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ABSTRACT 
 

For decades it was thought that cells that lost in the human central nervous system because of 

ageing or disease – different from other cell tissues – cannot be replaced and that in humans 

all neurons are generated during prenatal development. However, over the last 20 years, it 

became obvious that there is a certain level of adult neurogenesis in most mammals that 

mainly occurs in the dentate gyrus and the subventricular zone. Whether or not findings from 

animal studies also hold true in humans was difficult to study as direct evidence – as obtained 

in animals from genomic labeling using for instance nucleosides like BrdU – was not feasible 

in humans because of ethical considerations. The establishment of the so-called radiocarbon 

technique, a method taking advantage of the above-ground nuclear bomb tests during the 

Cold War to retrospectively birth date cells by determination of the 12C/14C ratio in genomic 

DNA – allowed to investigate the age and the turnover dynamics of cells in various human 

tissues. Applying this technique we here (i) studied whether there is adult neurogenesis in the 

healthy human brain, specifically within the hippocampus, (ii) studied whether there is adult 

neurogenesis in the diseased human brain, specifically in response to cortical stroke, and (iii) 

investigated the age and growth dynamics of brain tumors, specifically benign meningiomas. 

In essence we demonstrate (i) that there is a lifelong adult neurogenesis within the human 

hippocampus and provide an integrated model of hippocampal cell turnover dynamics, (ii) 

that there is no significant induction of cortical neurogenesis following ischemic cortical 

stroke in humans, and (iii) that the age of benign meningiomas is significantly older than that 

of more malignant brain tumors. The clinical implications of these findings are discussed and 

research projects for future studies identified.   
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1 INTRODUCTION 
 

1.1.                   Cell turnover in the adult human brain 

 

An emerging field at the interface of basic science and clinical research is regenerative 

medicine (Okano, 2010; Steiner et al., 2006). Although not mandatory for functional 

recovery, the generation of new cells is linked to increased regenerative capacity of various 

tissues (Farkas and Huttner, 2008; Koch et al., 2009; Merkle and Alvarez-Buylla, 2006; 

Okano, 2010). Hence, many investigations aim at understanding the characteristics and 

behavior of stem and progenitor cells to study mechanisms and techniques to regenerate cells 

and tissues that may have been lost as a consequence of disease (Barnabe-Heider and Frisen, 

2008; Dietrich and Kempermann, 2006; Emsley et al., 2005; Johansson et al., 2010; 

Kriegstein and Alvarez-Buylla, 2009; Ninkovic and Gotz, 2007; Okano and Sawamoto, 2008; 

Scheffler et al., 2006; Steiner et al., 2006).  

 

1.1.1. Adult neural stem and progenitor cells 

 

The beginning of human life is the fertilized oocyte (Kempermann, 2011). From this 

totipotent stage a blastocyst is formed and embryonic stem cells – being pluripotent – emerge 

(Kempermann, 2011; Kriegstein and Alvarez-Buylla, 2009). Upon further maturation somatic 

stem cells originate, categorized within the endo-, meso-, and ectoderm (Kriegstein and 

Alvarez-Buylla, 2009). Focussing on the development of the human central nervous system 

(CNS), the neuroectoderm contains neuroepithelial cells, which are the primary neural stem 

cells (Farkas and Huttner, 2008; Kempermann, 2011; Koch et al., 2009). Characteristics of 

many somatic stem cells are self-renewal and multipotency (Goritz and Frisen, 2012; 

Kempermann, 2011). There are also progenitor cells, which in the developing CNS comprise 

some radial glia and the intermediate progenitor cells, and which usually are more 

proliferative and do not show unlimited self-renewing capacity (Götz and Barde, 2005; 

Kempermann, 2011).  

 

In the context of investigating cell turnover in the human CNS, neural stem and progenitor 

cells have been intensely studied and have been characterized in both the embryonic and 

adult CNS (Kriegstein and Alvarez-Buylla, 2009; Merkle and Alvarez-Buylla, 2006; Okano 

and Sawamoto, 2008). On the one hand, in order to explore the development of the 
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mammalian CNS, there have been extensive analyses of embryonic neural stem cells and 

progenitor cells (Farkas and Huttner, 2008; Jakovcevski and Zecevic, 2005; Okano and 

Sawamoto, 2008). On the other hand, insights into postnatal processes in the mammalian 

CNS have been obtained from the discovery and subsequent characterization of adult 

neurogenesis (see 1.2.) (Dietrich and Kempermann, 2006; Falk and Frisen, 2005; Zhao et al., 

2008). The adult human brain contains a variety of neural progenitor cells, i.e. neuronal and 

glial progenitors, as well as certain radial glial cells and astrocytes that serve as neural stem 

cells (Kempermann, 2011; Kriegstein and Alvarez-Buylla, 2009). Adult neurogenesis 

involves the divisions of adult neural stem cells, resulting in (i) self-renewal and (ii) the 

generation of downstream neural progenitor cells, which then undergo amplification and give 

rise to post-mitotic neurons (Kempermann, 2011; Kriegstein and Alvarez-Buylla, 2009).  

 

A basic model describing the process from a neural stem cell to a post-mitotic neuron is 

shown in Figure 1; a neural stem cell gives rise to neural progenitor cells that in turn generate 

immature neurons which then mature to post-mitotic neurons (Kempermann, 2011).   

----------------------------------------------------------------------------------------------------------------- 

Figure 1. Basic model of adult neurogenesis in the hippocampus.  

 

 
Proposed basic model of cell types in adult hippocampal neurogenesis based on morphology and molecular 

markers. The putative stem cell exhibits radial glia and astrocytic properties and progresses over three stages 

of putative transiently amplifying progenitor cells which increase their neuronal lineage determination, 

followed by the post-mitotic stage. Reprinted from Kempermann et al. (Kempermann et al., 2004a) with 

permission from Elsevier. 

----------------------------------------------------------------------------------------------------------------- 
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1.1.2. Cancer stem cells in brain tumors 

 

Besides stem cells that are present to maintain the function of our organs, in malignant 

diseases the concept of cancer stem cells has been proposed (Lathia et al., 2015; Singh et al., 

2004; Venere et al., 2011). Essentially all tumors, and specifically malignant hematopoetic 

diseases, arise from cancer stem cells that show similar characteristics as somatic stem cells, 

such as self-renewal and differentiation into various tissue types (Singh et al., 2004; Venere et 

al., 2011). Cancer stem cells have been implicated in brain tumors, which coined the term 

brain tumor stem cells (Schonberg et al., 2014; Zhang et al., 2006a). The two most frequently 

occurring brain tumors are gliomas and meningiomas (Riemenschneider et al., 2006; Whittle 

et al., 2004; Wiemels et al., 2010), and tumor generation and resistance to treatment of most 

malignant variants of glioma and meningiomas have been linked to these stem cells (Bao et 

al., 2006).   

 

1.2. Neurogenesis in the adult mammalian brain 

 

It has long been thought that the neurons in the adult mammalian CNS are all those that were 

generated during development (Rakic, 1985, 2002, 2006). However, during the past two 

decades there has been an enormous progress both in animal and human research establishing 

that new neurons are continuously generated in at least two regions of the adult brain 

(Bergmann and Frisen, 2013; Bergmann et al., 2015; Curtis et al., 2011; Eriksson et al., 1998; 

Ernst and Frisen, 2015; Falk and Frisen, 2005; Goritz and Frisen, 2012; Kempermann et al., 

2004a; Lie et al., 2004; Zhao et al., 2008). Thus, adult neurogenesis occurs on the one hand in 

the dendate gyrus of the hippocampus and on the other hand in the subependymal zone of the 

lateral ventricle (Bergmann et al., 2015; Goritz and Frisen, 2012; Kempermann, 2011).  

 

1.2.1. Methodological approaches 

 

Experimental approaches to study adult neurogenesis in the mammalian brain mainly relied 

on immunohistochemical analyses, i.e. on investigating molecular markers of cell 

proliferation, and using nucleosides to label newly synthesized DNA (Bergmann et al., 2015; 

Eriksson et al., 1998; Taupin, 2007; Wang et al., 2011). In both rodents and humans the 

analysis of molecular markers provides insights into cell proliferation and allows labelling of 

stem and progenitor cells at a given time-point. However, several shortcomings limit the 
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interpretation of results (Eriksson et al., 1998; Taupin, 2007). First, the widely used marker 

DCX has been found in cells that differentiated into glial cells (Kempermann, 2011; Klempin 

et al., 2011; Seidenfaden et al., 2006). Second, the analysis of molecular markers that label 

neuronal precursor cells or neuroblasts (defined as cells committed to the neuronal lineage 

but lacking mature neuronal characteristics) does not provide insight into whether or not these 

cells become mature neurons which survive long-term and are of functional significance 

(Kempermann et al., 2004b; Steiner et al., 2006; Zhao et al., 2008). Furthermore, the potential 

number of neurons that these cells generate, and into which specific regions neurons migrate 

during maturation, cannot be answered, thus making this approach difficult for drawing 

definite conclusions on neurogenesis (Bergmann et al., 2015; Ming and Song, 2011).  

 

The second approach involves an analysis of genomic DNA, usually taking advantage of 

nucleosides such as tritiated thymidine or BrdU/EdU and their stable incorporation into the 

DNA when it is duplicated during S-phase (Dolbeare, 1996). In addition, other strategies 

employ labelling with retroviruses or transgenic approaches (Feliciano and Bordey, 2013). 

The basic idea is to introduce a stable mark in cells that is specific for DNA synthesis (e.g. 

incorporation of BrdU) and then explore whether such mark is present in mature neurons, as 

this would indicate true neurogenesis (Jin et al., 2001; Parent et al., 2002; Taupin, 2007). 

Although this approach is more conclusive in demonstrating the occurrence of neurogenesis, 

there are also some drawbacks. For instance, a BrdU pulse may underestimate the number of 

newborn cells as only cells in the S-phase of the cell cycle may have been labeled (Eriksson 

et al., 1998; Magavi et al., 2000). In this regard false-negative and also false-positive 

findings (over- and underdosing of BrdU) on neurogenesis have been published (Breunig et 

al., 2007; Karpowicz et al., 2005; Kunz and Kohalmi, 1991). Furthermore, BrdU 

incorporation into DNA may also occur in non-proliferating cells as a result of DNA repair 

(Burns et al., 2007; Feliciano and Bordey, 2013; Taupin, 2007). Finally, although this 

approach allows prospective labeling of newborn neurons revealing the generation and 

integration of mature neurons in specific brain regions, it is not possible to retrospectively 

determine cell turnover in the adult brain. 

 

Most importantly, however, the toxicity of labeled nucleosides limits their use for studies in 

humans for ethical reasons (Bergmann et al., 2015; Kuhn et al., 1996). There is only one 

seminal study on 5 cancer patients in whom labeled nucleosides were used (see 1.2.2.) 

(Eriksson et al., 1998), and it revealed the “dilemma” that one has to wait until the person 

dies until the brain can be analyzed. Hence, basically all findings regarding adult 
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neurogenesis in the healthy and diseased human brain (see 1.2.2. and 1.2.3.) were derived 

from immunohistochemical analyses. Contrary to animal studies in which one can combine 

the approach of studying molecular markers with the technique of labeling DNA to increase 

the certainty of the findings obtained (Feliciano and Bordey, 2013; Kokaia and Lindvall, 

2012), in humans there is the necessity of novel approaches in addition of 

immunohistochemistry to study neurogenesis in humans, such as the radiocarbon technique 

(see 1.3.) (Bergmann et al., 2015; Ernst and Frisen, 2015; Lindvall and Kokaia, 2015). 

 

1.2.2. Findings in the healthy brain of rodents and humans 

 

In the adult mammalian brain there are at least two neurogenic niches in which lifelong adult 

neurogenesis has been described, that is the subgranular zone (SGZ) of the gyrus dentus of 

the hippocampus and the subventricular zone of the lateral ventricle (Bergmann et al., 2015; 

Goritz and Frisen, 2012; Kempermann, 2011). 

 

Hippocampal adult neurogenesis 

Adult hippocampal neurogenesis has been intensely studied in rodents (Ekdahl et al., 2009; 

Fabel and Kempermann, 2008; Kempermann, 2012; Kempermann et al., 2004a; Klempin et 

al., 2010; Klempin et al., 2011; Lugert et al., 2010; Wolf et al., 2010). The precursor cells of 

the dentate gyrus are located within the SGZ that provides a neurogenic microenvironment 

that is often referred to as neurogenic niche (Kempermann, 2011). The SGZ contains 

astrocytes resembling radial glial cells that represent the stem cells of this area (Kempermann, 

2011; Seri et al., 2001), which in sequence give rise to radial glia-like precursor cells, glia-

like transient amplifying progenitor cells, neuronally determined transient amplifying 

progenitor cells, and migratory neuroblasts (Kempermann, 2011; Kempermann et al., 2004a). 

The phase of post-mitotic maturation – eventually including neuroblasts – is characterized by 

dendritic maturation, axon elongation and synaptic plasticity (Kempermann, 2011).  

 

In rodents the average adult hippocampal neurogenesis amounts to up to 0.03-0.06% per day 

in 2 month old mice, and there is an almost 10-fold decline in adult neurogenesis in mice with 

increasing age between 2 and 9 months (Ben Abdallah et al., 2010; Kempermann et al., 

1997a, b). Besides to in vivo imaging studies, in humans neurogenesis is mainly studied by 

analysis of molecular markers, such as DCX, Ki-67 or NeuN (Attardo et al., 2010; Bergmann 

et al., 2015; Coras et al., 2010; Kempermann, 2012; Knoth et al., 2010). For instance, 

Kempermann and coworkers studied the pattern of DCX-positive neuroblasts in the human 
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dentate gyrus in individuals of all ages and found DCX-positive cells over the entire life, and 

some DCX-positive cells, notably in young individual, showed features of immature neurons 

(Bergmann et al., 2015; Knoth et al., 2010). Further markers of proliferation such as Ki-67 

and surrogate markers of neurogenesis such as Mem2, Prox1 and calretinin, were expressed 

during human adulthood (Knoth et al., 2010). In humans there was also a decrease in DCX-

NeuN-positive cells with increasing age, though this decrease in neurogenesis is probably not 

as high as in rodents (Ben Abdallah et al., 2010).  

 

Prior to our study (see 3), the seminal study by Eriksson and colleagues provided the most 

robust evidence of human hippocampal neurogenesis (Eriksson et al., 1998). Using a single 

infusion dose of BrdU, administered for diagnostic purposes in patients with oropharyngeal 

cancer, they were able to demonstrate the presence of BrdU in hippocampal neurons that 

verified the presence of adult born neurons in the human hippocampus (Bergmann et al., 

2015; Eriksson et al., 1998; Falk and Frisen, 2005). This study was of enormous significance 

as it proved the existence of adult neurogenesis in humans. However, it did not enable any 

quantitative estimates and was not addressed to clarify the functional significance 

(Kempermann, 2012; Lucassen et al., 2010; Rakic, 1985). 

 

Neurogenesis in the SVZ, striatum and olfactory bulb 

The second neurogenic niche in mammals is the SVZ (Benraiss et al., 2001; Curtis et al., 

2007; Ekdahl et al., 2009; Hansen et al., 2010; Komitova and Eriksson, 2004; Reillo et al., 

2010; Sanai et al., 2004; Seidenfaden et al., 2006; Wang et al., 2011). In rodents the SVZ is a 

very tiny, approximately two-cell-body-wide layer below the ependymal cell layer, which is 

why the SVZ is also referred to as subependymal layer (Kempermann, 2011). The putative 

progenitor cells are radial astrocytes, which extend their primary cilium into the ventricles 

with direct contact with the ventricular fluid, which is why the term “periventricular region” 

may be most appropriate (Beckervordersandforth et al., 2010; Kempermann, 2011; Sanai et 

al., 2011; Weigmann et al., 1997). Neurogenic progenitor cells of this system, however, also 

are found within the rostral migratory stream (RMS) and in the olfactory bulb (OB) (see 

below) (Curtis et al., 2007; Wang et al., 2011).  

 

In the rodent brain there are many neuroblasts migrating from the SVZ to the OB every day 

(Bergmann et al., 2015; Doetsch et al., 1997; Ming and Song, 2011; Ponti et al., 2006). 

Within the OB there is a differentiation to interneurons followed by an integration into the 

existing neuronal circuits, and studies demonstrated that about 40% of these newborn neurons 
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survive long-term (Winner et al., 2002) and are functionally relevant, participating in 

olfactory memory (Ming and Song, 2011). Other neuroblasts are also found in the striatum, 

and low levels of striatal neurogenesis have been reported in rodents but also in monkeys 

(Bedard et al., 2002a; Bedard et al., 2002b; Dayer et al., 2005; Luzzati et al., 2003; Tonchev 

et al., 2005). Whether or not these cell originated in the SVZ and eventually migrated towards 

the striatum is currently under investigation (Magnusson et al., 2014) (and personal 

communication). Although difficult to study, there might be a decline in OB neurogenesis 

with mammalian evolution (see below for humans), potentially related to a corresponding 

concomitant increase of respective striatal neurogenesis. However this remains speculative 

(Bergmann et al., 2015).   

 

In the human brain the existence of SVZ, RMS and OB adult neurogenesis is much more 

controversial (Curtis et al., 2011; Curtis et al., 2007; Sanai et al., 2007). There were studies 

confirming this process also in the human fetal and infant brain; however, the migratory 

neuroblasts and transiently amplifying cells were not detected in adults, or dividing 

neuroblasts detected by immunolabeling existed only at very low levels (Bergmann et al., 

2015; Sanai et al., 2011). Recently, a human study using the radiocarbon technique (see 1.3.) 

revealed the absence of significant (<1% over 100 years) OB neurogenesis (Bergmann et al., 

2012). Hence the question arose as to what the fate of SVZ progenitors is humans, as there 

has been reported no significant apoptosis of SVZ neuroblasts (Ernst et al., 2014; Ernst and 

Frisen, 2015). DCX- and PSA-NCAM-positive neuroblasts have been found in the human 

striatum next to the SVZ (Ernst et al., 2014); however, it remains speculative whether these 

were derived from the SVZ (Bergmann et al., 2015). Recently, a human study using the 

radiocarbon technique (see 1.3.) revealed generation of striatal interneurons at levels of 2.7%  

per year; however, the origin of these cells as well as their functional significance remain to 

be established (Ernst et al., 2014).  

 

Neurogenesis in the cerebral cortex 

The cerebral cortex harbors the higher cognitive functions, and disease affecting the human 

cortex is directly linked to severe neurological impairment (Buffo et al., 2008). Hence, in the 

context of adult neurogenesis, it has been hotly debated whether or not the cerebral cortex has 

any neurogenic potential (Bhardwaj et al., 2006; Feliciano and Bordey, 2013; Rakic, 2006). 

Some researchers believe that the dogma that all neurons are generated prenatally at least 

holds true for the cerebral cortex. In line with this notion, various reports in rodents and 

humans have failed to provide any immunohistochemical evidence for a significant 
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occurrence of progenitor cells or newly generated neurons in the neocortex (Ehninger and 

Kempermann, 2003; Kornack and Rakic, 2001; Tamura et al., 2007). A study based on the 

radiocarbon approach (see 1.3) demonstrated that there is no significant postnatal 

neurogenesis (Bhardwaj et al., 2006). This investigation was supported by a retrospective 

assessment of BrdU and its colabeling with neuronal markers in tissue samples of the 

Eriksson study of 1998 (Bergmann et al., 2015; Bhardwaj et al., 2006; Eriksson et al., 1998). 

Based on this combined approach the authors concluded that adult neurogenesis in the human 

cerebral cortex, if there is any at all, amounts to a maximum of one newborn neuron out of 

1000 neurons every five years (Bergmann et al., 2015; Bhardwaj et al., 2006). On the other 

hand there are also studies reporting on cortical neurogenesis, though at very low levels 

(Bernier et al., 2002; Dayer et al., 2005; Gould et al., 2001; Luzzati et al., 2003). Studies 

using tritiated thymidine found neurogenesis rates of 0.011% (Altman, 1969; Kaplan, 1981), 

and analysis of BrdU/NeuN-co-labeling reported on rates of 0.0026-0.012% in monkeys, or 3 

newborn neurons per mm3 in rats (Dayer et al., 2005). In this regard it needs to be mentioned 

that long-term neuron survival and the functional significance of potential neurogenesis has 

not been addressed; occurrence of preferentially small GABAergic interneurons instead of 

projections neurons may occur only transiently (Gabbott and Bacon, 1996; Gould et al., 

2001). In conclusion, it remained controversial if there is any neurogenesis in the mammalian 

cerebral cortex at all. Furthermore, while the functional significance is questionable in the 

healthy situation, there may be a mechanism of possible induction of cortical neurogenesis 

upon neurological disease (Jin et al., 2006). 

 

1.2.3. Findings after cerebral ischemia in rodents and humans 

 

Within established neurogenic niches (hippocampus and SVZ) 

Histological changes in response to stroke have been intensely studied in animals and – given 

the methodological problems in humans – only in a limited way in humans (Kokaia and 

Lindvall, 2012; Lindvall and Kokaia, 2015). While there are essentially no studies addressing 

changes in hippocampal adult neurogenesis following stroke in humans, in rodents there have 

been various analyses demonstrating an increase in the hippocampal neurogenesis rate after 

stroke (Geibig et al., 2012; Jin et al., 2001; Kernie and Parent, 2010; Zhao et al., 2008; Ziv et 

al., 2007). These investigations were mainly based on co-labelling with BrdU and NeuN, and 

reported increased rates of such double-positive cells in the hippocampus ipsilateral to the 

focal cerebral injury (Geibig et al., 2012). Also within the SVZ, experimental stroke in 

rodents induced proliferation and neurogenesis (Arvidsson et al., 2002; Jin et al., 2001; Parent 
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et al., 2002; Zhang et al., 2001). Still of debate is whether this increase in SVZ neurogenesis 

is transient (Arvidsson et al., 2002; Parent et al., 2002) or persisting (Thored et al., 2006). In 

humans a similar neurogenic response has been postulated in terms of an increased number 

of Ki-67-positive cells and periventricular neural progenitors in the SVZ ipsilateral to the 

ischemic lesion (Macas et al., 2006; Marti-Fabregas et al., 2010). 

 

Within brain regions that are non-neurogenic in healthy conditions (striatum and cortex) 

There is a body of evidence that stroke can induce the generation of new neurons in brain 

regions where – in the healthy physiological setting – there is no adult neurogenesis (see 

above), specifically the striatum and the cerebral cortex (Jiang et al., 2001; Jin et al., 2003; Jin 

et al., 2006; Leker et al., 2007; Lindvall and Kokaia, 2015; Tonchev et al., 2005; Ziv et al., 

2007). Within the striatum of rodents BrdU-positive neuronal progenitors and mature neurons 

have been identified by co-labelling BrdU-postive cells with  DCX and NeuN (Arvidsson et 

al., 2002; Parent et al., 2002). Notably, on the one hand, the BrdU-positive cells that co-

labeled positive for DCX during the course of the disease expressed NeuN, reflecting 

neuronal maturation. On the other hand, some of these cells expressed transcription factors 

that indicated differentiation into projection neurons (Arvidsson et al., 2002). Focussing on 

the source of these cells, recent evidence showed that neuroblasts originate from both, SVZ 

astrocytes migrating into the ischemic striatum, and latent neurogenic striatal astrocytes 

(Magnusson et al., 2014). The latter mechanism is inhibited in the healthy setting by 

Notch1 signaling; however, the functional relevance of striatal endogenous adult 

neurogenesis in response to stroke needs to be further established (Magnusson et al., 2014).  

 

Whether or not stroke induces neurogenesis in the cerebral cortex is less studied and also 

controversial (Kernie and Parent, 2010; Lindvall and Kokaia, 2015). In studies on rodent 

striatal neurogenesis there had been no evidence of any significant cortical neurogenesis 

after cortical ischemia (Arvidsson et al., 2002; Parent et al., 2002; Zhang et al., 2001). 

Contrary, some immunohistochemical studies reported on new neuroblasts and mature 

neurons in the cerebral cortex after cortical ischemia (Jiang et al., 2001; Jin et al., 2006; 

Zhang et al., 2006b; Ziv et al., 2007). Furthermore, cortical neurogenesis following stroke 

may be induced by growth factors (Leker et al., 2007; Taguchi et al., 2004). Addressing to 

the origin of these neurons, Jin and colleagues described DCX-positive neuroblasts 

migrating from the SVZ to the periphery of the cortical ischemia (Jin et al., 2003; Osman et 

al., 2011). In humans, there are also conflicting analyses; however, there is growing 

evidence from immunohistochemical studies reporting on DCX-positive cells in the vicinity 
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of cortical blood vessels after stroke, as well as cells expressing nestin (Jin et al., 2006; 

Marlier et al., 2015; Minger et al., 2007; Nakayama et al., 2010). Debate remains whether 

these cells originated from activation of dormant neural stem cells residing within the 

cerebral cortex that gave rise to neuroblasts after cortical ischemia (Jiang et al., 2001; Magavi 

et al., 2000; Yang et al., 2007). 

 

1.3. Radiocarbondating to study cell turnover in the human brain 

 

1.3.1. The technique of 14C-retrospective birth dating of cells 

 

To overcome the difficulties described above in assessing adult neurogenesis in humans, the 

research group led by Prof. Jonas Frisén at the Karolinska Institute developed a clever 

method to retrospectively birth date cells in humans (Spalding et al., 2005a). The so-called 

radiocarbondating – also known from archaeology to date historical finds (Arlotta and 

Macklis, 2005) – represents a technique which basically analyzes carbon (Spalding et al., 

2005a). Carbon usually exists as the isotope 12C (Arlotta and Macklis, 2005); however, within 

the atmosphere there is also a small amount of the carbon isotope 14C (usually as 14CO2) (De 

Vries, 1958) that naturally occurs in the setting of cosmic radiation colliding with nitrogen 

nuclei (De Vries, 1958; Stuiver and Polach, 1977). The ratio between both isotopes 

historically was relatively constant over decades until 1955-63 when 14C levels were 

drastically increased upon the above-ground nuclear bomb testing during the Cold War 

(Nydal and Lovseth, 1965; Stuiver and Polach, 1977) (Figure 2). After the test ban treaty in 

1963, the 14C levels started to decline again mainly because of diffusion from the atmosphere 

and binding in the oceans (Harkness, 1972; Libby et al., 1964; Nowakowski, 2006; Nydal and 

Lovseth, 1965). Importantly, the time resolution of the radiocarbon-technique since the bomb 

peak in the 14C level and its subsequent decline became very precise as compared to the time 

prior of the nuclear bomb testings (Harkness, 1972; Spalding et al., 2008; Spalding et al., 

2005a; Spalding et al., 2005b; Stuiver and Polach, 1977).   
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----------------------------------------------------------------------------------------------------------------- 

Figure 2. Atmospheric changes of 14C/12C ratio caused by nuclear bomb tests. 

 

 
 

Ratio of atmospheric carbon isotopes 14C and 12C during the last century (Libby et al., 1964; Nowakowski, 2006; 

Nydal and Lovseth, 1965; Stuiver and Polach, 1977). Upon the above-ground nuclear bomb tests during the Cold 

War there was a dramatic increase in the atmospheric levels of 14C which declined since the Test Ban Treaty in 

1963. The blue line indicates 14C/12C ratio of the Northern hemisphere, the red line of the Southern hemisphere. 

----------------------------------------------------------------------------------------------------------------- 

 

The released atmospheric 14C reacts with oxygen and forms CO2 which enters the food chain 

upon plant photosynthesis (Bergmann et al., 2009). By eating plants, and animals that live of 

plants, the 14C concentration in the human body – being at the top of the food pyramid – 

closely corresponds to that in the atmosphere at any given time (Spalding et al., 2005a). If 

there is cell turnover, the newly synthesized DNA – which consists of roughly one third of 

carbon – incorporates exactly this carbon ratio of 12C/14C which was present in the 

atmosphere at the time-point the cell was generated (Spalding et al., 2005a). Hence, as the 

DNA is stable after a cell has gone through its last cell division, the genomic 14C levels serve 

as a date mark for when a cell was born and can be used to retrospectively birth date cells in 

humans (Bergmann et al., 2009; Bhardwaj et al., 2006; Spalding et al., 2005a) (Figure 3).  
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----------------------------------------------------------------------------------------------------------------- 

Figure 3. Concept of 14C retrospective birth dating of cells.  

 

 
 

The principle of 14C retrospective birth dating of cells. Nuclear bomb detonations released 14C into the 

atmosphere which formed 14CO2 and entered the food chain by photosynthesis of plants. By eating plants 14C 

was ingested by animals and humans. Upon generation of a new cell, DNA is synthesized which consists 

roughly of one third carbon. Almost exactly the 14C/12C ratio that was present in the atmosphere in the year a cell 

was generated was incorporated into the newly synthesized DNA, acting as a stable date mark (Spalding et al., 

2005a). By extracting DNA from cell populations of interest (e.g. neurons) and analyzing the 14C/12C ratio, the 

average age of the cell population under investigation can be determined.  

----------------------------------------------------------------------------------------------------------------- 

 

The radiocarbon technique requires to first isolate the DNA of the targeted cell population 

(Spalding et al., 2005a). Human tissue samples may be obtained upon biopsy or – which was 

the case so far – upon post mortem autopsies (Bergmann et al., 2009; Bhardwaj et al., 2006; 

Ernst et al., 2014). The methodological approach includes the isolation of cell nuclei in a first 

step which usually is achieved by sucrose gradient centrifugation (Bergmann et al., 2012; 

Huttner et al., 2014). Using molecular markers that specifically label the nuclei of the target 

cell population, these nuclei are isolated by flow cytometry (Bergmann et al., 2009; Ernst et 

al., 2014). Subsequently, and constituting the most tricky part of the technique, the DNA 

needs to be isolated: this is performed in clean rooms to minimize contamination with 

contemporary carbon (Bergmann et al., 2009; Spalding et al., 2013). Finally, the isolated 

DNA is analyzed by accelerator mass spectrometry to determine the amount of the various 
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carbon isotopes within the sample (Spalding et al., 2005a). The interpretation of results is 

schematically explained in Fig. 4. 

----------------------------------------------------------------------------------------------------------------- 

Fig. 4. Interpretation of radiocarbon technique. 

 

Figure 4: Interpretation of 14C-data obtained; Individual born after (A) and before (B) the bomb peak. The 

vertical line represents the year of birth of the individuals. First, the 14C concentration in genomic DNA from a 

given cell population is measured using mass spectrometry. Second, the 14C-value obtained is interpreted in 

relation to the atmospheric 14C curve (blue) and plotted (red dot) Then the perpendicular on the X-axis reflects 

the average birth date of the cell population. Reprinted from Spalding et al (Spalding et al., 2005a) with 

permission from Elsevier. 

----------------------------------------------------------------------------------------------------------------- 

 

 

1.3.2.  Implications of radiocarbondating to study cell turnover in the healthy and 

diseased human brain 

 

It is quite remarkable that today we do not yet understand if neuronal turnover plays a role in 

disease, and it is not known what regenerative efforts the brain is capable of making 

following injury. The question whether neural stem cells are activated in the adult brain in 

response to lesions, notably stroke, and generate functional neurons, is of fundamental 

importance for regenerative medicine (Barnabe-Heider and Frisen, 2008; Curtis et al., 2011; 

Minger et al., 2007). Answering this question would be important for identifying diseases 

where therapies directed at modulating cell replacement would be beneficial (Koch et al., 

2009; Lie et al., 2004; Scheffler et al., 2006).  

 

In light of the differences between mouse and human neural stem and progenitor cells that 

have recently been uncovered (Farkas and Huttner, 2008; Fietz et al., 2010; Goldman, 2003; 

Hansen et al., 2010; Kriegstein and Alvarez-Buylla, 2009; Merkle and Alvarez-Buylla, 2006; 
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Reillo et al., 2010), it is unclear to which extent the data from animal models can be 

extrapolated to humans. Moreover, it is possible that the responsiveness of quiescent neural 

stem cells to “wake-up” triggers in the adult human brain differs from that in the adult rodent 

brain (Fancy et al., 2004; Lugert et al., 2010). It is therefore imperative to directly determine 

the sites, and extent, of adult neurogenesis in the human brain under physiological and 

pathological conditions (Buffo et al., 2008; Kempermann et al., 2004b; Magavi et al., 2000). 

The method of 14C-based retrospective birth dating of neurons is at present undisputedly the 

most valid experimental approach to obtain these data (Arlotta and Macklis, 2005).  

 

Previous findings provided proof-of-principle evidence that the method of retrospective birth 

dating of cells can be used to determine the age of neurons in specific brain regions, and 

hence to unequivocally establish the occurrence or absence of human adult neurogenesis. 

Specifically in stroke, given the different pathophysiological cascades and mechanisms 

following the various subtypes of stroke, and in light of the differences in clinical 

significance regarding the location of stroke, it will be important to correlate the 14C data 

obtained on adult neurogenesis in response to stroke to those on functional recovery to 

explore the clinical value of possible neurogenesis (Chopp et al., 2009; Jiang et al., 2001). 

The radiocarbon technique further allows, for the first time, to assess the age of tumor cells 

and to investigate cell turnover dynamics in brain tumors (Spalding et al., 2005a). As the 

sensitivity of the 14C-based approach of birth dating cells is increased the longer the time-

period between an event (e.g. onset of stroke or tumor growth) and the read-out (tissue 

assessment upon biopsy or death) dates back, we decided to analyze tumor growth dynamics 

in meningiomas (Spalding et al., 2005a). This tumor type is thought to grow slowly as 

compared to more malignant glioma variants (Nakamura et al., 2003; Pompili et al., 1998; 

Zeidman et al., 2008).    
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2 AIMS OF THE THESIS 
 

Listed according to publications: 

Applying the technique of 14C retrospective birth dating of cells, the aims of this thesis were: 

I. to investigate whether or not and to which extent there is adult neurogenesis in the 

healthy human brain, specifically within the hippocampus; 

II.  to investigate whether or not and to which extent there is adult neurogenesis in the 

diseased human brain, specifically in response to cortical stroke;  

III.  to investigate the age and growth dynamics of brain tumors, specifically benign 

meningiomas.  
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3 SUMMARY OF RESULTS  
 

Using the unique opportunity of 14C retrospective birth dating of cells, we have addressed 

three fundamental research questions. First, the cell turnover in the healthy human brain, 

specifically adult neurogenesis within the hippocampus. Second, the cell turnover in the 

diseased human brain, specifically whether or not neurogenesis is induced within the cerebral 

cortex in response to ischemic stroke. Third, we used the 14C-based birth dating technique to 

explore the age and growth dynamics of meningiomas. 

 

In the first publication (Spalding et al., 2013), we for the first time demonstrated that adult 

neurogenesis within the human hippocampus occurs over the entire lifespan and described 

cell turnover dynamics of this process (Spalding et al., 2013). Prior to our study all 

information on human hippocampal neurogenesis was based on immunohistochemical 

analyses, leaving room for uncertainties if the described findings truly reflect neurogenesis in 

terms of maturation and survival of labeled cells (Knoth et al., 2010; Sanai et al., 2011). Only 

the landmark study by Eriksson et al. (Eriksson et al., 1998) had provided direct evidence for 

hippocampal neurogenesis, yet it was based on only few patients and did not address the 

number of newly generated neurons nor cell turnover dynamics within the human 

hippocampus. By determining the genomic 14C-concentration in neuronal and non-neuronal 

DNA, we demonstrated that there is significant hippocampal neurogenesis over the entire 

human lifespan (Spalding et al., 2013) – in contrast to the previously described absence of 

neurogenesis in the healthy cerebral cortex and olfactory bulb (Bergmann et al., 2012; 

Bhardwaj et al., 2006) . We were able to show that hippocampal neurons are exchanged on a 

population level and that not all neurons are exchanged during life. By mathematical 

modeling we suggested the existence of a constantly renewing fraction that constitutes 

approximately 35% of all hippocampal neurons, a number that reflects slightly less neurons 

than known to exist in the dentate gyrus (Spalding et al., 2013). We calculated that the 

median turnover rate of neurons within the renewing subpopulation is 1.75% per year 

during adulthood, which corresponds to ≈700 new neurons per day in each hippocampus or 

0.004% of the dentate gyrus neurons per day in the human hippocampus (Spalding et al., 

2013). Mathematical modeling also suggested that there is a moderate decline in the amount 

of neurogenesis with increasing age. The neuronal turnover rates in humans were 

comparable to previous reports of hippocampal neurogenesis rates in middle-aged mice 

(Ninkovic and Gotz, 2007; Spalding et al., 2013). We concluded that human adult 
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hippocampal neurogenesis may be of functional significance and emphasized that further 

studies in patients with dementia or psychiatric disease may reveal important insights into 

the hippocampal turnover dynamics in disease (Kempermann, 2011; Santarelli et al., 2003).   

 

In the second publication (Huttner et al., 2014), we investigated whether or not neurogenesis 

is induced in the human cerebral cortex following ischemic stroke. Prior to our study, 

knowledge of cortical neurogenesis was mainly based on experimental findings from animal 

studies, with conflicting results (Arvidsson et al., 2002; Jiang et al., 2001; Jin et al., 2006; 

Parent et al., 2002; Zhang et al., 2006b; Zhang et al., 2001; Ziv et al., 2007). For humans 

there were only few immunohistochemical studies that had reported conflicting findings, 

either suggesting no sustained neurogenesis or claiming signs of adult neurogenesis in the 

penumbra of cortical infarcts, predominantly in the vicinity of blood vessels (Jin et al., 2006). 

By measuring the concentration of genomic 14C in cortical neurons after ischemic stroke we 

demonstrated (i) that the age of neurons surrounding the ischemic infarct core is the same as 

that of non-affected neurons of the occipital cortex of the healthy contralateral hemisphere of 

the same individuals (Huttner et al., 2014), and (ii) that this age corresponds to the respective 

age of the patients included into our study (Huttner et al., 2014). We thus provided evidence 

that there is no significant cortical neurogenesis in response to stroke and that the neurons 

surrounding the infarct core are most likely the neurons that were generated during fetal 

development and that survived the stroke (Huttner et al., 2014). We correlated our findings 

with immunohistochemical analyses of lipofuscin, an age pigment constituted of protein and 

lipid clusters that starts accumulating in neurons after 5-10 years and continues to do so 

during life (Benavides et al., 2002); we did not find any lipofuscin-negative neurons, neither 

in healthy regions nor within the ischemic lesion of the cerebral cortex, a finding consistent 

with all neurons being old (Huttner et al., 2014). We further provided evidence that there is 

cell turnover within the non-neuronal population, most likely reflecting the generation of glial 

cells in the process of scar formation, as those cells were of younger age than the non-

neuronal cells of the control areas, i.e. the non-affected occipital cortex (Huttner et al., 2014). 

Interestingly, by performing single cell gel electrophoresis assays, we detected a certain level 

of DNA fragmentation occurring in the early phase after cortical ischemia; in relation to this 

finding we were able to demonstrate that up to 22% of the non-apoptotic neurons were 

positive for DNA repair markers, such as APE-1 and gammaH2AX (Huttner et al., 2014; 

Oezguen et al., 2007; Park et al., 2006). By whole-genome and transcriptome analyses we 

verified the genomic integrity of neurons present in the chronic phase after cortical stroke. 

We concluded that there is no relevant neurogenesis – in terms of neuron maturation and 
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long-term survival – within the human cerebral cortex following ischemic stroke (Huttner et 

al., 2014). 

 

In the third manuscript (Huttner et al.), we used the 14C-based birth dating technique to 

explore the age and growth dynamics of meningiomas. Meningiomas are – together with 

gliomas – the most frequently occurring brain tumors in humans. They arise from arachnoidal 

cap cells and are usually slowly growing and benign (WHO°1); however, there are also 

invasive-malignant atypical variants (Perry et al., 2004; Riemenschneider et al., 2006; Whittle 

et al., 2004). There has been an intensive debate about the age of these tumors; however, 

there has been no methodological approach to explore the onset of tumor growth, and studies 

on growth dynamics were mainly based on imaging findings, e.g. serial magnetic resonance 

imaging (Nakamura et al., 2003; Zeidman et al., 2008). We measured the average 14C-

concentrations of all cells within the tumor – obtained as an aliquot upon surgical resection of 

the tumor – of patients with benign (WHO°1) and atypical (WHO°2) meningiomas, and 

found the average age of tumor cells of WHO°1 meningiomas to date 2.3 - 9.5 years older 

than the time-point of surgery, whereas WHO°2 meningiomas dated as old as the year of 

surgery (this analysis however did not reflect the onset of tumor growth). Based on 

immunohistochemical analyses and confocal microscopy we obtained various parameters 

such as Ki-67 indices, tumor cell densities and apoptosis rates, to integrate – together with the 
14C-data obtained and the imaging findings of tumor size and growth – our findings into a 

mathematical model of meningioma growth dynamics. We were able to identify (i) 

meningiomas that were still residing in the lag phase (i.e. slowly growing but not yet entering 

the exponential growth curve (Huttner et al.)), (ii) meningiomas that were in the exponential 

growth, and (iii) meningiomas that had already entered a plateau phase (Huttner et al.). The 

mathematical modeling allowed us to determine the onset of tumor growth, defined as the 

generation of the first tumor cell. Benign meningiomas were on average 22.1 years old 

(ranging from 10.8-31.1 years), whereas atypical WHO° 2 meningiomas originated 1.5 ± 0.1 

years prior to surgery (Huttner et al.). Further, we noticed a statistically significant difference 

in the age of meningioma subtypes, i.e. meningothelial versus fibrous meningiomas 

(meningothelial: 17.8 ± 5.8 years versus 26.3 ± 4.0 years in fibrous meningiomas; p = 0.015), 

whereas there was no significant correlation of meningioma age with the age of patients (R2 = 

0.0275) or the Ki-67 index (R2 = 0.1539). We concluded that existing models to predict 

meningiomas growth may complement 14C-data on tumor cells to better estimate growth 

dynamics (Huttner et al.). The latter may be of specific clinical relevance in patients with a 
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tumor that is difficult to assess surgically and hence has a high likelihood of incomplete 

resection (Braunstein and Vick, 1997; Huttner et al.; Pompili et al., 1998).  
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4 DISCUSSION AND FUTURE PERSPECTIVES 
 

Here we (i) showed that there is continuous adult neurogenesis within the human 

hippocampus, (ii) demonstrated that there is no significant induction of neurogenesis in the 

human cerebral cortex in response to stroke, and (iii) established the age and growth 

dynamics of human meningiomas. These findings have several important implications. 

 

First, the functional significance of human hippocampal cell turnover needs to be further 

established (Kempermann et al., 2004b; Spalding et al., 2013; Zhao et al., 2008). 

Hippocampal neurogenesis has been reported to be altered, being either increased or 

decreased, in experimental models as well as in humans depending on pharmacological 

medication and disease (Fabel and Kempermann, 2008; Holmes et al., 2004; Knoth et al., 

2010; Santarelli et al., 2003). Hence, to elucidate hippocampal cell turnover dynamics in 

human disease, specific patient groups with clearly defined diagnoses and treatments need to 

be studied using the radiocarbon-technique (eventually in addition to immunohistochemical 

analyses) to shed light into the debate of whether or not there is altered neurogenesis in these 

settings and which contribution such possibly altered neurogenesis may exert on functional 

outcome (Bergmann et al., 2015; Curtis et al., 2011; Santarelli et al., 2003).  

 

Second, in light of the absence of induction of adult neurogenesis in the human cerebral 

cortex following ischemic stroke (Huttner et al., 2014), is remains unclear whether this 

finding also holds true for other brain regions frequently affected by stroke, notably the basal 

ganglia including the striatum (Lindvall and Kokaia, 2015). These brain structures are 

topographically closely located next to the neurogenic SVZ niche (Kokaia and Lindvall, 

2012). It therefore appears more realistic that newborn neurons may migrate into the 

penumbra of the ischemic lesion, as shown in rodents (Arvidsson et al., 2002). However, 

these studies need to be done in humans using methods such as the radiocarbon-technique, as 

immunohistochemical analyses leave too much room for controversy (Bergmann et al., 

2015). The neurogenic potential of these anatomical areas was recently revived by findings of 

specific striatal neuronal subpopulations showing annual turnover rates >2% (Ernst et al., 

2014). In this regard it appears meaningful and valuable to also assess hippocampal cell 

turnover rates in response to basal ganglia strokes in humans, as increased rates have been 

proposed in animal studies (Lindvall and Kokaia, 2015).  
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Third, the determination of tumor onset and growth dynamics of human meningiomas 

demonstrated that the radiocarbon-technique is feasible also for studying tumor diseases 

(Huttner et al.). Of clinical relevance would be the investigation of cell turnover dynamics in 

gliomas (Venere et al., 2011). These tumors usually are more malignant and cross-over from 

less malignant variants (e.g. WHO°2) to more aggressive and further de-differentiated 

variants, like glioblastoma (WHO°4). A carbondating-approach of tumor tissue (obtained 

upon biopsy or tumor resection) may also allow to birth date specific cancer-initiating stem or 

progenitor cells, which would dramatically increase knowledge of tumor onset and 

progression in gliomas (Lathia et al., 2015; Venere et al., 2011; Weller et al., 2013). In this 

regard the recently established 15N-thymidine infusion method may also allow to study 

human malignant disease in vivo (Alkass et al., 2015; Steinhauser et al., 2012). 
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