
TASK DRIVEN EXTENDED FUNCTIONS OF MULTIPLE INSTANCES

(TD-eFUMI)

A Thesis presented to

the Faculty of the Graduate School

at the University of Missouri

In Partial Ful�llment

of the Requirements for the Degree

Master of Science

by

MATTHEW COOK

Dr. Alina Zare, Thesis Supervisor

DEC 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Missouri: MOspace

https://core.ac.uk/display/75908301?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

© Copyright by Matthew Cook 2015

All Rights Reserved

The undersigned, appointed by the Dean of the Graduate School, have examined the

thesis entitled:

TASK DRIVEN EXTENDED FUNCTIONS OF MULTIPLE INSTANCES

(TD-eFUMI)

presented by Matthew Cook,

a candidate for the degree of Master of Science and hereby certify that, in their opinion, it

is worthy of acceptance.

Dr. Alina Zare

Dr. Dominic Ho

Dr. Mihail Popescu

ACKNOWLEDGMENTS

I would like to thank my adviser, Dr. Alina Zare, for all of her invaluable guidance,

support, and encouragement during my graduate studies. Also I would like to thank the

member of my thesis committee Dr. Dominic Ho and Dr. Mihail Popescu for their help and

valuable suggestions.

Thank you to Dr. Tory Cobb of NSWC-PCD and his team for their support and insight

during my time working with them.

Additionally, thank you to all of my lab mates and in particular Changzhe Jiao, Xiaoxiao

Du, and Brendan Alvey for the valuable discussions and insight throughout my studies.

And �nally, thank you to my parents, Carolyn and Keith, and to my brother Jared for

your continuous support throughout my studies.

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . ii

LIST OF TABLES . vi

LIST OF FIGURES . vii

ABSTRACT . ix

CHAPTER

1 Introduction . 1

1.1 Dictionary Learning . 2

1.2 Problem Statement . 4

2 Literature Review . 6

2.1 Sparse Coding . 7

2.2 Dictionary Update . 9

2.3 Applications of Dictionary Learning . 12

2.4 Supervised Dictionary Learning . 13

2.5 Task-Driven Dictionary Learning . 14

2.6 Semi-Supervised Dictionary Learning . 15

2.7 Functions of Multiple Instance (FUMI) . 16

3 Proposed Method . 19

3.1 Generation of the Objective Function . 19

3.2 General Overview . 22

3.3 Derivation . 24

iii

3.4 Algorithm . 30

3.5 Parameters . 33

4 Experiments . 37

4.1 Synthetic Data . 38

4.1.1 Data Set Description . 39

4.1.2 Testing the Sparse Coder . 40

4.1.3 Breakdown Testing . 42

4.2 Metal Detector Data . 47

4.2.1 Data Set Description . 47

4.2.2 Classi�cation . 49

4.3 Sonar Data . 53

4.3.1 Data Set Description . 53

4.3.2 Classi�cation Results . 54

5 Summary and concluding remarks . 62

APPENDIX

A Glossary of Symbols . 64

B Full Derivation Details . 67

B.1 Expectation of F . 67

B.2 Closed Forms of α . 68

B.3 Gradient of F . 71

C Additional Results . 75

C.1 Sonar Data . 75

C.1.1 TD-eFUMI . 76

iv

C.1.2 TDDL . 82

C.1.3 MT-eFUMI . 88

BIBLIOGRAPHY . 92

v

LIST OF TABLES

Table Page

4.1 Sparse Coder Error . 41

4.2 Synthetic Classi�cation Performance: Varying Points in Positive Bags 44

4.3 Synthetic Classi�cation Performance: Varying Target Proportion 45

4.4 Synthetic Classi�cation Performance: Element Similarity 46

4.5 Breakdown of Target Types for Metal Detector Data 48

4.6 JOMP Prescreener Alarm Breakdown . 49

4.7 Similarity Measure for EMI Folds . 50

4.8 Sonar Alarm Class Distribution . 53

4.9 kNN Sonar Confusion Matrix . 58

4.10 TD-eFUMI Sonar Confusion Matrix . 58

4.11 MT-eFUMI Sonar Confusion Matrix . 60

4.12 TDDL Sonar Confusion Matrix . 61

vi

LIST OF FIGURES

Figure Page

1.1 The Dictionary Problem . 3

3.1 The E�ects of β . 34

4.1 Actual Dictionary for Synthetic Data . 38

4.2 Examples of Synthetic Data . 40

4.3 Visual Breakdown of Learned Synthetic Dictionary with Changing Bag Con-

�gurations . 43

4.4 ROC Curve Comparing JOMP and TD-eFUMI on WEMI Data 51

4.5 ROC Curve Comparing Dictionary Learning Methods on WEMI Data 52

4.6 Target Alarm Examples from Sonar Data . 54

4.7 Example of TD-eFUMI Learned Dictionary for Sonar Data 55

4.8 Example of TDDL Learned Dictionary for Sonar Data 56

4.9 Example of MT-eFUMI Learned Dictionary for Sonar Data 57

4.10 Sonar Pipe and Cylinder Alarm Similarity . 59

C.1 TD-eFUMI Dictionary for Non-Target Class 76

C.2 TD-eFUMI Dictionary for Block Class . 77

C.3 TD-eFUMI Dictionary for Cone Class . 78

C.4 TD-eFUMI Dictionary for Torus Class . 79

vii

C.5 TD-eFUMI Dictionary for Pipe Class . 80

C.6 TD-eFUMI Dictionary for Cylinder Class . 81

C.7 TDDL Dictionary for Non-Target Class . 82

C.8 TDDL Dictionary for Block Class . 83

C.9 TDDL Dictionary for Cone Class . 84

C.10 TDDL Dictionary for Torus Class . 85

C.11 TDDL Dictionary for Pipe Class . 86

C.12 TDDL Dictionary for Cylinder Class . 87

C.13 MT-eFUMI Dictionary for Non-Target Class 88

C.14 MT-eFUMI Dictionary for Block Class . 89

C.15 MT-eFUMI Dictionary for Cone Class . 89

C.16 MT-eFUMI Dictionary for Torus Class . 90

C.17 MT-eFUMI Dictionary for Pipe Class . 90

C.18 MT-eFUMI Dictionary for Cylinder Class . 91

viii

ABSTRACT

Dictionary learning techniques have proven to be a powerful method in the pattern

recognition literature. Recently supervised dictionary learning has been used to achieve

very good results on a number of di�erent data types and applications. However, these

supervised dictionary learning algorithms do not perform as well when the data contains a

number of mislabeled data points. They rely on accurate labels

To solve this problem, an algorithm designed to incorporate multiple instance learning

into the supervised dictionary learning framework. The proposed method combines the

Task-Driven Dictionary Learning algorithm and Extended Functions of Multiple Instances.

This new framework then allows the model deal with uncertainty in the labeling of training

data while also maintaining the high degree of discrimination available through the Task-

Driven Dictionary Learning model.

Results indicate that the proposed method, Task Driven Extended Functions of Multi-

ple Instances, can maintain a high level of discriminatory performance with high levels of

uncertainty in the labeling of training data. Test on real world wideband electromagnetic

induction and synthetic aperture sonar data also indicate that these bene�ts also help the

algorithm to outperform Task-Driven Dictionary Learning in classi�cation tasks on these

datasets.

ix

Chapter 1

Introduction

In signal processing, the term dictionary can be used to describe a collection of generic

signals, commonly called atoms, that can be combined, typically in a sparse manner, to

recreate more complex signals. These atoms function very similarly to the bricks in LEGOS,

the bricks can be combined in in�nitely many ways to create very elaborate structures, but

yet not every brick is needed for every design. This is very similar to how the dictionary

functions in signal processing, the atoms can be combined to generate far more complex

signals that what is present in the dictionary, just like how the bricks are not that complex

by themselves, but when combined they can create very complex signals or structures. Again

not every atom is needed to generate every signal, this idea of not including every atom is

called sparsity.

These dictionaries can be de�ned in two di�erent ways either learned from data or

based on a mathematical model when an appropriate model of the data is known. For the

dictionaries based o� a mathematical model the data must all follow a generic form. An

example of a method where the dictionary was de�ned based on a mathematical model is

in [1]. In this model prior to using the dictionary much research went into de�ning what the

response from targets should look like. Because of this the authors of JOMPP were then

1

able to de�ne a dictionary that followed this model in order to do target detection.

Methods where the dictionary is derived from a mathematical model however have one

large drawback, the dictionary is created using assumptions about the data. Therefore,

the dictionary may not describe the data or provide the best discriminating information if

the model is incorrect. For this reason methods to learn dictionaries from data have been

created. Learning the dictionary from the data alleviates the problem of having to know

ahead of time what the data will look like.

1.1 Dictionary Learning

Dictionary learning, as mentioned before, is a method of learning how to recreate a data set

using a much smaller set of building blocks called atoms [2]. There are numerous methods

available that make this possible, several of which will be discussed later on. Many of these

methods follow an unsupervised learning approach to learning the dictionaries which means

that the atoms that are learned are only a�ected by the data itself and that there are no

labels that tell the algorithm which signal from the data set uses a speci�c atom in the

dictionary [3]. There are, however, methods that do incorporate supervised learning they

will be detailed later.

In the unsupervised form, dictionary learning has become a popular tool in signal and

image processing for its ability to extract discriminatory features from a data set. One of

the biggest advantages of dictionary learning methods is that since they require so much

data in order to train, often the atoms themselves will have little to no noise because it will

cancel out in the training process [4]. Then when the learned dictionary is used to recreate

the original data the reconstructed data will actually have less noise than the original data

while still maintaining all of the details [5], [6].

Dictionary learning is typically an unsupervised method to learn a set of fundamental

building blocks for a set of signals that can then be used to recreate the input signals [2]. In

2

general dictionary learning corresponds to the problem of solving the optimization problem

arg min
α,D

||x−Dα||22, (1.1)

where x is a set of signals of size L× 1,L is the number of features, D is a L×K dictionary

with K atoms, α is K × 1 and is the sparse weight vector that determines how to combine

the elements of the dictionary, ‖.‖22 is the squared L2-norm, and the product of D and α is

computed via matrix multiplication.

The dictionary learning problem can be seen graphically in Figure 1.1 for the case where

both D and α are already known. In the �gure it is assumed that there is some sparsity

constraint on the columns of α(x,D), which are the sparse weights of x. These constraints

will be discussed in more detail later.

Figure 1.1: Illustration of how a dictionary is used to recreate signals. X is the actual data,
the dictionary D is a collection of atoms that contain basic signatures of the data, and A is
the matrix of all sparse pro�les, α, that select which elements of the dictionary are needed
to recreate the corresponding signal in X.

3

1.2 Problem Statement

Dictionary Learning can also be extended so that it can be used in supervised learning

methods as in [7]. However much like any other supervised learning problem, the training

data must be labeled consistently for the algorithm to learn meaningful information from

the data. There are some supervised dictionary learning algorithms that can handle missing

data label, [8] and even others that can handle ambiguously labeled data, data points with

multiple assigned classes, [9]. However, even in these methods the data that is labeled must

be correct, and in the other case the actual class label must exist in the list of possible class

labels.

Another way to look at the dictionary learning problem is through multiple instance

learning algorithms. In multiple instance learning the true labels of a data point are not

necessarily known, and instead groups of data points, called bags, have known labels. In the

two class classi�cation problem the bags are labeled target if there exists any target points

in the bag and not target if the bag consists of purely non-target points. The goal of these

algorithms is then to learn a model that can classify new test points into the target or not

target classes, [10]. An example of when this is helpful is when the task is to do object

level detection and the ground truth is given for the entire object and not each individual

pixel. For generating labels from the ground truth a typical method is to label all points

within a given radius as target and use these labels to train, even though this will label

many non-target points as target. The multiple instance learning algorithm will be able

to di�erentiate between these points and will treat the non-target points labeled as targets

as non-targets, while a standard supervised learning algorithm will group all of the data

together and treat it as target data which can severely hurt the results.

In particular the Extended Functions of Multiple Instances algorithm in [11] is a multi-

ple instance learning algorithm that learns a dictionary that consists of one target element

and many non-target elements and an extension to this algorithm is discussed in [12] that

4

adds the ability to handle multiple target elements. These dictionary learning methods help

overcome inconsistently labeled data which is a big problem in the supervised dictionary

learning algorithms as mentioned before. However, in this implementation of multiple in-

stance learning the label is used as a way to determine only which part of the dictionary is

being updated and not directly in the classi�cation function as is done in the Task Driven

Dictionary Learning algorithm in [7], these algorithms will be explained in much greater

detail in Sections 2.5 and 2.7. Having the classi�er built into the Task Driven Dictionary

Learning algorithm allows it to learn a more discriminative dictionary then the Extended

Functions of Multiple Instances even though the latter will be able to overcome inconsisten-

cies in the training data much better.

There is a gap that has not been thoroughly explored, a multiple instance learning

algorithm that also includes the discriminatory boosting provided via a supervised dictionary

learning model. In this thesis, the proposed method to bridge this gap is to merge the Task

Driven Dictionary Learning algorithm in [7] with the Multi Target Extended Functions

of Multiple Instances algorithm [12] thereby combining the bene�ts of both algorithms.

The end result will be a multiple instance dictionary learning algorithm that will learn a

highly discriminative dictionary from data that does not have precise pixel-wise ground truth

information available.

5

Chapter 2

Literature Review

Dictionary learning algorithms encompass a very broad and complex group of learning meth-

ods even though most of the algorithms are based on small modi�cations of Equation 1.1.

However, most dictionary learning algorithms encompass a sparse coding step and a dic-

tionary update step. The sparse coding step decomposes the original signal into a sparse

set of weights while the dictionary update step uses these sparse weights to compute a new

dictionary. In this chapter, we will review these steps.

Once the basic structure of dictionary learning algorithms is known it is time to look

at what these algorithms can do. Dictionary learning has been used in many applications

including signal denoising [4], feature extraction [13], and dimensionality reduction [14] just

to name a few. In many of these applications the sparse weights are exploited as feature

vectors. Also they have incorporated the classi�cation model directly into the dictionary

learning model. The advantage of learning the classi�cation model and the dictionary simul-

taneously is that the classi�cation performance will have an e�ect on the dictionary instead

of only the reconstruction performance.

From the supervised models another form of dictionary learning can be used that re-

laxes the requirement for completely labeled data, semi-supervised algorithms. These semi-

6

supervised learning algorithms can be used in cases where not all of the data is labeled or

when each data point has multiple labels.

The idea of labeled data can then be relaxed even further to where the labels are no

longer point-wise and instead the labels apply to a group of points. Learning from this type

of labeling can be exploited through multiple instance learning algorithms. In these mostly

supervised algorithms, the labels are used only as an estimate for the true class label and

the true labels do not directly a�ect the dictionaries.

2.1 Sparse Coding

Sparse coding is the �rst step in nearly all dictionary learning algorithms and the intent is

to �nd the sparse combination of dictionary atoms that minimizes the error between the

reconstruction and the actual signal. In this step, the dictionary is assumed to be known and

�xed while the sparse weights are unknown. The sparse weights are found by minimizing:

arg min
α

1

2
‖x−Dα‖22 + S, (2.1)

where x is the input data, D is a known dictionary, α is the sparse weights that are

being learned, Dα is the reconstruction of x using D and α, and S is a collection of

sparsity promoting terms for the sparse weights α. There are several di�erent ways to go

about solving this minimization problem. Three of the most common methods are Iterative

Thresholding (IT), Matching Pursuits (MP), and Basis Pursuits (BP). The main di�erence

in these methods is what sparsity constraints they use and many of the di�erent sparsity

constraints also require di�erent methods in order to solve for the sparse weights, as will be

shown shortly.

The IT algorithms [15] have a sparsity term of the form λ‖α∗‖1 which is the L1 norm.

These algorithms then set out to solve the optimization problem using a slight modi�cation

7

to gradient descent. The modi�cation is that the sparsity term, λ‖α∗‖1, is not included

as part of the gradient. In these algorithms the sparse weights are allowed to be negative

which means that the L1 norm is non di�erentiable. Instead the sparsity is enforced on

each iteration by thresholding the sparse weights after they have been updated via gradient

descent. The update equation for the IT algorithms sparse coders is

ai+1 = Tλ
(
αi + ρ(x−Dα)

)
(2.2)

where

Tλ(α) =

αk, |αk| ≥ λ

0, |αk| < λ

, ∀αk ∈ α (2.3)

when hard thresholding is being used, Iterative Hard Thresholding Algorithm (IHTA), and

Tλ(α) =

αk − sign(αk)λ, |αk| ≥ λ

0, |αk| < λ

, ∀αk ∈ α (2.4)

when soft thresholding, Iterative Soft Thresholding Algorithm (ISTA), is being used.

The MP algorithms typically use a sparsity term of the form ‖α∗‖0, which is the L0

pseudonorm that counts the number of nonzero entries in a vector. In this case, the sparsity

term is not added to the general equation and is instead treated as a constraint similar to

‖α‖0 ≤ C. Since this sparsity term is not well de�ned through derivatives, the solution to the

MP algorithms do not involve di�erentiation, which tends to make them faster than the other

approaches. One speci�c example and probably the most commonly used MP algorithm is

the Orthogonal Matching Pursuits (OMP) algorithm in [16]. In general the OMP algorithm

works by selecting a new dicitonary atom, by �nding the index that maximizes the inner

product of the dictionary and the input data, 〈D,x〉, and adding the index to the active

8

list then directly computing the sparse weights for the active atoms via

α∗act = (Dᵀ
actDact)

−1Dᵀ
actx, (2.5)

with the remaining non-active elements of α being set to zero. Equation 2.5 is the solution

to Equation 2.1 if there are no sparsity constraints. These steps are then repeated until

either the residual error, ‖x −Dα‖22 falls below a set threshold or the number of chosen

elements reaches C.

The �nal method discussed for sparse coding are the BP algorithms. These methods

use the L1 norm, just as the IT methods do, but they can also combine this with the L2

norm as is done in [17] to form a sparsity promoting term of the form λ1‖α‖1 + 1
2λ2‖α‖22.

These methods require much more sophisticated methods to solve them. One example of an

a solution to these problems is the algorithm presented in [18], the Least Angle Regression

(LARS) model. The LARS algorithm is a method that generates a linear regression model

by adding predictors to the model one at a time. These methods typically are more accurate

than the MP family of algorithms but they are also considered to be slower.

2.2 Dictionary Update

The next step after having found the sparse pro�les is to update the dictionary to reduce

the error based on the current estimates of the pro�les. The simplest method is the Method

of Optimal Directions (MOD) in [19]. In this method the dictionary is updated as

Di = XAᵀ
n−1(Ai−1A

ᵀ
i−1)−1, (2.6)

where X is the matrix of all input signals, A is the matrix of all the computed sparse

pro�les α, and the subscript i indicates the current iteration. This is the direct solution

9

of the problem X = DA when solving for D when the other variables are known and it

simply utilizes the pseudo-inverse of A.

Another more commonly used dictionary update algorithm is the K-Singular Value De-

composition (K-SVD) algorithm [20]. This method is a direct generalization of the k-means

algorithm where the constraints that only one center can be chosen and the sum of the

elements is one are dropped, leaving the objective function as

‖X −DA‖2F subject to ∀n‖αn‖0 ≤ C, (2.7)

where X is the matrix of all data points and A is the matrix of all the sparse weights. To

perform the updates, Equation 2.7 is rewritten to pull the error term out;

‖X −DA‖2F =

∥∥∥∥∥X −
K∑
k=1

dkak

∥∥∥∥∥
2

F

(2.8)

=

∥∥∥∥∥∥
X − K∑

k 6=k0

dkak

− dk0ak0
∥∥∥∥∥∥

2

F

(2.9)

= ‖Ek0 − dk0ak0‖
2
F (2.10)

where ak is the kth row of the matrix A, i.e. all of the weights corresponding to the kth

dictionary element. At this point if this was k-means minimizing Equation 2.10 would result

in computing the mean of the error term Ek0 over the samples. Doing this same operation

here results in a solution that does not take into account the sparsity of the variable a. Since

the sparsity of a is known Equation 2.10 can be rewritten as

‖X −DA‖2F =
∥∥EΛ

k0 − dk0a
Λ
k0

∥∥2

F
(2.11)

using only the active (non-zero), indicated by a superscript Λ, elements of a so that only

the input signals in which dk0 is active partake in the update. Instead of using the mean

10

to solve Equation 2.11 the K-SVD algorithm calls for using Singular Value Decomposition

(SVD) [21] to solve for the new dictionary element. In SVD, a matrix X is said to be equal

to UΣV ᵀ, where the diagonal entries of Σ are the singular values of the matrix X and U

and V are respectively the left-/right-singular vectors for the singular values on the diagonal

of Σ. For the K-SVD algorithm the �rst column of the matrix U is the new dictionary atom

dk0 .

With this method each atom is updated one at a time in an iterative manner. This

dictionary update method has been used extensively in [22], [23], [24], [4], and [25] and has

shown good results.

Yet another method for updating the dictionary is to use stochastic or online gradient

descent [26]. This method di�ers from both of the previous two methods in that the previous

dictionary is actually used in the update to the new dictionary. The dictionary update in

this method is of the form

Di = Di−1 −∇DF (x,Di−1), (2.12)

where Di is the new dictionary, Di−1 is the previous iteration's dictionary, and F (x,D) is

the objective function. This method is similar to the MOD update since it also updates

the entire dictionary at one time. However, unlike the MOD method, instead of rede�ning

the entire dictionary each iteration when gradient descent is used the dictionary is slowly

adjusted in order to achieve a better �t to the data. A gradient descent dictionary update

has been shown to work well in [27], [28], and [29].

An extension that can be used for the both the KSVD and Gradient Descent dictionary

update methods is using a structured dictionary, or a dictionary whose atoms take on speci�c

functions. In these models, the dictionary is not updated directly but instead the parameters

that de�ne the dictionary atoms are updated to better �t the data. This method has been

used in [30], [31], and [32] to learn parametric dictionaries for speci�c types of signals.

11

2.3 Applications of Dictionary Learning

As mentioned earlier there are many applications for dictionary learning. The �rst applica-

tion to be discussed is the use of dictionary learning as a denoising algorithm. This appli-

cation can be for many applications including image denoising [33] or signal processing [34].

The dictionary learning framework works very well in denoising applications because the

dictionaries can only learn patterns that appear many times in multiple data points. Since

noise is assumed to be random, it is di�cult for the dictionary to adapt and learn the noise

and instead learns the underlying signal. Denoising can then be implemented by simply re-

constructing the original data using the dictionary, which will give a very low error estimate

to the original data without any noise.

Another application of dictionary learning is as a method to learn discriminative features

that can be used to classify data. When given a data set and the goal is to classify the

data, the �rst step is usually to �nd a set of features that can be used to classify the

data. This means that the features need to discriminatory, coming up with features that

are discriminatory is sometimes a very di�cult task. Dictionary learning can be used to

de�ne a new feature space for classi�cation as was done in [35] and [36]. When used in

this sense, the dictionary elements are analogous to the feature de�nitions in the original

feature space, and the sparse weights are used as the features in the new feature space. This

new feature space will contain features that may lead to better classi�cation because when

a group of signals are very similar in the original feature space they will have very similar

sparse weights.

An extension to the feature learning capability of dictionary learning is the ability to

do dimensionality reduction. This application is a more constrained take on the feature

extraction technique previously discussed in that the number of dictionary elements is less

than the dimensionality of the original data. This methodology, as described in [37] and [14],

is useful because the dictionary contains features that allow the data to be reconstructed

12

with very low error. In this application the dictionary is being used to learn a smaller

number of features that can still reconstruct the data and provide discriminatory ability as

was discussed previously.

2.4 Supervised Dictionary Learning

The next logical progression after using the sparse pro�les as features for a supervised

learning algorithm is to include the supervision directly into the dictionary learning model.

In this way, the dictionaries learned will not only be able to accurately reconstruct the data

but also be more discriminatory since the classi�cation error will a�ect the update of the

dictionary itself.

There are several di�erent ways in which to morph the dictionary learning method into

supervised learning methods. One approach is to create multiple dictionaries where each

one is assigned to be used for a speci�c class [13]. In these methods, each time a data point

is encountered, only the dictionary corresponding to the class label will be updated. Doing

this with enough data will then lead to multiple dictionaries that are good at characterizing

data from their class and not very good for characterizing other classes. During testing,

the class label is not known so to determine the class label the data point is reconstructed

using all of the dictionaries and the class label of the dictionary that results is the lowest

reconstruction error is then the assigned class. Another slight modi�cation of this method

is shown in [38].

In [39] and [7] the authors derive several methods that incorporate a classi�cation model

on top of the dictionary learning framework. These methods use the sparse representations

as a feature vector to generate a linear classi�er. More detail will be provided on the speci�cs

of these methods, and in particular [7], in the next section.

Other methods of supervised dictionary learning include [40], [41], [42], and [43]. These

methods directly use the individual values of the sparse weights to determine the actual

13

class by associated individual dictionary atoms with a speci�c class. Then classi�cation can

be done in numerous ways either by simply selecting the class with the largest sparse weight

or by performing more complex operations.

2.5 Task-Driven Dictionary Learning

In [7], the authors present an algorithm for supervised dictionary learning that simulta-

neously learns the dictionary along with a parameter that transforms the sparse pro�le

returned by a sparse coder into the classi�cation output .

Their algorithm, like most dictionary learning algorithms, consists of two main steps;

the sparse coder and the dictionary update. In this algorithm the dictionary update stage

comprises of both the dictionary update and the classi�cation parameter update, this ter-

minology was chosen simply to show similarity with previous algorithms. In their paper

the authors chose to use projected stochastic gradient descent to iterate between these two

phases of the dictionary learning problem.

For their algorithm, the authors chose to use elastic-net regularization,

α∗(x,D)
∆
= arg min

α∈IRK

1

2
||x−Dα||22 + λ1||α||1 +

λ2

2
||α||22, (2.13)

to complete the sparse coding step. Where λ1 and λ2 are parameters that control the

sparseness of the solution and the solution α(x,D) is the pro�le of data point x using

dictionary D, where the dictionary is subject to the constraint,

D ∆
= {D ∈ IRL×Ks.t.∀k ∈ {1, . . . ,K}, ||dk||2 ≤ 1}, (2.14)

where D is the set of all possible D and dk is the kth column of D. To solve the elastic-net

problem the least angle regression (LARS) [18] algorithm is used.

14

The objective function that is used in [7] for the speci�c application of binary classi�ca-

tion is,

min
D∈D,w∈W

IEy,x[`s(y,w,α
∗(x,D))] +

v

2
||w||2F , (2.15)

where y is the true class label, w is the model parameter, α(x,D) was de�ned in Equation

2.13, v is a smoothing parameter, and `s is any twice di�erentiable convex loss function such

as the square or logistic loss, for example.

From Equation 2.15, the update equations can be derived by �nding the gradient with

respect to the variables w and D, see [7] for more details. Once these equations have been

derived they must be slightly modi�ed in order to keep the constraints on the dictionary

atoms intact. To do this the authors elect to project the resulting updates back onto the

corresponding sets for w and D, this is done by re-normalizing the dictionary columns

so that they have an L2 norm of one. For the second parameter w the values are also

re-normalized in a similar fashion.

2.6 Semi-Supervised Dictionary Learning

Beyond the scope of supervised dictionary learning is the scenario where the data is either

not entirely labeled or there are portions of the data that are unclear as to which class it

belongs. In these situations, the supervised methods described previously will not function

properly. To handle these unique situations, semi-supervised dictionary learning can be

used.

In [44] and [8] the authors derive two semi-supervised dictionary learning algorithms that

use multiple dictionaries, one for each class, concatenated together. Each sub-dictionary is

updated using only data points from its own class and the unlabeled data points are used

to update the entire dictionary. In this way the unlabeled data points will have a soft

assignment to the class that most of its dictionary elements come from.

15

Another way to do semi-supervised dictionary learning is presented in [7] and simply

adds the unsupervised dictionary learning problem onto its supervised dictionary learning

objective function and adds a parameter that controls the tradeo� between the supervised

and unsupervised functions. This method of semi-supervised dictionary learning lessens the

impact of inconsistent or inaccurate labeling by not relying solely on the supervised learning

dictionary update.

2.7 Functions of Multiple Instance (FUMI)

In [45] the FUMI algorithm is �rst presented as a way to learn a dictionary that consists

of a single target element along with multiple non-target elements. In this model, a data

sample labeled as a target can be written as a linear combination of the target dictionary

element and the non-target elements,

x+
n = αnTdT +

M∑
m=1

αnmdm. (2.16)

Then, points labeled as non-targets are just a linear combination of the background dictio-

nary elements,

x−n =

M∑
m=1

αnmdm. (2.17)

In both equations, αnT is the weight of the target element, αnm is the weight of the mth

non-target dictionary element, and dT is the target dictionary element, and dm is the mth

element in the non-target dictionary. In these equations, all of the weights are constrained

such that they are positive and sum to one. This algorithm has been used to do sub-pixel

target detection in hyperspectral images with good results [46].

This algorithm works well when the labeling for training points is accurate, but when

the accuracy of the labeling is inaccurate the performance of the algorithm su�ers greatly.

16

Thus, the Extended Functions of Multiple Instances (eFUMI) [11] aims to �x this problem.

To do this the eFUMI no longer considers point-wise labeling and instead uses bag labels

to identify the data. In this way, a group of points is labeled as a target bag if it contains

at least one target point, and a bag is labeled as non-target only if it contains exclusively

non-target points.

With the new method of assigning labels to training points the objective function for

the eFUMI model takes the form,

F =
−(1− u)

2

N∑
n=1

∥∥∥∥∥xn − znαnTdT −
M∑
m=1

αnmdm

∥∥∥∥∥
2

2

− u

2

(
M∑
m=1

‖dm − µ0‖22 + ‖dT − µ0‖22

)
−

M∑
m=1

γm

N∑
n=1

αnm,

(2.18)

where the �rst term is a measure of the error between the reconstruction of the actual signal

xn given the current target element dT , non-target elements dm, and weight values αnT and

αnm. The second term holds the dictionary elements to have a mean roughly the same as

the global data mean µ0 and the last term is a sparsity promoting term for the proportions

wnm where γk = Γ∑N
n=1 α

n−1
nm

.

In order to minimize Equation 2.18, Expectation Maximization (EM) algorithm is used

as the dictionary updates cannot be derived unless the probability of target zn is known.

When taking the expectation with respect to the two possible values of zn, the objective

function becomes

E[F] =
∑

zn∈{0,1}

−1

2
(1− u)

N∑
n=1

P (zn|xn,θ(i−1))

∥∥∥∥∥xn − znαnTdT −
M∑
m=1

αnmdm

∥∥∥∥∥
2

2

−u

2

M∑
m=1

‖dm − µ0‖22 −
u

2
‖dT − µ0‖22 −

M∑
m=1

γm

N∑
n=1

αnm,

(2.19)

17

where

P (zn|xn, θ(i−1)) =

p(zn = 0|xn ∈ B+
j ,θ

(i−1)) = exp

(
−β
∥∥∥∥xn − M∑

m=1
αnmdm

∥∥∥∥2

2

)

p(zn = 1|xn ∈ B+
j ,θ

(i−1)) = 1− exp

(
−β
∥∥∥∥xn − M∑

m=1
αnmdm

∥∥∥∥2

2

)
p(zn = 0|xn ∈ B−j ,θ(i−1)) = 1

p(zn = 1|xn ∈ B−j ,θ(i−1)) = 0

.
(2.20)

Here B+
j indicates the jth target bag and similarly B−j indicates the jth non-target bag.

From these equations the update equations for the dictionary elements and weight values

can be computed.

This model allows for inconsistency in the labeling of the training data since the labeling

is bag-wise instead of element-wise. This helps overcome the labeling inconsistency since

the �rst step is to estimate the target probability before the updates are computed for the

dictionary elements and the proportions. This allows the algorithm to learn which of the

points in the positively labeled bags are actually targets and then updating the dictionary

and proportions based on the probability that each point is actually a target point.

18

Chapter 3

Proposed Method

The proposed method in this thesis is a combination of two previously developed algorithms,

Task Driven Dictionary Learning (TDDL) [7] and Multi Target Extended Functions of Mul-

tiple Instances (MT-eFUMI) [12]. Thus the proposed method will be called Task Driven

Extended Functions of Multiple Instances (TD-eFUMI).

3.1 Generation of the Objective Function

In the proposed method the TDDL and MT-eFUMI algorithms are combined by utilizing the

MT-eFUMI algorithm as a sparse coding method for the TDDL algorithm. In implementing

this change almost the entire workings of the TDDL algorithm need to be revisited in

order to cooperate correctly with the new sparse coding method. Since the MT-eFUMI

algorithm utilizes multiple instance learning principles the new method must modify the

TDDL algorithm to accomodate these new ideas.

The �rst modi�cation to the TDDL algorithm is that the objective function, Equation

2.15, must be converted into a form that allows the the output value to shift as the algorithm

learns more details as to whether each data point is actually a target or non-target point.

19

This functionality is added into the objective function by changing out the actual data point

label y with the current estimated label indicated by z′. Following this change the actual

objective function becomes,

min
D∈D,w∈W

Ey,x
[

1

2

(
z′n −wᵀα∗

)2]
+
v

2
‖w‖22, (3.1)

where `s has been replaced here with the explicit form of the squared error loss function

which will be used for the new method, w is the classi�cation parameter described in Section

2.5, α is the sparse weight for a given data point, v is a regularization paramter for w, and

z′n :=

1, zn = 1

−1, zn = 0

. (3.2)

Where zn comes from the MT-eFUMI objective function and is the probability that the

current point, n, is considered a target point. This small change achieves the desired e�ect

because the assigned label, yn, no longer has a direct a�ect on the objective value and

instead only the actual estimate of the current class label, z′n a�ects the objective value.

The next modi�cation involves the some of the constraints on the MT-eFUMI objective

function in Equation 2.18. In the MT-eFUMI objective function, the second term is needed

to help keep the dictionary elements so that they are close to the mean of the entire data set.

If this term is left as it is the term will no longer have an e�ect on the dictionary elements.

This is due to how the derivations are done for the update equation, more on this in the

following section. For the proposed method, the second term in the MT-eFUMI objective

function is moved into the objective function in Equation 3.1. With this change there also

needs to be some way to control how important it is for the dictionary elements to be close

to the global mean versus having good classi�cation performance. This is done by adding

in a weighting parameter u into the objective function so that the �nal objective function

20

becomes

F(w,α∗n(xn,D)) = Ez
[

(1− u)δn
2

(
z′n −wᵀα∗n(xn,D)

)2]
+
u

2

(
T∑
t=1

∥∥∥d(T)
t − µ0

∥∥∥2

2
+

M∑
m=1

∥∥∥d(NT)
m − µ0

∥∥∥2

2

)
+
v

2
‖w‖22

+
K∑
k=1

L∑
l=2

s

2
(dk(l)− dk(l − 1))2 ,

(3.3)

where d(T)
t indicates the tth element in the target dictionary, d(NT)

m indicates themth element

in the non-target dictioanry, and the variable δn also comes from the MT-eFUMI objective

function and is de�ned as

δn =

ε
NM

NT
, for target points

1, for background points

, (3.4)

while NM and NT are the number of labeled background and target samples respectively.

The last term in the objective function is a smoothing term and the parameter s tunes the

importance of this portion and the notation dk(l) indicates the lth dimension in the kth

dictionary element, k is used to reference the combined target and non-target dictionaries.

The smoothness term is added to the objective function here to help the algorithm deal

with data that has a large amount of variability in the structure. This applies a penalty to

the objective function whenever there is a large di�erence between consecutive dimensions

in the dictionary atom. In most cases this is not needed but there are cases, discussed in

Section 4 where this term is bene�cial.

With these modi�cations the objective function for the proposed method, TD-eFUMI,

is nearly complete, the only remaining part left to de�ne is the sparse coding function α∗.

As mentioned previously the sparse coding function used in the new method is the MT-

eFUMI algorithm; however, it is not used in its original form. Some of the constraints have

21

already been moved out of the MT-eFUMI objective function to work better with the new

algorithm. The next modi�cation is to switch out the sparsity promoting term γm that

was originally used with the L1 norm that is more commonly used in dictionary learning

applications. One might notice that the de�nition of the L1 norm and the de�nition of γm

are actually very close and this is indeed true. The L1 norm is a generalization of the γm

term that does not require the sparse weights α to be positive as was required in the original

MT-eFUMI algorithm. Not requiring the α's to be positive is also more typical of traditional

dictionary learning models, after this change the sparse coding function is de�ned to be

α∗n(xn,D) = arg min
α

1

2

∥∥∥∥∥xn − zn
T∑
t=1

αntd
(T)
t −

M∑
m=1

αnmd
(NT)
m

∥∥∥∥∥
2

2

+ λ‖αn‖1. (3.5)

This concludes the modi�cations that are needed to de�ne the objective function for the

proposed method.

3.2 General Overview

Repeating from the previous section the objective function in its entirety is

F(w,α∗n(xn,D)) = Ez
[

(1− u)δn
2

(
z′n −wᵀα∗n(xn,D)

)2]
+
u

2

(
T∑
t=1

∥∥∥d(T)
t − µ0

∥∥∥2

2
+

M∑
m=1

∥∥∥d(NT)
m − µ0

∥∥∥2

2

)
+
v

2
‖w‖22

+

K∑
k=1

L∑
l=2

s

2
(dk(l)− dk(l − 1))2 ,

(3.6)

where

δn =

ε
NM

NT
, for target points

1, for background points

, (3.7)

22

α∗n(xn,D) = arg min
α

1

2

∥∥∥∥∥xn − zn
T∑
t=1

αntd
(T)
t −

M∑
m=1

αnmd
(NT)
m

∥∥∥∥∥
2

2

+ λ‖αn‖1, (3.8)

w is the classi�cation parameter, α∗n(xn,D) is sparse weight vector for data point xn using

dictionaryD, d(T)
t and d(NT)

m are the tth target andmth non-target dictionary element, while

µ0 is the global data mean, and the notation dk(l) indicates the lth dimension in the kth

dictionary element, k is used to reference the combined target and non-target dictionaries.

Before detailing the derivation of the update equations the methodology that was used to

create the proposed algorithm must be introduced. As the basis of the proposed method is

the TDDL algorithm the main process of the proposed algorithm will be very similar to that

of the original. As such Projected Stochastic Gradient Descent will be used to optimize over

the dictionary and model parameter. Gradient descent is a proven optimization technique

that works well in many situations, stochastic gradient descent adds some randomness to the

updates by only using a single point or a small number of points to compute the updates [26].

Once the general minimization algorithm has been de�ned the next step is to layout the

order of the components so that every step happens in the correct order. The �rst step in

every iteration of the algorithm must always be the probability calculation, this is because

all of the following computations rely on having a good estimate of the probability. The

next variable that needs to be calculated in the sparse weights, these are the variables that

are needed to update both the dictionary and the model parameter.

Computing the values for the sparse weights requires its own algorithm in order to �nd

the optimal values. In the proposed implementation ISTA is used, described in Section

2.1, in order to minimize the formulation in Equation 3.5 to handle computing the sparse

weights. The reason for choosing ISTA is that many of the more commonly used sparse

coding algorithms, like OMP and the Lasso, cannot be easily adapted to work when there

is only a probability that certain elements of the dictionary will be used. However, ISTA is

proven to converge to the correct solution when certain parameters, again described in 2.1,

23

are met and so it will work in this situation.

Finally, now that the sparse weights have been computed it is time to update the dic-

tionary and the model parameter, but �rst the update equations must be derived.

3.3 Derivation

The method of optimization chosen for this algorithm is stochastic gradient descent, which is

also what was used in the TDDL algorithm. In the gradient descent framework an objective

function is minimized by taking steps in the direction of steepest descent. So these algorithms

simply step down the objective function following the gradient, which means that gradient

descent is guaranteed to �nd at a minimum a local minimum and, if the objective function

is at a minimum strictly quasi-convex, a global minimum.

The general formulation for gradient descent based algorithm simply consists of updating

the current parameter value with a small step in the direction of the negative gradient of

the objective function or expressed mathematically,

Ai = Ai−1 − ρ∇AF(A, . . .), (3.9)

where A is the variable being optimized, t indicates the current iteration, ρ is a parameter

that scales the amount of change in any one step and F(A, . . .) is the objective function in

terms of A and possibly other variables.

Now moving on to the actual derivation of the proposed method, as stated before the

24

objective function for the proposed method is de�ned as

F(w,α∗n(xn,D)) = Ez
[

(1− u)δn
2

(
z′n −wᵀα∗n(xn,D)

)2]
+
u

2

(
T∑
t=1

∥∥∥d(T)
t − µ0

∥∥∥2

2
+

M∑
m=1

∥∥∥d(NT)
m − µ0

∥∥∥2

2

)
+
v

2
‖w‖22

+

K∑
k=1

L∑
l=2

s

2
(dk(l)− dk(l − 1))2 .

(3.10)

with the sparse representation α∗(xn,D) being computed via a slight modi�cation of the

MT-eFUMI algorithm computed via

α∗n(xn,D) = arg min
α

1

2

∥∥∥∥∥xn − zn
T∑
t=1

αntd
(T)
t −

M∑
m=1

αnmd
(NT)
m

∥∥∥∥∥
2

2

+ λ‖αn‖1. (3.11)

The �rst step in optimizing Equation 3.10 is to compute the probabilities for zn, so

that each of the following steps can be completed. In order to compute the probabilities

the previous iteration's sparse weights for the background terms are used this part of the

proposed algorithm is taken directly from the MT-eFUMI algorithm and does not need to

be derived, the equation for computing these probabilities is shown in Equation 2.20.

The next step is to calculate the sparse weights α∗ by solving Equation 3.11. This is

25

done by taking the expectation with respect to the hidden variable zn

Ezn [α∗] = Ezn

arg min
αn

1

2

∥∥∥∥∥xn − zn
T∑
t=1

αntd
(T)
t −

M∑
m=1

αnmd
(NT)
m

∥∥∥∥∥
2

2

+ λ‖αn‖1

 (3.12)

= arg min
αn

Ezn

1

2

∥∥∥∥∥xn − zn
T∑
t=1

αntd
(T)
t −

M∑
m=1

αnmd
(NT)
m

∥∥∥∥∥
2

2

+ λ‖αn‖1 (3.13)

= arg min
αn

P (zn = 1)
1

2

∥∥∥∥∥xn −
T∑
t=1

αntd
(T)
t −

M∑
m=1

αnmd
(NT)
m

∥∥∥∥∥
2

2

+P (zn = 0)
1

2

∥∥∥∥∥xn −
M∑
m=1

αnmd
(NT)
m

∥∥∥∥∥
2

2

+ λ‖αn‖1

(3.14)

Then using the values computed for the probabilities and the IST algorithm described in

Section 2.1, Equation 3.14 can be minimized to �nd the sparse weights.

Now both the dictionary D and the model parameters w can be updated. The �rst step

is to again evaluate the expectation of Equation 3.10, to make the math here easier to read

only the error term will be shown here since the remaining terms can be excluded from the

expectation,

F(w,xn,D) = Ezn
[

(1− u)δ

2

(
z′n −wᵀα∗n

)2]
(3.15)

=
(1− u)δ

2
[1 + 2(1− 2P (zn = 1))]wᵀαn + (wᵀαn)2, (3.16)

The full derivation has been relegated to the Appendix, Section B.1, for ease of reading.

Now moving on to the easier of the two update equations, computing the gradient of

26

Equation 3.16 with respect to w,

∇wF(w,xn,D) = ∇w
[

(1− u)δ

2
[1 + 2(1− 2P (z = 1))]wᵀαn + (wᵀαn)2

+
u

2

(
T∑
t=1

∥∥∥d(T)
t − µ0

∥∥∥2

2
+

M∑
m=1

∥∥∥d(NT)
m − µ0

∥∥∥2

2

)
+
v

2
‖w‖22)

]
(3.17)

=
(1− u)δ

2
[(1− 2P (z = 1))αn + 2(wᵀαn)αn] + vw. (3.18)

Now plugging the gradient derived into the general form shown in Equation 3.9 leaves

wt = wt−1 − ρ
(

(1− u)δ

2
[(1− 2P (z = 1))αn + 2(wᵀαn)αn] + vw

)
, (3.19)

as the update equation.

Now moving to the more di�cult update equation for the dictionary, here the objective

function is di�erentiated with respect to the the individual atoms of the dictionary. In this

way the update equations will be for the individual atoms and the dictionary will then be

updated atom-by-atom. The �rst step in deriving the update equation for the dictionary

is to derive the closed form solution for α∗, but since the dictionary will be updated in an

atom-by-atom approach the closed form solution need only be in terms of a single element of

the full solution, i.e. solving for αt and αm will be enough. In order to �nd the closed form

solution of Equation 3.11 for both αt and αm the derivative must be taken with respect to

both variables and then the results will be set equal to zero in order to solve for αt and αm.

27

First the equation for α∗ is rewritten to evaluate the expectation operator

α∗n(xn,D) = Ezn

1

2

∥∥∥∥∥xn − zn
T∑
t

αntd
(T)
t −

M∑
m

αnmd
(NT)
m

∥∥∥∥∥
2

2

+ λ‖αn‖1 (3.20)

=
P (z = 1)

2

∥∥∥∥∥xn −
T∑
t

αntd
(T)
t −

M∑
m

αnmd
(NT)
m

∥∥∥∥∥
2

2

+
P (z = 0)

2

∥∥∥∥∥xn −
M∑
m

αnmd
(NT)
m

∥∥∥∥∥
2

2

+ λ‖αn‖1

(3.21)

Now that the expectation has been evaluated the closed forms of both αt and αm can be

found by di�erentiating Equation 3.21 with respect to a speci�c value of t in αn indicated

by αnt0 and a speci�c value of m in αn indicated by αnm0 , and then setting the resulting

equations equal to zero. For αnt0 this results in

αnt0 =
(
P (z = 1)

(
d

(T)
t0

)ᵀ
d

(T)
t0

)−1

P (z = 1)
(
d

(T)
t0

)ᵀxn − T∑
t,t 6=t0

αntd
(T)
t

−
M∑
m

αnmd
(NT)
m

)
+ λsign(αnt0)

)
,

(3.22)

and the result for αnm0 is

αnm0 =
((
d(NT)
m0

)ᵀ
d(NT)
m0

)−1

(d(NT)
m0

)ᵀ
xn − dᵀm0

M∑
m,m 6=m0

αnmdm

−P (z = 1)
(
d(NT)
m0

)ᵀ T∑
t

αntd
(T)
t + λsign(αm0)

)
.

(3.23)

Again the full derivation has been moved to the Appendix, Section B.2.

Now with Equations 3.22 and 3.23 in hand the next step is to di�erentiate Equation

3.16 with respect to the dictionary atom needing to be updated, d(T)
t and d(NT)

m . Since the

derivation for both of these two dictionary elements are the same for part of the derivation

28

the subscript k will be used to generically indicate a dictionary element anywhere in the

derivation that the equations for both are the same, when the equations are no longer the

same the notation will switch back to the previous notation.

∇dkF(w,xn,D) =

(1− u)δ

2
(2(1− 2P (z = 1))wk∇dkαnk + 2(wᵀαn)wk∇dkαnk) + u(dk − µ0)

(3.24)

where ∇dnk
is replaced with either

∇
d
(T)
t
αnt0 =

−2d
(T)
t0

P (z = 1)
((
d

(T)
t0

)ᵀ
d

(T)
t0

)2

(
P (z = 1)

(
d

(T)
t0

)ᵀ
et + λsign(αnt0)

)

+
(
P (z = 1)

(
d

(T)
t0

)ᵀ
d

(T)
t0

)−1
et

(3.25)

or

∇
d
(NT)
m0

αnm0 =
−2d

(NT)
m0((

d
(NT)
m0

)ᵀ
d

(NT)
m0

)2

(
P (z = 1)

(
d

(T)
t0

)ᵀ
em + λsign(αnt0)

)

+
((
d(NT)
m0

)ᵀ
d(NT)
m0

)−1
em

(3.26)

depending on whether a target or a background dictionary element is currently being up-

dated. The error term in each equation above is then written as

et =

xn − T∑
t,t6=t0

αntd
(T)
t −

M∑
m

αnmd
(NT)
m

 (3.27)

for the target elements and

em =

xn − M∑
m,m 6=m0

αnmd
(NT)
m − P (z = 1)

T∑
t

αntd
(T)
t

 (3.28)

for the non-target elements.

29

Then combining Equations 3.24 by replacing the subscript k with t and 3.25 generates

the update for all of the target dictionary atoms. Equations 3.24 and 3.26 generate the

update equation for the non-target dictionary atoms when the subscript k's are changed to

m's in 3.24.

The derivative of the smoothing term has been left out of the main derivation here as

it cannot be de�ned in the vector notation the rest of the model uses. However, by the

additive properties of gradients the smoothness term can be de�ned separately then added

back into the model once it is derived. The derivative of this term is simple

∇dk(l)

K∑
k=1

L∑
l=2

s

2
(dk(l)− dk(l − 1))2 (3.29)

= s (dk(l)− dk(l − 1)) . (3.30)

To add this term onto the previously derived updates one can computed this gradient sep-

arately then form the vector from the outputs and add it back onto the gradient derived in

Equation 3.24.

3.4 Algorithm

With the update equations being derived the next step is to organize the equations into the

form of an algorithm in order to learn a dictionary and model parameter that can be used

for the classi�cation of new data points. The algorithm for this method follows very closely

to the algorithm in [7], once the initial conditions are set the sparse weights are found and

are then used to update the dictionary and the model parameter.

The elements are updated via the stochastic gradient descent algorithm [26] or online

gradient descent. In this version of gradient descent either a single point or a small batch

of points are used to compute the update to the dictionary and model parameters. In this

30

way the variables are updated numerous times in a single iteration through all of the data.

A summary of the algorithm is shown in Algorithm 1.

The initialization for α, w,D is done sequentially since the value of each one depends on

one of the other values. The dictionary is the �rst parameter to be initialized since all of the

others must be derived from the dictionary. Coming up with a good initial dictionary is very

important to the performance of the algorithm, if it is initialized poorly the coe�cients of the

sparse weights will also be poor. In this implementation the initial dictionary elements are

chosen from the training data at random. For the target dictionary elements only points that

were initially labeled as target will be considered, and the same follows for the non-target

dictionary elements. At this point all of the randomly collected elements are concatenated

together in order to form the initial dictionary, once combined the dictionary is normalized

so that each of the dictionary elements has an L2 norm of 1.

The next step in the initialization process is to compute the initial value of α. For this

initialization Equation 1.1 is optimized directly for α while holding D �xed, by di�erenti-

ating with respect to α and setting the result equal to zero. Therefore the initial value of

the sparse weights is computed as

αinit = (Dᵀ
init
Dinit)

−1
Dᵀ

init
x. (3.31)

This initialization does not incorporate any sparsity promotion and as such will most likely

not be sparse, however it does minimize the unconstrained problem therefore it gives the best

possible reconstruction error, assuming the objective function is convex. The reconstruction

error is more important for the initialization since this estimate is used primarily to compute

the probability that a point contains a target dictionary atom.

The last value that needs to be initialized is the model parameter w. This value is again

31

Algorithm 1 Summary of algorithm for proposed method.
Require: initial values for α, w, D, parameters i0, ρ, u, E, λ, v, β, batch size

1: for i=1:I do
2: Set counter = 1
3: while counter ≤ number of samples do
4: Draw next batch of samples
5: Compute probabilities of current batch

P (zn|xn, θ(i−1)) =

p(zn = 0|xn ∈ B+
j) = exp

(
−β
∥∥∥∥xn − M∑

m=1
αnmd

(NT)
m

∥∥∥∥2

2

)

p(zn = 1|xn ∈ B+
j) = 1− exp

(
−β
∥∥∥∥xn − M∑

m=1
αnmd

(NT)
m

∥∥∥∥2

2

)
p(zn = 0|xn ∈ B−j) = 1

p(zn = 1|xn ∈ B−j) = 0

6: Compute sparse weights of current batch via ISTA by solving

arg min
α

P (z = 1)
1

2

∥∥∥∥∥xn −
T∑
t=1

αntd
(T)
t −

M∑
m=1

αnmd
(NT)
m

∥∥∥∥∥
2

2

+ P (z = 0)
1

2

∥∥∥∥∥xn −
M∑
m=1

αnmd
(NT)
m

∥∥∥∥∥
2

2

+ λ‖αn‖1

for αn

7: select learning rate ρi = min

(
ρ,
ρi0
i

)
8: Update model parameter w via

wi = wi−1 − ρt
(

1
2(1− u)δ[(1− 2P (z = 1))αn + 2(wᵀαn)αn] + vw

)
9: Update dictionary D via

dik = di−1
k − ρt (∇dkF(w,xn,D))

where ∇dkF(w,xn,D) is de�ned by Equations 3.24 and 3.25 for positive points and by
Equations 3.24 and 3.26 for negative points.

10: counter = counter + batch size
11: end while

12: if (‖∆D‖F ≤ E) ∧ (‖∆w‖2 ≤ E) then
13: break
14: end if

15: end for

16: return w and D

32

obtained directly from the classi�cation function

Ŷ = αᵀw (3.32)

where Ŷ is the estimated class label, by substituting the actual label Y in for Ŷ and solving

for w the initial value can be obtained from

winit = (αinitα
ᵀ
init

)−1αinitY. (3.33)

3.5 Parameters

With this method there comes several parameters that have to be tuned for a speci�c prob-

lem, in this section the most important parameters will be discussed. The �rst parameter to

be discussed is λ, in the proposed method λ is the parameter that controls the importance

of the L1 norm in the sparse coder which in turn a�ects the sparsity of the vector α. The L1

norm acts like a laplacian prior on the weights of the sparse weights α and drives them to

be zero, the parameter λ acts on the distribution similar to the diversity parameter. When

the value of λ is large, there is very little diversity in the distribution thus leading to a more

sparse solution, when the value of λ is small, the diversity of the distribution becomes much

larger leading to a far less sparse solution. Typical values for this parameter are values that

range from 0.01 up to around 0.15. However, the value of this parameter can be outside

these bound as the data itself sometimes requires di�erent values.

The next parameter to be discussed is β, which a�ects how many data points are assigned

a high probability of being a target point. In the eFUMI and MT-eFUMI algorithms which

this method is based on the a�ect of β on the probability could be shown graphically as in

Figure 3.1. Larger β's lead to more points having a high probability of target, while lower

values had the opposite e�ect. In the proposed model the graphical depiction becomes more

33

d
(NT)
m1d

(NT)
m2

Soft
Cut-o�

d
(T)
t

↓ β

↑ β

∝ β

Figure 3.1: Graphical representation of how parameter β a�ects the algorithm. A dictionary
of size three, one target and two non-targets, is used for this representation in order to more
easily show the e�ect. The actual data points are then scattered inside the triangle as convex
combinations of the three dictionary elements if the sparse weights are assumed to be positive
and sum to one. The green region indicates the region receiving a high probability of target
while the red indicates the region receiving a low probability.

abstract as the sparse weights no longer sparse convex combinations of the dictionary atoms.

However the diagram is still accurate in how the probabilities are assigned in the proposed

model. In principal β indicates how much target has to be present in the sample for it to

have a high probability of target, even if the proportion is negative or even greater than one.

The typical range of values for this parameter is quite large as any number can be used here

but a good range would be values between 1 and 500. However for the testing later in this

thesis the values chosen were around 5.

ε is a �ne tuning parameter that a�ects the importance of the positive bags. This

parameter directly a�ects the function δ = εNB
NT

when the sample being trained is from a

34

positive bag, it has no a�ect on points from negative bags. A large value of ε will make the

points from the positive bags much more important towards the training of the proposed

method by adding a multiplier to these data points. Typical values for this parameter would

be in the range of 0.75 and 1.25.

Now moving on the the learning rate parameters i0 and ρ. The e�ect of these parameters

on the algorithms is that they determine how fast the dictionary and model parameters will

change. ρ is the typical learning rate and directly a�ects the size of the gradient step. The

second parameter i0 is used with the learning rate to help the algorithm converge to a steady

state solution by reducing the learning rate inversely proportional to the iteration. When

used in conjunction the learning rate for any give iterate is chosen to be min(ρ, ρi0i) where i

its the current iteration. Typical values for these parameters are hard to establish because it

depends heavily on the amount of data used to train the algorithm. For the testing done in

the later sections learning rates of 0.25 were used with great success. The second parameter

is not as important and as a general rule of thumb i0 is set to be around 10% of the total

number of iterations.

u is the parameter that controls the tradeo� between the classi�cation accuracy and the

distance from the dictionary atoms to the global data mean. A large value of u will push all

the dictionary atoms to be very close to the global data mean while a small value of u will

force the algorithm to learn a dictionary and model parameter that leads to much better

classi�cation. Typical values for u would be between 0.0001 and 0.05as the classi�cation

error is much more important.

v is another parameter that is very similar to u, it controls how large the value of the

model parameter w can be by constantly pushing the vector to have an L2 norm of close to

zero. Larger values of v will push the model parameter to be closer to zero. Typical values

for v are between 0.001 and 0.1.

s is another tuning parameter that controls the e�ect of the smoothness term on the

learned dictionary. Larger values of s will force a much smoother dictionary. However,

35

when this parameter is set too large this term will force the dictionary elements to be a

simple line. Therefore, if the smoothing term is desired typical ranges for its values are

between 0.001 and 0.2. If the smoothing term is not desired set the value of s to equal zero.

Next the parameters T and B which control the size of the dictionary. The dictionary

size in the standard dictionary learning problem, which in the proposed method is T +B, is

what determines how many basic elements the dictionary should �nd in the training data.

A larger dictionary size means that the dictionary will contain more elements and be able

to decompose more signals, when the other parameters are tuned correctly, but this also

means that it will take require more data and time to train as the model becomes much

more complex. In the proposed method T and B have the same e�ect as the dictionary size

does in the standard model, except that the e�ect is broken down into two groups target and

non-target. Everything else from the standard dictionary size model is carried over except

now the model allows for �ner control over how the dictionary atoms are split between target

and non-target. Typical values for the dictionary size are very di�cult to establish. Both

parameters can be estimated by looking at the expected number of target and non-target

signatures expected in the data.

Finally the batch size which controls how many data points are processed at the same

time. This parameter comes from the stochastic gradient descent algorithm used in the

proposed method where where the updates are computed for only a single data point or for

a small batch of data points. In the true stochastic gradient descent algorithm the update is

computed after each point is processed, however this can lead to very erratic changes in the

dictionary and the model parameters. So to smooth out these erratic jumps a small number

of data points are used to compute the updates, this lead the algorithm to converge quicker

while also still maintaining the stochasticity of the training algorithm. Typical values for

this parameter are between 1 and 500, this essentially tunes how smoothly the algorithm

will converge but does not necessarily e�ect the �nal results.

36

Chapter 4

Experiments

In this section several experiments are conducted to look at the performance of the proposed

algorithm. In particular three di�erent types of data will be used throughout this chapter.

The �rst is a set of synthetic data which can be used to demonstrate the e�ectiveness of

the proposed method. The second type of data is wideband electromagnetic induction data

from a metal detector used for landmine detection. The �nal data type is a collection of

sonar images used for testing target detection and classi�cation algorithms.

The proposed method will be compared with MT-eFUMI and TDDL. There are two main

tests that are usually used for the testing of dictionary learning algorithms, reconstruction

and classi�cation. Typically, reconstruction error is used for the unsupervised methods as

many of the supervised dictionary learning, such as the proposed method, will sacri�ce some

reconstruction ability to attain a dictionary that can better classify the data. As the main

goal of this algorithm is increasing the classi�cation performance that will be the main focal

point for performance comparisons between the proposed algorithm and the two comparison

algorithms.

37

4.1 Synthetic Data

Synthetic data is chosen here to demonstrate the bene�ts of the proposed method versus the

two methods it was based on. The synthetic data gives the ability to test the limits of the

proposed algorithm compared with the two other algorithms that it was based o� of. Since

the way the data is generated can easily be controlled it also provides the ability to test

the limits of the algorithms and see how their performance deteriorates as the data becomes

more di�cult.

0 50 100 150
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Feature Dimension

F
ea

tu
re

 V
al

ue

(a) Target Element 1

0 50 100 150
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Feature Dimension

F
ea

tu
re

 V
al

ue

(b) Target Element 2

0 50 100 150
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Feature Dimension

F
ea

tu
re

 V
al

ue

(c) Background Element 1

0 50 100 150
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Feature Dimension

F
ea

tu
re

 V
al

ue

(d) Background Element 2

Figure 4.1: Actual pure dictionary atoms that are used to create the synthetic data.

38

4.1.1 Data Set Description

The synthetic data that was generated for this experiment was created by using four distinct

elements shown in Figure 4.1. The data itself is simulated by randomly combining these

elements in di�erent ways to generate a full set of data. To do this random sparse weights

were created and then the data would be generated by multiplying the actual dictionary

by the randomly created sparse weights and then adding noise. The full algorithm used to

generate the data is shown below.

Algorithm 2 Algorithm for generating the synthetic data used in the experiments in this
section.
Require: Actual dictionary Da, Signal to Noise Ratio snr, Number of Target Points Nt,
Number of Non-Target Points Nb, and Target Proportion Pt
1: Get number of target, t, and non-target, b, dictionary elements
2: Generate Nt, t dimensional sparse random weight vectors
3: Scale target sparse weights and non-target sparse weights so that

Pt =

∑
(targetweights)∑

(non− targetweights)

4: Generate Nb, b dimensional sparse random weight vectors
5: Concatenate sparse weights for target and non-target add zeros to non-target sparse

weights to match size of the target weights
6: Compute clean data via X = DaA
7: Generate Gaussian noise
8: Add noise to match requested snr
9: return Data (X) and actual sparse weights (A)

This structure is ideal for testing dictionary learning algorithms because the learned

dictionaries can be directly compared with the originals giving an excellent method for

comparing di�erent dictionary learning algorithms. A few examples of the training data are

shown in Figure 4.2.

39

0 50 100 150
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Feature Dimension

F
ea

tu
re

 V
al

ue

(a) Example of pure target element.

0 50 100 150
−0.15

−0.1

−0.05

0

0.05

0.1

Feature Dimension

F
ea

tu
re

 V
al

ue

(b) Example of target mixed with background el-
ement.

0 50 100 150
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

F
ea

tu
re

 V
al

ue

Feature Dimension

(c) Example of multiple background elements be-
ing mixed.

0 50 100 150
−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

Feature Dimension

F
ea

tu
re

 V
al

ue

(d) Example of a pure background element.

Figure 4.2: Examples of synthetic data created for testing proposed method.

4.1.2 Testing the Sparse Coder

The �rst step in using the synthetic data is to make sure that the sparse coder is func-

tioning properly. This is done with the synthetic data since the dictionary and the sparse

combinations of the dictionary that created the data are known and can be compared with

directly.

The �rst test that is performed is a check to see if the sparse coder, MT-eFUMI in this

case, can accurately pick the correct dictionary elements that were used to create the signal

40

if it is given the actual dictionary. The results from this test are shown in Table 4.1. The

results shown in the table are from 100,000 randomly generated signals from the synthetic

dictionary shown in Figure 4.1, random sparse weights were created then the data points

were created for the sparse weights and noise was added to the signals such that each sample

had the same signal to noise ration (SNR). The noise is from a Gaussian distribution with

unit variance and zero mean.

Table 4.1: Test results from the sparse coder testing, test was performed using 100,000
randomly generated sparse weights and the dictionary shown in Figure 4.1.

Error in Sparse Weights

Sum Squared Error(SSE)

SNR of Data ∞ 25dB 5dB
Average Error 6.6953× 10−5 6.7541× 10−5 4.9569× 10−4

Variance 9.8993× 10−8 9.7042× 10−8 2.0414× 10−6

This test shows that given a �xed dictionary and signals created from that dictionary the

MT-eFUMI sparse coder can generate a very accurate estimate of the actual sparse weight

that was used to generate the signal even in the presence of noise.

The next part of the proposed implementation that needs to be tested is the ability of

the algorithm to estimate the probability that a given point contains a target signature. To

test this another round of data was generated just as before, then the actual sparse weights

and dictionary elements were used along with Equation 2.20 to estimate the probability of

target. The results from this experiment are that the algorithm can correctly identify 100%

of the data points that contain any portion of the target dictionary elements. This result is

to be expected as this portion of the proposed algorithm is taken directly from the eFUMI

algorithm.

The next tests to be performed on the new method using the synthetic data are test

that determine how well it performs when presented with deteriorating data. In all of the

following test the proposed method will be compared with the two algorithms that it was

based on to shown the improvements it makes on them.

41

4.1.3 Breakdown Testing

In this section experiment will be performed that test how well the proposed algorithm

performs when the training data gets progressively worse. All of the results presented in

this section were found by randomly generating data under the conditions described in

each test �ve times then using random initialization for each of the �ve test for all of the

algorithms. All the results shown in the following tables are then the average over these �ve

trials along with the standard deviation over the �ve trials.

The �rst test will be to generate data and change the number of negative points in the

positive bags to determine how well the algorithm can throw away non-target points in the

positive bags. The second test will be to generate synthetic data with varying proportions

of backgrounds to see if the algorithm can still distinguish the targets from the background.

For the remaining tests using the synthetic data 1000 data points were generated using

the dictionary shown in Figure 4.1, each target point will consist of only one target class and

any number of background elements. The data will be labeled so that exactly half is target,

500 target and 500 non-target, the number of actual targets in the target class is held �xed

at 85%, unless otherwise stated. The target/non-target ratio is �xed at 85%, again unless

otherwise stated.

The parameters used for the TD-eFUMI algorithm are λ = 0.1, ρ = 0.5, i0 = 5, T = 2,

M = 2, ε = 1, v = 0.001, u = 0.0001, β = 5, and a batch size of 50. The smoothness term

was not used in this data, as such the parameter s was set to zero. For the TDDL algorithm

the parameters are λ1 = 0.0001, λ2 = 0, ρ = 0.25, K = 4, and a batch size of 50. For the

MT-eFUMI algorithm the parameters used were mimicked from the TD-eFUMI algorithm.

These values were determined through multiple tests of the algorithms.

In the �rst test the percentage of actual target points labeled as target is varied through

the following values; 100%, 85%, 70%, 50%, 25%. The results will then be compared based

on how well the algorithm can classify the positive bag according to the actual class labels.

42

0 50 100 150
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Feature Dimension

F
ea

tu
re

 V
al

ue

(a) Original Dictionary Element

(b) 100% target (c) 70% target (d) 50% target

Figure 4.3: Visual breakdown of the learned dictionary with varying levels of actual targets
present in the positive bags. Value under images shows percentage of target points in positive
bags.

Figure 4.3 shows a dictionary element that was learned by the proposed algorithm under

three of the di�erent conditions tested for the amount of target points in the positive bag.

The top image is the original dictionary element that was used to create the data. In the

learned dictionary elements shown in the bottom of the �gure it is clear that the number of

target points does a�ect the dictionary element that is learned but it is also clear that the

algorithm is still clearly able to learn the main structure of the original element.

Now moving on to the classi�cation performance of the proposed method given the above

conditions. The classi�cation results are shown in Table 4.2. These results still mirror what

was expected when looking at the dictionary elements that were learned. Even though the

dictionary elements do degrade as their are fewer and fewer target points in the positive

bags since the algorithm can still distinguish between the target and non-target points the

43

classi�cation is not a�ected until the background points far outweigh the target points.

Table 4.2: Classi�cation performance for varying levels of target points in positive bags.
The �rst value in each table cell is the average percentage of points correctly classi�ed the
plus minus symbol then denotes the standard deviation of the results.

TD-eFUMI TDDL MT-eFUMI

100% 100 ± 0 100 ± 0 61.24 ± 3.62
85% 100 ± 0 100 ± 0 61.12 ± 1.86
70% 100 ± 0 100 ± 0 60.88 ± 1.63
50% 96.16 ± 5.28 91.18 ± 13.78 43.8 ± 6.88
25% 90.26 ± 7.07 76.26 ± 22.05 26.36 ± 9.63

This is the experiment where the multiple instance portion of the proposed method shines

particularly well. Over the �rst three target bag con�guration the performance of TDDL

and the proposed TD-eFUMI algorithms mirror each other at 100% correct classi�cation.

However, when the number of non-target points labeled as targets are equal the proposed

algorithm is able to maintain its classi�cation performance above 90% even when only one

quarter of the points labeled as target are actually target points. The TDDL algorithm does

well when the ratio of target points to non-target points in the positive bag is equal as it

still maintains a correct classi�cation percentage of greater than 90% but at the next step

the algorithm's performance falls o� greatly when compared to TD-eFUMI.

With this experiment it is clear that when the data labels have a low level of uncertainty

the proposed method will mirror the results of TDDL, which it is primarily based on. This

is expected because if, in the proposed model, the probability estimation is assumed to

be correct all of the time the proposed model essentially reduces to the original TDDL

algorithm. But, when the data does begin to degrade by having more and more uncertain

labels the proposed algorithm can di�erentiate between the points that are labeled target

and are actually target while the TDDL algorithm cannot.

For the second part of the test the percentage of actual target points in the positive bags

will be �xed at 85% and the proportion of target to background membership will be varied

44

at the following levels; 95%, 85%, 70%, 50%, 25%. Again the results will then be compared

based on how well the algorithm can classify the positive bag according to the actual class

labels. For this test the weights that were used to create the data were created so that they

summed to one so that the target proportion could be easily controlled.

Table 4.3: Classi�cation performance for varying levels of target proportions. The �rst
value in each table cell is the average percentage of points correctly classi�ed the plus minus
symbol then denotes the standard deviation of the results.

TD-eFUMI TDDL MT-eFUMI

95% 100 ± 0 100 ± 0 59.20 ± 1.76
85% 100 ± 0 100 ± 0 62.54 ± 4.19
70% 100 ± 0 100 ± 0 64.1 ± 1.67
50% 94.96 ± 8.66 100 ± 0 48.3 ± 6.15
25% 81.76 ± 8.44 58.02 ± 10.27 45.34 ± 2.17

The classi�cation results are shown in Table 4.3. The results are similar to those see in

the previous test, initially both TDDL and the proposed method behave similarly. However

there comes a point that TDDL performs poorly while the proposed method still manages

decent performance. In this case TDDL can correctly classify 100% of the data until the

ratio of target to non-target in the positive bag becomes less than 50%. The proposed

algorithm correctly classi�es 100% of the data until this ratio is 70% while at 50% it only

manages 95% correct classi�cation, slightly down from the TDDL algorithm. However at

the last stage the proposed algorithm stays much closer to its original value while TDDL's

classi�cation performance falls much faster.

Here again the multiple instance learning that is introduced into the TDDL method by

the proposed algorithm has allowed it to maintain decent classi�cation performance even

when the targets are mostly composed of non-target elements. In this experiment, the

multiple instance learning helps to give a better estimation of the non-target elements since

they have speci�c dictionary elements. While in the TDDL model the dictionary atoms are

not assigned to be target or non-target and all atoms are shared. This di�erence allows

45

TD-eFUMI to get a much cleaner picture of what the background looks like, allowing for

more possibility of the di�erence in the target elements to be seen and learned.

One �nal test using the synthetic data was to modify the original dictionary that was

used to generate the data so that one of the background elements would look similar to the

target elements. In this test, the same dictionary as before is used except that the fourth

element is now modi�ed so that it is a linear combination of the previous fourth element

and the �rst target dictionary element. Then a mixing term is swept through several values

so that the background element was eventually the same as the target element. Again with

this test the classi�cation performance of the algorithm are the only result that is being

compared. The results for this last test are shown in Table 4.4.

The percentages shown at the top of Table 4.4 indicate how mixed the second target

dictionary is. For example a value of 100% indicates that the second target dictionary atom

is pure, i.e. it looks identical to the one shown in Figure 4.1b. When the value is 50% it

indicates that the second dictionary atom in the dictionary used to make the data is a linear

combination of dictionary atoms one and four with a 50-50 distribution. Then lastly a value

of 0% indicates that the second target atom in the actual dictionary looks identical to actual

background element four.

Table 4.4: Classi�cation performance for varying levels of similarity between one target
dictionary element and one non-target dictionary element. The �rst column shows the
percentage of actual background element in the described true dictionary element. The �rst
value in each table cell is the average percentage of points correctly classi�ed the plus minus
symbol then denotes the standard deviation of the results.

TD-eFUMI TDDL MT-eFUMI

100% 100 ± 0 100 ± 0 60.70 ± 1.45
75% 100 ± 0 100 ± 0 74.88 ± 14.37
50% 98.90 ± 2.46 90.52 ± 13.00 71.22 ± 20.96
25% 93.48 ± 11.05 89.22 ± 14.85 54.46 ± 20.29
0% 78.12 ± 1.18 69.28 ± 1.11 49.42 ± 6.87

In this test both TDDL and TD-eFUMI do slightly worse than in previous tests, but his

46

test is also much more di�cult, as then only manage to maintain 100% correct classi�cation

for the �rst two stages of the test. Again in this test though, the proposed method is able

to hold on longer than TDDL to the better classi�cation performance.

In this experiment the most likely reason that the proposed algorithm does better when

the actual target and non-target atoms are mixed is that the dictionary atoms have assigned

classes for each of the learned dictionary atoms. This allows the proposed method to learn

a much cleaner background than the TDDL method, as stated before, thus making the pro-

posed method more suitable for detecting smaller di�erences between a point that contains

both target and non-target elements.

These results have shown that the proposed algorithm can correctly identify target points

from non-target points even when both are labeled as target.

4.2 Metal Detector Data

The �rst set of real-world data that the proposed method will be implemented on is data

collected from a handheld wideband electromagnetic induction system (WEMI).

4.2.1 Data Set Description

The sensor utilizes WEMI [47] to detect metal objects underground. In particular, the sensor

used to collect the data used for testing records a response over twenty one frequencies. The

sensor is swept over a lane that contains several mine-like objects and other items. The

dataset that is being used here consists of six of these lanes collected from the same location.

The content of the lanes are shown in Table 4.5. The table breaks the objects into �ve types,

metal targets, low-metal targets, non-metal targets, metallic clutter and non-metallic clutter

as these are the main target types in the data.

The frequency response that is measured by the receiver is then a twenty one dimensional

47

Table 4.5: Object description for metal detector dataset. Abbreviations, MT: Metal Target,
LMT: Low-Metal Target, NMT: Non-Metal Target, CL: Clutter.

MT LMT NMT CL

Lane 1 4 7 0 6
Lane 2 4 10 0 4
Lane 3 4 7 0 8
Lane 4 6 6 3 0
Lane 5 7 5 5 0
Lane 6 6 6 2 3
Totals 31 41 10 11

complex vector for each data point. In order to make the vector real and still keep the

imaginary part of the vector intact, the imaginary portion of the vector is moved to the tail

end of the real portion to create a new forty two dimensional real vector.

For this test the proposed algorithm and the two comparison algorithms will be run as

classi�ers on this data. The classi�ers therefore need speci�c points in the data to train on.

For this a prescreener is used to �nd points of interest in the data for the classi�ers to train

on. The prescreener that the algorithms will use is the Joint Orthogonal Matching Pursuits

(JOMP) algorithm described in [1]. This algorithm was brie�y described in Section 2 but as

a review, it is another dictionary based algorithm that used a �xed dictionary that models

what metallic objects look like in the data. The data is then compared to the dictionary

and if they are similar to any of the target elements the point is assigned a high con�dence.

If the data is closest to the background element the con�dence is then set to zero. The

number of alarms from each lane and the totals are shown in Table 4.6.

Then to generate the actual alarms, mean shift [48] was used to cluster the con�dence

maps to �nd the locations where the JOMP algorithm said there were targets. From each

of these points a �xed radius is drawn around the point and all data within the radius is

used to generate the alarms.

48

Table 4.6: Distribution of alarms found by the JOMP prescreener over the six testing lanes.

Target Alarms False Alarms Total Alarms

Lane 1 20 29 49
Lane 2 19 22 41
Lane 3 18 20 38
Lane 4 14 17 31
Lane 5 19 13 32
Lane 6 19 8 27
Totals 109 109 218

4.2.2 Classi�cation

For testing lane based cross validation is used, which means that six fold cross validation is

used. In this way the alarms from one lane are held out from the training data to be used

as the test set, while the alarms from the remaining �ve lanes are combined to generate the

training data.

For classi�cation each classi�er was trained in a binary fashion to be able to classify

points as either target or non-target. The best way to then compare the algorithms is to

then look at the receiver operator characteristic (ROC) curve for each of the algorithms.

The parameters used for the TD-eFUMI algorithm are λ = 0.12, ρ = 0.4, i0 = 3, T = 6,

B = 2, ε = 1, v = 0.001, u = 0.0001, β = 5, and a batch size of 500. These values were

determined through multiple tests of the algorithm.

The smoothness term was used in the testing of the TD-eFUMI algorithm on this data,

the parameter s was set to 0.1. The reason that the term was used here was that the non-

target data for the WEMI data has a very large amount of noise, masking the structure in

many cases. Therefore the algorithm would introduce some of this noise into the dictionary

elements instead of maintaining smooth dictionary elements. Upon adding this term, the

proposed method was again able to learn smooth dictionary elements and perform well in

the classi�cation tasks.

The parameters used for the TDDL algorithm are λ1 = 0.001, λ2 = 0, ρ = 0.25, K = 7,

49

Table 4.7: Similarity table for each of the six folds in the cross validation training. The
Dictionary elements are sorted so that the most similar elements are being compared. The
actual measure shown in the table is the mean squared error between each of the dictionaries.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6

Fold 1 0 0.0529 0.1535 0.1907 0.2008 0.2695
Fold 2 0 0.1333 0.1903 0.2059 0.2245
Fold 3 0 0.0617 0.1543 0.1182
Fold 4 0 0.1294 0.1125
Fold 5 0 0.1830
Fold 6 0

and a batch size of 50. The parameters used for the MT-eFUMI algorithm are again a subset

of the TD-eFUMI parameters.

The di�erences between the dictionaries learned by the proposed method during the

cross validation training are shown in Table 4.7. All of the dictionaries are sorted so the

elements are matched with their closest match in the other dictionaries. The process for

sorting the dictionary elements is a greedy process. The process to sort the dictionaries

to match one another involves picking an initial dictionary to sort the others to match.

Then for each of the other dictionaries the �rst element in the initial dictionary is compared

to all of the dictionary elements of the unsorted dictionaries, the dictionary element from

each unsorted dictionary that best matches, according to euclidean distance, is moved to

match the position of the initial dictionary element. The element is then removed from the

unsorted dictionaries and this process is repeated until all of the dictionary elements have

been sorted.

The mean squared error is computed between all of the matched dictionary elements in

the two dictionaries being compared. The mean squared error leaves eight individual errors

which are then summed together to generate the �nal similarity measure, lower values are

better. The lower left half of the table is left empty as it is just a mirror image of the top

right.

Table 4.7 shows that the dictionaries learned across the separate folds are fairly consistent

50

which would seem to indicate that the dictionary learning aspect of the proposed algorithm

is generalizable to data collected in similar formats.

The �rst test to look at is whether or not the proposed classi�er can improve upon the

prescreeners detection. The two ROC curves for both JOMP and the TD-eFUMI classi�er

are shown in Figure 4.4.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FAR

P
D

JOMP
TD−eFUMI

Figure 4.4: ROC curve comparing the classi�cation performance of TD-eFUMI with the
prescreener that was used to generate alarms.

In the ROC curve it can be seen that the JOMP prescreener starts o� with a detection

rate of around 20% and then slowly increases until it reaches its maximum detection rate

of just over 80%. The classi�er is then ran and should improve upon the results of the

prescreener. When looking at the ROC curve for TD-eFUMI, the ROC curve reaches up to

just shy of 80% very quickly. This test shows that the proposed classi�er can improve the

performance of our detector, since we can move the peak detection rate much further to the

left on the ROC curve.

Now moving on to a direct comparison of the three dictionary learning methods that

51

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FAR

P
D

TD−eFUMI
TDDL
MT−eFUMI

Figure 4.5: ROC curve for TD-eFUMI and other comparison algorithms using the metal
detector data.

have been used and discussed, as comparison. The ROC curves for all of these algorithms

are now shown in Figure 4.5. In this �gure it can be seen that the proposed classi�er does

much better than either of the two classi�ers.

MT-eFUMI is the worst performer of the group of algorithms, the reasoning for this

could be that MT-eFUMI by itself is not a classi�cation algorithm. Therefore, MT-eFUMI

needs a method to use its dictionary to decide if the current point is a target point.

The next step up on the performance list is the TDDL algorithm this algorithm does do

much better than the MT-eFUMI algorithm. Again this algorithm does include a method

to directly use the dictionary for classi�cation purposes. Having this classi�er built directly

into the algorithm obviously is an advantage as TDDL has outperformed MT-eFUMI in

every test so far.

However, both TDDL and MT-eFUMI fail in comparison to the proposed algorithm on

this dataset. This is because the proposed method takes the advantages of both algorithms

52

Table 4.8: Distribution of alarms returned by RX detector on sonar data set.

Object Name Number of Alarms

Non-Target 2223
Block 125
Cone 56
Sphere 66
Torus 33
Pipe 146

Cylinder 667

and combines them, it has the built-in classi�er from the TDDL algorithm and it takes the

multiple instance learning portion from MT-eFUMI to be able to handle uncertainties in

the labeling of training data.

4.3 Sonar Data

The second real data set to be used will be from a synthetic aperture sonar sensor. For this

test TD-eFUMI is compared with TDDL and MT-eFUMI to demonstrate the bene�ts of

combining the two methods has over the two individual methods.

4.3.1 Data Set Description

The data used in the following two experiments consists of 143 sonar images of various sea-

�oor environments and objects added to the scenes. In this set there are 13 di�erent target

con�gurations and 11 di�erent underwater scenes. In each of the images there appear only

4 targets consisting of a subset of block, cone, sphere, torus, pipe, or cylinder.

The images are originally 1800 × 3984 but are cut down to 1800 × 3310 to remove

artifacts from the sonar module. An RX detector [49] was implemented and ran on the

entire image data set generating 3315 alarms. The distribution of these alarms are shown

in Table 4.8. Figure 4.6 shows a selection of the alarms returned from the RX detector.

53

In Figure 4.6, in the examples of the alarms it is possible to see the di�culty in correctly

classifying all of the targets. Many of these targets are very similar to others in the data.

(a) Block (b) Cone (c) Sphere

(d) Torus (e) Pipe (f) Cylinder

Figure 4.6: Example alarms from the RX detector output on the sonar images
.

For the dictionary learning algorithms the image was quantized by re-sampling the image

and keeping every �fth pixel in both the horizontal and vertical dimensions. From these re-

sampled images a patch of size 51 × 51 was extracted from around the alarm location, this

patch was then vectorized to form the new data vector.

4.3.2 Classi�cation Results

Moving on to the classi�cation on the sonar data. For this test the data set is split into two

sections to be used for cross validation testing, two fold cross validation. One set was used

for training while the other was used to test, then the roles of the two sets were reversed and

the results were then combined to create the full results presented in the rest of this section.

Each classi�er was trained in a one versus all manner, so that seven separate dictionaries

54

were trained for each fold in the cross validation.

The parameters used for the TD-eFUMI algorithm are λ = 0.1, ρ = 0.5, i0 = 7, T = 3,

B = 6, ε = 1, v = 0.001, u = 0.0001, β = 5, and a batch size of 25. The smoothness term is

not used for this data. For the TDDL algorithm λ1 = 0.001, λ2 = 0, ρ = 0.25, K = 9, and

a batch size of 50. The setting for MT-eFUMI algorithm were again taken directly from the

TD-eFUMI settings. These values were determined through multiple tests of the algorithm.

An example of one of these dictionaries for each of the three methods are shown in

Figures 4.7, 4.8, 4.9.

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(a) Target Element 1
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(b) Target Element 2
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(c) Target Element 3

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(d) Background Element 1
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(e) Background Element 2
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(f) Background Element 3

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(g) Background Element 4
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(h) Background Element 5
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(i) Background Element 6

Figure 4.7: Example dictionary learned by TD-eFUMI on the sonar data. Dictionary is for
the case when the sphere is the target class.

55

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(a) Element 1
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(b) Element 2
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(c) Element 3

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(d) Element 4
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(e) Element 5
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(f) Element 6

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(g) Element 7
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(h) Element 8
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(i) Element 9

Figure 4.8: Example dictionary learned by TDDL on the sonar data. Dictionary is for the
case when the sphere is the target class.

The dictionary size chosen for this test was nine total elements, three of which were

designated as target while the remaining six were for the non-target class. The dictionary

shown here shows that the data for the the sphere class is very consistent because the three

target dictionary elements are nearly identical. The non-target dictionary elements often

show a single high intensity value at the center of the patch this is probably due to the

fact that nearly all of the alarms returned by the RX detector are centered on the highest

intensity points of the targets.

Another interesting observation about the non-target dictionary is that many of the ele-

56

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(a) Target Element 1
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(b) Target Element 2
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(c) Target Element 3

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(d) Background Element 1
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(e) Background Element 2
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(f) Background Element 3

Figure 4.9: Example dictionary learned by MT-eFUMI on the sonar data. Dictionary is for
the case when the sphere is the target class. There are only six dictionary elements in this
case because in the implementation of MT-eFUMI used here the algorithm is able to discard
dictionary elements it deems an unnecessary.

ments contain lines through the center of the patches. It is likely that these lines correspond

to the di�erent orientations of the other targets in the data.

The proposed algorithm is compared to a kNN classi�er that also takes advantage of

environmental context as described in the technical report in [50]. The results from this

classi�er are shown in Table 4.9, this method achieves an overall accuracy of 86.48%.

The results from the proposed method are shown in Table 4.10, The overall accuracy of

the proposed method is 87.13%.

The two methods perform nearly identically as far as the overall performance goes,

however the kNN classi�er also uses much more information about the environment which

then allows it have di�erent classi�ers based on where the targets are located. The proposed

method achieves the same results without using this additional information. This contextual

information leads to approximately a 10% increase in performance for the kNN classi�er.

57

Table 4.9: Confusion matrix for the previous kNN classi�er for the sonar alarms. Total
classi�cation accuracy is 86.48%.

Class Non-Target Block Cone Sphere Torus Pipe Cylinder

Non-Target 94.49 0.44 0.58 0 0.488 0 4.40
Block 1.6 48.80 0.80 2.40 1.60 0 44.80
Cone 19.64 0 73.21 1.79 0 0 5.34
Sphere 0 0 0 95.46 0 0 4.55
Torus 33.33 0 0 0 66.67 0 0
Pipe 6.45 0 0 0 0 0 93.55

Cylinder 11.37 8.18 0 1.11 0.14 2.64 76.56

Table 4.10: Confusion matrix for the proposed TD-eFUMI classi�er. Total Classi�cation
accuracy is 87.13%.

Class Non-Target Block Cone Sphere Torus Pipe Cylinder

Non-Target 98.75 0 0.46 0 0 0 0.79
Block 16.13 16.13 1.61 3.23 0 7.26 55.65
Cone 20 0 56.36 0 0 0 23.64
Sphere 13.64 1.52 0 83.33 0 0 1.52
Torus 0 0 22.58 45.16 32.26 0 0
Pipe 2.22 0 0 0 0 91.11 6.67

Cylinder 15.26 0.73 0.73 5.52 0 14.34 63.42

58

The proposed method has the advantage that it no longer needs the contextual information

to achieve better results.

Now looking into the individual class classi�cation results. The �rst class to look at is

the non-target class where the kNN classi�er achieved its second highest accuracy at 94.49%

and the proposed TD-eFUMI classi�er achieved it's highest accuracy at 98.75%. This also

happens to be the largest and therefor most important class to get correct in the data set.

The proposed algorithm does much better than the kNN classi�er in this case probably

doe to the more even distribution of the data set in this case. Since the non-target class

is roughly two-thirds of the total dataset the proposed algorithm is much more capable of

learning a dictionary to classify this class very well while sacri�cing some ability to classify

the remaining points.

Another class that the proposed methods stands out in is the Pipe class where the

kNN classi�er could not correctly identify any and the proposed method correctly classi�es

91.11%. This results is somewhat surprising due to the similarities between the Pipe and

the Cylinder classes. An example that shows the similarity between some of these targets

is shown in Figure 4.10

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(a) Pipe alarm
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(b) Cylinder alarm

Figure 4.10: Example of two alarms, one pipe and one cylinder, that are di�cult to distin-
guish.

59

Table 4.11: Confusion matrix for the MT-eFUMI algorithm. Total classi�cation accuracy is
25.34%.

Class Non-Target Block Cone Sphere Torus Pipe Cylinder

Non-Target 29.10 36.95 23.0 2.49 5.08 2.82 0.55
Block 17.74 15.32 0 66.94 0 0 0
Cone 1.82 38.18 21.82 14.55 18.18 0 5.45
Sphere 0 9.09 0 86.36 3.03 0 1.52
Torus 0 0 0 30.30 69.70 0 0
Pipe 55.81 44.19 0 0 0 0 0

Cylinder 22.39 28.81 4.77 28.81 8.99 1.28 4.95

Another matter than cannot be easily measured is that several of the alarms returned

by the RX detector are not necessarily centered over the targets. The proposed method, as

seen on the synthetic data test, can throw these points out as they are not similar to the

other target points. If the patches were guaranteed to be centered over the actual target

center the proposed method's performance should increase again, however that is not the

case here as the classi�er is designed to run on the output of the detector.

Next the proposed method is compared to the two other algorithms used for the previous

experiments, TDDL and MT-eFUMI. The results for both of these are shown in the confusion

matrices in Tables 4.12 and 4.11. The overall accuracies are 84.66% for TDDL and only

25.34% for MT-eFUMI.

The �rst thing to notice here is that MT-eFUMI does not perform very well by itself on

this data. This would indicate that the multiple instance does not really add any bene�t

to this data. However, it can also be observed that the proposed algorithm does slightly

better than the original TDDL algorithm. This indicates that adding eFUMI into the

TDDL algorithm actually helped the classi�cation performance of the algorithm. These two

statements seem to contradict each other. It seems that the multiple instance learning when

not a classi�cation approach is not good e�ective enough for classi�cation tasks. The real

bene�t from the proposed algorithm is that the multiple instance learning is combined with

a classi�cation model that has been proven to work quite well. So it seems that it is the

60

Table 4.12: Confusion matrix for the TDDL algorithm. Total classi�cation accuracy is
84.66%.

Class Non-Target Block Cone Sphere Torus Pipe Cylinder

Non-Target 99.08 0.0 0 0 0.14 0.0 0.69
Block 17.74 3.23 0 3.23 0 0 75.81
Cone 65.45 0 7.27 0 0 0 27.27
Sphere 10.61 13.64 0 71.21 0 0 4.55
Torus 9.09 3.03 0 3.03 69.70 3.03 12.12
Pipe 6.98 0 0 0 0 60.47 32.56

Cylinder 32.29 0.92 0 1.47 0 7.16 58.17

combination of the learned classi�cation model along with the multiple instance model that

actually improve the classi�cation results.

61

Chapter 5

Summary and concluding remarks

This thesis has reviewed previous literature covering a variety of dictionary learning algo-

rithms and methods. The basics of dictionary learning as a simple reconstruction algorithm

along with various methods of sparse coding and dictionary updating. From the simple

dictionary learning models more advanced methods of supervised learning were developed

that could also learn a classi�cation model alongside the dictionary. Another method of

dictionary learning method that was discussed were the functions of multiple instances al-

gorithms which used multiple instance learning in order to learn e�ective dictionaries when

given data with uncertain labels.

The Task Driven Extended Functions of Multiple Instances algorithm was proposed as

a modi�cation of the Task-Driven Dictionary Learning model. The proposed algorithm

incorporates principles from multiple instance learning to add to the classi�cation model

from Task-Driven Dictionary Learning to help the supervised dictionary learning algorithm

become more equipped to handle data with uncertain labels.

The performance of the proposed algorithm has been thoroughly examined on steadily

worsening data and compared this with the Task-Driven Dictionary Learning model. The

proposed algorithm matches the performance of Task-Driven Dictionary Learning whenever

62

the data labels have low levels of uncertainty. Then when the uncertainty of the data

increases the proposed method is able to maintain good classi�cation performance while the

Task-Driven Dictionary Learning method cannot.

The performance of the proposed algorithm was also tested on two separate real world

datasets and its classi�cation performance was compared with that of the Task Driven Dic-

tionary Learning and Multiple Target Extended Functions of Multiple Instances algorithms.

These tests showed that the proposed method could improve upon the Task-Driven Dictio-

nary Learning and Multiple Target Extended Functions of Multiple Instances for multiple

class classi�cation on sonar images and as a classi�er for potential targets in wideband

electromagnetic induction data.

A couple of issues that arose during the testing was that the algorithm had no way

built in to handle data classes that were unbalanced, this is a common problem though so

perhaps not that surprising. Also if there are only small di�erences between the target and

non-target classes the algorithm may struggle to �nd a way to separate these classes.

Future work related to this thesis could be to extend the propose model to be able

to better handle multiple class classi�cation. The original Task-Driven Dictionary Learn-

ing model was able to do multiple class classi�cation via a regression model, adding the

regression model to work with the proposed method would open much wider application

possibilities for the algorithm.

63

Appendix A

Glossary of Symbols

Symbol Meaning

A Matrix of all sparse weight vectors (Dimensions K ×N)

B Bag indicator

D Dictionary (Dimensions L×K)

E Stopping criteria

F Objective function

I Maximum number of iterations

K Total number of dictionary elements

L Length of feature vector x

M Number of non-target dictionary elements

N Number of data points

P Probability function

T Number of target dictionary elements

X Matrix of all data points (Dimensions L×N)

d Dictionary element

64

d(T) Target Dictionary element

d(NT) Non-Target Dictionary element

em Error term for non-target dictionary elements

et Error term for target dictionary elements

i Iteration counter (Can also be a subscript indicator)

j Subscript for jth bag

k Subscript for kth dictionary element

l Subscript for lth dimension of the data

m Subscript for mth non-target dictionary element

m0 Any speci�c non-target dictionary index

n Subscript for nth data point

s Parameter for smoothing dictionary elements

t Subscript for tth target dictionary element

t0 Any speci�c target dictionary index

u
Parameter for controlling tradeo� between error term and

constraints in the objective function

v Parameter for regularizing w

w Model parameter vector (Dimensions K × 1)

x Input data point (Dimensions L× 1)

z Latent class indicator variable (0 or 1)

z′ Estimated class label (-1 or 1)

α Sparse weight vector (Dimensions K × 1)

α∗ Optimal sparse weight vector (Dimensions K × 1)

β Probability scaling parameter

δ Importance factor term

ε Tuning parameter for δ function

65

λ Sparsity Promoting parameter

µ0 Global data mean (Dimensions L× 1)

ρ Learning rate parameter

66

Appendix B

Full Derivation Details

In this appendix the full details of the derivations are presented in order to make the methods

section more readable. With the readability in mind the notation for a target dictionary

element will be shorted from d
(T)
t to dt and the notation for the non-target dictionary

element will be similar, d(NT)
m becomes dm.

B.1 Expectation of F

Below are the steps needed to derived the expectation of the main objective function. The

main steps here are to evaluate the expectation operator and then to simplify the resulting

expression. The regularization terms are not included in this section because they are not a

part of the expectation.

67

F(w,xn,D) = Ez
[

(1− u)δ

2

(
z′n −wᵀα∗n

)2]
(B.1)

=
(1− u)δ

2
(P (z = 1)(1−wᵀα∗n)2 + P (z = 0)(−1−wᵀα∗n)2) (B.2)

=
(1− u)δ

2
[P (z = 1)(1− 2wᵀαn + (wᵀαn)2)

+(P (z = 0)(1 + 2wᵀαn + (wᵀαn)2))]

(B.3)

=
(1− u)δ

2
[P (z = 1)− 2P (z = 1)wᵀαn + P (z = 1)(wᵀαn)2

+ P (z = 0) + 2P (z = 0)wᵀαn + P (z = 0)(wᵀαn)2]

(B.4)

=
(1− u)δ

2
[P (z = 1) + P (z = 0)− 2P (z = 1)wᵀαn

+ 2P (z = 0)wᵀαn + P (z = 1)(wᵀαn)2 + P (z = 0)(wᵀαn)2]

(B.5)

=
(1− u)δ

2
[1 + 2(P (z = 0)− P (z = 1))wᵀαn + (wᵀαn)2] (B.6)

=
(1− u)δ

2
[1 + 2(1− 2P (z = 1))wᵀαn + (wᵀαn)2] (B.7)

B.2 Closed Forms of α

Below are the steps required to compute the closed form solution of Equation 3.5 for both

the target and non-target sparse weights. The process followed for both of these expressions

is to �nd the point where Equation 3.5 is at a minimum. In order to do this we can �nd the

gradient of Equation 3.5 and set this value equal to zero, since it is assumed to be convex,

and solve for αnt0 and αnm0 .

68

∂

∂αt0

P (z = 1)

2

∥∥∥∥∥xn −
T∑
t

αntdt −
M∑
m

αnmdm

∥∥∥∥∥
2

2

+
P (z = 0)

2

∥∥∥∥∥xn −
M∑
m

αnmdm

∥∥∥∥∥
2

2

+ λ‖αn‖1

 (B.8)

=
∂

∂αt0

P (z = 1)

2

∥∥∥∥∥xn −
T∑
t

αntdt −
M∑
m

αnmdm

∥∥∥∥∥
2

2

+ λ‖αn‖1

 (B.9)

= P (z = 1)dᵀt0

(
xn −

T∑
t

αntdt −
M∑
m

αnmdm

)
+ λsign(αnt0). (B.10)

Now setting equal to zero and solving for αnt0 ,

0 = P (z = 1)dᵀt0

(
xn −

T∑
t

αntdt −
M∑
m

αnmdm

)
+ λsign(αnt0) (B.11)

P (z = 1)dᵀt0αnt0dt0 = P (z = 1)dᵀt0

xn − T∑
t,t6=t0

αntdt −
M∑
m

αnmdm

+ λsign(αnt0)

(B.12)

αnt0
= (P (z = 1) dᵀt0dt0

)−1

(
P (z = 1)dᵀt0xn − T∑

t,t 6=t0

αntdt −
M∑
m

αnmdm

+ λsign(αnt0)

(B.13)

69

And following the same steps for αm0

∂

∂αm0

P (z = 1)

2

∥∥∥∥∥xn −
T∑
t

αntdt −
M∑
m

αnmdm

∥∥∥∥∥
2

2

+
P (z = 0)

2

∥∥∥∥∥xn −
M∑
m

αnmdm

∥∥∥∥∥
2

2

+ λ‖αn‖1

 (B.14)

= P (z = 1)dᵀm0

(
xn −

T∑
t

αntdt −
M∑
m

αnmdm

)

+ P (z = 0)dᵀm0

(
xn −

M∑
m

αnmdm

)
+ λsign(αm0)

(B.15)

= P (z = 1)dᵀm0xn−P (z = 1)dᵀm0

T∑
t

αntdt − P (z = 1)dᵀm0

M∑
m

αnmdm

+ P (z = 0)dᵀm0xn − P (z = 0)dᵀm0

M∑
m

αnmdm + λsign(αm0)

(B.16)

= P (z = 1)dᵀm0xn + P (z = 0)dᵀm0xn − P (z = 1)dᵀm0

T∑
t

αntdt

− P (z = 1)dᵀm0

M∑
m

αnmdm − P (z = 0)dᵀm0

M∑
m

αnmdm + λsign(αm0)

(B.17)

= dᵀm0
xn − dᵀm0

∑
αnmdm − P (z = 1)dᵀm0

T∑
t

αntdt + λsign(αm0) (B.18)

70

Now setting equal to zero and solving for αm0 again

0 = dᵀm0
xn − dᵀm0

M∑
m

αnmdm − P (z = 1)dᵀm0

T∑
t

αntdt + λsign(αm0) (B.19)

dᵀm0
αnm0dm0 = dᵀm0

xn − dᵀm0

M∑
m,m 6=m0

αnmdm − P (z = 1)dᵀm0

T∑
t

αntdt + λsign(αm0)

(B.20)

αnm0 =
(
dᵀm0

dm0

)−1

dᵀm0
xn − dᵀm0

M∑
m,m 6=m0

αnmdm

−P (z = 1)dᵀm0

T∑
t

αntdt + λsign(αm0)

) (B.21)

B.3 Gradient of F

Now that we have expressions for the subfunctions of the main objective function in Equation

3.3, the gradient of the objective function can be derived. Below is this derivation, while the

derivation is quite long chain rule is used for the majority of the derivation. The smoothness

term is not included here because it is derived and explained in the main text of Section 3.3

71

∇dk
(

(1− u)δ

2
[1 + 2(1− 2P (z = 1))wᵀαn + (wᵀαn)2]

+
u

2

(
T∑
t=1

‖dt − µ0‖22 +

k∑
k=1

‖dk − µ0‖22

)
+
v

2
‖w‖22

) (B.22)

= ∇dk
(

(1− u)δ

2
[1 + 2(1− 2P (z = 1))wᵀαn + (wᵀαn)2]

+
u

2

(
T∑
t=1

‖dt − µ0‖22 +

k∑
k=1

‖dk − µ0‖22

)) (B.23)

=
(1− u)δ

2
∇dk

(
1 + 2(1− 2P (z = 1))wᵀαn + (wᵀαn)2

)
+ u(dk − µ0) (B.24)

=
(1− u)δ

2

(
2(1− 2P (z = 1))∇dkw

ᵀαn +∇dk(wᵀαn)2
)

+ u(dk − µ0) (B.25)

=
(1− u)δ

2

(
2(1− 2P (z = 1))∇αnk

(wᵀαn)∇dtαnk +∇αnk
(wᵀαn)2∇dkαnk

)
+ u(dk − µ0)

(B.26)

=
(1− u)δ

2
(2(1− 2P (z = 1))wk∇dkαnk + 2(wᵀαn)wk∇dkαnk) + u(dk − µ0) (B.27)

72

To �nish the derivation the gradient of both αnt and αnm need to be derived. For αnt

∇dtαnt0 = ∇dt (P (z = 1) dᵀt0dt0
)−1

(
P (z = 1)dᵀt0xn − T∑

t,t 6=t0

αntdt −
M∑
m

αnmdm

+ λsign(αnt0)

 (B.28)

Let et =

xn − T∑
t,t 6=t0

αntdt −
M∑
m

αnmdm

 be the residual error

= ∇dt
(
P (z = 1)dᵀt0dt0

)−1 (
P (z = 1)dᵀt0et + λsign(αnt0)

)
(B.29)

=
(
∇dt

(
P (z = 1)dᵀt0dt0

)−1
) (
P (z = 1)dᵀt0et + λsign(αnt0)

)
+
(
P (z = 1)dᵀt0dt0

)−1∇dt
(
P (z = 1)dᵀt0et + λsign(αnt0)

) (B.30)

=
−2dt0

P (z = 1)(dᵀt0dt0)2

(
P (z = 1)dᵀt0et + λsign(αnt0)

)
+
(
P (z = 1)dᵀt0dt0

)−1
et,

(B.31)

73

and for αnm

∇dm0
αnm0

= ∇dm0

(dᵀm0
dm0

)−1

dᵀm0
xn − dᵀm0

M∑
m,m 6=m0

αnmdm

− P (z = 1)dᵀm0

T∑
t

αntdt + λsign(αm0)

)) (B.32)

= ∇dm0

(dᵀm0
dm0

)−1

dᵀm0

xn − M∑
m,m 6=m0

αnmdm

− P (z = 1)

T∑
t

αntdt

)
+ λsign(αm0)

)) (B.33)

Let em =

xn − M∑
m,m 6=m0

αnmdm − P (z = 1)
T∑
t

αntdt

 be the residual error

= ∇dm
(
dᵀm0

dm0

)−1 (
P (z = 1)dᵀm0

em + λsign(αnm0)
)

(B.34)

=
(
∇dm0

(dᵀm0
dm0)−1

) (
P (z = 1)dᵀm0

em + λsign(αnm0)
)

+ (dᵀm0
dm0)−1

(
∇dm0

P (z = 1)dᵀm0
em + λsign(αnm0)

)
(B.35)

=
−2dm0

(dᵀm0dm0)2

(
P (z = 1)dᵀm0

em + λsign(αnm0)
)

+ (dᵀm0
dm0)−1em (B.36)

74

Appendix C

Additional Results

This appendix contains the complete set of results that were mentioned throughout the rest

of the thesis.

C.1 Sonar Data

Below are the remaining six dictionaries that were created in the one versus all classi�cation

scheme that was used for the Sonar classi�cation results.

75

C.1.1 TD-eFUMI

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(a) Target Element 1
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(b) Target Element 2
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(c) Target Element 3

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(d) Background Element 1
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(e) Background Element 2
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(f) Background Element 3

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(g) Background Element 4
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(h) Background Element 5
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(i) Background Element 6

Figure C.1: TD-eFUMI dictionary for one versus all classi�cation when the non-target class
is the target class.

76

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(a) Target Element 1
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(b) Target Element 2
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(c) Target Element 3

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(d) Background Element 1
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(e) Background Element 2
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(f) Background Element 3

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(g) Background Element 4
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(h) Background Element 5
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(i) Background Element 6

Figure C.2: TD-eFUMI dictionary for one versus all classi�cation when the block class is
the target class.

77

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(a) Target Element 1
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(b) Target Element 2
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(c) Target Element 3

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(d) Background Element 1
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(e) Background Element 2
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(f) Background Element 3

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(g) Background Element 4
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(h) Background Element 5
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(i) Background Element 6

Figure C.3: TD-eFUMI dictionary for one versus all classi�cation when the cone class is the
target class.

78

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(a) Target Element 1
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(b) Target Element 2
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(c) Target Element 3

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(d) Background Element 1
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(e) Background Element 2
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(f) Background Element 3

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(g) Background Element 4
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(h) Background Element 5
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(i) Background Element 6

Figure C.4: TD-eFUMI dictionary for one versus all classi�cation when the Torus class is
the target class.

79

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(a) Target Element 1
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(b) Target Element 2
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(c) Target Element 3

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(d) Background Element 1
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(e) Background Element 2
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(f) Background Element 3

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(g) Background Element 4
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(h) Background Element 5
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(i) Background Element 6

Figure C.5: TD-eFUMI dictionary for one versus all classi�cation when the Pipe class is the
target class.

80

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(a) Target Element 1
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(b) Target Element 2
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(c) Target Element 3

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(d) Background Element 1
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(e) Background Element 2
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(f) Background Element 3

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(g) Background Element 4
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(h) Background Element 5
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(i) Background Element 6

Figure C.6: TD-eFUMI dictionary for one versus all classi�cation when the Cylinder class
is the target class.

81

C.1.2 TDDL

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(a) Target Element 1
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(b) Target Element 2
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(c) Target Element 3

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(d) Background Element 1
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(e) Background Element 2
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(f) Background Element 3

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(g) Background Element 4
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(h) Background Element 5
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(i) Background Element 6

Figure C.7: TDDL dictionary for one versus all classi�cation when the non-target class is
the target class.

82

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(a) Target Element 1
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(b) Target Element 2
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(c) Target Element 3

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(d) Background Element 1
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(e) Background Element 2
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(f) Background Element 3

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(g) Background Element 4
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(h) Background Element 5
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(i) Background Element 6

Figure C.8: TDDL dictionary for one versus all classi�cation when the block class is the
target class.

83

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(a) Target Element 1
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(b) Target Element 2
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(c) Target Element 3

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(d) Background Element 1
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(e) Background Element 2
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(f) Background Element 3

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(g) Background Element 4
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(h) Background Element 5
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(i) Background Element 6

Figure C.9: TDDL dictionary for one versus all classi�cation when the cone class is the
target class.

84

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(a) Target Element 1
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(b) Target Element 2
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(c) Target Element 3

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(d) Background Element 1
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(e) Background Element 2
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(f) Background Element 3

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(g) Background Element 4
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(h) Background Element 5
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(i) Background Element 6

Figure C.10: TDDL dictionary for one versus all classi�cation when the Torus class is the
target class.

85

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(a) Target Element 1
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(b) Target Element 2
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(c) Target Element 3

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(d) Background Element 1
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(e) Background Element 2
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(f) Background Element 3

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(g) Background Element 4
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(h) Background Element 5
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(i) Background Element 6

Figure C.11: TDDL dictionary for one versus all classi�cation when the Pipe class is the
target class.

86

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(a) Target Element 1
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(b) Target Element 2
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(c) Target Element 3

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(d) Background Element 1
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(e) Background Element 2
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(f) Background Element 3

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(g) Background Element 4
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(h) Background Element 5
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(i) Background Element 6

Figure C.12: TDDL dictionary for one versus all classi�cation when the Cylinder class is
the target class.

87

C.1.3 MT-eFUMI

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(a) Target Element 1
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(b) Target Element 2
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(c) Target Element 3

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(d) Background Element 1
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(e) Background Element 2
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(f) Background Element 3

Figure C.13: MT-eFUMI dictionary for one versus all classi�cation when the non-target
class is the target class.

88

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(a) Target Element 1
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(b) Target Element 2
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(c) Target Element 3

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(d) Background Element 1
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(e) Background Element 2

Figure C.14: MT-eFUMI dictionary for one versus all classi�cation when the block class is
the target class.

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(a) Target Element 1
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(b) Target Element 2
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(c) Target Element 3

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(d) Background Element 1
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(e) Background Element 2

Figure C.15: MT-eFUMI dictionary for one versus all classi�cation when the cone class is
the target class.

89

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(a) Target Element 1
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(b) Target Element 2
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(c) Target Element 3

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(d) Background Element 1
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(e) Background Element 2

Figure C.16: MT-eFUMI dictionary for one versus all classi�cation when the Torus class is
the target class.

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(a) Target Element 1
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(b) Target Element 2
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(c) Target Element 3

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(d) Background Element 1
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(e) Background Element 2
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(f) Background Element 3

Figure C.17: MT-eFUMI dictionary for one versus all classi�cation when the Pipe class is
the target class.

90

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(a) Target Element 1
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(b) Target Element 2
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(c) Target Element 3

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(d) Background Element 1
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(e) Background Element 2
5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

(f) Background Element 3

Figure C.18: MT-eFUMI dictionary for one versus all classi�cation when the Cylinder class
is the target class.

91

Bibliography

[1] Sean Goldberg, Taylor Glenn, Joseph N. Wilson, and Paul D. Gader. Landmine detec-

tion using two-tapped joint orthogonal matching pursuits. Proc. SPIE, 8357:83570B�

83570B�8, 2012.

[2] I Tosic and P. Frossard. Dictionary learning. Signal Processing Magazine, IEEE,

28(2):27�38, March 2011.

[3] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online dictionary

learning for sparse coding. In Proceedings of the 26th Annual International Conference

on Machine Learning, ICML '09, pages 689�696, New York, NY, USA, 2009. ACM.

[4] V. Patel, Yonggang Shi, P.M. Thompson, and A.W. Toga. K-svd for hardi denoising.

In Biomedical Imaging: From Nano to Macro, 2011 IEEE International Symposium on,

pages 1805�1808, March 2011.

[5] J.J. Fuchs. Recovery of exact sparse representations in the presence of bounded noise.

Information Theory, IEEE Transactions on, 51(10):3601�3608, Oct 2005.

[6] J.-J. Fuchs. Recovery of exact sparse representations in the presence of noise. In

Acoustics, Speech, and Signal Processing, 2004. Proceedings. (ICASSP '04). IEEE In-

ternational Conference on, volume 2, pages ii�533�6 vol.2, May 2004.

92

[7] J. Mairal, F. Bach, and J. Ponce. Task-driven dictionary learning. Pattern Analysis

and Machine Intelligence, IEEE Transactions on, 34(4):791�804, April 2012.

[8] A. Shrivastava, J.K. Pillai, V.M. Patel, and R. Chellappa. Learning discriminative

dictionaries with partially labeled data. In Image Processing (ICIP), 2012 19th IEEE

International Conference on, pages 3113�3116, Sept 2012.

[9] Yi-Chen Chen, V.M. Patel, R. Chellappa, and P.J. Phillips. Ambiguously labeled

learning using dictionaries. Information Forensics and Security, IEEE Transactions

on, 9(12):2076�2088, Dec 2014.

[10] Jaume Amores. Multiple instance classi�cation: Review, taxonomy and comparative

study. Arti�cial Intelligence, 201(0):81 � 105, 2013.

[11] A. Zare and C. Jiao. Extended functions of multiple instances for target characteriza-

tion. In 6th IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution

in Remote Sensing (WHISPERS), June 2014.

[12] Alina Zare, Matthew Cook, Brendan Alvey, and Dominic K. Ho. Multiple instance

dictionary learning for subsurface object detection using handheld emi. Proc. SPIE,

9454:94540G�94540G�8, 2015.

[13] Jianchao Yang, Jiangping Wang, and T. Huang. Learning the sparse representation for

classi�cation. In Multimedia and Expo (ICME), 2011 IEEE International Conference

on, pages 1�6, July 2011.

[14] Zhong Zhao and Guocan Feng. A dictionary-based algorithm for dimensionality reduc-

tion and data reconstruction. In Pattern Recognition (ICPR), 2014 22nd International

Conference on, pages 1556�1561, Aug 2014.

93

[15] K.K. Herrity, A.C. Gilbert, and J.A. Tropp. Sparse approximation via iterative thresh-

olding. In Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings.

2006 IEEE International Conference on, volume 3, pages III�III, May 2006.

[16] Y.C. Pati, R. Rezaiifar, and P.S. Krishnaprasad. Orthogonal matching pursuit: recur-

sive function approximation with applications to wavelet decomposition. In Signals,

Systems and Computers, 1993. 1993 Conference Record of The Twenty-Seventh Asilo-

mar Conference on, pages 40�44 vol.1, Nov 1993.

[17] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net.

Journal of the Royal Statistical Society, Series B, 67:301�320, 2005.

[18] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Annals of

Statistics, 32(2):407�499, 2004.

[19] K. Engan, S.O. Aase, and J. Hakon Husoy. Method of optimal directions for frame

design. In Acoustics, Speech, and Signal Processing, 1999. Proceedings., 1999 IEEE

International Conference on, volume 5, pages 2443�2446 vol.5, 1999.

[20] M. Aharon, M. Elad, and A. Bruckstein. k -svd: An algorithm for designing overcom-

plete dictionaries for sparse representation. Signal Processing, IEEE Transactions on,

54(11):4311�4322, Nov 2006.

[21] G.H. Golub and C. Reinsch. Singular value decomposition and least squares solutions.

Numerische Mathematik, 14(5):403�420, 1970.

[22] F. Pourkamali Anaraki and S.M. Hughes. Compressive k-svd. In Acoustics, Speech and

Signal Processing (ICASSP), 2013 IEEE International Conference on, pages 5469�5473,

May 2013.

94

[23] Zhuolin Jiang, Zhe Lin, and L.S. Davis. Learning a discriminative dictionary for sparse

coding via label consistent k-svd. In Computer Vision and Pattern Recognition (CVPR),

2011 IEEE Conference on, pages 1697�1704, June 2011.

[24] Zhuolin Jiang, Zhe Lin, and L.S. Davis. Label consistent k-svd: Learning a discrim-

inative dictionary for recognition. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 35(11):2651�2664, Nov 2013.

[25] Bin Shan, Wei Hao, and Rui Zhao. Infrared image de-noising based on k-svd over-

complete dictionaries learning. In Image and Signal Processing (CISP), 2012 5th In-

ternational Congress on, pages 316�320, Oct 2012.

[26] Léon Bottou. Stochastic learning. In Olivier Bousquet and Ulrike von Luxburg, edi-

tors, Advanced Lectures on Machine Learning, Lecture Notes in Arti�cial Intelligence,

LNAI 3176, pages 146�168. Springer Verlag, Berlin, 2004.

[27] Lang Chen and Jianjun Wang. Dictionary learning with weighted stochastic gradient

descent. In Computational Problem-Solving (ICCP), 2012 International Conference on,

pages 9�12, Oct 2012.

[28] K. Labusch, E. Barth, and T. Martinetz. Robust and fast learning of sparse codes

with stochastic gradient descent. Selected Topics in Signal Processing, IEEE Journal

of, 5(5):1048�1060, Sept 2011.

[29] Chih jen Lin. Projected gradient methods for non-negative matrix factorization. Tech-

nical report, Neural Computation, 2007.

[30] G. Monaci and P. Vandergheynst. Learning structured dictionaries for image repre-

sentation. In Image Processing, 2004. ICIP '04. 2004 International Conference on,

volume 4, pages 2351�2354 Vol. 4, Oct 2004.

95

[31] M. Nazzal and H. Ozkaramanli. Improved single image super-resolution using spar-

sity and structured dictionary learning in wavelet domain. In Signal Processing and

Communications Applications Conference (SIU), 2013 21st, pages 1�4, April 2013.

[32] Xuan Zhang, Xiaowen Dong, and P. Frossard. Learning of structured graph dictionar-

ies. In Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International

Conference on, pages 3373�3376, March 2012.

[33] Ze-Min Cai and Jian-Huang Lai. Ibp-svd: A practical method for learning adaptive

dictionaries for image de-noising. In Wavelet Analysis and Pattern Recognition, 2007.

ICWAPR '07. International Conference on, volume 2, pages 641�646, Nov 2007.

[34] A. Cherian, S. Sra, and N. Papanikolopoulos. Denoising sparse noise via online dic-

tionary learning. In Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE

International Conference on, pages 2060�2063, May 2011.

[35] S. Zubair and Wenwu Wang. Audio classi�cation based on sparse coe�cients. In Sensor

Signal Processing for Defence (SSPD 2011), pages 1�5, Sept 2011.

[36] Jiang Chen, Mu Zhichun, Zhang Baoqing, and Zhang Jin. Ear recognition via sparse

representation over learned dictionary. In Control and Decision Conference (CCDC),

2013 25th Chinese, pages 1487�1491, May 2013.

[37] Karin Schnass and P. Vandergheynst. Dictionary learning based dimensionality re-

duction for classi�cation. In Communications, Control and Signal Processing, 2008.

ISCCSP 2008. 3rd International Symposium on, pages 780�785, March 2008.

[38] Yifeng Li and A. Ngom. Supervised dictionary learning via non-negative matrix factor-

ization for classi�cation. In Machine Learning and Applications (ICMLA), 2012 11th

International Conference on, volume 1, pages 439�443, Dec 2012.

96

[39] Julien Mairal, Francis Bach, Jean Ponce, Guillermo Sapiro, Andrew Zisserman, Thème

Cog, Julien Mairal, Francis Bach, Jean Ponce, Guillermo Sapiro, Andrew Zisserman,

Équipes projets Willow, and Ecole Normale Supérieure. Supervised dictionary learning,

2008.

[40] M.J. Gangeh, A. Ghodsi, and M.S. Kamel. Kernelized supervised dictionary learning.

Signal Processing, IEEE Transactions on, 61(19):4753�4767, Oct 2013.

[41] Xiao-Chen Lian, Zhiwei Li, Changhu Wang, Bao-Liang Lu, and Lei Zhang. Probabilistic

models for supervised dictionary learning. In Computer Vision and Pattern Recognition

(CVPR), 2010 IEEE Conference on, pages 2305�2312, June 2010.

[42] B.G. Vijay Kumar and I. Patras. Supervised dictionary learning for action localiza-

tion. In Automatic Face and Gesture Recognition (FG), 2013 10th IEEE International

Conference and Workshops on, pages 1�8, April 2013.

[43] M.J. Gangeh, P. Fewzee, A. Ghodsi, M.S. Kamel, and F. Karray. Multiview super-

vised dictionary learning in speech emotion recognition. Audio, Speech, and Language

Processing, IEEE/ACM Transactions on, 22(6):1056�1068, June 2014.

[44] Hua Wang, Feiping Nie, Weidong Cai, and Heng Huang. Semi-supervised robust dic-

tionary learning via e�cient l-norms minimization. In Computer Vision (ICCV), 2013

IEEE International Conference on, pages 1145�1152, Dec 2013.

[45] A. Zare and P. Gader. Pattern recognition using functions of multiple instances. In

Pattern Recognition (ICPR), 2010 20th International Conference on, pages 1092�1095,

Aug 2010.

[46] A. Zare, P. Gader, J. Bolton, S. Yuksel, T. Dubroca, R. Close, and R. Hummel. Sub-

pixel target spectra estimation and detection using functions of multiple instances.

97

In Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHIS-

PERS), 2011 3rd Workshop on, pages 1�4, June 2011.

[47] W.R. Scott. Broadband electromagnetic induction sensor for detecting buried land-

mines. In Geoscience and Remote Sensing Symposium, 2007. IGARSS 2007. IEEE

International, pages 22�25, July 2007.

[48] Yizong Cheng. Mean shift, mode seeking, and clustering. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, 17(8):790�799, Aug 1995.

[49] Irving S. Reed and Xiaoli Yu. Adaptive multiple-band cfar detection of an optical

pattern with unknown spectral distribution. Acoustics, Speech and Signal Processing,

IEEE Transactions on, 38(10):1760�1770, Oct 1990.

[50] X. Du, A. Seethepalli, H. Sun, and A. Zare. Final report: Environmentally-adaptive

target recognition systems. Technical report, TigerSense: The Machine Learning and

Sensing Laboratory University of Missouri, Columbia, 2015.

98

	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	Introduction
	Dictionary Learning
	Problem Statement

	Literature Review
	Sparse Coding
	Dictionary Update
	Applications of Dictionary Learning
	Supervised Dictionary Learning
	Task-Driven Dictionary Learning
	Semi-Supervised Dictionary Learning
	Functions of Multiple Instance (FUMI)

	Proposed Method
	Generation of the Objective Function
	General Overview
	Derivation
	Algorithm
	Parameters

	Experiments
	Synthetic Data
	Data Set Description
	Testing the Sparse Coder
	Breakdown Testing

	Metal Detector Data
	Data Set Description
	Classification

	Sonar Data
	Data Set Description
	Classification Results

	Summary and concluding remarks
	Glossary of Symbols
	Full Derivation Details
	Expectation of F
	Closed Forms of a
	Gradient of F

	Additional Results
	Sonar Data
	TD-eFUMI
	TDDL
	MT-eFUMI

	BIBLIOGRAPHY

