A study on an iIntegrated observation and

collision avoiding support system for merchant
ships

Oo0o0O oo@ao)

Oo0oooo Oooooo

Oo0oooo 2012

ooooon 126140 0O 0O 2570

URL http://i1d.ni1.ac.jp/1342/00001315/

Doctoral Dissertation — ’

ASTUDY ON
AN INTEGRATED OBSERVATION AND COLLISION

AVOIDING SUPPORT SYSTEM FOR MERCHANT SHIPS

March 2012

Graduate School of Marine Science and Technology
Tokyo University of Marine Science and Technology

Doctoral Course of Applied Marine Environmental Studies

MINH DUC NGUYEN

Table of Contents

Abstract

Chapter 1 Introduction
1.1 Current State of Navigational Aids and Collision Avoiding Support Studies
1.2 Study Purposes
1.3 Dissertation Outline
References
Chapter 2 Floating Objects Observation and Tracking by Camera System
2.1 Introduction
2.2 System Overview and Coordinates Transforming Algorithms
2.2.1 System Overview
2.2.2 Object Tracking Program Outline
2.2.3 Coordinates Transforming Algorithms
2.3 Sea Horizon Line Detection
2.3.1 Gradient Expression
2.3.2 Sea Horizon Line Detecting Procedure
2.4 Floating Object Detection
2.4.1 General Principle
2.4.2 Floating Object Detecting Algorithm
2.4.2.1 Image Median Filtering
2.4.2.2 Resizable Sliding Window Test
2.4.2.3 Pixel Labeling and Object Extraction
2.5 Floating Object Tracking and Motion Fitting
2.6 Object Tracking Accuracy
2.7 Manual Object Tracking by Laser and Night Vision Cameras

2.8 Conclusion

References

Chapter 3 Automatic Collision Avoiding Support System and Optimal Route

Generation by Dynamic Programming

£~ VS B N

0o O N O O

12
14
17
17
18
18
19
21
22
24
26
28
28

3.1 Introduction
3.2 System Overview
3.3 Route Generating Principle
3.3.1 General Principle
3.3.2 Evaluation of Collision Risk
3.3.2.1 Evaluation of Collision Risk by SJ Value
3.3.2.1 Evaluation of Collision Risk by Bumper Model
3.3.2.1 Evaluation of Collision Risk by Object Domain
3.3.2.1 Evaluation of Collision Risk by Obstacle Zone by Target
3.3.3 Target Motion Information
3.3.4 Own Ship Maneuvering Model
3.4 Route Generating Algorithm by Dynamic Programming
3.4.1 Djikstra’s Algorithm for Shortest Route on Graph
3.4.2 Algorithm for Generating Collision-Avoiding Route
3.4.3 Examples of Route Generation
3.5 Simulation Studies
3.5.1 Scenario 1
3.5.2 Scenario 2
3.5.3 Scenario 3
3.5.4 Scenario 4
3.5.5 Scenario 5
3.5.6 Scenario 6
3.6 Conclusions
References
Chapter 4 Collision Avoiding Route Generation by Ant Colony Optimization
4.1 Introduction
4.2 Behavior of Ants and Ant Colony Optimization Algorithms
4.2.1 Foraging Behavior of Ant and Optimization Problem
4.2.2 Ant Colony Optimization Meta-Heuristic Algorithm
4.2.3 Common ACO Algorithms

4.3 Collision Avoiding Route Generation System Based on ACO

30
31
32
32
33
33
34
35
36
37
40
43
43
44
46
47
48
48
49
49
49
49
53
53

55
56
56
57
58
59

4.3.1 System Overview
4.3.2 Route Cost Function and Traffic Laws Keeping
4.3.3 Connection Desirability
4.3.4 Probabilistic Node Selection
4.3.5 Solution Producing Procedure
4.3.6 Pheromone Manipulations
4.3.6.1 Pheromone Evaporation
4.3.6.2 Pheromone Delivering
4.3.6.3 Deamon Actions
4.3.7 Convergence Enhancement by Solution Post-Processing
4.3.8 Overall ACO-Based Route-Generating Algorithm
4.4 Simulation Studies
4.4.1 Scenario 1
4.4.2 Scenario 2
4.4.3 Scenario 3
4.4.4 Scenario 4
4.4.5 Scenario 5
4.4.6 Scenario 6
4.5 Conclusions

References

Chapter 5 Collision Avoiding Route Generation by Bacterial Foraging
Optimization Algorithm
5.1 Introduction

5.2 Bacterial Foraging Optimization Fundamentals and Classical Algorithm
5.2.1 Bacterial Foraging Optimization Fundamentals
- 5.2.2 Classical BFOA

5.2.2.1 Chemotaxis
5.2.2.2 Swarming
5.2.2.3 Reproduction
5.2.2.4 Elimination and Dispersal

5.2.3 BFOA Limitations and Modifications

59
61
63
65
66
68
68
69
71
71
72
73
74
75
76
77
78
79
80
80

82
83
83
84
85
86
86
87
87

5.3 Collision Avoiding Route Generation System Based on BFOA 88

5.3.1 System Overview 88
5.3.2 Route Cost Function 89
5.3.3 Optimization Problem Modeling 90
5.3.4 Bacteria Position Initialization (Solution Initialization) 91
5.3.5 Bacteria Chemotaxis Procedure 93
5.3.6 Modifications to BFOA to Enhance Performance 95
5.3.6.1 Swim Length Adapting Mechanism 95
5.2.2.2 Cell to Cell Communicating Mechanism 95
5.2.2.3 Multi-Steps Searching Algorithm 96
5.3.7 Overall Adaptive BFOA for Route Producing 97
5.4 Simulation Studies 98
5.4.1 Scenario 1 100
5.4.2 Scenario 2 101
5.4.3 Scenario 3 102
5.4.4 Scenario 4 : 103
5.4.5 Scenario 5 104
5.4.6 Scenario 6 105
5.5 Conclusions 106
References 106

Chapter 6 Collision Avoiding Strategy in Critical Cases by Game Theory

6.1 Introduction : 108
6.2 Game Theory and the Pursuit-Evasion Game 110
6.2.1 Definitions and Classifications 110

- 6.2.2 Nash Equilibrium 111
6.2.3 Pursuit-Evasion Game 112
6.3 Collision Avoiding Problem as a Pursuit-Evasion Game 113
6.3.1 Own Ship and Target Ship Motion Models 113
6.3.1.1 Own Ship Model (Evader) 113
6.3.1.2 Target Ship Model (Pursuer) 114

6.3.2 Player Payoffs and Equivalent Games 115

6.3.2.1 Collision Avoidance as a Strategic Game
6.3.2.2 Collision Avoidance as a Finite Extensive Game
6.4 Game Solution by Adaptive BFOA
6.4.1 Bacteria Position Initialization (Solution Initialization)
6.4.2 Bacteria Chemotaxis Procedure
6.4.3 Overall BFOA for Producing Collision-Avoiding Strategy
6.5 Simulation Studies
6.5.1 Simulation Studies — Evading Strategy for Different Encounter Cases
6.5.2 Simulation Studies — Recursively Updated Strategies against Radar Targets
6.6 Conclusions
References
Chapter 7. Conclusion

7.1 Conclusions

7.1.1 Conclusions on the Observation Support
7.1.2 Conclusions on the Route-Producing Algorithms for Common Situations
7.1.3 Conclusions on the Route-Producing Algorithm in Critical Cases
7.2 Future Studies
7.2.1 Route Production under Wind and Wave Disturbances
7.2.2 Combination with Weather-Routing Algorithm
7.2.3 Non-linear Tracking Control of Ship

7.2.4 Cooperative Collision-Avoiding

Acknowledgements

Appendix 1. AIS Position Messages

Appendix 2. Genetic Optimization Algorithm
Appendix 3. Particle Swarm Optimization Algorithm
Appendix 4. Kalman Filtering Algorithm

Appendix 5. Least Mean Square Algorithm

115
117
117
118
119
121
122
122
125
128
128

130
130
131
132
132
133
133
133
133

134

Abstract

Thank to the development of technology and the abundance of on board equipment, the
modern ship officers now have the accessibility to a huge amount of information relating to
movements of nearby targets as well as other environmental conditions. However, even with
those advanced equipments, maneuvering has never been an easy task, especially when ships
are navigating in congested waters. The overloaded information, if not appropriately
presented and analyzed, may cause the ship officer to diffuse rather than help him mastering
the situation. Thence, marine accidents are still occurring. Different researches have been
carried out in ship collision avoiding support as well as tracking control. Those works
however have been shown to be insufficient for practical application due to the following
remaining problems:

- Most of them focus only on One-Ship to One-Ship encountering cases, using
conventional DPCA/TCPA criterion for risk adjustment while in practice, we normally
witness situations in which the actions must be taken to avoid collision with 2 or more target
ships simultaneously.

- The Ship maneuvering model is not properly applied and therefore the route is actually
not realizable.

- The rules of the road (traffic law) are not sufficiently taken into consideration.

Basing on the facilities available at TUMSAT (Radar, AIS traffic observation system) and
the All-Time All-Weather floating object observation basing on Cameras (NMRI), this work is
an effort to enable a safer, more favorable and efficient operation of the merchant ships by
conducting a structured study of an integrated observation and collision avoiding support for
the ship officers, especially in congested waters. The following 3 tasks are therefore to be
solved in the study:

- Developing an automatic floating objects observing system using cameras.

- Proposing algorithms to generate collision avoiding route for the Own Ship in normal
marine traffic situations at sea.

- Proposing an algorithm for collision avoiding strategy producing for the Ship in critical
cases (i.e. extremely dangerous encountering situations in which the target ship takes wrong
action while the distance between the 2 ships is small).

The target observation system basing on cameras is a supplement to the observation aids
by Radar / AIS and has revealed its usefulness in detecting small floating objects around the
ship position that do not appear on either Radar screen or AIS receiver display. With the aim
of detecting and tracking floating objects continuously (including the determination of object
position, speed and course), in this study, we first suggest an algorithm for the sea horizon
detection by multi-frequency gradient variation analysis. Then, the algorithm for detecting
floating objects on the camera images is proposed. The object position on the image is later

converted to its equivalent position at sea. Then, Least Mean Square Method is applied to

determine object positions, speed and courses. Experiments have shown that the camera
system is an efficient observing method that allows the detection and tracking of targets at
short distance from the ship (around 2000m).

Utilizing the available target information which has been acquired by the above
mentioned observing tools as well as other environmental constraints (manually input or
extracted from ECDIS e.g.), various algorithms are proposed to generate a safe and economic
collision avoiding route for the own ship in encounters normally faced at sea, including the
algorithm basing on Dynamic Programming (DP), the on using Ant Colony Optimization
(ACO) and that based on Bacteria Foraging Optimization Algorithm (BFOA). While
producing route, different risk assessing criteria are applied for various navigation conditions.
DP algorithm allows the route to be produced quickly, i.e. it requires minimum calculation
effort among the 3 algorithms, even for situations in which the ship officer can hardly
determine an appropriate collision avoiding strategy himself. However, DP is just an
approximation method as it has treated the problem as time invariant while it is in fact varying
with time. Another deterrence of the algorithm is that the application of traffic laws is
complicated. To overcome these limitations, population based approximation searching
algorithms have been applied and modified to fit our specified task of collision avoiding route
producing and a suitable route cost evaluating function so as to take into account the traffic
laws. The ACO algorithm was proposed with a local search (post-processing) and pheromone
manipulating mechanism to provide better convergence property. The algorithm is able to
generate a collision avoiding route close to the optimal one in a short period of time. With the
choice of route cost function the generated route is more appropriate from the experienced
seamanship view point. The algorithm enables the route producing for extremely difficult
situations in which the DP algorithm fails. It will also be shown later that a limitation of the
ACO algorithm is that its performance is strongly influenced by the choice of designing
parameters. Then a BFOA is produced with a suitable swim length adapting algorithm. It will
be shown from simulation studies that the proposed BFOA possesses all the positive points of
the ACO algorithm. Additionally, it is better than ACO in searching speed and convergence
property. Another advantage of BFOA is that it allows a flexible choice of designing
parameters. Then BFOA is should be the method of choice for route producing.

Current researches on automatic ship controlling reveal also their shortages in providing
the ship officer a recommended collision avoiding strategy in critical cases. Then, in this study,
the game theory is used to analyze the collision avoiding problem in critical cases, taking into
consideration the fact that the nature of encountering in these cases is more or less similar to a
pursuit- evasion game in which the Own Ship is an evader, trying to avoid capture. T-K model
is used for the Own Ship to make the produced collision avoiding strategy realizable. A BFO
algorithm is then used to solve the arising optimization problem for the own ship collision
avoiding strategy. The algorithm is later verified with computer simulations and the motions

of targets navigating in Tokyo Bay.

Chapter 1 Introduction

1.1 Current State of Navigational Aids and Collision Avoiding Support Studies

Ensuring the safety and efficiency of navigation has always been a vitally important duty of
the ship operators and traffic controlling officers as the marine accidents, if occurred, may result
in not only loss of human lives and properties but catastrophic damages to the environment as
well. Along with the rapid development of the shipping industry and the growing concerns about
environment protection, the navigation safety has been gaining a lot more attention recently.

Apart from the human training, law enforcement and other factors, the tendencies of
researches on the navigation safety can be classified into 2 categories:

- Studies on the observation supports for the ship officers and the communication links
between ships as well as between ship and shore.

- Studies on the support in decision making for collision avoidance for the ship officer,

Own Ship

especially in congested waters.
li(<. Target Ship
" <l
T

Radar
“\\ yd IArpa

AlIS ,
Receiver ‘ ;
L P - P
& ., Floating
Central N " Object
Processor \ R —
Camera

Fig. 1.1 Outline of observing system

On the Observation Support

Thank to the wide-spread application of modern technologies, Radar/ARPA systems and AIS
receiver have become available onboard almost every merchant ship and have proven to be
effective means of observation i.e. getting traffic information of the water around the ship.
Additionally, sea surface observation by camera has been increasingly popular in the last decades.
Different researches on sea objects detection by camera image analyzing have been published
such as the work of M.U Selvi [6], M. Tello[5], F. Meyer[1] etc. These studies use images of
cameras equipped on satellite or helicopter to detect ships and other discontinuities, e.g. oil spills
on the sea surface. The works of S. Fefilatyev[9], etc. are based on images of camera installed on
the coastal or sea buoy for ships detection.

Letting alone the detection capacity of the algorithms applied, a major shortage of all the
above mentioned studies (from navigation ensuring aspect) is that they aim at neither enabling
the observation at the ship position nor providing sea object information continuously and
therefore have very little contribution to the insurance of the navigation safety, from the ship
officers’ view point, at least. Several other paper have also been published on the ship detection
at sea from camera images like those of J. Liu, H. Wei[2] but their contributions are more or less
theoretical and the practical application is obscured.

On the Collision Avoiding Support

For collision avoiding support purpose, the more popular works that should be mentioned
includes the work of W. Lang [11], N. Ward, S. Leighton [7], etc.

A shortage of the above studies is that they mostly deals with the cases in which the own ship
has to take collision avoiding action against a single target while in practice, officer of the own
ship often faces situations with several target ships involved. Additionally, the researches rely
solely on traditional DCPA/TCPA risk assessment criterion that has been shown to be ineffective
in many cases, especially in congested waters.

In their study, R. Smierzchalski et al. [8], V.H Tran et al. [10] did mention the collision
avoiding strategy for the own ship in multi target ship cases. However, the ship dynamics is not
included in the algorithms and the collision avoiding route is therefore hard to realize. Another
deterrence of these works is that the marine traffic rules have not been properly taken into
consideration while producing collision avoiding route.

The overview of the modern navigation support system is illustrated in Fig.1.1 where the
observing means are used to acquire information about the motions of nearby ships and floating
objects. Then the central processor is to analyze the obtained information and seek a strategy for
the ship to avoid collision. The strategy is later used to control the ship so that it will pass all the
dangers on an appropriate route, given the actual traffic conditions.

1.2 Study Purposes

2006-03-28 23:14:39 'AIVDM, 1,1,,B,19NSOFh000:1F?hDG4KIOmC>0D1u,0*5E

2006-03-28 23:14:40 'ATIVDM, 1,1,,A,156AAA20002b05pND@QQL 0C>05hp,0*2D

2006-03-28 23:14:40 'AIVDM, 1,1,,A,A04757QAv0agH2Jd;Vp ' 10r3sRT6wd CdKQsvs>pN,0*0B
2006-03-28 23:14:40 'ATVDM, 1,1,,A,369fth50019wvldDCONWP 3@0000,0*2B

2006-03-28 23:14:40 'ATIVDM, 1,1,,A,33:gEp1001b05J0D@vmB0J?>0000,0*75

Fig. 1.2 Traffic Observing Tools

In Tokyo University of Marine Science and Technology, a marine traffic observation system
has been established to supervise the marine traffic inside Tokyo bay with several radar stations
and AIS transponders. Furthermore, under the sponsorship of NTT Communication Corporation

and Japan Oil, Gas and Metals National Corporation, a research project has been conducted at
National Maritime Research Institute (NMRI) on an All Time All Weather Floating Object
Detection System Using Cameras.

Basing on these available facilities, the subject of this study is chosen in an effort to enable a
safer, more favorable and efficient operation of the merchant ships.

Noticing the burden that the ship officer has to bear to ensure the safety of the own ship and
the shortage of studies on the collision avoiding support means so far available, the focus of this
work is on a structured study of an integrated observation and collision avoiding support for the
ship officers, especially in congested waters.

Then, the study aims at solving the following individual component parts of the supporting
system as followings:

- Developing a target ships/floating objects observing system using camera. The system must
be able to detect sea objects, determine object positions and track the objects (calculating the
object moving speed and course). It is a supplement to the observation aids by Radar / AIS
(which was the subject of my Master Thesis) and must be independent from these observing
means. These tasks should be solved without human intervention to make the system helpful to
the ship officer.

- Utilizing the available target information (received by the above mentioned observing tools)
as well as other environmental constraints (manually input or extracted from ECDIS e.g.) to
generate a safe and economic collision-avoiding route for the own ship in all types of encounters
normally faced at sea. For this purpose, various algorithms will be proposed and analyzed in the
following chapters. The route produced should meet marine traffic law as far as possible to
eliminate the possibility of conflicting actions among ships in collision avoiding. Additionally,
the dynamic model of the own ship should be used to make the route realizable.

- Providing the officer with a collision-avoiding strategy in critical cases (i.e. extreme
dangerous cases in which the target ship is close to the own ship, its intention is not
understandable and it is moving in a collision course).

These problems, if properly solved, would pave the way for much more favorable condition of
merchant ship operation in which the computing capacity of the computer is exploited to reduce
the work load of the navigator, to eliminate the possibility of human error in judgments and
decisions making. The utmost achievement, as mentioned earlier, would be a tiny contribution to
a safer, greener and more economic shipping industry.

1.3 Dissertation Outline
Solving the above mentioned tasks step be step, the dissertation will be arranged in the
following order:

Chapter 2 Floating Objects Observation and Tracking by a Camera System: The chapter deals
with the development of a system for floating object detection and tracking basing on a camera
system including an Infra-Red camera, a Night Vision camera and a Laser Camera (Lidar).
Firstly, an algorithm for the sea horizon detecting will be introduced. Then, an algorithm is
proposed for detecting floating-objects from camera images. The object motions can be deduced
from a sequence of images. Later, the tracking accuracy is tested by actual sea experiments.

Chapter 3 Automatic Collision Avoiding Support System and Optimal Route Generation by
Dynamic Programming: The chapter gives the overview of an automatic system for generating

3

the collision-avoiding route and analyzes the inputs necessary for route-producing. Different risk-
assessing criteria will be introduced for various navigation conditions. In this chapter, the
Dynamic Programming Algorithm will be used to determine collision-avoiding optimal route.
The advantages and disadvantages of the algorithm and the type of route it produces will be
thoroughly studied.

Chapter 4 Collision-Avoiding Route Generation by Ant Colony Optimization: Also targeting
at producing an optimal collision avoiding route for the ship, given the encounter case and
accompanying environmental constraints, the chapter will propose an Ant Colony Optimization
algorithm to find the route. It will be shown in the chapter that by applying a suitable route cost
function (as composed then) the rules of the road can be properly satisfied while figuring out the
collision-avoiding strategy. Pros and Cons of the ACO algorithm will be analyzed in details.

Chapter 5 Collision-Avoiding Route Generation by Adaptive Bacterial Foraging Optimization
Algorithm: Noticing the disadvantages of the DP algorithm and ACO algorithm for route-
producing, this chapter is to propose a route producing algorithm imitating foraging behavior of a
population of E.Coli bacteria. The bacteria foraging phenomenon will be introduced first. Then,
an Adaptive-BFOA specified for the purpose will be suggested. It will be shown later that the
algorithm is more efficient than both the algorithms proposed earlier.

Chapter 6 Collision Avoiding Strategy in Critical Cases by Games Theory: Current researches
on automatic ship controlling reveal their shortages in providing the ship officer a recommended
collision-avoiding strategy in critical cases (which will be defined later). Then, this chapter treats
the collision-avoiding problem in critical cases as a game, using Game Theory (Pursuit-Evasion
game specifically). An Adaptive-BFO algorithm will be proposed to solve the arising
optimization problem. The algorithm will later be verified with computer simulations.

Chapter 7 Conclusion and Future Study: Summarizing results of the study and mentioning
subjects for later study.

References

1. F. Meyer, S. Hinz, "Automatic Ship Detection in Space-Borne SAR imagery", online,
available at http://www.isprs.org/proceedings/XXXVIIl/1_4 7-W5/paper/Meyer-
187.pdf

2. J. Liu, H. Wei et al., "An FLIR Video Surveillance System to Avoid Bridge-Ship
Collision", Proceedings of the World Congress on Engineering 2008, Vol I, 2008

3. J. Wu, “Development of ship-bridge collision analysis,” Journal of Guangdong
Communication Polytechinic, Vol. 4, pp.60-64, 2004

4, L. Hao, Z. Minhui, "A Novel Ship Wake Detection Method of SAR Images Based on
Frequency Domain", Journal Of Electronics, Vol. 20 No. 4, pp. 313-321, 2003

5. M. Tello, L.M. Carlos, J.M. Jordi, "A novel algorithm for ship detection in SAR
imagery based on the wavelet transform®, IEEE Geoscience and Remote Sensing
Letters, Vol. 2, No. 2, 2005

6. M. U. Selvi, S. S. Kumar, "A Novel Approach for Ship Recognition using Shape and
Texture", International Journal of Advanced Information Technology, Vol. 1, pp. 23 -
29,2011

10.

11.

N. Ward, S. Leighton, "Collision Avoidance in the e-Navigation Environment",
available at "http://www.gla-rrnav.org/pdfs/ca_in_enav_paper iala 2010.pdf"

R. Smierzchalski, "Evolutionary algorithm in problem of avoidance collision at sea",
Proceedings of the 9th International Conference, Advanced Computer Systems,2002

S. Fefilatyev, D. Goldgof and C. Lembke, "Tracking Ships from Fast Moving Camera
through Image Registration", Pattern Recognition (ICPR), pp.3500-3503, 2010

V. H. Tran, H. Hagiwara, H. Tamaru, K. Ohtsu, R. Shoji, "Strategic Collision
Avoidance Based on Planned Route and Navigational Information Transmitted by
AIS", The Journal of Japan Institute of Navigation, 2005

W. Lang, "Ship collision avoidance route planning tool", available at
"http://www.bairdmaritime.com/index.php?option=com_content&view=article&id=52
88:ship-collision-avoidance-route-planning-tool-&catid=78&Itemid=75"

Chapter 2 Floating Objects Observation and Tracking by Camera System

2.1 Introduction

Floating object detecting and tracking has always been an important task not only for ensuring
marine traffic safety but for search and rescue missions as well. Together with the technology
advancement, different techniques (e.g. Radar, AIS) are available onboard modern merchant
vessels for this purpose. Each observing method has its own advantages and disadvantages and is
therefore applied in its appropriate fields. AIS data, for example, is rather accurate and
convenient for data analysis but the installation of AIS is not compulsory for small vessels such
as vessels less than 500 GT, fishing and pleasure boats. Radar is a much more efficient onboard
observation method. However, different object surfaces present diversified reflection properties
for Radar signal. Then, for various reasons, many objects, especially those small and not
protruding high above the sea level can not be detected by the ship Radar.

The observation by camera is achieving a lot of attention recently. Needless to say, the camera
images are perfectly favorable for human eyes. Several works have been published on the
automatic detection of target from camera static images or videos.

In an effort to support real-time observation at scene, especially for small objects that are
otherwise not detectable by the ship Radar, a hybrid observation system basing on cameras has
been developed at the National Maritime Research Institute (NMRI) [4][6]. The system consists
of a Laser Camera (Lidar), a Night-vision Camera and an Infra-red (IR) Camera. These 3
different cameras are situated in a camera-box located on a stabilizer.

This study is a part of the observation-system developing project that deals mainly with the
object-tracking and watch-keeping tasks. Using the collected images (mostly the IR camera
images), the study aims at developing a program for estimating the floating-object track to
support observation and provide warnings. For this purpose, the object-tracking program must be
able to solve the following tasks simultaneously:

- Collecting IR camera images and detecting floating-objects from the images.

- Transferring the object positions from the image-coordinate system to the ship-coordinate
system and then to equivalent positions on the sea surface.

- Predicting the object moving track from its consecutive positions which have been extracted
from camera images.

- Providing warnings if the tracked floating-object is entering a Guard Area.

The tracking program is installed in a computer connected to the cameras as well as other
components of the observing system.

In this chapter, the observing-system outline and the object-tracking program outline, together
with algorithms for coordinates transferring will be mentioned in section 2.2. The algorithms for sea-
horizon line detection and floating-object detection will be described in sections 2.3 and 2.4
respectively. Then section 2.5 is to discuss the object-tracking and object motion-fitting problem. In
section 2.6, the target-tracking errors will be illustrated with some onboard-experiment data. To
increase the system flexibility, a manual tracking method using NV Camera or Lidar Camera images
will be proposed in section 2.7. Lastly, the chapter conclusions will be summarized in section 2.8.

2.2 System Overview and Coordinates-Transforming Algorithms
2.2.1 System Overview

At the core of the system (called All-Time All-Weather Floating Object Observing System)
are three cameras to function in various sea and weather conditions.

NV camera provides continuous color images of the sea area around Own Ship (OS) position
in both day and night time. The camera zoom (focus) can be adjusted to provide close range
pictures of the sea objects. A disadvantage of NV camera is that the image quality is heavily
affected by noise and objects at larger distance are not clear, especially in night time.

IR camera detects objects from the

temperature discrepancy between the < E-"(;;\;V-I ----------------- ‘
objects ' and “sed . wated " o fair :
temperature. It ean ‘theretorci e :
effective in all conditions as far as the GPS i
object is hotter (or cooler) than its iy B ®
surrounding environment. = o MR

The use of Lidar Camera is more @
complicated. Though, the proper 2:3)
choice of parameters of the generated
pulse can produce object reflection it : A
even for guite small objects on the Object ol % laniCikia S(':ao.:li:::r
images. It is a supplement to the above : Computer Colnpiinr
2 cameras for the cases where a small ;

and cold object needs detecting. e G

Those 3 cameras are situated inside Fig. 2.1 Camera Observing System Overview
a box on a stabilizer. This stabilizer
has the function of maintaining camera box in a horizontal plane while the ship, on which the
system is installed, is fluctuating with 6 degrees of freedom. The stabilizer is automatically
controlled by a computer and can be rotated around the ship heading. To do this, the controlling-
computer has to use pan data from an external gyro. The camera attitude can also be manipulated
manually to follow targets. This enables the system to provide real-time images of the sea surface
around the ship (or camera) position.

To get the camera position,

communication link is established 09,0728
20:45 n%ei

between the system and a GPS
receiver. Using Novatel OPAC 3
GPS receiver, camera position is
highly accurate.

Data sharing between
Stabilizer-Control-Computer and
Object-Detecting-Computer is
conducted through a local network
cable. This allows detecting
program to access to camera
attitude as well as ship attitude
data. Cameras are connected to the
latter computer by coaxial cable
for high speed data transferring.
The rest of the chapter will focus
on the object detecting program installed on the Object-Detecting Computer (Fig. 2.1).

Fig. 2.2 IR Sample Image and Specification

2.2.2 Object Tracking Program Outline
In this study, the automatic object detecting algorithm is designed solely for IR camera images.

An example IR image is shown in Fig. 2.2, with a temperature mapping scale to its equivalent

brightness of pixels on the image. Target Ship (TS),

with its engine or generators in operation is a strong C

heat radiation source and therefore clearly visible on

START D
v

the image.
The program outline is described by the flow chart Capture IR Camera Image
in Fig. 2.3. Going down the flow chart, IR camera v
images are acquired periodically by using an image Get GPS & Pan Data
capturing-board (matrox). Capturing interval can be T
decided by the user. In the study, the interval is set to : 3
be 2 to 5 [sec], taking into account the existing- DM Honzon Line and
interval of waves and movement of floating-objects. Floating Objects from Image
Field of view of the IR Camera is 21.7° horizontally !
b}{ 1.6.4o vertically. It uses 8-13um wavelength, with Calculate Camera True Bearing
minimum detectable temperature-difference of
0.08°C, and produces 640 by 480 pixels images (see * —
Ref. [4] for more details). Transform Object Position
Then, the OS position and course are extracted to Sea Surface
from the GPS receiver logs, using the established RS- y
232C serial communication link. The pan data, Predict Floating Object Motion
which is necessary for determining camera direction, T
is acquired from the Stabilizer-Control computer -
through a local network cable. The dataset contains ™™ Display Result
ship roll, pitch (ship attitude) and stabilizer roll, pitch
and yaw angles which must be used later to determine
caera attitude. C END)

Next, the sea-horizon line is searched and floating- Fig. 2.3 Detection Program Outline
objects are detected from the image. These are the
major tasks of the program and will be discussed in later sections.

As mentioned above, to convert the object positions from the image to the sea surface (i.e.
earth-fixed) coordinate system, camera-bearing must be known. In this step, OS direction and
camera pan data collected in the previous steps are used for the calculation. The transforming
algorithm will be discussed in more details in the next section.

In the following steps, object tracks are predicted from its consecutive positions and the result
is to be displayed to the user.

The process jumps up to the 1% step to collect sequential images. The program thereby follows
floating-objects continuously as required.

2.2.3 Coordinates Transforming Algorithms

This section deals with the conversion of the position of an object at sea, as seen on the
camera image to its relative position to the camera position. For this coordinates conversion, the
ship yaw, pitch, and roll angles and stabilizer yaw, pitch and roll angles must be used. These data,
as mentioned earlier, are mobilized from stabilizer-control computer through a local network
cable.

North

Vertica
Plane
|
l y
Cam Cam. gzr: L o
Pos. Searind 3 ﬂ : Bearing
5 e - A'
< e’ e e s S | ,
\\\‘\ — ; East i a -~ | A
"y E=mlE ; —< Cam.
s H: i O Axis
N
~ ‘
BN
S
Cam. Axis
W Down

Fig. 2.4 NED and Camera Fixed Coordi/nate Systems

Assume that we have a unit vector e pointing north in a North-East-Down (NED) coordinate
system originated at the current position of the ship. An equivalent unit vector e’ on the ship
longitudinal axis is the result of rotating e through the ship yaw, pitch and roll angles sequentially. Then,

e =1l 003
e=le el e l- R xe @2.1)
il Ship — yaw Ship — pitch Ship —roll
where Ry, =R, K xR

In the same manner, an equivalent unit vector e¢’’ on the camera axis can be derived by
rotating e’ around axe of ship body fixed coordinate system by the angles equivalent to the
stabilizer yaw, pitch and roll respectively.

€= [er; e, e;’] e RStabili:er Xe = RShip X R x e

e Stabilizer

W]’le”'e R ok thabilizer —yaw o thabi/i:er — pitch x thabi[izer —roll (22)

Stabilizer

Rship, Rstabiizer are called rotation matrices and can be calculated from the conventional rotation
matrices around the z-axis (R,), y-axis (Ry), and x-axis (Ry) in order. In these calculations, the x-
axis of the ship-body coordinate system is defined as its longitudinal axis and the x-axis of
camera-fixed coordinate system is the camera lens axis. Those matrices are determined with their
respective rotation angles as the followings:

=0 0 coadr 0. ~Eine coay -—siny 0
R.,=|0 cosg¢ -—sing Rirg =010 Jex R0 R,, =|siny cosy 0| (2.3)
0 sing cos¢g —sinfd 0 cosé 0 0 1

Camera axis bearing is then calculated by

Cam _ Bearing = arctan(e;/e}) (2.4)

Then, from Fig. 2.4, the object position relative to that of the camera can be deduced by:

Object relative Position: [X Y]

X = H/tan(a) 25
¥ = Xeclan(p)
where

X, Y: longitudinal and traverse distance, relative to camera position and bearing.
H: Camera height from the sea surface.
a. vertical angle between true horizon direction and the object line of sight

B: horizontal angle between camera axis and the object line of sight.

Image Plane

_____ Sea
Position SEGUE e Horizon

True .~ 7 Shyen
Horizon Image
7 Image
1 Center o
Horizon X
dip Object at

Sea

Fig. 2.5 Object Position at Sea and on Image Relation

The relation between an object position at sea level and its position on the image plane is
denoted in Fig. 2.5. To make it more understandable, the 2 angles (« and f3) have been used to
replace 2 parameters t and v (Fig.
2.6) on the images which are
needed to determine them, given
the opening angles of camera lens.

The true-horizon line is,
however an imaginary line and
does not appear on the image.
Thus, it is necessary to determine
this line indirectly from the sea-
horizon line where the term refers
to a line separating the sea-water

Fig. 2.6 Object Position on Image

10

and the sky above it. These two horizons are separated by an angle called the horizon-dip in
celestial navigation, which in turn can be calculated approximately from the camera height above
the sea water.

Knowing the position of the object on the image and the true horizon line, @ and f can be
determined as followings (Fig.2.6)

a[deg] = v pixel] x Rat
Pldeg] = | pixel] x Rat
where (2.6)
_ 21.7[deg] +16.4[deg]
~ 640[pixel] + 480[pixel]

Rat is the coefficient for converting image pixel unit to degree unit

Then, the object position in an earth-fixed coordinate system can be calculated from the
camera position in the same system, by

Noy = Ng,, + X cos(CB) +Y cos(CB +90)

Eyy, = Eg,, + Xsin(CB) + Y sin(CB +90)

where 2.7)
N o> Egnp- Own Ship (Camera) position in an earth fixed coordinate sy stem.
N os» E ;- Object position in the same system

CB: Camera true be aring

It can be seen from (2.5) that the object relative-position (X, Y) is most sensitive to error in « .
Therefore, it is important to determine this parameter (or the horizon-line position, equivalently)
accurately. Theoretically, the line can be directly specified from the attitude of camera axis by, e.g.

2 2
Cam _ Pitch = arctan(e /e, +e;)
However, due to the lateral error of the gyro measurements, the above calculation is not

reliable. Therefore the true-horizon line is to be specified from the sea-horizon line which appears
on the images. The detecting algorithm will be discussed in the following section.

True
H ! dip horizon
Sea
Surface.--~"
Sea
. horizon

Fig. 2.7 True-Horizon and Sea-Horizon

11

2.3 Sea Horizon Line Detection

As stated above, detecting the sea-horizon is an important task to ensure the accuracy of
object-position calculation. The sea-horizon is, in fact, an edge separating the sea water and the
sky above. Then, naturally an edge-detection technique like those proposed in [1][5][8] etc.
should be applied for this purpose.

Edge-detection aims at identifying points in a digital image at which the image brightness
changes sharply or, more formally, has discontinuities. The techniques may be grouped into two
categories, search-based and zero-crossing-based techniques. Search-based methods detect edges
by computing a first-order derivative expression (gradient magnitude) and then searching for
local directional maxima of the gradient magnitude using a computed estimate of the local
orientation of the edge. The zero-crossing based methods search for zero-crossings in a second-
order derivative expression (Laplacian e.g.) computed for the image to find edges.

Zero-crossing based methods are more sensitive to disturbances than search-based ones. A
technique similar to the latter therefore is used in this study.

2.3.1 Gradient Expression

The core of any edge-detection algorithms is the calculation of an expression of image
brightness gradient. Thank to the stabilizing function of the stabilizer, the sea-horizon does not
deviate largely from the image horizontal direction or the direction of image row. As a result, the
horizontal component GX contributes much larger part to the gradient value. Conversely, the
vertical component GY of the gradient is small on the sea-horizon line. Therefore, it is reasonable
to take just horizontal gradient-expression into consideration so that the vertical edges produced
by waves or floating objects are ignored in gradient calculation.

Among search-based edge-detection methods, the most popular one is probably the Canny
method [8] using a Sobel operator. Sobel proposed 3x3 kernel matrices for vertical and horizontal
gradient components respectively. The kernel matrix for horizontal gradient is given in (2 8) and
used to convolve over the input image to produce gradient.

1 2 1
G,=l0 0 O IMageGradX = IMage * G, 2.8)
-1 -2 -1 '

* denotes the convolution operation

The convolving operator is simply the shift of the kernel matrix through the image and
multiplying its components with the brightness of the corresponding image pixel underneath.

Due to the textural characteristic of IR sea-surface image, the Sobel and other common
operators have poor performance. Noticing that the frequency of brightness gradient is incoherent
for waves and other disturbances but coherent for the sea-horizon, the author expresses the image
horizontal gradient by convolving the image with the following operators

12

G, = {0000 00 l=E00:0:0 00

G %[0000111—1—1—10000]7
G %[0011111—1—1~1—1—100]T

4_1 r
€ 7[1111111—1—1—1—14—1—1] (2.9)

Grad, = Imaget G i=1to4
4

Grad = H(Grad 9

*: convolution operation

The convolution with these 4 kernel matrices (Gx'™) gives 4 gradient components (Grad,.4)
respectively. These 4 components denote brightness variation at different frequencies, from high
(Grad;) to low (Grads). Then, the total gradient-expression is defined as the product of these 4
gradient components, expecting that the total gradient value will show a significant discrepancy
between the sea-horizon and other disturbing edges.

To represent the advantage of the technique proposed, comparisons are shown below between
the gradient-expression calculated by this technique and the one determined by Sobel operator
with convolving matrix GX in (2.8) for 2 images captured by IR camera in different weather
conditions at sea.

|
|
\; Calculated 100 T T T T T T T T T
| Line 80 Sobel
| /
| 60 |
40+ n ‘
g e b pl i
© 0 'W‘. # U Aoty \,; 4
> 0 100 160 200 260 350 400 450 600
c
2 x 107
- 8 T T T T T T T T T
© —
|
o 6f (J) Own
4}
2F
1] Sv—— ht A L S RSy CERIOR TRty (R
0 50 100 160 200 260 300 360 400 450 600

Line Number: Bottom = 0, Top = 480

Fig. 2.8 Sea-Horizon Line Detection — Gradient Expression

In Fig. 2.8, water and air temperature difference is quite significant, resulting in a clear edge
between the sea-water and the sky above. The gradient-expressions of a vertical line which is
marked on the image calculated by the two methods are shown in the graphs on the right. It can
be seen that the lower figure provides a clear and significant peak for the point on the sea-horizon.
This peak is well over other disturbance edges and is easily detectable. With Sobel operator for
this condition in specification, the gradient peak value for the sea-horizon is, though detectable,

18

not very different from peaks of wave-edges. Therefore, it is difficult to set a threshold value for
separating the wanted edge and noises.

The difference between the 2 approaches is even more obvious in the second example (Fig.
2.9). In this case, image was captured when the temperature difference between the sea-water and
air is small, resulting in a vague sea-horizon line, if it is detectable.

Calculated

}:‘/ Line

2500 Own

Gradient Value

" el L " "
100 150 200 260 300 350 400 450

Line Number: Bottom = 0, Top = 480

Fig. 2.9 Sea-Horizon Line Detection — Gradient Expression

In this example, it is almost impossible to recognize the horizon-line peak if Sobel operator is
applied (Fig. 2.9, right upper graph). It is due the image nature that produces unwanted horizontal
lines for which the edges are even more significant than the sea horizon edge when temperature
difference is too low. On the other hand, using our proposed operator, gradient-expression graph
still shows a significant peak for the sea-horizon line, as the result of coherent brightness
variation at different frequencies.

These 2 images were captured in Jan. 2010. The average sea water temperature for this month
was 15°C. The weather was clear for Fig.2.8 (27th, around 16:00), with air temperature (at sea
level) of 11.3°C. On 28th, at around 10:00 am (Fig.2.9), it was rainy (0.5mm) and temperature
was from 15.1 to 15.2°C. (See [3])

In addition to the temperature difference, quality of IR camera images depends on a variety of
other conditions such as cloud conditions, humidity etc. which are hard to clearly determine.
Therefore, weather condition is not further mentioned in this study (refer to [4] for more
information in the performance of IR camera on different conditions).

2.3.2 Sea Horizon Line Detecting Procedure

Applying the proposed gradient-expression, the procedure for detecting sea-horizon is
performed through steps shown in the flow chart in Fig. 2.10.

After gradient calculation, an edge thinning process is to be applied. The aim of this process is
to remove the unwanted gradient values at pixels around the edge pixel. In our method of
expressing gradient, it is easily seen that not only the edge pixel but also several pixels under or
above that pixel, on the same vertical line do have significant gradient values. After edge thinning
step (which is denoted as or non-maximal edge suppressing step in Fig. 2.10), only pixels on the
true edge still possesses a significant value.

14

——> Calculate Gradient

v
(Suppress Non-Max
Edges

|

Connect broken
edges

|

Fit edges with lines

!

Get best fit line

-

r

.

|

No

g

[Sea Horizon Detected] { Detection Fail]

Fig. 2.10 Sea-Horizon Detecting Algorithm

Best fit line met
condition?

Then, a threshold is selected to remove all non-significant edges. The aim of this step is to
remove disturbance edges which usually have small gradient-values and therefore to eliminate
the possibility of false detection of the sea-horizon. It is difficult to decide a single gradient
Threshold-Value for removing non-significant edges in all weather conditions. Therefore, in this
study, an adaptive scheme is proposed for selecting this value in which the Threshold-Value of
gradient-expression on a vertical line is decided as followings, basing on actual gradient-values
of all pixels on that line.

r, - min(Max Gradient ’ To) (2.10)
n
where: Max Gradient is the maximum gradient value on the line
n=4
T, =6

Due to noise and wave effects, edges may be corrupted (i.e. broken). This causes
discontinuities of a long edge. To solve the problem, broken edge-parts nearby and of similar

15

tendency should be connected to reconstruct the original edges. These edges are the sea-horizon
line candidates. In this study, the relaxing threshold method is used for the edge connecting
procedure with the notice that the sea-horizon edge should be a straight line. Its principle is
illustrated in Fig. 2.11.

Fig. 2.11 Edges Connecting Principle

B e e e (4B <= 3[pixel]) then
Connect (AB)
end if

After connecting, the edges are fitted by lines, knowing the fact that with the camera height of
10 — 15 [m], the sea-horizon line is very close to a straight line.

From those fitting lines, the best fit line is selected. This is the line with maximum edge points
on it and does not deviate largely from the estimated position of the sea-horizon. The estimated
position can be inferred from the ship attitude and the camera stabilizer pan data. As these data
have the accuracy of around 0.5 [deg], the estimated sea-horizon line should not be used directly
for the calculation of the object position, but it gives a good approximation of where to search for
the sea-horizon.

To be accepted as the sea-horizon line, the best fit line must satisfy the following 2 decisive
conditions:

- Number of edge points on this line must be larger than a threshold value.

- Deviation from estimated sea-horizon (roll, pitch differences), which is evaluated by (2.11)
must be less than a threshold.

5 = V 5"20[[Fex 52//0}1
if (6 < 6* And (N < N,))then ProduceHorizon() @1
where N denotes the number of connected pixels onthe approximated line

¢ (>1)is an adjusting factor used to put more weight on pitch deviation

If the fitting conditions are met, the line is taken as the sea horizon and is used for later

calculation of object positions.

However, in unfavorable weather conditions, the sea-horizon is not detectable on the images,
even with the human eyes. The algorithm therefore fails to detect the sea-horizon. Examples of
these cases are shown in Fig.2.12 where the horizon line is obstructed from view due to the thick

vapor layer.

16

For such cases, the estimated true horizon can be used instead. However, object-position
accuracy is severely degraded accordingly and therefore should be treated with care. The
horizon- detecting algorithm returns a fail.

01: CH 01 01 CH 01

Fig. 2.12 Sea-Horizon Detection Fail

The horizon-line detecting algorithm, if successful, can ensure the accuracy of horizontal
direction (direction of the true horizon, after dip correction, see Fig.2.7) to be better than 0.06
[deg] (2 pixels). Total effect of this error and other error sources such as the camera height
variation is illustrated by experiment data as shown in Fig.2.21 and Fig.2.22 (section 2.5).

2.4 Floating Object Detection
2.4.1 General Principle

IR camera is temperature sensitive i.e. an object is detectable if there is a significant
temperature difference between the object and its surrounding environment. The image is in gray
format, with brightness value of pixel ranging from 0 to 255. As the image nature is similar to
Radar images, the Constant False Alarm Rate (CFAR) method [2][9] can be used to extract
objects.

Using this method, the existence of an object is detected by the intensity (or brightness)
difference between the object pixels and the surrounding background pixels, including noise,
clutter other disturbances. If brightness difference between a pixel and its surrounding pixels is
above a threshold, the pixel is considered to be an object pixel; otherwise, it is simply
background noise.

If the detection-threshold is set too low, unclear objects can still be detected at the expense of
increased number of false alarms, i.e. background discontinuities are falsely seen as objects.
Conversely, if the threshold is too high, just clear objects can be detected; the obscured objects as
well as noise will not appear on the result image.

The method is used for cases in which it is difficult to decide the existence of an object just
from its brightness peak. For example, for the sea surface images, pixel brightness varies as a
function of distance to the IR camera, swell and wave pattern and thus it is impossible to apply a
single value of the brightness-threshold to separate the objects with the wave crest etc.

For a floating-object on the sea-surface, its edge is usually clearer than those of waves. This
should be taken into consideration in the object-detection program. In Fig. 2.13, an IR camera
image in a wavy condition at sea is used as illustration. Variations of Pixel-brightness value in

¥

different directions (horizontal, vertical, = 45°

attaching to this figure.

upward) are shown in the respective graphs

200 . : . . .
™
p I ()) buoy wave
£ 160t l
&
2 |l ’ i
o
100 } jk M J b /L/ %
AR NE
IR b
80000 20 @00 40 600 600 700
Left Right
§ ("v
i I : il N
("]
§ 180 '/1 \
. v £ [\f ﬂ% M\N \ /'\
" 2 oo [v
@ \ U M/\J‘,HM
L \ !
&b et —ade——wia sy o e5- o
Down Up
0 250 T
e ") m-r > ")
7] 7]
g 150 g 160
= = ’\
=) J
3_9]’ 100 o 100 Mjwl fw)J\{\ ﬂ‘
AT
P
% £ W Ve £ o e o o s o % sb 160 50 260 2§u) 35'.0 W0 @0 50
Down Up Down Up

Fig. 2.13 Pixel Brightness Variation

In these graphs, a peak can be clearly seen for a buoy at a distance of approximately 150 [m]

from camera position. Wave peaks, however, are also
quite significant, in comparison with the object (the
buoy). The edge of the buoy is sharp in all graphs
while disturbance edges are more significant in the
vertical direction than in the horizontal one. Another
character of waves on the images is that it is unsteady.

2.4.2 Floating Object Detecting Algorithm

From the above perceptions, the object-detecting
algorithm is performed through a procedure as shown
in the flow chart in Fig. 2.14.

2.4.2.1 Image Median Filtering

The original camera image is pre-processed by
passing through a Median Filter. The aim of this filter
is to smooth the image. After smoothing, high-
frequency variation like waves and other disturbances
can be flattened, producing the filtered image in
which the objects appear more clearly over the
background.

18

Start

l

Median Filtering

] D

Resizable Window
Test

Pixel Labeling

y

{ Object Extracting J
@«

Fig. 2.14 Object-Detecting Algorithm

In this study, a 5x5 neighbor matrix is used for the filter. However, to increase the processing
speed, it is applied by a 2 steps one-dimensional filtering:

- Step 1: Median filtering the image vertically
- Step 2: Median filtering the image horizontally

A pseudo-code for this operation is as following: for an input array in(), the value of
equivalent output array out() at the position k is determined by

for i=1to NeighborSi ze (=5)
temp (i) = in(k — NeighborSi ze /| 2 +1)
next i

(212)
sort (temp)

out (k) = temp (NeighborSi ze / 2)

2.4.2.2 Resizable Sliding-Window Test
The existence of an object is tested by comparing the brightness of candidate-pixels with their
surrounding pixels which are assumed background-pixels. These background-pixels are within an
area called a window.
In this study, the authors employ the test recursively using a resizable window. The idea is
illustrated as following, for a sample image row (or an image line):
Candidate Objects

\ =

e N B
Initial Background
Level

Object Window

|6 9| |H : : % :

: : : | | |

| | | | | :

1st Repetition { | } | ' i

| | | : : |

Reduced Window

| |

/WJ\I\NAL/L’L\/_\/\V
| |
| |
| |
2"d Repetition I |
|

Fig. 2.15 Resizable Window Test

19

First, an initial brightness-level of background is set for the whole line. The brightness-level is
chosen to be the average brightness of all pixels of which the brightness is smaller than the
median brightness-value of that line.

Min _ Brightness + Max _ Brightness
2 (2215
BG _Level = Mean (pixel (i) | Brightness (pixel (i)) < Median _ Brightness)

Median _ Brightness =

Candidate object-pixels are pixels which are brighter than the background-level a certain
value called the Object Threshold.

Then, the test is performed recursively for those candidate-objects with a suitable window size.
The window is defined as shown in Fig. 2.16.

<«——— Averaging Area ———

<—— Guard Area ———>

pixel array

| |
LT T T EEENN NN T T T T T 111

Fig. 2.16 Test Window

A guard-area (or guard-distance) is selected around the candidate-object so that the object
edges can be skipped in the calculation. In this study, the guard-area width is set to be 2 pixels.

The averaging-area is an area outside the guard-area, with the size set wider to erase high
frequency disturbances. Here, the width of the averaging-area has been selected to be 6 pixels on
each side.

Then, the testing process is conducted using the following pseudo-code:

Window _ Average = Mean (pixel (i) | pixel (i) inside averaging _area)
for each object _ pixel obj
if (brightness (obj)—Window _ Average < Object _Threshold)then

obj = Object Pixel (2.14)
else

obj = Not Object Pixel
end if

20

Fig. 2.17(a,b,c,d) Object-Pixels Detecting Process

Once status of a pixel changes from object-pixel to non-object-pixel, it is treated as a normal
background-pixel for later processing. The process is repeated several times to gradually erase
unwanted disturbances. The window-size for each candidate-object is reduced, according to the
number object-pixels which have changed their status. This is illustrated in Fig. 2.15.

Starting with an initial image (Fig. 2.17a), the candidate-objects are marked in red in Fig.
2.17b. Then, after a number of repetitions, the final image with marked object-pixels can be
achieved (Fig. 2.17d). It is clearly seen here that the wave-crests have largely been removed from
the figure. Although false objects still exist in the image, they can be washed away later by
checking their existence in consecutive images (see section 2.5).

2.4.2.3 Pixel Labeling and Object Extraction

Pixel labeling is the process of giving each object pixel a label. Pixels belong to a common
group are members of a single object and therefore should be given the same label. This can be
achieved by labeling the connecting pixels repeatedly.

After labeling, objects can be extracted from the image from pixel labels. Then a rectangle is
defined to isolate the object using its topmost, leftmost, bottommost and rightmost pixels. The
rectangle is called an object frame.

To reduce the possibility of mistakenly having several frames for a single object, deletion
operator may also be applied. However this also may cause different objects to be grouped into
one.

21

Bip: 2718 Floating-bject Detectio

Shown in Fig.2.18 is an object on 4 consecutive images received by IR camera. The object is a
small fishing boat at about 1500m from the camera position. The sea-horizon is obviously seen
and the program works as expected.

2.5 Floating-Object Tracking and Motion Fitting

The object is continuously tracked from its consecutive positions. The aim of the track
prediction in NMRI project is to check whether floating objects are drifting into the Guard Area,
which is an area behind our Own Ship. Then, it is necessary to gather the object-frames of the
same target on sequential camera images. Target-following is also vitally important for other
shipping application such as collision-avoiding support. This can also reveal objects that have
been mistakenly detected from the previous step i.e. a correctly detected object should appear
frequently on consecutive images.

In this study, the relation between object-frames on consecutive images (see Fig. 2.19) is
evaluated by a relating-value. The value takes into consideration similarities in the object frame
sizes (S_rel), distances to camera (D_rel) and bearings.

The relation is evaluated by (2.15) of which the components are defined as shown in the
following equations. Two object-frames (a frame at time t and another at time t + 1) are
considered to be sequential frames of a single floating object if the following 2 conditions are
satisfied simultaneously:

- Their relating-value is the smaller than the relating-value between one object-frame (among
the two frames) with any other object-frames on the other image.

22

- The relating-value is smaller than a threshold value.

O Candidate at t
¢ Candidate att + 1
A Candidate att + 2
Target
P
4 ,”A II o
%4 X} / (0]
Objects ’ / &
‘I ’O,/ A
o
% A
Delta_Bearing o
O
Fig. 2.19 Object Track Prediction
flobil0bj2) =S rel x D) velo < B rel
where
S rel = LargeObjectSize / SmallObjectSize
D rel = DistBetweenObjects / Limit_Dist 2.15)

B rel = (Delta Bearing + 0.5) / Limit Bearing

flobj1, obj2) < Threshold relation
= image object of the Same Target

The test with this relating function has proven that object-frames detected in Fig. 2.15 belong
to a single floating-object (a fishing boat, actually). They are plotted on Fig. 2.20 (right hand side
figure).

Due to the errors in position-determining algorithm (the sea-horizon detection error, antenna
height fluctuation etc.), the consecutive positions of an object are fluctuating about its track. Then,
in this study, object track is predicted using least square method (LMS). LMS is used with the
assumption that target movement is constant. This assumption is appropriate as target can not
change its speed and course much in a short period of time (less than 1 [min]).

Using this LMS algorithm (2.16), the latest position of the target (X0, Y0) and its 2 velocity
components (Vx, Vy) can be determined so as to minimize the total square error which is denoted
by J. For illustration, predicted track has been calculated and drawn in Fig. 2.20.

28

Best Fit
COG

Best Fit
Position

Predicted
Track

X

> Own Ship

Fig. 2.20 Object Positions and Track Fitting

X =0 s
Y =¥ —ixd¥

SN et e

J=Y (X =X, —ixA4X)’ + Y (V' =Y, —ix AY)’
i =0 to NumberOfPoints

X", Y": Observed target position

(2.16)

X, Y: best fit target position
AX, AY :best fit x,y speed

Solution to this LMS algorithm is simple and will not be further mentioned here. A detail
description of the method can be found in the Annex V.

2.6 Object Tracking Accuracy

Due to the effects of different error sources, including the sea-horizon detecting error, camera
height etc., position of an object that is calculated by the program pertains to some uncertainty
that closely depends on the relative distance from the object to the camera position. This
dependence is illustrated in Fig. 2.21 and 2.22. Objects material may also contribute some error
to the accuracy due to the error in object water-line detection and should be further studied.

Fig. 2.21 expresses the variation of distance from camera which is assumed to be fixed at sea
to a non-moving object (an anchoring ship) at different distances. An increase in variation of the
measurement with increasing distance can be easily seen.

- For a target at about 200[m], the deviation is around 2 [m]

- For a target at 600[m], the deviation is approximate 8 [m].

24

- For a target at 1100[m], the deviation is around to 20 [m] .

The experiment was conducted on Oct. 28th 2009 (17:00 to 18:00). The weather was fine with
air temperature of approximately 21.0°C and the average sea-temperature to be 22°C. It should be
noted here that the weather was quite favorable in this experiment thus the camera height (from
sea level) does not vary much from one sampling to another.

ro

—t

<=
£

E
% 205 ¢ \/\/\/—-\/\/\/_/\
g 1 b i L
2000 5 10 16 20 25
Time[sec]
iy, 620 T T T 1 i 7
£
[
§ 600 'M/—W\W -
B
Lo’ 1 L 1 l 1
5800 10 20 30 40 50 60
Time[sec]
r— }200 11 T 13 A} L]) Ll Al
£
=t WW
% 1100 | -
2
[1000 L [1 1 1 |

20 25 30 35 40 45
Time[sec]
Fig. 2.21 Tracked-Distance Variation

=
L8]
el
o
=i
o™

The position determining algorithm accuracy is further verified by cross checking with values
measured by Lidar. The distance to the object deduced from IR image is compared with its
equivalent Lidar measurement and the result is shown in Fig.2.22.

Estimated Distance Compared With LIDAR Measurement

i § T T T T T T

s IR Camera
¢ Lidar

300 |-

N
4
o

Distance [m]
N
53

50 | l | | | | | | |
5 10 15 20 25 30 35 40 45 50

Time [Sec]

Fig. 2.22 Distance in Comparison with Lidar Measurement

25

In this figure, a fluctuation of the former about the latter is obviously noticeable. It is due to
the fact that the camera height correction due to ship motion (rolling, pitching and heaving) is not
applied. This factor can be taken into consideration by calculating the camera height at every
sampling interval, using the ship attitude and camera position relative to the ship center. The
experiment (20:00, Mar. 17th 2010) was in heavy weather (sea state), with air and average sea
temperature to be 0.3°C and 4°C respectively.

The track prediction, accordingly, pertains to some error. It depends on, among others, the
distance to the camera and number of observation used. In our experiment with an unmoving
object (buoy or small boat), speed error for distance of app. 1200 [m] is 1.5 [m/s] (if 20 seconds
of observation is used). This can be reduced by increasing the number of observations (50
seconds, e.g.) at the cost of more calculation needed. Longer data-sequence should be taken to
minimize the fitting uncertainty, especially the course prediction.

2.7 Manual Object Tracking by Laser and Night Vision Cameras

W

{

Fig. 2.23 Night Vision Camera Image

Apart from the IR camera, a NV camera and a Lidar camera are also used in the observing
system. A sample image of the NV camera is shown in Fig. 2.23 and a Lidar image is in Fig. 2.25.
These data enable the observation in many different conditions in which the observation by IR
camera alone is impossible.

NV camera is suitable for the observation at longer distance where the object water-line does
not deviate largely from the sea-horizon and therefore can hardly be detectable on fixed lens IR
camera. For example, further target in Fig. 2.23 appears clearly on Fig. 2.24, thank to the
adjustment of the camera focus.

26

Fig. 2.24 Close Range Night Vision Camera Image

Lidar Camera, on the other hand, allows the detection of very small object (buoys or small
floating objects) at a distance of less than 2000[m] from the camera, even in unfavorable weather
condition.

Fig. 2.25 Lidar Camera Sample Image

However, their applications have not been studied thoroughly in this study due to the
expiration of the project. To provide a quick use of the data acquired by these 2 cameras, a
manual tracking function was added to the program. Using this function, the user double clicks
on the camera image at the object positions to calculate the object position or to track it manually.

With the horizon-line predicted using IR camera image or NV image directly, the 2 angles «
and f3 can be recalculated by the following equation (2.17) (refer also to Fig. 2.6).

27

a[deg]| = v[pixel | x Rat
pldeg] = ¢ pixel | x Rat
where (2.17)

Camera _Horizontal _ Angle[deg] + Camera _vertical _angle [deg]
640[pixel | + 480[pixel |

Rat =

From these values, (2.5) and (2.7) can be applied to find the object position at sea.

2.8 Conclusions

In this chapter, an all-time all-weather observing system basing on cameras was described.
Then a floating-object detecting and tracking program has been studied thoroughly. From the
experiments, it has been proven that

- IR camera, if properly used, is a very effective tool for floating-object tracking purpose.

- The proposed algorithm has better performance than other available algorithm for the sea-
horizon detection.

- The performance of the object-detecting algorithm is acceptable for weather conditions
frequently met at sea.

- The system is able to detect objects, predict their track and give warnings if the objects are
floating into the Guard Area.

- For track prediction purpose, system is reliable for targets at less than 2000 [m] distance.
The further the target is, the less accurately its position can be estimated.

- Effectiveness of the system is, however, seriously reduced in bad weather condition.

In comparison with radar tracking, camera observing system performs rather poor in terms of
tracking accuracy and effective range. However, it can be a supplement for other available
observing methods (radar, AIS). The tracking accuracy of target at less than 1000[m] is
acceptable for application like collision-avoiding support.

Acknowledgement

This study was a part of the research project on the “Development of Track Estimation System
for Floating Object Surveillance” conducted at the Japan National Maritime Research Institute.
The project itself belongs to the JOGMEC (Japan Oil, Gas and Metals National Corporation)
Public Offering Type R&D project on the “Study of Cooperative Navigation Support System
aimed for Safe and Effective Operation of the Seismic Vessel using High-speed and Large-
capacity Network from Ship-to-Land, Study of All-Day All-Weather Marine Surveillance
Technology”. It was a great favor for me to be able to work as a Research-Assistant under the
supervisions of prestige researchers: Dr Sasano, Dr Kiriya, Master Imasato and others (NMRI),
Mr Futaki NTT Communication Corporation), Mr Asanuma (JOGMEC), to whom, I would like
to express my gratitude and all respects. My contribution to the project was actually too molest in
comparison with what I could learn and was generously granted.

References

1. E. Nadernejad, "Edge Detection Techniques: Evaluations and Comparisons", Applied
Mathematical Sciences, Vol. 2, No. 31, pp.1507-1520, 2008

28

H. You and G. Jian, "A New CFAR Detector with Greatest Option", Journal of
Electronics, Vol. 14, pp. 125-132, 1997 ,

Japan Meteorological Agency: Weather, Climate & Earthquake Information,
http://www.jma.go.jp /jma/menu/report.html

M. Sasano, J. Kayano, Y. Futaki and K. Maeda, "Development of All-Day, All-
Weather Hybrid Marine Surveillance System", Journal of Japan Institute of
Navigation, Sep. 2010

M.B. Ahmad and T.S. Choi , "Local Threshold and Boolean Function Based Edge
Detection”, IEEE Transactions on Consumer Electronics, Vol. 45, No. 3, 1999

M.D. Nguyen, M. Imasato, Y. Futaki and T. Asanuma, “Development of Track
Estimation System for Floating Object Surveillance”, Journal of Japan Institute of
Navigation, pp69-76, 2010

S. Peleg, J. Naor, R. Hartley, and D. Avnir, “Multiple resolution texture analysis and
classification”, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 6, pp.518-
523, 1984

S. Price, "Edges: The Canny Edge Detector", July 4, 1996. available at
"http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MARBLE/low/edges/c
anny.htm"

T.Y.Liu, K.T. Lo et al., "A New Cut Detection Algorithm with Constant False-Alarm
Ratio for Video Segmentation", Journal of Visual Communication and Image
Representation, pp. 132-144, 2004

29

Chapter 3 Automatic Collision-Avoiding Support System and Optimal Route
Generation by Dynamic-Programming

3.1 Introduction

Thank to the development of technology and the abundance of on board equipment, the
modern ship officers now have the accessibility to a huge amount of information relating to
movements of nearby targets as well as other environmental conditions. However, even with
those advanced equipments, maneuvering has never been an easy task, especially when
navigating in congested waters. Marine accidents are still happening mainly due to mistakes of
the officer of watch in information judging and counter-action deciding. Furthermore, large
amount of information may distract him from the most dangerous encounters. Thus, many
different researches have been carried out on collision-avoiding support systems.

Those works mainly aim at providing the officer a recommended course (heading) to avoid
collision with the most dangerous target ship nearby. The problem of this approach is that if there
are 2 or more target ships (TS) navigating in the region, collision-avoiding course to Just One TS
may navigate the own ship (OS) to an extremely difficult position for further maneuvering. This
means that OS might be in a position that is too difficult to avoid the collision with the second,
third... TS, after the first one has been safely passed. It is because those TS movements, except
the most dangerous TS, were not sufficiently taken into consideration for route generating.

If, on the other hand, the collision-avoiding course is calculated for all TS at the same time,
the resulting collision-avoiding course may cause the OS to deviate largely from its original route.
It is often the problem accompanying with the traditional collision-avoiding support system
basing on TCPA, DCPA criterion.

Another problem of the current approaches is that the quality of collision-avoiding route has
not yet been properly evaluated. There are certainly thousands of collision-avoiding strategies for
the OS, so why should not we choose the optimal strategy among them? The quality of a strategy
must be evaluated by some suitable criteria attaching to the marine traffic rules and economic
considerations.

Thence, the aim of this study is to generate a collision-avoiding route for the ship to pass all
TS as well as other constraints, not a single target at a time, safely and economically. It should be
noted here that the produced collision-avoiding strategy is a route or a trajectory for the OS from
a starting-point to an end-point on the original route, NOT JUST a heading. For the system to be
as helpful as possible (operating with little or without human efforts except for supervising), it
must be able to solve simultaneously the following tasks

- Be on watch to detect any arising risk of collision, including the coming of a new TS, the
deviation of the existing TS from their paths i.e. TS changes its course or speed, and the deviation
of OS from its safe track.

- Be able to conduct real-time calculation of a minimum time route to be clear from any
dangers, while maintaining OS in proximity of the pre-voyage planned route and the tendency to
reach the destination.

- Maneuver OS to follow the previously calculated safe route.

Among these 3 tasks, our study concerns mostly the first two ones. The tracking-control
problem has been extensively studied recently and is therefore not the research subject of this
study. However, to fulfill the idea behind the collision-avoiding support system, tracking-control
block is also included in system figures and other flow charts.

In this chapter, general concepts of the automatic collision-avoiding support system will be
described in section 3.2. Then, the principle of route generation with necessary inputs, including

30

TS information sources, OS maneuvering characteristics and criteria for collision-risk assessment
will be presented in section 3.3. The route generation by Dijkstra’s algorithm (Dynamic-
Programming - DP), its pros and cons will be the subject of section 3.4. Section 3.5 analyzes the
route-producing algorithm through computer simulations. Conclusions on the route-generating
method will be summarized in section 3.6.

The algorithm is proposed basing on the following 2 assumptions:

- TS do not change their speeds and courses.

- Collision-avoidance is the duty of our OS alone, even for the cases where it is a stand-on
vessel.

3.2 System Overview
Apart from the target

motion observing unit and the i : i
feter ¥ - i| AIS Receiver Radar/ARPA | |
communication link with OS 3 5

data-collecting and controlling | Tagetinformaton |
cen‘Fer' system, the collision- Ay o
avoiding support system

includes a computer based

program which consists of 3
. eCKIn:

modules solving the above- :

mentioned 3 tasks respectively.

A Watch-Keeping module e o Tracking
continuously receives TS Generator sty Contliblock

motion data through Radar and : :

AIS. Camera system (Chapter Bl e W ActvateRGwhen = .
= . tracking control fails

2) is also a pOSSlble source of MTR: Minimum Time Route

TS motion information

k Fig. 3.1 System Configuration
theoretically. However, as the

effective range of cameras is heavily circumscribed and their horizontal opening-view is small, it
is of limited use for the route-producing application. To assess the risk of collision, the OS data
and its planned route must also be used. OS motion data is received through an onboard local
network. The local network allows 2 ways data transferring, through which OS position, speed,
etc. are available for calculation at the program side and OS-commands can be sent to the other
side. The watch-keeping module is permanently on watch to detect any risk of marine traffic
accident. The collision-risk may be the result of one or several of following unexpected
evolutions:

- OS deviated dangerously from its planned route.

- An existing TS, i.e. TS already in TS database, changed its course or speed so that the
encounter case between OS and the TS changed.

- A newly-coming TS is interfering in the OS planned route.

If the planned route is no longer safe, the Watch-Keeping block is to activate a route-
generating module so as to produce another safe route for the OS.

The Route-Generating module takes target motion from target database and the environmental
constraints (route limitation, fishing area, anchorage area etc.) from other static sources such as
ECDIS as the input. The OS maneuverability must also be taken into consideration to make the
produced route viable. In this study, the Dynamic-Programming (DP) Method basing on
Dijkstra’s algorithm is applied. The route thereby produced is the Minimum Time Route to safely

31

avoid all the possible dangers. This is the subject of the following sections. The produced route
can then be considered the collision-avoiding route, following which OS will be navigated.

A Tracking-Control block is used for ship tracking control. The responsibility of this block is
to handle the ship following the route which has been calculated in the earlier step. In this study,
rudder is used as the single actuator i.e. the under-actuated tracking control problem. It is
assumed that the ship would not change its speed (engine revolution speed) to avoid collision.
The assumption is reasonable, keeping in mind the conventional seamanship. This also simplifies
the algorithm of the OS dynamics as the coupling between thrust force and rudder command
changing is too much complicated. The rudder-control signal is sent to the ship main-board
through the network. The overall system configuration is illustrated in Fig. 3.1.

3.3 Route Generating Principle
3.3.1 General Principle

As mentioned above, DP is used to generate
collision-avoiding route with the inputs to be TS
information, environmental constraints and the
OS maneuvering model (Fig. 3.2).

The environmental constraints might be the
water around a buoy, a military zone, a fishing
area that OS should avoid, etc. Also, OS should
not deviate largely from it original planned route
so as not to loose much way. From this
information, a graph which is hereafter referred to
as a grid system is built for the navigable area
around OS original route (Fig. 3.3).

The grid system between starting-point A and
ending-point B on original route consists of grid
lines and points on lines. Distance between the
grid lines, distance between points on a line as
well as number of points are designing
parameters of the grid. These largely affect the
performance of the route-producing algorithm.

If the distance between lines is small, the
number of calculations increases accordingly.
However, the quality of the produced route
can also be improved. On the other hand, if
this distance is large, the number of
calculation is limited but route quality is
down-graded as a result. The grid is expanded
some distance around the original route. If this
distance is big, OS is more flexible for
collision-avoiding maneuver at the price of the
growth of calculation volume. Restricted areas
are covered by suitable polygons such as the
pentagons in Fig. 3.3. Those polygons can be
automatically or manually input before the
voyage for the whole planned route and are

82

Target Linear Ship Planned Route/
Information Model Environment
Constraints
Dynamic

Programming

(Route Generator)

Route To
Track

Fig. 3.2 Route Generating Module

OS Intended
Route

OS Collision ______——F—

Avoiding Route

o (e] (¢]

Route
Limit Line

Fig. 3.3 Route-Producing Principle

kept in the voyage-database. These restricting polygons are recalled later when the OS
approaches a certain sea area.

In the same manner, limiting lines can be manually input to figure out an area around the
planned route through which officer wants the ship not to penetrate out.

A safe route for the OS is the shortest route from the starting-point, via exactly 1 grid point on
every line to reach the end-point that does not cause the ship to enter a restricted area, to go out of
limiting lines or to be in risk of collision with any TS.

This route is calculated with the assumption that course and speed of TS are constant. If these
values change, the route is to be calculated again as Watch-Keeping module does its job to detect
the risk and activate the route generator.

Throughout this study, distance between grid lines is set to be around 1700 [m] and distance
between points is 50 [m]. These 2 values have been selected through a number of simulations,
using try-and-error method. They appear to be suitable for the OS (around 100 [m] long) and the
computer processing speed.

The DP algorithm is applied in this situation to provide just an approximation of the optimal
solution due to the fact that environmental condition is time-variant, i.e. the cost of going from
one grid point to another is varying as TS positions are changing. An optimal solution is
theoretically possible but impracticable due to the increase in power-order of number of
calculations and variables that must be kept in computer memory.

3.3.2 Evaluation of Collision-Risk

The task of the route-generator is to produce a safe route for the OS, given all TS motions.
The safe passage is therefore must be judged using appropriate collision-risk assessing criteria.
The criteria mentioned in this section deal only with collision-risk in Ship-to-Ship encounters.
Since the dawn of navigation, many different criteria have been proposed including the
Environment Stress Model, the Difficulty Value Model and the object domains etc. In this study,
the following 4 criteria are applied. Each criterion has its own advantages and disadvantages, and
is therefore applied in suitable condition of maritime traffic.

3.3.2.1 Evaluation of Collision-Risk by SJ Value

Subjective Judgment (SJ) value has long been used as a criterion of collision-risk assessment,
representing the pressure of surrounding vessels on the officer of watch. It is a model for
collision-avoidance with fuzzy reasoning [7]. SJ value is calculated for 3 following cases of Ship-
Ship encounters

Crossing encounter:

Own ship is give-way: SJ=6.00Q2 + 0.09 Rp — 2.32 3.1

Own ship is stand-on: SJ=7.01Q2 + 0.08 Rp - 1.53 (3.2)
Head-on encounter: SJ=6.00 Q2 + 0.09 Rp —2.32 (3.3)
Overtaking encounter: SJ=54.43 Q + 0.24 Rp + 2.77 dRp/dt — 0.784 3.4
where:

Q = |d6/dt| Lo/Vo: non-dimensional change rate of TS bearing
Rp=R/{(Lo + Lt)/2} :non-dimensional distance between OS and TS
dRp/dt=Vr/Vo : non-dimensional relative speed between OS and TS
de/dt: change rate of TS bearing (rad/s)

Lo, Lt: length of own ship, target ship (m)

Vo: speed of own ship (m/s)

Vr: relative speed between OS and TS (m/s)

33

R: distance between OS and TS (m)

It is obvious that the parameters used in formulae (3.1) to (3.4) are those that can be acquired
by the officer of watch visually or by available navigation aids such as RADAR/ARPA, AIS.
These parameters are also taken into account by experienced navigators, intentionally or
unintentionally, when considering the risk of collision with a TS.

Values of the factors and constants in the formulae are reasoned from simulation experiments.
The values defined above have been generally accepted and are commonly in use.

Simulation has proven that there is a direct relation between SJ value and the risk of collision.
The collision-risk of the encounter case can be assessed from SJ value perceived by OS officer as
followings:

a. 51> 0 Encounter is “Safe”.

b.0>SJ>-1: Encounter is “Cautious” and needs following.
c.-1>SJ>-2: Encounter is “Dangerous”.

d.-2>SI: Encounter is “Very Dangerous”.

'1/5""‘; %w
5
5 7 ,
v?éhim 52;2;450 (m)

- 4100
ik g Length: 100 (m) Course: 240(deg) ' 9
ﬂ Course: 60(deg) Speed : 6(m/s)
Speed : 6(m/s) Stand-on
Give-Way

Fig. 3.4 SJ Value Evolution of Two Ships in Crossing

As an illustration, evolution of SJ value of 2 ships in a crossing encounter is shown in Fig. 3.4.
Because ship 1 is “give-way”, the SJ value it perceived is smaller than that for ship 2. When it is
around 9L from the colliding position, SJ value falls below the safe limit (-1) and collision-
avoiding action should be taken immediately.

3.3.2.2 Evaluation of Collision-Risk by Bumper Model

Using marine traffic data inside Tokyo Bay as observed by Radar and AIS systems, a simple
model has been suggested for the assessment of collision-risk in congested waters. The model is
named Bumper Model and has been applied extensively for route-planning purpose due to its
simplicity and explicitness. Using the model, the watching-region for safe navigation of a ship is
assumed to be the “Bumper” as defined in Fig. 3.5. The bumper consists of 2 parts separated by
the traverse axis of the ship. The bow-part is a half of an ellipse along its major axis. Size of the
ellipse is 6.4L for the semi-major axis and 1.6L for semi-minor axis. Stern-part of the bumper is a
half of a circle of 1.6L in radius. Here, L is the length of the ship in concern [8].

34

As the name itself has implied, bumpers of 2 ships should not overlap each other. When it is
the case (see Fig. 3.5) the 2 ships are considered to be in a situation with high risk of collision,
and collision-avoiding action should be taken as quickly as possible.

To reduce the calculation volume, the model form is approximated by a rectangle which is
externally tangential to it. The size of this rectangular bumper model is therefore 8.0x3.2 ship
length (see Fig. 3.5).

N
/’ \
1.6L ’ \
/! \
1.6L — 1 \

1.6L h \

Bumper Size

\
\
]
1
i
i
I

Bumpers of 2 Ships
Overlapping

e
— o
—

Equivalent l
Rectangle Model |
[

Fig. 3.5 Bumper and Simplified Models

It should be noted that the bumper model considers equally the dangers causing by targets
approaching from starboard side and port side. This may sound unpopular at first, from the
seamanship view point. However, keeping in mind that the marine traffic in congested waters is
in concern, the use of the model form is appropriate.

In comparison with Bumper Model, SJ value has the advantage that the tendency of changing
of SJ value is also available and can be used as the first clue of a coming dangerous encounter.
This means that if SJ value is decreasing steadily, TS should be closely watched. However,
simulation study reveals that SJ value is not really reliable in the overtaking encounters. The
Bumper Model, on the other hand, has its limitation as the speeds of the ships are not taken into
account and it is difficult to differentiate risk of collisions with TS approaching at different
speeds. Therefore, Bumper Model and SJ Value should be used together for adequate risk
assessment.

3.3.2.3 Evaluation of Collision-Risk by Object Domain

SJ value and Bumper model are suitable for risk-
assessment in congested waters. However, at the open sea,
the ship officers tend to take actions to avoid collision at
much larger distances. Thus, a more proper criterion should
be used for the open sea encounters.

A moving target represents a collision threat which is
configured as an area of danger, moving with TS speed and
direction. Goodwin [10] presented the method for
estimating the area of danger on the basis of statistical data
analysis. Following the maritime law, the area of the object-
occurrence was divided into 3 sectors defined by the actual

Fig. 3.6 Davis’s Ship Domain

35

relative bearing from this object. Sector I is on the starboard side within the bearing limits of (0°-
112.5%), sector II is on the port side with in the limits (247°-360°) and the stern sector i.e. sector
III is within (122.5°-247.5°). The dimensions of the 3 sectors were estimated by statistical data.
Davis et al. proposed a simplified version of this model that results in the domain form shown in
Fig. 3.6. Davis’s domain form is however, redundant in some aspects.

Recognizing the redundancy of Davis’s d6
domain, R. Smierzchalski et al. in their
work suggested the hexagon domain as
shown in Fig. 3.7. The appearance of a
navigational constraint in the vicinity of

the domain contour or at a distance ahead
on the planned passing-trajectory that
depends on the navigator’s experience

d3

Starboard

d4

means the appearance of a navigational
risk. The risk increases as a result of the
decreasing distance to the detected constraints. Sizes of a domain on its course are computed
from its length and speed, together with a chosen minimum time and distance of approaching
(TCPA, DCPA) as the followings (see Fig. 3.7):

Fig. 3.7 Pentagon Object Domain

dl=DCPA /2

d2=DCPA /2

d3=Bx V"

d4=TCPAxV (3.5)
dS=LxV' +30xV

d6=TCPAxV

where : L, B are ship lenth and breath| NM |,V is the ship speed [kts]

The concept of the object domain is similar to the bumper (section 3.3.2.2), except for the
form and dimensions. It is easy to apply and appropriate for encounters at the open sea.

3.3.2.4 Evaluation of Collision-Risk by Obstacle Zone by Target

Another risk-assessing criterion which is gaining more and more attention recently is the
Obstacle Zone by Target (OZT). The concept
was initially proposed by H. Imazu and J. Fukuto
in their paper in 2003 [3][4][5].

According to Imazu and Fukuto, the risk of
collision between 2 ships can be represented by
the possibility that these 2 ships appear at the
same position at the same time. Due to the
uncertainty in TS velocity as perceived by OS
navigational aids, its arrival at a point is also
uncertain.

Given the OS and TS as shown in Fig. 3.8,
the possibility that they would collide at a

Fig. 3.8 Collision-Risk at a Point
36

random point A can be evaluated using the following formula (3.6)

Pt = i[P()Ax (t)xP,fi (r)dt (3.6)

A: The point of calculation
P.u(1): Probability for OS to reach the point A at time t
Pji(t): Probability for TS to reach the point A at time t

The probability distribution of arrival-time is
usually presented by random (or Gaussian)
distribution, with the bell peak lying at the time (t0)
which is the time for the ship to reach the position
concerned if it is actually navigating with its
nominal speed. The bell spread, i.e. standard
deviation of the distribution, is chosen to express

the speed error.
Given a minimum distance of approaching \
MinDCPA, it is not expected that TS appears at any

positions inside the circle centering at OS position
and having radius to be MinDCPA at any time.
Then, the collision-risk at a point O on the intended
track of the OS is defined by (3.7)

e, Obstacle zone by TS - OZT

Fig. 3.9 Obstacle Zone by Target

P5r = Max(P*) (3.7)
Jfor any point A lying inside a circle centered at O with radius MinDCPA
MinDCPA_: the selected minimum distance of approaching

A limiting value is selected for the collision possibility. If possibility of 2 ships arriving at a
position simultaneously within a selected period (min TCPA) exceeds this limiting value, the
intended track of OS is considered UNSAFE. In Fig. 3.9, positions on TS course to which the OS
route is unsafe are marked by circles. The combination of those circles forms a region to which
OS should not head to. It is called the Obstacle Zone by the Target and from where comes the
OZT name.

The OZT criterion is simple to use and closely relates to the traditional DCPA, TCPA
criterion which is generally accepted by mariners.

3.3.3 Target Motion Information

As mentioned before, target information can be extracted from Radar and AIS receiver
through serial communication port in the form of NMEA sentences. The AIS data is readily in
use simply by decoding those NMEA sentences. Target information can also be extracted directly,
using ARPA function. In the master course, I have already worked on the target-tracking
algorithms on Radar images and the combination of Radar and AIS data for better accuracy of
target-tracking [8][9]. As mentioned also in Chapter 2, camera image is also a potential target
motion information source even though its application is yet limited so far.

AIS data is accurate and easily accessible. However, AIS receiver is not required onboard
merchant ships of less than 500 GT, pleasure boats as well as fishing ships, etc. Class B AIS is

2

recommended for those small vessels but from maritime traffic observation in Tokyo Bay, it has
been revealed that a large number of small ships have not yet been equipped with Class-B AIS.
Additionally, AIS data is not always reliable, i.e. the error of AIS data, if any, can hardly be
detectable. Another problem with AIS is that the update rate of ship position data does not always
meet requirements.

Ship Radar, if properly used, is a very efficient and reliable source of target-motion data.
Radar provides continuous images of the whole area around the OS position. The problem with
Radar is that due to the poor signal reflecting characteristics, some objects do not appear on
Radar screen. The Radar data (TS-motion data) are not as accurate as those received by AIS.
However, it is still the best data source while navigating in coastal waters.

Camera observing system, due to camera-resolution and effective-range limitations as well as
the internal error-sources of the tracking method, should be used only as a reference to the
information provided by Radar, AIS.

Fig. 3.10 Radar and AI Data of Target in Tokyo Bay

From the above navigational aids, target position, speed and course over ground can be
deduced.

No matter what method used, there is always some error in TS motion detection. Then,
suitable filtering algorithms should be used to remove these errors before applying TS data to
produce route. In [8][9], we proposed a Kalman Filter for radar targets. Taking into consideration
the slow speed change of TS, a simple low-pass filter or a moving-average filter can also be used
to provide smoothed value of TS speed and course over ground.

After filtering, there are still some uncertainties accompanying with TS motion. Then, for an
absolutely safe passage, future TS position is must be presented with an uncertainty-ellipse like
that shown in Fig. 3.11. Further simplifying this, the error-ellipse can be replaced with an
equivalent circle of error.

For instance, with the value of course uncertainty chosen to be 2 degree and speed uncertainty
to be 2 % of speed, the error-circle radius at a time t in the future, R(t), is then calculated as
following (3.8):

38

5('013 = 20
Ogpe =0.02 (3.8)
R(t) = Sog x t x 5(2, 0.

og Sog

where t is the elapse time from the moment data are acquired.

Position Error Circle
s AIS Cog

Error Ellipse

TS positi S
e TS estimated position
Fig. 3.11 Target Motion Uncertainty

Then, for safety checking while generating route, TS position is deemed to be its estimated
position shifted to the boundary of the error-circle (for example in the direction from TS to OS as
it is normally the most dangerous position of TS inside the error circle if bumper model or object
domain is used) (see Fig. 3.12). The error circle is moving with TS and gradually increasing in
size. If TS keeps on staying inside this error circle, its track is still safe for OS passing. Once it
penetrates out of the circle, the safety of OS collision-avoiding strategy is in doubt. In that case,
the strategy should be rechecked and if necessary, a new collision-avoiding strategy must be
produced.

OS Position on
Calculated Route

TS Estimated
Position

TS Position for
Checking Safety

Fig. 3.12 Use of Data Uncertainty in Risk Assessing

39

3.3.4 Own Ship Maneuvering Model

In maneuvering to avoid collision, apart from course, OS speed changes as a result of
additional drag-force due to the rudder action and changes in the hull force also. These factors
must be adequately taken into consideration. Then, a maneuvering model must be used for the OS.

Throughout this study, an MMG model will be used for the OS. Basic characteristics of the ship
model are as followings

Type: Container ship
Lpp: 94[m]
Width: 15.0[m]
Draft: 6.516[m]
Block Coefficient: 0.71
Rudder Area: 7.32 [m?]
Rudder Height: 4.89 [m]
Rudder Width: 1.5 [m]
Propeller Diameter: 3.57 [m]
Propeller Pitch: 2.36 [m]
Design Speed: 7.0 [m/s]

A first simplification is the assumption that OS forward speed does not change during
maneuver. For a surface ship moving at constant speed and small rudder angle, it has been proven

that its maneuvering model can be decoupled from forward speed and has the following form
(Fossen 1994, 2002, etc. [12]):

Mv + N(u,)v = bd (3.9)

More specifically, the following matrix equation can be written:
-¥; m—=Y, mx,-Y, v Y, (m-X)u, =Y, |v
S = |+ (3.10)
- N mx, =Y, I.-N, |r X, =Y u, =N, (mx,-Y)u,—N, |(r
where:
v, 1: ship sway-velocity and yaw-rate

d: rudder angle

Other parameters are coefficients of the inertial matrix, Coriolis-Centrifugal matrix, Damping
matrix (linear) etc. (refer to [12] for more details).

Equation (3.9) can be re-written in the form:
v = —-M7'N@,)v + M~'b5 G.11)

Then, from (3.10), the following 6 parameters model is deduced.
j b

Ha R MEN
F ay Gy | b, (3.12)

Model (3.12) is used to approximate the ship turning trajectory in maneuver. The model
parameters can be estimated from experiments. For the MMG model in this study, the Least
Square Method for System Identification could be applied. The MMG model is maneuvered with
different rudder angle and values of v, r, 8 are saved, along with their derivatives. The fitness

40

between the MMG model and this simplified linear model is acceptable for applications where
the rudder action and course changes are small. The maximum position mismatch is be less than
40 [m] and heading difference is less than 5 [deg] for course changes up to 60 [deg].

However, the determination of coefficients in practice is extremely challenging, especially
with the presence of waves as well as other disturbances and the errors of measuring tools
themselves. Even if it is possible, the assumption of constant forward speed is weak because the
actual speed reduction may be up to 10%. It also takes time for the OS to regain the original
speed after the course changing. The accumulated position error is therefore not negligible for
longer period of calculation.

Then, the OS maneuverability should be modeled in other forms. In this study, instead of
determining the linear model coefficients in (3.12), another approach, which has been proven to
be much more appropriate, is to save the OS trajectories and speed-evolutions during the course
change process as a whole.

For simplicity, the route is produced with just 3 rudder-command angles: small rudder
command (5 [deg]), medium rudder command (10 [deg]) and heavy rudder command (15 [deg]).
Practically, for collision-avoidance at sea, the ship officer usually chooses rudder command less
than 15 [deg], except for critical cases.

e - = =Rdd = 5deg 3
| e | - ’7 o
E Rdd = 10deg o
= | — — Rdd = 15deg .
S 350 e L R
'
] -
B2 ’
a 200 3
(5]
w
[oR
©
o 50
-100
1 41 81 121 161
Elapse Time [sec]
Fig. 3.13 Longitudinal Distance Variations
900 — s
4 -
7 750 o
2 600
=
8
» 450
o
[} KRR 5= =S
2 300 |= = =Rdd = 5deg
i} 150 Rdd = 10deg |
— — Rdd = 15deg |
0
1 41 81 121 161
Elapse Time [sec]

Fig. 3.14 Traverse Distance Variations

41

100 e i
@ 80 Py
= e
& 60
(]
5
2
(2]
- =5 deg
SRl = 10deg
= 15deg
0
1 41 81 121 161
Elapse Time [sec]

Fig. 3.15 Course-Changing Characteristics

= = "Rdd=5deg
Rdd = 10deg
e RddiSN5deg;

Forward Speed [m/s]
[=2]

1 41 81 121 161

Elapse Time [sec]

Fig. 3.16 Speed Reduction during Turning

Forward Speed [m/s]

1 51 101 151 201 251

Elapse Time [sec]

Fig. 3.17 Speed-Increasing Characteristic

Shown in figures 3.13 to 3.16 are the trajectories, speed and course changes of the MMG
model for the 3 rudder angle commands. Instead of saving directly the trajectory, its 2
components are collected independently, namely the longitudinal elapse distance (Fig. 3.13) and
the lateral elapse distance (Fig. 3.14) against elapse time. In the same manner, course changes

(Fig. 3.15) and speed changes (Fig. 3.16) against time while taking maneuver are kept for route-
producing.

42

After finishing the course change process, OS speed gradually increases to its equilibrium
value. This speed increasing characteristics is shown in Fig. 3.17.
All these data will be tabulated for quick accessing to optimize the calculation time.

1200 T T T T T T

1000 Paidt =S

800 Straight-Run
Part

600 -

Turning
400 + Part

200 |

1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400

Fig. 3.18 Own Ship Path in Maneuvering

The OS path from one grid point to another is then composed of 2 parts, a turning part (course
changing to destination point direction) and a straight run part (approaching the destination point).

During the course-change process, OS position at any time can be deduced from Fig. 3.13 and
Fig. 3.14. The speed reduction at the end of this process is extracted from Fig. 3.16. On the other
hand, OS speed and distance-run accordingly are deduced from Fig. 3.17 till it reaches the end-
point. The whole process is illustrated in Fig. 3.18.

In comparison with the linearized model (3.12), the tabulation method is much preferable in
the following terms:

- OS position estimation is more accurate as speed change has been included.

- The model is less affected by noise factors because derivatives-measurements are not
required.

Therefore, it will be used throughout this study.

3.4 Route-Generating Algorithm by Dynamic-Programming
3.4.1 Djikstra’s Algorithm for Shortest Route on Graph

Proposed by Dutch computer scientist Edsger Dijkstra in 1956, Dijkstra algorithm [1][2] is a
popular graph-search algorithm that solves the single source shortest path problem for graphs
with non-negative edge-path costs so as to produce the shortest path tree.

Given a graph with constant part cost between vertices (nodes), the algorithm is to find the
minimum cost route i.e. a route from the initial node (starting-node), through a certain set of
nodes to reach the end-node that requires minimum total cost.

Supposing that we have a graph denoted by G, the route from the starting-node to the end-
node, passing through a set of N nodes is defined by G(i.j) where

43

i=1,N
j index of node i" of the set

Call T(G(i,k), G(i+1,h)) the part-cost between nodes G(i,k) and G(i+1,h), and T(G(i,k)) the
cost to reach node G(i,k) from the starting-node, Dijkstra’s algorithm is then contrived from the
equation

T,.(Gi+1j) = MintT(GGk,Gl+1)) + T,.(G(ik)}

where T, (G(i,k)) is the minimum cost to reach node G(i,k)

Applying Dijkstra’s algorithm, the minimum cost route to every node is determined, starting
from the starting-node and expanding outward to the end-node. When the end-node is reached,
the route is quoted by going back the graph from end-node to starting one.

Dijkstra’s algorithm is commonly used in route-searching problems in static environment. An
example is to find the shortest route between cities on a national highway network. In the
following sections, the algorithm is used to determine the minimum time route for the OS to
avoid collision, from a starting point to the destination.

3.4.2 Algorithm for Generating Collision-Avoiding Route

The overall algorithm of route-producing is described as in the flow chart below (Fig. 3.19).
The starting-point and the end-point can be thought of as a special case of grid line with only one
point on it.

Applying the equation
T.(G(i+1k) = MintT(Gi)j).Gli+1k) + T,,(G(ij)} (3.13)
J

the best route to a given point (point k™) on line (i+1)" is the extension of the best route to
points on the previous line, i.e. line i™. For a point j'™ on line i™, the OS trajectory is produced by
connecting this point with point k™, using a suitable OS maneuvering model which has been kept
in the database and an appropriate rudder angle (see section 3.3.3).

Then, the safety of the produced track must be checked, using a collision- risk assessing
criterion, with TS data and environmental constraints.

If the passage is safe, time to reach k™ from point j" is compared with the time required for
reaching k™ from other points on line i". The minimum time to reach this point from all possible
path will be saved (T(i+1,k)). If there is no safe route to this point, T(i+1,k) is marked as infinite.

When the destination has been reached, the minimum time route can be deduced by simply
walking back the graph to the starting-point. This route is deemed the collision-avoiding strategy
for the OS.

44

\

Ship Model

Select Model

Y

/énvironment Constraints
Yes

Load Constraint

!

Produce Grid;i=10

i=it+l JENNEN

N
k last point?

k=k+1 >]=0

Yes
- . No
j last point? '
1\

P(ij): Point j" on line i"
1(ij): Time to reach point P(ij)
dT: Time taken to

reach P(i + 1,k) from P(ij)

Produce Path
PG, j) => P(it1, k)

Target Information /

No

N

TG+ 1, k) > TG, j) + dT?

l

Yes

Is Path Safe?
(Bumper, SJ)

A 4

| No

N

TG+ 1,k) =TG, j) +dT

Fig. 3.19 Dynamic-Programming Algorithm

Another problem in route generation is that the OS route should not cause any
misunderstanding on the TS side due to unclear maneuver. This is the case when the OS suddenly
alters its course in a way that change a Port-to-Port passing to Starboard-to-Starboard passing
situation, or vice verse, e.g. To reduce this possibility, several other constraints should be taken
into account in producing the path, including:

- If just one target is nearby and this target is in head-on encounter, OS should not change

course to port.

45

- OS should not alter course in a way that changes its course from passing the bow to passing
the stern of the most dangerous target when the TCPA is less than 3 minutes.

- OS should not alter course in a way that changes a port-to-port passing to starboard-to-
starboard passing when the TCPA is less than 3 minutes.

It can be easily proven that the route produced with Dijkstra algorithm is the optimum, i.e.
minimum time, route ONLY IF the traffic environment is static (or Time-invariant). In our
application, the environment is actually varying with time because the obstacles caused by TS
change with TS-motions. The application of DP for route-producing can therefore just give an
approximation of the optimal solution, maybe a local optimal. However, due to its simplicity, it is
still widely used.

3.4.3 Examples of Route Generation
A. Example 1

This example is to illustrate the idea under the overall system. In the example, a ship is
supposed to follow a planned route which is shown in light blue in Fig. 3.20. At point A on this
route, the system detected the approaching of 2 ships with high risk of collision. Then the
minimum time route (MTR) for collision-avoiding is calculated for a part on planned route, i.e.
part AB. The result is shown in Fig. 3.21, including the MTR to every grid points and the MTR
to the end-point B.

While navigating on route AB, the system detected a new collision-risk due to the
approaching of 2 other TS. Thus, the route generator is activated again and the route part CD (Fig.
3.22) is produced.

7000
6000
5000
4000
3000
2000
1000

0

% 1n*

Fig. 3.20 Planned-Route and Collision-Avoiding Route

Note that the calculation end-point (point B, D e.g.) is chosen on the planned route, therefore
the OS will not deviate largely from its originally planned route.

Even though there is no arsing dangers, route generator can be regularly activated to produce a
better track. It is the case in which, for instance, TS-motion uncertainty is not as large as expected,
or the other ship has change course in a way that risk of collision no longer exists. In Fig. 3.20,
because there are no dangers, route generator simply produces a straight line.

46

| i} i

Fig. 3.21 Route Part 1 Fig. 3.22 Route Part 2

B. Example 2

The example is to express the effect of grid width on the produced collision-avoiding strategy.
In this case, generator fails to determine the collision-avoiding route for the path EF due to the
special distribution of dangerous targets and the grid is too narrow (Fig. 3.23). There is no safe
route to reach any points on the 5™ line.

A simple solution to the problem is to widen the grid, at the price of the increase in calculation
volume. The route generated for the same situation, by widening the grid is shown in Fig. 3.24.
The route causes OS to deviate further from the original route, but it is safe, at least.

| S

o e e

b S

Fig. 3.23 Fail to Generate Route Fig. 3.24 Route Generéted after Grid Widening

3.5 Simulation Studies

In this chapter, the route-producing algorithm is applied to generate collision-avoiding routes
for several typical cases of marine traffic encounters. The same scenarios will later be used in
simulation studies with route-producing algorithms basing on Ant Colony Optimization (ACO —
Chapter 4) and Bacteria Foraging Optimization Algorithm (BFOA — Chapter 5) to provide a cross
check of the algorithm validity and to reveal advantages, disadvantages of each algorithm. The
OS model used is described in Section 3.3.3.

47

The simulation interface is similar to that shown in Fig. 3.25 in which the targets that cause
imminent dangers are marked with triangular symbols on their courses.

i;g'ﬂ Trackinglnterface

~—
=~
By
L AR
Dy O
Ly O\ P
AN p
QTR
Gwn Ship Dynamics A /
/ PV o
dX [m] None dY [m] MNone ¥ j)
]
nlps] 46 rdd [deg] 07)
f
[/ R
u[m/s] 066 COG 0671 | L% /r—
|
[
\ 'S e
) /
TIME [himmes] 002307 / {] /s
DANGER TARGETS ~ TargetNo1 v '{;ﬂk
[MMST 333333333 . e S ST b oE s G e b
LOA 100 L
COG. 0114 '1| - N
S0G: 064 \ e
Last Updated: 00:22:00 h 3 i
WD ey f
| N & |
1 ; i
SYSTEM STATUS < v
New dangerous target coming
g::':'é:‘::‘; cl:Ic::at o E Start Auto Tracking E 10000 ¢ >
I alculation ..
‘ State Checking ’ Exit Tracking

Fig. 3.25 Simulation Interface

3.5.1 Scenario 1 (Fig. 3.26)

In this scenario, 4 target ships are crossing OS from starboard side and port side. OS turns to
its port side to avoid collision by passing starboard targets at their bows.

- Route is produced quickly.

- Collision-avoiding strategy is clear i.e. the possibility of misunderstanding from the TS side
is low.

- Collision-avoiding route is acceptable from ship officer point of view.

It is advisable to refer also to section 4.4.1 (Chapter 4) and to section 5.4.1 (Chapter 5) for the
result comparison with other route-producing algorithms.

3.5.2 Scenario 2 (Fig. 3.27)

In this scenario, 3 target ships are crossing from starboard, 2 targets are crossing from port and
1 target is in a head on encounter.

- Route is produced quickly.

- Collision-avoiding strategy is clear, i.e. low possibility of misunderstanding.

- OS passes the head-on encountering target and crossing targets all on its starboard side, the
route is therefore UNUSUAL, from ship officer’s view-point.

It is advisable to refer also to section 4.4.2 (Chapter 4) and to section 5.4.2 (Chapter 5) for the
result comparison with other route-producing algorithms.

48

3.5.3 Scenario 3 (Fig. 3.28)

A target is overtaking OS on OS starboard side. OS is also under the risk of collision with 2
targets crossing from starboard side and 1 target crossing form port side. OS alters course first to
its port side to pass 2 starboard crossing targets and then slightly changes course to starboard to
avoid collision with the port side target.

- Route is produced quickly.

- Collision-avoiding strategy is clear, and appropriate.

It is advisable to refer also to section 4.4.3 (Chapter 4) and to section 5.4.3 (Chapter 5) for the
result comparison with other route-producing algorithms.

3.5.4 Scenario 4 (Fig. 3.29)

The scenario is quite difficult and worrisome for the ship officer due to the involvement of
many targets crossing from different directions. A good collision-avoiding strategy can not be
casily decided by the OS officer by eye-judgment or radar screen observation. However, the
support system can help much in the case.

- Route is produced quickly.

- Collision-avoiding strategy is clear, and appropriate.

- The produced route may be the best for the scenario.

It is advisable to refer also to section 4.4.4 (Chapter 4) and to section 5.4.4 (Chapter 5) for the
result comparison with other route-producing algorithms.

3.5.5 Scenario S (Fig. 3.30)

OS is overtaken by a target on OS port side. It in turn is overtaking a target on its starboard.
The scenario is even more risky due to the involvement of 4 other targets coming from different
directions. In this case also, an appropriate collision-avoiding strategy can not be easily decided
by the OS officer from observations. The support system on the other hand can still produce a
collision-avoiding route promptly. The route is theoretically safe. However, it can hardly be
acceptable because OS is altering course dangerously toward the overtaking TS (TSS5). Further
more, the collision-avoiding strategy is not highly recommendable as OS is passing port side
targets on their sterns and starboard side targets on their bows.

It is advisable to refer also to section 4.4.5 (Chapter 4) and to section 5.4.5 (Chapter 5) for the
result comparison with other route-producing algorithms.

3.5.6 Scenario 6 (Fig. 3.31)

The scenario is also difficult, mostly due to the size of the targets involved and the given
width of the grid. The OS need to avoid the collision-risk with an overtaking vessel on its
starboard simultaneously. For the scenario, the algorithm fails to produce a collision-avoiding
route for the OS. It is because of the fact that the algorithm keeps on seeking the shortest route to
every point on every grid line, starting from its initial position, and this strategy may navigate the
algorithm to inescapable positions (see 3.4.3.2).

It is advisable to refer also to section 4.4.6 (Chapter 4) and to section 5.4.6 (Chapter 5) for the
result comparison with other route-producing algorithms.

49

0S: Length =100[m]
X =0[m]; Y =0[m]
Sog = 7.0[mps]; Cog = 45.0[deg]

TS X [m] Y [m]
= 1 16000 6000
4 N
b i 2 8000 3000
N
NN 3 -3000 5000
A N |
o = 4 -3000 11000
- >
3 N N\ TS | L[m] | Sog | Cog
] >< N\ | = [mps] | [deg]
N N, : 2|
R < 1 200 70 | 200
0s \ 2 150 700 20l
3 200 105 | 90.0
4 200 4.9 90.0
Fig. 3.26 Scenario 1
OS: Length =100[m] TS X [m] Y [m]
X = 0[m]; Y = 0[m] 1 5000 12000
Sog = 7.0[mps]; Cog = 45.0[deg] ﬁ 2 9000 -2500
: R i m : 3 3 13500 13400
b >< 4 500 7500
)<><\ [5 16000 6000
/< \ N I 6 11500 4500
o
I N
N =
- - \ s] TS L[m] Sog Cog
=]
/] N 6 [mps] | [deg]
N }\\ 1 200 7.0 | 180.0
5. 2 100 9.1 0.0
¥ \ 3 150 7.0 . 225.0
os}. 1 4 150 42 | 900
2 5 200 7.0 .| 2700
6 150 42 U200

Hig, 3.27 Scendrio 2

50

R
X/

0S: Length =100[m]
X =0[m]; Y = 0[m]
Sog = 7.0[mps]; Cog = 45.0[deg]

(3]
P4
Y, 4

> 3

TS X [m] Y [m]
1 16000 6000
2 -500 -2000
3 9000 0
4 1500 9000
TS L[m] Sog Cog
[mps] | [deg]
1 200 7.0 270.0
2 150 1i52 45.0
3 150 6.3 315.0
4 150 3.5 90.0

Fig. 3.28 Scenario 3

0OS: Length =100[m]
X =0[m]; Y = 0[m]
Sog = 7.0[mps]; Cog = 45.0[deg]

Fig. 3.29 Scenario 4

51

TS X [m] Y [m]
1 9000 -3000
2 3000 -3500
3 13500 13400
4 6000 13000
5 500 8500
6 11500 4500
TS L[m] Sog Cog
[mps] | [deg]
1 200 56 0.0
2 150 7.0 0.0
3 150 7.0 215.0
4 200 42 180.0
5 150 815 90.0
6 150 7.0 270.0

0S: Length =100[m]

X =0[m]; Y = 0[m]
Sog = 7.0[mps]; Cog = 45.0[ded]

TS X [m] Y [m]
1 16000 6000
2 2000 1000
& 5000 12000
4 500 8500
5 -1200 300
6 11500 4500
TS L[m] Sog Cog
[mps] | [deg]
i 200 8.4 270.0
2 100 4.2 45.0
3 200 6.3 180.0
4 150 35 90.0
5 150 1.6 45.0
6 150 0.4 270.0

Fig. 3.30 Scenario 5

7

Length = 100[m]

X = 0[m]; Y = 0[m]

Sog = 7.0[mps]; Cog = 45.0[deg]

w

'i//‘;

TS X [m] Y [m]
1 16000 6000
2 -500 -2000
3 5000 11000
TS L[m] Sog Cog
[mps] | [ded]
1 300 7.0 270.0
2 150 8.4 45.0
3 300 2.8 180.0

Fig. 3.31 Scenario 6

52

3.6 Conclusion

In this chapter, the configuration of an automatic navigating system is introduced and different
application aspects have been analyzed in details. Experiments and simulation studies have
revealed that:

- Dynamic-Programming algorithm is a simple but efficient algorithm for generating the
minimum time route for OS. The route ensures a safe passage of OS, given the TS motions and
environmental constraints.

- The calculation volume of DP algorithm is less than those required in revolutionary
algorithm, thus calculation time is shorter than that of ACO algorithm and BFOA algorithm.

- It is complicated to apply the rules of the road (Colreg 72) because passage time is the single
quality index for route assessing at each grid points.

- The solution produced, using DP is NOT always the global optima because of the fact that
the traffic environment is not static. Due to the TS-motions, cost of a trajectory from 1 point to
another changes with time.

- Different criteria can be used for risk assessment. SJ value and Bumper Model are more
suitable for ships navigating in congested waters. Ship Domain criterion is more suitable for open
sea passages while OZT can be used for either cases with proper choice of DCPA.

- OS maneuvering characteristics should be tabulated for easy access and to ensure the OS
estimated position accuracy.

- A proper choice of Grid designing parameters allows the collision-avoiding route to be
produced quickly and accurately.

The system, if further developed, is practicable and would provide the possibility of totally
automatic navigation. It can thus reduce the work load of navigator and increase the safety and
efficiency of navigation. '

References

1. A. E. Bryson, Jr. C.H. Yu, Applied Optimal Control , pp.129-176, 1991

2. D. P. Bertsekas, "Dynamic Programming and Optimal Control: 2nd Edition", Athena
Scientific, 2000

3. H. Imazu and J.Fukuto, "The Obstacle Zone by Target and Evasive Area", 11th IAIN
World Congress, 2003

4, H. Imazu, J.Fukuto and M.Numano, "Obstacle Zone by Target and its Expression",
The Journal of Japan Institute of Navigation, Vol.107, pp.191-197, 2002

5. H. Imazu, T.Fuyjisaka, J.Fukuto and Y.Otake, "Study of the Integration and
Presentation of Navigational Information", The Journal of Japan Institute of
Navigation, Vol.109, pp.133-140, 2003

6. J.S. Zelek, "Dynamic path planning”, Proceedings of IEEE Conference on Systems,
Man and Cybernetics, pp. 1285-1290, 1995

7. K. Hara, "Proposal of Maneuvering Standard to Avoid Collision in Congested Sea
Area", The Journal of Japan Institute of Navigation, Vol.85, pp.33-40, 1991
8. M. D. Nguyen, "A Study on the efficiency enhancement of automatic radar tracking

and analyses of marine traffic in Tokyo Bay", Tokyo University of Marine Science and
Technology, 2009

9. M. D. Nguyen, H. Tamaru, "Application of Kalman Filter to Rebuild Targets

53

10.

11.

12.

Movement from Radar Images of Marine Traffic in Tokyo Bay", Asia Navigation
Conference, pp.115-123, 2008 ,

R. Smierzchalski, Z. Michalewicz, "Modeling of Ship Trajectory in Collision
Situations by an Evolutionary Algorithm", IEEE Transactions on Evolutionary
Computation, Vol. XX, 1998, available at
"http://cs.adelaide.edu.au/~zbyszek/Papers/p41.pdf"

S. M. LaValle, "Planning Algorithms", 2004, available at
http://msl.cs.uiuc.edu/planning/

T. I. Fossen, "Marine Control System", Marine Cybernetics, pp. 172-200, 2002

54

Chapter 4 Collision-Avoiding Route Generation by Ant Colony Optimization

4.1 Introduction

The route-producing algorithm basing on Dynamic-Programming method is quite effective
and easy to apply. However, it is neither the errorless nor the unique solution. The major
limitations pertaining to this method can be listed as the followings:

- Firstly, the application of the rules of the road has not been properly covered. This is,
unfortunately, the very first matter of concern for experienced officer in deciding if a collision-
avoiding strategy is acceptable.

- Secondly, the algorithm is based on the assumption that the collision-avoiding problem is
time-invariant. It is actually not the case as the obstacles presented by moving ships are time-
varying. As a result, the solution produced may not be the optimal solution or even an
approximation of the optimal.

- Thirdly, due to the nature of DP method that attempts to reach every node by shortest route,
the algorithm is incapable of producing collision-avoiding route for certain cases (see 3.5.6).

A better route-producing algorithm should therefore be constructed so as to overcome these
difficulties.

Getting along with the fast improvement of computer processing speed, population-based
optimization methods inspired by nature phenomena have been gaining a lot of popularity in the
last several years. These nature inspired algorithms are of great interest and deemed to be
potential solutions to many real world optimization problems which have become too large,
complex and dynamic to be covered by available analysis or numerical methods. Then, they
require the development of solving methods of which the efficiency is measured by their ability
to find acceptable result within a reasonable amount of time, rather than the ability to ensure an
optimal solution. Some optimization-algorithms mimicking behaviors of natural spices have been
proposed and found their application in different computational fields, including Genetic
Algorithm (GA) ([10], Appendix II), Particle Swarm Optimization (PSO) ([9], Appendix III), and
Artificial Bee Colony Optimization (ABC) etc.

Belonging to the family of nature-inspired optimization algorithms, Ant Colony Optimization
(ACO) algorithm has proven its surpassing performance, compared to GA, PSO etc. in a vast realm
of problems. ACO is the result of research works on computational intelligent approaches to
combinatorial optimization originally conducted by Marco Dorigo, in collaboration with Alberto
Colorni and Vittorio Maniezzo [3][4][5][6]. Since then, different ACO algorithms have been
successfully developed in many hard combinatorial problems such as the traditional Travelling
Salesman problem, NP-Hard problems, the problem of Data Network Routing and a number of other
optimization problems in engineering applications [1][2][7][8].

Then, in this study, an algorithm for generating the optimal or an approximation of the optimal
collision-avoiding route for the Own Ship (OS) will be proposed, given the Target Ship (TS)
motions, OS maneuvering characteristics and environmental constraints. The algorithm proves to
be very efficient in quick route-producing and allows the realization of the maritime traffic laws
as set-forth in International Convention for Preventing Collision at Sea. It also overcomes the
limitation of Dynamic-Programming Algorithm in treating the problem as static. With suitable
choice of designing parameters, the algorithm provides admirable exploration and exploitation
capacities.

55

In the rest of the chapter, foraging-behavior of ants and classical ACO algorithms will be
described in Section 4.2. Section 4.3 deals uniquely with the ACO algorithm for producing the
collision-avoiding route and its application-aspects in details. Simulation studies are discussed in
Section 4.4 to verify the performance of ACO algorithm. Then, the chapter conclusions are
summarized in Section 4.5.

As mentioned earlier, the algorithm will be proposed with the following 2 assumptions:

- Target Ships do not change their speeds and courses during the collision-avoiding process.

- Collision-avoidance is the duty of our Own Ship alone, even for the cases where it is a
stand-on vessel.

4.2 Behavior of Ants and Ant Colony Optimization Algorithms
4.2.1 Foraging Behavior of Ants and Optimization Problem
Ant colonies are distributed systems that, in spite of the simplicity of their individuals, show a
highly structured social organization. The strict organization enables the colonies to accomplish
complex tasks which far exceed a single ant’s capacities such as the division of labor, brood
sorting, cooperative and foraging tasks.
The collective behavior of an ant
colony can be illustrated as shown in Fig.

4.1. Assuming that an ant colony is nesting z‘jg} &‘WI;M’;
at N (Nest) and there is food source for & \ “r\c%
ants located at F (Food), an interesting . @i"”“"/\\“ ‘.:/\
phenomenon has been experienced as Ny g N \\{/
followings: z { \c;
- The first ants find a way to reach the 4 | b i
food source (e.g. path a) and return to their : NS ;f\;-,
nest, using path b. On the latter path, they A9 4 W\ ==
leave trail-pheromone. X (\g(,
- In the beginning stage, ants use one T : = ,L\
among the four possible paths equally and %N) ‘xﬁfj 11,;
randomly. However, the discrimination q 2 2

between them gradually increases as more
ants finish their food-source searching and Fig. 4.1 Ant Colony Behavior (wikipedia)
home returning cycles. More ants tend to
choose the shorter path to reach the food source and return back. The trail-pheromone levels of
these paths make them more attractive than other paths.

- After a period of exploiting, almost all ants choose the shortest path to the food source. Long
portions of other paths loose their

pheromone trail. N«er branch

The above mentioned - ;0 ,
phenomenon is a generalization @ ik @
of the double-bridge
experiment in which ants
converge to the bridge that
provides a shorter path (among
2 possible paths). The reality is,
however, more complicated

Longer branch

Fig. 4.2 Double Bridge Experiment

56

than that. In another experiment, only a long branch was initially offered to the colony. After 30
minutes, when a stable pheromone trail has formed on the only available branch, a new, shorter
branch is added. The ants keep on accessing the food on the longer branch. This can be explained
by the high pheromone concentration on the longer branch and the slow evaporation of the
pheromone. As a majority of ants continue using and leaving pheromone on this path, its
attractiveness is still strongly intensified.

The so far described behavior of the ant colony can be explained if the approximated ant
behavior model as the followings is utilized:

- An ant runs more or less randomly around the nest.

- If it discovers a food source, it returns directly to the nest, leaving trail-pheromone on the
path used.

- Nearby ants are attracted to follow this track more or less directly, due to the trail-
pheromone.

- These ants in turn strengthen the path i.e. the pheromone level.

- If there are 2 paths to reach the same food source, the shorter one is used more frequently in
a given time period. The latter path is therefore increasingly enhanced and becomes more
attractive.

- As pheromone gradually evaporates, the long path eventually disappears.

- Eventually, all the ants choose the shortest path which is probably the only path left.

4.2.2 Ant Colony Optimization Meta-Heuristic Algorithm

As stated earlier, ACO algorithm is a probabilistic technique for solving computational
problems which can be reduced to finding good paths through graphs. The problems are
commonly characterized by the following features:

- A finite set of nodes is given.

- A finite set of possible connections are established between the nodes.

- There is a finite set of connection-costs, respective to the set of connections, i.e. a cost for
each connection.

- A set of constraints is given for the problem.

- A solution of the problem is a route from a certain node, i.e. starting-node, passing through
the connections in the connection set, to a given destination which is commonly called the end-
node.

- The cost of a solution is the total connection-costs for travelling a route from starting-node to
the end-node.

- The optimal solution is the solution which has minimal (or maximum) cost.

For this class of problems, the meta-heuristic ACO is proposed by Dorigo as followings [4]:

Procedure ACO_meta_heuristic()
While (termination_criterion not_sastisfied)
Schedule_activities
Ants_generation_and_activity(),
Pheromone_evaporation();
Daemon_actions(),
End schedule_activities
End while
End procedure

57

Procedure Ants_generation_and_activity()
While (available resources)
Schedule the creation of a new ant();
New_active_ant();
End while
End procedure

Procedure New_active ant()
Initialize ant(),
M = update_ant memory();

While (current node <> end_node)
A = get local connections_pheromone_data();
P = compute_transition_probabilities(A, M);
next_node = apply ant decision_policy(P),
move_to_next _node(next node);

if (online_step by step pheromone update)
deposit_pheromone on_the visited connection();
update connections pheromone();
end if
M = update _ant memory(),
End while

if (online_delayed pheromone update)
for each visited connection
deposit_ pheromone on_the visited connect();
update _connections_pheromone();
next
end if

kill ant();
End procedure

In this meta-heuristic algorithm, the Daemon action is optional. It can be considered as a

mechanism to modify the pheromone state of the system compulsorily apart from the gentle,
nature-like modification by deposit and evaporation processes so as to avoid the early
convergence that may arise, e.g. the failure of intensifying the shorter branch in the double-bridge

experiment mentioned above (Fig. 4.2).
It should also be noticed that there are 2 strategies of depositing pheromone for ants.

Pheromone can be deposited right after a connection is used or it is just performed after the ant

has reached the end-node.

4.2.3 Common ACO Algorithms
Sharing the common principle as described in ACO Meta-Heuristic, different ACO algorithms

have been proposed and applied in computational and engineering problems. They are

58

discriminated in the way a following-node is chosen and/or the trail-pheromone manipulation
schemes [11][12][13].

The first algorithm is probably the Ant System (AS) algorithm. In AS algorithm, a node, or
connection to it from the current node equivalently, is selected purely probabilistically, basing on
the pheromone level of the connection and its desirability. The total effect of these is referred to
as the attractiveness of the connection.

An improvement of AS algorithm is the Ant Colony System (ACS) algorithm. In the latter
algorithm, the node-selecting mechanism depends on a chosen parameter go (0 < gy < 1) and a
randomly produced variable q:

q = random(0,1)
if(q<q0)
Choose_most _attracive_connection(); //most attractive node
else
Choose_node_probabilistically(); // like AS
end if

The tactic underlying this strategy is to spend more efforts on the most attractive connection
so far. This allows the system to further exploit the search-space in the most promising regions
that has been explored.

Another improvement to the AS algorithm is the MAX-MIN Ant System (MMAS). In
comparison with original AS, MMSA differs in the following features:

(i) Only the best ant adds pheromone trails.

(i1) The minimum and maximum values of the pheromone are explicitly limited.

MMAS retains a balance between exploration and exploitation. (i) helps to reduce the noise
effect or the chaos caused by ants which have poor performances. With (ii), no connection either
receives too much attention or is totally eliminated from choice. Then, all search-space can be
properly explored.

4.3 Collision-Avoiding Route Generation System Based on ACO
4.3.1 System Overview

The collision-avoiding support system basing on ACO shares almost all the designing feature
with the one described in Chapter 3 (Fig.3.1). With the target information acquired from
navigation aids, as well as environment constraints, the system is to check the safety of the OS
passage. If current route of the OS is unsafe, a collision-avoiding route will be generated and OS
is to continue on this new safe route.

The only difference with what has been presented in Chapter 3 is that an ACO Algorithm will
be applied for route-generating purpose. Therefore, the application factors such as target motion
extracting, risk-judging criteria will not be re-analyzed in this chapter to avoid repetition. These
factors can be referred back directly in the appropriate sections of Chapter 3.

59

|| AIS Receiver Radar/ARPA | | lb;

Target Information

‘ [Onboard LAN

Safe Passage
Checking

|

ACO-OR Route to Tracking
Generator Take Control Block

Activate RG when

..

tracking control fails
ACO-OR: Optimal Route by Ant Colony Optimization Algorithm
RG: Route Generator

Fig. 4.3 Collision-avoiding Support System Overview

The overall route-generating procedure is illustrated by the flow chart in Fig. 4.4 and
summarized as followings:

- Environmental constraints for the navigation water are extracted from the environmental
constraint database or manually input by the ship officer.

- A grid system is built for the navigable water between the current position of the OS, i.e.
starting-node, and a point, namely the end-node on the intended route of OS. The end-node is to
be located at a certain distance from the starting-node. Grid designing parameters, including
distance between lines, number of points on a line, distance between points are chosen as
suggested in Chapter 3.

- Connection-desirability is calculated for all connections of the grid. The connection is a path
connecting a point on a line with another point on the following line. This will be discussed later
in the study.

- The grid and target information is applied in ACO algorithm for searching a collision-
avoiding route.

- The best solution, i.e. the optimal collision-avoiding route, is extracted from the algorithm.

Environment
Constraints Line dist,
Point dist,

etc.

Load Environment Produce the

Constraints i Grid

J

Calculate Connection
(Geometric) Desirability

L

Start
Perform
Get the best Route ACO!Alzoriihn

Fig. 4.4 Route-generating Procedure

TS
Information

60

4.3.2 Route-Cost Function and Traffic Laws Keeping

For the marine-traffic routing application, the aim is to find an optimal collision-avoiding
route for the ship. The route must as far as possible satisfy the following requirements:

- Route must be safe. This means that OS must be absolutely free from risk of collision with
TS and must not infringe the environmental constraints.

- On the collision-avoiding route, OS must satisfy the marine-traffic rules as far as possible.

- The route travelling time should be minimized.

A solution to the problem is a route, from the starting-point, going through a point on each
line, to reach the destination. It is therefore the combination of several connections, or paths
connecting points, from the starting-
point to the destination.

In terms of preventing collision at 077
sea, the rules for ship to ship Re v |
collision preventing maneuver are o @:0
mainly defined in regulations 13 to 2 x
7. ~and =19 -of :Calice 725 (ke
International Regulations for 2
Preventing Collision at Sea). Details o il ‘
of these regulations: are easily ‘ %1
accessed in the appropriate text |
books and therefore will not be
mentioned any further within the OS |
scope of this study. L_X A

However, to be readily applicable, 3
those requirements are further

R

generalized and simplified to a
compact set of requirements as the
followings:

0: Head on

1: Crossing from Starb.
2: Crossing from Port
3: Abaft the beam

- Collision-avoiding action
performed by OS should not cause
any confusion on the TS side.

- OS must alter its course to starboard in a head on situation.

- OS should avoid turning to port in crossing situation, especially when it is a give-way vessel.

- OS should avoid the change of course toward a vessel abeam or abaft the beam if the later is
an overtaking vessel.

Fig. 4.5 Own Ship and Target Ship Relation

All the above factors can be taken into consideration by the use of a suitable function for
optimization problem which is later solved by ACO algorithm. The function hereafter will be
referred to as Route-Cost (or Solution-Cost equivalently) and is defined as following (4.1)

Route-Cost evaluation:

61

Q:(ZTi]x£I+Zij (.1)
i i
i =1 to Number of Connections on the Route
J = 1to Number of Target Ship involved in the situation
T, : Time required to travel connection i" on the Route

K, : Expressing additional cost due to rule infringement when avoiding TS j'

The choice of coefficient K in (4.1) reflects the level of pressure on the ship officer if a rule-
violating strategy for collision-avoiding is accepted. Values of K for different encountering
situations between the OS and a certain TS have been tested for a large number of scenarios.
Then, the following set of K values has been chosen in this study (see Fig. 4.5):

(1) Passing a Head-On TS on Starboard Side: K = 0.2 (TS 0).

(2) Passing a TS Crossing from starboard side on OS Starboard side (OS give-way): K = 0.05
(ST

(3) Turning to Port while the TS is crossing from Port Side (OS Stand-on): K = 0.1 (TS 2).

(4) Turning to Starboard while the TS is behind the OS traverse axis on starboard side and
overtaking: K = 0.2.

(5) Turning to Port while the TS is behind the OS traverse axis on port side and overtaking: K
=0.2.

(6) Otherwise, K =0.0.

It is easily seen here that K should be larger for the cases in which the TS may easily
misunderstand the OS action, and its counter-action, if strictly following rules, may result in
much dangerous situations. Examples of this are case (1) and (3) above, if TS is to alters its
course to starboard. Conversely, in case (2), if the officer of the TS feels uneasy and alters course
to starboard, the situation will not be worsen, at least.

For a TS on or abaft OS beam (case (4), (5)), from the ship officer view-point, it is very
dangerous because of the following reasons:

- It is difficult to observe TS

- TS motion is doubtful

- The situation is persistent

¢
==

Fig. 4.6 Rule-Violating and Rule-Keeping Routes

62

An example illustrating the influence of K is shown in Fig. 4.6. Without taking the rules into
consideration, when navigating from A to B, the OS alters its course to port, which is actually the
shortest collision-avoiding route (left figure). However, an experienced officer is likely to choose
to turn to starboard to ensure a safe passage (right figure). In fact, the OS is a stand-on vessel in
this encounter and it is the duty of the TS to take action. But, if OS is to take action, its course
change to port is more dangerous (there is a high possibility that TS also alters its course to port)
than the course change to starboard. The cost of the collision-avoiding route in the right figure is
therefore should be less than that of the one in the left figure.

4.3.3 Connection Desirability

Even without the environment constraints and risk of collision with TS, setting aside the trail-
pheromone level, connections still possess different level of attractiveness. This component of the
attractiveness is called the Connection-Desirability. The desirability parameter is initialized
simultaneously when the grid is built. It plays the role of heuristic information that control the
tendency and efficiency of the search.

e aon
Point i 0:
s
Start ‘ =B o
H est.
P0|.nt (A) min_dgh\s |, 3

Fig. 4.7 Connect Desirability Initialization

In routing application, starting from a random node (point A), to reach a given destination
(Dest.), the ship officer tends to choose nodes on the following line in such a way that the total
route forms a straight line from A to Dest. or a path as close to this straight line as possible.

Noting this fact of the seamanship, the author proposes a formula for determining desirability
of every connection on the grid as followings (4.2)

d,

= exp(— ’ 4.2
L p d,... xScale _factor))

where
A : the current point
i : the point number ionthe following line
d, : deviation of point i from the straight line
connecting A with the destinatio n

d .. : Maximum deviation from the straight line

It can be seen from (4.2) that value of the desirability 7 for a connection (A-i) closer to the
straight line to destination (smaller d;) is larger than that of a connection further from this straight
line (larger d; value). This gets along well with the general expectation that a straight route to the

63

destination is always the route of choice that is mentioned above if it ensures the safety of

navigation.

To further reduce the total amount of calculation, connection-desirability is also used to
express the static constraints of the area, i.e. the environmental constraints. If the connection
leads the OS to enter a prohibited area, for example, its desirability is set to 0.

[f it is impossible to reach point i from point A, then

iy =

0

The connection-desirability is illustrated in Fig. 4.8 for different Scale factor in (4.2), with the
distance between points to be S0[m] and dp,y to be 2000[m].

1.2
A Scale_factor=l/é ‘
S ala
= Al \Ha ®m Scale factor=1/ 4
__E 0.8 2t ‘—ll—. " A A, | @ Scale_factor =1/ 10|
n A‘ |] u “
8 R " " s,
— - - B .

.9.0.6 ‘A‘A S o A‘A‘
] A A i . ° S A,
= A b __B ’ m A,
§0.4 ad o® . ° L 57
(qu‘ .. .l..

% S Eron g o S e

°
0 --AQOC.....'QQ..--
=25 -20 =15 -10 =5 0 5 10 15 20 258

Shift From Center Point [Points]

¢ Fig.r4.8 Connection Desirability

The graphs reveal also that the connection-desirability falls too low for points far away from
the center point. This means that the ants will not likely be attracted to these points and the route-
searching algorithm can not explore regions far from the straight line properly. Then, connection-

desirability should be modified as the following:

I Cn, -~ e
77/4,/ 77*9

wherel > n* > 0is alimit desirability level

(4.4)

Then, the desirability of connections varies as shown in the following figure (Fig. 4.9).

>
=y L g Ao Scale factor=1/2 |
S LYY | =
s A a m Scale factor =1/ 4
o 08 A“ "o " A‘A e Scale_factor =1 /10
a 0t - m e '
_QIOG ‘,‘ - .l . [] ,,-., k“
=] A - u ATA
© AAA s e . m Aa,
§°-4 ‘.:lllllll':‘...‘ ‘oooo=l-l--|ll=‘i
(]
209

525 =20 =15 -10 =0 0 5 10 15 20 25

Shift From Center Point [Points]

Fig. 4.9 Cbnnection—Desirability Modification by (4.4)

64

From the figure above and through simulation studies, it has been seen that the choice of
Scale factor to be 0.5 satisfies both the convergence property and the exploration capacity of the
route-searching algorithm.

The connection-desirability can also be modified by:
o =0t n° wheren® is a constant 4.5)

Using (4.5), the desirability lies in the range from 7° (for the furthest node) to 1+ 7’ for the

center node and there is always a difference of desirability between neighboring nodes. The
resulting Connection-Desirability is described in Fig. 4.10. If this form of modification is used, a
Scale-Factor value in the range from 0.15 to 0.2 appears to be suitable for the route-searching
algorithm.

y

£ 14 = AL Ao Scale factor=1/2 ‘
Q
o A :. .: A ® Scale factor=1/4
s 1.1 S At N =% A
o abd CHe . Aa, ® - Scale_factor =1/ 10|
S| aAA a® - - L As, i
.SIOB F = AA“‘A -.--l. .o' : ”‘o. .I..;. Aaaaa 3
4205 _ gmunus® T s "Eamg,, !
S : ceoccccece? ®0000000000 i
© 02 1
=25 =20 =ili5 =110 =5 0 5 10 15 20 25

Shift From Center Point [Points]

Fig:74.10 Connection-Desirability Modification by (453

The choice of connection-desirability explicitly affects the convergence of the route-searching
algorithm. It should be chosen so as to keep a balance between the exploitation of the region
around the straight line to the destination and exploration of other region of the search-space,
where more reasonable solutions may be detected.

4.3.4 Probabilistic Node Selection
Assuming that an ant is currently at a point (¢) on

line (i-1)™ of the grid, it is to choose a node i.e. a point Linei-1 Linei Line i+1

on line i" probabilistically. This point is the ant’s next- N

point. : : :
The choice of the next-point depends on the ~

connection attractiveness, where a connection is a path . ..ok °

from the current point (c) to a point on line i". The __...--- o °

connection attractiveness is the combined effect of trail- > ® ®

pheromone level of the connection and its desirability. : o S

i ® 0 ®

The probability for the ant to select node k can

therefore be determined by the following equation (4.6) Fig. 4.11 Node Selection

65

esJot) v
Z Ten X’hﬁ,h)

h=0

pc,k =

where
Do - probabilit y of selecting node k
T.,: pheromone level on connection c,k (see 4.3.6)
a . a parameter to control the influence of 7,
1. - desirabili ty of connection j,k

B a parameter to control the influence of 7,

The connection-desirability is defined in section 4.3.3 while pheromone level is the amount of
trail-pheromone ants laid on the connection if they had successfully reached the destination
through this connection. For simplicity, o, 8 are simply set to unity.

(tes Jrs)

a=p=1 then Pk =% 4.7
h=

Z (Tc,h X77c,h)

0

The node-selecting mechanism is illustrated in Fig. 4.12 where the subscript ¢ is omitted for
simplicity. A random value X is generated in the range (0, 1). Then, the next point is chosen to be
point m (in line i™) accordingly.

— Xm+1 =Xm+ Pm

/ — m
—T— Xm=Xm-1+ Pm-1

X =random(0,1)

—T— X2=X1+ P

—— X1=Xo+ Po
0 — —— Xo=0

Fig. 4.12 Probabilistic Node Selecting Procedure

4.3.5 Solution (Route) Producing Procedure

The procedure modeling the food-searching process of an ant in the colony is presented in the
flow chart in Fig. 4.13. To improve the success rate of the process, in this study, the following 2
looping parameters are employed:

- Rmax: Maximum number of tries on a line i.e. number of tries from a single point

- Kmax: Maximum number of tries for an ant in its life

66

Line number is denoted by 1 and initially set to 0. Variables r and k are used to count the tries.
k is initially set to 0 and r is reset to 0 whenever the ant starts selecting a following point, from its
current position.

The point is selected probabilistically as described in section 4.3.4. After selecting a point, ant
tries to approach that point, using the ship dynamics.

- If the path is safe, the ant reaches the point and therefore the route-searching process
continues from this new point, 1 is increased accordingly.

- If the path is unsafe, the ant tries another point. r is therefore increased.

If the ant fails to reach the following line from a certain point after Rmax tries, it is wise to
shift the ant back several steps and continues the route-searching process from there.

If the ant can find a route till the destination, the procedure is successful. A solution (i.e. a
route) is produced. The quality of the route is evaluated by (4.1). Conversely, if the ant can not
reach the destination after Kmax tries, the route quality is then set to Infinite to express this
failure.

Start —_— 1=0;r=0;k=0

No
r=0;1=(1<0?0:1)
Yes
1 e

k=k+1 v
i=1-3
Next_Point =
No Probilistic_Selection(Line(l))
I+=1
r < Rmax r=0
Yes A
No
r=r+1 Safe to Reach Next_Point?
| = LastLineNo?
Yes
—3| Q = Infinite Q = Cost (Route)
> End

Fig. 4.13 Route Producing Procedure

67

4.3.6 Pheromone Manipulations

Manipulating the trail-pheromone level of the connections is perhaps one of the most
important factors (together with the connection-desirability) which decide the searching
performance of the algorithm. Different pheromone-varying techniques have been proposed,
including the evaporation, pheromone-laying action of ants and deamon actions.

The performance deeply depends on the choice of the connection-desirability as well as other
pheromone manipulating parameters including the pheromone-delivering amount, the
pheromone-evaporating coefficient and etc. A good combination of these parameters is the one
that properly reasons between the exploration and exploitation capacity of the ant colony:

- A rapid discrimination of pheromone level (e.g. larger coefficient of evaporation) enables the
colony to spend most of its efforts on exploiting a promising region. The colony therefore comes
quickly to a convergence but there also arise the risk that some region of the search-space might
be ignored.

- Conversely, a slow discrimination allows the algorithm to explore thoroughly over the
search-space at the price that the algorithm needs more runs to converge.

4.3.6.1 Pheromone Evaporation

Evaporating process simulates the actual nature phenomenon in which the trail- pheromone
level of ants’ track decreases gradually because pheromone is volatile. This allows the poor route
which is not visited frequently to be eventually forgotten.

The process can be realized by the following equation (4.8), for every connection of the grid.

)l (4.8)
where

7, : pheromone level on the connection between point A and point B

p:rate of pheromone evaporation, OF =t

o is a designing parameter and is usually set in the range (0.05-0.1). An example of the effect
of evaporation is shown in Fig. 4.14 for two different values of the pheromone-evaporation
coefficient o .

p=0.05 s o= 2

(O]

Fig. 4.14 Performance of Ant Colony for Different Evaporating-Coefficient Values

68

4.3.6.2 Pheromone Delivering

While traveling connections on the grid, ants continuously lay pheromone on their trails. This
increases the pheromone level on these connections.

In this study, a pheromone-delivering mechanism is proposed that takes into consideration the
cost of a route in comparison with that of other routes and of the best route which has been ever
found. The route found by an ant consists of several connections and the pheromone amount the
ant leaves on a connection (i) is calculated by (4.9)

Ary= R sedC - (00, Jillo, oy) (4.9)
where
At" : A pre — fixed pheromone amount
C : A designing parameter controllin g the amount
of pheromone an ant delivers ,C >1
Q : Cost of the route
O, orse - Cost of the worst route in a Run

O... - Cost of the best voute S0 for

Formula (4.9) helps to limit the pheromone level laid by an ant on the connection to the range
(0,Az” xC). The better the route is, the larger the amount of pheromone laid on its connections is.

To reinforce the “exploitation” of the searching procedure for the optimal route, a large
increase of pheromone-level is applied for the connections on the best route that has been ever
found.

=T A (4.10)

where AB is a connection on the best route

Fig. 4.15a Performance of Ant Colony with Small Trail-Pheromone Delivery Amount
(Right = 50 Runs, Left = 100 Runs)

69

et ——
i ¥
A D s
- A,
ey . # s N
0. W b N
’ /’{‘, ™ P by,
\\ 74 N / Y N /
! 4 ~ ?
J '(\ / \\‘ \‘!
) BN / "
esm— N

Fig. 4.15b Performance of Ant Colony with Medium Trail-Pheromone Delivery Amount
(Right = 50 Runs, Left = 100 Runs)

\H\ ‘/‘
\j N
K : W
N \\
ey N yoh b
\ b4 N| ¥
AN ¥ 74
% N P N ;
4 N =
 ——— g \ .
4 > |
\\‘ v '; \\\
e v \
N =
s i
X W Gt i o
/ \\‘\ \\\ o €
Lo /‘ \\\

Fig. 4.15¢ Performance of Ant Colony with Medium Trail-Pheromone Delivery Amount
(Right = 50 Runs, Left = 100 Runs)

To illustrate the effects of the amount of trail-pheromone delivered on the performance of the
ACO algorithm, the route-searching simulation is conducted for a scenario where the OS has to
take action to avoid collision with several TS. Random routes chosen by 70 ants after 50 runs and
100 runs are shown in the figure on the right and the left respectively. In Fig. 4.15a, the designing
parameters (A7 ,Az") are (0.001, 0.01). The colony searches throughout the search-space but
the search is has not converged to the optimal region. In Fig. 4.15b, these parameters are (0.03,
0.3). The ACO algorithm initially explored throughout the search-space (till 50 runs) and then
gradually converged to the optimal (after 100 runs). If large amount of pheromone is delivered by
ants (A" =0.1,Az” =1.0as in Fig. 4.15¢), the ant colony concentrates quickly to the region on
starboard side of the OS. The algorithm may therefore have ignored the possible solutions on OS
port side. Furthermore, as the ants are strongly attracted to the nodes near the starboard-end of the
first grid-line, the searching-algorithm actually missed a better solution in which the ants
approach the second grid-line by a straight path (See Fig. 4.15b).

70

4.3.6.3 Deamon Actions

To increase the efficiency of the search, additional deamon-actions are applied in the
algorithm as followings, with Max_Value, Min_Value and Non_Optimal Max to be designing
parameters:

- If pheromone-level of a connection is larger than Max_Value, it is set to Max_Value.

- If pheromone-level falls below Min_Value due to evaporation, it is set to Min_Value.

- If pheromone-level of a connection which is not on the best route exceeds Non
Optimal Max, it is set to Non_Optimal Max.

4.3.7 Convergence Enhancement by Solution Post-Processing

Returning part

Target avoiding
part

Fig. 4.16 Collision-avoiding Route Components

The collision-avoiding route for the OS commonly consists of 2 parts, a part to avoid collision
(part AB in Fig. 4.16) and another for returning to the original course. The later should be a
straight line, or more generally the shortest possible route to the destination (C). However, due to
the relatively random nature of the search, particularly in “exploring” new solutions, the part for
returning to the original course may be in a zigzag form (part BC in Fig. 13). This reduces the
quality of the generated route and in turns limits the pheromone updating amount on that route.
As a result, the “exploiting” is refrained in this new region of the solution-space. The delivery of
pheromone on this unwanted zigzag route also produces chaos in the search process as other ants
would be attracted to these connections.

To overcome this deterrence, the route generated by section 4.3.5 should be further processed
before it is saved and used to perform pheromone-delivering. In other words, this part should to
be straightened before evaluating the route-cost, like the dash line in F ig. 4.16. Then, quality of
the route will be improved so as to improve the performance of the algorithm. This can be
considered as an additional local-search process in the ACO algorithm.

Tai

Fig. 4.17 Effect of Local-Search Procedure on Searching Performance

The outcome of the additional local-search process is illustrated in Fig. 4.17 for a colony of
ant performing the search after 50 runs. Due to the randomness of the search, the left figure
(without local-search) shows the chaos of the colony, especially in several last grid-lines. The
right figure (local-search process included) expresses clearly the converging-tendency of the
coolly as the chaotic effects have been largely reduced. In the latter algorithm, the route of every
ant has been properly straightened so that the trail-pheromone is not delivered on the unwanted
connections of the grid.

4.3.8 Overall ACO-Based Route-Generating Algorithm
The overall algorithm can be presented by the pseudo code as followings

A. Initialization
Initialize Grid(N line, N _point, D point);
Initialize ConnectionDesirability();
Obset = infinite,

B. Evolution
ForJ=1to Nr
ForI=11to Na
Produce Solution For Ant(Ants(l));
Post_Processing the Solution(Anst(l)),

If (Route_Cost(Ants(l)) < Qbest) then
Ant best = Ants();
Qbest = Route Cost(Ants(l)),
End If
Next [

Pheromone Evaporation();
Omedium = Get _Medium RouteCost(Ants()),

Forl=1toNp
If (Omedium > Route Cost(Ants(1))) then

72

Update Pheromone(Ants(l)) by (4.9),
End If
Next I

Reinforce_Pheromone(Abest) by (4.10);
Perform Deamon_Actions(),
Next J

C. Termination
Return Ant best;

Where the designing parameters and variables are defined as the followings:
- N _line: Number of lines on the grid
- N_point: Number of points on a grid line
- D _point: Distance between points on a line
- Na: number of ants in population
- Nr: number of run
- Qbest: Best route-cost
- Omedium: Medium route-cost (Determining the number of ants that produce pheromone)
-Ant _best: Best solution so far
- Ants(Na).: set of ants

It should be noted here that ONLY a number of best routes in a Run (routes having cost less
than Qmedium in each a loop of J) are used for delivering trail-pheromone. It enables the
algorithm not to spend resources on regions in which the route quality is poor.

4.4 Simulation Studies

The route-producing algorithm basing on ACO is applied to generate collision-avoiding route
for a set of typical marine traffic encounters. The same scenarios are also used in simulation
studies with route-producing algorithm by Dynamic-Programming (Chapter 3) and Bacteria
Foraging Optimization Algorithm (BFOA — Chapter 5) to provide a cross check of the algorithm
validity and to reveal advantages, disadvantages of each algorithm. The same OS model with that
described Section 3.3.4 (Chapter 3) is used in this chapter. The details of own ship and target
positions as well as their speeds and courses over ground are therefore not listed here to avoid
repetition. This information can be found in corresponding section in Chapter 3.

The ACO algorithm is applied with a=8=1, 0= 0.95. A colony of 150 ants is used (Na) to
generate routes.

In all the scenarios, the randomly selected routes of 100 ants are shown after different number
of runs of the colony (Nr = 20, 100, and 200). Then, the best route that the ant colony has found

after each run (starting from 100 runs) are depicted, with the best route found after 200 runs
drawn in red.

73

4.4.1 Scenario 1

Fig. 4.18a Random Ant Routes after 20 Runs Fig. 4.18b Random Ant Routes after 100 Runs

5 \‘ ><
B >< ‘
N o)
= N \)k Bk
iR END
N
CDS_?
Fig. 4.18¢c Random Ant Routes after 200 Runs Fig. 4.18d Best Solutions after 100 Runs

Comments on the scenario:
- The search is initially scattered around the grid (Fig. 4.18a) so that the whole solution-space
is explored thoroughly.

- Ant colony converges promptly to a region of good collision-avoiding strategy (Fig. 4.18b
and Fig. 4.18c¢).

- Regulations of the road are properly satisfied (turning to starboard, passing starboard
crossing targets on OS port side).

- Best solutions found are very close to the optimal solution after 100 runs (Fig. 4.18d).
Strategy is more appropriate than that produced in 3.5.1.

(See 3.5.1 and 5.4.1 for result comparisons)

74

4.4.2 Scenario 2

Fig. 4.19a Random Ant Routes after 20 Runs Fig. 4.19b Random Ant Routes after 100 Runs

Fig. 4.19c Random Ant Routes after 200 Runs Fig. 4.19d Best Solutions after 100 Runs

Comments on the scenario:

- The search is initially scattered around the grid (Fig. 4.19a) so that the whole solution-space
is properly explored.

- Ant colony converges promptly to a region of good collision-avoiding strategy (Fig. 4.19b
and Fig. 4.19c¢).

- Regulations of the road are properly satisfied (turning to starboard, passing starboard
crossing targets on OS port, passing head-on target on port).

- Best solutions found are very close to the optimal solution after 100 runs (Fig. 4.19d).
Strategy is more appropriate than that produced in 3.5.2.

(See 3.5.2 and 5.4.2 for result comparisons)

7

4.4.3 Scenario 3

os J N
pZ

Fig. 4.20a Random Ant Routes after 20 Runs Fig. 4.20b Random Ant Routes after 100 Runs

= 5% \‘ / AN = /< y
" R A
0s ‘E N Qs f\ N

Fig. 4.20c Random Ant Routes after 200 Runs Fig. 4.20d Best Solutions after 100 Runs

Comments on the scenario:

- The search is initially scattered around the grid (Fig. 4.20a), thus the whole solution-space is
explored thoroughly.

- Ant colony converges to 2 different regions as the route qualities relating to these 2 regions
are more or less similar (Fig. 4.20b and Fig. 4.20c¢).

- Regulations of the road are satisfied to an acceptable extent. Although OS alters course to
starboard and therefore passing starboard crossing targets on starboard, it does not cause any
misunderstanding from TS side. Even if the targets actually judge the case wrongly, it is still safe
as far as they follow rules of the road.

- Best solutions found are very close to the optimal solution after 100 runs (Fig. 4.20d).

(See 3.5.3 and 5.4.3 for result comparisons)

76

4.4.4 Scenario 4

Fig. 4.21a Random Ant Routes after 20 Runs

l 4 [q V4
X
. 7 . Y%
\\\ ,ii\ T N & 3
\
os "IZ P bR N

0S I}f

@ﬁ

Fig. 4.21¢c Random Ant Routes after 200 Runs Fig. 4.21d Best Solutions after 100 Runs

Comments on the scenario:

- Ant colony converges promptly to a region of good collision-avoiding strategy because the
route quality corresponding to this region is far better than that of other regions.

- Regulations of the road are properly satisfied (turning to starboard, passing starboard
crossing targets on OS port as far as the situation allows).

- Best solutions found are very close to the optimal solution after 100 runs (Fig. 4.21d).

(See 3.5.4 and 5.4.4 for result comparisons)

i

4.4.5 Scenario 5

Fig. 4.22a Random Ant Routes after 20 Runs Fig. 4.22b Random Ant Routes after 100 Runs

\\ pre RN S M) 0 = ¥
A W
TR 7%
S ﬁ
Fig. 4.22¢ Random Ant Routes after 200 Runs Fig. 4.22d Best Solutions after 100 Runs

Comments on the scenario:

- The search is initially scattered around the grid (Fig. 4.22a), then the whole solution-space is
explored thoroughly.

- Ant colony converges promptly to the region of the globally optimum solution (Fig. 4.22b
and Fig. 4.22¢).

- Regulations of the road are perfectly satisfied.

- Best solutions found almost coincide with the optimal solution after 100 runs (Fig. 4.22d).
Strategy is more appropriate than that produced in 3.5.5.

(See 3.5.5 and 5.4.5 for result comparisons)

78

4.4.6 Scenario 6

Fig. 4.23a Random Ant Routes after 20 Runs Fig. 4.23b Random Ant Routes after 100 Runs

OSCR I7NE Y
N \ b) 7\\
ENEE R v A6 S Ml G ‘ i
v~ Qas
os _'Z \\
7
Fig. 4.23¢c Random Ant Routes after 200 Runs Fig. 4.23d Best Solutions after 100 Runs

The scenario serves to prove the resistibility and the robustness of the algorithm for different
encountering cases at sea.

- The algorithm can still produce a collision-avoiding route while the algorithm using
Dynamic-Programming fails.

- Ant colony converges promptly to the region of the globally optimum solution.

- The strategy is acceptable, from the rule application point of view.

- Best solutions found almost coincide with the optimal solution after 100 runs (Fig. 4.23d).

(See 3.5.6 and 5.4.6 for result comparisons).

79

4.5 Conclusions

The chapter is to propose an Ant Colony Optimization Algorithm (ACO) for generating the
collision-avoiding route for the Own Ship. The route-generating algorithm is based on the
assumption that Target Ships do not change their course and speed, and the collision is avoided
by action of OS alone.

In comparison with ACO Meta-heuristic, our proposed ACO algorithm is modified in the
following aspects, taking into consideration the nature of marine traffic

- A local search (post-processing) mechanism is applied to increase the search efficiency and
the convergence speed.

- Only the ants (Np out of Na ants) that produce better routes lay trail-pheromone. Then
unpromising regions of the search-space can be avoided.

- A scheme to limit pheromone-level is used to control the search.

- The searching-algorithm is globally supervised by the use of the best route that has been
found at each run.

It has been shown that ACO is a suitable and very effective approach for the route-producing
problem, taking into account the dynamic nature of the constraints. In comparison with Dynamic-
Programming method, a sharp advantage of ACO is that the rules of the road can be actively
taken into account, just by modifying the route-cost function (values of K).

With suitable choice of designing parameters as shown, the nearly-optimal route can be
produced with in a short period of time (less than 15 seconds). The algorithm therefore meets the
requirement of real-time application.

A deterrence of the route-producing algorithm is that its performance is rather sensitive to the
variation of parameters. Changes in pheromone-delivering amount (4.9) or evaporation
coefficient (4.8) may severely affect the convergence of the algorithm, especially the early
convergence to the local optimums.

References

1. G. Ma, H. Dual, S. Liu, "Improved Ant Colony Algorithm for Global Optimal
Trajectory Planning of UAV under Complex Environment", International Journal of
Computer Science & Applications Vol.4, pp.57-68, 2007

2. J. E. Bell and P. R. McMullen, "Ant colony optimization techniques for the vehicle
routing problem", Advanced Engineering Informatics, Vol. 18, pp. 41-48, 2002

3. M. Dorigi, M. Birattari, T. Stutzle, "Ant Colony Optimization: Artificial Ants as a
Computational Intelligence Technique", IEEE Computational Intelligence Magazine,
pp-28-40, 2006 _

4. M. Dorigo and T. Stiitzle, "Ant Colony Optimization", Massachusetts Institute of
Technology, 2004

5. M. Dorigo, G. Di Caro, L. M. Gainbardella, "Ant algorithms for discrete optimization",
Artificial Life, Vol. 5, No. 2, pp. 137-172, 1999

6. M. Dorigo, V. Maniezzo, A. Colorni, "Ant system: optimization by a colony of

80

10.

11.

12.

13.

cooperating agents", IEEE Transactions on Systems, Man and Cybernetics-Part B, Vol.
26, pp.29-41, 1996

M. Guntsch, M. Middendorf, and H. Schmeck, “An Ant Colony Optimization approach
to Dynamic TSP”, Proceedings of the Genetic and Evolutionary Computation
Conference 2001, Morgan Kaufmann Publishers, pp. 860-867, 2001

M. Plucinski, "Application of the Ant Colony Algorithm for the Path Planning",
Enhanced Methods in Computer Security, Biometric and Artificial Intelligence
Systems, Chapter 3, pp.345-352, 2005

R. C. Eberhart and Y.H. Shi, "Particle swarm optimization: Developments,
applications and resources", Proceedings of the IEEE congress on evolutionary
computation, pages 81-86, 2001

R. Tinos and S. Yang, “Genetic algorithms with self-organized criticality for dynamic
optimization problems”, Proceedings of the 2005 IEEE Congress on Evolutionary
Computation, IEEE Press, Vol. 3, pp. 28162823, 2005

T. Stutzle and H.H. Hoos, “Improving the Ant System: A detailed report on the MAX~—
MIN Ant System,” FG Intellektik, FB Informatik, TU Darmstadt, Germany, Tech.
Rep. AIDA-96-12, Aug. 1996

T. Stutzle and H.H. Hoos, “MAX-MIN Ant System,” Future Generation Computer
Systems, Vol. 16, No. 8, pp. 889-914, 2000

Y. Wang, J. Y. Xie, "An adaptive ant colony optimization algorithm and simulation",
Journal of System Simulation, Vol. 14, pp.31-33, 2002

81

Chapter S Collision-Avoiding Route Generation by Adaptive Bacterial
Foraging Optimization Algorithm

5.1 Introduction

As stated in Chapter 4, the route-producing algorithm based on Ant-Colony Optimization is a
promising and effective tool to generate the collision-avoiding route for the ship in diversified
maritime-traffic environments. However, the application of ACO algorithm itself copes with
several difficulties that must be further improved:

- Firstly, the algorithm is very sensitive to the choice of parameters. An inappropriate choice
of these parameters results in the very poor performance and the optimal route may never been
reached at all.

- Secondly, the convergence of the ant-colony is rather slow in some cases.

A better algorithm therefore in considered in this study that possesses the pros of the ACO
algorithm and overcome its limitations at the same time.

First introduced by Passino [6]{11] in 2002, Bacterial Foraging Optimization Algorithm
(BFOA) has been the subject of many researches in the last several years. Inspired by the bacteria
forage over a landscape of nutrients, BFOA has been generally considered a promising solution
for a variety of distributed optimization. The algorithm is a population based numerical
optimization method which is simple but powerful and has been applied successfully to a wide
range of engineering problems, including the optimal control, machine learning, harmonic
estimation etc.

Being a population based bio-mimetic algorithm, BFOA is characterized by the following
properties which make itself a more robust and effective method for optimal searching, in
comparison with other gradient-based optimization methods:

- The individuals are distributed and autonomous. There is no central control and the failure of
some individuals therefore can not influence the solving of the whole problem i.e. other
individuals can still keep on secking for the optima themselves independently. As a result, they
tend to be more robust than other numerical algorithms.

- As the collaboration (swarming) is through indirect information communication, the
algorithm is extensible. For a simple problem, a population of few bacteria can perform the
search effectively. However, if the complexity of the problem increases, a larger population must
be employed. Due to the extensibility of BFOA, it is easy to increase population size to achieve
solution to these more complicated problems.

- The algorithm concerns only basic mathematical operations thus it can be simply and
efficiently implemented on computer.

- The assumptions of differentiability, convexity and other mathematical conditions are not
required. Hence, the algorithm is highly viable for a vast range of problems.

Then, to overcome the limitations of previously-mentioned algorithms for route-producing, in
this chapter, an Adaptive-BFOA for generating the optimal route or an approximation of the
optimal route to avoid collision for the Own Ship (OS) will be proposed, given the Target Ship
(TS) motions, OS maneuvering characteristics and environmental constraints. It will be shown
later that the Adaptive-BFOA is very efficient in timely route-producing and allows the
realization of maritime traffic rules as stated in International Convention for Preventing Collision
at Sea. It also removes the limitation of Dynamic Programming Algorithm in treating the problem
as time-invariant. With suitable choice of designing parameters, the algorithm has admirable

82

exploration, exploitation and convergence properties in comparison with the ACO based
algorithm. ‘

In this chapter, BFO fundamentals and a classical BFOA will be described in Section 5.2.
Then the Adaptive-BFOA for producing collision-avoiding route of OS will be discussed in
details in section 5.3. Computer simulation results will be shown and analyzed in section 5.4.
Lastly, conclusions relating to the Adaptive-BFOA application will be stated in section 5.5.

As mentioned earlier, the collision-avoiding route will be produced with the following 2
assumptions:

- Target Ships do not change their speeds and courses.

- Collision avoidance is the duty of our Own Ship alone, even for the cases where OS is a
stand-on vessel.

5.2 Bacterial Foraging Optimization Fundamentals and Classical Algorithm
5.2.1 Bacteria Foraging Optimization Fundamentals

Suppose that it is necessary to find the minimum of a function Q(S) defined in a certain
domain which is often called the Solution-space or the Search-space. Additionally, a solution S
must satisfy some constraints. In many practical applications, the problem is so complicated that
it is impossible or too costly to have a measurement or analytic description of the gradient VQ(s) .

It is therefore referred to as a non-gradient optimization problem which can not be solved
analytically. Rather than the exact solution of the optimal, a close approximation of it is
applausive. An effective search for such an approximation is the target of numerical optimization
method, including nature-inspired algorithms.

Being a bio-mimetic algorithm, BFOA is an iteration based optimization tool using an initial
set of solutions which is generated randomly. Each solution is represented by the position of a
bacterium. Then, throughout this chapter, the terms position of bacterium, bacterium and solution
are used interchangeably. The iteration is the development of the population in a life-time of the
bacteria. It undergoes the following stages:

- Each bacterium adapts itself to the environment and grows.

- Fitness of each solution is measured. The fittest solutions retain and reproduce while the less
fit ones are removed from the population.

- Remaining solutions swarm.

The new solutions after each iteration are fitter than the original ones. As a matter of fact, they
are nearer to the optimal which must be found.

The following nomenclature will be used throughout this section to illustrate a classical
BFOA and its general modifications.
S= [p(l), p2),..., p(i),..., p(N)] a solution (position of bacterium in search space)

where p(i) : the i" coordinate
N : Dimension of the search space
V =Vv(0),v(1),...,v(i),...,v(N)] a vector representing a moving direction
where v(i) =0 or v(i) =1
D : Distance to move (i.e. Swim length)
Q: the fitting index (sometimes refered to as Quality — Index or Cost — Index)
dQ: added fitness due to bacterial communication

83

Swim

sEENy
** e

"
*
*

CCW: counter-clockwise "'(- e
CW: clockwise

Fig. 5.1 Chemotaxis of Bacterium

Fig. 5.2 Optimum Searching Behavior of Bacteria [4]

5.2.1 Classical BFOA
In short, a classical BFOA consists of the following 3 steps:

Step 1: Initialization. Initialize the bacteria of the population. Each bacterium is allocated
randomly over the search-space.

Step 2: Evolution. Recursively manipulate the population to develop gradually by a 3-step
procedure;:

- Chemotaxis and swarming

84

- Reproduction
- Elimination and Dispersal
Step 3: Termination. Return the solution accompanying with the fittest bacterium in the
population.

As mentioned in step 2, in nutrient foraging and evolving, bacteria population recursively goes
through a process of 3 stages, namely the chemotaxis and swarming, reproduction, elimination
and dispersal. The process enables the bacteria to gradually aggregate in the most favorable
region or the region of highest concentration of nutrient. Imitating foraging behavior of E.coli
bacteria, BFOA seeks the optimum of a function through the search-space by conducting the
local search through the bacteria chemotaxis, distributing local search by swarming, intensifying
search in promising region by reproduction, and avoiding traps of local optimums by elimination
and dispersal.

5.2.2.1 Chemotaxis

Chemotaxis is the phenomenon in which bacteria, including E. coli, direct their movements
according to the existence of certain chemicals in their environment. It is important for bacteria to
move to areas of higher food concentration or to flee from poison. Chemotaxis is either positive
or negative. In positive chemotaxis, the movement of bacteria is toward the positions of higher
concentration of the chemical concerned. Conversely, negative chemotaxis causes bacteria to
move away from them.

The movement of bacteria is the result of alternating tumble and swim phases. These 2 phases,
performed through their entire lives, direct bacteria to search for the position or region where the
food concentration is richest. _

Swimming is the straight run (sliding) motion of bacteria in a pre-chosen direction. It is the
result of rotating their flagella counter-clockwise. In BFOA, swimming can be considered as the
straight motion of a bacterium up hill, toward the position of local optimum. If the distance of
swim is long, bacteria move quickly toward the optimum. However, it may also cause the search
to fluctuate around this point. A small swim-distance allows the bacteria to slide slowly but
steadily to region of high nutrient concentration. The expenses accompanying with it are that it
requires more time for the bacteria to reach optimum is long and bacteria are incapable of
jumping out of the attractive area of a local optimum.

Tumbling, on the other hand, is the turning motion of bacteria by rotating their flagella
clockwise. It is the action of a bacterium to change its moving direction while seeking for food.
In BFOA, it is equivalent to starting the search in a new direction.

The 2 basic motions of a bacterium are illustrated in Fig. 5.1. Combination of the 2
chemotactic motions is rather random. A tumble may be followed by a tumble or a swim and vice
verse. In fact, E.coli bacteria are unable either to decide the direction in which they swim or to
swim in a straight line for more than a few seconds due to rotational diffusion. In other words,
bacteria "forget" the direction in which they are going. By repeatedly evaluating their course, and
adjusting if they are moving in the wrong direction, bacteria can direct their motion to find
favorable locations with high concentrations of attractants (usually food) and avoid repellents
(usually poisons).

85

S'G+D)=S"(H+V(j)xD (5.1
where
i:index of bacterium in the population

J : chemotatic step in bacteria life time
The chemotactic (5.1) is applied if the following fitness inequality is satisfied.

Q(S'(j+1) < O(S"())) +4dO(S'(j +1)) (5.2)

where dQ represents the total attractive | repellent forces between individual s

The overall motivation for mimicking bacteria’s foraging behavior is illustrated in Fig. 5.2 for
a search in 2-dimension space. By repeatedly undergoing chemotactic motions, bacteria gradually
climb up the hills to approach the optimums, locally or globally.

5.2.2.2 Swarming

Swarming is an interesting aggregation behavior of bacteria swarm. This is achieved by a
primary communication mechanism between bacteria in close proximity.

Due to the premature structure of bacteria cells, a bacterium can exchange signal with just the
bacteria nearby. The signaling scheme results in an extra factor basing on which bacteria decide
their chemotactic moves. Unfortunately, the mechanism behind this phenomenon is very
complicated and has not yet been fully explainable. In BFOA, it is simulated by the attractive or
repellent forces exerted by a bacterial cell on the other. A number of parameters must be chosen
to express this effect when designing BFOA. In brief, it can be simply referred to as a process in
which bacteria are attracted by those within a certain range from their positions and to be repelled
when distance between them falls below a limit. If properly defined, it redistributes the search in
a promising local region around the optimum and to draws bacteria from other regions to enter
the most attractive region of the current search.

AQ(S'(G+1) = Y dOS' (415" () = 3| = s XD W
k=1 k=1

s'(+0-5' O]

Ns) 2
+ z |:_ hrepellent exp(—wrepellenl Sl (.] + 1) - Sk (})”):| (53)
k=1

where
||S || : norm of vector S

d w h w : coefficients representing range and

attract > "7 attract > " “repellent > "7 repellent

magnitude of attractive / repellent force between bacteria

5.2.2.3 Reproduction

After a number of chemotactic steps, some bacteria are in regions of better nutrient content
than the other. Those bacteria therefore gain more food and become stronger (i.e.
healthier/longer). The healthier bacteria have more chance to reproduce. Contrarily, the less
healthy bacteria will eventually die before reproducing.

86

In BFOA, the healthier bacteria are commonly those being in better regions of the search-
space, while the weaker ones are lying in poor regions of the function values. The reproduction of
healthier bacteria therefore increases the number of bacteria in more favorable regions so as to
intensify the search in these regions. The number of bacteria to reproduce is chosen to be the
same with number of those who die to keep the population size unchanged. The process therefore
increases the optimum seeking speed in more promising regions and gives up the less favorable
ones.

A disadvantage of this mechanism is that bacteria which are actually in the region containing
the global optimum may be killed before they can approach the optimum so as to gain nutrient in
large volume. Accordingly, the region is therefore not properly searched. This must be carefully
taken into consideration in designing BFOA.

5.2.2.4 Elimination and Dispersal

In nature, due to the sudden regional changes of the environment, e.g. temperature variation, a
number of bacteria in a certain region of the search-space die. On the other hand, with favorable
conditions, new bacteria arise in other region. Inspired by the phenomenon, BFOA undergoes an
elimination and dispersal process in each generation.

Elimination is the act of removing bacteria. A number of bacteria except several healthiest one
are selected randomly and removed from the bacteria population (elimination). They are replaced
by the same number of bacteria randomly dispersed around the search region (dispersal). Thence,
the total number of bacteria in the population remains unchanged. As stated above, premature
convergence, or the convergence to local optimum rather than the global one is a deterrence of
almost all numerical optimization methods currently in use. For BFOA, due to the randomness of
the bacteria elimination and dispersal process, the possibility for every local region to be searched
can be significantly increased.

The elimination and dispersal may destroy the chemotactic progress, but it also can be of help
in improving speed of chemotaxis because the bacteria may be placed in a better region of
nutrient concentration. By this diversification of search, the ability for some bacteria to reach the
global optimal can be significantly strengthened. In this study, an appropriate elimination scheme
will be proposed to ensure that every local region have been thoroughly exploited it is abandoned.

5.2.3 BFOA Limitations and Modifications

Experiments with complex and multimodal bench mark functions have revealed that the
convergence property of the classical BFOA is poor and its performance heavily decreases with
the growth in dimensionality of the search-space and the problem complexity.

To overpass these limitations, different variants of BFOA have been proposed to improve its
searching performance.

Tripathy et al. [7] proposed an algorithm in which 2 modifications are applied:

- The minimum value of quality function at each position is used instead of the average value
of all chemotactic steps so that the convergence speed is increased.

- The distance to the position of globally optimal bacterium is considered as a factor for
modifying chemotactic move at any step, rather than distances to all other bacteria.

Mishra [8] suggested a fuzzy inference scheme to select the optimal chemotactic step size in
BFOA.

C. Ying et al. [3] proposed a scheme in which the swarming pattern is inspired by that of a
particle swarm optimization algorithm. The position of each bacterium after every move in the

87

resulting algorithm (called a Fast Bacteria Swarming Algorithm — FBSA) is then decided as
followings

if O(S"(J)<Q(S'(j+1)) then
Spew G+ =85, G+ D + Cep x (S" ()= S () (5.4)
where b is the best bacterium in previous chemotactic step, C_is an attraction factor

Furthermore, the step length is gradually reduced after completing a cycle of iteration.

Similarly, H. Chen, Y. Zhu and K. Hu [4] developed the Adaptive Bacteria Foraging
Optimization Algorithms (ABFAy ;) in which the chemotactic step size is adjusted according to
the required accuracy at each stages, namely the exploration and the exploitation. In exploration,
a large swim-length unit is employed to explore the previously un-scanned regions. For
exploitation, on the other hand, a small swim-length unit is applied to exploit a promising region.

Other modifications of BFOA can be found in [1][4][9] etc. in which the algorithm is
combined with other optimization methods so as to improve its performance

Those variants however, are application-oriented and the choice of parameters is inconsistent.
In this study, the author is to propose an algorithm with an adaptive chemotactic step size taking
into consideration the fact that there are regions the ship can not interfere. The repellent forces
are exerted on neighboring bacteria. The proposed algorithm will then be verified with a set of
study cases to prove the required convergence property.

3.3 Collision-Avoiding Route Generation System Based on BFOA
5.3.1 System Overview

The overall system configuration is illustrated in Fig. 5.1, similar to those defined in Chapter 3
and Chapter 4. The only difference is that the collision-avoiding route for the ship is produced by
an Adaptive-BFOA-based route generator. As previously described, the inputs to the generator
are still the TS information, OS maneuvering characteristics and the environmental constrains.
The optimal route which is the aim of the searching algorithm proposed in this chapter is not the
minimum time route (Chapter 3) but the safe route, i.e. free from collision with all TS and
environment constraints, that requires minimum cost like that in Chapter 4.

The formula for route cost calculation will be described thoroughly in section 5.3.2. The
realization of the route thereby generated is the duty of a tracking control block connected to OS
control system though the network.

It should be noted again that the overall system is a real-time, autonomous process which is
keeping watch for the safe passage of the OS at all time. A new collision-avoiding route is
generated whenever there arises any potential endangerments due to one or some of the following
reasons:

- OS seriously deviates from the generated route

- An existing TS alters course or changes speed

- A new TS interferes OS safe passage, etc.

88

__

AIS Receiver Radar/ARPA | | {E>‘

Target Information

‘ /" Onboard LAN

Safe Passage
Checking
BFOA-OR Route to Tracking
Generator Take Control Block

ActivatelRGIwhen s 2o S K D
tracking control fails

BFOA-OR: Optimal Route by Bacterial Foraging Optimization Algorithm
RG: Route Generator

Fig. 5.3 System Structure Overview

The optimization problem which BFOA has to solve is a combination of points of the
produced grid, one point on each line, following which, OS will neither be in risk of collision
with TS nor violate environmental constraints. Simultaneously, the route should be as short as
possible and satisfy the traffic regulations the most.

The route-producing procedure is illustrated in the following flow chart (Fig. 5.4). It should be
noted again that a grid system with around 10 lines will be applied. The distance between lines is
1700 — 2000m. The problem is therefore a high-dimensional and non-continuous problem. The
Adaptive-BFOA must be properly designed to achieve good convergence for this optimization

function form.
Environment
Constraints Line dist,
Point dist

Produce the
Constraints =i Grid

Start | Load Environment

& (L]
Get the best Route [€ BFOA

OS Dynamics
4 -— o

Fig. 5.4 General Route-Producing Procedure by BFOA

5.3.2 Route Cost Function

In this chapter, the cost of a route (or a Strategy/Solution interchangeably) is evaluated in the
same manner with that used in Chapter 4. However, it is still mentioned here for the continuity of
the chapter contents.

Route-Cost evaluation:

89

Q:(ZTJX(H'ZKJ}
i J
i = 1 to Number of Connections on the Route

j =1to Number of TS involved in the situation (5.5)
T, : Time required to travel connectioni” on the Route

. %) . . . 7. .th
K, : Additional cost due to rule infringement when avoiding TS j

The choice of coefficient K in (5.5) for different encountering situation between the OS and a
certain TS is defined as the followings

(1) Passing a Head-on TS on OS Starboard side: K = 0.2.

(2) Passing a TS Crossing from Starboard side on OS Starboard side (OS give-way): K = 0.05.

(3) Turning to Port while the TS is crossing from Port side (OS Stand-on): K = 0.1.

(4) Turning to Starboard while the TS is behind the OS traverse axis on starboard side and
overtaking: K = 0.2.

(5) Turning to Port while the TS is behind the OS traverse axis on port side and overtaking: K
=0.2.

(6) Otherwise, K = 0.0.

5.3.3 Optimization Problem Modeling

Basing on the TS motions and environmental constrains, a suitable grid system could be built
in the navigable water area for the OS to pass safely. The task assigned for the optimal route
generator is to determine the best route, i.e. the minimum cost route for the OS. Every route can
be represented by a vector containing indices of points on the grid lines as the followings: -

S = [p(1), p(2),..., p(i), ..., P(N)]

where

p(i) € [1 to Number of points on grid line i"] (>6)

N: Number of grid lines

The proposed Adaptive-BFOA is to find the best strategy for the OS, ie. a strategy
S, = [po M, po(2),eees P (0505 P (N)] that requires the minimum cost.

With the route cost value as defined in 5.3.2, the task is a global optimization searching
problem in a space of N dimensions.

Qy = Min Q(S) = Q(S,) (5.7

90

Line 1 Linei Line i+1 Line N-1

o N e N ®)
ST —_ End
p(i) p(i+1) ~ T T Point
p(N-1) .
Sta_rt @ e @ [
Point ® ® . °
@0 ® 0 @ o @ 0

S = (p(0), p(1), ..., P(N))
Fig. 5.5 Bacterium Position or OS Collision-Avoiding Route

Taking as an example the simple Head-On encounter situation, with the assumption that only
the OS takes actions to avoid collision, it is easily seen that the set of possible strategies for the
OS includes strategies in which the OS alters first to starboard and those in which the OS changes
its course to port. Among those, there is at least a starboard minimal cost route and a port
minimal cost route which are approximately illustrated in Fig. 5.3. The problem is therefore a
multi-optimum global optimization. As it is highly nonlinear, an analytical method can not be
easily applied. BFOA (or other approximation searching methods) is thus recalled naturally.

Best Port
Route

X

Best Starboarq - - P ol Py 1 ;
Route

Fig. 5.6 Sample Collision-Avoiding Strategies in Head-on Encounter

5.3.4 Bacteria Position Initialization (Solution Initialization)

The procedure is to initialize positions of bacteria randomly. As mentioned earlier, a
bacterium position (or a solution) S is a combination of points on the grid lines. Thus, the task of
initializing process is to seek a random combination of these points that makes the solution viable
1.e. a safe route for OS.

The algorithm for solution initializing is illustrated by the follow chart in Fig. 5.7, where it is
driven by 2 designing parameters:

- Kmax: Maximum total trials on all components of the solution.

- Rmax: Maximum trials on a component, where a component is a point (p(i), 1 = 1 to N).

The variable 1 is used to count the component index i.e. the line number on the grid, and is
therefore initially set to 0.

From a point p(l) on line 1™, a point p(l+1) on line (1+1)th is chosen randomly and safety
criterion is applied to check if the latter point can be accepted as a solution component i.e. OS
can reach p(l+1) safely from p(l).

If it is safe, p(1+1) is appended to the solution: S(I+1) = p(1+1).

ol

Otherwise, another point is tried until r reaches Rmax.

If it is unable to find the component p(1+1) after Rmax trials, the initializing process is shifted
back several steps (3 steps in this study) and to continue from there.

—-—) 1=0;r=0; k=0; p(0)=0

No
r=0;1=(1<0?0:1)
Yes
f X

k=k+1
1=1-3 p(l+1) = random()

NoT
i

Yes Safe to Reach p(I+1)?
Yes

r=r+1 &

S(I+1) = p(I+1)

I1+1= LastLineNo?

Yes

—> Q = Infinite Q = Cost (S)

Y

> End

Fig. 5.7 Collision-Avoiding Route Initialization

If it is possible to find the whole combination, the solution is assigned for the bacterium.
Solution cost, or the bacterium heath equivalently, is calculated accordingly. Otherwise, the cost
is set to infinite to denote that an appropriate position for the bacterium has not yet been

determined.

5
B, T AN SN

0os

3.

| SOV STNSRUNNY S5V S S S—

Fig. 5.8 Random Initial Solutions — 6 Solutions

92

In Fig. 5.8, the above solution initializing procedure is applied to disperse 6 bacteria, given the
TS sizes and motions. It is obvious that due to the randomness of the initialization, solutions are
scattered over different regions of the search-space, including solutions in which one among the
following strategies is used:

- OS passes both TS on their port side.

- OS passes both TS on their starboard side.

- OS passes upper and lower TS on the port side of the former and starboard side of the latter.

Then, it is guaranteed that the overall route searching algorithm is to explore the entire search-
space to achieve the global optimum.

5.3.5 Bacteria Chemotaxis Procedure

Starting from their initial positions, bacteria exploit the area around them for better solution.
The local area searching process is performed by bacteria’s chemotaxis, including the swimming
and the tumbling and is illustrated by the flow chart in Fig. 5.9.

A tumble is represented by a vector V denoting the direction to which a bacterium is seeking.
V is defined as

V= [v(l), v(2),...,v(i),... ,v(N)]
where

v(ii)y=0or v(i)==%1

N: Number of grid lines

(5.8)

Due to the high dimensionality of the problem, i.e. large N, there are a huge number of
combinations of 0 and 1 in vector V. In this study, the choice of V is limited to the following
combinations

v, =[0,...,0,1,0,...,0]ie. v(i) = L if i = k; v(i) = O otherwise

V, =[0,..,0,1,1,0,...,0]ie. v(i) = 1if k <i<k+1;v(i) = 0 otherwise

v, =0....,0,L1,1,0,...,0]ie. v(i) = 1if k <i<k+2;v(i) =0 otherwise

V, =[0,...,0,-1,0,...,0]i.e.v(i) = = 1if i = k; v(i) = 0 otherwise

Ve =1[0,.,0,-1,-1,0,...,0]ie. v(i) = = 1if k <i<k+1;v(i) = 0 otherwise

Ve =[0.,..., 0,-1,=1,-1,0,...,0]i.e. v(i) = = 1 if k <i <k +2; v(i) = 0 otherwise

V, =[0,..,0,1,0...,0,—1,0,...,0]ie. v(i) = 1 if i = k,;;v(i) = =1 if i = ky; v(i) = O otherwise

where k, k,,k, are random value produced at each tumble

Then, a tumble is a probabilistic choice of a vector V from the above set, where V;, V4 are
chosen more frequently than V, and Vs. In turn, the later vectors are used slightly more often than
the rest.

After each tumble, the bacterium undergoes one or several swims, depending on the success
of the search in that direction. A new solution is produced from the current one using vector V
and swim-length D (see section 5.3.6):

93

S'=S+V.D

The new solution (S’) is first compared with the current one. If it is shorter, it might be an
improvement solution for the current bacterium position. In that case, the safety of that solution is
checked, using the appropriate criterion of collision risk assessment. If the solution is also viable,
its cost is compared to the current route. Note here that an additional cost value dQ is included to
express the influence of the communication between bacteria (see following section).

S, §’: Current, New Strategies
< Start > Imax: No. of Tumble

Jmax: No. of Swim
D: Swim distance

No m
Yes

V = Random Vector
J < Jmax 4&,
Yes

$’'=S+VxD
T No

S’ shorter than S?

A4
w
o

\ 4
A

<

<« ! 7|

A 4

No

Is S’ Safe?

A 4

’ = RouteCost(S’)

Yes /\ No

Q'+dQ(S,S’) < Q? >
Fig. 5.9 Bacteria Chemotaxis Procedure

If the new solution satisfies all the requirements, bacteria move to this new position and the
chemotatic process is to continue from there. The process is repeated until a pre-defined number
of chemotatic moves (both tumbling and swimming) have been tried.

To illustrate the effect of the local searching process by chemotaxis of bacteria, the improved
solutions from the initial ones which are shown in Fig. 5.8 are presented in Fig. 5.10. In this
figure, it is clearly seen that the solutions converge nicely to their respective local optimums.
Each region corresponds to a strategy the officer may use: port-to-port for both TS, starboard-to-
starboard for both TS, port-to-port for one TS and starboard-to-starboard for the other.

94

0s

PORREE IECRIESRRE . S
PRSP, S S——

SIS SIS 5 S—

b=

Fig. 5.10 Improved Solutions after Chemotaxis — 6 Solutions

5.3.6 Modifications to BFOA to Enhance Performance
5.3.6.1 Swim-Length Adapting Mechanism

The choice of move-length (or swim-length) has been recognized to be the most decisive
factor controlling the performance of BFOA.

A long swim allows the bacterium to move quickly toward the area around the optima (local
or global). However, the further use of long swim results in the fluctuation of the around an
optima. A short move, on the other hand, enables a slow but steady approach toward the optima.
Another shorting coming of short move is that the bacterium can not jump out of the attraction
area of a local optimum. Then, many different adaptive schemes therefore have been proposed by
researchers working on the field.

In this study, a scheme of adapting the bacteria’s move-length is applied. The adapting
mechanism is as followings:

- Step 1: The move-length is initially set rather long (diong) to allow the bacterium to swim
quickly toward promising regions.

- Step 2: If the solution cost is not reduced for a certain number of consecutive chemotatic
moves, the move-length is reduced to dmedium.

- Step 3: If the move-length in step 2 fails in producing better solution for the bacterium after
a number of consecutive chemotatic moves, the move-length is further reduced to dgma.

- Step 4: If there is no quality increase after a number of consecutive moves, the swim-length
is reset back to that in Step 1.

Due to this adapting mechanism, the algorithm has its name: Adaptive-BFOA for producing
the collision-avoiding route. The mechanism allows the route searching process to approach the
optimum quickly and steadily. The swim-length reset action in Step 4 enables the bacterium to
try solutions in other area of the search-space rather than being trapped in the current local optimum.

3.3.6.2 Cell to Cell Communicating Mechanism

The aim of this cell to cell (or bacterium to bacterium) communicating mechanism is to allow
the bacteria to coordinate in a way that improves the efficiency of the searching process.

In this study, the distance between 2 bacteria (solutions) is defined by:

95

S1=[pl(D), p1(2), ..., p1(i), ..., pI(N)]
S2 = [p2Q1), p2(2),..., p2(i),..., p2(N)]
then

dgs, = \/2 (p1() - p2())’

The neighbors of a bacterium are bacteria which are located with in a limit distance from the
former bacterium. It is desirable for the searching algorithm that two or more bacteria do not
assume the same position or too close from each other, so that the local search is more effective.
Then, an additional cost (dQ in Fig. 5.9) is used by the bacterium to decide whether it should
move from its current solution (S) to a new solution (S”). dQ is calculated as followings:

Let
{S,,S,.... Sy, } to be the set of neighbor bacteria of S
{d, d,..,d, }are distances from S to its neighbor bacteria

{0,,0,..,0,}arerouted, d,,..., d,, } are costs coresponding to S,

Define
M dk
dQ(S) = Z _Qexpellant l_d
k=1 max
Similarly,

JO(S') = f[— Q(l—;—ﬂ

Then
dQ(S,S") =dO(S") - dO(S)
if (Qy <Qy)and (Qg <Q,(for all i =1to M)) then dQ(S,S') =0

The parameter dma denotes an expellant region (neighborhood) around a bacterium, and
Qexpeliant 1S the maximum expelling force. This communicating mechanism allows the bacteria to
scatter themselves in the area around the optimum so that the optimum can be found quickly and
bacteria are not all trapped in a local optimum.

5.3.6.3 Multi-Steps Searching Algorithm

The main deterrence of the BFOA is its poor performance in problem of high dimensionality.
The randomness in selecting a search direction (tumble) makes the bacteria’s search meticulous
and time consuming. However, the ship officer normally uses just several courses (say 4 courses)
in actual encounters at sea. Then, to improve the search speed at initial stage, it is wise to
combine the initial solutions as determined by the above process (5.3.4) with a set of reduced
initial solutions containing just 3 intermediate way-points:

96

S = [u,.‘.,u,p(i ,u,...,u,p(]),u,...,u,p(k),...,u]
where

u: undefined points

i,j,k: random integer in the range [I,N —1]

The algorithm for producing the reduced solution is principally similar to that shown in Fig.
5.7. As the solution is defined by just 3 way-points, the tumbling vector V can be limited to the
followings:

V=10,..,0v@),0,...,0,v(),0....,0,v(k),...,0]

where v(i), v(j), v(k) are chosen from the set {—— 1,01 }

The undefined components are later determined from the intermediate way-points for the
reduced solution after a number of chemotatic moves. Then, it can be treated as normal initial
solution.

A suggestion to the combination of the reduced solution and full solution is 1 to 1 ratio.

5.3.7 Overall Adaptive-BFOA for Route-Producing

This section is to summarize the procedures described earlier in the route-producing algorithm
basing on Adaptive-BFOA. For simulation studies, the algorithm is coded in VB programming
language for easy debugging and modification. Calculation speed is not the major subject of this
study, as far as the optimal route or a route very close to the optimal can be achieved in a short
period of time (around 10 seconds).

The overall route-producing algorithm can be illustrated by the following pseudo-code:

A. Initialization
Initialize_Grid(N line, N _point, D point);

For bac = 1 to Ns
Initialize_Bacterium(B(bac));
Next bac

B. Evolution

For cycles=1to N cyc
For bac = 1 to Ns
For chemo = 1 to Nc
Perform_Chemotatic Move(B(bac)),
Next chemo

If (Number_of Unsuccessful Move > N size_converted to_[large/medium/small]) then
Convert_move_length _from_[large/medium/small] to_[medium/small/large]();
Endif
Next bac

Sort_the_Bacteria_and Cost _Arrays by Ascending RouteCost(B(Ns), Q(Ns));

97

For die no = 1to Nr
If (Chemotatic Move of Bacterium_Count(B(die _no))> N _steps to_die) then (*)
Kill bacterium(B(die _no));
B(die _no)= Reprocude Bacterium(B(Ns - die_no));
Endif
Next die_no

For disperse_no = I to Nd
rand = produce random_interger()
Initialize Bacterium(B(rand));
Next disperse_no
Next cycles

C. Termination
Sort the Bacteria_and Cost Arrays by Ascending RouteCost(B(Ns), Q(Ns));
Return B(1);

Where the variables and designing parameters are defined as:

N _line: Number of lines on the grid

N _point: Number of points on a grid line

D point: Distance between points on a line

N _cyc: Number of cycles in the algorithm i.e. number of generations of the bacteria population.

Ns: Number of bacteria in the population

B(Ns): Bacteria population (bacteria set)

O(Ns): Cost array of the bacteria

Nr: Number of bacteria died/reproduced in a cycle

Nd: Number of bacteria eliminated/dispersed in a cycle

Nc: Number of chemotatic steps of a bacterium in a cycle

N size_converted to_large: Number of unsuccessful chemotatic move before converting the
move-length from small to large

N size converted to medium: Number of unsuccessful chemotatic move before converting
the move-length from large to medium

N size_converted to small: Number of unsuccessful chemotatic move before converting the
move-length from medium to small

N steps to_die: Number of chemotatic moves of bacteria before maturing

Note here that a bacterium dies ONLY IF it has matured (*). This prevents the algorithm from
removing bacteria which are actually lying in the attractive region of the global optimal but have
not yet explored the area thoroughly enough to produce good solutions.

3.4 Simulation Studies

The Adaptive Bacterial Foraging Optimization Algorithm (BFOA) is applied for a set of
scenarios to verify its efficiency. The scenarios are the same as those used in simulation studies
with route-producing algorithms by Dynamic Programming (Chapter 3) and Ant Colony
Optimization Algorithm (ACO — Chapter 4) so as to enable a cross checks of the algorithm
validity and to reveal its advantages as well as disadvantages. The same OS model with that

98

described Section 3.3.3 (Chapter 3) is also used in this chapter. The details of own ship and target
positions, together with their speeds and courses over ground are therefore not listed here to
avoid repetition. This information can be found in corresponding section in Chapter 3.

The Adaptive-BFOA is designed with a population of 100 bacteria (Ns). The swim-lengths are
chosen to be 6 points, 3 points and 1 point respectively for diong, dmedium, dsmaii- The neighborhood
distance is 6 points. Number of bacteria dispersed after each generation is 10 (Nd), the number of
bacteria reproduced/eliminated is 5 (Nr).

In all the scenarios, the solutions accompanying with the 70 healthiest bacteria of the
population are shown for algorithms with 3, 6 and 9 generations (cycles) respectively. Then, the
best route that the bacteria swarm has found for the algorithms with different number of cycles,
starting from 3 cycles, are depicted, with the best route found by the algorithm of 9 cycles drawn
in red.

99

5.4.1 Scenario 1

J > . /
$ N
) AN
N sl
e i = : i =)
= ‘ e
\ <= h: N «
s Qs
Fig. 5.11a Bacteria Positions after 3 Cycles Fig. 5.11b Bacteria Positions after 6 Cycles
6 N Ny
N N
\\ \ 4 \\
L R
‘\ \,(= ‘\)(=
I /] . > -
N />(i b N />(
N o =] Ry N <)
NATN R
8 DK< X

Fig. 5.11¢ Bacteria Positions after 9 Cycles Fig. 5.11d Bac Best Positions in Each Cycles

Comments on the scenario:

- The search is initially scattered around the grid (Fig. 5.11a), thus the whole solution-space is
explored thoroughly.

- The swarm converges promptly to a region of good collision-avoiding strategy.

- Regulations of the road are properly satisfied (turning to starboard, passing starboard
crossing targets on OS port side).

- Best solutions found by algorithms with more than 3 generations are very close to the
optimal solution (Fig. 5.11d). The optimal strategy is more appropriate than that produced in
3.5.1 and similar to that of 4.4.2.

- Convergence property is better than that of ACO algorithm.

(See 3.5.1 and 4.4.1 for result comparisons)

100

5.4.2 Scenario 2

>
i'\\

as 0s ib Q

Fig. 5.12a Bacteria Positions after 3 Cycles Fig. 5.12b Bacteria Positions after 6 Cycles

g h B \ &
A R

Ef)(= B\\\y =

DS

=
\
=

A

L

fJ
\/

%
A

Fig. 5.12c Bacteria Positions after 9 Cycles Fig. 5.12d Bac Best Positions in Each Cycles

Comments on the scenario:

- The search is initially scattered around the grid (Fig. 5.12a), then the whole solution-space is
explored thoroughly.

- The swarm converges promptly to a region of good collision-avoiding strategy.

- Regulations of the road are properly satisfied (turning to starboard, passing starboard
crossing targets on OS port, passing head-on target on port).

- Best solutions found by algorithms with more than 3 generations are very close to the
optimal solution (Fig. 5.12d). The optimal strategy is more appropriate than that produced in
3.5.2 and similar to that of 4.4.2.

- Convergence property is better than that of ACO algorithm.

(See 3.5.2 and 4.4.2 for result comparisons)

101

5.4.3 Scenario 3

-0S. S N %
i |

Fig. 5.13a Bacteria Positions after 3 Cycles Fig. 5.13b Bacteria Positions after 6 Cycles

>/
< X
= //\\ \ = 7 //\\ \
N G vaN ol
N = i ¥ =
\ !\/ \
A N A,
N N

Fig. 5.13¢ Bacteria Positions after 9 Cycles Fig. 5.13d Bac Best Positions in Each Cycles

Comments on the scenario:

- The search is initially scattered around the grid (Fig. 5.13a)

- The swarm first converges to 2 different regions as the route qualities relating to these 2
regions are more or less similar, and then focuses on the region of OS turning to port.

- Regulations of the road are satisfied to an acceptable extent. Although OS alters course to
starboard and therefore passing starboard crossing targets on starboard, it does not cause any
misunderstanding from TS side. Even if the targets actually judge the case wrongly, it is still safe
as far as they follow rules of the road.

- Best solutions found by algorithms with more than 3 generations are very close to the
optimal solution (Fig. 5.13d) and are similar to those produced by ACO (in 4.4.3).

- Convergence property is slightly better than that of ACO algorithm.

(See 3.5.3 and 4.4.3 for result comparisons)

102

5.4.4 Scenario 4

LN TPl
N N \\/ N
NAN
= i =
% \\
sl
.

Fig. 5.14a Bacteria Positions after 3 Cycles Fig. 5.14b Bacteria Positions after 6 Cycles

FT&
y,

SRR el e

Fig. 5.14c Bacteria Positions after 9 Cycles Fig. 5.14d Bac Best Positions in Each Cycles

Comments on the scenario:

- The swarm converges promptly to a region of good collision-avoiding strategy because the
route quality corresponding to this region is far better than those of other regions.

- Regulations of the road are properly satisfied (turning to starboard, passing starboard
crossing targets on OS port as far as the situation allows).

- Best solutions found by algorithms with more than 3 generations are very close to the
optimal solution (Fig. 5.14d) and are similar to those produced by ACO (in 4.4.4)

(See 3.5.4 and 4.4.4 for result comparisons)

103

5.4.5 Scenario 5

N ! b ’<
SRRRRY2auus ENRRENRRV 8!
SN ~ N N

/§K§ i L= “\X\)\ & =]
N)</ A._;\\\% ¢
. oS
lv fol:

Fig. 5.15a Bacteria Positions after 3 Cycles Fig. 5.15b Bacteria Positions after 6 Cycles

I 0 X

i el 1R)

\)‘\ — . \}i\ |
A\ /" = h \>(=

N\,

N g\ BRN
Pt T

O (@)

U

Fig. 5.15¢ Bacteria Positions after 9 Cycles Fig. 5.15d Bac Best Positions in Each Cycles

Comments on the scenario:

- The search is initially scattered around the grid (Fig. 5.15a), then the whole solution-space is
explored thoroughly.

- The swarm converges promptly to a region of good collision-avoiding strategy.

- Regulations of the road are perfectly satisfied.

- Best solutions found almost coincide with the optimal solution (Fig. 5.15d). The optimal
strategy is more appropriate than that produced in 3.5.5 and is similar to that produced by ACO
(in4.4.5).

- Convergence property is slightly better than that of ACO algorithm.

(See 3.5.5 and 4.4.5 for result comparisons)

104

5.4.6 Scenario 6

Hiin SNG4
LHs N
\\\ \ oot R MU o
N = N —
N
A N
as & ds \
N N

: e

Fig. 5.16a Bacteria Positions after 3 Cycles Fig. 5.16b Bacteria Positions after 6 Cycles

& 54 /
JIER ML INOK
=l \\
< ;
! \\\\ X = \\\y <=
q s J N
\\\ .,.\\\

Fig. 5.16¢ Bacteria Positions after 9 Cycles Fig. 5.16d Bac Best Positions in Each Cycles

Like that of section 4.4.6, the scenario serves to prove the resistibility and the robustness of
the algorithm for different encountering cases at sea.

- The algorithm can still produce a collision-avoiding route while the algorithm using
Dynamic Programming fails.

- The swarm converges promptly to a region of good collision-avoiding strategy.

- The strategy is acceptable, from the rule application point of view.

- Best solutions found by algorithms with more than 3 generations are very close to the
optimal solution (Fig. 5.16d) and are similar to those produced by ACO (in 4.4.6).

- Convergence property is slightly better than that of ACO algorithm.

(See 3.5.6 and 4.4.6 for result comparisons).

105

5.6 Conclusions

In this chapter, an algorithm for producing the collision-avoiding route has been proposed. It
is an Adaptive Bacteria Foraging Optimization Algorithm. The algorithm is based on assumption
that TS do not change their courses and speeds, and the collision risk is avoided by OS action
alone. Using Adaptive-BFOA, the solution is searched on a grid constructed from environmental
constraints and other parameters decided by the ship officer.

To improve the efficiency of the searching algorithm, several modifications have been applied
to classical algorithms suggested by other authors working on BFOA, taking into consideration
the nature of marine traffic:

- A move-length adapting algorithm is suggested to improve the convergence speed and
capacity of the bacteria to jump out of attractive region of local optimum.

- Bacteria are not replaced (die) before a certain number of chemotatic moves have been tried
for them. The algorithm therefore does not miss a promising region.

The proposed BFOA is efficient for route-producing purpose. By the use of the route cost
definition, the rules of the road can be properly taken into account, like that in the ACO algorithm.
The solution is available within an acceptable time limit. Then, it is possible to apply in real time.

The Adaptive-BFOA overcomes the limitation of ACO algorithm in the aspect that the
algorithm is much less sensitive to the choice of parameters. Simulations have also shown that
the Adaptive-BFOA is very robust and reliable, given the diversity of marine traffic environment.

References

1. A. Biswas, S. Dasgupta et al., "Synergy of PSO and Bacterial Foraging Optimization-A
Comparative Study on Numerical Benchmarks", available at
"http://www.softcomputing.net/hais07 2.pdf"

2. C. Ying et al.,, "A Fast Bacterial Swarming Algorithm for high-dimensional function
optimization”, IEEE World Congress on Computational Intelligence, pp. 3135-3140,
2008

3. D. H. Kim, A. Abraham, and J. H. Cho, "A hybrid genetic algorithm and bacterial
foraging approach for global optimization", Information Sciences, 177, pp.3918-3937,
2007

4, H. Chen, Y. Zhu, K. Hu, "Adaptive Bacterial Foraging Optimization", available at
"http://www.hindawi.com/journals/aaa/2011/108269/"

5. H. Shen et al.,, "Bacterial Foraging Optimization Algorithm with Particle Swarm
Optimization Strategy for Global Numerical Optimization", Available at
"http://www.deepdyve.com/Ip/association-for-computing-machinery/bacterial-foraging-
optimization-algorithm-with-particle-swarm-FtBBdfh3gD"

6. K. M. Passino, "Biomimicry of bacterial foraging for distributed optimization and
control", IEEE Control Systems Magazine, Vol. 22, pp.52—67, 2002

7. M. Tripathy, S. Mishra, et al., “Transmission loss reduction based on FACTS and
bacteria foraging algorithm”, Proceedings of the 9th International Conference on Parallel
Problem Solving from Nature (PPSN '06), Vol. 4193 , pp. 222-231, 2006

8. S.Mishra, “A hybrid least square-fuzzy bacterial foraging strategy for harmonic

106

10.

11.

estimation,” IEEE Transactions on Evolutionary Computation, Vol. 9, No. 1, pp. 61-73,
2005

S. Panikhom, N. Sarasiri, S. Sujitjorn, "Hybrid Bacterial Foraging and Tabu Search
Optimization (BTSO) Algorithms for Lyapunov’s Stability Analysis of Nonlinear
Systems", International Journal of Mathematics and Computers in Simulation, Vol. 4,
2010

W. J. Tang, Q. H. Wu, and J. R. Saunders, "Bacterial foraging algorithm for dynamic
environments”, [EEE Congress on Evolutionary Computation, pp.1324-1330, 2006
Y. Liu and K. M. Passino, "Biomimicry of social foraging bacteria for distributed
optimization: Models, principles, and emergent behaviors”, Journal of Optimization
Theory and Applications, Vol. 115, pp. 603—-628, 2002.

107

Chapter 6 Collision Avoiding Strategy in Critical Cases by Game Theory

6.1 Introduction

In chapter 3, 4 and 5, three different algorithms have been proposed to produce collision-
avoiding route for the Own Ship (OS) with the assumption that target ships (TS) must not take
adverse actions and there is ample time for OS to perform the necessary maneuver properly.

However, the marine traffic condition at sea is not always such cooperative. Due to various
reasons, TS might misapprehend OS strategy and its counter-action is therefore inappropriate, i.e.
the TS action might cause OS and TS to be in a highly risky encounter. The situation is extremely
dangerous when the ships are in congested waters as the passing distances between them are
usually small.

If TS intention is clear, the earlier route generating algorithms may be employed to provide
the optimal collision-avoiding strategy for OS. However, the degree of danger increases sharply
if the intention of the nearby target ships is doubtful or if these ships change courses abruptly and
unexpectedly in a manner that may result in an imminent collision. Unfortunately, at this critical
point the available route-producing algorithms do reveal their shortage. In this study, these cases
are referred to as Critical Cases (see Fig. 6.1) for which the last-minute collision-avoiding
strategies must be considered.

In critical cases, the following vitally important points must be noted:

- Firstly, the time allowed for judging the cases and taking actions is limited due to the small
remaining distance between OS and TS.

- Secondly, the TS intention, i.e. TS intended course, is unclear.

Then, for the safety of the OS, the ship officer

should prepare for the worst scenario, i.e. the =
scenario in which TS is trying to collide with the 7 i e
OS. This is exactly what happens in a pursuit- [
evasion game in which a player assuming the role T
of the pursuer exploits a strategy to catch another o o

player, namely the evader. The evader, on the other o B %
hand, tries to avoid the collision (or the capture). RS

Motivated by this perception, the chapter is a o Unexpected Target
study aiming at providing the ship officer with a o Course Change
decision supporting means in the critical cases. This g
is a supplement to the route generating algorithms o
proposed in previous chapters in an effort to provide o
the OS officer with a recommended -collision- °
avoiding decision in all navigational conditions : Fif
from a departure point to the destination. The Fig. 6.1 Critical Case
decision must ensure that the passage of the OS is
safe and economic, and must be generated automatically.

The overall idea behind this collision-avoiding support system for critical case is described in
Fig. 6.2. TS motions can be acquired by various observing aids, including the AIS receiver,
Radar/ARPA or a camera system. It should be noted here that unlike the route generating
algorithms for common encountering situations (at longer distances), camera images can be used

108

in the algorithm of this collision-avoiding support for critical case. Because of the small
remaining distances between vessels involving in the case, TS is in the effective range of the
observation system based on cameras. Although the accuracy of the observation by camera is less
than that provided by either AIS or Radar, camera may enable the detection and tracking of
objects that do not possess an operating AIS receiver or that can not be seen on the Radar screen.

TS information and the OS planned route are used to assess the risk of collision. If collision
risk arises due to a hasty and unexpected maneuver of the TS; and furthermore, the collision is
imminent, the “critical case collision avoidance” module will be activated to generate a collision-
avoiding strategy for the OS. The output of this collision-avoidance block is a sequence of rudder
commands to navigate OS out of dangers while still, as far as possible, maintain a small deviation
from the pre-planned route. ‘

On the other hand, if the situation is NOT critical (i.e. collision is not imminent and/or there is
no uncertainty in target maneuver), the normal route-generating algorithms may be activated to
produce a collision-avoiding path for the OS. Then, the block for route-tracking control is to
realize this path by sending the control system of the ship a suitable rudder command sequence.

AIS Receiver Radar/ARPA Camera

Target Information

Ship

«— — =/ 08 Current Position
and strategy

DT pe—

Normal Route
Generator
Route Tracking Critical Case
Control Collision Avoidance

Rudder command

Fig. 6.2 System Structure Over View

Applying the Game Theory, the generation of collision-avoiding strategy for OS in critical
cases is achieved by solving the following 2 tasks:

- Modeling the collision-avoiding problem as a pursuit-evasion game, with each ship having
its individual goal (payoff function). The payoffs are defined so as to express the preferences of
the ships in such cases.

- Solving the above game for the optimal OS strategy. As the problem is highly nonlinear, an
adaptive Bacterial Foraging Optimization Algorithm (BFOA) is applied to seek the solution of
the game approximately, i.e. to search for a sequence of rudder commands for the OS that
maximizes its payoff function.

109

The chapter will be arranged as followings: Section 6.2 gives a brief introduction of the Game
Theory in general and the pursuit-evasion game in particular. The modeling of the collision-
avoiding problem in critical cases as a pursuit-evasion game is the subject of Section 6.3. In
Section 6.4, an Adaptive-BFOA will be proposed to solve the optimization problem arising in the
game. Then, some simulation results will be presented in Section 6.5. The conclusions of the
chapter will be summarized in Section 6.6.

It should be noted that the algorithm is constructed with the assumption that the OS will not
change its engine state while taking maneuver. The rudder is therefore the ONLY actuator.

6.2 Game Theory and the Pursuit-Evasion Game
6.2.1 Definitions and Classifications

Game theory is the branch of decision theory that concerns with the interdependent decisions.
It typically involves several participants, each with her individual objective. The objectives of the
participants may be conflicting and therefore the scenario is competitive.

In everyday life sense, a game is commonly defined as a competitive activity in which the
players compete with each other according to a set of rules.

Then, the competitive situations mentioned above can be naturally considered games and the
participants are referred to as the players. In fact, it is not even necessary that the situation is
competitive; the game theory hence simply deals with any scenarios in which the action of a
player depends on actions of other players. Game theory finds its application in a wide range of
real life problems such as firms competing for business, political candidates competing for votes,
animals fighting over the prey etc.

Like other sciences, game theory consists of a collection of models where a model is simply
an abstraction used to explain one’s observations and experiences about the nature or social
phenomena. A component of many models in game theory is the theory of rational choice which
states that [4]:

The action chosen by a decision-maker is at least as good, according to her preferences, as
every other available action.

where an action is a possible decision the decision-maker can take, given her current state and
the situation she is facing.

The 2 general types of game concerned in our study are the Strategic Game and the Extensive
Game (or Extensive Form Game).

According to Osborne [4], a Strategic Game is a model of interacting decision makers. The
decision makers are the players of the game. Each player has a set of possible actions. The model
realizes the interaction between the players by allowing each player to be affected not only by her
own action but by all other players’ actions as well. Then, a strategic game consists of:

- A set of players

- For each player, a set of actions

- For each player, preferences over the set of action profiles

Unlike the strategic games, an Extensive Game enables the explicit representation of other
aspects of the competing process such as the sequence of possible actions of the players, the
players’ choices at decision-points, the information a player has about other players at these
points, etc. In its simplest instance, an extensive game can be seen as the spread of a strategic
game with time. The following terms are commonly used in an extensive game:

- A move: a player’s action at certain decision-point

- A strategy: a sequence of moves taken by a player

110

- The optimal strategy of a player: the strategy that produces the best outcome for the player.
However, the separating boundary between the above 2 game types is unclear. It has been
stated that every extensive game has its equivalent strategic game form.

Basing on their rules, games can be classified into one of the following 2 kinds:

- Sequential Game: In a sequential game, the players make moves alternatively and therefore
one player may have advantage of the knowledge (or information), i.e. her i" move can be
decided with the information of the i™ move of the other player that has been done.

- Simultaneous Game: In a simultaneous game, players make their moves simultaneously and
thus are fair in terms of situation perception.

Basing on the relation between players’ payoffs and their contributions to the total outcome of
the game, games can be classified as either cooperative or non-cooperative.

- Cooperative game: A game is cooperative if the players in the game can be<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>