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ABSTRACT 

 

Cochlear implantation makes hearing restoration possible in patients with severe to profound 

hearing loss. However, patients with residual hearing, where a cochlear implant may be 

combined with acoustic stimulation, and children with malformed cochleae, where the surgery 

itself as well as language training may be a challenge, are two important groups of patients that 

require special procedures. These patient groups are the subject of this thesis.  

The first study (paper I) examined the effects of cochlear implantation on residual hearing and 

postoperative histology in a guinea pig model. After mild to moderate levels of surgical trauma, 

effectuated as a cochleostomy alone or in combination with limited electrode array insertion, 

hearing recovered after a two-week period of loss (a temporary threshold shift). The 

intracochlear structures remained unchanged. A second study (paper II) was performed to test 

the hypothesis that cochlear implantation may induce endolymphatic hydrops, which could 

lead to hearing loss. The results indicate that hydrops is present during the first week after 

cochlear implantation.  

These experimental studies conclude that the guinea pig cochlea shows high resilience to 

cochlear implantation and that mechanical damage incurred during surgery does not explain 

the loss of residual hearing often seen in patients. Secondary mechanisms, such as hydrops, are 

likely to be involved in the early postoperative period. This information is important as patients 

with useful residual hearing increasingly receive cochlear implants. 

Two clinical studies examined the effects of cochlear implant surgery on children with x-linked 

inner ear malformation. The first of these (paper III) describes surgical techniques necessary 

for safe cochlear implantation, and further shows that implantation permits hearing restoration 

and the development of spoken language in these children. Further analysis of hearing and 

language outcomes, cognition and mental health (paper IV) revealed poorer outcome in 

hearing, language and mental health and lower executive functional level, as compared to a 

control group. Genetic analysis confirmed mutations in the POU3F4 gene on the X-

chromosome.  

X-linked malformation deafness is usually considered non-syndromic. However, paper IV 

shows that these children exhibit signs of neuro-developmental problems consistent with 

attention deficit and hyperactivity, which is likely related to the POU3F4 mutation. Hence, x-

linked cochlear malformation should be re-classified as a syndromic form of hearing loss. 
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INTRODUCTION 

 

The cochlear implant replaces a non-functioning inner ear. This invention has revolutionized 

the possibility of hearing rehabilitation for patients with severe to profound deafness. During 

the last decades hundreds of thousands of patients have had the opportunity to hear through 

electrical stimulation of the auditory nerve mediated by the implant. Children born deaf are 

today, to a very large extent, able to learn to hear, speak and attend mainstream schools, and 

children or adults who have turned deaf have the possibility to return to a life with functional 

hearing. The cochlear implant has without doubt changed our view on deafness and opened a 

new field of treatment. 

I remember my first encounter with a patient at first switch-on of a sound processor a couple 

of weeks after cochlear implant surgery. After having been deaf for twenty years she could, 

from one moment to the other, hear when someone spoke to her, and even talk to her relatives 

on the phone! I was truly amazed, and realized that this was something I absolutely had to learn 

more about.  

In spite of the good results for many patients, there are challenges remaining. This thesis 

describes two particular patient groups with special difficulties relating to their cochlear 

implant treatment. The first of these two relate to understanding the mechanisms of hearing 

loss after surgery to the inner ear. Patients with useful residual hearing may, if the hearing is 

preserved at surgery, combine electrical stimulation with acoustic “normal” hearing with 

benefit. However, the patient may lose this possibility as the surgery sometimes induce hearing 

loss, rapid or slowly progressive. The two first papers report on this topic. They are 

experimental with the aim of understanding possible actions relating to loss of hearing during 

cochlear implant surgery.  

The second group with specific challenges are children born deaf because of inner ear 

malformations. The difficulties displayed in this subgroup of pediatric cochlear implant 

recipients include both surgical and post-operative training aspects. This thesis address children 

with x-linked malformation of the inner ear. The last two papers are clinical, describing the 

surgical method and outcome of cochlear implantation, aiming to give a comprehensive picture 

for this group of children. 
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BACKGROUND 

 

THE EAR AND NORMAL HEARING 

In humans, the ear is the organ to register pressure fluctuations within a frequency range we 

call “sound”. The perception of sound requires a functioning hearing organ and auditory neural 

pathways. In addition, to make the sound meaningful, the brain has to interpret the nerve signal 

for the individual to understand what it means. Thus, we are born with the anatomy to listen, 

but we learn to hear. 

Sound, to humans, are vibrations within the frequency range of 20-16000 Hz transmitted 

through a medium, usually air in our everyday life. In an ear with normal function the 

vibrations, propagated as sound pressure alterations, “waves”, reaches the pinna and external 

auditory canal, resulting in movement of the tympanic membrane. These movements are 

transmitted to the inner ear by the ossicular chain located in the air-filled middle ear. The fluid-

filled inner ear contains the sensory epithelium for both hearing and balance. Because the fluid 

is non-compliant the vibrations are routed towards the hearing organ, the cochlea, as the 

mechanical impulses there may be equalized by round window movements. As there is 

normally no such alternative opening in the balance system all sound energy may be picked up 

by the hearing organ (Figure 1).  

The inner ear, capsula otica, is firmly embedded in the very hard petrosal part of the temporal 

bone. The spiral shaped bony labyrinth is filled with perilymph with the membranous labyrinth, 

winding inside, containing endolymph. Inside of the cochlea the fluid compartments are 

divided by the basilar membrane and Reissner’s membrane. In cross section, this gives three 

separate canals, “scalae”, with the hearing organ, the organ of Corti, being located on the basilar 

membrane with its sensory epithelium, the hair cells, facing the endolymphatic space, the scala 

media. With specific mechanical properties, changing along its length, the anatomy of the 

basilar membrane constitutes the base for the separation of frequencies, the tonotopy, of the 

cochlea. A specific frequency of sound will produce a travelling wave along the membrane and 

the physical properties at a certain point of the membrane will be susceptible for those 

frequency vibrations creating a wave maximum. The basilar membrane is stiffer in the basal 

turn corresponding to higher frequencies, and broader, thinner, and less stiff towards the apex, 

creating a wave maximum for lower frequencies. The hair cells in the region of a vibrating 

basilar membrane will react as the stereocilia, attached to the tectorial membrane, will bend 

and activate depolarization (Fridberger et al., 2006), initiating an action potential in the dendrite 

of the spiral ganglion neuron (SGN) propagating as a nerve signal in the axon. Multiple axons 

constitute the auditory nerve running in the internal auditory canal, entering the posterior fossa 

of the skull base and attaching to the brain stem, there connecting to the cochlear nucleus 

(Ulfendahl, 1997, Robles et al., 2001). 
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Figure 1) Cross section of the anatomy of the human ear. The cochlea is colored blue. The third bone 

in the ossicular chain, the stapes, is seen attaching to the inner ear by the oval window. Adjacent to that, 

the round window is seen as a dark hole in the basal turn of the cochlea. Figure printed with permission 

from Cochlear Ltd © 2016 

 

The hair cells of the cochlea are arranged in three rows of outer hair cells (OHC) and a single 

row of inner hair cells (IHC). The human ear can detect a sound pressure of 20 µPa in its most 

sensible area, around 2000-4000 Hz (Gelfand, 2004). This area corresponds well to most of the 

sounds in human speech. (Obviously, as our sense of hearing and our speaking organ, the 

vocals cords and the upper respiratory tract, have evolved together.) The lowest detectible true 

intensity of sound, measured in decibel (dB) Sound pressure level (SPL), varies widely over 

the frequency range.  

Most mammals have the same principal organization of the inner ear, however with large 

variations in sensitivity to frequency range and sound pressure. In this thesis the inner ear of 

the guinea pig has served as a model for experimental studies. The guinea pig is a common 

animal model in auditory research, because much of its hearing range overlaps with the human 

range. Furthermore, the cochlea is relatively accessible in the guinea pig, which facilitates 

experiments. 

HEARING LOSS 

Hearing loss is a very common disorder, in Sweden and worldwide. In Sweden it is today 

approximated that 13% of the population has a hearing loss and half of them to an extent where 

they need hearing aids. Approximately 0.15% of the population is completely deaf. In all, this 

makes hearing loss one of the most common disabilities among the population of Sweden. 

Inability to hear may be related to three different principle problems or a combination of these. 

Conductive hearing loss means there is something wrong with the mechanical portion of the 

hearing, the pathway of the sound from the outer ear through the middle ear. Sensory hearing 

loss relates to malfunction in the cochlea and neural hearing loss to problems in the auditory 

nerves and central auditory pathways. The last two reasons are often described as 

sensorineural. A hearing loss may also be mixed with a combination of conductive and 
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sensorineural components. In addition, the term central hearing loss may be used for processes 

of poor cerebral processing of the sound. The hearing loss may be single-sided or bilateral. 

The average normal sensitivity to sound has been set to a nominal 0dB Hearing level (HL) and 

a hearing loss as additional intensity necessary above that level to detect a sound. 0-20 dB HL 

is regarded a normal hearing. The grading of hearing loss is mild (20-40 dB HL), moderate 

(40-65 dB HL), severe (65-90 dB HL) and profound (>90 dB HL). When describing a hearing 

loss it may be called, for example, “moderate-severe” as it may be moderate in the lower 

frequencies and severe in the higher. To average the loss, a pure tone average (PTA) of the 

frequencies 500, 1000, 2000 and 4000 is often calculated. Cochlear implant candidates in 

general have a bilateral severe-profound sensorineural hearing loss with a PTA over 80dB as a 

majority of the hair cells of the cochlea are absent or non-functioning. Acoustic amplification 

is thereby not an option. However, the spiral ganglion neurons located in the modiolus (in a 

cochlea with normal anatomy) are present and susceptible to electrical stimulation. 

This thesis discusses one specific type of hearing loss, partial deafness, and one specific reason 

for hearing loss, a genetic inner ear malformation called x-linked deafness. 

Partial deafness 

With age all humans gradually lose some of the ability to hear the very highest frequencies, 10-

16 kHz. Such high frequency loss has little effect on everyday life communication as the 

frequencies of the sounds in normal speech and everyday life are located in the region of 125-

8000 Hz. 

The term “partial deafness” relates to a type of hearing loss where the cochlea has little or no 

function in one part and a relatively good function in another. Usually these patients present 

with severe-profound hearing loss in the frequencies above 500-1000 Hz and close to normal 

hearing at frequencies lower than that (Figure 2). Speech perception is very limited, as these 

patients are unable to detect much of the higher speech frequencies, the area of the consonants 

responsible for much of the discrimination of words. Amplification with conventional hearing 

aids offers very limited help as the non-functioning areas of the cochlea have little or no 

remaining hair cells. The patients are regarded difficult to rehabilitate as acoustic stimulations 

is not an option in the frequency areas where amplification is necessary. The majority of partial 

deafness patients are adults where the partial hearing loss has occurred after childhood, and 

they thereby have normal speech. Some cases are congenital or with early onset and these 

children develop an affected speech, related to limited consonant recognition. To evaluate the 

level of hearing loss in patients with partial deafness a PTA of the lower frequencies in the 

audiogram, 125, 250 and 500 Hz, is used for average (PTAlow). 
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Figure 2) Pure tone audiogram of a patient with partial deafness. The hearing thresholds are normal in 

the 125-500 Hz region and very high in the middle- and high frequency region. Red circle- right ear, 

Blue cross- left ear. (PTAlow; right ear 15 dB, left ear 18 dB) 

 

Genetic hearing loss 

Approximately 2/1000 children are born with severe-profound hearing loss and in the 

developed world more than 50% of prelingual deafness has a genetic base. The genetic forms 

of hearing loss may, in addition to otologic examination and audiometry, be suspected by a 

family history with many affected members. A pedigree may reveal a hereditary pattern and 

the traits are traditionally divided into autosomal dominant or recessive, x-linked or 

mitochondrial. The hearing loss may be an isolated symptom or part of a syndrome with 

additional defects. The most common forms of genetic hearing loss are autosomal recessive 

and non-syndromic. Today molecular testing for genetic disease is increasingly common and a 

large number of mutations in genes responsible for hearing loss are known. 

Hereditary hearing loss is most often sensorineural as the genetic anomaly in general affects 

the function of the sensory epithelium, the hair cells, but may be mixed or conductive if a 

simultaneous or isolated malformation of the middle or outer ear is present. Most genetic 

hearing loss is present at birth (prelingual) but may be progressive or with late onset once the 

child has learned to talk (postlingual). Although non-syndromic hearing impairment is more 

common than syndromic, more than 400 genetic syndromes that include hearing loss have been 

described (Toriello et al., 2004). 

X-linked deafness is rare (1-5%), compared to the vast majority of autosomal deafness. It may 

be syndromic, as in Alport or Mohr-Tranebjerg syndrome, but the majority of X-linked hearing 

loss is non-syndromic. Examples of the latter are DFNX1-DFNX4 (Petersen et al., 2008), and 

the most common of these (50%) is DFNX2 that gives a congenital, progressive mixed severe-

profound hearing loss (Figure 3).  



 

 7 

          

Figure 3) Preoperative air- and bone behavioral hearing thresholds as a function of frequency (visual 

reinforcement audiometry) in children with x-linked deafness (paper III and IV). Mean and SEM for 

each frequency. 

 

On imaging of the temporal bone a typical malformation of the inner ear is seen (Gong et al., 

2014) classified as Incomplete Partition, type 3 (IP3) (Sennaroglu et al., 2006). DFNX2 is the 

only form of x-linked hearing loss to give a bony malformation of the inner ear. In DFNX2 

mutations in the gene POU3F4 were identified already in 1995 by de Kok and co-workers (de 

Kok et al., 1995). Naturally, most children with symptoms from a mutation in a gene on the X-

chromosome are boys, and accordingly the majority of patients with DFNX2 are male. The 

role of POU3F4 (POU domain, class 3, transcription factor 4 (Brain-4)) is to encode a 

transcription factor which has a role in cellular regulation by binding to DNA, controlling the 

coding of genetic information from DNA to RNA. POU3F4 is part of a larger group of genes, 

the POU domain genes, controlling early development, however, the specific regulatory role 

of POU3F4 is not fully clarified. It is described to have a function during very early stages of 

embryogenesis, linked to the development of the neural tube (neuroepithelial cells) (Choi et 

al., 2013) and is found in the forebrain, including the supraoptic and paraventricular nuclei of 

the hypothalamus in rat studies (Mathis et al., 1992). It is also found to be expressed in the 

periotic bone (later capsula otica) and the fibrocytes of the cochlear duct (Phippard et al., 1998). 

It is thought to have a role in cell signaling during labyrinthine development necessary for spiral 

ganglion innervation. Animal studies on pou3f4 gene knock-out mice have revealed bony inner 

ear (Phippard et al., 1998) and spiral ligament (Minowa et al., 1999) deformities. The later may 

affect potassium ion homeostasis. In humans, an increasing number of POU3F4 mutations are 

reported. These include intragenic missense or frameshift mutations but also deletions in the 

gene or in the upstream regulatory element. 

COCHLEAR MALFORMATIONS 

The normal shaped cochlea has a well-defined bony modiolus harboring the spiral ganglion 

neurons and the afferent axons of the beginning of the auditory nerve. The nerve passes a bony 

cribriform plate at the fundus separating the cochlea from the internal auditory canal, and 

thereby acts as a border for the intracranial cerebrospinal fluid (CSF) and the perilymphatic 
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space inside of the cochlea. The internal structure is well-organized in three separate canals, 

“scala”, as described above, scala vestibuli, scala media and scala tympani. 

Deviations from the normal anatomy are referred to as malformations. The inner ear develops 

in gestation week three to eight and disturbances during this period will result in an abnormal 

anatomy. In some cases, there is a clear genetic cause to the malformation but in others it is 

unclear why the inner ear is malformed and the hearing loss may be the only symptom. Hearing 

loss related to a malformation is always congenital but may in some cases be mild at birth and 

progress during life. 

Diagnosis and classification depends on reliable imaging, high resolution CT and MRI. 

Limitations to computed tomography include soft tissues as they are poorly visualized as 

opacities only. The CT examination gives answer to size, the intracochlear lumen, the modiolus 

and the bony parts of the partitions inside of the lumen. 3 Tesla MRI adds substantial soft tissue 

information but resolution is still limited regarding intracochlear fibrous and neural structures. 

Nonetheless, the results of imaging today allow a more differentiated classification. 

Classifications 

In 1791 Carl Mondini first described a deformity of the inner ear (Mondini, 1791). Cochlear 

malformations are sometimes still inappropriately described as a “Mondini malformation” 

regardless type of abnormality. In 1987 Jackler and co-workers suggested a classification 

(Jackler et al., 1987) introducing divisions of the cochlear malformations common cavity, 

incomplete partition and hypoplasia. In addition, there are two rare, severe deformities of the 

temporal bone, Michel deformity and cochlear aplasia where, in both cases, the cochlea is 

absent. Sennaroğlu and Saatci proposed a more precise classification in 2002 (Sennaroglu et 

al., 2002),where the incomplete partition group is further subclassified.  

In the Sennaroğlu classification a cochlea with incomplete partition (IP) has a relatively normal 

size of its external borders and there are three subgroups, type 1 with a cystic cochlea and a 

severe modiolar dysplasia, type 2 with a defined basal turn but a bud-shaped apex and a 

moderate modiolar dysplasia and type 3 with a cork screw appearance of the cochlea, modiolar 

aplasia, absent cribriform bone in the fundus and a wide internal auditory canal. In addition 

hypoplastic cochleae are grouped in type 1-3, with type 1 being the most severe. The 

Sennaroğlu classification is today widely accepted and will be used in this thesis. 

IP 1 is often referred to as a cystic cochlea-vestibular malformation, type 2 is the classic 

Mondini malformation and coexists with a large vestibular aqueduct and type 3 is related to a 

mutation in the POU3F4 gene on the X-chromosome. Paper III and IV investigates a group of 

children with POU3F4 related deafness and subsequently, in this thesis, incomplete partition 

type 3 is discussed more in detail.  

As mentioned above children with x-linked malformation are born with a mixed hearing loss, 

often rapidly progressing to a severe-profound level. As their hearing loss is identified on 

neonatal screening and auditory brainstem response (ABR) they may be deemed as suitable for 

a cochlear implant and referred for imaging of the temporal bone. As the imaging, starting with 

an MRI and, in cases of anomaly, followed by a CT, reveals a malformation the diagnosis is 

clear but may be additionally confirmed with genetic testing.  
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On imaging of the temporal bone a typical malformation of the inner ear is seen (Figure 4) 

(Gong et al., 2014), classified as Incomplete Partition, type 3 (IP3) (Sennaroglu et al., 2006). 

  

  

Figure 4) X-linked malformation of the inner ear. Axial CT image demonstrating a cystic malformation 

with modiolar aplasia (left image) and 3D-reconstruction of an MRI (right image) with the 

perilymphatic space colored white demonstrating an abnormal cork screw appearance of the cochlea 

and a very wide internal auditory canal (IAC). Courtesy of Babak Falahat, DDS, Karolinska University 

Hospital 

 

In recent years all pediatric cochlear implant recipients with a cochlear malformation has been 

assessed, implanted and followed at Karolinska University Hospital in Stockholm. This has 

opened a unique opportunity for a comprehensive overall approach to this subgroup of patients. 

COCHLEAR IMPLANTS 

A cochlear implant is an electric device which turns sound into electrical impulses. It consists 

of an external part, the sound processor, and internal implant, the receiver-stimulator and the 

electrode array. In principle the sound is picked up by microphones on the sound processor and 

is after processing sent through the skin as a frequency modulation (FM)-signal to the implant 

by an antenna behind the ear (Figure 5). The coil of the implant picks up the signal and converts 

it into electrical impulses sent out in an array positioned in the cochlea (Clark, 2006). The sound 

frequencies are divided into channels, 12, 16 or 22 depending on the manufacturer, and each 

channel is lead to a specific electrode on the array, thus separating the intracochlear electrical 

stimulation according to tonotopy. The electrodes stimulate the neurons of the spiral ganglion 

in the modiolus with electrical currents according to the frequencies in the envelope of the 

sound (Wilson et al., 1991). 
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Figure 5) Cross section of a cochlear implant. The sound processor and external antenna is seen behind 

the ear. A transparent image of the receiver-stimulator is noticed under the hair and the electrode array 

is out lined trough the bone and middle ear and entering the cochlea. Figure printed with permission from 

MED-EL © 2016 

 

There are several electrode array options of for implantation. Electrodes with a prefixed 

curvature give a perimodiolar positioning inside the cochlea whereas straight electrodes remain 

along the lateral wall of the scala tympani. The electrodes also have alternative lengths, 20-31 

mm, depending on if a deep insertion is attempted or not. Short electrodes, around 20 mm, have 

been used in cases of residual hearing in the low frequencies aiming at hearing preservation.  

Cochlear implants may be used uni- or bilaterally. In unilateral cases it may be combined with 

a conventional hearing aid on the other ear if this is experienced as a benefit by the patient. 

COCHLEAR IMPLANTATION SURGERY 

Cochlear implantation in patients is a standardized procedure in general anesthesia. A 

postauricular incision and transmastoid approach including a posterior tympanotomy is the 

most common access to the middle ear and the basal turn of the cochlea, the promontory. The 

opening to the scala tympani can be performed by drilling a hole in the promontory, a 

cochleostomy, or by incising the round window membrane. The electrode array of the cochlear 

implant may thereby be inserted into the cochlea following the anatomical boundaries of the 

scala tympani. Soft tissues are used to pack for sealing around the electrode. The receiver-

stimulator package is positioned on the cranium in a subperiosteal pocket followed by wound 

closure in multiple layers. Intraoperative electrophysiological testing confirms the implant 

integrity and neural response of the auditory pathway. Postoperative x-ray verifies a correct 

positioning of the electrode inside the cochlea. The patient is given one dose of intravenous 

antibiotics.  

Surgery and residual hearing 

In the case of a patient with residual hearing, as for patients with partial deafness as described 

above, the aim during surgery is to preserve the remaining auditory function. This allows the 

use of acoustic amplification and electrical stimulation in the same ear. The concept of “soft 

surgery” to the cochlea was developed by Lehnhardt (Lehnhardt, 1993) and in 1999 von Ilberg 
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described the possibility of combined electrical and acoustic, bimodal, stimulation (EAS®) in 

the same ear (von Ilberg C, 1999). This type of hybrid hearing requires a postoperative result 

of better than 80 dB HL in the frequencies of amplification, often 125, 250 and 500 Hz, for a 

useful residual hearing. The concept today includes meticulous care not to touch the ossicular 

chain, careful exposure of the round window membrane or endosteum of the scala tympani, the 

use of local application of cortisone in the middle ear, incision of the round window membrane 

or endosteum and slow insertion of the electrode array. Postoperative steroids are administered 

for one week.  

It is well described that patients with partial deafness benefit from a CI alone compared to 

preoperative use of a hearing aid (Cullen et al., 2004, Dowell et al., 2004). This is important as 

not all patients preserve their residual hearing. In a review of cochlear implantation in patients 

with residual hearing Talbot and Hartley concluded that 13% of the recipients sustain a total 

loss of residual hearing and 24% > 20dB. (Talbot et al., 2008). In recent years, clinical studies 

evaluated long-term outcomes of cochlear implantation in patients with residual hearing. 

Mertens et al. (Mertens et al., 2014) described a group of 9 patients (11 ears), followed for 10 

years, showing complete low-frequency hearing preservation in 27%, partial preservation in 

45%, minimal in 18% and loss of residual hearing in one subject. This study used the 

HEARRING group Hearing Preservation Classification System (0% = loss of hearing; >0%-

25% = minimal HP; >25%-75% = partial HP; >75% = complete HP) (Skarzynski et al., 2013) 

to evaluate hearing preservation rates and compare results of different strategies of intervention. 

Helbig and co-workers analyzed 103 ears (96 patients) up to eleven years after implantation 

(Helbig et al., 2016). 12 month results (n=81) showed 31% complete hearing preservation, 

48% partial and 13% minimal. Eight percent exhibited total loss of residual hearing. In a ten-

year follow-up (n=62) 27% had complete preservation, 39% partial and 15% minimal. In 

patients with total hearing loss, no association was seen to etiology or surgical approach. In this 

study PTAlow shifts ≤10 dB are regarded as complete preservation, between 10 and 30 dB as 

partial and ≥30 dB as minimal. Regarding auditory outcome, several authors showed that with 

preserved hearing, a combined stimulation is of benefit to the auditory outcome (Lorens et al., 

2008, Gstoettner et al., 2009, Gifford et al., 2013). These postoperative studies examine hearing 

with the CI alone, HA alone and in combination with bimodal stimulation in one ear.  

The loss of residual hearing in the early or late postoperative period continues to be a problem 

in spite refinement of surgical technique (Skarzynski et al., 2007), electrode designs (Wanna 

et al., 2014) and use of intraoperative drugs (Ye et al., 2007, James et al., 2008, Connolly et 

al., 2011). The underlying intracochlear mechanisms remain unclear. The surgical trauma, 

including the insertion of the electrode, may induce direct mechanical damage and activate 

inflammatory or cell death pathways (Eshraghi et al., 2006). The presence of an electrode in 

scala tympani also cause fibrosis (O'Leary et al., 2013). This, in combination with the electrode 

volume itself, is likely to generate an “intracochlear” conductive hearing loss. Paper I and II in 

this thesis investigates patterns of loss of residual hearing after cochlear implantation (I) and a 

possible mechanism responsible for alterations in hearing (II). 

Surgery in malformed cochleae 

Due to the variant anatomy of the malformed cochlea, a cochlear implantation may constitute 

a challenge. There are several aspects to consider. These cases are almost always pediatric with 
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the special needs related to that, especially as these children may have additional handicaps. In 

rare cases cranio-facial or upper airway malformations are present and anesthesia has to be 

planned accordingly. Abnormalities, other than the inner ear malformation, may co-exist in the 

temporal bone, the most important being a deviant facial nerve route or aberrant veins, making 

the approach challenging. The cochlea itself may be opened by the RW or a cochleostomy 

depending on visualization. The choice of electrode depends on the size of the cochlea, the type 

of malformation, and whether cerebrospinal fluid (CSF) gusher is present. The latter 

necessitates meticulous sealing around the electrode. All severe malformations require 

intraoperative x-ray to confirm the electrode position. 

SPEECH, LANGUAGE, COGNITION AND MENTAL HEALTH 

The ability to hear is necessary for speech development. Without early stimulation of the 

auditory system, the brain loses the ability to analyze and interpret signals from the auditory 

nerve. During the first years of pediatric cochlear implantation, the age of implantation was 

often four or five years and, although the children did learn to hear, their speech and language 

development was limited (Nicholas et al., 2007). With adoption of earlier implantation age, the 

hearing results have become increasingly better and results today often include excellent open 

set speech recognition. Today, as a general rule, the spoken language of children with a 

cochlear implant is often at the level of age-equivalent peers in terms of intelligibility, 

vocabulary and fluency and many attend mainstream schools (Dettman et al., 2016).  However, 

it is important to remember that these children still suffer from hearing impairment making 

listening difficult, especially in noisy situations. Also, there are subgroups with special needs 

or handicaps requiring additional support and special schools. Furthermore, some children are 

still operated late due to immigration, adoption or similar reasons and multiple languages used 

in a family also make spoken language development more difficult (Teschendorf et al., 2011).  

The clinical experience of meeting children with x-linked malformation is that this group 

exhibit special features, including hyperactivity and attention problems. Children with hearing 

loss may display a similar picture. However, the x-linked group, seen in clinic at follow-up, 

resemble each other with a behavior different from most other pediatric CI recipients. 
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AIMS 
 
 

 

This thesis considers two different aspects of cochlear implantation. The first two papers, I and 

II, are experimental and address the problem of hearing preservation in patients with residual 

hearing who receive a cochlear implant. To investigate this, a guinea pig model for cochlear 

implantation was used. The second aspect of the thesis relates to cochlear implantation in 

malformed cochleae. Paper III and IV are clinical studies investigating a group of children with 

severe-profound hearing loss related to x-linked malformation. These studies explore their 

treatment with cochlear implantation and if they require special attention during surgery and 

follow-up. 

 

 

Paper I. The aim was to study the effects of different levels of trauma during cochlear 

implantation on residual hearing and cochlear histology. 

 

 

Paper II. The hypothesis of this study was that endolymphatic hydrops, induced by cochlear 

implantation, may be responsible for the delayed hearing loss and vertigo seen in some CI 

recipients with residual hearing. The aim was to determine if signs of hydrops were present in 

a guinea pig model after cochlear implantation. 

 

 

Paper III. X-linked malformation is an unusual reason for severe-profound hearing loss in 

children. To date only a few cases have been described in the literature. Treatment with 

cochlear implants has been described as related to risks of complications during surgery and 

the reported outcome doubtful. The purpose of this study was to describe a surgical method, 

evaluate complications and determine hearing outcomes with cochlear implants. 

 

 

Paper IV. This paper in depth investigates the language outcome, cognitive abilities and 

mental health in a group of children with x-linked malformation compared to a control group. 

Their POU3F4 gene mutation is analyzed with the hypothesis of this being a syndromic hearing 

loss.  
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METHODS 

 

SURGICAL PROCEDURES 

Guinea Pigs (Papers I and II) 

In the experimental set-up for papers I and II adult Duncan-Hartley guinea pigs were used, 

albino in paper I and tricolor in paper II. The animals were housed at the animal departments 

of Karolinska University Hospital (paper I) and the Royal Victorian Eye and Ear Hospital 

(paper II) respectively. The experiments were performed in accordance with ethical standards 

of the Animal Care Committee in Stockholm, Sweden (paper I, Ethics approval: N12/10) and 

the Animal Research Ethics Committee, Melbourne, Australia (Paper II, Ethics approval: 

12/261AR). The animals were anaesthetized with ketamine 40mg/kg and xylazine 10mg/kg 

(paper I) or ketamine 60 mg/kg and xylazine 4 mg/kg (paper II) given as intramuscular 

injections. The same anesthesia was used during surgeries as during later hearing testing. 

In cochlear implantation in a guinea pig, the bulla is exposed with a postauricular incision. The 

bone of the bulla was removed with a knife or a burr (bullostomy). A cochleostomy was drilled 

on the promontory to open the scala tympani and an electrode array inserted. Soft tissue was 

applied around the electrode to seal the opening. The wound was closed with resorbable sutures 

and the animals received an intraperitoneal injection with 0.2 ml buprenorphine 0.3 mg/ml, a 

subdermal injection of 5 ml Saline 0.9% subcutaneously and 1 ml doxycykline (2 mg/ml). 

 

          

Figure 6) Guinea pig cochlear implant electrode. In this figure the model used in Group 3 in paper I is 

shown in a). The implant is seen in b) after cochlear implantation through a cochleostomy adjacent to 

the RW. 

 

In the current papers, the dummy electrode lacked metallic stimulation electrodes, as the 

hypothesis was related to the insertion and presence of the electrode itself and not to electrical 

stimulation (Figure 6). This was also preferred as metal artefacts may disturb micro-CT 

imaging (paper II). The array was fixed inside the bulla and remained there during the entire 

study period, also after dissecting out the cohlea. In paper I it was made of polyethylene tubing 

and silicone and in paper II of a flexible and elastic silicone polymer. 



 

 15 

Patients (Papers III and IV) 

The studies in paper III and IV involve ten children with x-linked malformation resulting in 

inner ear malformation (Incomplete Partition type 3, IP 3). Their hearing loss was discovered 

at neonatal hearing screening in nine cases and after attempts at early hearing aid fitting, they 

were referred to the Cochlear Implant Clinic at the ENT Department at the Karolinska 

University Hospital. Further examination with temporal bone imaging and genetics revealed a 

POU3F4 mutation explaining their mixed severe-profound hearing loss. They were deemed 

suitable for a cochlear implantation, and the mean age at first implant was 1.8 years (range=0.9-

2.8 years). Five of these children received a second implant in a sequential procedure, and the 

others use a hearing aid on the contralateral ear. 

As described above, this particular malformation includes severe modiolar dysplasia and the 

cribriform bone in the fundus of the cochlea is absent. This leads to an open communication to 

the internal auditory canal (IAC) and the cerebrospinal fluid (CSF) space. Opening to the 

intracochlear space results in a gusher of CSF that lasts for approximately 15 minutes. The 

properties of this specific malformation requires special procedures. First, intraoperative x-ray 

is used to confirm that the electrode array is positioned inside the cochlea and not displaced 

into the IAC. Second, the opening in the cochlea must be firmly sealed to avoid postoperative 

rhinorrhea. The surgical procedure developed at Karolinska University Hospital includes RW 

insertion and the use of a straight electrode array. It is described in detail in paper III.  

In paper IV the study subjects with x-linked malformation were compared with a control group. 

The control group were children with Connexin 26 mutations resulting in deafness; they were 

recruited from a larger group of tested children and matched for gender, age and use of cochlear 

implants.  

AUDIOLOGY 

Objective Measures (Papers I and II) 

Electrophysiological measurements allow hearing thresholds to be determined in patients or 

study animals without active participation of the subject. In the techniques described below, 

the electrical response from intracochlear potential or nerve impulses generated by multiple 

short sounds are recorded and averaged. This results in a graph with time on the x-axis and 

electrical potential on the y-axis. The sounds presented can be multi-frequency clicks, testing 

the whole organ of Corti, or a pure tone, testing the cochlear region corresponding to that 

frequency. A decreasing sound stimulus level gives a successively reduced electrical response 

and it is thereby possible to identify a threshold. In animal studies the thresholds for different 

frequencies are defined in every individual animal before any intervention. 

Electrocochleography (ECochG) 

Electrocochleography registers the electrical potential created inside the cochlea during sound 

stimulation. It reflects electro-mechanical processes in the organ of Corti and alterations in the 

response may therefore indicate the presence of endolymphatic hydrops (Fridberger et al., 

1997). In paper II, where possible hydrops after cochlear implantation was examined, ECochG 

was used at different time points after surgery (one day, one week, four weeks and three 

months). The anaesthetized animal was placed in a sound proof chamber with reference 
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electrodes on the scalp and hind leg (ground). After a postauricular incision and bullostomy, a 

gold ball recording electrode was placed in the RW niche. Sound stimuli were 8-ms tone bursts 

at the frequencies 2, 4, 8, 16 and 32 kHz, averaged over 125 stimulus presentations (Figure 7). 

In this study, cochlear implantation followed the first recording and in the final recording the 

bulla was opened but the cochlear implant kept in place. 

 

Figure 7) Example of electrocochleography recording, in this case in animal HH03 one week after 

cochlear implantation. Sound stimulation frequency is 8 kHz. The compound action potential (AP) is 

marked in green and the time period for measuring the summation potential (SP) as red. With increasing 

attenuation of the sound (sound intensity decreasing by 5 dB steps) the AP response decreases. Note the 

change in the response scale bar from 0.1 mV to 0.02 mV to the left (dBA, Decibel Attenuation).  

 

Hearing threshold was defined as the lowest intensity that gave a response, compound action 

potential (CAP) of >0.5 µV. The first negative to the first positive peak indicated the CAP 

amplitude (green in figure 7). The SP was measured at 5.5-6.5 ms following onset of stimulus 

at the relatively stable plateau after the CAP (red in figure 7). A SP/AP ratio was calculated as 

a functional estimate of hydrops. Separately for each stimulus frequency postoperative SP/AP 

ratios were divided by pre-operative SP/AP ratios to quantify the change in the ratio over time. 

This gave an index, here called the “SP/AP ratio change” for each frequency. 

Auditory Brainstem Response (ABR) 

Auditory Brainstem Response (ABR) was used in paper I to evaluate electrophysiological 

hearing thresholds in the guinea pigs. The anaesthetized animal was placed in a sound proof 

box with electrodes attached to the vertex, the postauricular area and the hind hip. The 

loudspeaker was connected to the external auditory canal with a silicone tube. The initial sound 

stimulus was 90 dB peak SPL. A 5 dB reduction of the sound gives a successively reduced 

electrical response and the hearing threshold is estimated to when wave V, corresponding to 
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the synapse of the cochlear nucleus in the brain stem, disappears. The threshold is defined as 

the lowest intensity with a visible wave V in two averaged runs. Six different pure tone 

frequencies were analyzed in this work, 1, 2, 6.3, 12.5, 16 and 20 kHz. A postoperative 

threshold shift is calculated as the difference between the preoperative threshold and the 

measured threshold at different time points after surgery. I paper I these were immediately after 

insertion (0), day one (1), day four (4), one week (7), two weeks (14) and four weeks (28). 

Psychoacoustic Methods (Papers III and IV) 

Methods to determine hearing in subjects often depends on a response or interaction where the 

subject indicates that he or she has heard something, in adults and older children by pressing a 

button. These methods are called psychoacoustic. The tests are performed in sound-proofed 

rooms with low ambient sound level and short reverberation time. 

Pure tone Audiometry 

The most common way to test hearing is pure tone audiometry, which we often refer to as a 

“hearing test”. This indicates a level of detection of sound at different frequencies. In the 

present studies, when the children were too young to interact by pressing a button to indicate 

when they hear, their responses were determined by observing their reactions to sound 

(behavioral observation audiometry) (Karikoski et al., 1998)) or with visual reinforcement 

audiometry, (Shaw et al., 2004). This pediatric audiometry requires an experienced child 

audiologist. In paper III and IV, children were tested with the sound presented by loudspeakers, 

in “free field” conditions (not with headphones). A crucial advantage of free field testing is that 

it allows hearing aids or cochlear implants to be used. Children between 2.5 and 5 usually are 

tested with conditioned play audiometry (Dawson et al., 1998). 

Speech Audiometry 

Speech audiometry allows assessment of the level of word discrimination. Testing how 

subjects actually experience the words presented, by repeating what they just heard, permits 

better evaluation of how well their hearing works in everyday life. Words are composed by 

multiple frequencies, vowels and consonants, and word discrimination therefore requires a 

relatively well functioning cochlea, as well as central auditory pathways. This is referred to as 

speech recognition. In paper III and IV the children were tested with monosyllabic 

phonemically balanced word lists (Haskins, 1949, Liden, 1954). The results are presented as a 

percentage correct. The test was performed in quiet with the words presented at 65 dB SPL 

from a loud speaker in front of the child and in noise with the same speech signal but disturbed 

by a noise signal from four separated loud speakers (+/- 45-135 degrees azimuth). The signal-

to-noise ratio was fixed at 0 dB. The mean age of the children tested in the x-linked group was 

7.8 years (range=9.8-5.6, n=6). In the control group in paper IV the children had a mean age of 

7.2 years (range=4.5-12.7, n=5). Children younger than four years cannot be tested with speech 

audiometry. The speech testing was performed with cochlear implants and/or hearing aids. 

Localization of sound 

Sound localization along the horizontal dimension requires two functioning ears. The ability to 

localize sounds is important, since it also facilitates the understanding of speech in noisy 
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situations (Hawley et al., 2004). As binaural hearing is the aim in most children with severe-

profound hearing loss, with cochlear implants or in combination by a CI and a hearing aid, they 

may develop spatial hearing. However, in spite of binaural stimulation, sound localization 

accuracy remains poorer in children with CI (Lovett et al., 2010, Asp et al., 2015). In paper III 

and IV, children were presented to sound from five loud speakers in a semi-circle separated by 

45 degrees (spanning 180 degrees). The measurement consisted of 10 sound stimuli presented 

in random order from any of the loud speakers, and children were instructed to point at the loud 

speaker that generated the sound (Asp et al., 2011). All tested children had binaural hearing, 

either with two cochlear implants or a cochlear implant in one ear combined with a hearing aid 

on the other ear (bimodal). 

MORPHOLOGY (PAPERS I AND II) 

After final electrophysiological measurements, the cochleae of the guinea pigs were prepared 

for histological analysis. The animals were euthanized with a pentobarbital sodium injection 

(25 mg/kg intraperitoneal) and either decapitated directly (paper I) or transcardially perfused 

with 0.9% saline followed by 10% neutral buffered formalin (paper II). 

Surface Preparation 

The cochleae were removed from the temporal bone and the perilymphatic space was perfused 

with 4% paraformaldehyde. The bony outer wall of the cochlea, the stria vascularis, Reissner´s 

membrane and the tectorial membrane were removed with forceps and the exposed organ of 

Corti was stained with Phalloidin to enhance the actin in the stereocilia of the hair cells. 

Following this, the basilar membrane was dissected from the osseous spiral ligament in half-

turns and mounted on a microscope glass slide. The hair cells were examined in a fluorescence 

microscope (Zeiss) and missing inner or outer hair cells were counted, apex to base (Figure 8). 

The organ of Corti is 19 mm long in a guinea pig. Hair cell loss, seen as scar formation of the 

cuticular plate, were presented in place-specific cochleograms representing a percentage loss 

along the organ of Corti. 

 

Figure 8) Picture of the organ of Corti in a guinea pig in a fluorescence microscope after surface 

preparation. The three rows of outer hair cells (OHC) are visible with one scar formation in the middle 

row. (IHC Inner Hair Cells) 
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Spiral ganglion Cell Density (Paper I) 

The cochleae were removed from the temporal bone, trimmed and decalcified in 0.1M 

Ethylene-Diamine-Tetraacetic Acid for two weeks. Following dehydration, they were 

embedded in 2-hydroxyethyl methacrylate plastic (Technovit 7100) attempting an orientation 

for mid-modiolar sectioning. 24 µm cryosections were sliced and mounted on glass slides, 

keeping the electrode array within the cochlea. The nuclei of the spiral ganglion neurons were 

counted with an optical fractionator technique (Gundersen et al., 1988), examining every tenth 

section with a 12 µm deep “optical dissector”. An estimate of the total SGN number within the 

cochlea was calculated (Voie et al., 1993). 

Micro-CT (Paper II) 

After collection of the cochleae, they were prepared for examining with micro-CT. The round 

window was incised, and a small opening near the helicotrema was made to facilitate staining 

of the intracochlear soft tissues with 4% osmium tetroxide. The cochleae were examined with 

an Xradia microXCT-200 scanner, aiming for a mid-modiolar axis of rotation (Figure 9). A 

reconstruction software, TXMReconstructor, was used to reformate a three-dimensional 

volume and, after corrections, slicing this for image analysis (Amira 5.4, Visualization Sciences 

Group, France). The presence of endolymphatic hydrops (EH) was identified by examining the 

position of Reissner’s membrane (RM). The extent was quantified, at the positions along the 

basilar membrane corresponding to the frequencies examined with ECochG (2, 4, 8, 16 and 32 

kHz).  

 

  

 

Figure 9) To the left a non-reformatted micro-CT image of a guinea pig cochlea. The stria vascularis, 

organ of Corti and Reissner´s membrane were visible. To the right a magnification of the basilar 

membrane, scala media and scala tympani. Marked in red is the method of calculating “scala media area 

differences” (SMADs) at each location along the cochlea. The SMAD is the area between the observed 

position of Reissner's membrane and its normal resting position. (SGN Spiral Ganglion Neuron, SV 

Scala Vestibuli, SM Scala Media) 
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Two methods to quantify EH was used. A developed Radiological Hydrops Score (RHS) was 

calculated by initial transmodiolar visual identification of the position of RM in relation to its 

neutral position. The displacement shape of RM was first defined by visual inspection as 

straight (normal), convex (hydropic), concave (“enhydropic”) or flaccid, where RM was longer 

than usual, but its curvature was inconsistent. To arrive at a measure of EH the RHS (value 0-

1) was calculated in every cochlea as the proportion of the RM that showed the convex shape 

typical of EH. For a second measure of EH was the “scala media area difference” (SMAD) was 

calculated (in %). The SMAD is the area between the observed position of RM and its normal 

resting position (Figure 9 right). SMAD was 0 at the normal position of RM. A convex RM, as 

in a hydropic cochlea, resulted in a positive SMAD value whereas a concave RM gave a 

negative value. For a summary measure for each cochlea the values obtained at the different 

positions were averaged.  

The extent of soft tissue around the electrode was calculated by identifying the limits of scala 

tympani followed by coloring of the electrode on every fifth slice, interpolating the intervening 

slices (Matlab). Areas in the scala tympani with higher radio-opacity were identified as soft 

tissue. Several measures were quantified, the total tissue response volume, the tissue response 

volume isolated to each quadrant (defined as upper inner (Q1), upper outer (Q2), lower outer 

(Q3) and lower inner (Q4)) of the scala tympani, the maximum percentage of the cross-

sectional area of scala tympani that was occluded by tissue response or electrode at any point 

along the cochlea, and the amount of tissue response within 200 µm of the organ of Corti.. 

GENETICS (PAPERS III AND IV) 

A blood sample was collected from the participants for DNA extraction. Primary molecular 

testing for mutations in POU3F4 was performed with multiplex ligation-dependent probe 

amplification (MLPA), which is a DNA-based method for detection of deletions and 

duplications (Schouten et al., 2002). The mix of probes included two in the POU3F4 gene as 

well as 4 probes targeting the 1 Mb regulatory region upstream of POU3F4. In addition, probes 

for other common exons involved in hearing loss were included such as all GJB2, GJB6 

(Connexin 26 and 30, DFNB1) and GJB3 exons (Connexin 31) as well as WFS1 (Wolfram 

syndrome) (P163-D1, MRC-Holland).  

In cases were no mutation was found with MLPA, Sanger sequencing of POU3F4 was 

performed in order to detect point mutations in exon one of the gene. 

SPOKEN LANGUAGE, COGNITION AND MENTAL HEALTH (PAPERS III AND 
IV) 

Speech- and language pathologists assessed the speech and spoken language performance of 

each subject. A series of test materials were used aiming to recognize the specific difficulties 

for children with cochlear implants. Paper III focused on speech intelligibility and expressive 

grammar whereas paper IV also included verbal fluency, vocabulary and commutative aspects 

of pragmatic skills (Table 1). For assessment of cognition a psychologist evaluated the children 

with a series of tests and questionnaires focusing on executive functions. Mental health was 

assessed by questionnaires and focus group discussions. 
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Spoken language 

For expressive vocabulary the Swedish version of the Boston Naming Test (BNT) was used. 

Stanine (STAndard NINE, scores following normal distribution divided into nine intervals) 

results are reported in relation to age (Tallberg, 2005). Verbal fluency was assessed by FAS-

test (testing phonemic fluency on the letters F, A, S) and Animal (testing semantic fluency). 

Pragmatics, rules for social language, were evaluated by the Children’s Communication 

Checklist-2 edition (CCC-2) (Bishop, 2003) parental screening questionnaire estimating a 

child’s communication skills. (In addition to pragmatics it assesses the areas of syntax, 

morphology, semantics, and speech.) Different subscores such as General Communication 

Composite score (GCC) or Social Interaction Difference Index (SIDI) may be obtained 

identifying weaknesses in different areas of language. In the area of pragmatics the scores relate 

to nonverbal communication, social relations and interests. To test how comprehensible the 

participants’ speech was the Speech Intelligibility Rating-2 (SIR-2, score 1-5) (Allen et al., 

2001) was used and rating of expressive grammar was done by a speech-language pathologist 

using a locally developed scale (EGS, score 1-9) (Löfkvist, 2014). 

 

Table 1) Tests of spoken language, cognition and mental health used in papers III-IV. 

Measure/Test name Paper III Paper IV 

Spoken language ability    

Expressive vocabulary; The Boston Naming Test (BNT)  

 

Phonemic word fluency task; (FAS)  

Semantic word fluency task; (Animal)  

 

Pragmatic skills; Children’s Communication Checklist-2 edition (CCC-2)  

 

Speech intelligibility; Speech Intelligibility Rating-2 (SIR-2)  

(rating of speech-language pathologist) 

 

Expressive grammar; Expressive Grammar Scale (EGS)  

(rating of speech-language pathologist) 

 

 

 

 

 

 

 

X 

 

 

X 

 

X 

 

X 

X 

 

X 

 

X 

 

 

X 

Cognition and mental health   

Executive functioning: 

Test of Everyday Attention for Children (TEA-Ch)  

 

General Working memory; Sound Information Processing System (SIPS)   

 Phonological Working memory; SIPS 

 

BRIEF-P and BRIEF  

(parent and teacher questionnaire)  

 

 X 

 

 

X 

X 

 

 

X 

Non-verbal cognitive ability (Ravens Colored Progressive Matrices)    X 

Strengths and Difficulties Questionnaire (SDQ)  

(parent and teacher questionnaire) 

X X 
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Cognition 

Evaluation of cognition focused on executive functions. In this sense cognition relates to 

working memory, attentional and inhibitory control, flexibility, as well as reasoning, problem 

solving, and planning. In this study, children older than six years were evaluated by the Test of 

Everyday Attention for Children (TEA-Ch, nine subtests) (Baron, 2001, Heaton, 2012). Their 

general working memory was assessed by the Sound Information Processing System (SIPS), 

the phonological working memory by the subtest Sentence Completion and Recall task (Wass, 

2009). Questionnaires used were  BRIEF (Behavior Rating Inventory of Executive Function, 

parents and teachers) (Isquith et al., 2004) for judging executive functions and Ravens Colored 

Progressive Matrices for measuring abstract reasoning and intelligence (Raven, 2003). 

Mental health 

The mental health status of the children was measured by questionnaires and focus group 

discussions lead by a social worker. The standardized Strength and Difficulties Questionnaire, 

SDQ (Goodman, 1997, Goodman, 2005), was answered by the parents individually and, for 

the children in a school setting, by their teachers. The questionnaire ask about 25 attributes. 

Some of them are positive, others negative. They are divided into five scales consisting of 

emotional symptoms, conduct problems, hyperactivity–inattention, peer problems, and 

prosocial behavior. Each scale has five items scoring 0-2, generating a scale score of 0-10. The 

prosocial behavior scale is inverted compared to the others with lower scores indicates 

difficulties. The four first scales are added to a total difficulty score (0-40). 

STATISTICS 

In paper I and II, analysis of variance of data parameters from ABR or ECochG was performed 

with repeated measures ANOVA (Paper I used the software R for statistical calculations, and 

paper II used SPSS) and validated by Greenhouse-Geissner correction and, as with post-hoc 

testing, least significant difference (LSD) method for multiple comparisons (paper II). 

Descriptive statistics were used to summarize or quantitatively describe features. For non-

parametric comparison of medians analysis, Independent Samples Kruskal-Wallis (multiple 

groups, Paper II) and Mann-Whitney U-test (two groups, paper IV) was used.  
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RESULTS 

 

PAPER I 

Paper I is an experimental study on guinea pigs aiming to investigate cochleostomy and 

insertion trauma at cochlear implantation. This is done by examining alterations in hearing 

thresholds after surgery as well as intracochlear histological changes. Three groups of normal-

hearing guinea pigs underwent cochlear implant surgery. In group 1, only a cochleostomy (C) 

was performed, without insertion of an electrode, in group 2, deep insertion (DI) to a depth of 

4.5 mm was used and in group 3 a “GP modified” insertion to a depth of 3.25 mm was 

performed. 

Residual hearing 

Hearing testing in the groups 1 and 2, followed for 14 days, revealed a statistical difference in 

hearing outcome seen already the first day after surgery (Figure 10). In both groups an 

increased threshold shift is noted after the first week, in group 2 this remains unchanged 

(indicating a permanent hearing loss). In group 1 however, the threshold shift normalizes 

during the second week to a 5-8 dB level on the four frequencies measured. In group 3 

additional testing time points was added at 0, 4 and 28 days. In addition two lower frequencies 

tested were added, 2 and 4 kHz. For the three lower frequencies 2, 4 and 6.3 the pattern of 

threshold shift here shows clear similarities with group 1(C) with hearing loss remaining during 

the first week. On the other hand, the two higher frequencies tested, 16 and 20 kHz, showed 

initial similarities with group 2 (DI) with large initial threshold shift but with the difference of 

rapid decline indicating recovery of auditory function. After two weeks the thresholds had 

stabilized at a level of -1-10 dB remaining unchanged at four weeks. The threshold shifts at 

two weeks are significantly different to group 2 but not to group 1. 

         

Figure 10) Hearing threshold shifts after surgery in guinea pig. Left graph with ABR results after 

cochleostomy alone (C) or deep insertion (DI) in the different frequencies respectively. Bars indicate 

SEM. 
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Histology 

Surface preparation and plastic embedded sectioning was performed in the cochleae of group 

3, five cochleae for each method. Examination showed very limited signs of trauma. Surface 

preparation cochleograms revealed close to no hair cell loss in three examined cochleae and 

40-50% OHC loss in the most apical region (15-19 mm) in two cochleae. Threshold shifts in 

these two animals were not above average for the group. Sectioning revealed histology with 

very limited soft tissue reaction in three of five cochleae and more extensive in the remaining 

two. Hearing results in the corresponding two animals were below average. Spiral ganglion 

neuron (SGN) density did not differ from the result of non-implanted, untreated cochleae. 

 

PAPER II 

In an experimental setup with four groups of normal hearing guinea pigs the hypothesis of 

endolymphatic hydrops induced by cochlear implantation was studied. The four groups were 

followed for 1, 7, 28 or 72 days respectively. 

Electrocochleography 

Measurements were performed prior to surgery, immediately after cochlear implantation and 

at the end of the survival period in each animal. Compound Action Potential (CAP) and 

Summation Potential (SP) was recorded at the frequencies 2, 4, 8, 16 and 32 kHz.  

At the end of the survival period the SP/AP ratio change increased relative to pre-operative 

levels at 1 and 7 days after surgery (Figure 11). This was rarely seen at 28 or 72 days. 

 

                

Figure 11) The summating potential (SP) amplitude plotted against the compound action potential 

(CAP) amplitude in response to a 16 kHz tone, both prior to implantation (solid marker) and at the 

experimental end point (open marker). Each point reflects data in response to one stimulus intensity. A 

and B are examples in two different animals 7 days after CI surgery. As stimulus intensity increases, 

both the SP and the CAP grow in magnitude. At 7 days after CI, the SP grows more rapidly than the 

CAP (as reflected by a steeper growth response), indicating that the SP/AP ratio is greater than pre-

operatively. 
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Alterations in hearing, calculated as CAP threshold shifts comparing results before CI surgery, 

immediately after and at the end of the survival period showed large differences in the 

measured frequencies. The greatest hearing loss was seen in 8 and 16 kHz and immediately 

after implantation. At the end of experiment the loss was largest in the day 1 group with an 

average of 24.7 dB deterioration. The later groups showed less hearing loss, 7 days 6.4 dB, 28 

days 5.2 dB and 72 days 15.6 dB.   

Micro-CT 

All implanted electrodes (21) were located within the scala tympani. There was no sign of 

fracture to the basilar membrane and only one fracture of the osseous spiral lamina. The 

Radiological Hydrops Score (RHS), calculated as an average of the examined cochleae, 

showed a significant hydrops at week 1 but not at day 1 and a tendency of less hydrops at later 

time points as compared to the contralateral ear (Figure 12). The SMAD, averaged across the 

cochlea, was significantly higher at day 1, 7 and 28 after implant surgery than at 72 days. 

 

Figure 12) To the left the Radiological Hydrops Score (RHS) after cochlear implantation as an 

average of hydrops in the four groups of guinea pigs. To the right change in SMAD (scala 

media area difference) in the same groups. 

 

The soft tissue response calculated around the electrode in the basal turn had an average volume 

of 0.93 mm3 representing a median occlusion of the scala tympani of 59% (Figure 13). Most 

of the tissue response was located in the upper outer quadrant (Q2) of scala tympani (51.2%). 

There was only a small non-significant difference in the soft tissue response in the four groups. 

 

 

 

 

 

 

 



 

26 

   

Figure 13) To the left a micro-CT with electrode array (*) and tissue reaction within scala tympani in 

the basal turn. RM marked white indicating hydrops. Bar equals 150 mm. Right figure is a 

reconstruction of the basal turn. The implanted electrode array is seen in red in the scala tympani. Yellow 

is the organ of Corti and orange tissue response around the electrode. 

 

PAPER III  

In this clinical study a group of ten children, nine boys and one girl, with x-linked malformation 

were evaluated in a retrospective chart review in combination with an assessment day for 

additional auditory and speech and language testing. They had been referred for CI assessment 

and were seen in clinic at an average age of 1.4 years. They all received a first cochlear implant 

at an average age of 1.8 years (range=0.9-2.8 years). Subsequently five received a second 

implant on the opposite ear at average 2.7 years of age (range=2.0-3.8 years). 

Cochlear implantation 

Fifteen implantations have been performed with an average follow-up time of 4.2 years (range 

0.1-8.1 years). All implants were provided by MED-EL®. The electrodes used were straight 

with, in thirteen cases, a length of 24 mm. In one case a 28 mm electrode was used and in 

another a 31 mm electrode. In all cases a gusher was encountered. On insertion the electrode 

deviated into the internal auditory canal in three cases, revealed on intraoperative x-ray (Figure 

14). Access to scala tympani was obtained through the round window in twelve cases and by 

cochleostomy in three. Firm packing around the electrode sealed the opening. In four cases 2-

3 electrodes could not be fully inserted, one of those cases being the 31 mm electrode. One 

case, the first, developed a postoperative rhinorrhea present for six days but ceased on 

conservative treatment.  
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Figure 14) Electrode array seen incorrectly positioned in the IAC where the electrodes on the array are 

highlighted by black dots. 

 

Audiological outcome and communication 

All children have binaural stimulation, five with a contralateral hearing aid. The six oldest 

children were able to perform speech and localization testing. Speech recognition was 

significantly higher in the mean obtained at the national two-center study (nat2) of pediatric CI 

recipients than in the x- linked-group in both quiet and noisy conditions (mean %+/-SD) (x-

linked 48+/-19 versus nat2 87+/-16 in quiet and 24+/-10 versus 61+/-20 in noise). Sound 

localization accuracy was significantly better than chance performance in five of the six tested 

subjects (Error Index 0.36+/-0.14. Four of the tested children had bilateral CIs, the other two 

hearing aids). 

All children use their CIs full time and all have developed spoken language. The three oldest 

use only spoken language whereas the remaining are either bilingual (three of whom two are 

brothers with a deaf father) or use supported signs (the younger children and one child with 

additional cognitive handicap).  

 

PAPER IV 

This paper involves the same ten children as in paper III (x01-x10). These children with 

cochlear implants have shown similarities in their behavior in clinic at follow-up, indicating 

problems beyond their hearing loss. The study therefore focuses on their genetics and outcome 

regarding spoken language, cognition and mental health compared to a control group of 

pediatric CI recipients without cochlear malformation (Connexin 26 (cx 26)). Their mean age 

at last follow-up was 6.0 years (range=2.0-9.7) (cx26 6.6 years, range=1.1-14.6) with a total 

CI follow- up period of 4.2 years (range=1.1-8.1) (cx26 4.7 years, range 0.4-11.1). The mean 

age for first implant was similar in both groups (x-linked 1.1 years (range=0.9-2.8), cx26 1.9 

years (range=0.6-5.5)). A large variability is seen in audiological outcome across groups when 

testing speech in quiet and speech in noise. Speech recognition was significantly higher in the 

cx26-group than in the x- linked-group in both quiet and noisy conditions (mean %+/-SD) (x-

linked 48+/-19 versus cx26 82+/-17 in quiet and 24+/-10 versus 53+/-15 in noise). 
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Genetics 
 

Six of the children (x01, x04, x05, x06, x07 and x10) had previously been involved in genetic 

testing verifying their mutations in the POU3F4 gene and upstream region (Figure 15). 

Additional testing revealed mutations in another three children. One of the children is a girl 

(x07) with a very large deletion in the region of the gene. This child has additional handicaps 

including motor skills and more severe cognition deficits and analysis for x-linked inactivation 

is pending. Two previously undescribed point mutations were found (x08 and x09).   

                    
 

Figure 15) Location of POU3F4 mutations. The green bow represents the POU domain and the blue 

box the POU-specific domain. Horizontal red bars represent minimal region of deletions. Vertical red 

bars indicate the location of the point mutations. Vertical black bars represent the location of the MLPA 

probes. 

 

Spoken language 

The x-linked group scored significantly poorer in expressive vocabulary in the Boston Naming 

Test (BNT, stanine score) between groups (x-linked versus cx 26 z= -2.1, p=0.035) and on raw 

scores (z= -2.31, p=0.021). Pragmatic skills reported from parent questionnaires (CCC-2) 

showed three areas of significant difference with poorer performance in the x-linked group; 

total score (z= 2.41, p=0.015) and on the subscales coherence (z= -2.31, p=0.011) and context 

(z= -2.74, p=0.015). A significant difference was also found for speech intelligibility rating 

(SIR2) (z= -2.30, p<0.014) No significant differences were found between groups in word 

fluency tasks (FAS and Animal) or expressive grammar (EGS). 

Cognition 

Only four children in the x-linked group completed the TEA-Ch test due to fatigue or poor 

concentration. Results revealed a significant difference in only one of the subscales, Spacehunt-

TIME (Z= -2.34, p=0.019). Some group-specific differences were seen with the BRIEF 

parental and teacher report namely, Global Executive Composite of executive functions 
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(parents z= -2.31, p<0.021, teachers z= -2.17, p<0.030) and Behavior Regulation Index 

(parents z=- 2.25, p<0.025, teachers z= -2, 01, p<0.045). On three subscales for parents 

significant differences were found; Emotional control (z=-3.01, p<0.003), Initiate (z=-2.17, 

p<0.030) and working memory (z=-2.08, p<0.038). On the general working memory task 

(Sentence Completion and Recall) the children with x-linked malformation had significantly 

lower scores than controls on the phonological working memory task (Serial recall of non-

sense word-2, z= - 2.08, p<0.037) but not on total scores (p>0.1). However, the group of 

children with x-linked malformation revealed a difference with more semantic irrelevant 

responses. No statistical significant differences were found between groups in Ravens Colored 

Progressive Matrices measuring non-verbal cognitive ability (x- linked vs. cx26) (p’s>0.1). 

Mental Health 

All mothers and almost all fathers of the x-linked group rated the children in a way that 

indicated mental ill-health (x-linked 15.75 vs. cx26 6.2, p<0.001) on the total difficulties score 

(total sum of scales 1-4). Further, parents of children in the x-linked group reported 

significantly higher scores compared to the cx26 group on emotional symptoms (2.33 vs 1.27, 

p=0.028), conduct problems (3.50 vs. 1.27, p=0.003), hyperactivity-inattention (8.17 vs. 2.60, 

p<0.001) and impact score (3 vs 0, p<0.001), and lower on prosocial behavior (7.67 vs. 8.93, 

p=0.012) Teachers scored x-linked significantly higher on hyperactivity-inattention (7.5 vs. 

2.71, p=0.035), peer problems (1.83 vs. 0.43, p=0.022) and impact score (3.40 vs. 0.17, 

p=0.033), and lower on prosocial behavior (4.5 vs. 8.29, p=0.022). Seven of the children attend 

mainstream school, two go to special units and one attends a deaf preschool.  
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DISCUSSION 
 

This thesis discusses aspects of cochlear implantation in two specific groups of patients. Both 

groups, patients with partial deafness and pediatric cochlear implant candidates with a 

malformed inner ear, constitutes an increasing part of the patient population at the Cochlear 

Implant Clinic at Karolinska University Hospital. For both patient categories individualized 

treatment is of vital importance for the outcome. Every cochlear implant candidate should 

expect a treatment with a combination of an intervention with minimal surgical trauma and a 

maximum of benefit in relation to each individual’s condition and cause of hearing loss. For 

the two groups in this thesis this is clearly visible. Individualized follow-up in a team of 

experienced audiologists and engineers as well as trained speech-and language pathologists 

and social workers is also essential for both patient categories.  

HEARING PRESERVATION DURING COCHLEAR IMPLANTATION 

The surgical technique for hearing preservation in a cochlear implantation procedure is 

standardized, not differing much from a routine CI case, and described by several authors 

(Lenarz et al., 2006, Lorens et al., 2008, Van Abel et al., 2015). A transmastoid-facial recess 

approach, taking care not to drill on the head of the incus or manipulate the ossicular chain, is 

used. Opening of the cochlea may be performed by a cochleostomy, carefully drilling to 

visualize the endosteum but not entering the scala tympani. However, a RW approach is 

preferred by most surgeons. For this, the RW bony niche is removed in order to visualize the 

RW membrane. At this point, the middle ear is rinsed and corticosteroids applied on the RW 

membrane or the endosteum. The choice of steroid has differed, but often Triamcinolone is 

used. Some surgeons prefer to give one dose of iv steroid, often Hydrocortisone or 

Betamethasone, prior to opening the cochlea. An incision is made in the RW membrane or 

endosteum and a thin and flexible electrode array slowly inserted. Straight arrays are preferred 

by most authors, and have shown good hearing preservation results. Care is taken to stabilize 

the electrode and avoid suctioning near the opening of the cochlea. The seal of the cochlea is 

softly applied and not packed around the array. In addition to the corticosteroids given during 

the procedure, some authors recommend one week of oral methylprednisolone or prednisolone. 

Paper I demonstrates that deep insertion (4.5 mm, group 2), with the associated large trauma, 

results in a substantial threshold shift, concluding that the insertion in this case alone is 

responsible for the permanent hearing loss. This most likely happens because rupture of the 

basilar membrane leads to a loss of cochlear potentials. In hearing preservation cases a deeper 

insertion than 360° is not likely to be beneficial, even though there have been reports showing 

residual hearing preservation with longer electrodes (Tamir et al., 2012, Nordfalk et al., 2016). 

The benefit of corticosteroids for hearing preservation has been demonstrated in animal studies 

(Chang et al., 2009, Maini et al., 2009, Connolly et al., 2011, Lee et al., 2013). There are also 

indications that an extended delivery of steroids, as with the postoperative regime in humans, 

may benefit hearing preservation (Rah et al., 2016). Clinical studies regarding possible benefits 

of steroid treatment are underway (Enticott et al., 2011). 

Several authors have demonstrated that hearing preservation can be achieved. This is clearly 

desirable, as there is evidence that a combined electrical and acoustic stimulation is beneficial, 
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improving hearing, especially speech in noise (Gstoettner et al., 2009, Kong et al., 2015), and 

gives improved quality of sound and music (Brockmeier et al., 2010). In a meta-analysis of 24 

studies Santa Maria and co-authors concluded that cochleostomy was associated with better 

hearing preservation as compared to the round window approach. Also a slow electrode array 

insertion technique was superior to insertion of less than 30 seconds and the use of 

postoperative systemic steroids (Santa Maria et al., 2014).  

However, most studies examine short term results. Long term clinical studies reveal a trend of 

slow and continuous hearing loss. This may relate to the pathology of the individual reason for 

hearing loss, thus, the patient did not have a stable hearing loss prior to surgery, but is in most 

cases likely to depend on an intracochlear process leading to hearing deterioration. The nine 

subjects Mertens and colleagues (Mertens et al., 2014) followed for up to eleven years a gradual 

loss was seen for most of them. Erixon and co-workers (Erixon et al., 2015) followed 19 

patients for up to three years, displaying a gradual low frequency loss and recently Helbig et 

al. reported on a large number of patients (n=96) that were followed up to eleven years (Helbig 

et al., 2016). Here a similar pattern of gradual loss is seen, however with large individual 

variability. The loss seen exceeds that of the contralateral ear and these studies clearly show 

that there is an ongoing intracochlear process that must be explained by the implantation itself.  

LOSS OF RESIDUAL HEARING AFTER COCHLEAR IMPLANTATION 

The most important finding in paper I is that there is no statistical difference (p=0.13) between 

performing a cochleostomy (group 1) compared to combining this with a moderate insertion 

(group 3). From this perspective, the electrode insertion itself does not explain the alterations 

in hearing seen in the early postoperative period. In guinea pig cochlear implantation, other 

authors have used insertion depths ranging from 2.25-3.25 mm (Braun et al., 2011, Connolly 

et al., 2011, Quesnel et al., 2011). For these moderate, less traumatic, insertion depths the 

authors have been able to preserve hearing, often in combination with corticosteroid treatments.  
 

Histopathology of patients with a CI reveals damage to intracochlear structures like the spiral 

ligament, stria vascularis and hair cells in most implanted ears (Fayad et al., 2006). In a human 

cochlea it is shown that the force necessary for insertion increases beyond 20 mm, when a 

straight electrode is used (Adunka et al., 2006). Therefore, a moderate, less traumatic, insertion 

in a human cochlea could be approximated to 20 mm, corresponding to a distance near 360° in 

most cochleae. However, this varies since the length of the basal turn lateral wall ranges from 

20.7 to 24.2 mm (mean 22.8 mm; (Erixon et al., 2009). Very shallow insertion (8 mm), with a 

lesser cochlear coverage, leads to worse speech perception results (Buchman et al., 2014). An 

insertion of 20 mm insertion is shown to give an adequate auditory outcome in a study by 

Adunka and colleagues in 2010 (Adunka et al., 2010). Here they could demonstrate that a 20 

mm electrode (where the tip approximately reaches the region of 1000 Hz on the organ of 

Corti) gives speech perception performance comparable to a longer electrode (31.5 mm).  
 

As there is controversy regarding the possible benefits of deep insertion (Boyd, 2011) one could 

argue that a 360° insertion should be attempted in all cases of implantation as it will give a 

reasonably good auditory outcome while minimizing trauma. Minimizing intracochlear 

damage is important for future cochlear implant revision surgery or other, today unknown, 

alternative intracochlear treatments. On the other hand, there are indications that a deeper 
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insertion is beneficial to improve speech understanding in noise as well as the perceived sound 

quality (Hochmair et al., 2015). In cases of hearing preservation this is not an issue as the apical 

region is functioning with residual low frequency hearing and it is therefore not necessary to 

attempt to stimulate this region in any case. 

Possible explanations for short- and long term permanent hearing loss have included a direct 

effect of the inserted electrode, structural changes and inflammation. Induction of pathways 

leading to apoptosis has also been suggested (Eshraghi et al., 2006). The effects of a direct 

trauma, such as perforation of the basilar membrane, and leakage of fluids between 

compartments is an obvious acute reason for permanent hearing loss. Additional direct effects 

could come from the electrode volume itself creating altered cochlear michromechanical 

properties, leading to an “cochlear conductive component” (Banakis Hartl et al., 2016). The 

electrode may also interfere directly with surrounding structures in scala tymapni and thereby 

affect the production, and absorption, of cochlear fluids. Further, inflammation caused by the 

surgical trauma and the presence of a foreign body has been suggested as mechanism for 

gradual sensorineural hearing loss. The inflammation may influence ion regulation and water 

permeability, possibly by altering vascular permeability in stria vasculris. This likely 

inflammatory process is the rationale for the use of corticosteroids. The inflammation may also 

induce development of soft tissues around the electrode array seen as fibrosis in 

histopathological examination. 

In addition to structural damage, histopathological studies of human temporal bones have 

indicated presence of endolymphatic hydrops in patients with a cochlear implant (Handzel et 

al., 2006, Richard et al., 2012). Similar finding have been made in guinea pigs at three months 

following cochlear implantation (Lee et al., 2013). Paper II tested the hypothesis that cochlear 

implantation may induce endolymphatic hydrops and that this could explain the gradual 

hearing loss seen in patients with residual hearing. The rationale for this was that long-term, 

fluctuating, endolymphatic hydrops is associated with permanent sensorineural hearing loss in 

combination with the finding of hydrops in cochleae with a cochlear implant. In addition, it is 

well known that patients may experience dizziness after cochlear implantation. The results 

show that hydrops is present during the first week after cochlear implantation but not later in 

the test period (28 and 72 days). Possibly this finding could explain the temporary threshold 

shifts seen in paper I with a large shift in ABR thresholds immediately after cochleostomy or a 

moderate implantation followed by a gradual normalization. A pattern that resemble the CAP 

threshold shifts in paper II. 

MALFORMATIONS OF THE INNER EAR 

During the last decades the knowledge of inner ear malformations have broadened, much 

related to better imaging techniques. As both CT and MRI today provide pictures with better 

resolution, more details may be revealed. The Jackler classification from 1987 was based on 

the polytomography technique with limitations in resolution (Jackler et al., 1987). With 

increasing interest in cochlear malformations related to growth of pediatric cochlear 

implantation programs, Sennaroğlu and Saatci suggested a new classification in 2002 with the 

main contribution of further subclassifying the incomplete partition as type 1 and type 2 

(Sennaroglu et al., 2002). In 2006 the classification was extended with incomplete partition 

type 3 (Sennaroglu et al., 2006) and is today widely accepted. In short this classification today 
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include Michel aplasia and cochlear aplasia, quite rare types, which both entail complete 

absence of the cochlea. Additional severe malformations include cystic vestibulo-cochlear 

malformations such as common cavity and incomplete partition type1 (IP-1) and incomplete 

partition type 3 (IP-3). The most common malformation is the less severe incomplete partition 

type 2 (IP-2), with a well-shaped basal part and a moderate modiolar dysplasia including a 

defective apical region. The severity of cochlear hypoplasia (CH, cochlea less than normal 

size) malformations varies. Sennaroğlu subclassifies these into four groups, CH type 1 with a 

cystic budlike appearance, CH type 2 with a more normal external shape but still cystic or 

limited modiolar development, CH type 3 where the cochlear duct is shorter than normal but 

with otherwise well-organized intracochlear structures and CH type 4 with normal basal turn 

but dysplasic apex. Phelps (Phelps, 1992), Zheng and colleagues (Zheng et al., 2002), Papsin 

(Papsin, 2005) and Giesemann and co-workers (Giesemann et al., 2011) and have all suggested 

minor alterations in this classification. 
 

In addition to cochlear malformation, the deformities of the vestibular part of the inner ear, the 

vestibule and semicircular canals (SCC), varies greatly from severe cystic malformations to 

mild SCC deviations. SCC dysplasia seem to be more common with hypoplastic cochlea 

malformations, as in cases with narrow IAC. The vestibular aqueduct may be enlarged (LVA) 

whereas the cochlear aqueduct seems to be very consistent. Theoretically a wide cochlear 

aqueduct, which establish a communication between the intracochlear perilymphatic space and 

the subarachnoid space, could give a gusher during surgery but this has never been encountered 

in the author’s experience. LVA may exist alone or, as it often is, together with IP-2. It is very 

likely that with better future imaging resolution additional minor modiolar dysplasia will be 

discovered in the cases of LVA that today appear to have a normal cochlea 
 

The possibility for histological examination of malformed human cochleae is limited. In a 

recent work, Sennaroğlu reports on the examination of 33 specimens in the collection of the 

Otopathology Laboratory at Harvard University's Massachusetts Eye and Ear Infirmary 

(Sennaroglu, 2016). They displayed a variety of inner ear malformations and he compared the 

results with CT and MRI images. He suggests that for cochlear hypoplasia the membranous 

labyrinth development determines the size of the bony cochlea. For severe internal architecture 

deformities, like in IP-1 and severe hypoplasia (CH-1 and CH-2), a deranged vascular supply 

from the internal auditory canal is the major contributing factor. For IP-2 an enlarged 

endolymphatic sac (with LVA) is likely to be responsible for the modiolar dysplasia related to 

high intracochlear endolymphatic pressure. There was no specimen with an IP-3 malformation 

in the collection but the author suggests that the thick inner endosteal layer of the otic capsule 

forms the abnormal shape, when related to the thin or absent middle endochondral and outer 

periosteal layers of the surrounding bone. In IP-3 the organization of the membranous labyrinth 

and spiral ganglion neurons remains unclear as the modiolus is completely absent. As the 

cribriform base of the cochlea is missing there is an open connection to the CSF space.  
 

Jackler (Jackler et al., 1987) suggested a developmental arrest theory for the different 

malformations. Interruption during inner ear embryogenesis were to result in the different 

cochlear dysplasia’s seen, most of them around the sixth gestational week. The cochlear duct 

develops during a remarkably short period, only sixteen days from a cochlear pouch to its full 

length (Streeter, 1949). For cochlear aplasia a developmental arrest may explain the 

morphology but for other types, the linear Jackler arrest theory has to be regarded with some 
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skepticism. With the existing knowledge from CT and MRI in combination with the above 

described histopathological findings it is more likely a multi-factorial course of events after the 

cochlear bud development. It is likely that multiple, independent, arrests may occur for the 

differences in development of size itself and internal structures. These paths do not seem strictly 

related as all types of combinations may be seen. The work by Papsin 2005 suggested a 

classification of cochleovestibular anomalies based on independent arrests of development. 
 

Known genetic factors causing inner ear malformations are POU3F4 mutation in x-linked 

malformation and SLC26A4, encoding for the Pendrin protein (Pendred syndrome) with the 

associated IP-2 malformation. There is likely to be other, today unknown, gene mutations or 

combinations of these, responsible for the other types of malformations we see. Although 

genetics is likely to be the primary reason for anomalous development, environmental factors, 

such as for instance viral agents, may also play a part. The fact that a malformation may be 

unilateral or that a patient may have malformations of different severity on either side indicate 

multifactorial etiologies.  
 

Classification of a condition is important for several reasons. The subtypes may be studied 

relating to challenges during surgery, identifying pit falls, thereby ensuring that the surgeon is 

properly prepared, minimizing risks for complications. Furthermore, by dividing cases into 

groups, the outcomes may be discussed in relation to specific malformations, which gives a 

possibility to identify special needs for follow-up and training. For anyone who sees many 

children with different cochlear malformations in clinic, it is obvious that patients differ greatly 

in audiological outcome and spoken language performance. 
 

In our material of bony cochlear malformations we currently have 4% IP-1, 60% IP-2 and 15% 

with IP-3. In addition 21% of the cases have hypoplastic cochleae. The proportion of IP-3 is 

high compared to other data (Papsin, 2005, Sennaroglu, 2010). As described earlier, this 

malformation has a cork screw appearance of the cochlea, modiolar aplasia, absent cribriform 

bone in the fundus, and a wide internal auditory canal. The children in study III and IV have 

this type of malformation. The fact that these children have residual hearing indicate that there 

is some organization of the organ of Corti in spite the complete absence of the modiolus. The 

functioning hair cells have to be structured in a way where they still are susceptible to sound-

evoked vibrations, and there has to be an intact endolymphatic space as well as a reasonable 

cochlear potential (normally a positive potential of 80-100mV). Further the spiral ganglion 

neurons have to be organized with the dendrites connected to the inner hair cells. Figure 3, page 

7, shows bone-conduction thresholds ranging from less than 30 dB at 250 Hz, dropping to 65dB 

at 1 kHz and above. Air conduction thresholds confirm a very large air-bone gap (ABG). 

Hypothetically several factors can explain this ABG. A true conductive portion of the hearing 

loss such as stapes fixation is likely to play a role. In the author’s experience, stapes fixation is 

often found in these patients during cochlear implant surgery, but improvements in mobility 

have been described once the high intracochlear pressure is relieved by opening the cochlea, 

hence, no true structural fixation would exist. Further, the fact that the membranous labyrinth 

to some extent has to be floating loosely, as the bony modiolar structures are missing, must 

radically change the mechanical properties of the organ of Corti. The shape of the audiogram 

in these patients show that the low-frequency regions of the organ of Corti retains more 

function. This may indicate a loss of the normal stiffness gradient of the basilar membrane (von 

Békésy, 1960). Other hypothetical reasons include non-functioning outer hair cells, which 
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would be consistent with a loss near 60 dB, or a high intracochlear pressure that interferes with 

the micromechanical properties of the organ of Corti. It has also been considered an option that 

the IP-3 has a false ABG related to an “inner ear conductive hearing loss” (Snik et al., 1995). 

Further, if the opening to the IAC acts as a third window, the bone thresholds could be falsely 

elevated as the cranial cavity would be “acting as an amplifier” for bone-conducted sounds 

(Minor, 2003).  

SURGERY TO THE MALFORMED COCHLEA 

Early intervention is the aim for all treatment of congenital hearing loss. Neonatal screening is 

today a routine procedure in all developed countries, often with otoacoustic emissions. Further 

investigation includes ABR and ASSR. When hearing loss is found, the child is fitted with 

hearing aids at the earliest age possible. In severe-profound deafness, a MRI is performed, 

thereby visualizing the inner ear anatomy and auditory nerves. To administer this in the first 

four-five months of life, a strict routine needs to be followed. 

With signs of inner ear malformation, a CT is performed to better visualize the bony labyrinth. 

The malformation may then be classified and additional treatment planned. For the very rare 

malformations where the inner ear (Michel aplasia) or cochlea (cochlear aplasia) is absent, a 

cochlear implant isn’t a treatment option. These children should be considered for an auditory 

brainstem implant (ABI) for direct stimulation of the cochlear nucleus (Sennaroglu et al., 

2016). This may also be considered in case of common cavity or very severe hypoplasia, 

although a CI usually is considered a primary treatment option. The same argument may be 

used on auditory nerve aplasia. In a true nerve aplasia, a CI is obviously not a treatment 

alternative but an ABI is performed. However, cases with no sign of auditory nerve on MRI 

may still respond to electrical ABR (eABR) and electrical stimulation if implanted with a CI 

(Acker, 2001). This indicates that 3 Tesla MRI resolution is not sufficient to visualize the most 

pronounced nerve hypoplasia cases. For this reason, a CI, at least if preceded by positive eABR 

result, is possibly a better treatment option than an ABI, especially in view of the risks inherent 

in manipulating and stimulating the brainstem.  

Although early surgery, today often between five-nine months of age, is the routine for 

pediatric cochlear implantation the finding of a malformation usually delays the intervention. 

This is often related to referral to a tertiary hospital. In the studies in this thesis, the average age 

of implantation was 1.8 years in the x-linked group (range=0.9-2.8 years, control group average 

age 1.9 years, range=0.7-5.5 years). In Sweden, the Karolinska University Hospital is 

responsible for the assessment, cochlear implantation procedure, and first year follow-up of all 

children with temporal bone malformations. An average of our material over the last five years 

reveals that 21% of the pediatric cochlear implant recipients have some kind of abnormality to 

the temporal bone. 

Several authors have addressed the challenges related to cochlear implantation of a malformed 

cochlea (Papsin, 2005, Sennaroglu, 2010). The transmastoid-facial recess approach can be used 

in the large majority of malformation cases. When this is not possible it is usually related to a 

deviant route of the facial nerve. A standard approach was used in all 15 cases of cochlear 

implantation in the children with IP-3 in paper III and IV and no abnormalities of the facial 

nerve were encountered. As expected, a gusher occurred on opening of the cochlea in all cases. 

This is a very consistent finding in all reports on IP-3 surgeries. More often, a slow perilymph 

leak, oozing, may be found. This is seen in several conditions, such as IP-2 and some, but not 
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all, hypoplastic cochleae. The overall rate of gusher and oozing varies widely. Papsin (2005) 

reports 6.7% (n=103) CSF outflow and Sennaroğlu (2010) 30% (n=71). 

With the opportunity to perform cochlear implantation in all children with a temporal bone 

malformation at Karolinska University Hospital follows a responsibility to report our results 

from this group of pediatric recipients. This is a unique opportunity to gather information from 

a national perspective and scrutinize each malformation subtype. By chance, Karolinska has 

seen unusually many children with POU3F4 related inner ear malformation, IP-3, even 

compared to cochlear implant centers in larger countries.  

COCHLEAR IMPLANT TREATMENT OF POU3F4 DEAFNESS 

In 1968, Olson and co-workers described a case of CSF leak and stapes fixation (Olson et al., 

1968). This was followed by a report in 1971 by Nance and colleagues describing a progressive 

mixed hearing loss in males (Nance et al., 1971) where the conductive component of the 

hearing impairment was caused by stapes fixation. Attempting stapes surgery in these patients 

resulted in a perilymphatic gusher. The syndrome was described as Nance deafness or 

Perilymphatic gusher-deafness syndrome and was recognized to be inherited in an x-linked 

manner. In addition to the often rapidly progressive hearing loss, these patients exhibited a 

reduced vestibular response. Later, anatomical dissections discovered a wide internal auditory 

canal, and this was verified with polytomography (Cremers et al., 1985) and CT (Phelps et al., 

1991). This also discovered the absence of bony cribriform plate between the internal auditory 

canal and the basal turn of the cochlea. As described earlier, de Kok and colleagues in 1995 

identified the gene on the X-chromosome, POU3F4, responsible for the malformation. 
 

With the experience of gusher and deterioration of hearing related to stapes intervention, 

hearing aids were the recommended therapy at the time. Using a BAHA has been considered 

but there is no attempt reported. Case reports of this condition, review male children with 

moderate-severe mixed hearing loss and attempts for stapes surgery resulting in a CSF gusher. 

An increase in sensorineural component (worsening bone conduction thresholds) is seen in the 

postoperative period. The children were fitted with conventional hearing aids, however with 

poor auditory outcome, and they usually entered deaf schools, at the best aiming for total 

communication (Carlson and Reeh 1993).  
 

Cochlear implantation was regarded as contraindicated because of the severity of malformation 

of the modiolus and fundus of the IAC (Phelps, 1992).  There were obvious concerns related 

to the management of the gusher and the possibility of postoperative rhinorrhea, as well as the 

risk of electrode displacement to the IAC. In 2006, Sennaroğlu and colleagues reported 

cochlear implantation in one child with x-linked deafness (Sennaroglu et al., 2006). Describing 

this as a feasible method, and also adding the malformation to their classification system, it 

opened up CI treatment in this category of children. They described a 20-minute CSF gusher 

and insertion of a short straight electrode. Rhinorrhea occurred at day three requiring the 

placement of a lumbar drain for four days. In 2007 the first child with x-linked malformation 

received a cochlear implant at Karolinska. The boy was 1.6 years old and received a MED-EL 

Pulsar device to his right ear. A round window approach was used. A first insertion with a test 

electrode revealed IAC positioning on intraoperative x-ray but a straight Medium (24 mm) 

electrode was successfully placed within the cochlea, the position confirmed by conventional 

x-ray. At day two the boy experienced rhinorrhea, however gradually decreasing during six 
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days of conservative treatment and a lumbar drain was not used. During the following eight 

years ten children have received cochlear implants, five of them bilateral in a sequential 

procedure.  
 

Other implant centers have reported cochlear implantation in children with x-linked deafness. 

In the years after Sennaroğlu’s initial report (Sennaroglu et al., 2006) four groups described 

their experience (Incesulu et al., 2008, Aschendorff et al., 2009, Lee et al., 2009, Stankovic et 

al., 2010). These groups describe difficulties during implantation, with IAC dislocation of the 

electrode array and different methods for CSF leak management. Incesulu et al. (2008) reported 

on four patients that were implanted with perimodiolar electrodes without lumbar drain. One 

of the patients required re-operation shortly after the initial procedure as the electrode had been 

inserted into the IAC. Two complications were reported, one patient developed facial nerve 

stimulation after five years requiring a replacement implant and a second developed a device 

failure after four years and received a new implant on the contralateral side. Aschendorff and 

colleagues (2009) describe an implantation in an adult case with radiological assistance during 

implantation to verify the array position of a perimodiolar electrode. Lee et al. (2009) reported 

on three patients implanted with straight arrays. All patients were successfully implanted and 

they describe an uneventful post-operative period and audiometric responses were obtained at 

loading four weeks after implantation. Intra-operative management was not discussed. 

Furthermore, Stankovic and co-workers (2010) reported four patients implanted and followed 

for a period of 2 to 6 years. They were implanted with straight arrays and had lumbar drains 

inserted before cochleostomy. The CSF gusher was controlled with placement of a lumbar 

drain lowered to 10-15cm below the external auditory meatus. In spite this, one patient required 

revision surgery for rhinorrhea at day seven and another at one year. In 2013 Kang and 

colleagues reported four children, two implanted with straight electrodes and two with 

perimodiolar. One case required revision surgery due to electrode insertion into the IAC and 

postoperative CSF leak.  
 

During the last year an additional four groups have reported on cochlear implantation in 

children with x-linked malformation (Cosetti et al., 2015, Choi et al., 2016, Kim et al., 2016, 

Saeed et al., 2016). Cosetti et al. (2015) described five cases whereof two were revisions. They 

used a fluoroscopy technique with multiple exposures during implantation and also 

recommended an oval-shaped cochleostomy to better control the array during implantation. 

Choi and co-workers (2016) studied 11 subjects with POU3F4 verified mutation and implanted 

eight of them (three only presented with a moderate hearing loss). Their results indicated that 

auditory outcome is worse compared to age-matched controls implanted without inner ear 

malformation. No link was seen between type of mutation and initial auditory performance. In 

an attempt to compare mutation type (genotype) to postoperative outcome (phenotype) 

possibly those with a truncation or deletion performed worse. Kim and colleagues (2016) 

reported on bilateral sequential implantation on one child only without complications and 

Saeed et al. (2016) described bilateral implantation in two children. Postoperative CSF leak as 

rhinorrhea or fluctuant postauricular swelling complicated the procedure in all cases leading to 

a recommendation of obliteration of the Eustachian tube and middle ear in all cases. 

 

The results of our procedures are reported in paper III, concluding that cochlear implantation 

in x-linked malformation cases is a safe procedure. The gusher should be waited out as it ceases 
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after approximately 15 minutes and attempts of electrode insertion prior to that is likely to 

increase the risk of IAC placement. The seal around the electrode at the opening to the cochlea 

has to be meticulously packed with circumferential soft tissue to avoid postoperative CSF leak, 

presenting as rhinorrhea. In our experience, there is no need for a lumbar drain. Only one case 

in paper III had postoperative rhinorrhea, starting at day two. Our management at the time was 

conservative. Although this was successful, the presently recommended management strategy 

for postoperative CSF leak in cases with x-linked malformations is a revision procedure and 

renewed packing with soft tissues. Sealing by additional surgical obliteration of the middle ear 

space or by a subtotal petrosectomy and blind end closure of the external auditory canal should 

be regarded as a salvage procedure only. 
 

Of the 40 cases of primary pediatric cochlear implantation described in the studies above, a 

straight electrode was used in 25, uni- or bilaterally. There is no obvious correlation between 

the electrode type and the complication rate. However, theoretically, a precurved electrode 

could cause more damage if it were inserted in the IAC and then withdrawn, having curled 

around neural structures or the membranous labyrinth. It must be stressed that intraoperative 

imaging is mandatory, as there is a high risk of IAC displacement of the electrode, 20% (3/15) 

in our experience. Failure to recognize this will not only lead to absent post-operative speech 

understanding but also to a risk of facial nerve stimulation (Cosetti et al., 2015). Simultaneous 

bilateral implantation is described in one child (Cosetti et al., 2015), however, in the author’s 

opinion this is not to recommend since the side in need for a revision surgery will not be known, 

in case a postoperative rhinorrhea develops. 
 

In the eleven studies above, including paper III, cochlear implantation is described in two 

female children only, one in Incesulus report and one in paper III. Naturally, x-linked deafness 

is predominantly seen in males. Incesulu et al. (Incesulu et al., 2008) questioned if true IP-3 

malformations really can occur in females and attributed their origin to other reasons. However, 

genetic analysis was not performed in this study, and Marlin and co-workers (Marlin et al., 

2009) described eight females with verified POU3F4 mutations, one of them with a typical IP-

3. The same applies to the subject in paper III, with a large heterozygous POU3F4 deletion and 

a typical IP-3 appearance of the malformation. Possibly this could be explained by skewed X-

chromosome inactivation (Minks et al., 2008). In 1998, Papadaki and colleagues (Papadaki et 

al., 1998) reported on two sisters with severe mixed hearing loss and temporal bone imaging 

consistent with IP-3, although genetic testing was not performed. A moderate hearing loss 

could be seen in two of the seven female POU3F4-carriers with normal temporal bones in 

Marlin’s study (Marlin et al., 2009). The same type of hearing loss was seen in the three male 

subjects in Choi’s study (Choi et al., 2016), none of whom received a CI. This confirms that 

POU3F4 mutations and IP-3 malformations do not necessarily lead to a severe-profound 

hearing loss even in male subjects. Apparently the phenotype varies, and as patients with a 

moderate hearing loss often neither is subject to genetic testing or temporal bone imaging, the 

true prevalence of x-linked malformation is unknown. 

HEARING WITH A COCHLEAR IMPLANT AND X-LINKED MALFORMATION 

The majority of the studies cited above focus on the surgical procedure and complications. 

Although most of them also report auditory outcomes, the follow-up time is often short and the 

performance measures are limited, only stating the occurrence of response to an auditory 
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stimulus or hearing thresholds with the CI. Lee et al. (Lee et al., 2009) report good outcomes 

in two children, who achieved open-set word performance of 96 and 64%, and one child with 

minimal speech but improvement in sound detection (although mental retardation may have 

complicated assessment in this case). On the contrary, Stankovic (Stankovic et al., 2010) 

discuss four patients (age at implantation between 1.1-3.7 years) where auditory perception 

post-implantation had not progressed past sound or single word detection. One patient achieved 

better speech perception but only due to contralateral amplification with a hearing aid. Cosetti 

(Cosetti et al., 2015) describe three children with at least one year follow-up and suggests that 

good auditory performance may be achieved in x-linked malformation, since these patients 

were able to perform open-set multisyllabic word recognition. Kang and colleagues (Kang et 

al., 2013) followed three patients for 1.5-6.4 years and reported on good auditory outcome, 

with no difference when comparing performance with age-matched patients with normal 

cochleae. This result was obtained by using scores from the Meaningful Auditory Integration 

Scale (MAIS) and Categories of Auditory Performance. However, these scales are based on 

estimations by parents or audiologists and not on objective testing. Finally, Choi (Choi et al., 

2016) reported on eight patients with a two year follow-up, finding a significant difference in 

CAP scores at two years compared with age-matched controls without inner ear malformation 

(p<0.05). Both paper III, comparing audiological outcome with a mean of pediatric recipients 

of a national two-center study and paper IV, comparing to a control group, shows significantly 

lower performance in speech perception, both in quiet and in noise, in spite of normal hearing 

thresholds with CI. No statistical difference was seen in sound localization. There seems to be 

some variability in outcome, but given the data of these previous studies and the papers in this 

thesis, in total, the concluding trend must be that children with x-linked malformation performs 

worse in functional auditory outcome although good hearing thresholds with a CI may be 

obtained. This indicates poorer sound processing in the x-linked group and may be linked to 

limited spectral and/or temporal resolution related to intracochlear issues, such as an abnormal 

spiral ganglion neuron organization. It may also be related to inferior nerve signal transmission 

capacity or an altered ability of central sound processing. 

X-LINKED MALFORMATION, POSSIBLY A SYNDROMIC HEARING LOSS 

Today, POU3F4 related x-linked malformation is regarded as a non-syndromic hearing loss. 

In the studies above only a few authors mention symptoms or findings other than hearing loss, 

such as the children’s behavior, on assessment and follow-up. 
 

It has previously been reported that children with x-linked deafness exhibit features including 

testing difficulties. Stankovic suspected cognitive and developmental delays associated to the 

hearing loss. They go on to suggest that the developmental delay and loss of hearing could be 

associated through the malfunctioning of POU3F4. Choi, on the other hand, stated that no 

syndromic feature was seen during the two year follow-up. Reviewing the literature on x-linked 

malformation or POU3F4, there are occasional reports describing behavioral features of these 

patients. (Carlson et al., 1993) reviewed three children with x-linked deafness and hearing aids. 

On describing the children they state that “KM continues to demonstrate severe developmental 

delays in speech-language, visual-motor integration, and fine motor skills. These difficulties 

contribute to his persistent insecurity and apprehension in the test situation.”. Regarding his 

half-brother, the same authors summarize “MB was diagnosed as having attention deficit 
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disorder in 1988 and subsequently placed on Ritalin for his hyperactivity. He continues to be 

followed in the child development clinic for his behavioral and speech/language difficulties.”.  
 

Our clinical experience during a relatively long follow-up revealed a group of children with 

complex needs. In paper IV older children (>4 years, n=6) with POU3F4 verified x-linked 

malformation hearing loss are examined, and the results indicate that they exhibit difficulties 

not only in the domains of hearing but also language, and some subdomains of cognition and 

mental health, compared with a hearing-matched group. These findings correlate well with 

reports, as with the example above, stating neurodevelopmental difficulties. Four of the older 

boys in paper IV received an ADHD diagnosis. The cognitive performance of the x-linked 

group could be related to alterations in central function during embryogenesis. Controlling 

early development, linked to the development of the neural tube, in mice the gene pou3f4 has 

a regulatory role which is not fully clarified. As it is expressed in periotic bone during 

labyrinthine development as well as brain structures, including frontal lobes, it is likely to have 

a role in early stages of embryogenesis in both areas. Pou3f4 mutations are known from animal 

studies to lead to inner ear malformations (Phippard et al., 1998, Minowa et al., 1999), 

however, to the author’s knowledge, there are no behavioral studies on mice to support a 

neurodevelopmental disorder. 
 

To conclude, based on our present knowledge of POU3F4 in human and animal studies, 

previous indications of altered behavior, cases of confirmed ADHD and the findings in paper 

IV it seems unlikely that the hearing loss alone explains the features demonstrated by paper IV. 

X-linked hearing loss is today classified as a non-syndromic genetic hearing loss related to 

mutations in the POU3F4 gene or surrounding domain. However, the correlation between type 

of malformation, similar genetic findings and consistent behavior in our study group indicates 

that this type of hearing loss may be part of a syndrome including hearing loss and 

neurodevelopmental disorder consistent with hyperactivity and attention deficit.  

FUTURE PERSPECTIVES 

The cochlear implant is the worlds most developed bionic device and has opened the field of 

electrical intervention. The knowledge obtained from this system of electrical stimulation will 

be useful in other areas. The concept of sensory electrical stimulation is today expanded to 

vestibular or ocular implants, currently in clinical trials. Other areas using electrical stimulation 

include deep brain stimulation. Although there are attempts at using infrared laser light for 

neural activation (Fridberger et al., 2006, Tan et al., 2015), electricity is likely to continue to 

be the main mediator due to its relative simplicity and the substantial clinical experience that 

has been accumulated. Efforts should continue in the direction of improving the neural 

interface, in a cochlear implant the intracochlear electrode array. Several attempts are currently 

made for improving the properties of the electrode, for instance by including slow release 

mechanisms for intracochlear medication and less traumatic electrode properties. Both are 

import for strategies for improving hearing preservation. The concept of minimizing trauma 

during surgery is also important for ease of future revision surgery and optimizing the 

possibilities of alternative treatments. 
 

The use of cochlear implants has expanded to new patient categories. It is no longer a device 

for profoundly deaf patients only. The indications have evolved over the last decades including 
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the domains of this thesis, patients with residual hearing and children with malformed cochleae. 

Both groups of patients were previously judged as unsuitable candidates but efforts by a large 

number of research groups have shown that cochlear implantation not only is possible but also 

an intervention with good outcome. 
 

Today, it is possible to preserve residual hearing in most patients receiving cochlear implants. 

One of the most important remaining questions is how to maintain results. Further work is 

necessary to understand the mechanisms that are involved in cases of late loss of hearing after 

implantation, as well as possible direct treatments. The area of drug delivery to the inner ear 

has only started. 
 

With increasingly better resolution on CT and MRI, the work on classifications of the 

malformations must continue. In addition, for the unusual malformation IP-3, histopathological 

studies will be essential to understand the organization of the membranous labyrinth and SGN. 

This may reveal precise explanations to the conductive component of the hearing loss as well 

as to the poorer audiological outcome on electrical stimulation. For all malformations genetic 

analysis is likely to be increasingly important. In cases of malformations, bony as well as 

membranous, it is necessary to clarify the regulatory roles of the genes involved in 

embryogenesis. Today these are not sufficiently known to explain the diversity of phenotypes 

expressed. Combining the domains of imaging, histopathology and genetics will be the most 

successful way forward in understanding the mechanisms involved in the subtypes of temporal 

bone malformation. There is also a need for increased knowledge in the complex system of 

auditory pathways, from the cochlea to a subcortical and cortical level, to comprehend how we 

learn to hear. 
 

Evaluating the malformation subtype IP-3 as in this thesis is one step forward. Every category 

of malformations should be analyzed, identifying the specific difficulties for that group. A 

difficulty in this lies in the small number of children examined at each center, and that the 

possibility of long term follow-up may be limited. To centralize the malformations of a country 

to one center, as in Sweden, is a first step but future work should include international 

collaboration. As a first step for this to be successful a consensus of comparable assessment 

tools is necessary. 
 

The over-all aim of the study in paper IV was to embrace a “total evaluation” of medical, 

psychological and social parameters for a comprehensive approach to the child with a cochlear 

implant. This aim, to draw the “complete picture”, is important for analysis of how to best assist 

in training the child and counsel and support the family on an individual basis. For future 

studies of groups of pediatric cochlear implantation recipients, this concept is likely to become 

increasingly important. “Good outcome” is not only about a successful surgical procedure, or 

development of speech and oral language, or socio-psychological well-being of the patient, but 

rather optimizing each area for a comprehensive good result. Understanding of, and coping 

with, the unique difficulties each individual child faces growing up with a cochlear implant is 

a key to a successful treatment. 
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CONCLUSIONS 
 

 

 

 

Paper I. The guinea pig cochlea exhibits high resilience provided the use of a surgical 

technique with limited trauma. Cochleostomy and implantation itself does not alone 

explain postoperative permanent loss of residual hearing when occuring. Very 

limited to no signs of histological changes in hair cells and spiral gangloin neurons 

are seen after short follow-up. 

 

 

Paper II. Electrocochleography and micro-CT shows that endolymphatic hydrops is present 

during the first week after cochlear implantation. The soft tissue response does not 

increase at longer follow-up.  

 

 

Paper III. Cochlear implantation is a feasible and safe alternative for hearing restoration in 

children with x-linked malformation. Complications are few and can be managed 

during the surgical procedure. With a cochlear implant the children attain hearing 

but at a lower level compared to average CI recipients and they develop spoken 

language. 

 

 

Paper IV. Children with x-linked malformation exhibit, in addition to their severe-profound 

mixed hearing loss, features of a neuro-developmental disorder in the area of 

attention deficit and hyperactivity. Their cognitive abiliteis are below those of a 

control group of pediatric CI recipients. These findings does not seem related to 

their hearing loss alone but instead to their POU3F4 mutation. This concludes a 

suggestion to re-classify POU3F4 related x-linked deafness as a syndromal hearing 

loss. 
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SAMMANFATTNING PÅ SVENSKA 

 

Hörselnedsättning är ett av de vanligaste handikappen i världen. Hörapparater är ofta en bra 

hjälp men de fungerar inte för patienter med grav hörselnedsättning eller dövhet. Möjligheten 

att använda cochleaimplantat (CI, hörselimplantat i snäckan) hos dessa patienter är ett stort 

medicinskt framsteg som revolutionerat behandlingen av svåra hörselhandikapp. Fler än fyra 

tusen vuxna och barn har opererats i Sverige under de senaste decennierna, i världen har flera 

hundra tusen opererats. 

 

Vår hörsel bygger på att ljudet som leds till innerörat kan omvandlas till nervsignaler av 

snäckans (cochleans) sinnesceller. De kallas hårceller och om de inte fungerar kan ljudet inte 

fortledas till hjärnan. Vanliga hörapparater, som förstärker ljud, kan hjälpa människor med lätta 

till måttliga hörselnedsättningar men vid uttalade besvär minskar vinsten av att förstärka ljudet, 

eftersom snäckan då saknar förmåga att skapa nervimpulser. CI innebär att man blir oberoende 

av snäckans funktion och istället stimulerar hörselnerven direkt. Under de senaste femtio åren 

har metoden för CI utvecklats successivt. I början handlade det om enkla försök med att 

stimulera hörselnerven elektriskt och på 1970-talet opererades de första patienterna. Dagens 

system är tekniskt mycket avancerade men grundprincipen är densamma, att elektriskt 

stimulera hörselnerven och på så sätt alstra nervimpulser som av hjärnan uppfattas som ett 

hörselintryck. De patienter som kan bli hjälpta med CI är dels dövfödda barn som opereras 

tidigt under barnaåren och på så sätt kan lära sig att förstå hörselintryck och därmed utveckla 

tal, dels barn eller vuxna som blivit döva och återfår hörselförmågan med CI. Tekniken i 

cochleaimplantaten utvecklas kontinuerligt för att ge bättre talförståelse, bättre möjligheter att 

uppskatta musik och vara lättare att använda. Trots att cochleaimplantat fungerar bra för 

flertalet användare finns det fortfarande områden där vi behöver lära oss mer. Den här 

avhandlingen handlar om två patientgrupper med särskilda problem. Dels de med ”partiell 

dövhet”, dels de som föds med inneröremissbildningar.  

 

Partiell dövhet 

Bland vuxna som opereras idag finns en ökande grupp med varierande grad av kvarvarande 

hörsel i basregistret (”residual hearing”). Denna hörselrest är som regel liten och patienten är 

diskantdöv med en kraftigt begränsad hörselfunktion, trots maximalt stöd av hörapparater. I 

samband med en rutinmässig CI-operation är risken stor att patienten helt eller delvis förlorar 

den kvarvarande hörseln. Orsaken till detta är oklar. Om man kan bevara patientens egen, 

naturliga, bashörsel och kombinera denna med elektrisk hörselstimulering via CI i diskanten i 

samma öra får patienten sammantaget ett bättre hörselresultat, och det blir till exempel lättare 

att höra i bullriga miljöer. En mindre traumatisk kirurgisk teknik har utvecklats 

(hörselbevarande CI-kirurgi) och denna kan kombineras med en kortare och mjukare 

implantationselektrod. Trots detta förlorar ungefär 25 % av patienterna sin kvarvarande 

bashörsel i samband med kirurgin. Avhandlingens två första delarbeten är djurexperimentella 

och handlar om att öka förståelsen av vilka sjukdomsmekanismer som bidrar till att den 

kvarvarande hörseln skadas i samband med kirurgi.  

I studie 1 bedöms hur hörseln och snäckans inre strukturer påverkas av olika grader av 

kirurgiskt trauma. Tre grupper marsvin opererades med: i grupp 1 endast cochleostomi 

(öppnandet av ett hål till snäckan), i grupp 2 utfördes en djup cochleaimplantation och i grupp 
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3 en grund cochleaimplantation. Hörseln testades med hjälp av hjärnstamsaudiometri 7, 14 

respektive 28 dagar efter operationen. Resultaten visar att marsvinets hörsel till stor del kan 

bevaras även om man borrar upp ett hål i snäckans nedersta vindling (grupp 1) liksom om man 

för in en elektrod en kort sträcka in i snäckan (grupp 3). Om man däremot för in den djupare 

förloras all hörsel (grupp 2). Försöksdjuren var normalhörande och hörseln kunde testas även 

på de höga frekvenser som låg i närheten av implantatelektroden. Mikroskopisk undersökning 

av snäckan på de marsvin som varit implanterade med en kort elektrod visade efter avslutad 

uppföljningstid, 28 dagar, att snäckans inre strukturer till stor del bevarats, hårcellernas antal 

var nära oförändrat i 3 av 5 snäckor och att nervcellernas antal var oförändrat jämfört med icke-

implanterade snäckor. Slutsatsen är att marsvinets snäcka har hög motståndskraft för måttligt 

kirurgiskt trauma och att cochleostomi eller kort implantation inte ensamt förklarar 

hörselförlust, i de fall det inträffar.  

I studie 2 undersöks hypotesen att cochleaimplantation ger så kallad endolymfatisk hydrops. 

Det innebär att man har ett övertryck i den ena av innerörats vätskor, endolymfan. Vid 

mikroskopisk undersökning av snäckor som varit cochleaimplanterade har man, hos såväl 

marsvin som människa, noterat endolymfatisk hydrops i ungefär 25 % av fallen. Hydrops, 

övertryck, har även kopplas till Menières sjukdom som ger fluktuerande yrsel, tinnitus och 

hörselnedsättning. I studien cochleaimplanterades fyra grupper av marsvin med en kort 

implantatelektrod, och djuren följdes sedan i upp till 72 dagar. Elektrocochleografi (mätning 

av elektriska svar i snäckan vid ljudstimulering) samt mikro-DT (röntgen med datortomografi) 

användes för att undersöka förekomsten av hydrops. Studien visar att det finns tecken till 

endolymfatisk hydrops under första veckan efter cochleaimplantation. 

 

Barn med missbildade inneröron 

Ungefär 20 % av de barn som opereras med CI vid Karolinska Universitetssjukhuset har ett 

missbildat inneröra. Andelen är relativt hög då Karolinska har rikssjukvård på denna 

patientkategori. Missbildningar av snäckan klassificeras övergripande i Incomplete Partition 

(ofullständig uppdelning av snäckans inre strukturer), Hypoplasia (liten snäcka) och Common 

cavity, där innerörats hörseldel (snäckan) och balansdel är sammansmält i en struktur. En 

undergrupp till Incomplete partition (IP) är typ 3 (IP3) som har en snäcka med kraftigt 

förändrad inre anatomi, där de beniga delarna i snäckans centrum och golv saknas vilket 

innebär att mjukdelarna, själva hörselorganet med hårcellerna (Cortiska organet) och 

nervstrukturerna (nervcellerna och hörselnerven) saknar sitt naturliga skelett. Dessutom 

innebär detta en stor öppning mot inre hörselgången, som i sig är vidare än vanligt, med en 

öppen kommunikation till den cerebrospinalvätska som omger hjärnan. Denna missbildning är 

kopplad till mutationer i en gen (POU3F4) på x-kromosomen. Den kallas därför ofta ”x-linked 

malformation” (x-bunden missbildning). Diagnosen sätts genom fyndet av en grav 

hörselnedsättning och den typiska inneröremissbildningen, som visualiseras med hjälp av 

datortomografi och magnetresonanskamera. Genetisk testning verifierar diagnosen. X-bunden 

missbildning klassificeras idag som en icke-syndromal hörselnedsättning, d.v.s. att den inte ger 

några andra symtom än hörselnedsättning. Avhandlingens två sista studier undersöker 

möjligheterna till, och effekterna av, cochleaimplantatbehandling på 10 barn med x-bunden 

hörselnedsättning och inneröremissbildning.  

I studie 3 utvärderas den kirurgiska metoden, dess risker och barnens språkutveckling. Studien 

visar att cochleaimplantation kan genomföras säkert, utan risk för allvarliga komplikationer, 

men att implantatelektrodens läge måste verifieras under ingreppet för att säkerställa att den 
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inte lagt sig i inre hörselgången. Med cochleaimplantat utvecklar barnen hörsel, men på en nivå 

som är lägre än genomsnittet för CI-barn utan inneröremissbildning. De lär sig talspråk och 

kan gå i vanlig skola men behöver ofta extra stöd i undervisningen.  

Studie 4 tar fasta på en klinisk erfarenhet att dessa barn, utöver hörselhandikappet, har 

uppmärksamhetssvårigheter och hyperaktivitet. Hypotesen är att mutationer i genen POU3F4 

på x-kromosomen inte bara ger inneröremissbildning med hörselnedsättning, såsom det antas 

idag, utan också ett neuropsykiatriskt funktionshinder. I denna studie jämförs de med en 

kontrollgrupp barn som har CI av annan anledning (10 barn med Connexin26 mutation). 

Resultaten av genetisk analys, fördjupad språkutredning, psykologbedömning och 

undersökning av barnens psykosociala hälsa visar att barnen har svårigheter med impuls- och 

aktivitetskontroll, uppmärksamhet och socialt samspel som inte bara kan förklaras av de 

kommunikationssvårigheter som hörselnedsättningen ger. Den samlade bilden liknar en 

ADHD-problematik, och några av de äldre barnen har fått den diagnosen verifierad. Vi föreslår 

därför att x-bunden missbildning (POU3F4 mutation) omklassificeras till en syndromal 

hörselnedsättning. 
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