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ABSTRACT 

The mitochondria are essential for cellular energy production and are involved in 

many processes in the cells. The mitochondria contain their own DNA (mtDNA) that is vital 

for oxidative phosphorylation since it encodes enzymes of the respiratory chain. Mutations in 

the mtDNA and alterations in the mtDNA copy number are attributed to various human 

disorders including cancer. Mitochondrial DNA depletion syndromes (MDS) are a 

heterogeneous group of disorders characterized by severe depletion of the mtDNA. MDS 

predominantly manifests in high energy demanding tissues such as the skeletal muscle, brain 

and liver. Mutations in the genes that are responsible for providing precursors for the mtDNA 

synthesis such as thymidine kinase 2 (TK2) and deoxyguanosine kinase (dGK) are known to 

cause MDS.  

In an attempt to rescue the mtDNA depletion caused by thymidine kinase 2 (Tk2) 

deficiency in mice, the deoxyribonucleoside kinase from Drosophila melanogaster 

(Dm-dNK) was expressed in the Tk2 deficient mice (Dm-dNK
+/-

Tk2
-/-

). The Dm-dNK
+/-

 

expression was able to rescue the Tk2
-/-

 mice and prolong their life span from 3 weeks to up 

to 20 months. The Dm-dNK expression driven by the CMV promoter was observed in all 

tissues with highest expression in skeletal muscle and lower expression in heart, liver and 

adipose tissues. Dm-dNK
+/-

Tk2
-/-

 mice maintained normal mtDNA levels in the skeletal 

muscle and liver throughout the observation time of 20 months. The Dm-dNK expression 

resulted in highly elevated dNTP pools with dTTP pools being >100 times higher than in the 

wild type mice. However, the large increase in the dTTP pool did not cause mutations in the 

nuclear or the mitochondrial DNA. A significant reduction in total body fat (both 

subcutaneous and visceral fat) was observed only in the Dm-dNK
+/-

Tk2
-/-

 mice compared to 

wild type mice, which indicates an altered fat metabolism in these mice mediated through 

residual Tk2 deficiency.  

To elucidate effective treatment strategies for TK2 deficiency, a novel mouse model 

with liver specific expression of Dm-dNK driven by the albumin promoter was generated. 

Two founder mice with high Dm-dNK expression and activity in the liver was selected for 

further characterization. These mice will be used to study whether Dm-dNK expression in a 

single tissue would be able to rescue the sever phenotype caused by Tk2 deficiency in mice. 

The mitochondrial dicarboxylate carrier, SLC25A10, is involved in the transport of 

dicarboxylates such as malate and succinate across the mitochondrial inner membrane. To 

understand the role of the SLC25A10 carrier in regulating cancer cell growth, metabolism 

and transformation, a knockdown of SLC25A10 in a lung adenocarcinoma cell line (A549) 

was established and characterized. The growth properties of SLC25A10 knockdown cells 

changed to a less malignant phenotype, with increased dependency on glutamine and altered 

NADPH production. An increase in expression of glutamate dehydrogenase and decrease in 

expression of lactate dehydrogenase indicated a metabolic shift from glycolysis to oxidative 

phosphorylation in the SLC25A10 knockdown cells. The study demonstrates the importance 

of SLC25A10 in and regulation of redox homeostasis.  
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1 INTRODUCTION 

Abnormalities in the genome, with subsequent alterations of gene functions, are 

common causes of diseases. Genetic diseases may be hereditary or caused by new mutations 

or alterations in the DNA. Sometimes a single gene is mutated but more often genetic 

disorders are complex with involvement of several genes and effects of lifestyle and 

environmental factors. Mitochondrial dysfunction constitutes a large group of genetic 

inherited metabolic disorders which are due to deficient energy production by the 

mitochondrial respiratory chain complex. Genetic defects in both the nuclear and the 

mitochondrial DNA or defects in the inter-genomic signaling can result in mitochondrial 

dysfunction. Mitochondrial dysfunction contributes to a wide variety of diseases including 

neonatal fatality, adult onset neurodegeneration and cancer (1). Mitochondrial DNA depletion 

syndrome is characterized by reduced levels of mitochondrial DNA that largely affects 

infants and children and leads to early death (2). Deficiencies in enzymes that participate in 

the DNA precursor synthesis are among the genetic disorders that cause mitochondrial DNA 

depletion syndromes. Furthermore mitochondria are known to play an important role in the 

regulation of cell proliferation and cell death and are involved in the altered metabolism of 

cancer cells. To elucidate metabolic pathways that are important in cancer cell proliferation is 

a way to identify novel targets for cancer therapy. 

2 THE DNA MOLECULE 

Deoxyribonucleic acids (DNA) are the molecules that carry the genetic information of 

life. DNA are long polymers made of repeating units called deoxyribonucleotides that are 

arranged in specific triplets that make up the genetic code. Deoxyribonucleotides are 

composed of a nitrogenous purine or pyrimidine nucleobase, bound to a 5-carbon 

deoxyribose sugar and one, two or three phosphate groups. The nucleobases are classified 

into two groups; the purines adenine (A) and guanine (G), and the pyrimidines cytosine (C), 

and thymine (T). The DNA molecule is a double stranded helical molecule, containing 

millions of bases linked to each other by phosphodiester bonds and between each other by 

hydrogen bonds (3). Bases A and T and bases C and G form double or triple hydrogen bonds 

with each other respectively (figure 1). 
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Figure 1: Deoxyribonucleotide structure 

 

2.1 THE HUMAN GENOME 

The human genome includes DNA present in two organelles in the cell; the nuclear 

DNA (nDNA) and the mitochondrial DNA (mtDNA). The majority of the genetic 

information in eukaryotic cells is encoded in the nDNA, while the mtDNA constitute about 

2-3% of the total genome and encodes proteins essential for the synthesis of ATP. 

2.1.1 The nuclear DNA 

The nDNA consists of linear, double stranded molecules that form double helical 

structures and are tightly packed within the nucleus of a cell. Humans have a diploid genome 

containing approximately 3 million base pairs (bp) packed in 23 pairs of chromosomes. 

Chromosomes can be classified as autosomes and allosomes (sex chromosomes). 

Chromosomal pairs 1-22 in the human genome are autosomal while allosomes are the X and 

the Y chromosomes (XX for female and XY for male). 

DNA replication is the process where novel DNA molecules are synthesized from 

deoxyribonucleoside triphosphates (dNTPs), using one strand as template. The two strands of 

the DNA double helix unwind with the help of helicases and form a replication fork (two 

single stranded templates) that each serve as templates for the synthesis of daughter strands. 

Several DNA polymerases exist that assist the DNA synthesis by addition of correct dNTPs 

to synthesize a complementary strand.  

The nDNA synthesis is a tightly regulated process and occurs in specific phases of the 

cell cycle. In the G1 phase the replication process is initiated and all the proteins and factors 

required for synthesis are assembled. The majority of nDNA synthesis in eukaryotic cells 

occurs during the S phase of the cell cycle. Following the S phase, the G2 phase checks for 

damage or errors during DNA synthesis and prepares the cell for mitosis to form 2 daughter 
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cells. The daughter cells enter the G1 phase again and the process repeats itself. Cells can also 

enter a non-dividing state, which is either not reversible (senescence or apoptosis), or a 

non-proliferative phase (G0 phase, resting phase or quiescence). There are several check 

points in the cell cycle that ensures that DNA synthesis occurs without errors (4). 

2.1.2 The mitochondrial DNA 

Mitochondria contain their own DNA, the mtDNA, which contains genes encoding 

respiratory chain complexes. Compared to the linear nDNA, the mtDNA are circular double 

stranded molecules (16.5 kbp), that contain only 37 genes. 100-10,000 copies of mtDNA are 

present in each cell depending on the energy requirement of the specific cell. The mtDNA 

replication is independent of the cell cycle and the nDNA replication. Unlike nDNA that 

divides during the S phase of the cell cycle, mtDNA replication occurs asynchronously 

throughout the cell cycle and also occurs in post-mitotic resting cells such as brain and 

muscle cells. The mtDNA replication requires a constant supply of dNTPs and is regulated by 

several nuclear encoded proteins such as DNA polymerase γ (POLG), twinkle helicase and 

mitochondrial single-stranded DNA binding proteins (5-8). 

2.2 THE SYNTHESIS OF DEOXYRIBONUCLEOTIDES  

Depending on the cell cycle phase, cells can be classified as dividing cells or resting 

cells. In addition to the different enzymes and co factors, an adequate supply of dNTPs 

(dATP, dCTP, dTTP and dGTP), are required for DNA synthesis and repair in both dividing 

and resting cells. There are two tightly regulated pathways for nucleotide biosynthesis; the 

de novo pathway and the salvage pathway (figure 2). 

 

Figure 2: Deoxyribonucleotide synthesis in the cytosol and mitochondria 
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The de novo pathway assembles ribonucleotides from sugars and amino acids. 

Ribose-5-phosphate, a product of glucose breakdown via the pentose phosphate pathway, 

reacts with ATP to generate the activated form, phosphoribosyl pyrophosphate (PRPP). 

PRPP, along with amino acids and carbon dioxide forms inositol monophosphate, which is 

subsequently converted to adenosine and guanosine monophosphates. Pyrimidines are 

assembled using bicarbonates, ATP, glycine and coenzyme Q, and are finally attached to 

PRPP to form uridine monophosphate. Nucleoside monophosphates are reversibly 

phosphorylated to nucleoside diphosphates (NDPs) catalyzed by nucleotide monophosphate 

kinases (NMPK). In humans, there are different NMPKs for the different nucleosides; 

thymidylate kinase, uridylate-cytidylate kinase, several isoforms of adenylate and guanylate 

kinases (9,10). 

The enzyme ribonucleotide reductase (RNR) catalyzes the conversion of NDPs to 

deoxyribonucleoside diphosphates (dNDPs) by reduction of nucleotides in the 2-hydroxyl 

group of the sugar moiety (11). Since DNA requires thymidine deoxyribonucleotides, dUMP 

is converted to dTMP through reductive methylation catalyzed by the enzyme thymidylate 

synthase. The dNDPs are subsequently phosphorylated into respective dNTPs catalyzed by 

the enzyme nucleoside diphosphate kinase (NDPK) (12). In humans there are several NDPK 

isozymes, differentially expressed in tissues, possessing several different yet specific 

functions in the cell (13,14). 

The salvage pathway employs enzymes known as deoxyribonucleoside kinase (dNK) 

to catalyze the phosphorylation of deoxyribonucleosides that are either recycled from 

degraded DNA or obtained from nutrients. Mammals have four dNKs with specific but 

overlapping substrate specificities and all encoded by the nDNA (15,16) (Table 1). Two of 

the enzymes are cytosolic; thymidine kinase 1 (TK1), and deoxycytidine kinase (dCK), and 

two of the enzymes are located in the mitochondria; thymidine kinase 2 (TK2) and 

deoxyguanosine kinase (dGK). The phosphorylation of deoxyribonucleosides to dNMPs by 

dNKs is the first and rate-limiting step in the salvage pathway. The dNMPs are subsequently 

phosphorylated to di- and tri- phosphates by NMPK and NDPK respectively. 

Table 1: The four mammalian dNKs, their substrates and expression 

Enzyme Human 

gene 

Subcellular 

localization 

Substrates Expression 

pattern 

TK1 TK1 cytosol dThd, dUrd S phase  

TK2 TK2 mitochondria dThd, dUrd, dCyt Constituent 

dCK DCK cytosol dCyt, dGuo, dAdo Constituent 

dGK DGUOK mitochondria dAdo, dGuo Constituent 

2.2.1 The synthesis of dNTPs in dividing cells 

The major source of dNTPs for DNA synthesis in dividing cells are from the de novo 

pathway, where the RNR catalyzes the rate limiting step in DNA synthesis. RNRs are 

tetrameric proteins containing two non-identical subunits: a large regulatory subunit R1 and a 
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small catalytic subunit R2 (17-19). In dividing cells, enzyme levels and activity of the R1 

subunit is constant throughout the cell cycle, while the R2 subunit is cell cycle (S phase) 

regulated (18,20,21). Another source of dNTPs in dividing cells is via the salvage pathway 

mediated by the dNKs. TK1 activity is cell cycle regulated, and is highly S-phase specific, 

while dCK, dGK and TK2 are constitutively expressed throughout the cell cycle (15,22). 

Supply of dNTPs for mtDNA synthesis in dividing cells are likely both from the de novo and 

salvage pathways. 

2.2.2 The synthesis of dNTPs in resting cells 

Resting cells do not undergo cell division and therefore do not have nDNA synthesis. 

However, mtDNA is constantly replicating and requires dNTP supply also in resting cells. 

The two constituently expressed dNKs that are located in the mitochondria, TK2 and dGK, 

supply the required dNTPs for mtDNA synthesis in resting cells (23-27). Furthermore, the 

nDNA is constantly subjected to DNA damage and also requires an adequate supply of 

dNTPs for DNA repair. Expression of the R2 subunit of RNR and TK1 are undetectable in 

resting cells (28-30). The cytosolic/nuclear dCK phosphorylates dAdo, dGuo and dCyt 

deoxynucleosides (31). 

The P53 is a tumor suppressor gene and has been shown to be inactivated in a wide 

range of cancers (32,33). A p53 inducible ribonucleotide reductase subunit (p53R2) is similar 

to the R2 subunit of RNR (34). The p53R2 is expressed throughout the cell cycle and shown 

to supply dNTPs to both mtDNA and nDNA in resting cells in response to various radiation 

and genotoxic stress causing DNA damage (35-38). 

2.3 GENOMIC STABILITY AND dNTP BALANCE 

DNA synthesis requires an adequate and balanced supply of dNTPs in order to 

function normally (19,39,40). Abnormal dNTP pools are known to cause mutagenic 

phenotypes, and correctly regulated dNTP pools are therefore a critical factor in maintaining 

genomic stability (41,42). The mtDNA corresponds to a small percentage of the total DNA 

and only small amounts of precursors are needed in comparison to the much larger nuclear 

DNA. Due to these differences mtDNA maintenance needs small but continuously present 

dNTP levels whereas nuclear DNA replication demands higher levels but restricted to the 

S phase of the cell cycle (43). 

To keep the dNTP pools balanced their synthesis is regulated either by allosteric 

regulation of RNR or feedback inhibition of dNKs (19,44), or by substrate cycles involving 

catabolic enzymes that degrade deoxynucleotides (19). Several enzymes such as 

nucleotidases, purine nucleoside phosphorylases, adenosine deaminase, thymidine 

phosphorylase, sterile α motif HD-domain containing protein 1 and uridine phosphorylase are 

catabolic enzymes that breakdown deoxyribonucleotides and deoxyribonucleosides to smaller 

bases and sugars that can either be excreted through the urine or recycled in the cell for 

different cellular processes. Mutations or deletions in any of the enzymes involved in the 
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regulation of the dNTP pool balance affects the fidelity of DNA synthesis and contribute to a 

variety of human disorders (40,45). 

The mitochondrial dNTP pool is separated from the cytosolic pool by the 

mitochondrial inner membrane, which is impermeable to charged molecules (46,47). 

However, several studies show a communication between the cytosolic and the mitochondrial 

dNTP pools with transporters present in the inner mitochondrial membrane (48-50). The 

equilibrative nucleoside transporters are located in both the plasma membrane as well as the 

mitochondrial inner membrane where they facilitate deoxyribonucleoside transport into the 

mitochondria (51,52). Mitochondrial pyrimidine nucleotide carriers (PNC1, PNC2) transport 

deoxyribonucleotide di- and tri- phosphates across the mitochondrial matrix (53,54). In 

dividing cells, cytosolic dNTP pools are high and the mitochondria can access the cytosolic 

dNTP pools through the PNC carriers. However in resting cells, cytosolic dNTP pools drop 

and mitochondria depend on the mitochondrial TK2 and dGK. The availability of balanced 

dNTP pools within mitochondria is important for mitochondrial genome integrity and 

stability, and an imbalance interferes with normal mtDNA replication and repair processes 

leading to mtDNA depletion (55). Imbalances in dNTP pools may cause mutations in both 

mitochondrial and nuclear DNA and are associated with several human disorders including 

cancer (56). 

3 MODELS TO STUDY GENETIC DISEASES 

3.1 THE Drosophila melanogaster MODEL ORGANISM 

Drosophila melanogaster is one of the most commonly and intensively studied 

organisms in biology, especially in genetics. It has a short life cycle, and serves as a model to 

study several cellular and developmental processes that are common to higher eukaryotes. It 

has a small genome compared to humans with only 4 pairs of chromosomes (X/Y, II, III and 

IV) Most of the genetic information is present in chromosomes X, II and III (57). 

Approximately 60% of human disease genes are conserved in Drosophila melanogaster (58). 

The mtDNA of Drosophila melanogaster is a 19.5 kb molecule and is similar to 

mammalian mtDNA, although with different gene arrangements. The non-coding region 

(NCR) in Drosophila mtDNA is an A+T rich region and it is of different size in different 

Drosophila subgroups (59). 

In Drosophila melanogaster, four classes of DNA polymerases have been identified 

and characterized; pol-α, γ, δ and ε. Pol-α, δ, and ε are involved in nDNA synthesis and 

function throughout nDNA replication and repair while pol-γ is involved in mtDNA synthesis 

(60-63). 

Drosophila melanogaster has a single multisubstrate deoxynucleoside kinase 

(Dm-dNK) that has the ability to catalyze the conversion of all four deoxynucleosides to their 

respective monophosphates (64,65). Cloning and characterization of Dm-dNK showed that 

this 29 kDa enzyme has high sequence similarity to mammalian TK2 and is closely related 

also to dGK and dCK (66,67). Preferred substrates for Dm-dNK are dThd, dUrd and dCyt, 
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but purine nucleosides are also efficiently catalyzed. Dm-dNK has 4-20,000 fold higher 

catalytic activity than mammalian dNKs, depending on the substrate (68). 

3.2 THE MOUSE (Mus musculus) MODEL ORGANISM 

The past century has seen rapid development in use of laboratory mice as model 

organisms to study different areas of human diseases. Although yeast, worms and flies are 

exceptional models to study developmental biology and genetics, mice have served as better 

tools to study cardiovascular, nervous, immune, and other complex mammalian diseases. 

From immunosuppressed mouse models to humanized mouse models, there are thousands of 

different types of unique, exclusive and rare inbred and genetically modified strains that are 

used in almost every field of biological research. 

Mice have 20 pairs of chromosomes (19 pairs autosomal, 1 X/Y pair) and the mouse 

genome was sequenced in 2002. The mouse genome is 14% smaller than the human genome; 

however over 80% of the mouse genes have a corresponding human counterpart (69). Both 

mice and humans have similar amounts of protein coding genes. Mouse mtDNA is highly 

homologous to human mtDNA, with respect to overall gene organization and sequence (70). 

Common models to study human disease mechanisms are to use knockout, knockin or 

transgenic mice. Generation of knockout and knockin mouse models involve genetic 

manipulation of a specific locus in embryonic stem cells via homologous recombination. 

Knockout mice are generated by targeting a specific gene locus and rendering it 

non-functional by deleting or disrupting the gene. Knockout mice are commonly used to 

study human gene deficiencies. Knockin mice are generated by targeted insertion of a gene at 

a specific locus under the regulatory elements of another gene. Alternatively, transgenic mice 

are generated via random integration of a transgene construct into the mouse genome by 

injecting the transgene into the pronuclei. Both transgenic and knockin mouse models are 

used to study effects of gene overexpression. The expression of the transgene must be driven 

by its own strong promoter. Unlike homologous recombination, which is targeted integration 

into the genome, pronuclear injection causes random integration and variability in transgene 

copy number. (71,72). 

4 MITOCHONDRIA 

Mitochondria, known as the ‘power house of the cells’, are complex, dynamic, 

semiautonomous, double-membraned organelles within almost all eukaryotic cells that 

provide energy through the process of oxidative phosphorylation (OxPhos). Evidence 

supports that billions of years ago, mitochondria were aerobic free living bacteria that were 

engulfed by a host cell, which has evolved to become the present day eukaryotic cell (73). 

Every cell has 10-1000s of mitochondria depending on the energy requirement of the cell. 

There are two pathways for ATP synthesis; glycolysis and OxPhos. Glycolysis involves 

breakdown of 6-carbon glucose to 3-carbon pyruvate. The pyruvate is converted to acetyl 

coenzyme A (acetyl CoA) which enters the mitochondria to participate in the tricarboxylic 
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acid cycle (TCA cycle) that produces the energy precursors for OxPhos. Electron carriers 

such as the reduced forms of nicotinamide adenine dinucleotide (NADH) and flavin adenine 

dinucleotide (FADH2), produced during glycolysis and the TCA cycle, are involved in 

transporting electrons from one component to another to generate ATP in the mitochondria. 

In addition, mitochondria have important roles in apoptosis, ageing, calcium signaling, iron-

sulphur cluster assembly, iron metabolism and innate and adaptive immunity (74-82). 

4.1 MITOCHONDRIAL DNA DEPLETION SYNDROMES 

Human mtDNA is a circular double stranded DNA containing 16,569 bp encoding 37 

genes; 13 protein coding genes, 22 transfer RNA coding genes and 2 ribosomal RNA coding 

genes (70,83,84). Various studies have contributed to the knowledge that mammalian 

mitochondria contain around 1,500 proteins that are expressed in a tissue specific manner 

(85,86). Since the mtDNA encodes only 13 of those proteins the mitochondria depend on 

nuclear DNA for all other proteins. The 13 protein encoding genes in the mitochondria 

encode enzymes involved in the OxPhos therefore an intact mtDNA is crucial for ATP 

production. Unlike nDNA, human mtDNA do not contain introns, and have almost the entire 

NCR concentrated in 1 region. The NCR contains elements for transcription and two origins 

of replication (87,88). 

Mitochondrial DNA depletion syndromes (MDS) are clinically heterogeneous 

autosomal recessive disorders characterized by severe reduction in mtDNA levels (2,89,90). 

Mutations in nuclear encoded genes involved in the nuclear-mitochondrial crosstalk are also 

associated with mtDNA depletion syndromes (2,91). The mtDNA depletion may affect either 

a specific tissue or a combination of organs and tissues, including muscle, liver, brain and 

kidney (92). MDS manifestation can therefore be classified into four different forms: 1) 

myopathic, 2) hepatocerebral 3) encephalomyopathic and 4) neurogastrointestinal (2). 

Functional defects in any of the genes involved in mtDNA synthesis or maintenance results in 

mtDNA depletion. The most common cause of MDS are mutations in nuclear encoded TK2, 

DGUOK, P53R2 (RRM2B), thymidine phosphorylase (TYMP), succinyl coenzyme A ligase 

alpha (SUCLG1) and beta (SUCLA2) subunits, enzymes that regulate dNTPs pools in the 

mitochondria (2). Additionally, defects in other proteins responsible for mtDNA replication 

and maintenance such as polymerase γ (POLG), the twinkle helicase (C10ORF2), and 

mitochondrial inner membrane protein (MPV17) can also cause mtDNA depletion (2,91,93). 

MDS can be difficult to diagnose since many tissues can be simultaneously affected and the 

prevalence of MDS is unknown. 

4.1.1 Thymidine kinase 2 

Mitochondrial TK2 is encoded by the nuclear TK2 gene (chromosome 16) and 

phosphorylates the pyrimidine deoxyribonucleosides, dThd, dUrd and dCyt to their respective 

monophosphates (25). TK2 deficiency is associated with a myopathic form of MDS 

(OMIM: #609560) (94). The first reports of children affected by TK2 deficiency had severe 

infantile myopathy and most often presented with gradual onset of hypotonia, fatigue, feeding 
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difficulties, proximal muscle weakness and loss of previously acquired motor skills (94-98). 

However, recent reports have identified milder forms of TK2 deficiency with adult onset and 

longer survival (99,100). TK2 deficiency can cause multi-organ mtDNA depletion with 

manifestation in muscle, brain and liver (101,102). Approximately 45-50 individuals have 

been reported with TK2 deficiency (103,104). Clinical diagnosis of TK2 deficiency includes 

multiple ragged red fibers, cytochrome C oxidase (COX) negative fibers, elevated serum 

creatine kinase levels and depletion of mtDNA content in the muscle biopsy sample 

(75-85%). 

4.1.2 Deoxyguanosine kinase 

Mitochondrial dGK is encoded by the nuclear DGUOK gene (chromosome 2) and 

phosphorylates the purine deoxyribonucleosides, dGuo and dAdo to their respective 

monophosphates (24). dGK deficiency is associated with the hepatocerebral form of MDS 

(OMIM: #251880) (105). Most of the individuals with DGUOK deficiency have severe 

multi-organ illness, with progressive liver damage, hypoglycemia, lactic acidosis and 

neurological damage (105-110). Approximately 100 individuals have been clinically 

diagnosed with DGUOK deficiency (110,111). The cytoplasmic enzyme dCK has 

overlapping substrate specificity with dGK phosphorylating dAdo, dGuo and dCyt in the 

cytoplasm (15,112). The tissue specificity of dGK deficiency is likely due to low expression 

of dCK in brain and liver tissues, which have a high demand of functioning mitochondria. 

Therefore these tissues depend on dGK for supply of precursors for mtDNA synthesis (105). 

4.1.3 Thymidine phosphorylase 

Thymidine phosphorylase is a cytosolic enzyme encoded by the nuclear TYMP gene 

(chromosome 22), which catalyzes the breakdown of dThd and dUrd to thymine or uracil 

respectively. The protein was initially identified as platelet-derived endothelial cell growth 

factor (113) and was thought to be specific to endothelial cells. Later on the TYMP gene 

expression was detected in other tissues with highest expression found in lung, brain, spleen 

and the digestive system, and relatively lower expression in kidney, muscle and fat (114). 

Additionally, the protein showed to have angiogenic activity in mouse tumors with 4-5 times 

higher expression in tumor cells than normal cells (113,114), and to catalyze the reversible 

dephosphorylation of thymidine to thymine (115). 

Mutations in TYMP cause MDS manifesting as mitochondrial neurogastrointestinal 

encephalomyopathy (MNGIE) (OMIM: #603041) (116). MNGIE is a progressive 

multisystem disorder characterized by severe ptosis, progressive external ophthalmoplegia 

(PEO), gastrointestinal dysmotility, cachexia, diffuse leukoencephalopathy, peripheral 

neuropathy, ragged-red fibers or increased succinate dehydrogenase activity in muscle 

biopsy, and mitochondrial dysfunction caused by mtDNA depletion, deletions and point 

mutations (116-118). Severe impairment of the TYMP enzyme causes increased 

accumulation of plasma thymidine which disturbs the mitochondrial dNTP pool balance 

leading to mtDNA abnormalities (119). 



10 

4.1.4 P53 inducible subunit of ribonucleotide reductase  

The P53 inducible ribonucleotide reductase small subunit (P53R2) is encoded by the 

nuclear RRM2B gene (chromosome 8) that forms a functional RNR with the R1 subunit and 

catalyzes the conversion of NDPs to dNDPs (34,120). Human cancers are frequently 

characterized by inactivation of the P53 gene, that in a normal cell acts as a tumor suppressor 

by regulating the cell cycle or inducing apoptosis (33). The P53R2 subunit has high sequence 

similarity with the R2 subunit of the RNR, and has a crucial role in regulating dNTP 

synthesis during DNA damage (34,37,121). RRM2B was shown to be constitutively 

expressed in low amounts in proliferating and resting cells (36). 

RRM2B is ubiquitously expressed in human tissues with high expression in skeletal 

muscle. RRM2B gene mutations primarily cause myopathy (OMIM: #612071), characterized 

by severe mtDNA depletion (1-10% of controls) ragged red fibers and COX negative 

staining, but also affects kidney and brain (122-125). 

4.1.5 Succinyl coenzyme ligase subunits α and β  

Succinyl coenzyme A synthetase, also known as succinate coenzyme A ligase 

(SUCL), is a mitochondrial TCA cycle enzyme that catalyzes the reversible reaction between 

succinyl coenzyme A and succinate. Succinyl CoA is important for activation of ketone 

bodies and heme synthesis. There are two isoforms of SUCL; an ATP-specific isoform 

(SUCLA) and a GTP-specific isoform (SUCLG) catalyzing ATP and GTP dependent 

reactions respectively (126).  

SUCL proteins are composed of 2 subunit types; an α-subunit encoded by SUCLG1 

and a β-subunit encoded by either SUCLA2 or SUCLG2 that determines the nucleotide 

specificity of the enzyme (126-129). The β-subunits are expressed in most human tissues with 

SUCLA2 being predominantly expressed in brain and muscle and SUCLG2 in liver and 

kidney. SUCLG1 is ubiquitously expressed with highest expressions in brain, heart, kidney 

and liver (126,129,130). Mutations in SUCLA2 and SUCLG1 are associated with 

hepatoencephalomyopathic forms of MDS (with methylmalonic aciduria) (OMIM: #245400) 

(131). Deficiency of SUCLA2 results in Leigh's or a Leigh-like syndrome with onset of 

severe hypotonia before the age of 6 months. Affected children develop sensorineural hearing 

impairment, psychomotor delay, and severe muscular atrophy (132). Most patients die in 

childhood, and metabolic analysis consistently shows elevated levels of plasma and urine 

methylmalonic acid (128,133-136). Mutations in SUCLG1 causes fatal infantile lactic 

acidosis and affects the liver (40% of the patients), manifesting as hepatomegaly, steatosis, 

and liver failure (129,137-139). 15% of patients with SUCLG1 mutations also present with 

hypertrophic cardiomyopathy (129). Approximately 70 patients with SUCLA2 and SUCLG1 

mutations have been clinically diagnosed so far (129). 

4.1.6 Polymerase gamma 

DNA polymerase gamma (pol γ) plays an important role in mitochondrial DNA 

replication and repair (140). Human pol γ is highly expressed in skeletal muscle and heart 
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tissues (141). The pol γ holoenzyme contains two subunits; the catalytic subunit encoded by 

the nuclear POLG gene that has DNA polymerase, 3′-5′ exonuclease and 5′-deoxyribose 

phosphate lyase activities, and an accessory subunit encoded by the nuclear POLG2 gene that 

participates in DNA binding and DNA synthesis (142-144). 

Over 200 mutations in POLG have been identified that are associated with Alpers-

Huttenlocher syndrome, childhood myocerebrohepatopathy spectrum disorders, myoclonic 

epilepsy myopathy sensory ataxia, ataxia neuropathy spectrum of syndromes and PEO 

(OMIM: #203700, #613662) (reviewed in (145,146)). Multiple tissues such as liver, skeletal 

muscle and brain are affected and have been shown to have mtDNA depletion. The onset of 

the clinical phenotype can vary from early infantile to late adult onset as in the case of PEO 

and ataxia neuropathy syndromes (147). 

4.1.7 Twinkle helicase 

Twinkle is a mitochondrial protein encoded by the nuclear C10ORF2 gene 

(chromosome 10 open reading frame 2). Twinkle was identified as a T7 phage helicase like 

protein, and the name derives from the localizing pattern resembling twinkling stars (148). 

Mutations in C10ORF2 are associated with a hepatocerebral form of MDS (OMIM: 

#271245) and cause autosomal dominant PEO (adPEO) and infantile-onset spinocerebellar 

ataxia (148,149). Common clinical features of adPEO include hearing loss, proximal muscle 

weakness, ptosis, ophthalmoplegia and sensory axonal neuropathy (150). Some patients with 

late onset PEO also developed dementia in their late seventies (151). The spinocerebellar 

ataxia phenotype was characterized by severe mtDNA depletion in brain and liver, 

progressive cerebellar atrophy, sensory axonal neuropathy, severe neonatal hypotonia 

increased serum lactate levels, seizures and peripheral neuropathy (152,153). 

4.1.8 MPV17 

MPV17 is a human gene that encodes a mitochondrial inner membrane protein, 

believed to play a role in the metabolism of reactive oxygen species (ROS) (154). The 

MPV17 protein is expressed in human liver, heart, kidney, skeletal muscle, lung, brain, 

pancreas and placenta (155). MPV17 mutations were initially identified as Navajo 

neurohepatopathy, where affected children presented with sensorimotor neuropathy, spinal 

cord atrophy, corneal ulceration, acral mutilation, progressive central nervous system white 

matter lesions and liver disease (156,157). Mutations in MPV17 is associated with 

hepatocerebral forms of MDS (OMIM: #256810), characterized by progressive liver failure, 

often affecting children within their first year of life (154,155,158,159). 

4.1.9 Other genes causing MDS 

The clinical spectrum of MDS is expanding and new genes and novel mutations in 

previously described genes are constantly emerging. Several new genes have been identified 

whose mutations cause severe mtDNA depletions and mtDNA deletions (OMIM: #212350; 

#615084; #616896; #615471). Mutations in acylglycerol kinase (a mitochondrial membrane 
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protein involved in lipid and glycerolipid metabolism), mitochondrial genome maintenance 

exonuclease 1 gene, mitochondrial dynamin like GTPase, mitochondrial F-box, leucine-rich 

repeat 4 protein, and mitochondrial transcription factor A have recently been associated with 

cardiomyopathic, encephalomyopathic and hepatocerebral forms of MDS (160-166). 

4.2 ANIMAL MODELS FOR MDS 

Animal models are important tools to develop treatments for rare diseases particularly 

when only small populations of patients are available to evaluate the disease. The use of 

animal models helps unveil the natural history of the disease, its etiology and characteristics. 

Modelling mitochondrial dysfunction and mtDNA depletion syndrome is particularly difficult 

due to the unique mitochondrial genetics. Different animal models, mainly mouse and rats, 

have been generated to study MDS with the aim to gain mechanistic insights and to develop 

therapeutic strategies. 

TK2 deficiency: Two different mouse models have been generated for TK2 deficiency; a 

knockin mouse model with the amino acid substitution H126N, corresponding to the human 

pathogenic mutation H121N (167), and a Tk2 knockout mouse model with a deletion of exon 

4 and part of exon 5, which encodes for the substrate binding domain of the enzyme active 

site (168). Both the Tk2 deficient mouse models, despite the genetic differences, had normal 

growth at birth, and progressive growth decline from postnatal day 7 to 10. Both models 

displayed encephalomyopathy and neurological involvement caused by severe mtDNA 

depletion in the brain, and died prematurely within 2-4 weeks of age (167-169). The Tk2 

knockout mice had severe hypothermia and loss of hypodermal fat. A mtDNA depletion was 

observed in adipose tissues, causing alterations in brown and white adipose tissue 

development (170). Tissue specificity and onset of TK2 deficiency has been attributed to 

transcriptional compensation of TK1 (171). Gradual depletion of mtDNA in mouse liver was 

also observed (up to 80% reduction by postnatal day 14), that was accompanied by increased 

mitochondrial volume, altered mitochondrial structure in the liver, reduced mitochondrial 

β-oxidation and accumulation of lipid vesicles in the liver cells (172).  

dGK deficiency: A rat model for dGK deficiency was reported recently (173). The Dguok 

deficient rats were generated using zinc finger nuclease technology that generated 3 knockout 

rat lines with varied base pair deletions causing approximately 90% reduction in hepatic 

mtDNA in these rats. The mtDNA depletion was also observed in spleen although to a lesser 

extent (60% of control). Muscle had no reduction in mtDNA content but had 20-30% COX 

negative fibers, and reduced complex I and III protein expressions. Electron paramagnetic 

(spin) resonance spectroscopy technique was applied to characterize respiratory chain 

abnormalities in the dGK deficient rats (173). The rats did not show a MDS phenotype 

suggesting a remaining dGK activity in this rat model. 

TYMP deficiency: A knockout mouse model with targeted deletion of both thymidine and 

uridine phosphorylase (Tymp
-/-

Upp
-/-

) showed hyperintense brain lesions and axonal swelling 
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indicative of mitochondrial leukoencephalopathy (174). Increased levels of dThd, Urd and 

dUrd were measured in plasma and several tissues including skeletal muscle, brain, kidney 

and heart of Tymp
-/-

Upp
-/-

 mice (175). The severe progressive mtDNA depletion in these mice 

is due to unbalanced dNTP pools caused by Tymp Upp deficiency, and reflects the MNGIE 

patient phenotype (175,176). 

P53R2 deficiency: Rrm2b knockout mice were generated by deleting exon 3 and 4 of the 

Rrm2b gene. Rrm2b-deficient mice appeared normal at birth and displayed progressive 

growth retardation from 6 weeks of age, followed by premature death due to renal failure 

(approximately 12 weeks) (177). The renal failure in Rrm2b-deficient mice is caused by 

alterations of dNTP pools causing oxidative stress and increased spontaneous mutations 

(177). Other organs including heart, skeletal muscle, liver and nerve fibers also underwent 

atrophic changes. 

POLG deficiency: Several mouse models have been generated with modified Polg. PolgA 

knockout mice showed early developmental arrest between embryonic day E7.5-8.5 

associated with severe mtDNA depletion (178). Transgenic mice with specific cardiac tissue 

targeted mutants of human Pol γ, (Y955C point mutation), caused chronic PEO in the heart, 

with cardiomyopathy, mitochondrial oxidative stress and structural damage, pathological 

cardiomegaly, and premature death (179). PolG2 mutations are known to cause adPEO. A 

Polg2 knockout mouse model, generated to better understand the functions of POLG2, 

resulted in embryonic lethality (E8.0-8.5) with mtDNA depletion and mitochondrial 

ultrastructural defects (180). Several other mouse models for Polg mutations have been 

developed and extensively studied. These “Mutator mice” have impaired 3’-5’ exonuclease 

activity thereby causing accumulation of mtDNA deletions and point mutations leading to 

OxPhos deficiency, and a premature ageing phenotype (181-186). 

SUCLA2 and SUCLG1 deficiency: Transgenic mice were generated using a mutant allele 

of Sucla2 isolated by FACS-based retroviral-mediated gene trap mutagenesis screen that 

identified abnormal mitochondrial phenotypes in mouse ES cells (187). Homozygotes with 

mutant Sucla2 transgene were embryonically lethal (E18.5) with varying mtDNA depletion 

in embryonic brain, heart and muscle tissues (20-60% of control). Currently there is no 

animal model reported with Suclg1 deficiency. 

Twinkle helicase deficiency: A conditional gene knockout mouse model for Twinkle 

helicase has been developed (188). Loss of Twinkle caused embryonic lethality 

(approximately E8.5), while tissue specific disruption of Twinkle in heart and skeletal muscle 

tissues caused premature death (approximately 19 weeks) with severe progressive mtDNA 

depletion and profound respiratory chain dysfunction in heart tissue (188). Earlier studies 

have shown that mouse models overexpressing mutant forms of Twinkle, commonly named 

as the “Deletor mice” showed adPEO and late onset mitochondrial disease with 
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mitochondrial myopathy, abnormal skeletal muscle fiber size, COX negative fibers, 

accumulation of deleted mtDNA and mtDNA depletion (189-191). 

MPV17 deficiency: Mpv17
 
knockout mice (Mpv17

-/-
) were developed and showed profound 

mtDNA depletion in the liver (154). A mtDNA depletion was also observed in skeletal 

muscle to a lesser extent, but not in kidney and brain tissues up to 1 year of age. However, 18 

months and older mice developed focal segmental glomerulosclerosis with high proteinuria, 

and severe mtDNA depletion in glomerular tuffs (192). dNTP pools measured in liver, brain 

and kidney mitochondria of Mpv17
-/-

 mice showed marked decrease in the liver dTTP and 

dCTP pools causing severe mtDNA depletion, while brain and kidney dNTP pools remained 

unaltered. MPV17 is therefore believed to regulate the mitochondrial nucleotide salvage 

pathway (193). 

4.3 CANCER CELL METABOLISM 

Cells convert the biochemical energy from nutrients to ATP, a process known as 

cellular respiration. Cellular ATP is produced via two interconnected pathways; glycolysis 

(an anaerobic pathway) and OxPhos (an aerobic pathway). Under aerobic conditions, glucose 

is broken down to pyruvate in the cytosol, which is then converted into acetyl coenzyme A 

(acetyl CoA) in the mitochondrial matrix, catalyzed by pyruvate dehydrogenase. The acetyl 

CoA enters the tricarboxylic acid cycle (TCA cycle or Krebs cycle or citric acid cycle) within 

the mitochondrial matrix where it is oxidized to carbon dioxide. The TCA cycle generates 

electron carriers such as NADH and FADH2 that transfer electrons to the mitochondrial 

respiratory chain (MRC) complexes to generate ATP via OxPhos. Under anaerobic 

conditions, the pyruvate is fermented to form lactate. 

Cancer cells are cells that undergo uncontrolled cell division due to activation or 

suppression of genes involved in regulating cell growth. One of the features of cancer cell 

metabolism is the increased preference for glycolysis over OxPhos, even in the presence of 

oxygen, a process known as aerobic glycolysis or the Warburg effect (194). In order to 

compensate for the metabolic reprogramming, cancer cells take up higher amounts of glucose 

and increase lactate production. Glycolysis contributes to more than just ATP synthesis in a 

cell. Intermediates from the glycolysis and the TCA cycle are essential for several anabolic 

pathways such as the pentose phosphate pathway and the synthesis of fatty acids, cholesterol, 

glycogen, glycerol and amino acids (figure 3). 
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Figure 3: Glucose metabolism in quiescent and dividing cells. Reprinted with permission 

from Elsevier (195). 

Cancer is driven by several factors such as activation of oncogenes, loss of tumor 

suppressors and mutations in the nDNA or the mtDNA affecting the MRC complexes. 

Beyond energy production, mitochondria influence cancer metabolism and tumorigenesis in 

many different ways including to maintain redox homeostasis, to regulate apoptosis, to 

regulate cellular metabolites and the signaling processes (196). 

Alterations in cellular metabolism occur during tumorigenesis to facilitate cell 

survival and growth. Studies on metabolic profiling of cancer cells have shown that numerous 

metabolic enzymes and metabolites have tumor specific changes in expression profiles (197-

199). Activities of these enzymes and metabolites are a tightly regulated network within the 

cell and any disturbance may cause cascading effects on the network contributing to the 

malignant phenotype. Therefore, to target metabolic pathways is important to understand the 

regulation of metabolic reprogramming in cancer. 

4.3.1 Mitochondrial solute carriers 

Healthy cells depend on the finely tuned channeling of metabolic substrates and 

products across subcellular compartments by a number of transporters (200). The 

mitochondria host several transporters that facilitate transport of substrates across the 

mitochondrial membrane. The outer mitochondrial membrane contains voltage dependent 

anion channels, and is relatively permeable, while the inner mitochondrial membrane is 

highly impermeable in order to maintain efficient OxPhos. The mitochondrial carriers are a 

family of nuclear encoded proteins called the solute carrier family 25 (SLC25). The SLC25 
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proteins are localized in the impermeable mitochondrial inner membrane and are essential for 

effective mitochondrial–cytosolic crosstalk. The SLC25 transporters consists of 53 members 

that are involved in transport of molecules in several metabolic pathways such as the TCA 

cycle, the urea cycle, the OxPhos, the gluconeogenesis, the fatty acid oxidation, the amino 

acid degradation, the maintenance of dNTP pools, the calcium signaling and the iron 

metabolism (200,201). Based on their substrate the transporters can be broadly classified into 

different clades as amino acid carriers, nucleotide carriers, uncoupling protein carriers and 

carboxylate carriers (201). 

The mitochondrial SLC25 member 10 (SLC25A10) is a dicarboxylate carrier that 

transports TCA cycle intermediates between the cytoplasm and the mitochondria (202). The 

carrier transports dicarboxylates such as malate or succinate across the mitochondrial 

membrane in exchange for phosphates, succinate and thiosulphates (203-206). In humans, 

SLC25A10 is highly expressed in liver and kidney tissues, where it plays a major role in 

gluconeogenesis, the urea cycle and sulphur metabolism (207). In mice, predominant 

expression of the dicarboxylate carrier is observed in white adipose tissue with a role in fatty 

acid biosynthesis (208). Fatty acid synthesis occurs in the cytosol and is initiated by the 

export of citrate from the mitochondria to the cytosol by a mitochondrial citrate carrier 

SLC25A1 (209) (figure 4). 

 

Figure 4: Schematic representation of the SLC25A10 carrier in cell metabolism. Enzymes are 

represented in green; GDH-glutamate dehydrogenase, LDH-lactate dehydrogenase, 

MDH-malate dehydrogenase, ME1-malic enzyme 1, PC-pyruvate carboxylase. 
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SLC25A10 has been shown to transport malate into the mitochondria during the 

citrate transport to the cytoplasm required for fatty acid synthesis. Inhibition of the 

SLC25A10 carrier was shown to reduce lipid accumulation in adipose tissues (202). 

Additionally, SLC25A10 plays a role in the regulation of glucose-stimulated insulin secretion 

in pancreatic beta cells (210) Overexpression of the SLC25A10 carrier in a human embryonic 

kidney cell line resulted in hyperpolarization of the mitochondria (208), and overexpression 

in adipocytes resulted in increased ROS production (211). The dicarboxylate carrier along 

with the mitochondrial 2-oxoglutarate carrier facilitates glutathione transport from the cytosol 

to the mitochondria (212,213). Together, these studies show that the SLC25A10 carrier plays 

an important role not only in providing substrates for several biosynthetic pathways but also 

in regulating redox homeostasis. 

5 TREATMENT STRATEGIES FOR MITOCHONDRIAL 

DYSFUNCTION 

Mitochondrial dysfunction and subsequent OxPhos defects are characteristic of many 

neurological diseases such as Alzheimer’s and Parkinson’s disease, diabetes, ageing, cancer 

and the different forms of mitochondrial diseases that arise due to dysfunctional respiratory 

chain complexes (214-216). Multiple tissues are affected by defects in the mitochondria, 

especially tissues that have a high energy demand such as skeletal muscle and brain. 

Reduction of the metabolic load by dietary manipulation, enzyme replacement, removal of 

toxic metabolites and organ transplantation are some of the therapeutic approaches for 

mitochondrial diseases (reviewed in (217)). The mtDNA are constantly subjected to damage 

due to ROS production within the mitochondria. Studies using dichloroacetate, creatine, 

coenzyme Q10, antioxidants and lipoic acid have been investigated in patients with 

mitochondrial diseases (217). The heterogeneity of mitochondrial disorders makes it a 

challenging task for development of therapeutic approaches. 

Currently there are no proven effective treatments for MDS. Care and management of 

MDS include supportive treatments with vitamins and cofactors, but with poor efficacy. Liver 

transplantation has shown to improve quality of life in some patients with POLG1, DGUOK 

and MPV17 mutations. However, liver transplantation alone is in most cases not sufficient 

since the disease manifestations are multisystemic and also involve severe neurological 

symptoms (159,218-221). A controlled diet avoiding hypoglycemia or a lipid rich diet 

together with succinate and coenzyme Q10 have shown to delay progression of liver disease in 

some patients with MPV17 mutations (222,223). Enzyme replacement therapy using 

allogenic stem cell transplantation and continuous ambulatory peritoneal dialysis have shown 

promising effects in MNGIE patients (224-227). In vitro studies have demonstrated that 

supplementation of medium with dAMP and dGMP in patient derived dGK deficient 

quiescent fibroblasts could partially restore the mtDNA depletion (228,229). Recently, 

studies have shown that oral supplementation of deoxypyrimidine monophosphates (dTMP 

and dCMP) was able to prolong the lifespan and delay disease onset in a Tk2
-/-

 knockin 
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mouse model (230). The effect correlated with the dose of administration and an increase in 

mtDNA copy number and respiratory chain activities were observed in brain, heart, skeletal 

muscle, kidney and liver in these mice (230). Gene therapy approaches using adeno 

associated virus and lentiviral vectors have been studied in mouse models for ethyl malonic 

encephalopathy and the MNGIE form of MDS (231,232). 

Current therapies for cancer include radiation and chemotherapy that have adverse 

effects on all cells. Targeted therapy is a newer type of cancer therapy that specifically targets 

cancer cells with potentially less side effects on normal healthy cells. There is a need for 

additional treatment strategies to make rational combination approaches possible. With the 

development of inhibitors of metabolic enzymes it could be possible to target the metabolic 

reprogramming in cancer cells. Characteristics of cancer cells are upregulated glycolysis and 

increased lactate production. Many compounds targeting key metabolic enzymes, 

intermediates and transporters of the glycolytic pathway are exploited for development of 

therapeutic strategies (233-235). Glutamine is a multifunctional metabolite that is involved in 

energy production, synthesis of macromolecules and regulation of redox homeostasis. Several 

cancer types such as the ones driven by Myc and Kras mutations are highly sensitive to 

glutamine deprivation (236,237). Approaches that target the different roles of glutamine 

metabolism and dependency have been studied (reviewed in (238)). Antioxidants are 

important to regulate ROS mediated mitochondrial damage and are explored as possible 

anticancer agents. Cancer cells increase their antioxidant capacity to prevent buildup of ROS. 

The reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) generated in the 

cytosol primarily via the pentose phosphate pathway, is involved in maintaining the 

antioxidant defense systems by quenching the ROS produced during rapid cell proliferation. 

NADPH donates electrons for the ROS scavenging systems including glutathione and 

thioredoxin (239). In vitro studies have demonstrated that targeting enzymes that regulate 

redox balance are effective against certain cancers cell lines (240-242). 

The importance of mitochondria and mtDNA depletion for tumorigenesis and 

metastasis has several implications in terms of future cancer treatment including 

identification of selective drug targets and development of new intervention strategies. To 

understand the regulation of cancer metabolism could serve as a platform to design and 

predict the efficacy of different therapies. 
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6 AIM OF THE PRESENT WORK 

The aim of the present study was  

 to get mechanistic insights in the mitochondrial dysfunction caused by TK2 

deficiency  

 to elucidate possible treatment strategies for TK2 deficiency and other mitochondrial 

disorders  

 to investigate the mitochondrial carrier, SLC25A10 and its role in cancer cell 

metabolism and in the regulation of redox homeostasis. 
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7 REFLECTION ON THE METHODOLOGY 

In general, most of the methods used in this thesis are well established methods. Cell 

culture techniques, DNA, RNA and protein extraction protocols, genotyping using 

polymerase chain reaction (PCR), Western blot for protein expression studies, and 

quantitative real time PCR (qPCR) (both TaqMan and SYBR green techniques) for gene 

expression profiling, are all described in detail in papers I, II, III and IV. Microscopic 

analysis of mouse tissues using histopathology, immunohistochemistry and electron 

microscopy was performed at the Department of Laboratory Medicine, Division of 

Pathology, Karolinska Institute. Several kits used in all four papers are listed in table 2. 

Table 2: List of kits used in the thesis 

Method Kit  Company 

DNA extraction DNeasy blood and tissue kit Qiagen 

PCR 
GoTaq G2 Flexi DNA Polymerase Promega 

PfuUltra high fidelity DNA polymerase  Agilent 

RNA extraction RNeasy mini kit Qiagen 

cDNA synthesis high capacity cDNA reverse transcription kit Applied Biosystems 

qPCR 

TaqMan universal qPCR mix Applied Biosystems 

KAPA SYBR Fast qPCR kit KAPA Biosystems 

ABI 7500 Fast Machine Applied Biosystems 

siRNA vector pSilencer
TM

 Puro Expression Vectors kit Applied Biosystems 

siRNA transfection Fugene 6 HD kit Promega 

NADP/NADPH 

assay 
NADP/NADPH assay kit Abcam 

XTT asssay Cell proliferation assay kit II Roche Life Science 

7.1 TRANSGENE CONSTRUCTS 

The Dm-dNK transgene construct was generated using the previously cloned 

Dm-dNK cDNA (66). The 850 bp open reading frame sequence was ligated to a pcDNA3 

vector with mouse cytomegalovirus (CMV) promoter region (paper I and II) and with mouse 

albumin promoter (paper III). A 6-histidine tag was fused to the C-terminal of the Dm-dNK 

sequence in both constructs. The transgene constructs were digested from pcDNA3 vector 

using BglII and DraIII, and SnaBI and DraIII restriction enzymes for CMV-Dm-dNK and 

albumin-Dm-dNK constructs respectively. The two transgenic constructs are shown in 

figure 5. 
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Figure 5: Dm-dNK transgenic constructs. (a) CMV-Dm-dNK transgenic construct,  

(b) albumin-Dm-dNK transgenic construct 

7.2 MICE 

Wild type (C57BL6/N) mice from Charles River Laboratories were used in this thesis. 

Two different transgenic mouse strains have been generated; CMV-Dm-dNK and 

albumin-Dm-dNK. The CMV-Dm-dNK mice were intercrossed with the previously described 

Tk2 knockout mice (Tk2
-/-

) (168) to generate Dm-dNK
+/-

Tk2
-/-

 mouse strain. These mice were 

used to study whether transgenic Dm-dNK expression was able to rescue Tk2 deficiency in 

mice. The albumin-Dm-dNK mice will serve as a tool to study whether tissue specific 

expression of Dm-dNK is able to rescue Tk2 deficiency in mice. 

All mice were housed and bred at the Karolinska Institute, Division of Comparative 

Medicine, Clinical Research Center, Huddinge. All animal procedures were compliant with 

the Swedish Board of Agriculture (Jordbruksverket) animal research ethical regulations 

(ethical permits S135-11, S6-13, S100-15). Transgenic mice were generated using pronuclear 

injection technique performed at the Division of Comparative Medicine, Clinical Research 

Center, Huddinge for CMV-Dm-dNK mice and Karolinska Center for Transgenic 

Technologies (KCTT), Solna for the albumin-Dm-dNK mice.  

7.3 MITOCHONDRIAL DNA COPY NUMBER 

To study the effect of Dm-dNK in Tk2 deficient mice, mtDNA copy number was 

measured in several tissues of wild type and Dm-dNK expressing mice. Total DNA was 

extracted from mouse tissues and mtDNA copy number was performed using qPCR. Specific 

TaqMan primers and probes were designed for a nuclear encoded ribonuclease P RNA 

component H1 (Rpph1), and mitochondrial encoded NADH dehydrogenase 1 (mt-ND1). 

mtDNA was quantified using standards that were prepared using the pGEMT plasmid 

containing one copy each of the mouse Rpph1 and mt-DN1 genes. The mtDNA copy number 

was measured in skeletal muscle, brain and liver of all mice (paper I and II). 

7.4 MEASUREMENT OF dNTP POOLS 

dNTPs were extracted from whole cell extracts (paper I and II) and mitochondria 

(paper II) using MTSE buffer and methanol (described in detail in paper I). dNTP 

measurement was performed by a DNA polymerase based assay using templates and primers 

designed specifically for the different dNTPs measured. (243). The technique is based on 
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incorporation of tritium labelled dATP (
3
H-dATP) (for measuring dTTP, dCTP, dGTP pools) 

or 
3
H-dTTP (for measuring dATP pools) into a template oligonucleotide via primer 

extension. The DNA polymerase used for this reaction is the Klenow subunit of E.coli 

polymerase I, known as the Klenow polymerase. The assay was carried out by incubating 

extracts containing unknown amounts of all 4 dNTPs with the Klenow polymerase, tritiated 

dNTP and a template specific for the dNTP to be measured, with a known repetitive 

deoxyribonucleotide sequence. The reaction was incubated for 30-45 min, spotted on 

Whatman DE-81 filter discs and washed with Na2HPO4, water and ethanol. The retained 

radioactivity was measured by scintillation counting using beta counters. In paper I, dCTP, 

dTTP and dGTP pools were determined using this technique. It was not possible to measure 

dATP pools because, Dm-dNK expression causes a large increase in dTTP pool which affects 

the dATP pool measurements. In paper II, a modified template strand was synthesized for 

measurement of the dATP pools.  

7.5 MUTATION ANALYSIS 

The mtDNA are known to have higher acquired mutation rates than nDNA due to 

constant exposure to ROS, lack of histones and inefficient DNA repair mechanisms (244). 

The mitochondrial NCR is a hotspot for mutagenic effects in mtDNA as it contains two 

hypervariable regions. To sequence the mitochondrial NCR is therefore a great tool to study 

mtDNA mutation frequencies. Expression of Dm-dNK in mouse tissues causes increase in all 

four dNTP pools, particularly dTTP. Analysis of mtDNA point mutations in mitochondrial 

NCR and cytochrome b (Cytb) gene was performed to study the effect increased dTTP pools 

in Dm-dNK
+/- 

mice (paper I). Total DNA was extracted from skeletal muscle of wild type and 

Dm-dNK
+/- 

mice using DNeasy kit (Qiagen). Fragments of the mt-NCR and mt-Cytb were 

amplified using high-fidelity PCR and cloned into the pGEM-T vector (Promega) according 

to manufacturer’s instructions. Multiple clones obtained were sequenced, and point mutations 

and mutation frequencies were calculated. 

Mutation frequencies were measured in the well characterized hypoxanthine-guanine 

phosphoribosyl transferase encoded by the HPRT gene. The HPRT gene locus has been used 

as a tool for mutagenesis studies for many years owing to the fact that a wide range of 

mutations are associated with it. In order to detect point mutations in the Hprt exon sequence, 

the mouse Hrpt mRNA and corresponding cDNA was used as starting point of the 

sequencing analysis (paper II). mRNA was extracted from skeletal muscle of 12 month old 

wild type and Dm-dNK expressing mice (both Dm-dNK
+/-

 and Dm-dNK
+/-

Tk2
-/-

), and cDNA 

synthesis was performed using high capacity cDNA reverse transcription kit (Applied 

Biosystems). Fragments of mouse mt-Cytb gene and Hprt1 gene were amplified using 

high-fidelity PCR, from cDNA template. The PCR amplicon fragments were cloned to 

pGEM-T vector (Promega) according to manufacturer’s instructions. Multiple clones 

obtained were sequenced, and point mutations and mutation frequencies were calculated. 
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8 BRIEF SUMMARY OF RESULTS 

Paper I, II and III (manuscript) focus on therapeutic approach for mitochondrial DNA 

depletion syndrome caused by TK2 deficiency. Paper IV focuses on the role of mitochondrial 

carriers in cancer cell metabolism and for the regulation of the redox balance in cells. A brief 

summary of the results is presented below. 

8.1 PAPER I 

Transgene expression of Drosophila melanogaster nucleoside kinase reverses 

mitochondrial thymidine kinase 2 deficiency 

The life span of Tk2 knockout mice (Tk2
-/-

) is approximately 3-4 weeks. These mice 

die due to severe mtDNA depletion in multiple organs. In an attempt to rescue the severe 

mtDNA depletion caused by TK2 deficiency, transgenic mice expressing the 

deoxynucleoside kinase from Drosophila melanogaster (Dm-dNK
+/-

) driven by the CMV 

promoter were generated. These mice were crossed with Tk2
+/-

 mice to get Dm-dNK
+/-

Tk2
+/-

 

mice, which were then intercrossed with Dm-dNK
+/-

Tk2
+/-

 mice to obtain Dm-dNK
+/-

Tk2
-/-

 

mice. The Dm-dNK expressing mice (Dm-dNK
+/-

 and Dm-dNK
+/-

Tk2
-/-

) were characterized 

for a period of 6 months. Dm-dNK activity was the highest in skeletal muscle and kidney and 

lowest in liver and heart tissues and was found to be constantly expressed up to the age of 6 

months. No difference in mtDNA copy number was observed in skeletal muscle of wild type 

and Dm-dNK expressing mice. Dm-dNK expression resulted in very high dTTP levels (>100 

fold) and slightly high dCTP and dGTP levels (approximately 3 and 1.5 fold respectively) in 

the skeletal muscle extracts of Dm-dNK
+/-

Tk2
-/-

 mice in comparison to wild type mice. There 

were no major histopathological difference observed in skeletal muscle and liver. Mutation 

analysis of mt-Cytb and mt-NCR revealed no significant differences in Dm-dNK expressing 

mice compared to wild type mice. 

8.2 PAPER II 

Long term expression of Drosophila melanogaster nucleoside kinase in thymidine kinase 

2 deficient mice with no lethal effects caused by nucleotide pool imbalances 

In order to study the long term effects of Dm-dNK transgene in mice, the Dm-dNK
+/-

Tk2
-/-

 mice were studied for their growth and behavior for a period of 20 months. During this 

period the Dm-dNK transgene was constantly expressed. There was a significant decrease in 

total body weight of the Dm-dNK
+/-

Tk2
-/-

 mice compared to wild type mice due to decrease in 

subcutaneous and visceral fat, likely due to the low enzyme activities in some tissues such as 

liver, heart and adipose tissues. Expression of Dm-dNK resulted in increase in all four dNTP 

levels with dTTP being the highest. This increase in dTTP pools did not cause any significant 

point mutations in the nuclear or mitochondrial DNA. There was a slight decrease in mtDNA 

copy number in the Dm-dNK
+/-

Tk2
-/-

 mice compared to wild type or Dm-dNK
+/-

 mice at 12 

months of age, however this difference was not observed at 18 months. Electron microscopy 

of the kidney and muscle did not show any changes in the mitochondrial density or structure. 
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A slight increase in mRNA levels of thymidine phosphorylase enzyme was observed in the 

Dm-dNK expressing mouse tissues, while all other dNTP metabolizing enzymes were similar 

to wild type mRNA levels. The decrease in body fat was observed only in Dm-dNK
+/-

Tk2
-/-

 

mice and not in control Dm-dNK
+/-

 mice, therefore it is likely to be an effect of lack of Tk2 

and lower expression of Dm-dNK in the adipose tissues. 

8.3 PAPER III (MANUSCRIPT) 

Construction of a mouse strain with liver specific expression of Drosophila melanogaster 

nucleoside kinase 

The Dm-dNK transgene driven by the CMV promoter could rescue Tk2 knockout 

mice, and restore mtDNA depletion caused by Tk2 deficiency. This study aims to investigate 

whether Dm-dNK expressed solely in the liver would be sufficient to rescue mtDNA 

depletion caused by deoxynucleoside kinase deficiency. A mouse model was constructed to 

express Dm-dNK specifically in liver tissue driven by the liver specific albumin promoter. 8 

out of 50 founder mice (16%) genotyped had the Dm-dNK transgene integrated along with 

the albumin promoter. Only 2 out of 8 positive founder mice had a higher Dm-dNK 

expression (approximately 2.5 times) compared to wild type control. Dm-dNK expression 

was measured both in mRNA level using quantitative real time PCR and in protein level 

using enzymatic assays. The two founder mice were selected for further studies based on high 

expression of Dm-dNK in liver and low expression in other tissues. 

8.4 PAPER IV 

The mitochondrial carrier SLC25A10 regulates cancer cell growth 

SLC25A10, the mitochondrial dicarboxylate carrier, was knocked down in A549 cells 

using the siRNA technique. Our results show that knockdown of SLC25A10 in A549 cells 

changed the growth properties to a less malignant phenotype, with small cell size, monolayer 

growth and polarized mitochondrial formation around the nucleus. SLC25A10 knockdown 

cells had a higher dependency on glutamine, and an increased sensitivity to oxidative stress. 

In dividing cells, knockdown of SLC25A10 caused decreased NADPH/total NADP ratio 

compared to control cells, in cells grown in both glutamine and glutamine free medium. Gene 

expression of several genes involved in maintenance of redox homeostasis, metabolic and 

regulatory enzymes and some genes involved in cancer signaling pathways were analyzed 

using qPCR. Gene expression of TXN2 and TXNRD2 were downregulated while gene 

expression of GLUD2, LDHA, and PDHA1 were upregulated in dividing siRNA knockdown 

cells compared to control cells. In confluent cells, gene expression of TXN2, LDHA and 

LDHB were downregulated and gene expression of TXN, TXNRD1, GLUD1 and GLUD2 

were up regulated, in siRNA knockdown cells compared to control cells. A decrease in 

protein expression, measured using Western blot, of some proteins involved in cancer 

signaling pathways such as p53, HIF1α, and p21 was observed in siRNA knockdown cells 

compared to control cells. 
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9 CONCLUDING REMARKS 

 

A Tk2 deficient mouse model expressing Dm-dNK transgene was established and 

characterized. Transgene expression of Dm-dNK reversed mtDNA depletion and rescues the 

severe phenotype caused by Tk2 deficiency in the mice. The deoxyribonucleotides 

synthesized in the cytosol are transported to mitochondria in quiescent cells. The Dm-dNK 

transgenic mouse serves as a model for deoxyribonucleoside gene or enzyme substitutions 

and dNTP alterations in different tissues. 

 

The expression of Dm-dNK in Tk2
-/-

 mice prolonged its life span of from 3 weeks to at least 

20 months. The nuclear expression of Dm-dNK expanded dNTP pools in the cytosol and 

mitochondria required for mtDNA synthesis. Normal mtDNA levels were observed in 

skeletal muscle and liver tissues of the Dm-dNK
+/-

Tk2
-/-

 mice. A large increase in the dTTP 

pools did not cause lethal side effects in these mice. 

 

A mouse model with liver specific expression of the Dm-dNK transgene was established. 

Two founder mice have been characterized and will further be crossed with the Tk2 knockout 

mice. This mouse model will address the questions on whether a tissue specific expression 

would be able to rescue the mtDNA depletion caused by Tk2 deficiency. 

 

The mitochondrial carrier SLC25A10 knockdown cells changed its growth properties to a 

less malignant phenotype. The SLC25A10 knockdown cells were more vulnerable to 

glutamine deprivation and lead to oxidative stress. Gene expression of genes involved in 

metabolic regulatory pathways and redox balance were altered in SLC25A10 knockdown 

cells. The metabolic alterations were linked to an energy metabolic shift from glycolysis to 

mitochondrial OxPhos. The SLC25A10 carrier plays an important role in regulating cancer 

cell redox homeostasis. 
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