proteasome-dependent degradation (Soucy, et al. 2009). Moreover, there 
is another CRL-like ligase containing cullin- homology domain, named APC2 subunit of the 
anaphase-promoting complex/cyclosome (APC/C) that has ubiquitin ligase activity (Frescas 
and Pagano 2008; Petroski and Deshaies 2005). 

There are 8 different cullins that build up 8 cullin-RING ligase families: CUL1, CUL2, 
CUL3, CUL4A, CUL4B, CUL5, CRL7 and CUL9 (Wang et al. 2014). For a cullin to bind to 
a ubiquitination substrate, it must bind to an adapter and through this to a receptor. The 
receptor confers substrate-targeting specificity to a CRL. The typical CRL in mammals is 
constituted of a CUL1 scaffold that recruits a ubiquitin loaded E2 through a RBX1. At its 
other end, CUL1 binds to the N-terminal of the adaptor protein SKP1 (S-phase kinase-
associated protein 1) that is bound through its C-terminal to the substrate receptor protein, 
which is an F-box protein. This complex is called SCF (SKP1-CUL1-F box protein) (Petroski 
and Deshaies 2005).  

There are 69 F-box proteins in humans that based on their targets are divided into 4 groups: 
tumor-suppressors, oncogenes, context-dependent or undetermined functions. SKP2 (S-phase 
kinase-associated protein 2) is the only well-established oncogenic F-box among all. This F-
box protein is also the only one that targets p27. (Wang et al. 2014) 

 

1.6.2 NEDD8 (Neural Precursor Cell Expressed, Developmentally Down-
Regulated 8) 

NEDD8 is an 81-amino acid protein and the best-characterized ubiquitin-like protein. It 
shares 60% of its amino acid sequence with ubiquitin, the highest similarity with ubiquitin 
among 16 ubiquitin like proteins (UBLs). It binds to target proteins in a cascade similar to 
ubiquitination. First, it binds to its specific E1, neddylation-activating enzyme (NAE). One of 
its two E2 enzymes transfers NEDD8 to the target: UBC12 (Ubiquitin-Conjugating Enzyme 
12) or UBE2F (Ubiquitin Conjugating Enzyme E2F). (Enchev, et al. 2015; Soucy et al. 2010)  

The best-established targets of neddylation are cullins. Neddylation is necessary for normal 
cellular function of CRLs. Neddylation of CUL1 does not require an E3 ligase but is 
performed by RBX1 (Petroski and Deshaies 2005). For cullin neddylation, UBC12 only pairs 
with RBX1 and neddylates CUL1-4 and UBE2F pairs to RBX2 and neddylates CUL5. 
(Huang, et al. 2009)  

Upon neddylation, cullins undergo configurational modification and become activated. This 
active configuration enhances their binding capacity to E2 that subsequently facilitates 
ubiquitination and proteasomal degradation of target proteins. (Petroski and Deshaies 2005)  
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Neddylation has a critical role by activation of CRL, for example in cell cycle regulation, and 
by degradation of tumor suppressors such as p27 and p21. Another example is CRL1-
mediated degradation of IκBα (inhibitor of NF-κB) that activates and promotes cell 
proliferation for instance in ABC-DLBCL (activated B-cell-like diffuse large B-cell 
lymphoma). βTrCP (β-transducin repeat-containing protein) is known as the F-box protein in 
the CRL1 that conducts such a process (Staudt 2010). In addition, NEDD8 has other roles 
beyond CRL, by directly attachment and inactivation of tumor suppressors such as p53 and 
p73 (Enchev et al. 2015). 

Neddylation regulates activation of CRLs in coordination with CAND1 (cullin-associated 
and neddylation-dissociated). CAND1 binds selectively to unnedylated CUL1 and makes a 
ternary complex with CUL1-RBX1. It competes with SKP1 in binding to CUL1, so that 
SKP1 only binds to CUL1 and makes an active SCF complex when CUL1 is already 
neddylated. CAND1 dissociates CUL1-SKP1 complex and it can inhibit SCF activity (Figure 
9). (Liu, et al. 2002)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. UPS control of p27 levels in the cells. Neddylation activates UPS, rendering the 
degradation of p27 and hindering cell cycle progression. 
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MLN4924 is an adenosine sulfamate analog and a selective and first-in-class inhibitor of 
NAE. MLN4924 competes with ATP and is applied by NAE to form MLN4924-NEDD8 
adduct. The adduct binds tightly to the adenylation site and inactivates NAE (Soucy et al. 
2009) (Soucy et al 2011). MLN4924 may be effective in cancers with up-regulation of SKP2 
(consequently down-regulation of tumor-suppressors such as p27 and p21) or in NF-κB –
based cancers (Soucy et al. 2010). The compound is currently administered in several clinical 
cancer trials (Nawrocki, et al. 2012).  

 

1.6.3 P27 proteolysis inhibition as a strategy in SI-NET management 

Genetic information regarding SI-NET initiation and progression has been limited to 
recurrent CNAs, especially loss of chromosome 18q for many years, until a high throughput 
genome sequencing approach was exploited in the studies of these tumors. An outstanding 
study based on exome and genome sequencing of SI-NETs suggested - although in a small 
proportion of ~10% - that CDKN1B mutation or CNA probably being in charge of 
tumorigenesis (Francis et al. 2013). CDKN1B encodes p27/KIP1 (Kinesin-like protein 1) that 
is a CDK (cyclin dependent kinase) inhibitor and controls G1 to S phase transition in cell 
cycle. In G0 and early G1, p27 is translated and remains stable to bind to and inhibit cyclin 
A-CDK2 and cyclin E-CDK2. During G1, p27 is gradually degraded and allows the 
aforementioned complexes to transcribe necessary factors for G1-S transition and initiation of 
DNA replication (Chu, et al. 2008).  

The finding of CDKN1B alterations in SI-NETs was a breakthrough, since it provided a 
logical clue for further investigations. Losses on one chromosome or heterozygous mutations 
were consistent with the notion of haploinsufficiency of p27. Germline mutations in 
p27/MEN4 have been found in families with MEN1 syndrome, without any genetic alteration 
of MEN1 per se (Pellegata, et al. 2006). Furthermore, menin, a protein encoded by MEN1, 
regulates the expression of CDKN1B epigenetically (Karnik, et al. 2005). Reduced p27 
expression is implicated in many cancers. Reduced expression of P27 is an independent 
prognostic marker in non-small cell lung cancer (Esposito, et al. 1997; Hommura, et al. 
2000). Different studies in ovarian cancer (Schmider-Ross, et al. 2006), breast cancer 
(Catzavelos, et al. 1997), prostate cancer (Tsihlias, et al. 1998; Yang, et al. 1998), colorectal 
cancer (Loda, et al. 1997), mantle cell lymphoma (Chiarle, et al. 2000) and head and neck 
cancer  (Pruneri, et al. 1999) show that different P27 expression levels have prognostic value 
(Chu et al. 2008). 

On the other hand, p27 is not a classic tumor suppressor like p53. P27-/- mice were shown to 
be larger in size and developed thymic and pituitary hyperplasia that progressed to pituitary 
adenocarcinoma over a longer period (Fero, et al. 1996). Mutations in CDKN1B are rare. 
Loss of heterozygosity and total protein loss has not been observed in cancer (Frescas and 
Pagano 2008). Therefore, it seems that down-regulation of p27 and subsequent 
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tumorigeneisis originates from upstream regulatory mechanisms. Lysate from tumors show 
proteolytic activity against recombinant p27 in vitro (Loda et al. 1997).  

SKP2 is associated with worse patient outcome in all studied cancers. CRL1skp2 is known as 
the main ligase regulating p27 levels. It degrades p27 and promotes cell cycle and 
tumorigenesis (Frescas and Pagano 2008). CRL1skp2 degrades p21, p27, p57, RB1 and other 
tumor suppressors; however, it seems that p27 is the key substrate of CRL1skp2. In mouse, 
deletion of Cdkn1b is sufficient to rescue the Skp2-/- phenotype (Catzavelos et al. 1997; 
Frescas and Pagano 2008; Kossatz, et al. 2004). While SKP2 expression always leads to p27 
down-regulation, reduced levels of p27 have not always been associated with SKP2 over-
expression; therefore other mechanisms should be implicated in the regulation of p27 
(Frescas and Pagano 2008). 
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2 AIMS 
This thesis aimed at characterizing the genetic, epigenetic and proteomic mechanisms behind 
tumor development of SI-NET and its treatment with somatostatin analogs. The particular 
aims for each study were: 

 

Study I: 

To define and refine regions of recurrent DNA copy number alterations in SI-NETs 

 

Study II: 

To identify epigenetic modifications including aberrant promoter CpG methylation and 
global genome methylation levels behind SI-NET tumor development in vivo and in vitro  

 

Study III: 

To characterize the molecular effects of somatostatin analog therapy of NETs, particularly 
their effects through the APC-survivin axis 

 

Study IV: 

To characterize the proteomic signature of SI-NETs and the role of neddylation as a potential 
target for SI-NET therapy 
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3 MATERIALS AND METHODS 
 

3.1 TUMOR SAMPLES AND CELL LINES 

3.1.1 Tumor samples 

For the array-CGH analyses in Study I, 19 primary tumors and 11 metastases, 30 samples in 
total, from 29 patients were used. For TaqMan copy number experiments, the sample cohort 
was extended to 43 samples from 32 patients. In total 24 primary tumors and 19 metastases 
were used in Study I. Seven of the metastases were distant (five liver and two ovarian) and 
twelve were regional metastases (mesenterial, omental or regional lymph nodes). 

The same samples were used in Study II, but in addition a lymph node metastasis from a 
patient with a familial background of SI-NET was also used. 

In Study III, 20 formalin-fixed paraffin-embedded (FFPE) tissue samples with tumor tissue 
and adjacent normal epithelial tissue from 13 SI-NET patients were used for a comparison 
between somatostatin treated / untreated samples and tumors/normal adjacent tissue with 
respect to expression of survivin and APC. In addition a tissue microarray (TMA) was then 
used which included 112 NET tumors/patients obtained from the Department of Pathology, 
La Paz University Hospital, Madrid, Spain. 

For Study IV, 70 SI-NETs were included of which 37 were primary tumors, 23 were regional 
metastases and 10 were distant metastases.  

Except for the TMA in Study III, all clinical samples were obtained from the biobank at 
Karolinska University Hospital, Sweden. 

 

3.1.2. NET cell lines 

NET cell lines were used for studies II, III and IV. BON-1 is a serotonin positive pancreatic 
NET cell line. H727 is a pulmonary NET cell line, and CNDT2 and HC45 are both derived 
from SI-NET liver metastases. H727 was purchased from ATCC, and the other cell lines 
were kindly provided by other research groups. The non-commercial cell lines were 
genotyped for a standardized set of SNPs at Biosynthesis Inc.   

A primary cell culture was developed from an SI-NET lymph node metastasis. The tumor 
was chopped in MEM, incubated in type II collagenase overnight, and treated with 
hyaluronidase. The cells were cultured in DMEM with 10% FBS at 37°C, 5% CO2 in a 
humidified incubator for up to 10 passages. 
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3.2 ARRAY COMPARATIVE GENOMIC HYBRIDIZATION 

Array-CGH is used to examine DNA copy number losses and gains corresponding to 
deletions or gains/amplifications on the chromosomal level. The method has an improved 
resolution compared to its preceding chromosome based form so called metaphase- CGH. In 
array-CGH short single strand genomic DNA probes are arrayed on micro slides (chips). The 
resolution depends on the length of the probes and on the genomic distance between probes. 

Test genomic DNA and normal reference DNA are denatured, labeled by different 
fluorescent dyes, and hybridized together to the array. The ratio between fluorescent emission 
from the two fluorochromes is read in a digital scanner and analyzed to identify gain or loss 
of the corresponding DNA sequence (Theisen 2008). Study I reflects the development in the 
field concerning array platforms and array resolution. One Mb arrays were applied (from 
Spectral Genomics, currently Perkin Elmer) on a subset of the 30 SI-NETs from 29 patients 
in the study. Data was analysed with the Spectralware 2 software applying cut-offs of 1.2 and 
0.8 to detect gains and losses, respectively. Then, human tiling 33 K and 38 K BAC arrays 
were applied (produced at the SCIBLU Genomics Centre at Lund University, Sweden). 
These arrays contained 33,370 and 38,000 BAC clones, respectively (CHORI BACPAC 
resources) giving an improved resolution of one clone per 50–100 kb.  

After slide scanning, data were processed with GenePix Pro 6.0 package analysis software 
and BioArray Software Environment. Log2 ratio cut-offs at +0.25 and −0.25 were applied to 
identify gains and losses and +1 and -1 for amplification and homozygous loss, respectively. 
Alterations detected using the software were also inspected manually, and particular concern 
was taken for alterations in telomeric and centromeric regions. To distinguish CNAs 
fromnormal genomic copy number variants the Database of Genomic Variants 
(http://dgvbeta.tcag.ca/dgv/app/home?ref=NCBI36/hg18) was used. 

    

3.3 QUANTITATIVE PCR AND TAQMAN ASSAYS 

QPCR experiments were performed to quantify mRNA expression levels and DNA copy 
numbers. Two different platforms were used based on either TaqMan or SYBR Green. SYBR 
Green binds to the minor groove of DNA and when more double stranded DNA is produced 
in the PCR reaction, the fluorescent emission will increase. 

In TaqMan assays, a fluorescent probe with a reporter and quencher dye binds to the template 
DNA. Upon primer extension, the two dyes will separate allowing the reporter dye to emit 
fluorescencein proportion to the number of DNA templates. In mRNA expression assays, 
equal amounts of RNA from the samples are reverse-transcribed to cDNA and compared. In 
DNA copy number assays, the result from genomic DNA of test samples is normalized to a 
reference locus (usually RNase P, located in chromosomal region 14q) expected to be present 
in two copies. In Study I the test samples were then normalized to a normal DNA sample 
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(pooled leukocyte DNA from 10 healthy individuals) to detect the copy number of the locus 
under study. (Heping Liu 2006; Livak and Schmittgen 2001) 

 

3.4 PYROSEQUENCING 

Pyrosequencing is a quantitative assay for targeted DNA analyses of for example DNA 
methylation density. The DNA sample studied is first subjected to bisulfite conversion, 
whereby unmethylated cytosines are converted to uracil and methylated cytosines remain 
unchanged. In this method, nucleotides are added to an extending strand of DNA, 
complementary to the bisulfite-converted template. This is followed by release of a 
pyrophosphate group that reacts with adenosine 5' phosphosulfate (APS) to produce ATP. 
ATP is consumed by luciferase to convert luciferin to oxyluciferin that produces light. The 
light is detected by a CCD camera and read as reporter of the nucleotide that has just been 
sequenced (Figure 10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the Pyrosequencing experiments, genomic DNA was bisulfite converted using EpiTect 
Bisulfite conversion kit (Qiagen). 17 ug of bisulfite converted DNA was amplified using 
biotinylated primers and applied to the Pyrosequencing workflow. Biotinylated DNA was 
denatured in NaOH and captured by streptavidin beads. The non-biotinylated strand was 
washed off in Tris buffer. The sequencing process was performed in the Pyrosequencer, using 
a sequencing primer that targeted the region of interest. 

 

Figure 10. Schematic illustration of the basics of Pyrosequencing. Modified from Qiagen. 
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Pyrosequencing primers were either commercially available as used in Study II and IV or 
may be designed in-house using a designated software as was done in the related papers. The 
mean methylation density of the CpGs analysed for a particular gene were used to calculate a 
methylation index (MetI) for comparisons between samples. (Ronaghi, et al. 1998)  

 

3.5 HIRIEF MASS SPECTROMETRY PROTEOMICS 

Proteomics was used to establish protein expression profiles for SI-NET tumors and NET cell 
lines after modulations with SSA treatment or inhibition of neddylation with MLN4924. The 
methodology applied is based on isoelectric focusing and liquid chromatography mass 
spectrometry so called high resolution LC-MS/MS (HiRIEF LC-MS/MS) (Branca, et al. 
2014). In Study III, one million cells of HC45, SI-NET and H727, pulmonary NET cell lines 
without or with lanreotide treatment at 2, 6 and 48 hours were lysed in duplicates in SDS and 
labeled with 8-plex iTRAQ (Isobaric tags for relative and absolute quantitation) kit (Applied 
Biosystems). All samples from each cell line were pooled and excess reagent was filtered 
using an SCX-cartridge (StrataSCX, Phenomenex). iTRAQ- labeled peptides were 
trypsinized and dissolved in Urea 8M and subjected to narrow range IPG-strips for peptide 
focusing and peptide separation at pH 3.7 - 4.9 together with dry sample application gels (GE 
Healthcare Bio-Sciences AB). Samples were then freeze-dried in a SpeedVac and kept at -20 
ºC. HiRIEF LC-MS/MS analysis was carried out later on each fraction following re-
suspenssion in 3% acetonitrile and 0.1% formic acid.  

Each fraction was then injected into a C18 guard-desalting column (Zorbax 300SB-C18, 5 x 
0.3 mm, 5 µm bead size, Agilent) in a LC-MS/MS experiment. Tryptic peptide readout was 
then analyzed using Sequest under the software platform Proteome Discoverer (v1.3.0.339, 
Thermo Scientific). A threshold of ≥ 1 high-confident unique peptide and a false discovery 
rate of <1 % was taken for quantification and comparison of different condition.  

The same procedure was followed for mass spectrometry in Study IV for tumors and the 
HC45 and CNDT2 SI-NET cell lines, except for the 10-plex iTRAQ kit (Applied 
Biosystems) and 3, 6 and 12 and 24 hour-time points of treatment with 400 nM MLN4924. 

A threshold of confidence interval was calculated as mean ± 2× (standard deviation) of the 
non-treated samples to eliminate exceeding noisy values in non-treated controls. The same 
values were then applied to each treatment condition to define up- or down-regulated 
proteins.    

 

3.6 WESTERN BLOTTING 

Proteins were extracted using NP40, separated by SDS-PAGE (sodium dodecyl sulfate 
polyacrylamide gel electrophoresis) and transferred to a nitrocellulose membrane that was 
blocked with milk or bovine serum albumin. After overnight incubation with primary 
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antibodies (APC, BMPER (BMPER Bone Morphogenetic Protein binding endothelial 
regulator protein precursor), SMIM21 (Small Integral Membrane Protein 21), SPAG16 
(Sperm Associated Antigen 16), C14orf14, FYN (Tyrosine-protein kinase Fyn), survivin, 
Chromogranin A and INSM1 (insulinoma-associated protein 1)), the blots were incubated 
with mouse or rabbit secondary antibodies conjugated with a fluorophore or Horseradish 
peroxidase (HRP). When HRP antibodies were used, membranes were developed with HRP 
substrate. Either fluorescent or emitted light was detected by a LI-COR ODYSSEY system. 
Similar procedure was carried out for an endogenous protein (GAPDH (Glyceraldehyde 3-
phosphate dehydrogenase GAPDH) or Vinculin) to which target intensity could be 
normalized. Expected mass sizes of proteins of interest are according to information at 
www.uniprot.org. 

 

3.7 IMMUNOCYTOCHEMISTRY AND IMMUNOHISTOCHEMISTRY 

For immunohistochemistry, tissue sections were deparaffinized in xylene and rehydrated in a 
series of decreasing concentration of ethanol in water. Antigen retrieval was then carried out 
in citrate buffer (pH 6). Endogenous peroxidase reactivity was blocked by Hydrogen 
peroxidas. The sections were then incubated for 60 min with a rabbit polyclonal survivin 
antibody diluted at 1:400 and a rabbit monoclonal APC antibody diluted at 1:100. Detection 
was performed with EnvisionPlus Detection System (Dako) using an Olympus BX43 
microscope with DP72 Olympus camera and LabSense software. 

Nuclear and cytoplasmic staining intensity was conducted and defined as absent (0), weak 
(1), moderate (2) or high (3). The overall staining intensity was calculated for survivin by 
summing up both nuclear and cytoplasmic intensities (0-6). For APC only cytoplasmic 
staining was detected and classified as absent, moderate or high expression. 

For immunocytochemistry, 0.1 million cells were spun with a cytospin at 1000 rpm for 5 
minutes on a slide. The slides were air-dried for 30 minutes at room temperature and fixed in 
paraformaldehyde 4% for 8 minutes. After washing in TBS (Tris-buffered saline), the cells 
were permabilized in 0.5% Triton for 10 minutes. Endonuclease blocking was performed in 
1% H2O2, followed by washing and primary antibody incubation overnight at 4 ˚C. The next 
day, cells were washed and incubated with secondary antibody for 30 minutes and DAB 
(3,3′-Diaminobenzidine) for few seconds until the cell color changed (both provided in 
EnvisionPlus Detection System -Dako kit). The slides were then washed in running water for 
5 minutes, incubated in Hematoxyline for 5 minutes, washed in running water for 10 minutes 
and dehydrated in an increasing series of ethanol solution in water. After 2 changes in xylene 
the slides were mounted with coverslips using Pretex glue.  

 

3.8  PROLIFERATION ASSAYS 

Cell proliferation assays were performed using different methods: 
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BrdU (Bromodeoxyuridine) proliferation assay:  

In the 96-well plates, 4000 cells/well for SI-NET and HC45 or 8000 cells/well for BON-1 or 
H727 were incubated and after corresponding treatment, BrdU labeling agent was added for a 
continued incubation period of 4-24 hours at 37 ˚C in a humidified incubator. BrdU 
incorporates to the newly synthesized DNA in place of thymidine. The amount of 
incorporated BrdU is proportional to the ratio of DNA synthesis in the S-phase.  

Cells were fixed and DNA was denatured by fixing buffer (Roche cell proliferation kit). The 
cells were incubated with BrdU antibody conjugated with peroxidase at room temperature for 
90 minutes. The color of the solution turns blue in proportion to the amount of incorporated 
BrdU, following the addition of the substrate, tetramethyl-benzidine. 

XCELLigence real time: 

The xCELLigence real time proliferation assay uses gold covered electrodes located at the 
bottom of E-plates. Upon adhesion of the cells to the plates the impedance of the electrical 
circuit is affected and a higher density of the cells is read as a higher cell index. Cell indices 
were measured automatically in 1 or 4 hours intervals under different types of treatment. The 
first acquired cell index value was assigned the arbitrary value of 1 to which further receiving 
data were normalized. 

Immunocytochemistry using the MIB1 antibody:  

In a long-term design of proliferation experiments cell proliferation ratio was assessed by 
immunocytochemistry using the MIB1 antibody. This measures the expression of Ki-67 as a 
marker of proliferation. 

 

3.9 APOPTOSIS ANALYSIS USING ANNEXIN V MARKER ON A FLOW 
CYTOMETER 

Flow cytometry (FACS) is a quantitative method to visualize the characteristics of the cells 
based on the fluorophores that they carry. Fluorescent antibodies are dyes frequently used to 
specifically stain cells for FACS. Annexin V binds to cell membrane phospholipids with 
higher affinity for phosphatidylserine. Phosphatidylserine is located at the inner surface of a 
normal cell membrane. Once the cell is going through apoptosis phosphatidylserine goes to 
the outer surface of the cell membrane and is recognized by Annexin V. Applying propidium 
iodide in this experiment serves to exclude false positive necrotic cells. 
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4 RESULTS AND DISCUSSION 
 

4.1  GENOMIC STUDIES IN SI-NETS  

4.1.1 DNA profiling of SI-NETs 

We profiled the genome of 30 tumors, including 19 primary tumors and 11 metastases from 
29 SI-NETs. We analyzed the samples with array-CGH and found CNAs in all samples. 
Generally more gains were detected than losses. Recurrent gains were found on 
chromosomes 20, 14, 4, 5, and 7 and recurrent losses on chromosomes 18, 16, 11, 9 and 13. 
These data confirms a previous study by metaphase CGH on a subset of this cohort (Kytöla et 
al. 2001), besides it reveals unknown details of smaller aberrations, owing to its higher 
resolution. The most frequent CNA was loss of chromosome 18 (70%) followed by gain of 
chromosome 20 (37%) and gain of chromosome 4 (27%). In Study I, for the first time we 
reported recurrent gain on chromosome 20 (20pter-p11.21) in SI-NET that is associated with 
worse patient outcome. Furthermore a minimal overlapping region (MOR) in this 
chromosome (q13.33) was detected in 9/30 cases (30%). 

Smaller common regions of alterations can provide information about the location of 
candidate genes that may play a driver role in tumor development. Therefore, we focused on 
MORs as the smallest regions of recurrent loss or gain. A MOR in 18p was detected 
(18p11.32-p11.31) that comprises only 3 genes, KIAA0650 (or SMCHD1: structural 
maintenance of chromosomes flexible hinge domain containing 1), LPIN2 (Phosphatidate 
phosphatase LPIN2) and EMILIN2 (Elastin Microfibril Interfacer 2). An additional MOR of 
only 2 Mb size was implicated at 18q22.1, which encompasses only 2 protein coding genes, 
CDH7 and CDH19. The high incidence of losses of chromosome 18 has been reported by 
every SI-NET DNA profiling study, an interesting observation of a very high frequency of 
recurrent losses especially on 18q (Andersson et al. 2009; Löllgen et al. 2001; Walenkamp, et 
al. 2014). Nevertheless, no widely appreciated candidate has been found on this chromosome 
yet, despite implementing next generation sequencing in more recent studies (Francis et al. 
2013; Verdugo et al. 2014). 

An explanation for this discrepancy could be that chromosome 18 is the most gene poor 
chromosome. Indeed chromosome 18 along with chromosome 13 and 21 are the only 
chromosomes that could be found in surviving trisomic patients (Nusbaum, et al. 2005). 
Therefore, its loss may not only be tolerated by cancer cells, but might also allow a neoplasia 
to obtain more chromosomal aberrations, leading to tumor invasion and metastasis.  

Another explanation for many unsuccessful studies to find the driver gene on chromosome 18 
could be the old-fashion strategies applied focusing only on protein coding sequences. 
Research shows that chromosome 18, despite having the smallest number of genes; harbors a 
genome-wide average proportion of evolutionary conserved mammalian non-protein-coding 
sequences (Nusbaum et al. 2005). An alternative approach can be to search for small or large 
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non-coding genes and/or a structural role for this chromosome in the nuclear architecture 
instead of a solemn genetic one. It has been shown that chromosome 18 possesses a unique 
spatial configuration in peripheral regions of the nucleus. This finding suggests an exclusive 
structural role for chromosome 18, in addition to its conventional genetic function, as 
opposed to for example the gene rich and similarly sized chromosome 19 with a nuclear 
centric position (Cremer and Cremer 2001; Croft, et al. 1999). Proofs for this hypothesis 
came from observations that deletions as long as 1 Mb of non-coding DNA in mice does not 
compromise its survival (Nobrega, et al. 2004).  

 

4.1.2 Clustering Analysis 

Using hierarchical clustering, we found 2 groups of tumors that were enriched for different 
recurrent CNAs. A group of tumors named group II was linked to extra hepatic metastasis. 
This group was enriched with cluster d of CNAs comprising gains of chromosome 4, 
chromosome 5, 7p22.3, 7p22.2-22.1, 7q22.1, 7q22.3-qter, 14q11.2 and 14q32.2-32.31 (paper 
I, Fig. 3A). Group II included more metastasis (57%) compared to group I (32%) and was 
enriched for gain on 20pter-p11.21 which was associated with a worse patient survival. These 
results suggest a connection between these chromosomal alterations and tumor progression 
and metastasis. 

With regard to CNAs potentially linked to metastatic disease, loss on 16q12.2-qter and gain 
on 7q22.3-qter were more frequent in metastasis vs. primary tumors.  

 

4.1.3 qPCR verification of CNAs 

Using copy number TaqMan assays, we confirmed the CNs and CNAs detected in 61% and 
78% of SI-NETs, respectively. The assays targeted gene loci on chromosome 18 including 
EMILIN2 on 18p; DCC (deleted in colorectal cancer), BCL2 (B-cell lymphoma 2) and 
CDH19 on18q; CDH1 on chromosome 16, and SDHD on chromosome 11, all located on the 
recurrent regions of CNA.  

We also conducted the same qPCR experiments on an extended cohort of 13 paired SI-NET 
samples of primary/metastasis or two metastases and a high ratio of losses was observed for 
all assays (paper I, table 3).  

 

4.2 EPIGENETIC STUDIES IN SI-NETS 

4.2.1 Promoter hypermethylation and mRNA expression of cancer-related 
genes 

In Study II, promoter methylation was analyzed in a panel of 44 SI-NETs, including 43 
samples from Study I, using Pyrosequencing assays. The candidate genes were chosen based 
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on their location on chromosomal regions with frequent copy number loss (Paper I) in 
agreement with Knudson’s two hit hypothesis, or they were reported as hypermethylated in 
SI-NET with traditional non-quantitative methods (Arnold et al. 2007; Chan et al. 2003; Liu 
et al. 2005), or they were reported as down-regulated in SI-NETs (Leja et al. 2009). 

Promoter methylation was investigated for WIF1, RASSF1A, CTNNB1, CXCL14, NKX2–3, 
p16, LAMA1, CDH1, CDH3, p14, SMAD2, SMAD4, HIC1, and APC out of which increased 
MetI (10% at least) in tumor samples compared to normal ileum was detected in the first 
eight genes (Paper II, Fig.1A). This study showed for the first time the implication of WIF1 
hypermethylation in SI-NETs. We also confirmed hypermethylation for RASSF1A and 
CTNNB1 that had been reported before in SI-NETs (Zhang et al. 2006). For RASSF1A, 
hypermethylation was not only detected in tumors vs. normal ileum, but also in distant 
metastasis vs. either primary tumors or regional metastasis. These findings suggest a role for 
RASSF1A in initiation and progression of SI-NETs. In distant metastasis at the same time, 
RASSF1A was found down-regulated compared with regional metastasis. These results 
confirmed a previous study of these genes based on MSP (Zhang et al. 2006). Study II also 
showed an association between RASSF1A expression and better patient outcome in SI-NETs.  

P16 promoter methylation has been implicated in cancer (Liu et al. 2005), however with the 
exception of 3 cases, we did not find a hypermethylation status in the 44 SI-NETs analysed. 
Nevertheless, the expression of the p16 gene was associated with better patient outcome. We 
also found over-expression of this tumor suppressor gene in distant metastasis vs. the rest of 
tumors; an unexpected phenomenon that could be attributed to “oncogene-induced 
senescence” in some tumors and could explain their low proliferative status (Romagosa et al. 
2011; Serrano, et al. 1997). 

Down-regulation of CXCL14 and NKX2-3 (Leja et al. 2009) in SI-NET was confirmed in 
Study II and was also shown to be affected at least partially by promoter hypermethylation. 
Promoter hypermethylation of CXCL14 has been reported before in prostate cancer (Song et 
al. 2010) and of NKX2-3 in lung cancer and melanoma (Tellez et al. 2009; Tessema et al. 
2010).   

The most outstanding result was observed for WIF1. WIF1 is a Wnt inhibitory factor and 
inhibits accumulation of CTNNB1 and its oncogenic role of transcriptional activation (Wu, et 
al. 1999). A high MetI was found in many SI-NETs and the expression of the gene was 
dramatically lower in metastasis than in primary tumors or normal ileum. However, WIF1 
promoter hypermethylation has not been detected in the BON-1 pancreatic NET cell line 
(Kim et al. 2013). Such a marked difference between in vivo and in vitro experiments is 
observed and expected in DNA methylation studies (Smiraglia, et al. 2001). WIF1 promoter 
hypermethylation and down-regulation, however, is also observed in squamous cell 
carcinoma of the cervix (Delmas et al. 2011), breast cancer (Ai et al. 2006), bladder cancer 
(Urakami et al. 2006), colorectal cancer (Roperch et al. 2013), nasopharyngeal and 
esophageal carcinoma (Chan et al. 2007), and non-small-cell lung cancer (Mazieres, et al. 
2004).  
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4.2.2 Global hypomethylation in SI-NETs 

Using the LINE1 Pyrosequencing methylation assay, we detected hypomethylation in SI-
NETs vs. normal ileum. In distant metastasis, MetI was lower than in primary tumors and 
regional metastasis (Paper II, Fig. 1C). We also used an ELISA (Enzyme-linked 
immunosorbent assay) based global methylation assay and confirmed the hypomethylated 
status observed in many tumors vs. normal samples. LINE1 MetI was inversely correlated 
with the highest methylated genes WIF1 and RASSF1A, however, inversely correlated with 
CDH1 and LAMA1. The methylation levels obtained by ELISA were inversely correlated 
with WIF1 MetI and were positively correlated with LAMA1 MetI. 

 

4.2.3 Clustering and association with DNA copy numbers 

Three clusters of samples were identified in an unsupervised hierarchical clustering for MetI 
of the eight methylated genes. Cluster I was associated with hypermethylation of WIF1 and 
ELISA-based global hypomethylation; cluster II with hypermethylation of RASSF1A and 
CTNNB1 and cluster III with NKX2-3. These clusters were interestingly characterized by 
different CNAs detected in paper I for example Cluster II included more samples with 
chromosome 16q loss than the other two clusters (Paper II, Fig. 2).  

 

4.2.4 Demethylation analyses 

DNA methylation density above the arbitrary level of 20% was detected for CDH1 and WIF1 
in HC45 cells and for WIF1, CTNNB1, CXCL14, NKX2–3, p16, LAMA1, CDH1 in CNDT2 
cells. As mentioned above another study did not detect WIF1 promoter methylation in BON-
1 cells. This discrepancy could be due to local effects on the DNA methylation and/or the 
non-quantitative method used (Kim et al. 2013). The cells were treated with the 
demethylating agent 5-Azacytidine for 4 days. All methylated genes showed different levels 
of demethylation and in return mRNA expression was significantly increased for WIF1, 
RASSF1A, CTNNB1, CXCL14, p16, LAMA1 and CDH1 in HC45 and for WIF1, p16, CDH1, 
LAMA1, and CTNNB1 in CNDT2 (Paper II, Fig. 5). 

 

4.3 PROTEOMICS OF SOMATOSTATIN TREATMENT IN NETS 

4.3.1 HiRIEF Mass Spectrometry analysis 

Somatostatin analogs (SSAs) have long been approved as the first line therapy against 
hormonal symptoms caused by SI-NETs and in the past few years also against their tumor 
progression (Caplin, et al. 2014; Rinke, et al. 2009). However, their molecular mechanisms 
are not well understood. The expression of SSTRs was examined in NET cell lines, BON-1, 
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CNDT2, HC45 and H727, and a primary cell culture. Except CNDT2, other models express 
SSTR2 and SSTR5. Conducting a Mass Spectrometry-based proteomics analysis on HC45 
and H727 cell lines treated with lanreotide at pharmacological concentration of 10 nM, 6,451 
and 7,801 proteins were quantified, respectively of which 5,264 were common between the 
two cell lines. When compared with non-treated cells, 747 proteins in HC45 and 656 proteins 
in H727 were statistically different in their ratio of expression at one of the three time points, 
2 hours, 6 hours or 48 hours.  

 

4.3.2 Network and pathway analyses 

DAPPLE (Disease Association Protein-Protein Link Evaluator) was used for prediction of 
physical interaction networks of the altered proteins in each cell line 
(http://www.broadinstitute.org/mpg/dapple/dapple.php). APC and survivin were present in 
the core networks after 2 hours and 48 hours. The same biological significance for these two 
proteins was observed when analyzed with Ingenuity Pathway Analysis (IPA). IPA also 
revealed the involvement of the PI3K/Akt and p38 MAPK (mitogen-activated protein kinase) 
signaling pathways in HC45. Cell cycle, cell growth, proliferation and interactions were 
among the top five altered pathways regardless of which cell line or time point was analyzed 
by IPA. 

 

4.3.3  Western blot verification 

A panel of the most clinically and biologically relevant proteins or of the highest fold change 
alteration was verified using Western blot. These included survivin, APC, SMIM21, 
BMPER, FYN and C14orf42 for HC45 and APC, SPAG16 and INSM1 for H727, which 
were all detected using specific antibodies and the general direction of alterations were shown 
for them. 

 

4.3.4 Cell proliferation analysis for lanreotide and survivin inhibitor YM155 

Cell proliferation of BON-1, HC45, H727 and a primary cell culture was examined, after 
treatment with lanreotide or when we combined this agent with YM155, a small molecule 
inhibitor of survivin.  

End point cell proliferation assays BrdU ELISA and Ki-67 immunocytochemistry and real 
time assay xCELLignence, all failed to detect a significant cell proliferation inhibition after 
treatment with lanreotide. In BON-1 only a small decrease in proliferation rate could be 
observed with as much as 10 uM or more lanreotide. These findings are in accordance with 
previous SSA proliferation studies on NETs (Moreno, et al. 2008; Ono, et al. 2007). 
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On the other hand, the survivin inhibitor YM155 was able to dramatically inhibit cell 
proliferation, from 5 nM for HC45 and the SI-NET primary cell culture and from 100 nM for 
BON-1 and H727. This finding seems promising, considering the favorable safety profile of 
the drug in many clinical trials for different cancers (Clemens, et al. 2015; Kelly, et al. 2013) 
and the fact that survivin is expressed in SI-NETs (Vikman, et al. 2005). 

 

4.3.5 Survivin as a prognostic marker in SI-NETs 

In the immunohistochemistry panel of Study III, over-expression of survivin was confirmed 
in tumor cells. Also a worse progression free survival (PFS) was found for over-expressing 
cases in TMA experiments with 112 NET samples. This association was independent of 
disease stage, morphological Grade, Ki-67 proliferation index and tumor localization. 
Moreover, in patients with low proliferation index <=2% or morphological Grade 1 NETs, 
the link still holds true, a situation that can be implicated in clinical prognosis, where Ki-67 is 
not of a strong prognostic significance. This finding has potentially high clinical significance, 
since majorities of SI-NETs are in low proliferation index level (G1) and clinical routine 
lacks an additional marker to Ki-67 to predict the outcome of the patients. 

 

4.3.6 SSTR2-APC-survivin axis 

A hypothesis was examined in Study III, i.e. whether the concomitant over-expression of 
APC and down-regulation of survivin upon short time treatment of the cell lines with 
lanreotide could reflect inhibition via the APC-survivin axis. It is already known that APC 
can inhibit survivin expression in colorectal cancer cell lines (Zhang et al. 2001). We 
inhibited the APC expression in H727 cells with 2 different shRNAs and observed 
augmentation of survivin levels. On the other hand, when we over-expressed APC in this cell 
line, we detected a lower expression of survivin. 

To investigate whether this regulatory effect is controlled specifically by lanreotide 
stimulation of SSTR, an siRNA against SSTR2 was used to knock down the somatostatin 
receptor SSTR2. In knock down cells, APC expression was decreased and survivin 
expression was no longer regulated with lanreotide treatment.  

 

4.4 IMPLICATION OF NEDDYLATION IN SI-NET 

4.4.1 NEDD8 is over-expressed in liver metastasis 

SI-NET patients commonly exhibit metastases and the liver is a common site for distant 
metastases associated with the carcinoid syndrome. In an attempt to investigate the molecular 
mechanisms behind SI-NET metastasis, we compared 7 primary SI-NETs in patients without 
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detectable liver metastases at diagnosis with 7 other primary tumors from patients that had 
already developed metastasis at the time of diagnosis. 

HiRIEF LC MS/MS was performed and 6,775 proteins in total were quantified. Comparing 
the protein expression of the two groups, only a handful of proteins showed a significantly 
different expression (2-fold or higher). NEDD8, one of these proteins demonstrated a distinct 
pattern of expression, both in unsupervised clustering and in a supervised clustering when the 
2 groups of tumors were compared. NEDD8 over-expression has also been observed in other 
cancers. Neddylation of cullins are necessary for their critical function on protein turnover in 
CRL1 and CRL4 that regulate p27 proteolysis (Chairatvit and Ngamkitidechakul 2007; 
Salon, et al. 2007). 

 

4.4.2 NEDD8 inhibition suppressed proliferation and induced apoptosis 

To investigate the significance of NEDD8 expression in the context of NET and its 
pharmaceutical potential, the anti-proliferative effects of MLN4924 the first-in-class NAE 
inhibitor was assayed in 4 NET cell lines BON-1, CNDT2, HC45 and H727 in Study IV. 
BrdU incorporation as an indicator of DNA synthesis and cell proliferation was suppressed at 
3 days of treatment in a dose dependent manner in all cell lines.  

Neddylation of cullins was reduced in a time and dose dependent way and p27 and cleaved 
PARP expression was elevated, the latter used as an indicator of apoptosis. P27 induction has 
been observed with MLN4924 treatment in other cancer cell lines and is expected, due to 
inhibition of cullin neddylation and proteolysis function. (Soucy et al. 2009) 

 

4.4.3 The proteomics landscape following neddylation inhbition 

The SI-NET cells, CNDT2 and HC45 that showed robust dose-dependent proliferation 
inhibition were treated with MLN4924 for subsequent proteomics analysis. An increased 
expression was observed for a group of CRL substrates in a time-dependent way. P27 is 
among the targets and was chosen for further analysis. 

 

4.4.4 UPS-p27 regulatory axis is a target in SI-NET management 

The expression of p27 in a group of SI-NETs was investigated and an association between 
p27 and patient survival was observed. The same results have been reported for many other 
cancers. (Chu et al. 2008) 

To exclude the role of genetic and epigenetic alterations of CDKN1B/p27 on its mRNA 
altered expression pattern, copy number loss or promoter methylation of the gene was 
examined. Copy number loss was observed in a subset of samples as it has been reported 
before (Francis et al. 2013) and promoter methylation was not detected except in one sample. 
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None of those genetic aberrations or epigenetic characteristics of the SI-NETs was correlated 
with expression status of p27 or associated with patients’ outcome. In conclusion upstream 
regulatory mechanisms including neddylation of CRLs can be implicated in p27 down-
regulation and SI-NET tumorigenesis. 
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5 CONCLUDING REMARKS 
Genomic copy number alterations and aberrant DNA methylation of tumor-suppressor gene 
promoters and genome-wide repeats are implicated in initiation and progression of SI-NETs. 
Somatostatin analogs may exert their direct anti-tumor effects on NETs through the APC-
survivin axis and the ubiquitin-proteasome system (UPS) plays a role in tumorigenesis of SI-
NETs and neddylation is a candidate for targeting in the management of this disease. 

Study I: 

Copy number alterations  were revealed in SI-NETs most frequently involving  loss on 
chromosomes 18, 16, 11 and 9 and gains on chromosomes 20, 14, 5 and 4, of which gains of 
chromosome 20 was associated with a shorter SI-NET survival.  

Study II: 

Hypermethylation was detected in the promoter region of WIF1, RASSF1A, CTNNB1, 
CXCL14, NKX2–3, p16, LAMA1, and CDH1 but not of APC, CDH3, HIC1, P14, SMAD2, 
and SMAD4. LINE-1 is hypomethylated in tumors compared to normal samples and in 
metastases compared with primary tumors. Treatment with 5-aza-CR reduced promoter 
methylation and restored the expression of methylated genes in SI-NET cell lines CNDT2 
and HC45.  

Study III: 

The proteomics signature of NET cell lines HC45 and H727 was changed after treatment 
with the somatostatin analog lanreotide. Expression of APC was induced upon interaction 
between lanreotide and somatostatin receptor 2. APC suppressed the expression of survivin. 
Survivin over-expression was associated with a worse survival of NET patients and targeting 
survivin with the small molecule inhibitor YM155 had anti-proliferative effects on NET cell 
lines and primary cell culture. 

Study IV: 

Comparing the proteomic signature of primary SI-NETs in patients who had developed liver 
metastasis at the time of diagnosis to the ones without liver metastasis indicated that NEDD8 
over-expression may be implicated in the development of the disease. MLN4924 a first-in-
class small molecule inhibitor of the neddylation-activating enzyme inhibited proliferation of 
NET cells and stabilized the UPS targets including p27. Increased expression of p27 was 
concomitant with induction of apoptosis. 
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ر  ھھ  وه . ئھ وه بداتھ  ت و پشتیوانی ئێوه بھ نێك محھ مھ ی تھڵام ت ناتوانێ وه قھ  هو دوو سێ دێڕ حاجی، ئھ  گیان و بابھ  دایھ
  و پێیان ده  بیره  لھ  میشھ م ھھ ویستی و دڵسۆزێكانی ئێوه موو خۆشھ ھھ  نده چھ  نووسم كھ ركێك بۆتان ده جێھێنانی ئھ ك بھ وه

دڵی من   ده  یشھم ھھ  كھ  یھ وینی ئێوه ئھ  وه ، ئھ باتی وشھ ویستی و دلۆڤانیتان، لھ خۆشھ  بھ  قینھ ڵامێكی ڕاستھ هك و زانم. وه
  كھ  وه و ڕۆژه ویستی بۆ من، لھ تۆ زۆر خۆشھ زوو گیان ئھ . ئاره رمھ پێی گھ  میشھ دڵم ھھ  كھ  ویستیتانھ شھ ۆو ئاگری خ  دایھ
ویستیت.  دڵسۆزی و خۆشھ  بھ  كردووه تررم و گوڕ گھ  نده وه د ئھ مانت سھ كھ تا ئێستا، ماڵھ مان ھھ ھماڵ نێو كۆڕی بنھ  ھاتیھ
ویستی  رزم. خۆشھ ربھ ان سھتپشتیوانێكان  ھب  میشھ كا و ھھ رم ده دڵم گھ  فشین و دیلان گیان، بوونی ئێوه و كاك ئھ  كاكھ
 nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn .مووتان كانی ھھ شھ چاوگھ  و منداڵھ  ماڵھ بۆ بنھ  یھ ھاتووم ھھ بن نھ لھ
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