JUNE, 1954

UNIVERSITY OF MISSOURI COLLEGE OF AGRICULTURE

AGRICULTURAL EXPERIMENT STATION

J. H. LONGWELL, Director

Environmental Physiology

With Special Reference to Domestic Animals

XXVII. Influence of Wind on Heat Exchange and Body Temperature Regulation in Jersey, Holstein, Brown Swiss, and Brahman Cattle

H. H. KIBLER and SAMUEL BRODY

(PUBLICATION AUTHORIZED MAY 31, 1954)

COLUMBIA, MISSOURI

CONTENTS

Acknowledgments Pag	e 2
Foreword	3
Interrelations Between Climatic Factors	3
Experiment	6
Discussion of Results	8
Rectal Temperature	8
Heat Production	9
Pulse Rate	14
Respiratory Rate, Pulmonary Ventilation Rate, and Respira-	
tory Evaporative Cooling	14
Evaporative Cooling from the Skin	19
Non-Evaporative Heat Losses	23
Summary	24
References	25
Appendix	26

ACKNOWLEDGMENTS

This bulletin is a partial report on a broad cooperative investigation between the Departments of Dairy Husbandry and Agricultural Engineering of the Missouri Agricultural Experiment Station, University of Missouri, and the Agricultural Research Service, U. S. Department of Agriculture. It is a report on Department of Dairy Husbandry research project number 125 entitled "Climatic Factors."

Grateful acknowledgments are made to all persons associated with this project, especially to A. C. Ragsdale, Department of Dairy Husbandry, University of Missouri, for selection of the animals, their management, and for counsel on the dairy aspects; Harold J. Thompson, Agricultural Engineer, Agricultural Engineering Branch, Agricultural Research Service, U. S. Department of Agriculture, and M. M. Jones, Department of Agricultural Engineering, for cooperation on the engineering aspects; and to Orley J. Miller, Metabolic Technician, Missouri Agricultural Experiment Station and Agricultural Research Service, U.S.D.A., for aid in taking metabolism measurements and maintenance of equipment. Also to H. L. Dannen, Dannen Mills, St. Joseph, Mo., for furnishing the Brown Swiss cattle used in this investigation.

Environmental Physiology

With Special Reference to Domestic Animals

XXVII. Influence of Wind on Heat Exchange and Body Temperature Regulation in Jersey, Holstein, Brown Swiss, and Brahman Cattle

H. H. KIBLER and SAMUEL BRODY

Preceding bulletins in this series^{*1} reported data on the effects of changes in temperature and humidity on cattle. This is one of several survey bulletins reporting the influence on cattle of wind or air velocity at various air temperature. One research bulletin₂ presented data on feed, water consumption, milk production, and body weight. A thesis by R. G. Yeck³ presented data on insensible weight loss and total evaporative cooling. Another research bulletin⁴ presented data on surface temperature, insensible weight loss, and total evaporative cooling of the same animals. Another,⁵ to be reported by H. J. Thompson, will describe the equipment used in controlling air velocity and other environmental factors. This bulletin presents data on the effect of wind on respiration rate, pulse rate, pulmonary ventilation rate, rectal temperature, heat production, evaporative cooling from the respiratory tract, evaporative cooling from the outer surface, and total non-evaporative cooling.

INTERRELATIONS BETWEEN CLIMATIC FACTORS

In the experiments to determine the physiological effects of climate, the temperature, humidity, and air velocity were varied in turn. However, it is desirable to know the response to combinations of all three factors. Environments may have the same physiologically effective temperature despite quite different relations between temperature, humidity, and wind.

The comfort zone worked out by air conditioning engineers for man is based on his subjective feeling of comfort when exposed to

^{*}References are listed at the end of the bulletin. A list of bulletins in the Environmental Physiology and Shelter Engineering series published up to 1952 is included in Mo. Agr. Exp. Sta. Res. Bul. 497.

various combinations of dry-bulb temperature, humidity, and air velocity. If a criterion of comfort based on measurements instead of feelings could be established, it would be possible to determine a "comfort zone" for cattle. In the preceding report,⁶ it was shown that the "thermoneutrality" zone for lactating dairy cows was between 40° and 60° F. Undoubtedly cattle are comfortable within these narrow limits where their heat production is minimal.* It seems probable. however, that their "comfort zone" extends beyond these limits. The rectal temperature does not rise at environmental temperatures below 70° to 80° F,7,8 and feed consumption and milk production9,10 apparently do not decrease before this rise occurs. These facts indicate that rectal temperature measurements should be given considerable weight in determining the upper limits of the "comfort zone." At lower temperatures, rectal temperature may not be as good an index of comfort, since heat production rises and milk production may be depressed before rectal temperature falls below normal values.

Although still somewhat tentative because of unmeasured areas, the shaded section of Figure 1 shows the zone of normal rectal temperature for lactating Jersey, Holstein, and Brown Swiss cows. These data include measurements made during earlier temperature and humidity experiments in which the air velocity was constant at about 0.5 mph. The present data — indicated by the short dashed lines to the right of the shaded zone — show that wind at velocities of 7 to 10 mph enabled the different breeds to maintain normal body temperature during exposure to heat stress that would normally have caused a rise in body temperature. Wind tends to widen the "comfort zone" at high air temperatures below rectal temperature where cooling is beneficial but it tends, as will be shown later, to narrow the "comfort zone" at low temperature, where cooling is detrimental.

An analysis of the relation between wind and heat loss from cows is complicated by the interaction of several factors. Convective cooling rises with increasing air velocity but, in so doing, lowers the temperature of the outer surface of the animal, causing decreases in the losses by radiation, conduction, and outer surface vaporization. The convective cooling of the outer surface also reduces evaporative cooling from the respiratory tract by reducing respiration rate and pulmonary ventilation rate. These relations will be discussed in greater detail in connection with the presentation of the data.

The relation between wind and heat loss by convection is quite involved (even when considered separately from radiation and vapori-

^{*}Minimal for conditions of normal rectal temperature. Heat production is depressed still lower when continued exposure to hot conditions increases rectal temperature.

Fig. 1 — The zone of normal rectal temperature in dairy cows as affected by environmental temperature, humidity and air velocity. Dairy cows which were kept in an air conditioned chamber where the air velocity was 0.5 miles per hour maintained normal rectal temperatures during continuous exposure (24 hours a day for periods up to 2 weeks) to the range of environmental temperatures and humidities included in the shaded area of Fig. 1. By increasing the air velocity up to 6 to 10 miles per hour they were able to maintain normal body temperature during exposure to even more severe conditions, as indicated by the four dashed lines to the right of the shaded area. Additional data are needed to establish the exact boundaries for all conditions especially for extremely high and low relative humidity, and for temperatures below $5^{\circ}F$ (- $15^{\circ}C$). zation) if all the environmental and physiological factors are considered.¹¹ Gagge and associates,¹² using men as subjects, expressed this relation by the equation

C = .65 A V (T - T)where C is the loss by convection in kg.-cal/hr., AD is the Du Bois area in square inches, V is the velocity of the air in ft./min., T_S is the skin

temperature in °F, and T_A is the air temperature in degrees F. In their

experiments, they were unable to determine from the data whether the use of V or \overline{VV} gave the better fitting equation. The applicability of the equation to cows cannot be determined from the data in this bulletin, as the heat losses by convection cannot be separated from the losses by radiation and conduction.

EXPERIMENT

During the winter of 1951-52, physiological measurements were made on 12 cows at three wind velocities: "low" (0.4 to 0.5 mph), "medium" (3 to 6 mph), and "high" (7 to 10 mph) at temperatures of 50° and 17° F as shown in Table 1A. Two weeks were given to each of the six experimental conditions. The "low" air velocity was at the level used in all preceding experiments on the effects of temperature and humidity.

During the summer of 1952, another group of 12 cows, including 5 of the animals used in the first winter experiment and 7 others, was similarly measured at the same three air velocities, but at temperatures of 65° , 80° , and 95° F as shown in Table 1B. The experimental periods at 95° were limited to two days but were carried on for two weeks at the other temperatures, as in the winter experiment. The average relative humidity varied from about 60 to 70 percent in both experiments.

Each group consisted of three lactating Holstein and three Brown Swiss cows in one chamber, and two lactating Jersey, two dry Jersey, and two dry Brahman cows in a second chamber.

With the exception of the use of a stethoscope instead of a manual palpation for counting pulse rate, the apparatus (open-circuit respiratory exchange) and methods were the same as previously described.^{1,13,7}

ULE OF TESTS AND EXPERIMENTAL CONDITIONS Oct. 26, 1951 - Feb. 14, 1952)	HOLSTEIN BROWN SWISS	ry) 178: 1184 lbs. 9: 1110 lbs.	ry) 132: 1252 lbs. 41: 1114 lbs.	184: 1142 lbs. 47: 997 lbs.		Period Chamber Relative	Air Temper- Humidity No. No. of Tests	er ⁺ From 3 PM To 3 PM mi/hr Period Test* Period Test* Days olism* Other ⁺	Oct. 26 Nov. 8 0.4 51 50 72 65 13 2 6	Nov. 8 Nov. 22 4.5 51 52 67 60 14 3 8	Nov. 22 Dec. 6 0.4 50 50 58 62 14 3 10	Dec. 6 Dec. 20 8.1 50 50 68 49 14 3 9	Dec. 20 Jan. 3 0.4 30 63 14	u Jan. 3 Jan. 17 3.4 18 18 60 59 14 3 7	Jan. 17 Jan. 31 0.5 19 20 56 60 14 3 9	ade three times each period between 1 and 3 PM.	LE OF TESTS* AND EXPERIMENTAL CONDITIONS	(Feb. 23 - May 29, 1952)	HOLSTRIN MORE	It 1292 15 1994 15 1994 15 15 1994 15 15 15 15 15 15 15 15 15 15 15 15 15	ry) 1541 1366 hs. 231 1375 hs.	118; 1282 lbs. 47: 1031 lbs.		Period Chamber Relative	Air Temper- Humidity No. No. of Tests	Period Dates Velocity ature, ⁰ F % of Metab-	HET FROM 3 FM 10 3 FM mi/hr Feriod Test* Period Test* Days olism* Other	Mar. 6 Mar. 20 8.8 66 67 80 56 14 2 0	Mar. 20 Mar. 27 6.4	Mar. 27 Apr. 3 4.87 66 67 64 65 14 3 10	Apr. 3 Apr. 10 0.4 64 65 65 62 7 1 3	Apr. 10 Apr. 24 4.5 80 80 66 67 14 3 8	0 Apr. 24 May 8 8.7 80 81 62 61 14 3 10	May 8 May 18 0.4 80 80 63 60 12 2 6	May 18 May 20 0.41 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	May 20 May 22 8.8 95 95 59 2 2 2 2 1	May 26 May 20 U.4 (8 63 3 -	May 20 May 2' 0.4 80 71 2 - 2
TIGNO	HOLST	8: 118	125 125	34: 114		hambei	emper-	iod Tes	20	20	5	2		-	67	nd 3 PN	ITIONO		HOLS.	44. 129	54: 13	18: 128		hambe:	emper	ture, o	a.L. por			9	1	8	8	8	, , , ,	R	'	'
TAL C		17	13	18		0	E 7	Peri	51	51	50	50	30	18	16	en 1 ar	TAL C			1	-	-		0	F	ty a	Per		5 8	5	64	80	80	80		D D D	2.2	20
RIMEN' (2)						Period	Air Volcott	mi/hr	0.4	4.5	0.4	8.1	0.4	3.4	0.5	i betwe	RIMEN'							Perio	Air	Velocit	III/III	8 8	6.4	4.8°	0.4	4.5	8.7	0.4)	0.41	0.0	4.0	0.4
AND EXPEI Feb. 14, 195							Detec	To 3 PM	Nov. 8	Nov. 22	Dec. 6	Dec. 20	Jan. 3	Jan. 17	Jan. 31	each period	AND EXPER	y 29, 1952)								Dates	Mas 10 3 PM	Mar. 20	Mar. 27	Apr. 3	Apr. 10	Apr. 24	May 8	May 18	May 20	May 22	May 20	May 21
OF TESTS 26, 1951 - 1							Doutod	From 3 PM	Oct. 26	Nov. 8	Nov. 22	Dec. 6	Dec. 20	Jan. 3	Jan. 17	three times	F TESTS*	eb. 23 - Ma								Period	From 5 PM	Mar. 6	Mar. 20	Mar. 27	Apr. 3	Apr. 10	Apr. 24	May 8	May 18	May 20	Mary 44	May 20
IEDULE (Oct.	N	. (dry)	. (dry)				rests	Other+	9	8	6	6	•	6	61	e made t	DULE C	F	N	3. (drv)	3. (dry)				Tests	+	Building	6	4	8	,	8	10	4 0	2	,		9
· - SCI	3RAHMA	1068 lbs	992 lbs				No. of	olism*	2	e	ę	~		e	en 1	hich wer	SCHI		BRAHMA	1077 lbs	1029 lbs				No. of	Metab-	2	100	1	~	,	3	er 1	~ ~	7			4
BLE 1A		209:	189:				No.	Days	13	14	14	14	14	14	14	tests w	LE 1B.		Γ	209:	189:				No	10	12	14	7	2	-	14	14	01	2 0	40	° °	a
TA						ive	dity	rest*	89	62	54	64	1	63	53	polism rate	TAB							ive	dity	Thatk	1691	64	64	59		62	65	63	00			20
						Relat	Humi	Period	69	99	65	52	57	61	62	ng metal								Relat	Humi	of holing	69	64	65	60		64	64	64	64	40 63	20	00
						ber	er-	Test*	51	52	52	20	1	15	21	ns duri								ther	er-	Toot*	83	67	67	67		80	80	80	CR	1	10	20
	X		'n	s. (dry)	s. (ary)	Cham	Temp	eriod	50	51	20	20	31	15	17	onditio			A	s.	°.	s. (dry)	s. (dry)	Chan	Tem	ature	99	66	64	99		80	80	80	94 80	80	20	20
	JERSE	48: 858 lb	49: 833 lb	99: 902 Ib	01 101 100	Period	Air	mi/hr I	0.4	4.2	6.0	0.4	0.4	3.8	9.7	Refers to c			JERSI	94: 814 lb	05: 964 lb	48: 865 lb	49: 872 lb	Period	Air	mi/hr 1	0.5	6.2	0.4	8.5]	8.5	1.1	4.7	4.0	1.4	4.0	0.0	0.0

0.4 76 -- 72 -- 2 - 2 May 27 May 29 0.4*Refers to conditions during the metabolism tests which were made between 1 and 3 PM. +Respiration rate, rectal temperature and pulse rate measurements made between 1 and 3 PM.

DISCUSSION OF RESULTS

While the data have been obtained primarily to study the effects of air velocity, they also provide valuable replications for preceding experiments on temperature. Breed comparisons of the effects of air velocity and temperature are presented in Figures 1 to 10. Figures 3 A, 5, 6 A, 7 A, and 10, especially, bring out the effects of changing air velocity at constant temperature, and Figures 3 B, 4, 6 B, 7 B, 8, and 9 emphasize the effects of changing temperature at constant air velocity. The data on individual cows are presented in Tables 2 to 6 in the Appendix.

Not many statistical tests were made because of the small volume of data and few animals of each breed. Unmeasured effects of the stages of lactation and gestation, and other factors such as acclimitization lags may have influenced the results.

Rectal Temperature: The rectal temperature is the best available index of an animal's ability to maintain a balance between heat production and heat dissipation. However, as it is a local measurement, it may reflect local rather than general conditions. It may be reasoned, therefore, that when a cow is exposed to wind, its rectal temperature reflects local surface chilling. In this experiment, the measurements were made with ordinary veterinary thermometers. As local surface effects would presumably diminish with increased depth of insertion, it is hoped that this experiment can be repeated, using a thermometer suitable for deeper insertion, such as the thermistor resistance thermometer previously described.⁸

Figure 2 shows the relative effects of the three air velocities on rectal temperature at five air temperatures. At 17° F air temperature, high wind velocity lowered the rectal temperature below its value at low velocity by about $\frac{1}{2}$ ° F in the Jerseys and 1° F in the non-lactating Brahmans. No appreciable change occurred in the Brown Swiss and Holsteins. At 50° and 65°, the effects of wind were relatively negligible and not too consistent. At 80° and 95°, the cows which developed the highest rectal temperatures at low wind velocities were cooled the most by high wind velocity. This lowering of rectal temperature in degrees Fahrenheit amounted to about 1½° at 80° and 0ver 2° at 95° in the lactating Holsteins, $\frac{3}{4}$ ° at 80° and 1° at 95° in the lactating Brown Swiss, $\frac{1}{2}$ ° at 80° and 1½° at 95° in the lactating Jerseys, and $\frac{1}{2}$ ° at 80° and $\frac{3}{4}$ ° at 95° in the non-lactating Brahmans were not affected by changes of wind velocity at these temperatures.

Statistical tests indicated that the effects of wind on rectal temperature were significant or highly significant in the Brahmans and

Fig. 2 — Influence of high (6 to 10 miles per hour) and medium (3 to 6 miles per hour) air velocities on rectal temperature as indicated by the deviations from the mean rectal temperature at low air velocity (0.4 to 0.5 mile per hour) at the given air temperatures.

Jerseys at air temperature 17° F and in Jerseys, Holsteins, and Brown Swiss at the 80° F air temperature. The data for 95° were not tested statistically because of the few observations, but as shown in Figure 2, the cooling effect of high wind was greater at 95° than at 80° for the European breeds.

Heat Production: As reported in a preceding bulletin,⁶ dairy cows produced minimal heat while maintaining normal rectal temperatures at environmental temperatures between 40° and 60° F. Above this thermoneutrality zone, the rectal temperature rose and the heat production declined. Below this range, the heat production increased, preventing a fall in rectal temperature. All of these measurements were made at an air velocity of 0.5 mph.

Figure 3 confirms these responses for the low (0.5 mph) air velocity and shows that changes in wind velocity have no effect on heat production in the thermoneutrality zone.* In addition it shows that the depression of heat production in the Brown Swiss and Holstein cows at 95° F was greater at low than at high wind velocity. In the

^{*}The higher heat production in the Brown Swiss and the Holsteins at 65° F than at 50° F resulted from a change of experimental animals. Those brought into the experiment at 65° F weighed about 130 pounds more per animal than those used at 50° F.

Brahman and Jersey cows, changes in wind velocity had very little effect at 95° F.

On lowering the temperature from 50° to 17° F at low air velocity, the heat production in the non-lactating Brahmans increased about 40 percent (Figure 3B), confirming the influence of low temperature on heat production as reported in preceding bulletins. While holding the temperature at 17° F, an additional increase of 60 percent occurred when the air velocity was increased from 0.5 to 7.6 mph (Figure 3A). Similar but less pronounced increases in heat production occurred in the other cows on lowering the temperature and increasing the wind velocity. The low cold tolerance of the non-lactating Brahmans apparently was related to their low heat production. In the thermoneutrality zone they produced 10 percent less heat per animal than the non-lactating Jerseys which they outweighed by 20 percent.

It is rather disturbing that the increases in heat production at 17° F were not noticeably reflected in the feed and water consumption, milk

Fig. 4 — Relative responses of 2 lactating and 2 non-lactating Jersey cows to changes in air temperature (bottom scales) and to three levels of air velocity (see low, medium, high notation at right side). Skin vaporization and respiratory vaporization, $gm/m^2/hr$ are shown plotted to the same scale in the left-hand column; pulse rate per minute and pulmonary ventilation rate, $lit/m^2/min$ are shown in the middle column; and respirations/min and heat production Cal/m²/hr are shown in the right-hand column. The symbols corresponding to the cow numbers shown in the upper left-hand section were used in all sections. Because of space limitations it was necessary to abbreviate skin vaporization and surface vaporization in the two lower left-hand sections. The data indicate that individual differences in this small group tended to mask the effects of lactation.

12

Research Bulletin 552

production and body weight data previously reported.² There can be no completely satisfactory explanation for the discrepancy until more data have been accumulated. A partial explanation may be provided by the special conditions of the experiment. The cold stress affecting the heat production measurements was more severe than the average

Fig. 5 - Influence of air velocity on pulse rate at five air temperatures.

cold stress over the 24-hour period affecting the milk production, feed and water consumption, and body weight. During the metabolism measurements, the animals stood up under overhead fans where they received the maximum intensity of wind over the greater part of their bodies. Over the 24-hour period, on the other hand, they were lying down part of the time at greater distances from the fan on warm bedding, with less surface exposed to the wind. Also, the fans were turned off a total of 4 hours a day during feeding and milking.

As the Jersey averages in Figure 3 include both lactating and nonlactating animals, a comparison of the various responses of the lactating and non-lactating animals in Figure 4 might be instructive. Heat production is given in the right hand sections. No definite conclusion can be reached on the influence of lactation on heat production in relation to wind velocity as the variations between individual cows tend to mask the effects of lactation.

Pulse Rate: At about 17° F air temperature, increasing the air velocity from 0.5 to 10 mph caused statistically significant increases of 4 to 6 beats per minute in the Brahman and Jersey cows, and highly significant increases of 5 to 9 beats per minute in the Holstein and Brown Swiss cows. At 0.5 mph air velocity at this temperature, the mean pulse rates by breeds were: Brahman, 72; Jersey, 65; Holstein, 56; Brown Swiss, 52. The lesser increase in pulse rate with increasing air velocity in the smaller breeds may be attributed to their higher mean rates at low temperature. Having shown greater response to decreasing temperature, the smaller breeds apparently possessed less reserve for response to increased wind. At temperatures from 50° to 95° F, the pulse rate varied irregularly with air velocity. The pulse rate is undoubtedly more susceptible to disturbing influences than the other measurements. Under the conditions of the experiment we could not isolate the animals from all disturbing influences.

Respiration Rate, Pulmonary Ventilation Rate, and Respiratory Evaporative Cooling: These three functions are closely interrelated in the dissipation of heat from the respiratory tract. Increasing wind velocity which lowers surface temperature also lowers deeper body temperature under some conditions, depressing respiratory activity by nervous reflex action, and thereby decreasing respiratory evaporative cooling. These relations are brought out in the following charts.

Figure 6A shows that increasing air velocity reduced the respiration rate, especially at high temperatures. At low air temperatures (17° for Jersey, Holsteins, and Brown Swiss, and up to 65° F for the Brahmans) the rates were below 14 per mnute and showed very slight changes with increased air velocity. Figure 7A shows closely parallel effects on pulmonary ventilation rate. The slight rise in respiratory

Fig. 6A — Influence of air velocity on respiration rate at five air temperatures.

Fig. 6B — Influence of air temperature on respiration rate at three wind levels.

Fig. 7A — Influence of wind velocity on respiration volume at five temperature levels.

Fig. 7B — Influence of air temperature on respiratory volume at three wind levels.

activity in the Brahmans at 17° F with rising air velocity was, no doubt, associated with their greatly increased heat production. It is noticeable that at temperatures below 95° F the changes in respiration rate, and especially pulmonary ventilation rate, caused by increasing air velocity were greater between 0.4 and 5 mph than between 5 and 9 mph.

Figure 8 shows the decrease in respiratory vaporization with increasing air velocity, resulting from the reduction in respiratory activity just discussed. For the range of temperatures from 17° to 95° F, the values at high and medium velocity averaged about 30 percent below those at low velocity, except in the Brahmans at 17° F. It will be recalled, however, that the respiratory activity of the Brahmans at 17° F was also greater at high than at low velocity, explaining the increase in evaporative cooling.

The effects of changes in temperature and air velocity on respiratory activity in cattle are apparently modified considerably by acclimatization. Previously reported data⁶ showed decreases of 40 to 50 percent in respiration rate as the temperature was lowered from 50° to 5° F over a period of several weeks. Graf and Peterson,¹⁴ on the other hand, found that the respiration rate in a group of cattle housed at 45° F was not changed when they were taken outside and exposed for 1 hour to temperatures between -16° and $+16^{\circ}$ F. The mean rate was 21 in both instances. Their animals, unlike ours, did not have time to become adjusted to the cold. They reported shivering and greatly increased activity in their cows. This might easily explain the higher respiration rates of their animals. Figure 6B shows that in the present data the respiration rates fell below 14 per minute at temperatures between 15° and 20° F.

Figure 7B shows a continuous rise in pulmonary ventilation rate with increasing environmental temperature in the Holsteins and Brown Swiss. In the Jerseys and Brahmans, however, the rates were higher at the high and low temperatures, with lower values between 50° and 80° F.

Evaporative Cooling from the Skin: Figure 9 shows that vaporization from the skin increased with rising temperature but tended to decrease with rising air velocity. The only possible explanation for the decrease in vaporization with rising air velocity is that less moisture reached the surface of the convectively cooled skin —probably because of a slower diffusion rate brought about by diminished blood flow through constricted skin capillaries or, less likely, because of decreased sweat gland activity. As the vaporization from the skin was not measured directly, as was respiratory vaporization, but was computed by

Fig. 8 — Influence of air temperature on respiratory vaporization rate at five temperatures.

1.11

difference^{1,3,4} and hence affected by cumulative errors, additional data are needed before a more detailed analysis is justified.

Non-evaporative Heat Loss: The effects of changing wind velocity and temperature on the evaporative and non-evaporative losses are summarized in Figure 10 and Tables 5 and 6. The non-evaporative losses, indicated by solid lines, decrease with rising temperature, but generally increase with rising air velocity. Opposing effects of air velocity and temperature on the components of the non-evaporative loss (convection, radiation, and conduction) accounted for this difference. Increasing air velocity increases the convective heat loss (as indicated in Equation 1), but, at the same time, lowers the skin temperature and thereby decreases the radiation and conduction losses. Increasing temperature, on the other hand, decreases the temperature gradient between the animal and its environment and thereby decreases the heat losses in all three non-evaporative components. As an example of the opposing effects of temperature and wind, Figure 10 shows that the non-evaporative heat loss in the Holsteins decreased from about 150 to 50 Cal./M²/hr. as the temperature was increased from about 20° to 95° F; in contrast to an increase from 50 to 100 Cal./ M^2/hr , as the wind velocity was increased from 0.5 to 9 mph at the 80° F temperature level.

SUMMARY

Data are presented on the influence of changing wind or air velocity (0.5 to 10 mph) at temperatures of 17° , 50° , 65° , 80° and 95° F on respiration rate, pulse rate, pulmonary ventilation rate, rectal temperature, heat production, evaporative cooling from the respiratory tract, and related values on outer surface evaporative and total non-evaporative cooling in Jersey, Holstein, Brown Swiss, and Brahman cattle.

Increasing wind or air velocity from 0.5 to 10 mph was found to increase the heat dissipation in cattle at 17° F environmental temperature (as indicated by increased heat production). Similar increases in air velocity at 50° and 65° F had little effect on total heat dissipation; the non-evaporative heat losses were generally greater, but they were balanced by smaller heat losses by vaporization from the respiratory tract and skin. Heat production in Holstein and Brown Swiss cattle was depressed less by 80° F temperature at high wind velocity than at low wind velocity. At 95° F, wind velocities of 8 to 9 mph cooled the individual Jersey, Holstein and Brown Swiss cows which had developed high rectal temperatures sufficiently to allow their metabolism to proceed at more normal (less depressed) levels. This was accompanied by less depression of feed consumption and milk production.

At 17° F, air velocities of 8 to 10 mph increased the heat loss in Holstein, Jersey and Brown Swiss cows to the extent that they increased their heat production by 20 to 35 percent while maintaining normal rectal temperature. Under similar conditions, Brahman cows increased their heat production by 60 percent but were unable to prevent a fall in rectal temperature of about 1° F.

At an environmental temperature of 95° F, the individual Holsteins, Brown Swiss and Jerseys which developed high rectal temperatures at 0.5 mph air velocity were benefited by air velocities of 8 and 9 mph. The lowering of rectal temperatures, in degrees Fahrenheit, amounted to about $1\frac{1}{2}^{\circ}$ at 80° and over 2° at 95° in the lactating Holsteins; 34° at 80° and 1° at 95° in the lactating Brown Swiss; $\frac{1}{2}^{\circ}$ at 80° and $1\frac{1}{2}^{\circ}$ at 95° in the lactating Jerseys, and $\frac{1}{2}^{\circ}$ at 80° and 34° at 95° in the non-lactating Jerseys. The non-lactating Brahmans maintained approximately normal rectal temperature at all air velocities at 80° and 95°.

REFERENCES

- Kibler, H.H., and Brody, S., Relative Efficiency of Surface Evaporative, Respiratory Evaporative, and Non-Evaporative Cooling in Relation to Heat Production in Jersey, Holstein, Brown Swiss and Branman Cattle, 5° to 105°F. Mo. Agr. Exp. Sta. Res. Bul. 497, 1952.
- Ragsdale, A. C., Thompson, H. J., Worstell, D. M., and Brody, S., The Effect of Wind on Milk Production, Feed and Water Consumption and Body Weight in Dairy Cattle. Mo. Agr. Exp Sta. Res. Bul. 545, 1954.
- 3. Yeck, R. G., The Effects of Air Movement on Insensible and Water Vaporization Losses by Cattle, MS Thesis, 1953.
- Thompson, H. J., Yeck, R. G., Worstell, D. M., and Brody S., The Effect of Wind on Evaporative Cooling and Surface Temperature in Dairy Cattle. Mo. Agr. Exp. Sta. Res. Bul. 548, 1954.
- 5. Thompson, H. J., To be reported in a later publication.
- Kibler, H. H., and Brody S., Influence of Temperature, 50° to 5°F and 50° to 95°F, on Heat Production and Cardiorespiratory Activities of Dairy Cattle. Mo. Agr. Exp Sta. Res. Bul. 450, 1949.
- Kibler, H. H., Brody, S., and Worstell, D. M., Influence of Temperature, 50° to 105°F, on Heat Production and Cardiorespiratory Activities in Dairy Cattle. Mo. Agr. Exp Sta. Res. Bul. 435, 1949.
- 8. Kibler, H. H., and Brody S., Influence of Increasing Temperature, 40° to 105°F, on Heat Production and Cardiorespiratory Activities in Brown Swiss and Brahman Cows and Heifers. Mo. Agr. Exp. Sta. Res. Bul. 473, 1951.
- Ragsdale, A.C., Brody, S., Thompson, H. J., and Worstell, D. M. Influence of Temperature, 50° to 105°F, on Milk Production and Feed Consumption in Dairy Cattle. Mo. Agr. Exp. Sta. Res. Bul. 425, 1948.
- Ragsdale, A. C., Thompson, H. J., Worstell, D. M. and Brody S., Influence of Increasing Temperature, 40° to 105°F, on Milk Production in Brown Swiss Cows, and on-Feed and Water Consumption and Body Weight in Brown Swiss and Brahman Cows and Heifers. Mo. Agr. Exp. Sta. Res. Bul. 471, 1951.
- Hardy, J. D., Heat Transfer, p. 96 in Newburgh, L. H., "Physiology of Heat Regulation", W. B. Saunders Co., Philadelphia, London, 1949.
- Gagge, A. P., Herrington, L. P., and Winslow, C. E. A., Thermal Interchange Between the Human Body and Its Atmospheric Environment, 26, 84-102, 1937
- Kibler, H. H., and Brody, S., Influences of Temperature, 5° to 95°F, on Evaporative Cooling from the Respiratory and Exterior Body Surfaces in Jersey and Holstein Cows. Mo. Agr. Exp. Sta. Res. Bul. 461, 1950.
- 14. Graf, G. C. and Peterson, Changes in Respiratory and Heat Rates, Body Temperature, Plasma Lactic Acid Levels and Plasma Creatinine Levels Caused by Stress in Dairy Cattle. J. Dairy Sci. 36: 1036-48, 1953.

Ain Tommon		in Liton	1 2000	1011110			Air Temper-								
Air Temper-		50 10	0	5	00 51	0	aturo OF	B/	10 - 67)		800		94 ⁰ -	- 95 ⁰
ature, or		50 - 19			No - 51		Ain Velocitut		M	u u	T	M	н	T.	H
Air Velocity*		M	H		M	H	Air velocity+	L	IVI	п	Ц	141			
					He	at Prod	uction, Calories	per nou	_						
Jersey							Jersey	500	100	100	400	440	400	405	202
548	625	551	602	518	532	508	548+	520	482	460	468	448	480	490	090
549	604	878	874	532	608	498	549+	414	496	436	480	462	442	489	477
999+	638	714	727	550	547	494	994	542	554	592	447	510	540	450	543
264+	497	674	660	487	477	420	205	572	644	574	591	544	574	582	513
Brahman							Brahman								
209	734	930	1254	488	611	612	209	530	460	596	399	296++	332	399	420
189	642	906	986	444	487	403	189	393	448	392	342	320	370	408	399
Holstein	•						Holstein								
178	956	900	891	759	792	976	144	730	710	796	666	724	754	660	795
132	792	852	898	723	800	754	154	920	830	752	963	824	866	498	732
184	744	930	1182	840	779	838	118	826	822	800	615	784	822	588	774
Brown Swice		000		0.0			Brown Swiss								
DI UWII DW155	694	862	702	688	754	698	22	696	672	642	621	756	702	558	672
9	666	002	780	502	656	672	23	788	796	914**	717	838	726		660
41	640	001	1120	654	634	725	47	614	610	618	651	602	618	516	555
47	640	094	1120	0.04	034	120		011	010	010	001	001			
				Pulmo	onary Ve	entilatio	n Rate, liters pe	er minute	e, S.T.I	2.					
Jersey							Jersey								
548	96	73	73	76	64	61	548+	77	65	60	62	57	59	156	101
549	82	71	65	67	66	55	549+	82	71	61	77	71	71	162	98
999+	102	97	69	82	66	62	994	85	68	65	117	78	77	212	166
264+	108	70	61	68	54	49	205	86	80	63	104	72	72	179	147
Brahman							Brahman								
209	81	91	110	63	66	62	209	68	54	55	59	34++	36	107	68
189	83	72	68	50	41	41	189	60	44	41	54	43	45	80	62
Holstein	00		00				Holstein								
179	111	74	111	1.03	91	97	144	143	97	108	167	157	138	242	208
199	77	64	77	138	83	80	154	140	104	113	205	137	155	260	212
184	97	83	97	111	82	91	118	124	110	103	164	124	124	216	190

TABLE 2 -- INFLUENCE OF AIR MOVEMENT ON THE HEAT PRODUCTION, PULMONARY VENTILATION AND METABOLIC WEIGHT LOSS RATES IN INDIVIDUAL DAIRY COWS AT FIVE TEMPERATURE LEVELS

APPENDIX

						ind									
Air Temper-							Air Temper-								
ature, ^o F	1	15 ⁰ - 19	0	5	50 ⁰ - 51	0	ature, OF	(34 ⁰ - 67	0		800		94 ⁰	- 95 ⁰
Air Velocity*	L	M	H	L	M	H	Air Velocity*	L	M	H	L	M	H	L	H
Brown Swiss							Brown Swiss								
9	76	77	76	90	84	88	22	121	96	98	115	103	111	240	166
41	74	78	74	89	68	85	23	142	101	105**	183	132	145	254	223
47	85	76	85	80	62	83	47	110	80	82	86	82	82	163	122
					Meta	bolic W	eight Loss, gram	ns per l	nour						
Jersey							Jersey								
548	85	71	69	89	74	63	548+	62	76	49	37	52	40	68	46
549	74	46	57	89	74	66	549+	67	57	59	69	67	53	37	54
999+	79	86	73	73	82	72	994	60	68	53	62	64	78	51	72
264+	53	74	54	74	55	54	205	66	57	88	73	68	72	37	53
Brahman							Brahman								
209	88	82	102	72	66	73	209	56	53	44	38	16++	2	47	33
189	51	59	50	42	46	45	189	43	49	39	32	35	33	37	29
Holstein							Holstein								
178	104	127	91	85	82	117	144	77	77	70	74	104	57	91	91
132	93	101	82	106	111	126	154	57	78	78	125	121	105	138	63
184	119	127	68	117	94	110	118	79	109	83	88	85	78	122	66
Brown Swiss							Brown Swiss								
9	75	88	64	86	70	99	22	77	50	79	52	79	94	144	99
41	72	91	69	69	51	67	23	33	71	55**	70	63	70		58
47	64	107	105	79	62	92	47	66	73	60	55	57	54	73	57

TABLE 2 -- CONTINUED

*L indicates low; M, medium; and H, high air velocity. For the actual values in miles per hour for the different conditions, see Table 1.

*Dry cows. **Sick with bad knees.

++Poor appetite for several days.

Research Bulletin 552

Air Temper-							Air Temper-							o 10	050	
ature, ^O F	1	5 ^o - 19	Q	5	50 ⁰ - 51	0	ature, ^O F		$54^{\circ} - 67^{\circ}$, 		800		940	- 950	
Air Velocity*	L	M	Н	L	М	H	Air Velocity*	L	M	H	L	M	Н	L	H	N
					Oxyge	n Consu	mption, liters pe	r hour,	S.T.P.							Is
Jersey							Jersey									ŝ
548	124	110	121	102	106	101	548+	103	95	92	95	89	97	98	78	2
549	120	181	179	106	121	103	549+	82	99	87	95	92	89	100	95	R
999+	128	142	145	109	109	98	994	108	110	119	89	101	107	90	109	-
264+	100	136	134	96	95	84	205	114	130	114	117	109	114	119	103	P
Brahman							Brahman									H
209	146	188	254	98	122	122	209	107	92	122	81	61++	66	80	86	S
189	131	185	204	89	98	80	189	79	90	80	68	64	75	83	81	E
Holstein							Holstein									ĥ
178	191	179	191	153	158	192	144	149	143	171	134	143	154	131	158	G
132	160	169	160	144	159	149	154	189	168	154	191	164	173	98	149	Ã
184	149	185	149	167	154	167	118	167	145	160	122	158	166	116	157	г
Brown Swiss							Brown Swiss									문
9	125	175	125	137	156	139	22	139	137	127	125	151	140	111	133	Ř
41	133	166	133	142	133	135	23	164	161	188**	144	166	146		134	Ĕ
47	129	179	129	130	127	145	47	123	121	124	132	116	125	102	112	Ĥ
				Carl	bon Dioz	kide Pro	duction, liters p	er hour	. S.T.P.	- 1						ME
Jersev							Jersey			-						Z
548	129	112	119	115	111	109	548+	103	104	89	86	89	89	102	77	н
549	121	151	155	118	121	112	549+	86	98	90	101	98	88	89	95	\mathcal{G}
999+	129	143	138	112	116	99	994	106	110	110	94	103	114	89	110	A
264+	98	131	121	104	94	86	205	113	120	124	119	110	116	103	98	님
Brahman							Brahman									ß
209	145	172	230	103	119	122	209	103	89	108	76	50++	48	79	77	4
189	118	160	170	83	92	79	189	77	88	76	64	62	70	77	71	
Holstein							Holstein									
178	186	187	170	149	152	191	144	142	139	155	131	151	137	138	156	
132	158	167	168	153	166	166	154	161	157	145	193	175	174	136	135	
184	162	191	206	172	155	172	118	156	157	155	130	153	155	142	143	

TABLE 3 -- INFLUENCE OF AIR MOVEMENT ON OXYGEN CONSUMPTION, CARBON DIOXIDE AND METHANE PRODUCTION IN INDIVIDUAL DAIRY COWS AT FIVE TEMPERATURE LEVELS

						TABL	E 3 CONTINU	ED								
Air Temper-							Air Temper-			2.0						
ature, ^O F	1	50 - 19	Q	1	50 ⁰ - 51	0	ature, ^O F	6	64 ⁰ - 67	0		800		940 -	. 950	
Air Velocity*	L	M	H	L	M	H	Air Velocity*	L	М	H	L	M	н	L	H	
Brown Swiss							Brown Swiss									
9	125	166	145	137	144	146	22	136	122	128	116	145	143	143	140	
41	128	162	146	117	119	128	23	132	148	160**	137	149	137		122	
47	121	179	201	129	120	146	47	120	122	118	121	111	115	109	107	
					Methan	e Prod	uction, liters per	hour,	S.T.P.							
Jersev							Jersey									
548	10	10	10	11	8	11	548+	7	8	5	4	4	4	8	7	
549	9	9	10	11	11	7	549+	20	5	7	7	6	8	5	2	
999+	10	8	10	10	13	8	994	5	11	9	4	5	8	5	15	R
264+	3	13	8	9	7	6	205	9	9	8	7	10	8	4	8	E
Brahman							Brahman									Ĕ
209	14	16	14	10	7	9	209	7	11	6	5	5++	1	7	5	ĥ
189	7	10	9	6	6	4	189	5	5	4	2	4	2	5	7	G
Holstein							Holstein									щ
178	12	17	13	15	11	19	144	13	8	11	8	13	9	7	13	В
132	14	19	13	14	14	16	154	12	11	10	23	13	11	13	13	F
184	17	18	10	20	11	13	118	14	8	9	7	13	13	10	10	Ē
Brown Swiss							Brown Swiss									Ð
9	10	14	10	14	11	12	22	10	7	10	3	11	16	28	17	E
41	13	11	8	8	9	10	23	8	11	11**	7	7	11		11	cn.
47	13	12	10	14	8	14	47	7	7	5	7	5	8	6	7	5

*L indicates low; M, medium; and H, high air velocity. For the actual values in miles per hour for the different conditions, see Table 1. +Dry cows.

**Sick with bad knees.

++Poor appetite for several days.

Air Temper- ature, ${}^{0}F$ 15° - 19°50° - 51° 50° - 51°ature, ${}^{0}F$ ature, ${}^{0}F$ 64° - 67°80°94° - 95°Air Velocity*LMHLMHLHLHLHAir Velocity*LMHLMHLHLHHLHJersey <th< th=""><th></th></th<>	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5
	E.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ŝ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ö
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ğ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P
209 11 13 13 14 12 10 209 10 10 12 12 9 189 10 9 9 16 10 10 66 38	ä
	B
Holetain	ä
Holstein $1000000000000000000000000000000000000$	E
178 13 12 11 23 22 16 14 56 16 20 86 50 54 116 98	5
132 11 11 10 23 17 17 134 31 32 30 30 30 31 12 132 32 82 76	3
184 13 11 11 27 21 17 110 40 21 24 55 52 52 52 52 55	A
Brown Swiss 44 21 26 57 28 31 138 76	L.
9 12 11 10 20 17 16 22 44 21 20 17 16 13 10	E
41 12 12 12 19 17 15 25 45 21 20 54 29 25 118 86	Ľ Č
47 13 10 10 18 15 15 47 59 18 20 54 25 25 110 00	Ĕ
Pulse Rate per minute	2
Jersey Jersey	8
548 65 63 68 61 58 57 548^+ 62 59 58 65 57 59 70 61	E
549 65 69 67 57 58 60 549^+ 56 51 51 59 55 53 56 58	z
999+ 68 76 77 62 63 63 994 56 55 53 53 51 52 57 54	н
264+ 60 61 65 51 50 56 205 56 55 58 64 54 53 66 76	S
Brahman Brahman	T.A
$\frac{2}{209}$ 73 71 78 60 62 62 209 62 59 66 66 62 ⁺⁺ 67 67 67 62	H
189 70 74 76 53 56 53 189 60 58 57 65 52 50 62 60	7 12
Holstein	ž
$\frac{10}{178}$ 53 56 58 57 54 56 144 57 52 55 56 54 51 46 52	
132 56 61 62 60 57 55 154 68 62 64 59 56 58 53 55	
184 58 62 63 61 62 57 118 68 65 66 62 60 60 59 56	Ł.
Brown Swiss	
9 58 54 58 51 50 48 22 53 50 52 55 50 54 59 58	1
41 61 54 61 48 46 46 23 70 66 71** 64 58 63 64 58	1
47 63 58 63 54 54 54 47 56 52 53 54 51 52 54 50	1

TABLE 4 -- INFLUENCE OF AIR MOVEMENT ON RESPIRATION RATE, PULSE RATE, AND RECTAL TEMPERATURE IN INDIVIDUAL DAIRY COWS AT FIVE TEMPERATURE LEVELS

		l aldsl	C 992 , 2nd	oitibnoo	different	for the	per hour	zalim ni zaulsv	the actual	ity. For	air veloc	цЗій, H	pus (muib	om ,M';w	*L indicates lo
8,101	102.8	100.3	100.5	101*3	9.001	100.3	6'001	LÞ	100.0	100.0	100.0	100°2	9'001	100°2	24
\$°\$01	₽.801	6°001	8.001	8°101	**0'101	7.001	1,101	53	9'66	100.0	2.001	9'00T	8'66	₽. 001	ΙÞ
9'101	102.4	100°2	7.001	2,101	9.001	₽.001	8.001	55	L*66	1,001	3.001	9.001	0.001	100.3	6
								asiwa nwort	I						Brown Swiss
6'ZOI	102'0	₽.001	7.001	8,101	3°001	₽°001	1,101	811	100'3	₽.001	9'00T	\$.001	9°00T	6'00T	18∉
6'¥01	1,001	101.0	2.101	103.3	6'00T	0'101	2,101	₽9T	100.0	100.5	100.5	8.001	6'00T	1,001	132
102.0	105.2	7.001	0.101	2,101	7.001	6*001	1,101	144	100.3	100.2	9.001	6'001	100.2	2.001	841
								nistein	I						nistein
9'101	101.3	1,101	2°101	₽°101	0.101	0'101	1,101	681	6'00T	6'001	8.001	8'66	6.001	2.101	681
1'101	1'101	P.101	101°5++	8°001	₽°001	1.001	0°101	503	L*66	100.2	1.001	100.0	2.001	2,101	509
								arahman	I						Brahman
102.2	1,501	9'00T	8.001	2.101	100.5	7.001	8.001	502	2,101	7.001	7.001	9'001	8.00 t	0.101	564+
103*3	102°9	8.001	8.001	1,101	2.001	7.001	8.001	₽66	100.5	100.5	6'00I	1,101	7.001	2.101	+666
2.101	102.0	100°2	₽.001	6'00T	£.001	₽.001	9'001	+6123	L'66	₽.001	₽.001	₽'00T	8.001	2,101	679
2'101	8.101	8.001	6'00T	6'00I	8.001	8.001	6'001	+8⊅9	100°2	2.001	9'001	6'001	₽.001	2,101	843
								(GL36Å	r						Jersey
								mperature, oF	Rectal Te						
Н	Γ	Н	W	г	Н	W	Г	Ir Velocity*	V H	М	Г	H	м	г	Air Velocity*
626	+6		-08			49 - 04	9	ature, oF		200 - 21			120 - 190		ature, OF
010	0.0		0.0			0 0.	-	-requer 1	Υ				- 0		-requer viA
							CD	4 CONTINUI	TABLE						

⁺Dry cows. **Sick with bad knees. **Poor appetite for several days.

RESEARCH BULLETIN 552

31

						(00	et. 26, 19	51 - F(eb. 14,	1992)			-			
								Н	eat Dis	sipation	Per Ho	our		Hea	t Dissi	pation
		Ev	aporat	ive Weigh	t Loss	Per H	our					No	n-	Rel	ative to	Total
		From	Respi	ratory					Evapo	orative		Evapo	rative	He	at Prod	luction
Drv	Air		Tract		F	rom Sk	in	Res	pira-							Non-
Bulb	Velocity			% of			% of	to	ry		Skin	То	tal	Evapo	rative	Evaporative
Temper-	Miles	gm.	gm.	total	gm.	gm.	total	Cal	Cal	Cal	Cal	Cal	Cal	Respira	-	
ature	per	per	per	vapor-	per	per	vapor-	per	per	per	per	per	per	tory	Skin	Total
OF	Hour	cow	m2	ization	cow	m ²	ization	cow	m^2	cow	m^2	cow	m^2		Perce	nt
	11044						J	ersey §	999							
50	0.4	79	18	35	144	33	65 -	46	10	84	19	420	95	9	15	76
52	4.2	48	11	38	80	18	62	28	6	46	10	473	108	5	9	86
52	6.0	43	10					25	6					5		
19	0.5	77	17	36	137	30	64	45	10	79	17	514	111	7	12	81
14	3.8	62	14	29	152	33	71	36	8	88	19	590	129	5	12	83
20	7.6	51	11	44	66	14	56	30	6	38	8	659	143	4	5	91
							J	ersey 2	264							
51	0.4	68	17	27	188	46	73 -	39	10	109	27	338	83	8	22	70
53	4.2	38	9	23	127	32	77	22	5	74	17	381	95	5	15	80
51	6.0	29	7	23	97	24	77	17	4	56	14	347	86	4	13	83
20	0.5	43	10	34	84	20	66	25	6	49	12	423	101	5	10	85
16	3.8	56	14	53	50	12	47	32	8	29	7	613	149	5	4	91
22	7.6	42	10	44	54	13	56	24	6	31	8	604	144	4	5	91
							J	ersey	548							- 4
50	0.4	86	20	34	168	40	66 -	50	12	97	23	371	88	10	19	71
52	4.2	52	12	27	142	34	73	30	7	82	20	420	100	6	15	79
52	6.0	42	10	20	163	39	80	24	6	95	23	389	93	5	19	76
20	0.5	66	16	33	132	31	67	38	9	77	18	510	121	6	12	82
15	3.8	50	12	35	94	22	65	29	7	54	13	468	111	5	10	85
21	76	43	10	24	135	32	76	25	6	78	19	499	118	4	13	83

TABLE 5A. -- INFLUENCE OF AIR VELOCITY ON THE RELATIVE HEAT LOSSES BY EVAPORATIVE AND NON-EVAPORATIVE PROCESSES, AND ON THE RELATIVE EVAPORATIVE WEIGHT LOSSES FROM THE RESPIRATORY TRACK AND SKIN IN JERSEY AND BRAHMAN CATTLE.

								H	eat Dis	sipation	Per He	our		He	at Dissi	pation
		Ev	aporat	ive Weigh	t Loss	Per H	our					No	on-	Rel	ative to	Total
		From	Respi	ratory					Evapo	rative		Evapo	rative	He	at Prod	luction
Dry	Air		Tract		F	rom Sk	in	Res	pira-							Non-
Bulb	Velocity			% of			% of	to	ry		Skin	To	otal	Evapo	orative	Evaporative
Temper-	Miles	gm.	gm.	total	gm.	gm.	total	Cal	Cal	Cal	Cal	Cal	Cal	Respira	1-	
ature	per	per	per	vapor-	per	per	vapor-	per	per	per	per	per	per	tory	Skin	Total
oF	Hour	cow	m ²	ization	cow	m2	ization	cow	m^2	cow	m^2	cow	m^2		Perce	nt
							J	ersey	549							
50	0.4	69	17	33	137	33	67 -	40	10	79	19	413	99	8	15	77
52	4.2	50	12	21	186	44	79	29	7	108	26	471	113	5	18	77
52	6.0	34	8	12	250	60	88	20	5	145	35	333	80	4	29	67
21	0.5	59	14	35	110	26	65	34	8	64	15	506	122	6	11	83
15	3.8	54	13	29	135	33	71	31	8	78	19	768	186	4	9	87
21	7.6	46	11	17	222	53	83	27	6	129	31	718	173	3	15	82
							Br	ahman	209							
50	0.4	52	10	41	76	14	59	30	6	44	8	414	77	6	9	85
52	4.2	44	8	33	90	17	67	26	5	52	10	533	99	4	9	87
51	6.0	43	8	25	127	24	75	25	5	74	14	513	95	4	12	84
20	0.5	43	8	45	52	10	55	25	5	30	6	679	128	3	4	93
14	3.8	74	14	65	39	7	35	43	8	23	4	864	160	5	2	93
19	7.6	96	18	86	15	3	14	56	10	9	2	1190	223	4	1	95
							Br	ahman	189							
50	0.4	46	9	28	116	22	72	27	5	67	13	350	67	6	15	79
53	4.2	34	7	22	122	24	78	20	4	71	14	396	77	4	15	81
51	6.0	26	5	13	177	-34	87	15	3	103	20	285	54	4	26	70
21	0.5	47	9	25	142	27	75	27	5	82	16	532	102	4	13	83
15	3.8	57	11	50	57	11	50	33	6	33	6	840	157	4	4	92
22	7.6	48	9	56	37	7	44	28	5	22	4	936	177	3	2	95

TABLE 5A -- CONTINUED

Research Bulletin 552

PR	JCESSES,	AND C	N THE	S RELAT	H	OLSTE	110EW	BROWN	V SWISS	S FROM S CATTI	E.	VESL IV	10101	INAC			TAT
						(0)	. 20, 10	51 - 10	Heat	Dissipal	tion Pe	r Hour		He	at Dissi	ipation	Ŭ
		Ev	aporat	ive Weigh	t Loss	Per H	our		noue	DIDDIPU	cion 2 di	No	n-	Rel	ative to	Total	S
		From	Respi	ratory				-	Evapo	orative		Evapo	rative	He	at Prod	luction	2
Drv	Air		Tract	, accer y	F	rom Sk	in	Res	oira-							Non-	
Bulb	Velocity			% of			% of	to	rv	S	kin	To	tal	Evapo	orative	Evaporative	2
Temper-	Miles	gm.	gm.	total	gm.	gm.	total	Cal	Cal	Cal	Cal	Cal	Cal	Respira	1-		1
ature	per	per	per	vapor -	per	per	vapor-	per	per	per	per	per	per	tory	Skin	Total	5
OF	Hour	cow	m ²	ization	cow	_m2	ization	cow	_m2	cow	m^2	cow	_m2		Perce	nt	Ē
								Holstei	n 178								Ē
50	0.4	100	20	28	257	51	72	58	11	149	30	552	109	8	20	72	5
51	4.5	64	13	30	149	29	70	37	7	86	17	668	131	5	11	84	2
49	8.1	92	18	29	229	45	71	53	10	133	26	790	154	5	14	81	
20	0.5	98	19	44	123	24	56	57	11	71	14	828	162	6	7	87	Ę
18	3.4	70	14 ·	34	135	27	66	41	8	78	16	781	154	5	8	87	Ę
26	10.0	43	8	20	170	33	80	25	5	99	19	767	151	3	11	86	5
								Holstei	n 132								Ę
50	0.4	94	18	34	179	34	66 .	54	10	104	20	565	109	7	15	78	- 25
52	4.5	56	11	34	108	21	66	32	6	63	12	705	136	4	8	88	Þ
50	8.1	70	15	45	87	17	55	. 41	8	50	10	663	129	5	7	88	-
20	0.4	73	14	36	129	25	64	42	8	75	14	675	131	5	10	85	5
17	3.4	52	10	37	89	17	63	30	6	52	10	770	150	4	6	90	5
24	10.0	42	8	21	156	30	79	24	5	90	17	783	152	3	10	87	Ĩ
								Holstei	n 184								S
50	0.4	136	27	83	27	5	17	79	16	16	3	745	150	9	2	89	-
51	4.5	63	13	31	141	28	69	36	7	82	16	661	133	5	10	85	
51	8.1	86	17	47	96	19	53	50	10	56	11	732	148	6	7	87	
20	0.4	91	18	78	25	5	22	53	11	14	3	677	136	7	2	91	
19	3.4	64	13	77	19	4	23	37	8	11	2	882	178	4	1	95	
23	10.0	49	10	23	160	32	77	28	6	93	19	1061	215	2	8	90	

TABLE 5B. -- INFLUENCE OF AIR VELOCITY ON THE RELATIVE HEAT LOSSES BY EVAPORATIVE AND NON-EVAPORATIVE PROCESSES, AND ON THE RELATIVE EVAPORATIVE WEIGHT LOSSES FROM THE RESPIRATORY TRACT AND SKIN IN

									Heat	Dissipa	tion Pe	r Hour		He	at Dissip	oation	
		Εv	aporat	ive Weigh	nt Loss	Per H	our					No	on-	Rel	ative to	Total	
		From	Respi	ratory					Evapo	orative		Evapo	rative	He	at Produ	action	
Dry	Air		Tract		F	rom Sk	rin	Res	pira-							Non-	
Bulb	Velocity			% of			% of	to	ry	S	skin	То	tal	Evapo	orative	Evaporative	
Temper-	Miles	gm.	gm.	total	gm.	gm.	total	Cal	Cal	Cal	Cal	Cal	Cal	Respira	1-		
ature	per	per	per	vapor-	per	per	vapor-	per	per	per	per	per	per	tory	Skin	Total	
OF	Hour	cow	m ²	ization	cow	m^2	ization	cow	m^2	cow	m^2	cow	m^2		Percen	t	
							Br	own Sw	iss 9								
50	0.4	98	20	28	251	51	72	57	12	146	30	486	99	8	21	71	
52	4.5	56	11	34	109	22	66	32	6	63	13	658	132	4	9	87	н
49	8.1	86	17	23	280	57	77	50	10	162	33	486	98	7	23	70	Ē
20	0.4	61	13	37	106	22	63	35	7	61	13	527	108	6	10	84	SE
18	3.4	57	12	52	52	11	48	33	7	30	6	799	164	4	3	93	A
25	10.0	41	8	22	143	29	78	24	5	83	17	685	140	3	11	86	ñ
							\mathbf{Br}	own Sw	iss 41								Ξ
50	0.4	99	20	43	129	26	57	57	12	75	15	460	94	10	12	78	в
52	4.5	45	9	26	129	26	74	26	5	75	15	555	112	4	11	85	g
51	8.1	74	15	28	192	39	72	43	9	111	23	518	105	6	17	77	E
16	0.4	65	13	41	93	19	59	38	8	54	11	574	116	6	8	86	ET
19	3.4	54	11	43	72	15	57	31	6	42	9	758	153	4	5	91	ų
24	10.0	48	10	26	140	28	74	28	6	81	16	671	134	4	10	86	~
							Br	own Sw	iss 47								55
50	0.4	82	18	37	138	30	63	48	10	80	17	525	113	7	12	81	ъ
51	4.5	44	9	29	107	23	71	26	6	62	13	546	117	4	10	86	
50	8.1	71	15	30	165	35	70	41	9	96	20	588	126	6	13	81	
20	0.4	71	15	50	70	15	50	41	9	41	9	558	120	7	6	87	
19	3.4	58	12	59	40	9	41	34	7	23	5	837	180	4	3	93	
24	10.0	51	11	35	96	21	65	30	7	56	12	1035	223	3	5	92	

TABLE 5B -- CONTINUED

35

TABLE 6A. -- INFLUENCE OF AIR VELOCITY ON THE RELATIVE HEAT LOSSES BY EVAPORATIVE AND NON-EVAPORATIVE PROCESSES, AND ON THE RELATIVE EVAPORATIVE WEIGHT LOSSES FROM THE RESPIRATORY TRACT AND SKIN IN JERSEY AND BRAHMAN CATTLE

(Feb. 21 - May 29, 1952)

_	the second second second									Heat	Dissipat	tion Per	Hour		Hea	it Dissi	pation	
			Em	norati	vo Woigh	t Logg	ner Ho	mr		inclut	Dibbipit		No	n-	Rel	ative to	Total	
			From	Roeni	ve weign	LUSS	per m			Evap	orative		Evapor	rative	Heat Production			
	Dev	Air	FIOM	Tract	atory	F	om Sk	in	Resp	ira-							Non-	· .
	Bulb	Velocity		11400	% of		% of		tor	tory Skin			To	tal	Evapo	rative	Evaporative	3
Ta	mnor	Milos	am	am	total	gm.	gm.	total	Cal	Cal	Cal	Cal	Cal	Cal	Respira	1-		•
16	turo	nar	per.	ner.	vapor-	ner	per	vapor-	per	per	per	per	per	per	tory	Skin	Total	
•	0 _F	Hour	cow	m ²	ization	cow	m2	ization	cow	m ²	cow	_m2	cow	_m2		Perce	nt	-
-	F	nour	001		Lintion			Je	ersev 5	48								-
	65	0.5	96	22	22	350	82	78	56	13	203	48	261	61	11	39	50	
	66	6.2	63	15	23	215	50	77	37	9	125	29	320	75	8	26	66	
	67	8.5	49	11	17	240	55	83	28	6	139	32	293	67	6	30	64	
	80	0.4	80	18	14	506	115	86	46	10	293	67	129	29	10	62	28	
	00	4 7	60	14	16	323	73	84	35	8	187	42	226	51	8	42	50	
	80	77	61	14	17	291	66	83	35	8	169	38	276	63	7	35	58	
	05	0.4	157	35	18	740	167	82	91	20	429	97	-25	-6	18	87	-5	
	05	8.0	110	27	22	413	93	78	69	16	240	54	84	19	18	61	21	
	90	0.5	115	41		110	00	J	ersev 9	94								
	65	0.5	94	23	31	205	50	69 -	54	13	119	29	369	90	10	22	68	
	66	6.2	56	14	29	136	33	71	32	8	79	19	443	108	6	14	80	
	67	9.5	56	14	32	118	29	68	32	8	68	17	492	121	5	12	83	
	01	0.5	194	31	26	349	86	74	72	18	202	50	173	42	16	46	38	
	00	4.7	60	17	21	267	66	79	40	10	155	38	315	78	8	30	62	
	00	7.7	70	10	22	288	71	78	46	11	167	41	327	81	9	31	60	
	00	0.4	210	53	43	279	70	57	122	31	162	41	166	42	27	36	37	
	95	0.4	106	50	30	457	116	70	114	29	265	67	164	42	21	49	30	
	90	0.9	190	50	50	101	110		ersev 2	05								
	65	0.5	109	24	21	409	91	79	63	14	237	53	272	61	11	41	48	
	66	6.2	68	15	29	165	37	71	39	9	96	21	509	114	6	15	79	
	67	0.2	54	12	23	178	40	77	31	7	103	23	440	99	5	18	77	
	01	0.5	135	30	25	402	91	75	78	17	233	53	280	63	13	40	47	
	80	47	74	17	18	345	78	82	43	10	200	45	301	68	8	37	55	
	00	77	71	16	19	300	67	81	41	9	174	39	359	81	7	30	63	
	00	0.4	170	40	21	654	147	79	104	23	379	85	99	22	18	65	17	
	95	0.4	172	30	20	670	152	80	100	23	389	88	24	5	19	76	5	
	90	0.9	114	00	20	010	100											

Missouri AGRICULTURAL EXPERIMENT STATION

TABLE 6A CONTINUED Heat Dissipation Per Hour Heat Dissipation																	
									Heat	Dissipat	ion Per	Hour		Hea	t Dissi	pation	
		Ev	aporati	ive Weigh	t Loss	per Ho	our					No	n-	Relative to Total			
		From	Respi	ratory					Evapo	orative		Evapo	rative	He	at Prod	uction	
Dry	Air		Tract		F	rom Sk	in	Resp	ira-					-		Non-	
Bulb	Velocity			% of	% of % (% of	tory		S	Skin		tal	Evaporative		Evaporative	
Temper-	Miles	gm.	gm.	total	gm.	gm.	total	Cal	Cal	Cal	Cal	Cal	Cal	Respira	-	10-1-1	
ature	per	per	per	vapor-	per	per	vapor-	\mathbf{per}	per	per	per	per	per	tory	Skin	Total	
$^{\rm o}{ m F}$	Hour	cow	m^2	ization	cow	m²	ization	cow	m ²	cow	m²	cow	m²		Percei	nt	
Jersey 549 14 169 20 195 42 15 41 44																	
65	0.5	106	25	27	289	67	73	61	14	168	39	180	43	10	50	44 64	
67	6.2	69	16	22	239	56	78	40	9	139	32	317	14	0 77	20	69	
67	8.5	52	12	22	187	43	78	30	10	108	25	298	49	11	40	40	
80	0.4	93	21	19	405	90	81	54	12	235	52	100	42	10	49	40	
80	4.7	75	17	16	389	87	84	44	10	220	50	192	40	77	49	36	
80	7.7	50	11	10	440	99	90	29	0	200	94	190	30	10	51	50	
95	0.4	158	35			150		92	20	411				14	86	2	
95	8.9	113	25	14	708	156	86	66	15	411	90	1	.4	14	00	••	
				0.0	101		Br	ahman	209	70	14	409	76	0	14	77	
64	0.5	79	15	38	131	24	62	40	9	102	10	222	62	6	22	72	
66	6.2	44	8	20	177	33	80	20	0	103	17	467	87	6	16	78	
66	8.5	60	11	27	162	30	73	30	0	094	16	973	52	11	21	68	
80	0.4	74	14	34	143	21	70	40	4	49	20	210	47	6	14	80	
80	4.7	31	6	30	117	14	70	26	5	68	13	238	46	8	20	72	
80	7.7	40	90	20	242	65	77	61	19	100	38	139	26	15	50	35	
95	0.4	105	20	10	343	60	82	45	12	208	39	167	31	11	49	40	
95	8.9	78	15	10	339	00	Br	ahman	189	200	00	101					
65	0.5	67	19	37	114	22	63	39	8	66	13	288	55	10	17	73	
60	0.5	01	10	26	197	24	74	26	5	74	14	349	66	6	16	78	
60	0.2	25	0 7	17	166	31	83	20	4	96	18	275	52	5	25	70	
07	0.0	61	11	22	217	41	78	35	6	126	24	181	34	10	37	53	
80	4.7	41	2	19	174	33	81	24	5	101	19	195	37	7	32	61	
80	77	38	7	21	139	26	79	22	4	81	15	267	50	6	22	72	
05	0.4	84	16	13	549	102	87	49	9	318	59	41	6	12	78	10	
95	8.9	73	14	16	378	70	84	42	8	219	41	137	25	11	55	34	

Research Bulletin 552

37

TABLE 6B. -- INFLUENCE OF AIR VELOCITY ON THE RELATIVE HEAT LOSSES BY EVAPORATION AND NON-EVAPORATIVE PROCESSES, AND ON THE RELATIVE EVAPORATIVE WEIGHT LOSSES FROM THE RESPIRATORY TRACT AND SKIN IN HOLSTEIN AND BROWN SWISS CATTLE.

(Feb. 21 - May 29, 1952)

									Heat	Dissipat	tion Per	Heat Dissipation					
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $											No	on-	Relative to Total			
		From	Respir	ratory					Evapo	rative		Evapo	rative	Heat Production			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		in	Respira-								Non-	· .					
Bulb	Velocity			% of			% of	tor	y	S	kin	To	tal	Evapo	orative	Evaporative	
Temper-	Miles	gm.	gm.	total	gm.	gm.	total	Cal	Cal	Cal	Cal	Cal	Cal	Respira	1-		ġ
ature	per	per	per	vapor-	per	per	vapor-	per	per	per	per	per	per	tory	Skin	Total	
OF	Hour	cow	m2	ization	cow	m^2	ization	cow	m2	cow	m^2	cow	m^2		Perce	nt	
								Holstei	n 144								1
68	0.4	154	29	31	344	65	69	89	17	200	38	441	83	12	28	60	;
67	5.6	81	16	28	207	40	72	47	9	120	23	543	105	7	17	76	ŝ
67	8.8	97	19	27	268	52	73	56	11	155	30	584	112	7	20	73	
80	0.4	208	41	26	593	116	74	121	24	344	67	201	39	18	52	30	
80	4.5	161	31	49	170	33	51	93	18	99	19	533	103	13	14	73	
81	8.7	138	27	40	204	40	60	80	16	118	23	556	108	11	16	73	
95	0.4	257	51	30	587	117	70	149	30	340	68	170	34	23	51	26	
95	8.8	252	50	28	637	126	72	146	29	369	73	279	55	18	46	35	
								Holstei	n 154								
68	0.4	164	30	26	478	88	74	95	17	277	51	548	101	10	30	60	
67	5.6	112	21	28	290	54	72	65	12	168	31	597	111	8	20	72	
67	8.8	108	20	35	197	36	65	63	12	114	21	575	106	8	15	77	
80	0.4	258	48	34	507	94	66	150	29	294	54	519	97	16	30	54	
80	4.5	141	26	20	551	102	80	82	15	320	59	423	78	10	39	51	
81	8.7	167	- 31	27	453	84	73	97	18	263	49	506	94	11	30	59	
95	0.4	278	53	44	359	69	56	161	31	208	40	129	25	32	42	26	
95	8.8	243	46	25	744	141	75	141	27	432	82	160	30	19	59	22	
								Holstei	n 118								
67	0.4	148	28	34	293	56	66	86	16	170	32	570	108	10	21	69	
67	5.6	109	21	37	188	36	63	63	12	109	21.	650	125	8	13	79	
67	8.8	104	20	58	76	15	42	60	12	44	9	696	134	7	6	87	
80	0.4	204	40	31	458	90	69	118	23	266	52	231	45	19	43	38	
80	4.5	133	26	29	327	63	71	77	15	190	36	517	100	10	24	66	
81	8.7	124	24	30	295	57	70	72	14	171	33	579	113	9	21	70	
95	0.4	261	52	43	342	69	57	151	30	198	40	238	48	26	34	40	
95	8.8	218	44	31	481	96	69	126	26	279	56	369	74	16	36	48	

38

RICULTURAL EXPERIMENT STATION

						7	TABLE 61	B CO	ONTINU	ED								
									Heat 1	Dissipa	tion Pe	r Hour		Hea	t Dissi	pation		
		Ev	aporat	ive Weigh	t Loss	Per H	our		_			NO	on-	Rel	Relative to Total			
		From	Respi	ratory	-			-	Evapor	rative		Evapo	rative	He	at Prod	uction		
Day	Air		Tract		From Skin			Res	Respira-					-		Non-		
Bulb	Velocity % of		% of			to	tory Skin			T	otal	Evapo	rative	Evaporative				
Temper-	Miles	gm.	gm.	total	gm.	gm.	total	Cal	Cal	Cal	Cal	Cal	Cal	Respira	-			
ature	per	per	per	vapor-	\mathbf{per}	per	vapor-	per	per	per	per	\mathbf{per}	per	tory	Skin	Total		
^o F	Hour	COW	m²	ization	cow	m²	ization	cow	m²	cow	m²	cow	m²_		Perce	nt		
							Bro	own Sw	iss 22									
68	0.4	129	25	21	493	93	79	75	14	286	54	335	63	11	41	48		
67	5.6	85	16	16	445	85	84	49	9	258	49	365	70	7	39	54	R	
67	8.8	93	18	30	218	42	70	54	10	126	24	462	88	8	20	72	因	
80	0.4	140	27	17	665	128	83	81	16	386	74	154	30	13	62	25	Ĕ	
80	4.5	106	20	20	436	83	80	61	12	253	48	442	85	8	34	58	AR	
81	8.7	115	22	27	311	60	73	67	13	180	35	455	87	10	25	65	ũ	
96	0.4	264	51	33	547	106	67	153	30	317	61	88	17	27	57	16	щ	
95	8.8	190	37	16	991	191	84	110	22	580	111	-13	-3	16	86	-2	B	
							Bre	own Sw	iss 23								Ę	
67	0.4	174	32	27	473	87	73	101	19	274	50	413	76	13	35	52	È	
67	5.6	111	21	31	250	47	69	64	12	145	27	587	110	8	18	74	ĥ	
67	8.8	125	23	30	295	55	70	72	13	171	32	670	124	8	19	73	Ę	
80	0.4	227	43	23	743	141	77	132	25	431	82	154	29	18	60	22	-	
80	4.5	135	26	19	562	107	81	78	15	326	62	434	82	9	39	52	Si	
81	8.7	160	30	27	433	82	73	93	17	251	48	382	72	13	34	53	2	
95	0.4	312	61	37	538	104	63	181	35	312	60							
96	8.8	275	52	23	917	174	77	160	30	532	101	-31	-6	24	81	-5		
							Bro	own Sw	iss 47									
67	0.4	119	25	25	352	75	75	69	14	204	44	341	72	11	33	56		
67	5.6	79	17	25	233	50	75	46	10	135	29	429	91	8	22	70		
67	8.8	74	16	28	191	41	72	43	9	111	24	464	99	7	18	75		
80	0.4	106	22	17	529	112	83	61	13	307	65	283	60	9	47	44	:	
80	4.5	82	17	25	244	52	75	48	10	142	30	413	87	8	24	68		
81	8.7	82	17	24	262	56	76	48	10	152	33	418	89	8	24	68		
96	0.4	184	39	27	493	105	73	107	23	286	61	123	26	21	55	24		
95	8.8	140	30	19	578	124	81	81	17	335	72	139	30	15	60	25	36	