Sotton & Rice 1991 MISSOURI CROP PERFORMANCE

Minor, Albers, Morris, Mason, Knerr, Bixler and Lankheit

Missouri Agricultural Experiment Station College of Agriculture, Food and Natural Resources University of Missouri-Columbia

Special Report 435

January, 1992

TABLE OF CONTENTS

					2																		
INTF COM	RODUCTIO IPARING V	N ARIETI	 ES	 	 	 	 	•••	 		 •••	•	•••	 	 	•••	•••	 •	 	•	 	•	1 1
<u>COT</u>	TON VARII	ETY PER	RFORM	ANC	E TR	RIAL	S																
E) SI C R I	XPERIMEN EED COMP. ULTURAL I ESULTS SENATH (T PORTAGEV	TAL PR ANY AI NPUTS ABLE 3 ILLE (T SUMM	OCEDU DDRESS (TABL) ABLE 4 ARY (T	RES (T E 2) . 	`ABI) .	· · · · · · ·	 		 	• •		•••	· · ·	· · · · · · · · ·		 	 · · · · · · · ·	•	· · · · · · · · ·	· · · · · · · ·	2 2 3 4 5 6 7
RICE EX RI I RI RI	E VARIETY XPERIMENT ESULTS DUDLEY (T ICE VARIET	PERFOR TAL PRO ABLE 6 TY IDEN	CEDU	<u>E TR</u> RES	<u>IAL</u> J (TA	<u>5</u> ABL	 E 7	· · · · · ·) ·	 • • •	• • •	 · · · · ·	· · ·			 	 	•	 · · · · · ·	· · · · · ·	•	· · ·	 	8 8 9 10

THE AUTHORS

Harry C. Minor is an Associate Professor in Agronomy and State Extension Specialist: David W. Albers is an Assistant Professor in Agronomy and State Extension Specialist; Carl G. Morris and Howard L. Mason are Senior Research Specialists; and Delbert R. Knerr, Alan W. Bixler and C. Stephen Lankheit are Research Specialists

ACKNOWLEDGEMENTS

The authors wish to recognize and express their appreciation to the following individuals for their assistance in conducting the 1991 Variety Performance Trials.

Cotton trials: Herb Schuerenberg, Sikeston; David and Scott Andrews, Senath; Jake Fisher, Superintendent, Delta Research Center, Portageville; and Jimmie Nell Ward, Senior Research Technician, Delta Research Center, Portageville.

<u>Rice trials</u>: David and Steve Jackson, Dudley; Drs. Karen Moldenhauer and Kenneth Gravois, University of Arkansas; Bruce Beck, Agronomy Specialist, Poplar Bluff.

MISSOURI CROP PERFORMANCE

1**991**

COTTON AND RICE

INTRODUCTION

This report on Research Project 363 is a contribution of the Department of Agronomy, University of Missouri Agricultural Experiment Station. The work was supported by fees from organizations submitting varieties for evaluation.

Cotton performance trials were planted near Sikeston on the Herb Schuerenberg farm, near Portageville on the Delta Research Center, and near Senath on the David Andrews farm. The Sikeston test emerged poorly and was abandoned. Twenty-eight cotton varieties were evaluated at each location. A rice performance trial was evaluated near Dudley on the David and Steve Jackson farm. In spite of cool spring temperatures and late planting, yields in this test were representative for the cultural practices used. All producers of cotton and rice seed were eligible to enter varieties or hybrids in the 1991 evaluation trials. Participation was voluntary, and no control was exercised by the program over which, or how many entries were submitted. However, to help finance the evaluation program, a fee was charged for each entry.

The large number of varieties available makes the process of selecting a superior one difficult. To select intelligently, producers need a reliable, unbiased, and up-to-date source of information that will permit valid comparisons among available varieties. The objective of the University of Missouri's performance testing program is to provide this information. The tests are conducted under as uniform conditions as possible. Small plots are used to reduce the chance of soil and climatic variations occurring between individual plots. Results obtained should aid the individual grower to judge the relative merits of the varieties available in Missouri today.

COMPARING VARIETIES

The performance of a variety cannot be measured with absolute precision. Uncontrollable variability is involved in the determination of each yield average. This variability occurs at times because the soil isn't uniform, but many other conditions may contribute to it. Because variability exists in all field experimentation, statistics are used as a tool to assist with making decisions. The statistical tool used in the analysis of these trials is the test of least significant difference (L.S.D.). The L.S.D. is quite simple to apply. When two entries are compared and the difference between them is greater than the L.S.D., the entries are judged to be significantly different. Differences smaller than the L.S.D. may have occurred by chance and are judged to be not significant.

Performance may seem inconsistent from location to location and from year to year because of differences in rainfall, temperature, soil fertility, diseases, insects, and other factors. To obtain an improved estimate of relative performance, results from more than one location or year should be considered. In this publication, an effort has been made to facilitate comparisons across years and locations.

In each trial, the "top yielding" varieties have been identified. These varieties are those that did not yield significantly less than the highest yielding variety or hybrid in the test. They are denoted in the tables by an asterisk (*) next to their yield. Thus, by going down a column, readers can readily identify the highest yielding varieties. By going across, readers can evaluate the relative performance of a variety during several years or at several locations. From the standpoint of yield, the most desirable varieties will be those that fall within the "top yielding" group (that is, have an asterisk) the greatest number of times.

COTTON VARIETY PERFORMANCE TRIALS

Cotton variety trials are carried out as part of the Cotton Improvement Project of the University of Missouri Agriculture Experiment Station located at the UMC Delta Center. These tests are conducted to provide a reliable, unbiased, up-to-date source of information for comparing varieties.

EXPERIMENTAL PROCEDURES

Two locations were selected to represent the range of conditions found in the cotton growing area of southeastern Missouri. These locations were the Herb Schuerenberg farm near Sikeston in the northern bootheel, and the Scott and David Andrews farm near Senath (Dubbs silt loam soil) in the southern bootheel. The Sikeston location was abandoned due to herbicide injury. A second location of the test was replanted at the UMC Delta Center in Portageville on a Tiptonville sandy loam.

<u>Field Plot Design</u>. The trials were arranged in a randomized complete block design with four replications. The plots were four rows wide with the center two rows being used for yield and other notes. Both locations used 38 inches row spacing and 37 feet plot length.

<u>Entries</u>. All producers of cotton seed were eligible to enter varieties in the 1991 evaluation trials. Participation was voluntary and no control was exercised by the program over which or how many varieties were entered. However, to help finance the evaluation program, a fee of \$150 per location was charged for each variety entered by the seed producer. A total of 28 cotton varieties were compared in 1991, as outlined in the following table.

Table 1. Source of Cotton Entries Evaluated in 1991.									
Brand	Variety	Firm and Address							
Chembred	1135, 333, X-1233, X-1234	Chembred Inc., Rt. 3, Box 750 Maricopa, AZ 85239							
Delcot	344	UMC Delta Center, Box 160 Portageville, MO 63873							
Deltapine	20, 50, 51, 5415 5690, DES119	Delta and Pine Land Co., 100 Main Street Scott, MS 38772							
GSC	1093, Stroman 254	Gro-Agri Seed Co., 6201 SE Loop 289, Box 1656 Lubbock, TX 79408							
Hyperformer	HB91-171B, S55, HS23, HS46	Hyperformer Seed Co., 5100 Poplar, Suite 3200 Memphis, TN 38137							
Stoneville	324, 453, 506, 786, 907,69152, LA887, Coker 130	Stoneville Pedigreed Seed Co., Box 167 Stoneville, MS 38776							
Sure-Grow	1001	Ellis Brothers Seed Inc., Rt. 1, Box 510 Centre, AL 35960							
Terra	C-40, 207	Terra International, Inc., 6555 Quince Rd., Suite 202 Memphis, TN 38119							

<u>Plot Management.</u> The trials were planted with commercial equipment modified for small plot work. The fields were managed during the growing season by the producer/cooperator. A summary of the cultural inputs for each location is found in Table 2. At maturity (60% open bolls) the plots were treated with PREP to enhance boll opening. Once-over harvest was completed using a Case IH 1822 picker. The seed cotton was ginned on a 20-saw Continental micro-gin equipped with one saw lint cleaner.

Table 2. Cultural Inputs for 1991 Variety Performance Trial

Location: Senath, Missouri Planted: May 8, 1991 Harvested: October 8, 1991 Planted Population: 75,000 Row Spacing: 38 Inches Grawing Senson Beinfell: 7,91"	Fərtilizər: Hərbicidə:	N-90 Ib/A; PPI: PRE: POST:	K-60 lb/A; S-13 lb/A; B-1.0 lb/A 0.95 Pt/A Trifluralin 0.85 lb/A ai Cotoran 0.5 lb/A Zorial 0.3 lb/A Probe X 2 0.45 Pt/A Bladex
Irrigation: Furrow 4 Times X 2.0" Fungicides & Insecticide: Disyston + Terrachlor 15 lb/A Ammo 3 Oz/A	Other Products:		Foliar N 3 lb/A PIX .4 Pt/A @ EB + 0.5 Pt/A @ EB + 3 Weeks Prep 1.2 Qt/A Dropp 0.1 lb/A Def 1.0 Pt/A
Location: Portageville, Missouri Planted: May 28, 1991	Fertilizer:	N-75 lb/A; S-15 lb/A	P-15 lb/A; K-50 lb/A;
Harvested: October 9, 1991 Planted Population: 75,000 Row Spacing: 38 inches Growing Season Rainfall: 14.75" Irrigation: Furrow 5 times X 1.0" Fungicides & Insecticide: (In-Furrow) Terrachlor + Disyston 15 lbs/A Orthene (4 ozs/A) X 5 times	Herbicides: Other Products:	PPI: PRE: POST:	Treflan 0.75 lb ai/A Boron 1.25 lb ai/A Cotoran 1.25 lb ai/A Probe 1 lb/A MSMA 1.5 lb ai/A PIX 8 ozs/A Early Bloom Prep 2 pts/A Harvard 8 ozs/A

<u>Data Recorded</u>. The number of plants in the 10' at the two center rows of each plot were counted and converted to number of plants per acre. At maturity, height, lodging, and yield were measured. Height was taken as the average distance in inches from the soil surface to the plant terminal. Lodging, which indicates the degree of erectness, was scored on a scale of 1 to 5 with 1 indicating that all plants were erect (no lodging) and 5 indicating that 80 percent, or more, of pounds of lint per acre multiplying the ginning percentage (lint percentage) by the total seed cotton yield. HVI quality characteristics of the cotton fibers were analyzed at the USDA Cotton Laboratory in Hayti, Missouri and the results are presented with the yield and other agronomic data.

<u>Fiber Quality</u>. Fiber quality characteristics were determined for each variety utilizing lint samples from three replications at each test location. These characteristics and their importance are described below.

A. <u>Micronaire:</u> The micronaire test provides a combined measure of maturity and fineness of cotton fibers. Fiber maturity is a relative measure of cell-wall fiber thickening. Immature fibers result in decreased rates of processing, dying problems, and the production of yarns and fabrics with low grade. In the test, air is passed through a compressed sample of cotton fiber. The rate of flow through the sample follows a relationship between diameter or thickness of the textile fibers and the air resistance they provide. Finer fibers result in greater resistance and therefore, a lesser air flow. Value recorded can be interpreted as follows:

Below 3.6 = fine and often immature 3.7 - 4.29 = premium range Above 4.3 = coarse fibers

B. <u>Uniformity</u>: Fiber uniformity is a measure of the degree of uniformity of fiber length in a sample. Uniformity is calculated as a ratio of the average length of all fibers to the average length of the longest 50 percent of the fibers in the sample. The ratio is then multiplied by 100. High uniformity values are desirable and indicate uniform fiber lengths.

> Below 77.0 = Very Low 77.1 - 79.0 = Low 79.1 - 82.0 = Average 82.1 - 85.0 = High Above 85.1 = Very High

C. <u>Strength:</u> Fiber strength is reported in grams per tex. A tex unit is equal to the weight in grams of 1000 m of fiber. The strength values are reported in grams of force required to break one tex unit of fibers with the holding jaws separated by 1/8 in. The following chart categories strength readings and aids in the interpretation of strength values for an 1/8 in. gauge:

Below 20.0 = Very Low 20.9 - 23.9 = Low 24.0 - 26.9 = Average 27.0 - 29.9 = High Above 30.0 = Very High

RESULTS

The 1991 Cotton Variety Performance Trials contained a range of planting dates similar to the overall Missouri crop. The Senath test was planted May 8 and the Portageville test was not planted until May 28. The three weeks difference in planting only resulted in a 140 lb/A difference in average lint yields. However, the late-planted Portageville (Table 3) test yielded very well (1238 lb/A) for planting in late May. In contrast, the Senath test averaged 1378 lb/A and ranged from 1014 lb/A to 1555 lb/A (Table 4). Fiber quality results for the tests were near the values for the area this season, with the exception of fiber strength. The average fiber strengths for the Senath and Portageville locations was 31.9 and 33.4 g/tex, respectively. Both of these test average strengths are above the top premium range for fiber strength on the USDA-CCC loan schedule and higher than the 27.1 g/tex average strength for cotton classed in the local USDA office. Two factors explain most of these differences: 1) some of the varieties entered in the test are new "high strength" varieties being introduced into the market. These varieties have strength greater than the "standard" varieties grown; 2) the plots were ginned using a micro-gin with 1 stage of lint cleaning, but without heat to dry (and damage) the lint and ginned slower than today's commercial gins.

Yield and fiber quality results are summarized in Tables 3, 4, and 5.

,		Lint Yield		.								
Variety	1991	1990	1989	Lint Percent	Stand	Height	Lodging	Length	Strength	Micronaire	Uniformity	Trash
	(lbs/A)			%	(PI/A)	(in)		(32's in.)	(g/tex)			(%)
Stoneville 453	1555**	1060*	1194**	39.5	63594	34	2.0	38.4	31.6	4.60	84.3	1.4
Hyperformer HS 46	1518*	945*	1067*	40.2	73219	33	2.0	39.0	34.2	4.17	83.3	1.2
Stoneville Coker 130	1517*	1111**	975*	39.4	53625	36	2.4	38.4	31.1	4.53	84.0	2.2
Stoneville 786	1507*			38.1	51219	36	2.1	38.4	34.1	4.30	84.7	1.7
Stoneville LA887	1499*			40.7	65313	35	2.4	39.0	34.6	4.37	83.7	1.1
Deltapine 5415	1488*	1082*		40.6	69094	35	1.8	38.4	32.3	4.67	84.3	0.8
Sure-Grow S-1001	1462*		910	39.1	69438	36	1.9	39.0	35.4	4.33	85.0	0.8
Deltapine 5690	1461*	1022*		39.8	61875	34	2.5	38.1	33.4	4.76	85.3	0.8
Chembred CB 333	1449*	1084*		38.3	59125	34	1.6	38.4	28.7	4.43	83.0	1.4
Hyperformer HB91 171B	1440*			38.8	64969	35	2.5	38.4	31.9	4.53	84.0	1.8
Chembred CBX 1233	1419*			39.8	61531	34	2.5	38.1	30.9	4.43	85.0	1.0
DES 119	1418*	1049*	868	38.8	64625	35	2.3	38.1	31.3	4.86	85,7	1.5
Deltapine 51	1409*	1024*	1130*	38.9	55688	36	2.0	38.4	29.1	5.00	85.3	1.0
Chembred CB 1135	1390*	1068*	1130*	37.8	66688	34	2.1	38.4	32.4	4.40	83.0	1.3
Stoneville 506	1382*		988*	36.1	64625	32	2.4	38.7	30.2	4.40	84.7	1.2
Deltapine 20	1367	972*	1038*	37.8	64281	36	1.9	37.4	28.4	4.67	82.7	0.7
Terra C-40	1365	1010*	989*	37.3	50875	36	2.1	37.4	29.2	4.33	83.3	0.8
Delcot 344	1364	1064*	1035*	38.8	42969	31	2.3	39.4	32.5	4.60	84.0	1.3
Deltapine 50	1361	1071*	1110*	35.5	63250	37	2.1	38.1	29.5	4.37	83.3	0.7
Terra 207	1354	1034*		39.5	54656	35	2.4	37.7	32.5	4.70	85.3	1.0
Stoneville 324	1347			37.7	57750	34	2.4	39.0	32.7	4.30	84.0	1.7
Hyperformer HS 23	1338	991*		37.4	66688	34	2.4	38.4	32.0	4.57	83.3	2.2
Stoneville 69132	1296			38.5	51219	37	2.0	36.1	29.6	4.53	85.3	0.7
Stoneville 907	1290	971*		38.0	54313	34	2.4	38.1	33.3	4.67	84.7	1.3
Hyperformer S55	1273			39.5	57406	36	2.3	38.5	33.5	4.10	84.3	0.8
Chembred CBX 1234	1208			36.6	60500	36	2.3	38.7	30.9	4.50	83.3	1.2
Stroman 254	1084			34.8	52250	34	2.1	38.1	34.5	4.06	83.3	1.2
GSC 1093	1014			33.6	55688	34	2.5	39.4	33.2	4.16	81.7	1.3
Mean	1378	1013	980	38.3	59874	34	2.2	38.4	31.9	4 49	84.0	1.0
LSD (.05)	174 40	166	221	1.52	12612	4.28	0.62	0.98	2 9	0.20	04.0	1.4
CV%	9 00	14.4	19.9	2 4 2	14 97	9 01	20.16	1 5	2.0 E or	0.32	1.98	0.64
	0,33	14.4	13.3	2.72	14.07	0.01	20.10	1.5	5.35	4.31	1.4	31.8

Table 3. Yield and Fiber Quality Performance of Cotton Varieties, Senath, MO 1991

** Highest yielding variety in the test for that year.

* Variety that did not yield significantly less than the highest yielding variety.

	Lint Yield									
Variety	1991	Lint Percent	Stand	Height	Lodging	Length	Strength	Micronaire	Uniformity	Trash
	(lbs/A)	%	(PI/A)	(in)		(32's in.)	(g/tex)			(%)
Stoneville LA887	1424**	42.8	67031	31	2.3	38.1	36.0	4.63	84.7	1.1
Stoneville 453	1404*	41.9	67031	31	1.3	36.8	31.9	4.80	84.3	1.5
Hyperformer HB91 171B	1397*	42.2	59125	28	1.5	38.1	33.5	4.67	84.3	1.8
Deltapine 5415	1324*	41.6	72531	29	1.5	38.1	33.7	5.07	85.0	0.7
Chembred CB 1135	1321*	41.5	60844	32	2.0	36.8	33.8	4.80	85.0	1.2
Chembred CB 333	1318*	40.0	67031	33	1.6	36.2	29.6	4.57	84.0	1.0
Chembred CBX 1233	1318*	40.4	69094	32	2.1	36.5	33.5	4.87	84.7	0.8
Deltapine 50	1314*	38.1	61875	28	1.5	36.8	31.4	4.67	83.7	0.7
Stoneville 324	1306*	39.9	63594	30	1.9	38.1	36.4	4.73	85.3	1.5
Delcot 344	1290	39.1	58094	33	1.9	38.1	33.6	4.73	84.0	1.5
Stoneville 69132	1267	39.8	65656	32	2.0	35.5	31.5	4.63	85.7	0.6
Terra C-40	1244	39.5	66688	31	1.6	35.8	29.9	4.60	84.0	0.8
DES 119	1241	39.4	65313	32	1.8	37.4	32.0	5.10	85.0	0.9
Stoneville 786	1239	39.9	67031	30	1.4	37.1	33.2	4.47	83.7	1.1
Hyperformer S55	1221	41.3	61188	33	1.5	37.1	34.4	4.17	83.7	1.1
Deltapine 20	1215	38.3	66000	31	1.6	36.2	29.8	4.43	84.0	1.0
Deltapine 5690	1211	39.2	61531	30	1.9	37.4	36.2	5.00	85.3	0.8
Stoneville 506	1204	37.9	65656	28	1.6	37.8	33.8	4.53	84.0	1.1
Hyperformer HS23	1204	38.7	75969	29	2.0	37.1	33.4	4.67	84.7	1.7
Terra 207	1196	38.8	69094	33	2.0	37.4	31.2	4.63	85.3	0.8
Hyperformer HS46	1196	40.4	75625	31	1.6	37.1	35.0	4.83	83.3	1.0
Chembred CBX 1234	1188	38.6	62219	31	2.0	38.1	34.5	4.53	83.7	1.0
Deltapine 51	1188	37.7	67375	30	1.8	37.8	31.7	5.00	84.7	0.5
Stoneville Coker 130	1158	38.3	63594	31	1.9	36.5	32.2	4.80	84.7	14
Sure-Grow S-1001	1157	39.2	68063	32	1.6	38.1	36.6	5.03	85.0	0.0
Stoneville 907	1129	38.2	58438	33	1.5	37.8	36.3	4.67	84.0	0.8
Stroman 254	1050	37.4	60500	34	1.4	37.4	36.3	4.43	85.0	0.0
GSC 1093	943	35.8	59813	28	2.0	37.8	32.7	4 33	82.0	0.3
									02.0	0.8
Maan	1220	29 F	65214	21	17	27.1	22.4		500° K 5	
	1238	39.5	05214	31	1.7	37.1	33.4	4.69	84.4	1.0
LSD (.05)	119.15	1.92	13881	2.43	0.59	3.18	2.74	2.70	2.04	5.97
CV%	6.84	2.96	15.13	5.61	24.25	1.67	5.01	3.52	1.48	35.17

Table 4. Yield and Fiber Quality Performance of Cotton Varieties, Portageville, MO 1991

** Highest yielding variety in the test for that year.

* Variety that did not yield significantly less than the highest yielding variety.

	Lint Yield	-								
Variety	1991	Lint Percent	Stand	Height	Lodging	Length	Strength	Micronaire	Uniformity	Trash
	(lbs/A)	%	(PI/A)	(in)		(32's in.)	(g/tex)			(%)
Stoneville 453	1480**	40.7	65313	32	2.4	37.7	31.7	4.70	84.3	1.5
Stoneville LA 887	1462*	41.8	66172	33	2.7	38.5	35.3	4.50	84.2	1.1
Hyperformer HB91 171B	1418*	40.5	62047	31	2.2	38.1	32.8	4.60	84.2	1.9
Deltapine 5415	1405*	41.1	70813	32	3.0	38.2	33.0	4.87	84.7	0.8
Chembred CB 333	1384*	39.2	63078	33	2.3	37.3	29.2	4.50	83.5	1.2
Stoneville 786	1373	39.0	59125	33	2.3	37.7	33.7	4.38	84.2	1.4
Chembred CBX 1233	1368	40.1	65313	33	2.8	37.4	32.2	4.65	84.8	0.9
Hyperformer HS46	1356	40.3	74422	32	2.5	38.1	34.6	4.50	83.3	1.1
Chembred CB 1135	1356	39.7	63766	33	2.6	37.6	33.1	4.60	84.0	1.3
Deltapine 50	1337	36.8	62563	32	2.4	37.5	30.4	4.52	83.5	0.7
Stoneville Coker 130	1337	38.9	58609	33	2.4	37.5	31.6	4.67	84.3	1.8
Deltapine 5690	1336	39.5	61703	32	2.8	37.8	34.8	4.88	84.3	0.8
DES 119	1330	39.1	64969	33	2.7	37.9	31.6	4.98	85.3	1.2
Delcot 344	1327	39.0	50531	32	2.8	38.7	33.1	4.67	84.0	1.4
Stoneville 324	1326	38.8	60672	32	2.8	38.7	34.6	4.52	84.7	1.6
Sure-Grow S-1001	1309	39.1	68750	34	2.8	38.5	36.0	4.68	85.0	0.8
Terra C-40	1305	38.4	58781	34	2.5	36.7	29.6	4.47	83.7	0.8
Deltapine 51	1298	38.3	61531	33	2.4	38.0	30.4	5.00	85.0	0.7
Stoneville 506	1293	37.0	65141	30	2.2	38.3	32.0	4.47	84.3	1.2
Deltapine 20	1291	38.1	65141	33	2.4	36.8	29.1	4.55	83.3	0.9
Stoneville 69132	1282	39.2	58438	34	2.1	35.8	30.5	4.58	85.5	0.7
Terra 207	1275	39.1	61875	34	2.4	37.6	31.8	4.67	85.3	0.9
Hyperformer HS23	1271	38.0	71328	31	2.6	37.7	32.7	4.62	84.0	2.0
Hyperformer S55	1247	40,4	59297	34	2.1	37.9	34.0	4.13	84.0	0.9
Stoneville 907	1210	38.1	56375	33	2.4	37.9	34.8	4.67	84.3	1.1
Chembred CBX 1234	1198	37.6	61359	33	2.5	38.3	32.7	4.52	83.5	1.1
Stroman 254	1067	36.6	56375	34	2.2	37.8	35.4	4.25	84.2	1.1
GSC 1093	978	34.7	57750	31	2.3	38.6	33.0	4.25	81.8	1.1
Mean	1308	38.9	62544	33	2.5	37.8	32.6	4.59	84.2	1.1
LSD (.05)	104.73	1.21	9306.8	2.45	0.48	0.70	1.93	2.06	1.41	4.33
CV%	8.11	2.72	15.07	7.60	19.54	1.62	5.18	3.92	1.46	33.41

 Table 5.
 Yield and Fiber Quality Performance of Cotton Varieties, 2 Locations, 1991.

** Highest yielding variety in the test for that year.

* Variety that did not yield significantly less than the highest yielding variety.

RICE VARIETY PERFORMANCE TRIALS

Rice variety trials became part of the University of Missouri's crop performance testing program in 1983. These tests are conducted to provide a reliable, unbiased, up-to-date source of information for comparing varieties. This work was supported in part by fees from organizations submitting varieties for evaluation. In addition to fees, a research gift was provided by the Missouri Rice Research and Merchandising Council.

EXPERIMENTAL PROCEDURES

Location. Rice plots were established on May 28, 1991 on the David and Steve Jackson farm near Dudley, Missouri. Three maturity groups of rice varieties were represented in southeast Missouri.

<u>Field Plot Design</u>. The trials were arranged in a randomized complete block design with four replications. Each plot consisted of six rows, 15 feet long, with a between-row spacing of 7.5 inches. The four center rows of each plot were machine harvested at maturity.

Entries. All public seed was provided by Drs. Karen Moldenhauer and Kenneth Gravois of the Rice Research Experiment Station at Stuttgart, Arkansas. A fee of \$100 per entry was charged for each non-public entry. A total of 36 rice varieties were compared in 1991.

<u>Plot Measurement</u>. Plots were planted with a conventional drill modified for experimental research. Fertilizer was applied at the rate of 92- 18- 36 preplant, and the plots were flooded. This flood was maintained throughout the growing season. An additional 116 pounds/acre of nitrogen was topdressed over the entire trial with three different applications. Thus, the total amount of nitrogen applied was 208 pounds/acre.

For primary weed control, Bolero and Stam herbicide were applied. An additional application of Londax herbicide was applied after flood. Plots were then hand weeded as necessary. Weed control was excellent.

The plots were machine harvested to determine differences among varieties. To assure accuracy, the grain from all plots was oven-dried to a uniform moisture content, and then weighed to determine yield.

<u>Data Recorded</u>. At maturity, height, lodging, % head rice, % total rice, and yield were measured. Height was taken as the average distance in inches from the soil surface to the top of the plant. Lodging, which indicates the degree of erectness, was scored on a scale of 1 to 5 with 1 indicating that all plants were erect (no lodging) and 5 indicating that 80 percent, or more, of the plants were lodged. Yields calculated from the harvested area were adjusted to 12 percent moisture and reported on a pounds/acre basis.

<u>Rice Milling Quality</u>. The dollar value of rice is determined by the milling yield, quality, and price. The price of whole kernel (fancy or head) milled rice is worth more than twice as much as brokens; therefore it is important to have a high milling percentage of whole kernels. A sample was collected from each plot of harvested grain and used to determine both milling percentage and quality. The sample was weighed and the trash or foreign matter was removed by a Carter-Day Dockage Machine. The cleaned sample was then milled to remove hulls and bran. The amount of milled rice which remains is considered the total milling yield (contains both broken and whole kernels), and is expressed as a percentage (Total Rice %). The whole kernels are then separated from the broken kernels by a sieve and weighed for the calculation of whole kernel or head rice milling percentage (Head Rice %).

RESULTS

Yields for 1991 were near the average of those recorded since the University of Missouri began testing rice in 1983. Cool temperatures and delayed planting date adversely affected some varieties. The 'Short Season' rice maturity class achieved the highest average yield (5758 pounds/acre) of the three maturity classes.

PERFORMANCE OF RICE VARIETIES EVALUATED ON THE DAVID AND STEVE JACKSON TABLE 6. FARM NEAR DUDLEY (STODDARD COUNTY) DURING 1991.

1991

PLANTED: 28 MAY 1991. HARVESTED: 1 OCTOBER 1991.	FERTILIZER: HERBICIDES:	N = 208; P2O5 = 2 PRE: BOLERO	23; K2O = 30. AND STAM.
ROW SPACING: 7.5 INCHES.		POST: LONDAX	(
PLANTED POP .: 40 SD./SQ. FT.	FUNGICIDES:	TILT.	
IRRIGATION: CONTINUOUS FLOOD.	INSECTICIDE:	NONE.	
SOIL TYPE: CALHOUN SILT LOAM.	PREVIOUS CRO	OP: SOYBEANS.	
GROWING SEASON RAINFALL: MAY=4.2	, JUNE=2.5, JUL	Y=1.4 AUG.=2.6, S	EPT.=3.5, TOTAL= 14.2 ".

	DAYS TO 50%	HFICHT	LOD- GING SCORF	HEAD	TOTAL		YIELD	(LBS/A	CRE)	
VARIETY	ING	(IN.)	(1-5)	(%)	(%)	19 91	19 9 0	1 989	1988	1987
RU9001007 ROSEMONT RU9101004 MAYBELLE L202 TEXMONT RU9001105 RU9001102 MILLIE ALAN RICE-TEC 7015 RU9101001	82 78 75 76 85 79 82 82 83 83 83 81 65	35 30 32 33 31 28 31 33 33 33 30 26	VERY SJ 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	HORT SI 58 55 70 40 64 45 59 63 56 60 63 53	EASON RICE 71 72 74 72 72 72 72 70 70 70 71 71 71 69	6560** 6460* 5956* 5653* 5556* 5442* 5300* 5211* 5104* 4873 4864 3972	7481* 7388 8118** 7914* 7109 7619* 8001* 	 2433 5520** 3715 2265 	 4346* 4078* 4651* 	 7411*
VSS RICE AVG VSS RICE LSD .0. VSS RICE C.V. 9	79 57 6.4	31 2 4.4	1.0 NS 2.1	57 3 0.8	71 1 19.4	5413 1514 6.6	7461 712 32.2	3155 1013 19.5	4197 1135 15.9	6598 661
MARS STG88P2-89 ORION RICO-I RU9101030 STG87P39-59 TEBONNET RU9101044 RU9101096 RU8901188 RU9001096 RU9101041	86 83 85 91 84 89 80 89 83 82 85 83	41 34 37 34 35 43 37 36 35 37 37	SHC 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	PRT SEA: 68 61 65 64 59 53 63 63 63 63 67 52 61 67	50N RICE 71 70 71 71 70 67 72 71 73 70 72 72 72 72	8013** 6936* 6443* 6128* 5749 5601 5570 5528 5516 4872 4589 4157	6745 7060 7817* 	2596 2442 990 	4331 4148* 	8939* 6803
SS RICE AVG SS RICE LSD .05 SS RICE C.V. %	85 4 3.5	37 2 5.2	1.0 NS 4.6	62 6 1.6	71 2 24.7	5758 2042 8.2	6937 816 29.8	2890 881 16.6	4562 NS 16.0	8150 917
RU9101050 KATY STG88P3-91 RU9101161 RU9001191 NEWBONNET LACASSINE RU8801167 RU9001194 LEMONT RU9101064 JASMINE MS RICE AVG	95 86 90 93 92 94 91 93 92 89 94 102 93	33 35 37 38 38 39 31 38 38 33 37 36 36	MEE 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	DIUM SE 49 60 58 54 51 60 63 58 55 55 54 56 24 	ASON RICE 69 70 68 68 68 68 70 72 70 69 71 69 61 	5978** 5914* 5787* 5606* 5502* 5284* 5000* 4938* 4792* 4473 3955 3423	6216 6274 6237 7500* 3094 6300		4439* 4385 5521* 4748	 7507 8699* 7036 7774 780
MS RICE LSD .05 MS RICE C.V. %	2.8	3.9	9.2	1.3	19.7	10.8	18.8	21.9	10.1	
TRIAL AVERAG	E	35	1.0	58	70	5408	6899	3107	4502	7507

HIGHEST YIELDING VARIETY IN THE TEST.
 VARIETY WHICH DID NOT YIELD SIGNIFICANTLY LESS THAN THE HIGHEST YIELDING VARIETY IN THE TEST.
 NOT SIGNIFICANT AT THE .05 LEVEL.

TABLE 7. RICE VARIETY IDENTIFICATION.

VARIETY	CI, PI, OR RU NO.	GRAIN TYPE
VERY SHORT SEASON		
L202 MAYBELLE ALAN RT7015 ROSEMONT TEXMONT L201/7402003 LABONNET/STARBONNET//NEWBONNET LABONNET/9902//NEWBONNET BRAZ/TBNT/3/164986-4/NV66//NTAI MILLIE BN73/9B37//PI265116/3/V6DW/STTD//L201	P1483097 P1538248 P1538253 RICE-TEC P1546365 P1538249 RU9001007 RU9001102 RU9001105 RU9001105 RU9101004 P1538254 RU9101001	LONG LONG LONG LONG LONG LONG LONG MEDIUM LONG LONG
SHORT SEASON		
TEBONNET BRTB/3/164986-4/NV66//NTAI MARS RICO-I ORION LABONNET/STARBONNET BN73/NV76//BN73/3/NEWREX TEBONNET/NORTAI TEBONNET/NORTAI V6DW/STARBONNET//L201 LABONNET/9902//NEWBONNET KATY/NEWBONNET	PI487195 RU9101096 CI9945 PI502969 PI549114 RU9101030 RU9001096 RU9101041 RU9101044 RU8901188 STG87P39-59 STG88P2-89	LONG MEDIUM MEDIUM MEDIUM LONG LONG MEDIUM LONG LONG LONG
MID SEASON		
KATY NEWBONNET LEMONT LACASSINE JASMINE VISTA/RU7901017 L201//TEBONNET/BLUEBONNET VISTA/NORTAI//LEMONT L201//VISTA/7901017 DAWN//BP87/9902 VISTA/NORTIA/3/TTEP/IR-8//UNKNOWN M201/KATY	PI527707 PI474580 PI475833 PI548772 RU8803197 RU8801167 RU9101050 RU9001194 RU9101161 RU9001191 RU9001191 RU9101064 STG88P3-91	LONG LONG LONG LONG LONG LONG LONG LONG

The University of Missouri is an Equal Employment and Educational Opportunity Insitution.