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Abstract 

The epithelial barrier facing the external environment in the gastrointestinal (GI) tract is 

comprised of several components, including the tight junction (TJ) structures observed 

for the first time in 1963. TJ structures, which are multiprotein complexes composed of 

transmembrane proteins and a diverse spectrum of intracellular components, create a 

primary barrier to diffusion of ions, solutes, and water and they concomitantly prevent 

permeation of pro-inflammatory factors, such as pathogens, toxins, and antigens. Recent 

studies suggested that disturbance of epithelial integrity is associated with intestinal 

inflammatory conditions, such as inflammatory bowel disease (IBD), graft-versus-host 

disease (GVHD), celiac disease, but also diabetes.  

 

The general aim of this thesis was to identify novel genetic variants related to the 

development of intestinal inflammation with a specific focus on the TJ structures, 

yielding implications for epithelial integrity and paracellular permeability. 

 

Using a case-control study approach (Swedish cases and controls) in paper I, potential 

associations were investigated between IBD and three selected genetic markers in the 

genetic region of CLDN1, CLDN2, and CLDN4 (one marker per gene). The strongest 

association was observed between Crohn’s disease (CD) and the single nucleotide 

polymorphism (SNP) marker in the genetic region of CLDN2. The same SNP markers 

were further investigated using a family-based approach in non-Swedish families, but 

none of the identified associations from the Swedish case-control approach were 

confirmed. MORC4 which is located in the same genetic region as CLDN2 was also 

included in the investigation. A significant association was observed between a 

nonsynonymous SNP in MORC4 and CD in the Swedish case-control cohort. 
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Similarities between IBD and GVHD include intestinal barrier defects and genetic 

contributions. GVHD is considered to be multifactorial, where the human leucocyte 

antigen (HLA) acts as a cornerstone; however, non-HLA genes have been identified in 

association with the outcome after stem cell transplantation (SCT). By using a case-

control approach the relationship between non-HLA polymorphisms and emergence of 

GVHD as well as overall mortality after SCT was analyzed in paper II. The markers of 

MORC4, CD14, TLR4, and NOD2 were found to associate with the outcome (overall 

mortality) after SCT. The SNP marker of CD14 was the only analyzed marker that 

associated with acute GVHD. 

 

In paper III, the associations between IBD and several TJ genes that encode proteins 

reported to interact with each other were analyzed in a Swedish population. The 

strongest associations were observed between IBD and SNP markers in the membrane-

associated guanylate kinase inverted genes MAGI2 and MAGI3. The MAGI3 SNP was also 

associated with ileal MAGI3 expression level in the non-inflamed non-IBD subgroup. 

Furthermore, no overlap between the expression levels of PTEN in inflamed colonic 

mucosa from patients with CD and those in the non-inflamed mucosa was detected, 

suggesting that PTEN is an inflammatory marker in CD.  

 

In paper IV, the genetic associations between microscopic colitis (MC) and TJ genes were 

analyzed in a Swedish population. The strongest association was identified between a 

SNP marker in PTEN and MC and also the sub-phenotype collagenous colitis (CC). 

Furthermore, significant associations were observed between genetic variations of 

MAGI1 and MC and also between a SNP marker in F11R and CC. Moreover, decreased 

expression levels of PTEN and MAGI1 were primarily associated to CC and the MC 

subtype lymphocytic colitis (LC), respectively, in comparison with controls. 

 

In conclusion, genes encoding proteins involved in the regulation of the intestinal 

epithelial integrity, including those contributing to TJ structures, may predispose 

individuals to intestinal inflammation, such as IBD and MC. Furthermore, MORC4 may be 

a predisposing factor for CD and one-year mortality after SCT for hematological 

malignancies. 
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Sammanfattning på svenska 

Barriären mot lumen i mag-tarmkanalen innefattar många komponenter, bland andra 

täta fogar (tight junctions, TJ). Dessa är multiproteinkomplex uppbyggda av 

transmembranproteiner och ett brett spektrum av intracellulära proteiner. Dessa 

strukturer reglerar passage av vatten och joner, men även genomsläppligheten av 

proinflammatoriska faktorer, såsom patogener, toxiner och antigener. Flertalet studier 

har identifierat en störd paracellular permeabilitet vid inflammation i tarmen, 

exempelvis vid inflammatorisk tarmsjukdom (IBD), transplantat-mot-värdsjukdom 

(GVHD), celiaki, men även vid diabetes. 

 

Det övergripande syftet med avhandlingen var att identifiera genetisk variation i 

relation till inflammation i tarmen, med fokus på täta fogar. 

 

Genetisk variation av CLDN1, CLDN2 och CLDN4, en markör per gen, studerades i 

relation till IBD i arbete I genom applicering av ett fall-kontroll upplägg (svenska fall och 

kontroller). Den starkaste associationen observerades mellan en enbaspolymorfi (single 

nucleotide polymorphism, SNP) i CLDN2 och Crohns sjukdom (CD). Samma genetiska 

variationer studerades vidare i ett familjebaserat upplägg, bland icke-svenska familjer, 

där inga signifikanta associationer noterades. MORC4-genen är belägen i samma 

genetiska region som CLDN2 och inkluderades därför i studien. En icke-synonym SNP i 

MORC4 analyserades bland svenska fall och kontroller (fall-kontroll upplägg), varpå 

signifikant association identifierades mellan markören och CD. 

 

GVHD anses vara multifaktoriell, där human leucocyte antigen (HLA) spelar en viktig roll. 

Tidigare studier har visat att icke-HLA relaterade gener kan påverka utfallet efter 

stamcellstransplantation. I ett fall-kontroll upplägg, undersöktes genetisk variation 

(icke-HLA relaterade) i relation till utfallet efter stamcellstransplantation (arbete II). 
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Genetisk variation inom MORC4, CD14, TLR4 och NOD2 uppvisade association till 

generell mortalitet, och enbaspolymorfin inom CD14 var dessutom associerad till 

uppkomst av akut GVHD. 

 

I arbete III analyserades en svensk population av fall och kontroller avseende genetisk 

association mellan IBD och flertalet TJ-relaterade gener kodandes för interagerande 

proteiner. Den starkaste associationen noterades mellan IBD och genetisk variation i 

MAGI2 och MAGI3. MAGI3-markören påverkade även genuttrycksnivån av MAGI3 i ileum 

bland kontrollerna. Utöver detta noterades ett nedreglerat uttryck av PTEN i 

inflammerad kolonmukosa hos CD patienter, utan överlappning med uttrycksnivån i 

icke-inflammerad mukosa, bland CD-patienterna. Detta tyder på att PTEN kan utgöra en 

inflammationsmarkör för CD. 

 

I det fjärde arbetet studerades genetisk association mellan gener som kodar för 

interagerande TJ-proteiner och mikroskopisk kolit (MC). Den starkaste associationen 

noterades mellan en SNP inom PTEN och MC samt undergruppen kollagen kolit (CC), 

men även association mellan MC och MAGI1 samt mellan CC och F11R identifierades. 

Vidare noterades att en sänkt genuttrycksnivå av MAGI1 och PTEN var associerade med 

undergrupperna lymfocytär kolit respektive CC, jämfört med kontroller. 

 

Avhandlingen visar att genetisk variation av gener som kodar för TJ-relaterade 

proteiner kan predisponera för kronisk inflammation i tarmen (IBD och MC). 

Avhandlingen visar ytterligare att MORC4 möjligen predisponerar för CD. Genetisk 

variation inom MORC4 kan även påverka generell dödlighet efter allogen 

stamcellstransplantation. 
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Introduction 

The human intestine 

The gastrointestinal (GI) tract provides the body’s largest barrier to the external 

environment. In humans the small and large intestines differ prominently in size, as the 

small intestine of an adult is approximately 6-7 m, whereas the colon is wider in 

diameter and considerable shorter (1.5 m) (Crawford, 1999; Mowat and Agace, 2014). 

The surface of the intestine is equivalent to half a badminton court (approximately 32 

m2) (Helander and Fandriks, 2014). Since the intestine every day is exposed to 1-2 kg of 

food, the intestine processes approximately 45 tons of food during a lifetime. The 

passage time is approximately 5 h in the small intestine and 20 h in the colon. The 

epithelium in the intestine is completely renewed every 3 to 4 days. 

 

The small intestine is divided into three main parts: duodenum, jejunum, and ileum 

(Figure 1) (Mowat and Agace, 2014). The luminal surface of the GI tract plays several 

functions, such as absorption of essential nutrients and prevention of entry of harmful 

contents (Salim and Soderholm, 2011). The mucosal surface of the small intestine is 

characterized by finger-like projections, termed villi, which extend to the lumen and 

increase the area of the active epithelium. The villi are, however, absent in the cecum 

and the colon (Figure 2). The colon begins right after the small intestine at the cecum, 

followed by the ascending colon, the transverse colon, the descending colon, and lastly 

the rectum that terminates at the anus (Mowat and Agace, 2014). 
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Figure 1. The human intestine. The framed figure is reprinted with permission (encyclopedia.lubopitko-

bg.com). 

Mucosal barrier components in the intestine 

Constitution of a distinct internal environment is essential for multicellular organisms to 

maintain life. All surfaces (e.g. GI tract, skin, eyes, and respiratory tract) are therefore 

covered by epithelial cells in order to form a boundary between the external 

environment and the internal environment (Sawada, 2013). This barrier function is 

maintained by a complex multilayer system that comprises an outer physical barrier as 

well as an inner functional immunological barrier. 

Outer mucosal components 

The mucus layer (protective gel-like layer) is produced by goblet cells and overlays the 

epithelium, protecting the body against luminal bacteria (Figure 2). The goblet cells 

comprise 25% of the epithelial cells in the distal colon compared to only 10% or less of 

the epithelial cells in the small intestine. The mucus layer consists of two layers in the 

colon, the outer and inner layers. Bacteria can reside in the outer mucus layer, but these 

organisms rarely penetrate into the inner mucus layer. The purity of the inner mucus 

layer is dependent on the presence of antimicrobial peptides, such as defensins 

http://www.encyclopedia.lubopitko-bg.com/
http://www.encyclopedia.lubopitko-bg.com/
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produced by Paneth cells; however, increased penetration of bacteria into the epithelial 

surface of the colon may result in increased susceptibility to colitis and colorectal cancer 

(Mowat and Agace, 2014; Salim and Soderholm, 2011). 

Intestinal epithelial cells 

Pluripotent stem cells located in the crypt of the epithelium give rise to several mature 

intestinal epithelial cells (IEC), such as enterocytes, goblet cells, Paneth cells, microfold 

cells (M cells), and enteroendocrine cells (Figure 2) (Menard et al., 2010; Wehkamp and 

Stange, 2010). 

 

 

Figure 2. Anatomy of the intestinal mucosa (left, small intestine; right, colon). Figure reprinted by permission 

from Macmillan Publishers Ltd: Nature Reviews Immunology, copyright 2014 (Mowat and Agace, 2014). 

 

The main task of the intestinal enterocytes is regulation of nutrient absorption into the 

circulation. The goblet cells, which are spread out on the continuous epithelial layer, 

produce the mucus layer that protects against infiltration of bacteria into the epithelial 

cells. The Paneth cells are particularly concentrated in the distal part of the ileum. After 

differentiation from stem cells, Paneth cells migrate to the very bottom of the crypts 

where they exert their function (Mowat and Agace, 2014; Salim and Soderholm, 2011). 

Dysregulated Paneth cells have been observed in Crohn’s disease (CD), concomitant with 

decreased levels of ileal defensins (Wehkamp et al., 2005). 
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Finally, the M cells are IECs that occur over organized gut-associated lymphoid tissue, 

including Peyer’s patches in the small intestine. These cells are specialized for transport 

of antigens from the lumen into a region enriched in dendritic cells (DC) and 

lymphocytes. Here, the antigens can thereby be presented to the adaptive immune 

system. The size of the Peyer’s patches increases from the jejunum to the ileum, and 

these patches are primary concentrated in the distal part of the small intestine. The 

frequency of colonic lymphoid follicles increases from the ascending colon and reaches 

its maximum in the sigmoid colon (Gullberg and Soderholm, 2006; Menard et al., 2010; 

Mowat and Agace, 2014). 

Pattern recognition receptors 

The epithelial cells express a wide range of pattern recognition receptors (PRR), such as 

Toll-like receptors (TLR) and nucleotide-binding oligomerization domain 2 (NOD2). 

NOD2, an intracellular muramyl dipeptide receptor, is mainly expressed by epithelial 

cells in the ileum; the Paneth cells (Mowat and Agace, 2014; Salim and Soderholm, 

2011). This is consistent with the identified association between genetic variation of 

NOD2 and ileal CD, but not colonic type of CD (Cuthbert et al., 2002; Wehkamp and 

Stange, 2010). 

 

Furthermore, the pattern of TLR expression is heterogeneous along the intestine, as 

TLR2 is primarily expressed in the proximal part of the colon and decreases along the 

colon distally. TLR4 and CD14 are generally expressed at higher levels by epithelial cells 

in the colon than by those in the small intestine. Nevertheless, dysregulated intestinal 

TLR4 and CD14 expression may predispose activation of the mucosal innate immune 

system, and thus also acting as an important factor in the pathogenesis of inflammatory 

bowel disease (IBD) (Frolova et al., 2008). Subsequently, nuclear factor-κB (NFκB) is 

activated in response to PRR binding, contributing to an increased level of pro-

inflammatory cytokines (interleukin (IL)-1, IL-6, tumor necrosis factor (TNF), interferon 

(IFN) gamma), chemokines, and antibacterial peptides, e.g., human defensins (HD)-5 and 

HD-6 secreted by Paneth cells (Mowat and Agace, 2014; Salim and Soderholm, 2011; 

Wehkamp and Stange, 2010). 
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Epithelial integrity 

The epithelium is a selective barrier that limits the permeation of pro-inflammatory 

molecules from the lumen into the mucosal tissue, while simultaneously allowing 

absorption of water and nutrients (Groschwitz and Hogan, 2009; Salim and Soderholm, 

2011). In addition to the paracellular passage of molecules, a transcellular route has 

been described (Salim and Soderholm, 2011). The epithelial cells are further responsible 

for the immune interface, e.g. PRR and HD (Menard et al., 2010; Stappenbeck and 

McGovern, 2016; Wehkamp and Stange, 2010). 

 

The barrier is rigorously formed by cell-cell junctions, including tight junctions (TJs), 

adherens junctions (AJs), and desmosomes (Figure 3) that consist of transmembrane 

interacting proteins to link the epithelial cells together. The paracellular permeability is 

primarily regulated by the TJ complexes, which form a continuous band that encircles 

the epithelial cells and forms intercellular interactions, which are termed “kissing points” 

(Groschwitz and Hogan, 2009; Suzuki, 2013). 

 

 

Figure 3. Illustration of IEC and TJs, AJs, and desmosomes in the intercellular space between the epithelial 

cells. 
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AJs link cells by bridging the cytoskeleton of adjacent cells via interactions between 

transmembrane proteins (cadherin), intracellular structures (catenin), and the 

cytoskeleton. Cadherin-catenin interactions do not only contribute to a strong adhesive 

effect between adjacent cells but also to cell polarity, regulation of proliferation, and 

migration (Groschwitz and Hogan, 2009). 

Tight junctions and their molecular composition 

TJ structures, which were first described 1963 (Farquhar and Palade, 1963), are 

dynamic complexes composed of transmembrane proteins as well as a spectrum of 

intracellular proteins. These multiprotein complexes create a primary barrier to the 

diffusion of ions, solutes, and water due to the selective/semipermeable barrier and also 

prevent the permeation of pro-inflammatory agents, such as pathogens, toxins, and 

antigens (Groschwitz and Hogan, 2009; Salim and Soderholm, 2011). Moreover, the 

sealing function is tissue-specific as well as both size- and charge-selective (Van Itallie et 

al., 2003). Studies have identified the presence of two separate TJ paracellular pathways; 

a CLDN-dependent size restrictive pore pathway responsible for flux of small and ionic 

molecules (<4 Å) and an occludin-dependent large-channel pathway responsible for flux 

of macromolecules (Al-Sadi et al., 2011; Van Itallie et al., 2008). 

 

The transmembrane proteins CLDN, occludin, and junctional adhesion molecule (JAM) 

form the barrier via both homophilic and heterophilic interactions to yield the kissing 

points in the intercellular space (Figure 4). The intracellular domains of these 

transmembrane structures interact with intracellular proteins, such as PSD-

95/DlgA/ZO-1 homology (PDZ) containing proteins such as zonula occludens (ZO) 

proteins (Luissint et al., 2016), thus anchoring the transmembrane protein to the 

actomyosin ring (protein complex composed of actin and myosin molecules). 

Paracellular permeability is regulated by several physiological functions, such as myosin 

light chain (MLC) phosphorylation/dephosphorylation, as well as the intrinsic CLDN 

composition (Turner et al., 1997). Furthermore, the amount of occludin contributes to 

the quantity of strands in the paracellular space (McCarthy et al., 1996). 
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Contraction of the actomyosin ring is regulated by MLC activity. Indeed phosphorylation 

of MLC by MLC kinase induces contraction of the actomyosin ring, thereby opening the 

paracellular pathway and further increasing the permeability (Suzuki, 2013). 

 

The cell-membrane of the IEC has two domains; an apical domain and a basolateral 

domain. Under physiological conditions, TJs act as a fence to prevent intermixing of the 

proteins from the apical part of the cell to the basolateral part, thereby maintaining the 

polarity of the cells (Sawada, 2013). 

 

 

Figure 4. Schematic illustration of the TJ structure. 

The claudin family 

The first members of the CLDN-family, CLDN1 and CLDN2, were discovered by Furuse et 

al. (1998), and today, at least 27 members in mice and humans have been identified with 

unique expression patterns in different tissues (Mineta et al., 2011). The CLDNs are 

transmembrane structures with two extracellular loops (ECL; Figure 5), creating 

homophilic and heterophilic interactions with adjacent epithelial cells (Krug et al., 

2014).  

 

The CLDNs may be divided into two groups: barrier-forming (tight epithelia) and 

channel-forming (leaky epithelia) CLDNs; in leaky epithelium the paracellular pathway is 

more ion-conducive than the transcellular pathway. The channel-forming CLDNs exhibit 

different types of selectivity, i.e. for cations, for anions, or for water (Krug et al., 2014). 

 

Moreover, overexpression of CLDN2 causes increased paracellular permeability due to 

an increase in the number of pores without effects on the charge selectivity (Furuse et 

al., 2001; Van Itallie et al., 2008), whereas other CLDNs, such as CLDN4, affect the charge 
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selectivity without affecting the number of pores (Inai et al., 1999; Van Itallie et al., 

2003). A tightness function has been observed in various epithelia for several of the 

CLDNs (e.g. CLDN1 and CLDN4) when using knockout mouse models (Menard et al., 

2010). 

 

The combination and mixing ratios of the CLDN structures incorporated in the same 

strand have been found to determine the tightness of the IECs (Luissint et al., 2016). 

Moreover, the number of TJ strands correlates with an increased transepithelial 

electrical resistance (TER; measure of ionic flux) value and decreased permeability; 

however, the number of TJ strands does not seem to be simply determined by the total 

amounts of CLDNs expressed by the cells (Furuse et al., 2001). 

 

 

Figure 5. Schematic illustration of the CLDN protein. COOH, carboxyl group; NH2, amino group. 

 

Expression of CLDN proteins may be affected in intestinal inflammation, such as IBD 

(Krug et al., 2014; Kucharzik et al., 2001; Prasad et al., 2005; Weber et al., 2008; Zeissig 

et al., 2007) and collagenous colitis (CC) (Burgel et al., 2002). Increased levels of CLDN1 

and CLDN2 proteins have been observed in colonic tissue from IBD patients with active 

disease, but not in those with inactive disease (Poritz et al., 2011; Weber et al., 2008). In 

contrast, CLDN4 expression does not correlate with disease activity (Prasad et al., 2005; 

Weber et al., 2008). If the CLDN expression is affected in intestinal graft-versus-host 

disease (GVHD) is not known. 
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Occludin 

Occludin was the first transmembrane TJ protein discovered (Furuse et al., 1993), but its 

contribution to TJ regulation remains incompletely understood (Luissint et al., 2016). 

Similar to CLDN, occludin is a transmembrane protein with two extracellular domains 

and intracellular domains. The intracellular domains interact with ZO-1 and thus link 

occludin to the cytoskeleton (Fanning et al., 1998; Itoh et al., 1997). Induced expression 

of occludin has been shown to associate with an increased TER value and also with an 

increased number of TJ strands in the paracellular space (McCarthy et al., 1996).  

 

Deletion of occludin contributes to increased flux of macromolecules in the paracellular 

pathway and this influx may further induce an inflammatory response, without affecting 

the TER. However, the deletion of occludin only had a modest effect on the flux of 

smaller molecules (Al-Sadi et al., 2011). Some studies have shown decreased intestinal 

occludin expression in several pathological conditions, including IBD (Poritz et al., 2011; 

Yamamoto-Furusho et al., 2012), CC (Burgel et al., 2002), and GVHD (Noth et al., 2011). 

Junctional adhesion molecule 

JAMs are included in a family composed of five members (JAM-A, JAM-B, JAM-C, JAM-4, 

and JAM-like) of which JAM-A was the first to be identified (Martin-Padura et al., 1998; 

Vetrano et al., 2008). These molecules are transmembrane proteins that span once 

across the cell membrane and contribute to epithelial integrity as gate-keeper via 

intercellular interactions (Vetrano and Danese, 2009). Knockout mice as well as JAM-A-

deficient epithelial cells exhibit increased permeability, assessed by a decrease in the 

TER (Luissint et al., 2014; Luissint et al., 2016). Furthermore, JAM-A seems to play a role 

in the regulation of intestinal permeability to both smaller and larger molecules 

(Luissint et al., 2014). Significantly increased levels of lymphoid aggregates, which 

consist of B and T lymphocytes as well as polymorphonuclear leukocytes (PMN), are 

observed in JAM-A-/- mice (Laukoetter et al., 2007). Moreover, decreased colonic 

expression of JAM-A has been described in IBD (Laukoetter et al., 2007; Vetrano et al., 

2008).
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Intracellular molecules 

Intracellular domains of the transmembrane proteins interact with intracellular 

scaffolding proteins, such as ZO, which in turn anchor the transmembrane proteins to 

the actomyosin ring. These interactions between transmembrane protein and 

actomyosin ring provide cytoskeletal regulation of epithelial integrity. Thus, contraction 

and tension of the actomyosin ring regulated by MLC activity cause increased 

paracellular permeability (Suzuki, 2013). 

 

Intracellular TJ proteins are mainly divided into two groups: PDZ domain-containing 

proteins (interacting with proteins with a PDZ motif) and non-PDZ domain-containing 

proteins. These non-PDZ proteins are primarily involved in signaling regulation rather 

than direct contribution to the basic structural elements. A large group of intracellular 

TJ-related proteins do, however, contain one or multiple PDZ domains (Guillemot et al., 

2008). 

 

The first identified intracellular TJ specific protein ZO-1 was described by Stevenson et 

al. (1986). ZO-1 is a scaffolding protein of the membrane-associated guanylate kinase 

family and contains three PDZ domains, a SH3 domain, and a guanylate kinase domain in 

the amino-terminal region. ZO-1 interacts with TJ-related transmembrane proteins, such 

as CLDNs and occludin. The carboxyl-terminal region of ZO-1 directly interacts with the 

actomyosin ring (Hu et al., 2013). Furthermore, ZO-1 is at the center of a protein 

interaction network, and the interaction between the ZO-1 and CLDNs may play an 

important role in the assembly of the TJ strands (Umeda et al., 2006). 

 

Other examples of intracellular scaffolding proteins include PARD3 and the membrane-

associated guanylate kinase inverted (MAGI) proteins. These scaffolding proteins 

interact with intracellular signaling proteins (e.g., protein kinases and PTEN) and are 

thereby involved in the regulation of different pathways, including cell polarization and 

Akt signaling (Zihni et al., 2016). 
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Disrupted barrier function and disease development 

Studies in recent years suggest that disruption of essential elements of the intestinal 

barrier is associated with permeation of molecules, followed by disruption in the 

immune system, intestinal inflammation, and tissue damage. This perturbed barrier is 

intimately associated with several intestinal inflammatory conditions, such as IBD 

(Almer et al., 1993; Bjarnason, 1994; Clayburgh et al., 2004; Hollander et al., 1986; 

Zundler and Neurath, 2015), microscopic colitis (MC) (Barmeyer et al., 2012; Munch et 

al., 2005), GVHD (Noth et al., 2011), and celiac disease (van Elburg et al., 1993), as well 

as with type 1 diabetes (Bosi et al., 2006; Carratu et al., 1999). Whether the increased 

permeability in IBD is a consequence of the inflammatory process or whether the 

inflammatory process is a consequence of the enhanced permeability remains unclear. 

Which came first, the chicken or the egg?  

 

Inflammatory cytokines, such as IL-1β, IL-4, INF-γ, and TNF-α, have been shown to affect 

the expression of TJ-related proteins (e.g. CLDN, occludin, and JAM-A) and also the 

epithelial integrity (Al-Sadi and Ma, 2007; Cui et al., 2010; Luissint et al., 2014; Poritz et 

al., 2011; Wisner et al., 2008; Zeissig et al., 2007). Studies have further identified novel 

roles of non-coding micro ribonucleic acid (miRNAs) in the regulation and maintenance 

of TJ structures, and some of these identified miRNAs directly regulate the expression 

level of TJ proteins, such as occludin (Liang and Weber, 2014). 
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Inflammatory bowel disease 

IBD is the term used to describe some, but not all, types of chronical inflammation in the 

GI tract. Inflammation caused by known microorganisms is not included in this category 

nor is inflammation caused by toxic substances (Lindgren and Löfberg, 2011). The 

diagnosis of IBD is, however, based on a combined assessment of the symptoms of the 

patient, findings of endoscopy, and histopathology findings. 

 

The two major forms of IBD have traditionally been classified as CD and ulcerative colitis 

(UC). Cleynen et al. (2016) has suggested that IBD is better described by three groups 

(ileal CD, colonic CD, and UC), instead of the traditional separation. Overall, IBD is 

characterized by chronic inflammation in the GI tract in genetically predisposed 

individuals upon exposure to certain environmental factors (Molodecky et al., 2012). 

IBD is associated with abdominal pain and diarrhea, which span a wide spectrum of 

severity. 

 

Clinical and pathological features of CD and UC may substantially overlap. The major 

hallmarks that distinguish CD from UC are the skip-lesions, which in CD occur anywhere 

in the GI tract, deep-penetrating ulcers, as well as fistulas. UC lesions are homogenous, 

and the inflammation area is mainly restricted to the mucosa. Phenotypic overlap and 

inflammation limited to the colon may make diagnosis of CD or UC difficult or 

impossible. These patients are classified as IBD-undetermined or indeterminate colitis 

and may in time develop the clinical presentation of either CD or UC (Henriksen et al., 

2006; Liu and Stappenbeck, 2016). Furthermore, a change in diagnosis over time (5 

years) from CD to UC and vice versa has been reported to occur in a few cases (3%). A 

possible explanation for this change in diagnosis over time is the initial coexistence of 

both phenotypes (CD and UC). A small fraction of patients (6%) with an initial diagnosis 

of CD or UC are also found to not have IBD after 5 years, and this change may result due 

to difficulties in the discrimination between a patient with IBD in remission over a long 

time with an initial relapse and self-limiting colitis (Henriksen et al., 2006). 
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Extra-intestinal manifestations of the disease involving joints, skin, eyes, liver, and 

kidney are often present. Furthermore, IBD patients often experience reduced quality of 

life and capacity for work (Cosnes et al., 2011; Foersch et al., 2013; Geremia et al., 2014). 

Epidemiology of inflammatory bowel disease 

Extensive variation in the epidemiological data of IBD within as well as between 

geographic regions has been reported all around the world but estimates of prevalence 

reach the highest rates in Canada and Europe. Moreover, industrialization is believed to 

be associated with IBD, and in line with this notion, additional increases in disease 

prevalence have been observed as developing countries have become more 

industrialized. IBD occurs more frequently in urban regions than in rural areas. People 

raised in urban regions of industrialized nations are exposed to considerably different 

environmental factors than people raised outside these regions. Moreover, urbanization 

and industrialization of societies have been associated with modifications in microbial 

exposure, lifestyle behavior, medication, and sanitation, all of which have been 

suggested to be potential environmental risk factors for IBD. In addition, the increased 

incidence of IBD during recent years may also be a consequence of increased awareness 

of IBD by healthcare professionals as well as advancements in diagnostic methods. 

Increased access to medical services, such as colonoscopy, may also contribute 

(Molodecky et al., 2012). 

 

Myren et al. (1971) reported Norwegian epidemiological IBD data from the late 1960s 

and documented an incidence of 3 per 105 inhabitants and 1 per 105 for UC and CD, 

respectively. These data were in line with a Swedish study that reported UC incidence of 

2 per 105 during the late 1950s and also an increased incidence rate to a maximum of 5 

per 105 during the early 1970s (Nordenvall et al., 1985). In the 1990’s the Inflammatory 

Bowel South-Eastern Norway (IBSEN) group reported an incidence of 14 per 105 and 6 

per 105 for UC and CD, respectively (Moum et al., 1996a; Moum et al., 1996b), indicating 

increased numbers of IBD patients. Moreover, today, both UC and CD are worldwide 

health problems with incidence rates of 24.3 per 105 and 10.6 per 105, respectively, in 

Northern Europe. Based on observed estimates, approximately 0.8% of the population in 

Europe has IBD, and furthermore, areas with traditionally low occurrences of IBD (Asia 
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and Africa) have witnessed increasing numbers of IBD patients in recent years (Ek et al., 

2014; Loddo and Romano, 2015; Molodecky et al., 2012). The North-South gradient that 

was reported for IBD in the European population is becoming less prominent with time 

(Molodecky et al., 2012; Shivananda et al., 1996), whereas an East-West gradient is 

appearing (Figure 6) (Burisch et al., 2014a; Cosnes et al., 2011; Vegh et al., 2014) with 

the highest incidence rate on the Faroe Islands (82 per 105) (Burisch et al., 2014a). 

 

 

Figure 6. Global map depicting IBD. Red indicates annual incidence >10/105, orange indicates incidence 5-

10/105, green indicates incidence <4/105, and yellow indicates countries with a low but increased incidence. 

Figure reprinted from Cosnes et al. (2011), Copyright 2011, with permission by Elsevier. 

 

The onset of CD and UC peaks at a young age, between 15-25 years of age and 25-35 

years of age, respectively (Cosnes et al., 2011; Moum et al., 1996a; Moum et al., 1996b; 

Vatn and Sandvik, 2015). Approximately 20% of IBD patients are diagnosed in childhood 

or adolescence (Ek et al., 2014; Loddo and Romano, 2015). UC tends to be 

overrepresented in men, whereas CD occurs more often in women (Cosnes et al., 2011; 

Moum et al., 1996a; Vatn and Sandvik, 2015). The higher incidence of CD among women, 

however, is not observed worldwide, as in Europe and North America the incidence of 

CD among men has increased to that among women (Cosnes et al., 2011). Although 

advances in clinical care have been made for IBD, the disease constitutes a huge clinical 
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problem with approximately 2.2 million affected Europeans (Vatn and Sandvik, 2015) 

and 1.3 million affected Americans in the United States (Cosnes et al., 2011). 

Etiology of inflammatory bowel disease 

Although the etiology of IBD has been investigated during the past decades, the 

pathogenesis of IBD is still not completely understood. The strongest risk factor 

identified to date is family history, and furthermore, the adaptive immune system has 

been suggested to play a major role in IBD pathogenesis. Recent research in genetics and 

immunology has documented the involvement of the innate immune system. The 

development of IBD may be a consequence of increased permeability, inadequately 

functioning innate immune system, and dysregulated adaptive immune system; 

however, which factors are responsible for the initiation of the disease remain unknown. 

Environment factors in relation to IBD 

Numerous environmental factors have been found to either protect against or act as a 

risk factor for CD and UC, and these risk factors differ among geographic regions, such as 

between Western and Eastern Europe (Burisch et al., 2014b). 

 

Several putative risk factors have been investigated for their relation to IBD. For 

example, smoking (Burisch et al., 2014b; Mahid et al., 2006) and appendectomy 

(Ananthakrishnan, 2015; Baron et al., 2005; Burisch et al., 2014b) have been shown to 

be associated with CD and protective against UC. Furthermore, breastfeeding may 

reduce the risk of IBD development (Frolkis et al., 2013; Klement et al., 2004), although 

this association was not found by Baron et al. (2005). Whether delivery by cesarean 

section is a risk factor for IBD (Bager et al., 2012) or not (Bernstein et al., 2016) has been 

unambiguously determined. 

 

The hygiene hypothesis suggests that improved sanitation and reduced exposure to 

microorganisms during childhood contribute to an improper immunological response 

later in life. Living on a farm during childhood, living with multiple siblings, and 

consuming unpasteurized milk may be associated with reduced risk of IBD (Frolkis et al., 

2013). The gut microbiota is the largest reservoir of microbes in the body. Several 
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factors, such as IBD genetic risk variants in the host, diet, genetics, hygiene, geography, 

drugs, and smoking, may affect the stability and complexity of the gut microbiota 

(Imhann et al., 2016; Kostic et al., 2014), which, in turn, possibly predispose individuals 

to IBD (Peterson et al., 2015). 

Epithelial integrity 

IBD is characterized by intestinal inflammation, increased paracellular and transcellular 

permeability, and ensuing infiltration of pathogens. An impaired epithelial barrier 

contributes to increased exposure of the mucosal immune system to luminal antigens, 

resulting in an inflammatory process. Loss of the intestinal barrier function may also 

enable passive passage of water and ions into the lumen, resulting in leak flux-induced 

diarrhea (Keita et al., 2008; Krug et al., 2014; Lee, 2015; Prasad et al., 2005; Schmitz et 

al., 1999; Zundler and Neurath, 2015). Increased intestinal permeability has been 

observed in IBD patients and also among first-degree relatives and spouses of IBD 

patients (Hilsden et al., 1996; Hollander et al., 1986; Landy et al., 2016; Peeters et al., 

1997; Schmitz et al., 1999; Secondulfo et al., 2001; Soderholm et al., 1999). 

 

The intestinal permeability seems to be dependent on not only hereditary factors but 

also environmental factors (Peeters et al., 1997; Soderholm et al., 1999). Inflammatory 

cytokines associated with intestinal inflammation may alter the epithelial integrity due 

to the effects of these cytokines on TJ structures (Huang and Chen, 2016; Landy et al., 

2016). 

Immune response 

The immune system is crucial for our survival and protects us from different foreign 

invaders, such as bacteria, viruses, and parasites. In addition, the immune system 

develops tolerance to self-antigens. The immune response must be carefully regulated to 

prevent immunological hyperactivity as evident in IBD patients (Dave et al., 2014; 

Foersch et al., 2013; Geremia et al., 2014; Loddo and Romano, 2015), where infiltrated 

mucosal immune cells and increased production of pro-inflammatory cytokines are 

characteristic (Zundler and Neurath, 2015). The immune system can be divided into two 

different components: the innate immune system and the adaptive immune system 

(Huang and Chen, 2016). 
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The non-specific innate immune system constitutes the first line of active defense 

against pathogens (Dave et al., 2014; Foersch et al., 2013), whereas cells of the adaptive 

immune system recognize conserved structural motifs (pathogen-associated molecular 

patterns) on the microorganism via PRR, such as TLRs and NOD2 (Corridoni et al., 2014; 

Foersch et al., 2013). Defensins, which are secreted by Paneth cells, are produced in 

response to recognition of bacterial components, and decreased expression of α-

defensins has been identified in CD patients, especially in the case of NOD2 variants 

(Wehkamp et al., 2004). DCs, which are phagocytic antigen presenting cells (APC), 

further interact with B and T cells and play a key role in the crosstalk between the innate 

and the adaptive immune systems (Foersch et al., 2013; Geremia et al., 2014). 

 

Upon activation, T helper 0 cells (TH0 cells) differentiate into TH1, TH2, TH17, or 

regulatory T cells (Treg cells). The differentiation of TH0 cells is driven by cytokines that 

are primarily released from cells of the innate immune system (Foersch et al., 2013; 

Huang and Chen, 2016). The TH1 (IL-1, IL-2, IL-6, and IL-8) and TH2 (IL-4, IL-10, and IL-

13) cells are in balance under normal conditions, but an imbalance of the systems 

determines the form of immunological disorder that will occur (Huang and Chen, 2016). 

Furthermore, increased TH1 and TH2 cell activity has been described in CD and UC, 

respectively (Zanello et al., 2014; Zundler and Neurath, 2015). 

 

TH1 cells are essential for the elimination of intracellular pathogens, whereas TH2 cells 

are involved in the protection against parasites and the mediating of allergic reactions. 

TH17 cells contribute to the host defense against extracellular fungi and bacteria 

(Geremia et al., 2014). Treg cells inhibit TH cells (i.e., TH1, TH2, and TH17) via secretion of 

several cytokines (IL-10 and transforming growth factor (TGF)-β). Reduced level of Treg 

cells in colonic tissue is described to associate with IBD pathogenesis (Huang and Chen, 

2016). 

Genetic contribution to IBD 

CD and UC are multifactorial diseases with significant genetic influence. Genetic studies 

have demonstrated that a large number of genes with a small effect are associated with 

IBD susceptibility (Ek et al., 2014). 
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Since the 1960s, familial aspects of IBD have been of interest (Kirsner and Spencer, 

1963), and further attempts to improve the understanding of genetic contribution to the 

IBD pathophysiology have greatly increased in recent years. Data from epidemiological 

studies indicate that the first-degree relatives of patients with CD or UC have a 

significantly increased lifetime risk of developing IBD compared to general population 

(Orholm et al., 1991; Probert et al., 1993). The highest risk of developing IBD has 

however been observed among the offspring of two affected parents, as approximately 

30% of these offspring develop disease before 30 years of age (Halme et al., 2006). The 

Swedish twin study performed by Tysk et al. (1988) showed a stronger genetic 

contribution to disease for the CD phenotype compared to the UC phenotype (Tysk et al., 

1988), and these findings have subsequently been confirmed by other studies 

(Halfvarson et al., 2003; Orholm et al., 2000). Moreover, Halfvarson et al. (2003) 

observed a higher degree of concordance among monozygotic twin pairs (UC 6-20% and 

CD 30-50%) than among dizygotic twin pairs (UC 4-5% and CD 4-10%). 

 

Genetic variation of NOD2 was the first polymorphisms identified to associate with CD 

(Hugot et al., 2001; Ogura et al., 2001). However, significant geographic variations 

regarding allele frequencies of NOD2 have been identified, highlighting the existence of 

other contributing genetic loci in IBD (Cavanaugh, 2006). Presently, 206 susceptibility 

loci have been described in association with IBD (Ellinghaus et al., 2016; Jostins et al., 

2012; Liu et al., 2015). Only few of these associated signals correspond however to 

nonsynonymous coding single nucleotide polymorphisms (SNPs), with a function on the 

protein function (Cleynen and Vermeire, 2015). Yet, known loci explain a mere 10.9% 

and 7.7% of the heritability of CD and UC, respectively (Ellinghaus et al., 2016). 

 

Four years after the identification of the relationship between genetic variation of NOD2 

and CD, the first genome-wide association study (GWAS) using SNP was performed in an 

attempt to identify other IBD susceptibility genes (Yamazaki et al., 2005), and this study 

uncovered significant associations between genetic variation of TNFSF15 and CD. 

 

Assays for markers in genomic regions that are associated with different immune-

mediated overlapping phenotypes have been developed as an Immunochip, which 

encompass approximately 200.000 SNP markers at 186 loci. Jostins et al. (2012) 
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combined GWAS with Immunochip data and identified 163 loci that were significantly 

associated with IBD, with a substantial degree of overlap between CD and UC. Of these 

163 loci, 110 were significantly associated with both CD and UC, whereas 30 loci were 

associated only with CD and 23 were associated only with UC. 

 

The GWAS studies have revolutionized our understanding of genetic susceptibility in 

IBD. Several specific loci (e.g,. CDH1, GNA12, HNF4A, LAMB1, MUC1, OSMR, and PTPN22) 

detected in GWAS studies suggest an involvement of the epithelial barrier in the 

pathogenesis of IBD (Anderson et al., 2011; Barrett et al., 2008; Ellinghaus et al., 2016; 

Franke et al., 2010; Jostins et al., 2012; Liu et al., 2015; McGovern et al., 2010). Also, a 

number of genes related to TJ assembly (e.g. MAGI2, GNA12, and MYO9B) have been 

identified in association studies using a candidate gene approach (Anderson et al., 2011; 

Cooney et al., 2009; Li et al., 2016; McGovern et al., 2009; Wapenaar et al., 2008). 
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Microscopic colitis 

Inflammatory conditions of the colon, such as lymphocytic colitis (LC) and CC, are 

subgroups of MC, which is characterized by watery, non-bloody diarrhea and less 

frequently abdominal pain and weight loss. Approximately 10% of patients with chronic 

diarrhea are diagnosed with MC (Munch and Langner, 2015). In several epidemiological 

investigations, female predominance was found for both LC and CC, although this 

predominance is more pronounced for CC (Bonderup et al., 2015; Mellander et al., 2016; 

Munch and Langner, 2015; Olesen et al., 2004). MC was initially considered to be a rare 

disease, but an increase in annual incidence has been reported (from approximately 5 

per 105 inhabitants in 2002 to 25 per 105 in 2011) perhaps due to increased endoscopic 

activity and awareness of the disease (Bonderup et al., 2015). 

 

The majority of patients with MC have macroscopic normal colonic mucosa, and 

therefore, colonoscopy with multiple biopsies is necessary to obtain the diagnosis. The 

histopathological hallmark for MC (for LC as well as CC) is increased infiltration of 

inflammatory cells in the colonic mucosa at both the epithelial surface and the lamina 

propria. An increased number of intraepithelial lymphocytes (>20 per 100 epithelial 

cells) is observed in LC, whereas the key histological feature in CC is a thickened 

collagen band (>10 μm) in addition to the infiltration of IELs. Damage to the surface 

epithelium is usually more pronounced in CC compared to LC. Whether LC and CC are 

two histological manifestations of the same disease entity remains controversial 

(Langner et al., 2015; Magro et al., 2013; Mellander et al., 2016; Munch and Langner, 

2015; Pisani et al., 2016; Storr, 2013). 

Pathogenesis of microscopic colitis 

The exact mechanism underlying the diarrhea in MC is still unclear, although MC is an 

inflammatory condition of the intestine and is considered a new member of the IBD 

group (Storr, 2013). 
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The pathogenesis of MC is multifactorial, and both an abnormal immune response and 

increased intestinal paracellular and transcellular permeability have been described 

(Barmeyer et al., 2012; Munch et al., 2005). An established risk factor for MC is 

concomitant autoimmune disease, such as celiac disease (Stewart et al., 2011). 

Moreover, female gender, increased age, smoking, and consumption of some drugs, such 

as non-steroidal anti-inflammatory drugs, have also been observed to associate with MC 

development (Langner et al., 2015; Storr, 2013). 

 

Jarnerot et al. (2001) reported familial clustering of MC, and some studies identified an 

association between genetic variation (e.g., HLA, IL-6, and MMP) and MC (Koskela et al., 

2011; Koskela et al., 2008; Madisch et al., 2011; Westerlind et al., 2015). Although MC is 

characterized by affected paracellular permeability (Munch et al., 2005), no studies have 

reported an association between TJ-related genes and MC. 
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Graft-versus-host disease 

Approximately 25.000 hematopoietic stem cell transplantations (SCT) are performed 

worldwide each year, and SCT has proven to be a successful cure for patients suffering 

from hematological diseases, immune deficiencies, and metabolic disorders (Hymes et 

al., 2012). Despite advances in human leucocyte antigen (HLA)-typing, acute GVHD 

(aGVHD) remains a significant cause of morbidity and mortality related to the 

procedure. In addition to the resultant morbidity and mortality, GVHD results in 

impaired quality of life; however, the severity of GVHD differs between patients. 

Furthermore, GVHD is directly correlated to the degree of mismatch between HLA 

proteins. However, 40-60% of the recipients of matched HLA grafts develop aGVHD that 

is in need of treatment with high-dose steroids; the frequency is even higher among 

HLA-mismatched unrelated-donor grafts (Ferrara et al., 2009; Weisdorf, 2007). 

 

Acute GVHD occurs most frequently within 100 days after SCT, and this time interval has 

by tradition previously defined aGVHD versus chronic GVHD (cGVHD). Today this 

definition of aGVHD and cGVHD has changed to propose a better definition of the 

severity of the disease and also adequate treatment; the clinical manifestations together 

with timing offer a better definition of the outcome (aGVHD versus cGVHD) (Hymes et 

al., 2012). 

 

The clinical manifestations depend on the compatibility of the donor-recipient HLA and 

the reactivity of the graft to foreign antigens present in the host. Furthermore, the 

recipient’s tissue, that stimulates the lymphocytes from the donor, has been damaged by 

underlying disease and transplant conditioning. As a consequence of this, the tissue 

produces pro-inflammatory cytokines, such as IL-1, IL-6, IL-8, and TNF-α, which 

increase the expression of APC receptors and enhance the presentation of proteins to 

the donor immune cells (Ball et al., 2008; Dickinson and Charron, 2005; Ferrara et al., 

2009). The Treg cells may prevent GVHD due to suppression of T cells in animal models 

(Cohen and Boyer, 2006). 
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The organs affected by aGVHD are primary the skin, liver, and the GI tract. Overall 

grades of aGVHD are classified as mild (I), moderate (II), severe (III), and very severe 

(IV), based on clinical features of skin involvement, degree of bilirubin elevation, and the 

volume of diarrhea (Hymes et al., 2012). Biopsies of involved tissue may confirm the 

diagnosis, especially if the signs are non-specific. Symptoms may involve the upper GI 

tract (nausea, anorexia, and vomiting), but the most characteristic manifestation is 

watery, usually voluminous diarrhea (>2 L daily) (Ferrara et al., 2009). 

Pathogenesis of graft-versus-host disease 

GVHD pathogenesis involves many factors and may arise when T cells from the donor 

respond to proteins on the host cells, where the most important is the HLA, encoded by 

major histocompatibility complex (MHC) (Ferrara et al., 2009). Non-HLA variants of 

genes encoding proteins involved in immunity (INF-γ, IL-10, TNF, TLR4, CD14, NLRP, and 

NOD2) seem to play a role in the transplantation outcomes (Cavet et al., 1999; Dickinson 

and Charron, 2005; Dickinson and Holler, 2008; Elmaagacli et al., 2006; Ferrara et al., 

2009; Granell et al., 2008; Lin et al., 2003; Sivula et al., 2012). On the other hand, 

contradictory results have been published. For example, a Swedish study by Sairafi et al. 

(2008) did not replicate the identified association between genetic variation of NOD2 

and the outcome after SCT (Elmaagacli et al., 2006). Inconsistent results may be a 

consequence of genetic heterogeneity among the patients and further relative small 

numbers of patients have been included in the studies. 
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Human genetics 

Genetic variation 

The most common variations within the human genome, which consists of ~3 billion 

base pairs, are SNPs. To date, more than 19 million validated SNPs have been deposited 

in the National Center for Biotechnology Information (NCBI) SNP database 

(www.ncbi.nlm.nih.gov/projects/SNP). 

 

SNPs are defined as single nucleotide variants at a specific locus with a population 

frequency of 1% or more (Crawford and Nickerson, 2005; Pettersson et al., 2009). 

Because autosomal regions carry one allele from the maternal chromosome and one 

from the paternal chromosome, an individual can exhibit one of three genotypes: 

homozygous for the major allele, heterozygous, or homozygous for the minor allele. The 

definitions of major and the minor allele refer to the observed frequencies in a specific 

population (Crawford and Nickerson, 2005). Some SNPs may affect gene expression 

levels (Kabakchiev and Silverberg, 2013), and SNPs that occur in coding regions may 

result in an amino acid substitution, affecting protein function (Sunyaev et al., 2001). 

Most SNPs, however, are considered functionally neutral (Crawford and Nickerson, 

2005). 

Genetic association 

Genetic association studies can be divided into candidate gene studies and GWAS, which 

both involve genotyping of SNPs in cohorts of cases and controls or in families with 

affected individuals. A candidate gene approach is based on prior hypotheses and known 

biological function, suggesting an involvement of a genetic region in a specific disease, 

whereas GWAS are primarily hypothesis-generating studies (Pettersson et al., 2009). 
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The risk factor for cases in a genetic association study is the allele or the genotype for a 

specific SNP, where the penetrance reflects the risk of disease with respect to the 

susceptibility allele (Clarke et al., 2011). The penetrance of genetic variations differs 

between rare (<0.5% frequency) and common (>5% frequency) polymorphisms, and 

GWAS studies are designed to detect effects of common variants. Consequently, most of 

the identified IBD susceptibility alleles are frequently found in the general population. 

Common genetic variants, located outside of coding regions, typically contribute to 

associations with a modest odds ratio (OR; OR<1.1), whereas rarer variants with higher 

effect size (OR >1.5) are more often located in coding regions (Liu and Stappenbeck, 

2016). 

 

Genetic association studies for complex diseases may be performed by either 

population-based association studies (unrelated cases and controls) or family-based 

association studies. Studies of unrelated cases and controls are the most commonly 

utilized approach. The primary advantage for the population-based association study is 

the enrollment of cases without the need for sampling specific family members. A major 

disadvantage to both approaches is the population stratification (Lewis, 2002; Mersha et 

al., 2015); however, family-based association studies may be more resistant to this 

challenge than population-based studies (Cardon and Palmer, 2003; Zondervan and 

Cardon, 2007). To avoid false-positive results, i.e. type I errors, in population-based 

studies, the controls included in the study should be selected from the same population 

as the cases, to minimize the possibility that the associations may reflect population-

specific differences in allele frequencies and not disease-specific associations 

(Zondervan and Cardon, 2007).  

 

If the causal SNP is not genotyped, the effect of this SNP can be assessed through linkage 

disequilibrium (LD) with surrogate marker genotyping. Alleles at different loci that 

occur together more often than estimated by chance are said to be in LD in the 

population (Clarke et al., 2011). Because of e.g. recombination, the LD is inversely 

associated with the genetic distance between the SNP markers (Khatkar et al., 2006; 

Pritchard and Przeworski, 2001). Observed effect size of an association may be 

interpreted in terms of the effect size of the causal variant, the allele frequencies of the 

genotyped marker, the allele frequencies of the causal variant, and also the LD between 
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the genotyped marker and the causal variant. These parameters are of importance for 

the design of association studies (Wray, 2005). To reach (approximately!) the same 

power at the marker locus as at the susceptibility locus, the sample size would be 

increased by a factor of 1/r2 (Pritchard and Przeworski, 2001; Wray, 2005). Moreover, 

the statistical power is the probability to correctly reject the null hypothesis when the 

alternative hypothesis is true (Hong and Park, 2012). 

 

Several measures have been evaluated for assessing the strength of the LD, and the most 

commonly used methods are r2 and D’. Both of these measurements, which range from 0 

(no disequilibrium) to 1 (complete disequilibrium), are dependent on recombination. 

Furthermore, the r2-value only reaches a value of 1 if the allele frequencies of the 

markers are the same (Ardlie et al., 2002; Wall and Pritchard, 2003). The r2-value ≥0.8 

(pairwise tagging) is the “gold standard” tagging set, i.e. the procedure for SNP selection 

in a manner to cover the genetic region of interest (Wilkening et al., 2009). 
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Aims 

The general aim of this thesis was to identify novel genetic variants in relation to 

development of intestinal inflammation, with a focus on genetic variation of the TJ 

structures with implications for epithelial integrity and paracellular permeability. 

 

The specific aims were: 

 

Paper I 

To investigate a possible genetic influence of the TJ components CLDN1, CLDN2, and 

CLDN4 on IBD susceptibility in a large European cohort. 

 

Paper II 

To investigate a possible relationship between genetic markers identified in paper I, 

together with other non-HLA polymorphisms implicated in the etiology of IBD, for the 

emergence of overall mortality and aGVHD following SCT for hematological 

malignancies. 

 

Paper III 

To investigate putative relationships between IBD and several SNP markers of TJ-related 

genes that encode interacting proteins, and their corresponding gene expression levels. 

 

Paper IV 

To investigate MC in relation to SNP markers of TJ-related genes that encode interacting 

proteins, and their corresponding gene expression levels. 
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Materials and methods 

Study subjects and healthy controls 

The number of patients and controls included in the separate papers are outlined in 

Table 1, and a detailed description of the study populations is provided below. 

 

Table 1. Number of patients included in the allelic association studies. 

 Paper I II III IV 

Non-Swedish individuals     

Families 463    

IBD total 715    

CD 528    

UC 151    

IBD-undetermined 36    

     

Swedish individuals     

IBD total 1911  295  

CD 1031  138  

UC 1021  157  

Controls 333  4232  

     

Patients who underwent SCT  127   

Donors  127   

     

MC total    104 

CC    65 

LC    39 

Controls    4232 

1In order to avoid bias due to genetic relatedness in the case-control study, one case per family was randomly 

selected from 191 Swedish families. 2The same controls were used for paper III and paper IV. 
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Paper I 

All of the IBD families included in paper I originated from the large European 

collaboration that contributed to the discovery of NOD2 as a CD susceptibility gene 

(Hugot et al., 2001). Conventional diagnostic criteria based on clinical, endoscopic, 

radiological and histological findings were used for the characterization of disease 

entities (Lennard-Jones, 1989). The case-control studies were based on 191 Swedish 

IBD patients (from 191 families) and 333 controls selected from an anonymized regional 

DNA bank, consisting of individuals living in the southeastern part of Sweden. The non-

Swedish families (463 families, 715 patients) were included in the family-based genetic 

association studies. 

Paper II 

For these studies, 127 Swedish patients who underwent SCT for hematological 

malignancy at the Department of Hematology at Linköping University Hospital between 

May 1996 and April 2005 were included, together with their respective donors. 

Paper III 

Swedish IBD patients (n=295) sampled at Linköping University Hospital and Ryhov 

County Hospital and controls (n=423) selected from an anonymized regional DNA bank, 

consisting of individuals living in the southeastern part of Sweden, were used for 

investigation of genetic association (case-control study). A second Swedish cohort (IBD 

patients, n=52 and controls, n=33), which was sampled at Linköping University Hospital 

and had available RNA from endoscopic intestinal biopsies and DNA, was used for 

follow-up study of significant results of the initial case-control study. The same 

diagnostic criteria as in paper I were applied (see above). 

Paper IV 

Swedish MC patients (n=104) sampled at Linköping University Hospital and controls 

(n=423) selected from an anonymized regional DNA bank, consisting of individuals 
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living in the southeastern part of Sweden, were used for investigation of genetic 

associations (case-control study). A second Swedish MC cohort (MC patients, n=25 and 

controls, n=58) sampled at Linköping University Hospital and Karolinska University 

Hospital were used in cases where both RNA from endoscopic intestinal biopsies and 

DNA were available in order to follow up significant results of the initial case-control 

study. 

Methods 

The methods included in the separate papers are outlined in Table 2, and a more 

detailed description of each method is provided below. 

 

Table 2. Methods used in the studies. 

Methods Paper (I-IV) 

Sample preparation  

DNA preparation from blood I-IV 

DNA preparation from intestinal biopsies III-IV 

RNA preparation from intestinal biopsies III-IV 

cDNA synthesis III-IV 

  

DNA sequencing  

Sanger sequencing I 

  

Genotyping  

TaqMan Genotyping I-IV 

Restriction fragment length polymorphism II 

Denaturing high-performance liquid chromatography II 

SNuPe genotyping II 

TaqMan OpenArray III-IV 

  

mRNA quantification  

Relative RT-qPCR III-IV 
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Endoscopic evaluation 

In paper III, each biopsy was categorized as inflamed or non-inflamed based on a 

compound evaluation of endoscopic findings assessed by a single experienced 

endoscopist and routine histopathologic assessment for inflammation. Only biopsies 

with concordant results were included in the study. Biopsies were stratified based on 

sampling location (ileum versus colon) and inflammation for statistical analysis. 

Moreover, in paper IV, each biopsy was categorized as being diagnostic for MC or not 

based on the key histological features, described in Langner et al. (2015). 

Sample preparation 

Isolation of DNA from blood 

DNA was isolated from blood samples with EDTA using QIAamp DNA minikit (Qiagen, 

Düsseldorf, Germany; paper II) or MagNA Pure LC DNA Isolation Kit and MagNA Pure 

extraction robot (Roche, Basel, Switzerland) (paper II-IV) according to the 

manufacturer’s instructions. 

Isolation of DNA from intestinal biopsies 

Isolation of DNA from intestinal biopsies was performed using Allprep DNA/RNA Mini 

Kit (Qiagen; paper III-IV) according to the manufacturer’s instructions. 

Isolation of RNA from intestinal biopsies and conversion to cDNA 

The biopsies were placed in RNA later (RNA stabilization reagent; Qiagen) and placed at 

+4°C overnight and thereafter at -20°C (paper III-IV) or at room temperature for one 

hour and thereafter at -80°C until extraction (paper IV). RNA was purified using the 

Allprep DNA/RNA Mini Kit (Qiagen) either manually or with the Qiacube extraction 

robot (Qiagen) according to the manufacturer’s instructions. Furthermore, the RNA 

concentration and purity were determined using Nanodrop ND-1000 (Thermo Fisher 

Scientific Inc., Waltham, MA, USA), and the integrity of the RNA was assessed using 

Agilent RNA 6000 Nano kit on the Agilent 2100 bioanalyzer (Agilent Technologies, Santa 

Clara, CA, USA). Then, 2 µg RNA was converted to complementary DNA (cDNA) in a total 
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volume of 40 µL using the High-Capacity cDNA Reverse Transcription kit with RNase 

Inhibitor (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions. 

The cDNA was diluted to 25 ng/µl using 0.1×TE buffer and then stored at -80°C until 

analysis. 

Sanger DNA sequencing 

Sanger DNA sequencing is based on the presence of free 3’-hydroxyl groups and the 

incorporation of nucleotides by DNA polymerase during replication and chain-

termination (Figure 7). The chain-termination method requires a reaction mixture 

containing DNA, DNA primers, DNA polymerase, ordinary deoxynucleoside 

triphosphates (dNTP), and fluorescently labeled dideoxynucleoside triphosphates 

(ddNTP). The random incorporation of a ddNTP will stop the DNA synthesis, preventing 

further dNTP incorporation. The generated fragments are then separated by size using 

capillary gel-electrophoresis, allowing determination of the sequence based on the 

fluorescence of the ddNTPs. 

 

The promoter region, exon-intron boundaries, and exons that harbor the 5’-untranslated 

region and protein-coding region of CLDN2 were amplified by PCR and re-sequenced 

(paper I). New sequence variants were deposited in the NCBI SNP database 

(http://www.ncbi.nlm.nih.gov/projects/SNP/). 

 

 

Figure 7. Illustration of Sanger sequencing based on free 3’-hydroxyl groups and the incorporation of 

nucleotides by DNA polymerase during replication and chain termination. 

http://www.ncbi.nlm.nih.gov/projects/SNP/
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Genotype analysis 

Genetic variants of several genes (Table 3) were investigated in relation to presence of 

disease, treatment outcome, or gene expression. 

 

Table 3. Genes investigated in the studies. 

Gene Genetic markers Paper I II III IV 

CLDN1 rs7620166 X    

CLDN2 rs12014762 X X   

CLDN4 rs8629 X    

MORC4 rs6622126 X X   

CD14 rs2569190  X   

TLR4 rs4986790  X   

NOD2 rs2066844  X   

NOD2 rs2066845  X   

NOD2 rs2066847  X   

NOD2 rs2066842  X   

SLC22A4 rs1050152  X   

SLC22A5 rs2631367  X   

CARD8 rs2043211  X   

NLRP3 rs35829419  X   

F11R 7 SNP markers   X X 

MAGI1 22 SNP markers   X X 

MAGI2 7 SNP markers   X X 

MAGI3 20 SNP markers   X X 

PARD3 1 SNP marker   X X 

PTEN 4 SNP markers   X X 

TJP1 2 SNP markers   X X 

PTPN22 1 SNP marker   X  

 

In paper I and II, one or a few SNPs per gene were investigated in relation to IBD and the 

outcome after SCT, whereas several polymorphisms in each genetic region were studied 

in relation to IBD and MC in paper III and paper IV. 
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TaqMan genotyping 

TaqMan allelic discrimination assays employ two TaqMan probes that are 

complementary to the alleles at the polymorphic site (Figure 8), and this assay is based 

on a 5’ reporter dye (FAM or VIC) that is linked to each probe and released in the 

presence of the probe’s target. 

 

 

Figure 8. TaqMan chemistry illustration reprinted with permission from www.thermofisher.com. ©Thermo 

Fisher Scientific Inc. 

 

Allelic discrimination was performed using either the TaqMan real-time PCR system 

(paper I-IV) or TaqMan OpenArray system (paper III-IV) with the TaqMan SNP 

genotyping assay (Applied Biosystems, Foster City, CA, USA) in accordance with the 

manufacturer’s recommendations. 

Restriction fragment length polymorphism 

PCR restriction fragment length polymorphism (RFLP) analysis is a technique that 

assesses genotype of a specific SNP marker via analysis of the pattern derived from 

http://www.thermofisher/
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restriction enzyme digestion of amplified DNA (Figure 9), as restriction enzymes cleave 

the amplified DNA at a specific recognition sequence (Chuang et al., 2008). 

 

 

Figure 9. The principle of RFLP analysis, which involves assessment of the pattern following digestion of 

amplified DNA with a restriction enzyme that recognizes the (A) allele but not the (a) allele. The cleaved 

products are separated on agarose gels and visualized by DNA-specific staining. 

 

Variants at three SNP positions (NOD2-R702W rs2066844, NOD2-P268S rs2066842, and 

CD14 rs2569190) were determined using RFLP analysis (paper II). Restriction enzyme 

digestion was performed using HpaII, BamHI, or AvaII, and the fragments were further 

separated on an agarose gel and visualized with a DNA-specific stain. 

Denaturing high-performance liquid chromatography 

Denaturing high-performance liquid chromatography (dHPLC) is a technology that is 

used to detect the presence of heteroduplex DNA strands (Figure 10). Amplified 

products are denatured at a high temperature (95°C) and then re-annealed prior to 

analysis by dHPLC. During the re-annealing step, both homoduplexes (DNA strands that 

correspond to the same allele) and heteroduplexes (DNA strands that correspond to 

different alleles) are formed. Heteroduplexes, which are less stable than homoduplexes, 

have a shorter retention time compared to homoduplex DNA during dHPLC and 

therefore give rise to additional peaks. Thus, the first double peaks represent the less 

stable heteroduplex formations, while the second double peaks represent the 
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homoduplex formations (Frueh and Noyer-Weidner, 2003; Premstaller and Oefner, 

2003). 

 

 

Figure 10. Illustration of the separation of heteroduplex formations from homoduplex formations via dHPLC. 

 

A SNP marker in TLR4 (rs4986790) was genotyped in paper II using dHPLC. A total of 5 

µl of the PCR product was injected into an automated liquid chromatography system 

(Transgenomic, Dallas, TX, USA), according to the manufacturer’s recommendations. 

Single nucleotide primer extension 

The single nucleotide primer extension (SNuPe) technique involves two distinct steps. In 

the first step, the genetic region spanning the polymorphic site is amplified and purified 

from the remaining PCR reagents, and in the second step, an extension primer is added 

to the reaction. This extension primer is extended with a single fluorescently labeled 

ddNTP at the polymorphic site (immediately at the 3’ end of the primer). The 

determination of the ddNTP at the specific site, and thereby the genotype, is performed 

using a DNA sequencer (Syvanen, 1999). 

 

Genetic variants of NOD2-G908R (rs2066845), NOD2-3020insC (rs2066847), CARD8 

(rs2043211), and NLRP3 (rs35829419) were determined using the MegaBACE SNuPe 

genotyping kit (GE Healthcare, Bucks, UK) in paper II. Amplified PCR products were 

purified using exonuclease I and shrimp alkali phosphatase (Exo-SAP-IT; GE Healthcare) 

and further mixed with the SNuPe premix and SNP-specific primers. Finally, the 

genotype was determined using a MegaBACE 1000 DNA sequencing system (GE 

Healthcare).
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TaqMan Gene Expression 

Successful quantification of messenger RNA (mRNA) requires input of high-quality RNA. 

Because RNA molecules are susceptible to degradation by RNase proteins, the quantity 

and quality of RNA requires verification before reverse transcription (cDNA synthesis) is 

performed. 

 

Target gene expression can be measured using TaqMan probes, which are short 

oligonucleotides, and reverse transcription quantitative PCR (RT-qPCR) (Figure 11). For 

these reactions, one TaqMan probe per transcript is used in combination with the 

specific unlabeled primers in the amplification. The probe is constructed with a reporter 

dye at the 5’ end as well as a quencher dye at the 3’ end. The probe binds to the target 

between the forward primer and the reverse primer. During the PCR reaction, the Taq 

polymerase cleaves the probe and promotes a separation of the reporter from the 

quencher, thereby generating a signal that is proportional to the amount of target 

molecule. 

 

 

Figure 11. Illustration of the detection of target gene expression using sequence-specific unlabeled primers 

and TaqMan probes constructed with a reporter and a quencher at the 5’ and 3’ end of the probe, 

respectively. F-primer, forward primer; R-primer, reverse primer; R, reporter; and Q, quencher. 
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The threshold cycle (Ct) value is defined as the number of PCR cycles required to exceed 

the background level of the PCR reaction. The Ct values are inversely related to the 

amount of target molecules in the reaction; a lower Ct value corresponds to a higher 

amount of target (i.e., proportional to the initial gene-specific cDNA). The amount of 

added cDNA to the PCR reaction is further normalized by endogenous controls, the 

reference genes. 

 

The cDNA levels were quantified in paper III and paper IV using the TaqMan Gene 

Expression Assay, TaqMan Universal Mastermix, and a 7500 Fast Real-Time PCR System 

(Applied Biosystems). Each individual reaction contained 10 ng cDNA in a total volume 

of 20 µL. 
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Statistical analysis 

In paper I, allelic OR with accompanying 95% confidence interval (CI) and p-values 

based on the χ2 statistic were calculated using likelihood-based analysis for genetic 

association (Unphased software version 3.0.13; Dudbridge (2008)) for both the case-

control study and the family-based study. Since CLDN2 and MORC4 are located on the X-

chromosome, males contribute only one allele each, while females contribute two 

alleles. 

 

Overall mortality and aGVHD (paper II) were analyzed in relation to SNP markers using 

χ2 statistics (Microsoft Office Excel 2003; Microsoft Corporation, Redmond, WA, USA) or 

Fisher’s exact test (Statistica version 10; StatSoft Inc., Tulsa, OK, USA) using a case-

control approach. Significant findings observed in the genetic association studies were 

further explored using logistic regression (Statistica version 12). Additionally, to follow 

up the significant findings identified in the case-control study, Kaplan-Meier survival 

curves were generated to investigate one-year mortality after SCT (JMP Genomics 6.0; 

SAS Institute Inc., Cary, NC, USA). 

 

In paper III and paper IV, the allelic OR and p-values, based on χ2 tests were calculated 

using JMP Genomics 6.0 (JMP Genomics 6.0; SAS Institute Inc.). For these statistical tests, 

p<0.05 (paper III) and p<0.007 (paper IV; Bonferroni adjustment based on the number 

of analyzed genes) were considered significant. Group differences in gene expression 

were investigated using Kruskal-Wallis ANOVA or the Mann-Whitney U-test (Statistica 

12). Logistic regression was used to investigate gene expression levels in relation to 

intestinal inflammation, phenotype, and gender. 

 

Ct-values were established (ExpressionSuite Software Version 1.0.3; Applied 

Biosystems) and normalized to the average of selected reference genes (CASC3 

[Hs00201226_m1], UBA52 [Hs03004332_g1], and POP4 [Hs00198357_m1]) (Söderman 

et al., 2015), generating the delta-threshold cycle (ΔCt) values. Relative quantification 

(RQ) values were further established via relating the ΔCt values to the sample with the 
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lowest gene expression for each gene using Microsoft Office Excel 2010 (Microsoft 

Corporation), according to the methods of Livak and Schmittgen (2001). Group 

differences in gene expression levels were calculated as a fold change (fc) based on RQ 

values. Bonferroni-adjusted (based on the number of analyzed genes) p-values <0.008 

(paper III) and <0.017 (paper IV) were considered significant for statistical analysis 

based on gene expression levels. 

Ethics 

The four studies were conducted with approval by the ethics committees as follows: 

 

 Paper I 

Ethics committees of Linköping University (Dnr 97271) and Karolinska Institutet 

(Dnr 97-327). 

 

 Paper II 

Ethics committee of Linköping University (Dnr M82-05). 

 

 Paper III 

Ethics committee of Linköping University (Dnr M35-07 and Dnr 2011/201-31). 

 

 Paper IV 

Ethics committees of Linköping University (Dnr M35-07, Dnr 2011/201-31) and 

Karolinska Institutet (Dnr 2007/791-31/3). 
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Results and discussion 

This section summarizes the main findings of the thesis, while detailed results and a 

more extensive discussion can be found in respective paper (paper I-IV). 

Paper I 

We investigated the CLDN genes as candidate genes that may contribute to the increased 

intestinal permeability of patients with IBD. Based on a pilot-study of Swedish IBD 

patients, one SNP marker per gene (CLDN1, CLDN2, and CLDN4) was selected for 

investigation in the total study population. 

 

Using a case-control study approach with Swedish patients and controls, we evaluated 

the associations between each of the three markers in the genetic region of CLDN1, 

CLDN2, or CLDN4 and the IBD phenotypes (IBD, CD, or UC; Table 4). The strongest 

significant association was observed between the CLDN2 marker (rs12014762, 

susceptibility allele C) and CD. Another significant association was identified between 

the CLDN1 marker (rs7620166, susceptibility allele T) and overall IBD, while no 

significant associations were identified for the CLDN4 marker with any of the 

phenotypes (IBD, CD, or UC). 

 

The same SNP markers were also included in a family-based study of European families 

of non-Swedish origin. The significant findings observed in the case-control study with 

Swedish patients, were not replicated by the family-based approach in the non-Swedish 

cohort. Regional heterogeneity of allele frequencies among different sub-populations 

may explain the discrepant findings. Such heterogeneity of allele frequencies has 

previously been observed and described by several groups (Ellinghaus et al., 2016; 
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Jostins et al., 2012; Liu et al., 2015). On the other hand, the divergent results may be 

explained by a false-positive finding in the case-control study of Swedish participants or 

alternatively by a false-negative finding in the family-based approach. The use of 

homogenous populations should enable the identification of genetic risk factors that are 

more prevalent and important in a specific population. 

 

Table 4. Case-control approach1 and family-based2 genetic association studies3 with respect to IBD-

phenotype. 

  rs7620166 (CLDN1) rs12014762 (CLDN2) rs8629 (CLDN4) 

  
allelic OR 

(95% CI) 
p-value 

allelic OR 

(95% CI) 
p-value 

allelic OR  

(95% CI) 
p-value 

IBD Swedish case-control 1.33 (1.04–1.72) 0.025 1.39 (0.95–2.01) 0.083 1.21 (0.89–1.65) 0.225 

 Non-Swedish fam. 0.87 (0.72–1.06) 0.177 1.25 (0.89–1.77) 0.195 1.09 (0.88–1.33) 0.432 

CD Swedish case-control 1.17 (0.86–1.60) 0.319 1.98 (1.17–3.35) 0.007 1.25 (0.84–1.85) 0.258 

 Non-Swedish fam. 0.80 (0.64–1.00) 0.052 1.37 (0.91–2.07) 0.126 1.14 (0.89–1.46) 0.287 

UC Swedish case-control 1.35 (0.98–1.84) 0.064 1.27 (0.80–2.02) 0.304 1.18 (0.80–1.73) 0.409 

 Non-Swedish fam. 1.19 (0.77–1.84) 0.436 0.91 (0.39–2.14) 0.827 1.15 (0.75–1.77) 0.512 

1Results from the case-control stud are based on 191, 103 and 102 cases of IBD, CD, and UC, respectively as 

well as 333 controls. 

 2The family-based association studies included 463 European families. For the SNP-markers rs7620166 

(CLDN1), rs12014762 (CLDN2), and rs8629 (CLDN4), genotyping was unsuccessful for 5 (including 2 CD), 9 

(including 3 CD), and 7 (including 2 CD) samples, respectively. 

3OR, its related 95-% CI, and p-values (based on log likelihood ratio chi-square statistics) were calculated for 

the T allele of rs7620166, the C allele of rs12014762, and the C allele of rs8629. 

 

CLDN1 and CLDN4 have been associated with a tight TJ structure, whereas CLDN2 

expression results in a leakier epithelial layer (Furuse et al., 2001; Krug et al., 2014). The 

expression of the CLDNs may have different patterns within the GI tract, and these 

patterns may contribute to differences in epithelial integrity. Furthermore, the 

expression of CLDN2 differs along the crypt-to-villi axis, where the protein is restricted 

to the crypts in the small as well as colonic intestine of the rat (Rahner et al., 2001). The 

expression of CLDN2 mRNA as well as protein is increased in inflamed intestine, such as 

in cases of CD and UC, compared to non-inflamed intestine. Also, higher CLDN2 

expression is observed in patients with UC compared to patients with CD (Prasad et al., 

2005; Weber et al., 2008). Furthermore, studies have suggested that differences in 
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epithelial permeability stem from compositional differences in the TJ-structure (Luissint 

et al., 2016). 

 

Based on the most significant association detected in the case-control study, we re-

sequenced CLDN2 as a mean to identify novel sequence variants of importance for the 

development of IBD. With this approach, two novel polymorphisms (rs62605981 and 

rs72466477), which are located in the promotor region of the CLDN2 gene (Sakaguchi et 

al., 2002) were identified. Neither of these markers were, however, significantly 

associated with either IBD overall or with CD or UC. 

 

MORC4 is located in the same genetic region as CLDN2 and harbors a nonsynonymous 

SNP (rs6622126). This nonsynonymous SNP was investigated for genetic association to 

IBD, CD, or UC. A significant association was identified between the MORC4 SNP 

(rs6622126, susceptibility allele G, p=0.018) and CD, but not between the SNP and IBD 

overall or UC. MORC4 has been identified as a putative interacting protein involved in 

the regulation of TGF-β (Colland et al., 2004). Increased intestinal expression of TGF-β 

has been observed in CD patients, and TGF-β is involved in maintenance and recovery of 

the intestinal epithelial barrier function (Howe et al., 2005; Planchon et al., 1999; 

Suenaert et al., 2010). In addition, the integrity of the epithelial barrier correlates with 

the TGF-β expression level, indicating a protective effect of TGF-β (Suenaert et al., 2010). 
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Paper II 

Non-HLA variants of genes encoding proteins involved in immunity seem to play a role 

in the outcome of stem cell transplantation (Cavet et al., 1999; Dickinson and Charron, 

2005; Dickinson and Holler, 2008; Elmaagacli et al., 2006; Ferrara et al., 2009; Granell et 

al., 2008; Lin et al., 2003; Sivula et al., 2012). We therefore investigated if several non-

HLA markers, including CLDN2, MORC4, and NOD2, were associated with the outcome 

after SCT (overall mortality and aGVHD; selected polymorphisms are described in Table 

3). 

Genetic association with respect to recipient genetic makeup 

Significant associations were observed between overall mortality and genetic variation 

in MORC4 (rs6622126, susceptibility allele A) as well as in CD14 (rs2569190, 

susceptibility allele T) (Table 5). Weaker associations were also observed between 

overall mortality and genetic variation in TLR4 (rs4986790, susceptibility allele A) as 

well as the presence of at least one of the three NOD2 susceptibility alleles (rs2066844; 

susceptibility allele T; rs2066845, susceptibility allele C; rs2066847, susceptibility allele 

C). Since MORC4 and CLDN2 are located on the X chromosome, men and women were 

further analyzed separately. A significant association was observed between overall 

mortality and MORC4 (allele A) in males but not in females. 

 

No associations were observed between overall mortality and any of the SNPs in the 

genetic regions of NOD2 (each marker separately), SLC22A4, SLC22A5, CARD8, NLRP3, or 

CLDN2. Genetic variation of CD14 (rs2569190, susceptibility allele T) was the only 

variation identified in significant association with aGVHD. 

 

In paper I, we described an association between genetic variation in MORC4 (rs6622126, 

susceptibility allele G) and CD in a Swedish population. In contrast, overall mortality 

among SCT patients was associated with the opposite allele (A) of the MORC4 SNP 

compared to the susceptibility allele described in relation to CD. Dissimilar effects of 

alleles of a SNP marker have previously been shown, i.e. the A allele of a NOD2 SNP 
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marker (rs5743289) was associated with CD whereas the G allele was associated with 

leprosy (Jostins et al., 2012). Moreover, an association has also been reported for this 

genetic region (CLDN2-MORC4) and chronic pancreatitis (Giri et al., 2016; Whitcomb et 

al., 2012). MORC4 has been identified as a putative interacting protein involved in the 

TGF-β regulation (Colland et al., 2004). Together, these results indicate that genetic 

variation within MORC4 may predispose to inflammatory conditions in different tissues. 

 

Based on the heterogeneity of the cohort, logistic regression was used to control for 

putative confounders, such as diagnosis, various conditioning protocols, GVHD 

prophylaxis, relationship between recipient and donor, and age at SCT, one factor at a 

time. The associations between MORC4 (male recipients), CD14, TLR4, and overall 

mortality remained statistically significant. The logistic regression did, however, not 

confirm the significant association between NOD2 combined (rs2066844; susceptibility 

allele T; rs2066845, susceptibility allele C; rs2066847, susceptibility allele C) and overall 

mortality. The significant association between CD14 and aGVHD was confirmed by 

logistic regression, and diagnosis also contributed to the outcome. 

 

CD14, together with TLR4, binds bacterial lipopolysaccharide and is further involved in 

the activation and regulation of NFκB (da Silveira Cruz-Machado et al., 2010). Therefore, 

the observed association between genetic variation of CD14 and TLR4 and the outcome 

after SCT suggests a potential dysregulated immune response due to improper NFκB 

regulation. Moreover, higher level of circulating blood CD14+ cells has previously been 

linked to the outcome after SCT (Arpinati et al., 2007). 

Genetic association with respect to donor genetic makeup 

With respect to the donor genotype, a significant association was observed between the 

SNP marker in MORC4 and overall mortality (Table 5). No additional associations were 

identified between overall mortality and any of the variations in the genetic regions of 

CD14, TLR4, NOD2, SLC22A4, SLC22A5, CARD8, NLRP3, or CLDN2, and no donor SNPs 

were significantly associated with aGVHD. Furthermore, logistic regression confirmed 

the significant association between donor MORC4 genotype and overall mortality in 

male recipients. 
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Genetic association with respect to combined recipient and donor genotype 

The effect of the combined allele composition of the donor and recipient for each gene 

was investigated in relation to aGVHD and overall mortality. A significant association 

was observed between overall recipient mortality and the MORC4 SNP (rs6622126, 

susceptibility allele A, in male pairs) and the CD14 SNP (rs2569190, susceptibility allele 

T, in all paired cases). Logistic regression confirmed the association between MORC4 

variation and mortality but not between the CD14 variant and overall mortality. 

One-year survival 

To confirm the significant findings of the association studies, Kaplan-Meier survival 

curves were generated to analyze one-year mortality after SCT. The overall mortality in 

male patients was significantly increased in recipients carrying the MORC4 susceptibility 

allele (rs6622126, A) compared to that in recipients carrying the non-susceptibility 

allele (G) (p=0.013; Figure 12). Additionally, increased recipient mortality was observed 

in patients who carried one susceptibility allele of NOD2 (rs2066844; susceptibility 

allele T; rs2066845, susceptibility allele C; rs2066847, susceptibility allele C), compared 

to carrying of none (p=0.045; Figure 13). 

 

Although this study lacks details about the transplant-related mortality, the Kaplan-

Meier analysis of MORC4 in relation to one-year mortality after SCT indicates a 

decreased survival in the short term after transplantation. This increased overall 

mortality may be a consequence of dysfunctional immunological reactions after SCT.  
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Figure 12. Male survival after SCT according to 
genetic variation of MORC4 (rs6622126). The grey 
line indicates the A allele, and the black line 
indicates the G allele (p=0.013). An increased overall 
mortality was observed in recipients carrying the 
susceptibility allele (rs6622126, A) of MORC4 
compared to the non-susceptibility allele (G). 

Figure 13. Combined male and female survival after 
SCT in relation to carriage of one susceptibility allele 
of NOD2 (p=0.045) rs2066844, rs2066845, and 
rs2066847). The grey line indicates the carriage of 
one allele, and the black line indicates carriage of no 
susceptibility allele. 

 

 



 

50 

 



 

51 

 

Paper III 

Using a Swedish population, we investigated genetic variation of several TJ-related 

genes (Table 3) in relation to IBD. Also ileal and colonic gene expression was analyzed in 

relation to genotype, inflammatory status, phenotype, and ongoing medical treatment. 

 

Of the 64 identified genetic markers, 12 were excluded due to failed genotyping or 

absence of Hardy-Weinberg equilibrium at those loci. The strongest significant 

associations were observed between IBD and SNP markers in MAGI2 (rs6962966; 

susceptibility allele A) as well as MAGI3 (rs1343126; susceptibility allele T) (Table 6; 

significant SNP markers). These markers were also associated with CD as well as UC, 

independently, although the MAGI3 SNP marker was only borderline significantly 

associated with CD. In addition, significant associations were observed between 

additional SNP markers and IBD as well as UC (Table 6). 

 

To the best of our knowledge, we have for the first time demonstrated an association 

between MAGI3 and IBD. Previously, Jostins et al. (2012) identified a genetic association 

between this region and CD, although they primarily highlighted PTPN22. The associated 

MAGI2 SNP marker (rs6962966) was previously described by Wapenaar et al. (2008) in 

association with UC; however, these investigators described an association between UC 

and the opposite allele (G), whereas we revealed a significant association between IBD 

and the (A) allele. We currently have no reliable explanation for this discrepancy. 

 

In our association study, p<0.05 was considered significant; however, even though we 

applied a more stringent p-value (Bonferroni adjustment based on the number of 

analyzed genes, p<0.008), the association between the MAGI3 rs1343126 and MAGI2 

rs6962966 SNPs and IBD remained significant. The significant findings (p<0.05) in the 

case-control approach were further followed up by analyzing for genotype-gene 

expression relationships in a second independent cohort. 
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All genes (Table 3), except TJP1, were expressed at equal levels in biopsies from 

different segments of the colon (cecum, ascending colon, transverse colon, descending 

colon, sigmoid colon, and rectum). TJP exhibited only slightly higher expression in the 

sigmoid colon than in the ascending colon (p=0.006; fc=1.16). Because of these 

equivalent levels, the colonic biopsies were treated as biological replicates. 

 

Carriage of the MAGI3 rs6689879 UC susceptibility allele contributed to increased 

MAGI3 expression in ileal non-IBD mucosa, and this increased MAGI3 expression may 

contribute to the observed restriction of inflammation to the colon in UC. In fact, all 

observed relationships, both significant and nominally significant, between gene 

expression levels and susceptibility alleles were identified in mucosal biopsies from 

non-inflamed non-IBD controls. It is unlikely that the genotype-gene expression 

relationship in non-inflamed IBD biopsies was concealed by subclinical inflammation, 

since these biopsies were assessed as histopathologically normal. It is possible though 

that gene expression levels were affected by other factors, such as miRNA, that were 

present in the non-inflamed mucosa from IBD patients (Fasseu et al., 2010; Peloquin et 

al., 2016; Planell et al., 2013). 

 

Colonic biopsies from inflamed mucosa from IBD and UC patients expressed lower levels 

of MAGI3, PTEN, and TJP1, than those from non-inflamed mucosa. MAGI3 is involved in 

the suppression of the PI3K/Akt and Wnt/β-catenin signaling pathways (Figure 14) (Ma 

et al., 2015a; Ma et al., 2015b). Both of these signaling pathways have been shown to 

promote inflammation (Huang et al., 2011; Keerthivasan et al., 2014) and increased 

activation of PI3K/Akt inhibits the proliferation of T cells towards Treg cells (Sauer et al., 

2008). Thus, regulation of these pathways may constitute a mechanism by which 

decreased level of MAGI3 promotes colonic inflammation. 
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Figure 14. An illustration of the involvement of MAGI3 in the suppression of PTEN and CTNNB1. The network 

was identified using the STRING search tool (String consortium). 

 

The expression level of PTEN was also decreased in inflamed colonic mucosa of CD 

patients compared to non-inflamed CD mucosa (Figure 15; complete separation of PTEN 

expression), suggesting PTEN as a marker for inflammatory response in the colonic 

mucosa of CD patients. PTEN is described as a tumor suppressor molecule inhibiting 

inflammatory response via PI3K/Akt pathway (Tokuhira et al., 2015), and previously 

decreased expression level of PTEN was observed in intestinal mucosal lymphocytes in 

CD, compared to controls (Long et al., 2013). 

 

 

 

 

Figure 15. Box plot illustration of PTEN expression level in inflamed (I) colonic mucosa from patients with CD 

and non-inflamed (N) colonic mucosa. 

 

PTPN22 was included in our study, since this gene is located in the same genetic region 

as MAGI3 and has been described in relation to IBD previously (Diaz-Gallo et al., 2011; 

Jostins et al., 2012; Rivas et al., 2011). Biopsies from inflamed colonic mucosa from IBD 
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patients exhibited significantly higher levels of PTPN22 expression than biopsies from 

non-inflamed colonic mucosa. PTPN22, which negatively regulates T cell activation 

(Sharp et al., 2015), is expressed at higher levels in immune cells than in non-immune 

cells (Arimura and Yagi, 2010). Since the expression level of PTPN22 was determined 

using RNA from homogenized biopsies, it is not possible to determine the exact cellular 

origin of this expression. The increased number of immune cells in the inflamed mucosa 

may, however, have contributed to the increased PTPN22 gene expression level in 

colonic IBD mucosa. 
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Paper IV 

Since the etiology of MC is largely unknown, even if a genetic predisposition may be 

involved (Koskela et al., 2011; Koskela et al., 2008; Madisch et al., 2011; Westerlind et 

al., 2015). We investigated the genetic variation of several TJ-related genes (Table 3) in 

relation to MC. Subsequently, we analyzed colonic gene expression levels in relation to 

genotype, phenotype, and gender. 

 

Seven out of the 63 SNP markers were excluded due to failed genotyping or deviation 

from the Hardy-Weinberg equilibrium. The strongest association was observed between 

the PTEN SNP marker (rs1234224; susceptibility allele G) and MC overall and CC (Table 

7). PTEN is involved in the suppression of the PI3K/Akt pathway by dephosphorylation 

of phosphatidylinositol (3,4,5)-trisphosphate (PIP3), resulting in the biphosphate 

product phosphatidylinositol (4,5)-bisphosphate (PIP2) (Maehama and Dixon, 1998) 

(Figure 16). 

 

 

Figure 16. An illustration of PI3K/Akt regulation. PTEN inhibits the phosphorylation of PIP2 and thereby 

preventing the Akt activation. 

 

We observed significantly decreased levels of PTEN expression in MC and CC colonic 

mucosa, compared to non-MC controls. Decreased PTEN expression has also been 

observed in association with pulmonary fibrosis, which is characterized by activation 

and proliferation of fibroblasts and collagen secretion (He et al., 2012). Analogously, CC 
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is associated with a distinctive thickened sub-epithelial collagen layer (Langner et al., 

2015). 

 

A MAGI1 SNP marker (rs17417230) was associated with MC (Table 7), and decreased 

expression of MAGI1 was further associated with MC, CC, and LC. Moreover, the 

expression levels of MAGI1 and PTEN were positively correlated (p=4.10×10-4, rs=0.65) 

among the MC patients, but not among the non-MC controls (Figure 17). In line with this 

observation, recruitment of PTEN by MAGI-1b at AJs has been observed (Kotelevets et 

al., 2005). 

 

 

Figure 17. Correlation between RQ values of PTEN and MAGI1 in colonic mucosa from MC patients 

(p=4.10×10-4, rs=0.65). 

 

A F11R SNP marker (rs790055) was significantly associated with CC (Table 7), and a 

nominally significant association (p=0.042) was observed between decreased F11R gene 

expression and MC overall. In addition to a thickened sub-epithelial collagen layer, CC is 

also associated with increased mononuclear inflammation in the lamina propria 

(Langner et al., 2015). Reduced JAM-A expression is associated with increased 

infiltration of PMN in colonic mucosa in patients with colitis (Kucharzik et al., 2001), and 

increased PMN infiltration and lymphoid aggregation are additionally observed in 

colonic mucosa from JAM-A-/- mice (Laukoetter et al., 2007). Reduced levels of JAM-A 

have been described for inflamed CD and UC tissue compared to levels in controls 

(Vetrano et al., 2008). 
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Table 7. SNP markers were observed to be significantly (Bonferroni adjustment based on the number of 

analyzed genes, p<0.008) associated with MC and CC. 

Gene 
NCBI SNP 
Reference 

Allele 
CC & LC CC 

p-value OR 
Lower 
CL 

Upper 
CL 

p-value OR 
Lower 
CL 

Upper CL 

F11R rs790055 G 0.013 1.90 1.13 3.17 0.007 2.58 1.27 5.25 

MAGI1 rs17417230 C 0.006 1.58 1.14 2.19 0.015 1.63 1.10 2.42 

PTEN rs1234224 G 0.001 1.70 1.23 2.34 0.003 1.79 1.22 2.62 

Note: No markers were significantly associated with LC. 

 

None of the selected SNPs affected the gene expression levels in either MC patients or 

non-MC controls. Nevertheless, a non-significant decreased PTEN expression in MC and 

CC patients was observed in relation to homozygosity for the susceptibility allele of the 

PTEN SNP marker rs1234224 (p-value=0.081 and p-value=0.103, respectively) (Figure 

18). It is however possible that a larger study population would allow identification of 

more subtle correlations between SNP markers and their corresponding gene 

expression levels. 

 

 

Figure 18. Box plot illustration of PTEN expression levels in colonic mucosa from non-MC controls, LC 

patients, and CC patients stratified based on rs1234224 genotype. 
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Thesis contribution 

At the time when this work began (2007), increased intestinal paracellular permeability 

was established among IBD patients (Prasad et al., 2005). It was also known that the 

composition of the TJ structure was involved in the regulation of paracellular 

permeability (Furuse et al., 2001), and a number of studies pointed toward affected 

levels of TJ proteins among IBD patients (Kucharzik et al., 2001; Prasad et al., 2005). 

Nothing was, however, known regarding the importance of genetic variation of genes 

encoding proteins belonging to the TJ complex in relation to IBD.  

 

This thesis have demonstrated that genetic variation of genes, encoding both 

transmembrane and intracellular TJ proteins, may predispose individuals to IBD and 

MC. Correlations between genotype and gene-expression have been described, as well as 

affected gene expression levels in relation to phenotypes and inflammation. 

 

During this journey, a number of GWAS studies have been published and also supported 

that genetic variation of proteins involved in the regulation of the epithelial integrity 

may predispose individuals to IBD (Anderson et al., 2011; Barrett et al., 2008; Ellinghaus 

et al., 2016; Franke et al., 2010; Jostins et al., 2012; Liu et al., 2015; McGovern et al., 

2010). GWAS studies are, however, based on regionally heterogeneous populations. The 

papers of this thesis were mainly based on studies in homogenous patient cohorts to 

detect population-specific variations among IBD patients from Sweden. Therefore, our 

studies were able to uncover regionally relevant genetic variation of TJ structures in 

relation to IBD and MC in a meaningful way. Previous results from other groups together 

with our own results are summarized in Table 8. 

 

The general conclusion presented in this thesis is that genes encoding proteins involved 

in regulation of the paracellular permeability, with focus on the TJ structure, may 



 

60 

 

predispose individuals to intestinal inflammation, such as IBD and MC. Important 

findings are that MAGI3 is related to the development of IBD and that MORC4 

predisposes to CD and an increased risk of one-year mortality after SCT for 

hematological malignancy. Overall the findings underscore a polygenetic influence in the 

pathophysiology of classical IBD and MC. 

 

Table 8. Summary of genetic variations in IBD of genes encoding TJ proteins. 

Gene Chromosome Author 

CLDN2 Xq22.3 Söderman et. al. this thesis 

F11R 1q23.3   Norén et. al. this thesis 

GNA12 7p22.3-p22.2 Anderson et al. (2011) 

MAGI2 7q21.11 

Wapenaar et al. (2008) 

McGovern et al. (2009) 

Norén et. al. this thesis 

MAGI3 1p13.2   Norén et. al. this thesis 

MYO9B 19p13.11   
Cooney et al. (2009) 

Li et al. (2016) 

PTEN 10q23.31 Norén et. al. this thesis 

TJP1 15q13.1 Norén et. al. this thesis 
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Conclusions 

Based on the observations described in papers I-IV, the following conclusions can be 

drawn: 

 

 Genes encoding proteins involved in the regulation of paracellular permeability 

via TJ structures may predispose to CD, UC, and MC (paper I, III, and IV). 

 

 Genetic variation of CLDN2 may be a useful marker for predisposition to CD. This 

impact may occur directly through CLDN2 or indirectly via a putative link 

between MORC4 and TGF-β regulation (paper I). 

 

 Genetic variation of MORC4 may predispose to CD (paper I) and an increased risk 

of one-year mortality after SCT for hematological malignancy (paper II). 

 

 Non-HLA genetic markers involved in the etiology of IBD (TLR4 and CD14) may 

impact the outcome (acute GVHD and overall mortality) after allogeneic SCT for 

hematological malignancy (paper II). 

 

 Genetic variation of MAGI3 is associated with IBD (paper III). 

 

 PTEN may act as a marker for the inflammatory response in colonic mucosa of 

patients with CD (paper III). 

 

 Genetic variation of F11R, MAGI1, and PTEN is associated with MC (paper IV). 
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