Ifalfa, Sunflower, Cotton, & Rice

1990 Missouri Crop Performance

Minor, Morris, Mason, Knerr, Lawman, and Lankheit

Agricultural Experiment Station, College of Agriculture, University of Missouri-Columbia Special Report 425 January, 1991

TABLE OF CONTENTS

INTRODUCTION COMPARING VARIETIES AN	Ď HÝBRÍÐS	1
RESULTS LINNEUS COLUMBIA Sum MT. VERN Sum	ETIES PROCEDURES (Table 1) (Table 2) mary of Years (Table 3) ON (Table 4) mary of Years (Table 5) INS (Table 6)	22345678
ALFALFA CHAR ALFALFA SEED	ACTERISTICS (Table 7)	9 10
RESULTS	PROCEDURES ED COMPANY ADDRESSES (Table 9) 1 Season (Table 10)	11 11 11 12
FIBER DESCRI RESULTS SIKESTON	PROCEDURES COMPANY ADDRESSES (Table 12) PTION (Table 13) [Able 14] [Able 14] [Able 14] [Able 14] [Able 14]	14 14 15 15 16 17
RESULTS	PROCEDURES 1	19 19 20 21

THE AUTHORS

Harry C. Minor is an Associate Professor of Agronomy and State Extension Specialist; Carl G. Morris and Howard L. Mason are Senior Research Specialists; and Delbert R. Knerr, Eric E. Lawman and C. Stephen Lankheit are Research Specialists.

ACKNOWLEDGEMENTS

The authors wish to recognize and express their appreciation to the following individuals for their assistance in conducting the 1990 Variety Performance Trials.

Alfalfa trials: Jim Garrish, Superintendent, Forage Research Center, Linneus; John Poehlman, Superintendent, Agronomy Research Center, Columbia; Richard E. Mattas, Assistant Superintendent at the Southwest Center, Mt. Vernon; and John Jennings, Extension Agronomy Specialist, West Plains.

Cotton trials: Herb Schuerenberg, Sikeston; David and Scott Andrews, Senath; Dale Klobe, Extension Agronomy Specialist, New Madrid; the New Madrid Co. R-1 High school FFA Chapter; the Southland High School FFA chapter; and Jimmie Nell Ward, Delta Research Center, Portageville.

Rice trials: David and Steve Jackson, Dudley; Dr. Karen Moldenhauer, Arkansas State University; Bruce Beck, Agronomy Specialist, Poplar Bluff; and John Cairns, Agronomy Specialist, Bloomfield.

MISSOURI CROP PERFORMANCE

1990

ALFALFA, SUNFLOWER, COTTON, RICE

TNTRODUCTION

This report on Research Project 363 is a contribution of the Department of Agronomy, University of Missouri Agricultural Experiment Station. The work was supported by fees from organizations submitting varieties or hybrids for evaluation.

Alfalfa performance trials were conducted at the Forgage Research Center near Linneus, the Agronomy Research Center near Columbia, the Southwest Center near Mt. Vernon and the Rural Electric Coop land near West Plains. Two additional trials were planted but were not reported because of unsatisfactory stand establishment.

Sunflower performance trials were conducted on the Agronomy Research Center and the Harry Minor farm, both near Columbia. Twenty-five sunflower hybrids were evaluated under both full season and double crop management practices. The sites represent two distinctive soil types.

Cotton performance trials were conducted near Sikeston on the Herb Schuerenberg farm and near Senath on the David Andrews farm. Twenty-six cotton varietes were evaluated at each location.

A rice performace trial was evaluated near Dudley on the David and Steve Jackson farm. In spite of cool spring temperatures and late planting, yields in this test were among the best recorded by the program.

All producers of afalfa, sunflowers, cotton, and rice seed were eligible to enter varieties or hybrids in the 1990 evaluation trials. Participation was voluntary, and no control was exercised by the program over which, or how many entries were submitted. However, to help finance the evaluation program, a fee was charged for each entry.

The large number of varieties and hybrids available makes the process of selecting a superior one difficult. To select intelligently, producers need a reliable, unbiased, and up-to-date source of information that will permit valid comparisons among available varieties/hybrids. The objective of the University of Missouri's performance testing program is to provide this information. The tests are conducted under as uniform conditions as possible. Small plots are used to reduce the chance of soil and climatic variations occurring between individual plots. Results obtained should aid the individual grower to judge the relative merits of the varieties or hybrids available in Missouri today.

COMPARING VARIETIES AND HYBRIDS

The performance of a variety or hybrid cannot be measured with absolute precision. Uncontrollable variability is involved in the determination of each yield average. This variability occurs at times because the soil isn't uniform, but many other conditions may contribute to it. Because variability exists in all field experimentation, statistics are used as a tool to assist with making decisions. The statistical tool used in the analysis of these trials is the test of least significant difference (L.S.D.). The L.S.D. is quite simple to apply. When two entries are compared and the difference between them is greater than the L.S.D., the entries are judged to be significantly different. Differences smaller than the L.S.D. may have occurred by chance and are judged to be not significant.

Performance may seem inconsistent from location to location and from year to year because of differences in rainfall, temperature, soil fertility, diseases, insects, and other factors. To obtain an improved estimate of relative performance, results from more than one location or year should be considered. In this publication, an effort has been made to facilitate comparisons across years and locations.

In each trial, the "top yielding" varieties or hybrids have been identified. These varieties are those that did not yield significantly less than the highest yielding variety or hybrid in the test. They are denoted in the tables by an asterisk (*) next to their yield. Thus, by going down a column, readers can readily identify the highest yielding varieties or hybrids. By going across, readers can evaluate the relative performance of a variety or hybrid during several years or at several locations. From the standpoint of yield, the most desirable varieties or hybrids will be those that fall within the "top yielding" group (that is, have an asterisk) the greatest number of times.

ALFALFA VARIETIES

EXPERIMENTAL PROCEDURES

Locations. On the basis of geographical characteristics, the state is divided into regions. Alfalfa variety evaluation trials were located in the northern, central, southwestern, and southcentral regions of the state. Trial locations are shown on the below map.

Entries. All producers of alfalfa seed were eligible to submit entries for evaluation in 1990. Participation was voluntary and no control was exercised by the program over which or how many varieties were entered. However, to help finance the evaluation program, a fee of \$100 per location per year was charged for each entry.

Field Plot Design. The trials were arranged in a randomized complete block design with four or six replications. Plots were 5.0 or 7.5 feet wide and 20 feet long. At harvest, all plots were trimmed to a uniform length and a single swath down the middle of each plot was taken to determine yield.

Alfalfa Locations.

Plot Management. Harvest data were collected from four trials in 1990. These trials were located at the Forage Research Center near Linneus, the Agronomy Research Center near Columbia, the Southwest Center near Mt. Vernon, and the Rural Electric Coop land near West Plains. The Linneus trial consisted of 24 alfalfa varieties and represented a second-year stand. The Columbia trial consisted of 23 alfalfa varieties and represented a fifth-year stand, The trial at Mt. Vernon consisted of 20 entries and represented a third-year stand. The West Plains trial consisted fo 24 alfalfa varieties and represented a first-year stand.

Cultural Practices. The tests were planted with a modified small seed planter and harvested with either a jari mower or modified flail chopper. Harvests were made when the majority of the varieties averaged 10 percent bloom. Insecticide was used when necessary to control alfalfa weevil and was applied before damage reached a significant level. Details of the management practices followed at each location are included with the data.

 $\underline{\text{Data}}$ Recorded. Total weights were taken on each plot at harvest. A sub-sample was oven-dried to determine the percentage dry weight. In the following tables, yield is presented as tons of dry matter per acre.

RESULTS

Significant differences in alfalfa yields were found between individual varieties during 1990. Dry matter yields for 24 varieties ranged from 4.83 to 5.66 tons per acre at Linneus (Table 1). Dry matter yields for 23 varieties ranged from 3.54 to 4.77 at Columbia (Table 2). Dry matter yields for 20 varieties at Mt. Vernon ranged from 5.25 to 6.69 tons per acre (Table 4). Dry matter yields for 24 varieties ranged from 1.06 to 1.52 tons per acre at West Plains (Table 6).

In each trial, varieties that did not differ statistically from the highest yielding variety at that location are denoted by an asterisk (\ast) for easy identification. Increased confidence can be placed in data from more than one year because they represent results from a larger sample of climatic conditions.

In 1990 plantings were made at Maysville, West Plains and Linneus. Wet and cool weather after planting adversely affected stands at these locations. The test at West Plains was the only one reported.

TABLE 1. DRY MATTER PRODUCTION OF 24 ALFALFA VARIETIES GROWN ON THE FOR-AGE RESEARCH CENTER NEAR LINNEUS, MO. (LINN CO.) DURING 1990.

SEEDED: SPRING 1989.

FERTILIZER: N= 0; P205= 100; K20=280

PLANTING RATE: 20 LBS/A. B= 2.
ROW SPACING: 6 INCHES. GROWING SEASON RAINFALL: 28.88 INCHES.

HARVESTS - 1990					
BRAND/VARIETY	5-11	6- 8	8-15	TOTAL	% CHECK
		TONS/			
ABI APOLLO SUPREME		1.66			
WATERMAN-LOOMIS WL 320				5.65	
	2.06			5.63	
AGRIPRO AP8743	1.99	1.62	1.92*	5.53	114
RESEARCH SEED LEGEND	1.90	1.60	1.91*	5.41	112
FFR HAYMARK	2.07	1.62	1.72*	5.41	112
UNITED AGRISEED ALLEGIANCE	1.76	1.83**	1.82*	5.41	112
PLANT GENETICS VECTOR		1.73		5.40	112
INTERNATIONAL SEED ISI-567		1.62	1.91*	5.38	111
PIONEER 5373	1.94	1.62 1.49	1.91* 1.93**	5.36	111
GARST 630	1.82	1.66	1 83%	5.31	110
PIONEER 5432	1.92	1.58	1 01%	E 21	
	1.89	1.63	1.78* 1.64	5.30	110
AGRIPRO AP8735	1.85	1.81	1.64	5.30	110
WATERMAN-LOOMIS WL 317	1.82	1.64			108
JACQUES VS-622	1.83	1.63	1.76*	5.22	108
AGRIPRO DART	1.84	1.61	1.76*	5.21	108
GARST 636	1.79	1.69	1.72*	5.20	108
DEKALB 125	1.68		1.80*		105
ABI ARROW	1.69				
RESEARCH SEED VIP	1.85	1 60	1 61	E 06	105
JACQUES CHIEF	1.75	1.60 1.61	1.61 1.70*	5.06 5.06	105
PIONEER 5472	1.73	1.61	1.70*		105
CODY##					
	1.64				100
MEAN		1.63			110
	NS.	NS	0.25	NS	110
C.V. %		13.4			

^{**} HIGHEST YIELDING VARIETY.

^{*} VARIETY THAT DID NOT YIELD SIGNIFICANTLY LESS THAN THE HIGHEST YIELDING VARIETY IN THE TEST.

NS NOT SIGNIFICANT AT THE .05 LEVEL.

^{##} CHECK VARIETY = 4.83 TONS/ACRE.

TABLE 2. DRY MATTER PRODUCTION OF 23 ALFALFA VARIETIES GROWN ON THE AGRON-OMY RESEARCH CENTER NEAR COLUMBIA, MO. (BOONE CO.) DURING 1990.

SEEDED: SPRING 1986. FERTILIZER: N= 0; P2O5=200; K2O=200. PLANTING RATE: 20 LBS/A. INSECTICIDE: AMBUSH.

ROW SPACING: 6 INCHES. GROWING SEASON RAINFALL: 38.70 INCHES.

HARVESTS - 1990						
BRAND/VARIETY	5-30	7-12	8-20	9-25	TOTAL	% CHECK
			rons/acre			
DAIRYLAND MAGNUM MFA/W-L RESEARCH WL 320 CARGILL ENDURE RESEARCH SEED PEAK GREAT PLAINS SHENANDOAH	1.33 1.06 1.44	0.95 1.44** 1.19*	1.58** 1.35 1.40 1.29 1.25	1.02** 0.74 0.70	4.65 4.64 4.62	112 112 111
GREEN SEED CORONA LARRY PETERSON EPIC MFA/W-L RESEARCH WL 316 ABI ARMOR GARST 655	1.44	0.98 1.13* 0.96	1.19 1.28 1.33	0.57 0.77 0.63 0.62 0.60	4.38 4.32 4.29	106 104
ASGROW/O'S GOLD EAGLE RILEY## DEKALB DK135 VERNAL## BAKER##	1.38 1.29 1.19 1.18 1.12	0.96 1.07* 1.26*	1.12	0.64 0.80 0.65 0.61 0.63	4.17 4.16 4.14	101 100 100
GARST 629 GARST 624 STAUFFER SEEDS SUMMIT RESEARCH SEED ACTION UNITED AGRISEEDS SALUTE	1.15	1.09* 0.98 0.81	1.14		4.09 4.05 3.91	99 98 94
RESEARCH SEED EDGE ABI ARROW GREAT PLAINS CIMARRON	1.18 1.18 1.32	0.79		0.58	3.77 3.54	91 86
MEAN LSD .05 C.V. %	1.26 NS 19.3	0.41	1.20 NS	0.68 0.16	4.21 NS	

^{**} HIGHEST YIELDING VARIETY.

^{*} VARIETY THAT DID NOT YIELD SIGNIFICANTLY LESS THAN THE HIGHEST YIELDING VARIETY IN THE TEST.

NS NOT SIGNIFICANT AT .05 LEVEL.

^{##} CHECK VARIETY, MEAN = 4.14 TONS/ACRE.

TABLE 3. DRY MATTER PRODUCTION OF 23 ALFALFA VARIETIES GROWN ON THE AGRON-OMY RESEARCH CENTER NEAR COLUMBIA, MO. (BOONE CO.) DURING 1986-90.

SEEDED: SPRING 1986.

			YEAR				7
BRAND/VARIETY	1986	1987	1988		1990		CHECK
			TONS/A				
LARRY PETERSON EPIC MFA/W-L RESEARCH WL 320 STAUFFER SEEDS SUMMIT ASGROW/0'S GOLD EAGLE RESEARCH SEED PEAK	3.01 3.53*	4.57 4.53	6.67 6.58	7.32 7.50	4.38 4.65 4.05 4.18 4.62	5.24 5.24 5.23	114 114 114
ABI ARMOR DAIRYLAND MAGNUM MFA/W-L RESEARCH WL 316 GARST 624 GREAT PLAINS SHENANDOAH	3.49* 3.03 3.21	4.44 4.50 4.43	6.90* 5.66 5.96 6.09 6.41	7.37 7.37 7.87 7.57 7.43	4.32	5.14 5.08	112 112 112 110 110
UNITED AGRISEEDS SALUTE RILEY## GREEN SEED CORONA	2.89	4.31 4.45	6.37 6.66 5.80 5.89 6.10	8.01 7.46 7.29 7.08 7.67	3.91 4.17 4.46	4.96 4.89 4.87	110 108 106 106 106
DEKALB DK135 GREAT PLAINS CIMARRON GARST 655 GARST 629 ABI ARROW	2.66 2.81	4.46 4.12 4.28	5.63 6.49 5.90 5.05 5.48	7.72 6.84 6.98 6.83 6.75	4.21 4.11	4.70	105 104 104 102 101
CARGILL ENDURE VERNAL## BAKER##	2.76 2.53 2.97	3.83	4.89 4.92 4.78	7.18 6.93 6.77	4.14	4.47	97
MEAN LSD .05 C.V. %	2.93 0.26 25.0	4.28 0.15 19.9	6.00 0.34 33.1	7.35 0.18 20.3	4.21 NS 13.6	4.96 0.25 8.0	108

^{**} HIGHEST YIELDING VARIETY.

^{*} VARIETY THAT DID NOT YIELD SIGNIFICANTLY LESS THAN THE HIGHEST YIELDING VARIETY IN THE TEST.

NS NOT SIGNIFICANT AT .05 LEVEL.

^{##} CHECK VARIETY, MEAN = 4.60 TONS/ACRE.

TABLE 4. DRY MATTER PRODUCTION OF 20 ALFALFA VARIETIES GROWN ON THE SOUTH-WEST CENTER NEAR MT. VERNON, MO. (LAWRENCE CO.) DURING 1990.

SEEDED: FALL 1987. FERTILIZER: N = 0; P205 = 80; K20 = 400;

PLANTING RATE: 20 LBS/A. B = 2.5. ROW SPACING: 6 INCHES. INSECTICIDE: FURADAN.

GROWING SEASON RAINFALL: 34.74 INCHES.

	HARVESTS - 1990						
BRAND/VARIETY						TOTAL	% CHECK
			TONS/	ACRE			
GREEN SEED IMPACT	1.79**		1.36*	1.21*			109
ABI ARROW	1.68	1.71*		1.19*	0.75		109
PIONEER BRAND 5432	1.66	1.62*	1.30*	1.23*	0.77*		107
PIONEER BRAND 5432 W-L RESEARCH ACCLAIM	1.48	1.65**		1.27**			106
AGRIPRO AP 8640	1.52	1.64*	1.39**	1.24*	0.70	6.49*	106
GARST 630	1.66	1.46	1.30*	1.27**	0.74	6.43*	105
GARST 630 GARST 629	1.67	1.59*	1.27	1.16	0.72	6.41*	105
NORTHRUP KING FORTRESS	1.65	1.54*	1.26	1.23*	0.69		104
AGRIPRO DART	1.56	1.54*	1.28	1.18*	0.77*		103
UNITED AGRISEEDS ALLEGIANCE	1.60	1.54*	1.28	1.20*	0.71	6.33*	103
UNITED AGRISEEDS SALUTE	1.50	1.51*	1.30*	1.23*	0.78*	6.32*	103
MFA/W-L RESEARCH WL 316	1.52	1.59*	1.24	1.21*	0.69	6.25	102
	1.59	1.58*	1.20	1.16	0.70	6.23	102
MFA/W-L RESEARCH WL 320		1.44	1.25	1.26*	0.82**	6.17	101
CODY##	1.48	1.49*	1.20	1.20*	0.76*	6.13	100
DEKALB DK135	1.44	1.56*	1.16	1.25*	0.72	6.13	100
NORTHRUP KING COMMANDER	1.45	1.54*	1.23	1.15	0.71	6.08	99
VISTA SURE	1.54	1.48	1.13	1.14	0.65	5.94	97
GREAT LAKES WEBFOOT	1.55	1.41	1.09	1.08	0.64	5.77	94
NORTHRUP KING SPREDOR II	1.40	1.39	0.93	0.96	0.57	5.25	86
MEAN	1.56	1.54	1.24	1.19	0.72	6.25	102
LSD .05			0.10	0.10	0.06	0.41	
C.V. %	10.8	7.5	5.8	5.8	6.6	4.7	

^{**} HIGHEST YIELDING VARIETY.

^{*} VARIETY THAT DID NOT YIELD SIGNIFICANTLY LESS THAN THE HIGHEST YIELDING VARIETY IN THE TEST.

NS NOT SIGNIFICANT AT THE .05 LEVEL.

^{##} CHECK VARIETY = 6.13 TONS/ACRE.

TABLE 5. DRY MATTER PRODUCTION OF 20 ALFALFA VARIETIES GROWN ON THE SOUTH-WEST CENTER NEAR MT. VERNON, MO. (LAWRENCE CO.) DURING 1988-90.

SEEDED: FALL 1987.

		YEAR			7
BRAND/VARIETY	1988	1989	1990	MEAN	CHECK
		TONS/AC	CRE		
PIONEER BRAND 5432	5.96	7.72	6.58*	6.75**	108
AGRIPRO DART		7.84*			107
ABI ARROW	5.60	7.85**	6.66*	6.70*	107
UNITED ÁGRISEEDS ALLEGIANCE	5.87	7.78*	6.33*	6.66*	107
NORTHRUP KING FORTRESS	5.81	7.79*	6.37*	6.66*	107
FFR ANSTAR	5.94	7.73	6.23	6.63*	106
WATERMAN-LOOMIS ACCLAIM		7.66			
		7.52			
		7.69			
MFA/W-L RESEARCH WL 320				6.54	
DEKALB DK135	6.07**	7.27	6.13	6.49	104
MFA/W-L RESEARCH WL 316	5.58	7.62	6.25	6.48	104
MFA/W-L RESEARCH WL 316 UNITED AGRISEEDS SALUTE	5.58	7.48	6.32*	6.46	103
NORTHRUP KING COMMANDER	5.68	7.47	6.08	6.41	102
AGRIPRO AP 8640	5.16	7.53	6.49*	6.39	102
VISTA SURE	5.91	7.26	5.94	6.37	102
CODY##	5.51	7.12 6.75 7.70	6.13	6.25	100
GREAT LAKES WEBFOOT	5.60	6.75	5.77	6.04	97
GREEN SEED IMPACT#	3.08	7.70	6.69**	5.82	93
NORTHRUP KING SPREDOR II	4.96	6.01	5.25	5.41	87
MEAN	5.56	7.46	6.25	6.42	103
LSD .05	0.07	0.07	0.41	0.15	
C.V. %	9.9	8.0	4.7	3.0	

^{**} HIGHEST YIELDING VARIETY.

^{*} VARIETY THAT DID NOT YIELD SIGNIFICANTLY LESS THAN THE HIGHEST YIELDING VARIETY IN THE TEST.

[#] LATE ENTRY PLANTED IN SPRING OF 1988.

^{##} CHECK VARIETY, MEAN = 6.25 TONS/ACRE.

TABLE 6. DRY MATTER PRODUCTION OF 20 ALFALFA VARIETIES GROWN ON THE RURAL ELECTRIC COOP NEAR WEST PLAINS, MO. (HOWELL CO.) DURING 1990.

SEEDED: SPRING 1990. FERTILIZER: N= 0; P2O5=100; K2O= 300; PLANTING RATE: 20 LBS/A. B = 1.0 HERBICIDE: PRE: BALAN GROWING SEASON RAINFALL: 22.98 INCHES.

HARVESTS - 1990					
BRAND/VARIETY	6-20		TOTAL	% CHECK	
		-TONS/ACRE			
		- TONS/ ACKE			
GREAT PLAINS CIMMARRON	0.94**	0.58	1.52**	138	
RESEACH SEED BLAZER XL	0.89*	0.60**	1.49*	135	
RESEACH SEED PRECEDENT	0.92*	0.50	1.42*	129	
DEKALB DK125	0.85*	0.54	1.39*	126	
NORTHRUP KING FORTRESS	0.86*	0.49	1.35*	123	
DEKALB DK135	0.81*	0.50	1.31*	119	
AGRIPRO DART	0.76	0.52	1.28*	116	
WATERMAN-LOOMIS WL 320	0.70	0.57	1.27	115	
RESEACH SEED BRONCO	0.78*	0.48	1.26	115	
NORTHRUP KING CROCKETT	0.71	0.53	1.24	113	
ABI APOLLO SUPREME	0.71	0.50	1.21	110	
AGRIPRO DAWN	0.72		1.20	109	
GARST 630	0.77*			109	
PIONEER 5373	0.74		1.19		
PIONEER 5364	0.69	0.47	1.16	105	
ABI ARROW	0.67	0.47	1.14	104	
PIONEER 5472	0.63		1.10	100	
CODY##	0.63	0.47	1.10	100	
ABI AGGRESSOR	0.64	0.43	1.07	98	
WATERMAN-LOOMIS WL 317	0.63	0.43	1.06	96	
	0.75				
MEAN		0.50		114	
LSD .05	0.17		0.24		
C.V. %	15.8	18.0	14.0		

^{**} HIGHEST YIELDING VARIETY.

^{*} VARIETY THAT DID NOT YIELD SIGNIFICANTLY LESS THAN THE HIGHEST YIELDING VARIETY IN THE TEST.

NS NOT SIGNIFICANT AT THE .05 LEVEL.

^{##} CHECK VARIETY = 1.10 TONS/ACRE.

TABLE 7. CHARACTERISTICS* OF ALFALFA VARIETIES IN THE 1990 MISSOURI VARIETY TRIALS.

					REA	ACTION TO	PESTS				
	FALL		WILT			PHYTO-		APHTD		NEMA	TODE
THE TANK	DORM-	BACT-	VERTI- CILLIUM	FUS-	AN- THRAC-	PHTHORA ROOT ROT	SPOTTED	DEA	BLUE ALFALFA	сттм	ROOT
BRAND-VARIETY	(1-8)	EKTAL	CIPPION	AKTOM	NOSE		ALFALFA		ALFALFA	51 E.1	
PRIVATE ABI AGGRESSOR	4	HR	R	HR	R	HR	MR				
ABI ARMOR ABI ARROW	4	R HR	R R	R HR	MR R	R R	MR	MR		AR	
ABI APOLLO SUPREME AGRIPRO DART	4 3 4 3	MR HR	R R	HR HR	ĤR R	ĤR R	R MR	MR			
AGRIPRO DAWN	3	HR	R	HR	R	HR					
AGRIPRO AP 8640 ASGROW/O S GOLD EAGLE	 4	MR HR	MR	R	R R	R MR	R R	R R	LR	 R	
CARGILL ENDURE DAIRYLAND MAGNUM	3	R R	R	R R	MR MR	R LR	ĹR R	R		MR	
DAIRYLAND MAGNUM III	4	HR	MR	R	MR	R	MR				
DEVAID DETTED DV125	3	HR R	R MR	R R	HR MR	Ř MR	MR MR	R R	LR	R	
DEKALB-FFIZER DK125 DEKALB-FFIZER DK135 FFR ANSTAR FFR WAMPR	4	R R	R	MR R	R R	S R	MR			MR	
FFR HAYMAKER	3	R		HR	HR	R					
GARST 624	4 3	R R	LR MR	R R	MR R	MR R	MR R	 R		 R	
GARST 629 GARST 630 GARST 636	4 2	HR HR	MR R	R R	MR MR	R R	Ř				
	5	R	LR	R	MR	LR	R			***	
GARST 655 GREAT LAKES WEBFOOT	 4	HR	LR	HR	R	MR	HR	 R			
GREAT PLAINS CIMARRON GREAT PLAINS CIMARRON VR GREAT PLAINS SHENANDOAH	4 5	HR HR	MR	HR HR	MR HR	MR HR	HR	ĤR		HR	
		R			R	R	R				
GREEN SEED CORONA GREEN SEED IMPACT INTERNATIONAL SEED ISI-567	2 3 4	HR R	R MR	HR R	MR LR	R R	MR				
JACQUES CHIEF JACQUES MULTI-PLIER	4 3	HR HR	R R	Ř HR	R HR	HR HR	R MR	R R	LR	MR	MR
L.PETERSON LTD. EPIC	4	R		MR		R		HR		HR	
MFA/W-L RESEARCH WL-316 MFA/W-L RESEARCH WL-320	4 5	R R	R MR	R HR	HR MR	MR HR	R R	R MR	LR MR	MR MR	
NORTHRUP KING COMMANDER NORTHRUP KING SPREDOR II	4 1	R HR	MR	R MR	HR	R	LR			MR	
NORTHRUP KING FORTRESS	4	R	R	R	R	HR	HR	R		HR	
NORTHRUP KING CROCKETT PIONEER BRAND 5364	5 4	ĤR R	MR	MR R	HR MR	R MR	HR HR	HR	 S	R	
PIONEER BRAND 5373 PIONEER BRAND 5432	4	HR HR	R R	ĤR HR	HR S	MR MR	R HR	HR R	S S S	LR MR	
PIONEER BRAND 5472	4	HR	MR	HR	MR	MR	R	HR	S	R	
PLANT GENETICS VECTOR	4	R R	MR MR	HR R	R HR	R R	R MR	R R	LR	R 	
RESEARCH SEEDS ACTION RESEARCH SEEDS BLAZER XL RESEARCH SEEDS BRONCO	4	HR HR	R R	HR R	HR HR	HR HR	HR R	R R			
RESEARCH SEEDS EDGE	4	R	R	R	HR	R	R	R	R		
RESEARCH SEEDS LEGEND RESEARCH SEEDS PEAK	4	HR R	R LR	HR R	HR	R MR	LR	R HR		HR	
RESEARCH SEEDS PRECEDENT RESEARCH SEEDS VIP	3	HR HR	R R	HR R	R R	HR R	R MR	R HR		MR	
STAUFFER SUMMIT	4	R	R	R	HR	R	MR	R			
UNITED AGRISEED SALUTE UNITED AGRISEED ALLEGIANCE	4 E 4	HR R	MR R	MR R	R HR	MR R	$_{ m LR}$	R		R	MR
VISTA SURE W-L RESEARCH ACCLAIM	3	HR R	R 	HR	HR MR	R MR	$_{ m R}^{ m LR}$	R R			
W-L RESEARCH WL-317	3	HR	R	HR	R	HR	R	HR	LR	R	MR
W-L RESEARCH WL-320	3 4	R	MR	HR	MR	R	R	MR	MR	MR	MR
PUBLIC BAKER	2	HR		R	LR	pag 448	HR	HR			
CODY RILEY	4	HR	LR		MR		HR	HR			
VERNAL	<u>ż</u>	R		MR							MR

^{*} INFORMATION WAS OBTAINED FROM THE CERTIFIED ALFALFA SEED COUNCIL, "1987 ALFALFA VARIETIES", OR THE COMPANY MAKING THE ENTRY.
-- DATA NOT AVAILABLE OR NOT PROVIDED BY THE COMPANY.

DORMANCY RATING	CHECK VARIETY	DESIGNATION	SURVIVAL %	RESISTANCE CLASS
1 2 3 4 5 6 7	NORSEMAN VERNAL RANGER SARANAC DUPUITS MESILLA MOAPA 69 CUF 101	S LR MR R HR	0-5 6-14 15-30 31-50 > 50	SUSCEPITIBLE LOW RESISTANCE MODERATE RESISTANCE RESISTANCE HIGH RESISTANCE

TABLE 8. SOURCE OF ALFALFA ENTRIES EVALUATED IN 1990
--

BRAND	VARIETY	FIRM AND ADDRESS
ABI		AGRIPRO, RT. 3, AMES, IA 50010
AGRIPRO	DART, DAWN, AP 8640	AGRIPRO, RT. 3, AMES, IA 50010
ASGROW/O'S GOLD	EAGLE	ASGROW SEED COMPANY, P.O. BOX 7570 DES MOINES, IA 50322
CARGILL	ENDURE	CARGILL SEEDS, BOX 9480, MINNEAPOLIS, MN 55440
DAIRYLAND	MAGNUM, MAGNUM III	DAIRYLAND RESEARCH INTERNATIONAL, RT. 1, BOX 51, CLINTON, WI 53525
DEKALB-PFIZER	DK125, DK135	DEKALB-PFIZER GENETICS, 3100 SYCAMORE RD., DEKALB, IL 60115
FFR	ANSTAR, HAYMAKER, WAMPR	FFR COOPERATIVE, 4112 EAST STATE RD. 225, WEST LAFAYETTE, IN 47906
GARST	629, 624, 636, 630, 636, 655	GARST SEED COMPANY, BOX 300, COON RAPIDS, IA 50058
GREAT LAKES	WEBFOOT	GREAT LAKES HYBRIDS, INC., 9915 W. M-21, OVID, MI 48866
GREAT PLAINS	CIMARRON, CIMARRON VR SHENANDOAH	GREAT PLAINS RESEARCH CO., INC., 1221 PIONEER CT., CARY, NC 27511
GREEN SEED	CORONA, IMPACT	GREEN SEED CO., BOX 1678, GALLATIN, TN 37066
INTERNATIONAL SEEDS	ISI-567	INTERNATIONAL SEED INC., PO BOX 168, HALSEY, OR 97321
JACQUES	CHIEF, MULTI-PLIER	JACQUES SEED CO., 720 ST.CROIX ST., PRESCOTT, WI 54021
LARRY PETERSON LTD.	EPIC	LARRY PETERSON, LTD., BOX 339 CEDAR FALLS IA 50613
MFA/W-L RESEARCH	WL-316, WL-320	MFA, INC., 615 LOCUST, COLUMBIA, MO 65201
NORTHRUP KING	COMMANDER, CROCKETT, FORTESS, SPREDOR II	NORTHRUP KING CO., 3403 HOOVER, AMES, IA 50010
PLANT GENETICS	VECTOR	PLANT GENETICS, 1930 5TH ST., DAVIS, CA 95616
PIONEER BRAND	5364, 5373, 5432, 5472	PIONEER HI-BRED INT., INC., 7305 62ND, BOX 85, JOHNSTON, IA 50131
RESEARCH SEEDS	ACTION, BLAZER XL, BRONCO, VIP, EDGE, PEAK, PRECEDENT, LEGEND	RESEARCH SEEDS, INC., BOX 1393, ST. JOSEPH, MO 64502
STAUFFER SEEDS	SUMMIT	STAUFFER SEEDS, INC., 975 S. DURKIN, SPRINGFIELD, IL 62704
UNITED AGRISEED	SALUTE, ALLEGIANCE	UNITED AGRISEEDS, INC., BOX 4011, CHAMPAIGN, IL 61802
VISTA	SURE	VISTA, RT.1, BOX 70, WEST SALEM, WI 54669
W-L RESEARCH	ACCLAIM, WL-317, WL-320	WATERMAN-LOOMIS RESEARCH, INC., 7625 BROWN BRIDGE RD., HIGHLAND, MD 20777
KANSAS AES	CODY, RILEY	KANSAS AG. EXP. STATION & USDA, MANHATTAN, KS 66506
NEBRASKA AES	BAKER	NEBRASKA AG. EXP. STATION & USDA, LINCOLN, NE 68503
WISCONSIN AES	VERNAL	WISCONSIN AG. EXP. STATION & USDA, MADISON, WI 53706

SUNFLOWERS

EXPERIMENTAL PROCEDURES

Locations. Twenty five sunflower hybrids were evaluated in trials located in the central region of the state. Tests were conducted at the Agronomy Research Center near Columbia and on the Harry Minor farm in eastern Boone County during 1990. Trial locations are shown on the map below. Most varieties tested were selected for confectionary use.

Field Plot Design. All tests were arranged in a randomized complete block design with four replications. Individual plots consisted of four rows, 30 inches wide and 20 feet long. At harvest, all plots were trimmed to a uniform length and the center two rows of each plot were hand harvested to determine yield.

Entries. All producers of Sunflower seed were eligible to submit entries for evaluation in 1990. Participation was voluntary, and no control was exercised by the program over which, or how many varieties were entered.

Plot Management. All tests were planted with a conventional planter modified for small plot work. At harvest, a representative portion of the center two rows were hand cut and threshed to determine yield.

Sunflower Locations.

TABLE 9. SOURCE OF SUNFLOWER ENTRIES EVALUATED IN 1990.

BRAND	VARIETY	FIRM AND ADDRESS
AGRIPRO	101, 102, 2057A, ST-301	AGRIPRO BIOSCIENCES, 6700 ANIOCH BOX 2955, SHAWNEE MISSION, KS 66201
AGWAY	381, 2141, 4381	AGWAY, BOX 169, GRANDIN, IN 58105
DAHLGREN	131, 151, 759-12, 759-2E	DAHLGREN AND CO.,1220 SUNFLOWER ST. CROOKSTON, MN 56716
INTERSTATE	920, 921, 7100, 8004, 8115	INTERSTATE SEEDS CO.,1214 PRAIRIE PARKWAY, W.FARGO, ND 58078
RED RIVER	995	RED RIVER COMMODITIES, 501 42nd NW, FARGO, ND 58108
SIGCO	101, 104, 114, 115	SIGCO RESEARCH, BOX 331 BRECKENRIDGE MN 56520
TRIUMPH	505-3, 548A, 557-DW	TEXAS TRIUMPH SEED CO., BOX 1050, RALLS, TX. 79357
USDA	924	NORTHERN CROPS SCIENCE LAB, BOX 5677, FARGO, ND 58105

 $\frac{\mathrm{Data}\ \mathrm{Recorded}}{\mathrm{ot}\ \mathrm{at}\ \mathrm{harvest}}.$ Total seed weights were taken from the two center rows of each plot at harvest. In addition to yield, lodging, population, grain moisture, and plant height were measured at harvest in all trials. All yield data are presented on basis of a pounds per acre of air dried seed at 13 percent moisture.

RESULTS

Full Season Sunflowers. Dry matter yields ranged from 1242 to 3149 pounds per acre (Table 10). Above normal rainfall is believed to have contributed significantly to the above average yields.

Double Crop Sunflowers. Significant differences in yield were found between individual hybrids (Table 11). Yields ranged from 551 to 2625 per acre at the Agronomy Research Center and from 486 to 1985 pounds per acre on the Harry Minor farm near Columbia. Irregular stands contributed to some of the difference in performance observed between hybrids and locations.

TABLE 10. PERFORMANCE OF FULL-SEASON SUNFLOWER HYBRIDS EVALUATED NEAR COLUMBIA ON THE AGRONOMY RESEARCH CENTER DURING 1990.

PLANTED: 13 JUNE 1990. HARVESTED: 23 OCTOBER 1990.

PLANTED POPULATION: 23,200 PL/A.

ROW SPACING: 30 INCHES. INSECTICIDE: NONE. GROWING SEASON RAINFALL: 24.90". IRRIGATION: 0.00".

FERTILIZER: N=150, P2O5=100, K2O=100.

HERBICIDES: PRE: TREFLAN.

POST: NONE

BRAND/HYBRID	50% BLOOM (DATE)	POPU- LATION (PL/A)	GING	PLANT HEIGHT (IN.)	MOIS- TURE (%)	1990 YIELD (LB/A)
SIGCO 104	8-12	16516	54.3	68	8.9	3149**
INTERSTATE IS 71001	8-14	18332	49.2	77	8.6	3106*
INTERSTATE IS 81150	8-13	21417	55.1	71	7.9	3065*
USDA 924	8-10	15609	34.0	60	8.7	2821*
DAHLGREN D-960-2E	8-9	15972	32.2	65	9.2	2758*
INTERSTATE IS 921	8-11	19057	36.6	69	8.5	2731* 2727* 2682 2675 2651
DAHLGREN D-759-12E	8- 7	17061	25.6	60	9.6	
SIGCO 115	8- 9	14157	35.3	71	8.6	
RED RIVER 995	8-11	17242	27.4	61	8.7	
TRIUMPH 505-3	8-10	15609	27.6	66	9.2	
INTERSTATE IS 920	8-10	17061	59.3	74	8.4	2522
INTERSTATE IS 8004	8-12	17968	49.6	68	8.9	2502
SIGCO 114	8-12	16154	27.8	72	9.0	2455
AGWAY RH 381	8-12	13975	56.8	58	8.4	2424
DAHLGREN D-151	8- 8	13249	28.7	55	8.9	2420
AGRIPRO ST 310 AGWAY RH 2141 AGWAY RH 4381 DAHLGREN D-131 AGRIPRO 2057A	8- 8 8-11 8-12 8- 8 8- 6	21417 18694 13975 15246 17061	18.8 38.9 44.5 26.4 20.8	63 68 71 49 62	8.4 8.8 9.2 8.9	2331 2295 2267 2249 2101
TRIUMPH 557-DW	8-14	16335	22.7	47	8.8	2068
SIGCO 101	8- 8	14701	24.4	63	9.0	2053
TRIUMPH 548-A	8-11	17606	25.7	59	8.9	1933
AGRIPRO 101	8- 2	21780	18.3	45	9.1	1826
AGRIPRO 102	7-29	22506	10.1	42	8.4	1242
TRIAL MEAN	8-10	17148	34.0	63	8.8	2442
TRIAL LSD .05	2.6	3650	NS	18	1.3	424
TRIAL C.V. %	0.7	13.0	31.7	17.6	9.2	10.7

⁻⁻ DATA NOT AVAILABLE.

^{**} HIGHEST YIELDING HYBRID IN THE TEST.

^{*} HYBRID WHICH DID NOT YIELD SIGNIFICANTLY LESS THAN THE HIGHEST YIELDING HYBRID IN THE TEST.

NS NOT SIGNIFICANT AT THE .05 LEVEL.

TABLE 11. PERFORMANCE OF SUNFLOWER HYBRIDS PLANTED AFTER WHEAT EVALUATED NEAR COLUMBIA ON THE AGRONOMY RESEARCH CENTER AND THE HARRY MIMOR FARM DURING 1990.

AGRONOMY RESEARCH CENTER

PLANTED: 3 JULY 1990.

HARVESTED: 23 OCTOBER 1990.

PLANTED POPULATION: 23,200 PL/A. ROW SPACING: 30 INCHES.

GROWING SEASON RAINFALL: 24.90".

FERTILIZER: N=150, P205=100, K20=100.

HERBICIDES: PRE: TREFLAN.

POST: NONE

INSECTICIDE: NONE.

IRRIGATION: 0.00".

THE HARRY MINOR FARM

PLANTED: 10 JULY 1990.

HARVESTED: 30,31 OCTOBER 1990.
PLANTED POPULATION: 23,200 PL/A.
ROW SPACING: 30 INCHES.
GROWING SEASON RAINFALL: 24.90".

FERTILIZER: N=150, P205=100, K20=100.

HERBICIDES: PRE: TREFLAN.

POST: NONE

INSECTICIDE: NONE. IRRIGATION: 0.00".

_____ AGRONOMY FARM HARRY MINOR _____ 1990 POPU- LOD- HEI- 50% POPU- LOD- HEI- YIELD (LB/A) 50% BLOOM LATION GING GHT BLOOM LATION GING GHT ------BRAND/HYBRID (DATE) (PL/A) (%) IN. (DATE) (PL/A) (%) IN. ARC MINOR MEAN _____ INTERSTATE IS 8004 8-30 16880 12.7 67 9-5 16516 26.7 84 2087* 1985** 2036** 2625** 1364 1994* INTERSTATE IS 81150 8-29 20328 8.8 65 9-4 14702 13.0 74 INTERSTATE IS 920 8-31 18150 14.4 61 9-5 18695 31.9 79 2297* 1650* 1974* 8-31 15972 4.8 63 9-5 11616 19.5 64 2288* 1633* 1960* AGWAY RH 381 INTERSTATE IS 71001 8-31 17968 7.0 76 9-7 17606 2360* 1519* 1940* 14.0 83 8-29 34.8 66 2312* 1553* 1932* RED RIVER 995 16154 12.3 64 9-4 13250 2357* 1485* 1921* 8-29 19602 12.4 67 9-5 18332 45.8 82 AGWAY RH 2141 8-30 18694 17.6 66 9-5 18513 13.8 81 2198* 1641* 1920* AGWAY RH 4381 1949 1839* 1894* 8-29 13794 12.3 49 9-3 16698 16.9 67 DAHLGREN D-131 1892* 1884* SIGCO 114 8-30 17061 40.9 69 9-4 16516 67.8 79 1875 TRIUMPH 505-3 8-30 SIGCO 115 8-30 39.4 79 2132* 1610* 1871* 16516 25.0 60 9-3 12886 80 1915 1685* 1800* 16335 17.4 63 9-5 12886 29.7 8-30 8-31 2369* 1223 71 15972 19.5 1796* SIGCO 104 68 9-5 16516 56.9 75 1834* 10164 8.4 1737 1786* 61 9-4 17606 31.5 USDA 924 2074* 1477* 1776* INTERSTATE IS 921 8-30 15064 28.9 68 9-4 11979 42.5 77 13794 16.5 54 9-2 1842 1707* 1774* DAHLGREN D-960-2E 8-30 13431 41.8 66 1527* 1764* 59 DAHLGREN D-759-12E 8-28 21598 13.5 56 9-3 22688 19.4 2001 63 1926* 1740* DAHLGREN D-151 8-29 9075 16.9 54 9- 4 13612 20.0 1553 1465* 1595 70 SIGCO 101 8-29 15972 13.1 58 9-5 12342 16.8 1725 TRIUMPH 557-DW 9- 3 14702 22.3 36 9-8 8530 4.5 36 1848 514 1181 AGRIPRO 2057A 8-27 TRIUMPH 548-A 9- 1 AGRIPRO ST 310 8-29 AGRIPRO 101 8-26 AGRIPRO 102 8-24 12705 4.6 55 9-3 14520 3.8 53 9-5 14338 23.3 66 1220 889 20.2 70 1509 508 1008 17061 0.8 56 3.7 47 13794 5.6 43 9-2 13996 5.5 32 9-3 20146 7.4 27 8-30 20691 1384 421 902 15064 551 838 845 842 7.8 42 486 518 17787 _______ TRIAL MEAN 8-29 15957 14.1 57 9-4 15594
TRIAL LSD .05 2 NS 16.5 11 2 6001
TRIAL C.V. % 0.5 26.7 11.5 0.6 23.6 25.7 69 1882 1387 1634 13 TRIAL LSD .05 2 NS TRIAL C.V. % 0.5 26.7 27.7 554 571 389 23.6 11.9 17.6 17.9 25.2 21.0 _______

^{**} HIGHEST YIELDING HYBRID IN THE TEST.

^{*} HYBRID WHICH DID NOT YIELD SIGNIFICANTLY LESS THAN THE HIGHEST YIELDING HYBRID IN THE TEST.

NS NOT SIGNIFICANT AT THE .05 LEVEL.

PART III

COTTON VARIETIES

Cotton variety trials became part of the University of Missouri's crop performance testing program in 1978. These tests are conducted to provide a reliable, unbiased, up-to-date source of information for comparing varieties.

EXPERIMENTAL PROCEDURES

Two locations were selected to represent the range of conditions found in the cotton growing area of southeastern Missouri. These locations were the Herb Schuerenberg farm near Sikeston (loam soil) in the northern bootheel, and the David Andrews farm near Senath (loam soil) in the southern bootheel. Trial locations are shown on the map below.

Field Plot Design. The trials were arranged in a randomized complete block design with six replications. The plots were four rows wide with the center two rows being used for yield and other notes. Both locations used rows 38 inches apart and 25 feet long.

Entries. All producers of cotton seed were eligible to enter varieties in the 1990 evaluation trials. Participation was voluntary and no control was exercised by the program over which or how many varieties were entered. However, to help finance the evaluation program, a fee of \$150 per location was charged for each variety entered by the seed producer. A total of 26 cotton varieties were compared in 1990.

TABLE 12. SOURCE OF COTTON ENTRIES EVALUATED IN 1990

Cotton Locations.

TABLE 12. SOURCE O	F COLION ENTRIES EV	ALUATED IN 1990.
BRAND	VARIETY	FIRM AND ADDRESS
CHEMBRED	232, 407, 1207, 1232, 1135	CHEMBRED INC., RT.3, BOX 750, MARICOPA, AZ 85239
DELCOT	344	UMC DELTA CENTER, BOX 160, PORTAGEVILLE, MO 63801
DELTAPINE	20, 50, 51, 5415, 5690	DELTA AND PINE LAND CO., BOX 157, SCOTT, MS 38772
DES	119	DELTA BRANCH, MISS. AG. EXP. STAT. BOX 197, STONEVILLE, MS 38776
HARTZ	1014, 1416, 1432	JACOB HARTZ SEED CO., INC., BOX 946, STUTTGART, AR 72160
HYPERFORMER	90-SL, SALCOT 10 23, 46	HYPERFORMER SEED CO., 5100 POPLAR SUITE 3200, MEMPHIS, TN 38137
NORTHRUP KING COKER	130, 139, 320	THE NEW NORTHRUP KING CO., 220 GLEN ECHO, COLLIERVILLE, TN 38017
STONEVILLE	ST-453, ST-907	STONEVILLE PEDIGREED SEED CO., BOX 167, STONEVILLE, MS 38776
TERRA	C-40, C-207	TERRA INTERNATIONAL, INC., BOX 171376, MEMPHIS, TN 38187

 $\frac{\text{Plot Management.}}{\text{mall plot work.}} \text{ The trials were planted with commercial equipment modified for small plot work.} \text{ At harvest, the plots were hand-picked in order to reduce losses which might result from maturity differences among varieties.}$

Data Recorded. The total number of plants in the center rows of each plot were counted and converted to number of plants per acre. At maturity, height, lodging, and yield were measured. Height was taken as the average distance in inches from the soil surface to the top of the plant. Lodging, which indicates the degree of erectness, was scored on a scale of 1 to 5 with 1 indicating that all plants were erect (no lodging) and 5 indicating that 80 percent, or more, of the plants were lodged. Yield was measured both in total pounds of seed cotton and lint per acre. Pounds of lint were calculated by multiplying the ginning percentage (lint percentage) by the total seed cotton yield. Quality characteristics of the cotton fibers were analyzed at the USDA Cotton Laboratory in Hayti, Missouri and the results are presented in tables 13-15 with other agronomic information.

Fiber Quality Fiber quality characteristics were determined for each variety utilizing lint samples from three replications at each test location. These characteristics and their importance are described below.

A. Micronaire: The micronaire test provides a combined measure of maturity and fineness of cotton fibers. Fiber maturity is a relative measure of cell-wall fiber. Immature fibers result in decreased rates of processing, dyeing problems, and the production of yarns and fabrics with low grade. Fineness is a relative measure of either the diameter of individual cotton fibers or the weight per unit length. Fine cotton produces stronger yarns and requires a reduced rate of processing.

In the test, air is passed through a compressed sample of cotton fiber. The rate of flow through the sample follows a relationship between diameter or thickness of the textile fibers and the air resistance they provide. Finer fibers result in greater resistance and therefore, a lesser air flow. Value recorded can be interpreted as follows:

Below 36.0 = fine and often immature 37.0 - 42.9 = premium range Above 43.0 = coarse fibers

B. Uniformity: Fiber uniformity is a measure of the degree of uniformity of fiber length in a sample. Uniformity is calculated as a ratio of the average length of all fibers to the average length of the longest 50 percent of the fibers in the sample. The ratio is then multiplied by 100. High uniformity values are desirable and indicate uniform fiber lengths.

Below 77.0 = Very Low 77.1 - 79.0 = Low 79.1 - 82.0 = Average 82.1 - 85.0 = High Above 85.1 = Very High

C. Strength: Yarn strength and ease of manufacturing are correlated positively with strong-fibered cottons. Fiber strength is reported in grams per tex. A tex unit is equal to the weight in grams of 1000 m of fiber. The strength values are reported in grams of force required to break one tex unit of fibers with the holding jaws separated by 1/8 in. The following chart categorizes strength readings and aids in the interpretation of strength values for an 1/8 in. gauge:

Below 20.0 = Very Low 20.9 - 23.9 = Low 24.0 - 26.9 = Average 27.0 - 29.9 = High Above 30.0 = Very High

RESULTS

Twenty six cotton varieties were planted at Sikeston and at Senath on sandy loam soils in 1990. Sikeston lint yields averaged 668 pounds per acre, and ranged from 485 to 783 pounds per acre (Table 12). This trial was not irrigated and there was no lodging. Senath lint yields averaged 1013 pounds per acre, and ranged from 836 to 1111 pounds per acre (Table 13). This trial was irrigated and had no lodging.

TABLE 13. YIELD PERFORMANCE OF COTTON VARIETIES GROWN NEAR SIKESTON, MISSOURI ON THE HERB SCHUERENBERG FARM DURING 1985,87,90.

PLANTED: 8 MAY 1990. HARVESTED: 19 OCTOBER 1990. PLANTED POPULATION: 82,500 PL/A. ROW SPACING: 38 INCHES.

GROWING SEASON RAINFALL: 19.29 INCHES.

IRRIGATION: 0.00 INCHES.

FERTILIZER: N = 85, P205 = 0, K20 = 125. HERBICIDES: PRE: TRILAND + ZORIAL + COTORAN.

POST: MSMA + PROBE, BLADEX,

INSECTICIDE: PRE: TEMIK AND RIDOMIL.

POST: CAPTURE AND ORTHENE.

OTHER PRODUCTS: DROPP, PIX, AND PREP.

					1990							
			FIBER				HEI-		SEED	7	TOTAL LII (LBS/A)	NT
BRAND/VARIETY	GRADE	STAPLE		UNIF- ORMITY		STAND (PL/A)	GHT	(%) LINT	COTTON (LBS/A)		1987	1985
NORTHRUP KING COKER 139 TERRA C-40 DELTAPINE 50	51.0 51.0 51.0	36.3 34.7 36.3	37.7 37.7 35.3	79.7 79.7 81.3	28.3 26.0 27.7	32555 41726	30 26	37.1 36.7 34.6	2100** 1998* 2075*	783** 728* 724*	1067* 1168*	460
DELIAPINE 50 DELTAPINE 20 NORTHRUP KING COKER 130	47.7 51.0	34.7 35.3	33.7 37.7	79.7 81.3	27.3 28.3	45853 50667 38516	21 27 30	36.3 37.7	1970* 1873*	724* 720* 711*	1030* 1061*	423
CHEMBRED CBX-1207 HYPERFORMER HS-23 TERRA C-207 STONEVILLE ST-907	51.0 51.0 47.7 44.3	35.3 36.0 35.7 34.0	35.3 33.0 38.0 40.3	80.7 79.3 83.0 82.0	27.7 27.3 29.0 29.3	40121 47457 36453 41038	23 29 29 30	38.0 35.9 37.9 37.2	1853* 1951* 1824* 1847*	705* 701* 694* 692*		
DELCOT 344	51.0	36.0	34.7	78.0	29.3	44477	23	36.5	1884*	690*	1000	418
DES 119 CHEMBRED CBX-1232 HARTZ H1014 NORTHRUP KING COKER 320	54.3 51.0 41.0 51.0	36.3 35.7 34.7 36.7	38.0 34.3 34.7 38.7	81.7 81.3 78.3 81.0	29.3 28.0 30.0 28.7	43789 45394 40809 41267	22 27 29 28	38.3 36.4 39.8 36.8	1784 1864* 1703 1838*	683* 683* 681* 679*	920	421
DELTAPINE 51	51.0	35.7	36.0	79.0	27.3	41955	28	35.8	1912*	677*		
HYPERFORMER HB 90-SL DELTAPINE X5690 DELTAPINE X5415 CHEMBRED CB-1135 HYPERFORMER HS-46	37.7 44.3 44.3 51.0 41.0	35.6 35.3 36.0 35.3 35.7	33.0 39.3 35.3 35.0 34.0	80.3 80.7 79.7 78.3 78.3	28.3 29.7 30.0 28.7 32.0	13527 36224 39892 48145 52501	34 33 25 26 28	35.6 37.4 36.4 36.3 38.2	1872* 1782 1812* 1788* 1643	670* 666* 661* 651* 628*		
HYPERFORMER HS-SALCOT 10 CHEMBRED CB-407 CHEMBRED CB-232		35.0 35.7 35.7	35.7 37.7 34.3	80.3 80.3 78.7	28.7 29.3 26.7	46082 41038 52730	24 32 26	36.2 37.1 34.4	1704 1670 1767	625 620 609		
STONEVILLE ST-453 HARTZ H1416	51.0	35.0 34.7	35.3 35.0	78.3 82.3	27.0	39433 37141	24 32	38.3	1584 1645	609 595	1167*	
HARTZ HX1432	47.7	34.0	38.3	83.0	29.0	41497	28	34.5	1399	485		
	48.3 6.5 8.9	35.4 1.3 2.3	36.1 3.8 6.4	80.2 3.1 2.4	28.6 2.7 5.8	41550 12522 18.4	27 NS 18.5	36.7 1.7 4.2	1813 315 15.3	668 133 17.6	997 168 14.9	435 NS 28.5

⁻⁻ DATA NOT AVAILABLE.

^{**} HIGHEST YIELDING VARIETY IN THE TEST.

^{*} VARIETY THAT DID NOT YIELD SIGNIFICANTLY LESS THAN THE HIGHEST YIELDING VARIETY IN THE TEST.

NS NOT SIGNIFICANT AT THE .05 LEVEL.

TABLE 14. YIELD PERFORMANCE OF COTTON VARIETIES GROWN NEAR SENATH, MISSOURI ON THE DAVID AND SCOTT ANDREWS FARM DURING 1986-90.

PLANTED: 8 MAY 1990. HARVESTED: 19 OCTOBER 1990. PLANTED POPULATION: 82,500 PL/A. ROW SPACING: 38 INCHES.

GROWING SEASON RAINFALL: 22.95 INCHES.

IRRIGATION: 6.00 INCHES.

FERTILIZER: N = 85, P205 = 0, K20 = 125. HERBICIDES: PRE: TRILAND + ZORIAL + COTORAN.

POST: MSMA + PROBE, BLADEX,

INSECTICIDE: PRE: TEMIK AND RIDOMIL. POST: CAPTURE AND ORTHENE. OTHER PRODUCTS: DROPP, PIX, AND PREP.

					1990							
			FIBER				HEI-		SEED		OTAL LIN	Т
BRAND/VARIETY	GRADE	STAPLE		UNIF- ORMITY	STRE- NGTH	STAND (PL/A)	GHT (IN.)		COTTON (LBS/A)		1989	1988
NORTHRUP KING COKER 130	51.0	36.7	36.3	81.3	29.0	36911	32	38.6	2880*	1111**	975*	839*
CHEMBRED CBX-1232	51.0	36.0	38.7	84.0	28.7	62360	32	38.7	2792*	1084*		
DELTAPINE X5415	47.7	36.0	39.3	81.7	30.0	48145	31	37.9	2852*	1082*		
DELTAPINE 50	44.3	36.0	41.0	81.0	26.3	47687	31	35.7	3002**		1110*	948*
HARTZ H1014	47.7	36.7	37.0	82.3	31.7	58233	33	39.4	2703*	1069*		
CHEMBRED CB-1135	47.7	36.3	38.3	81.3	29.7	55482	31	38.1	2804*	1068*	1130*	
DELCOT 344	51.0	37.0	40.3	84.0	30.0	58921	32	38.6	2745*	1064*	1035*	879*
NORTHRUP KING COKER 139	47.7	36.0	41.0	80.3	29.0	49750	31	37.3	2839*	1061*	1050*	784
STONEVILLE ST-453	47.7	34.0	38.0	80.7	27.7	60984	29	41.2	2509	1060*	1194**	873*
DES 119	47.7	36.3	40.3	83.0	30.0	64194	29	38.9	2696*	1049*	868	875*
TERRA C-207	47.7	36.0	40.0	81.3	29.7	49521	28	40.2	2578	1034*		
NORTHRUP KING COKER 320	54.3	36.7	40.3	82.7	30.3	44936	30	37.8	2723*	1030*	841	778
CHEMBRED CBX-1207	44.3	36.3	38.3	82.3	31.3	58462	33	39.7	2588	1028*		
DELTAPINE 51	51.0	35.3	39.3	78.7	24.7	44936	31	37.5	2731*	1024*	1130*	933**
DELTAPINE X5690	44.3	35.3	38.3	80.7	31.0	52043	32	37.9	2693*	1022*		
HARTZ H1416	44.3	35.0	39.0	80.7	28.7	48145	33	37.7	2689*	1014*	1006*	
TERRA C-40	44.3	34.7	39.3	81.7	27.0	62589	29	37.9	2670*	1010*	989*	849*
HYPERFORMER HS-23	51.0	35.3	38.3	80.3	28.0	55023	28	37.4	2651*	991*		
DELTAPINE 20	44.3	34.7	42.0	83.0	26.3	72906	30	38.3	2539	972*	1038*	954*
STONEVILLE ST-907	44.3	35.3	40.0	79.7	30.7	48375	33	38.5	2527	971*	958	
CHEMBRED CB-232	47.7	36.0	36.7	81.7	28.7	48375	28	36.7	2636*	967*		
CHEMBRED CB-407	44.3	35.7	37.3	78.7	31.0	56169	34	37.9	2502	947*	993*	
HYPERFORMER HS-SALCOT 10	44.3	35.7	39.0	81.3	31.7	52272	29	37.0	2555	946*		
HYPERFORMER HS-46	41.0	36.7	33.0	78.3	31.0	63277	35	38.7	2441	945*	1067*	672
HYPERFORMER HB 90-SL	41.3	37.3	35.3	81.7	30.0	21551	31	34.2	2569	882		
HARTZ HX1432	41.0	35.0	37.3	84.0	28.3	56628	29	35.0	2385	836		
TRIAL MEAN	46.7	35.8	38.6	81.4	29.2	52995	31	37.9	2665	1013	980	809
	NS	1.4	NS	3.1	1.9	7359	NS	1.4	412	166	221	148
TRIAL C.V. %	10.0	2.3	7.6	2.3	4.7	12.3	9.8	3.2	13.7	14.4	19.9	16.2

⁻⁻ DATA NOT AVAILABLE.

^{**} HIGHEST YIELDING VARIETY IN THE TEST.

^{*} VARIETY THAT DID NOT YIELD SIGNIFICANTLY LESS THAN THE HIGHEST YIELDING VARIETY IN THE TEST.

NS NOT SIGNIFICANT AT THE .05 LEVEL.

TABLE 15. PERFORMANCE RECORD OF COTTON VARIETIES EVALUATED AT TWO SOUTHEAST MISSOURI LOCATIONS (SIKESTON AND SENATH) DURING 1990.

PLANTED POPULATION: 82,500 PL/A. ROW SPACING: 38 INCHES.

				OCATION	AVERAGI	E FOR 19						
	FIBER						HEI-			TOTAL LINT (LBS/A)		
BRAND/VARIETY	GRADE	STAPLE		UNIF- ORMITY		STAND (PL/A)		(%) LINT	COTTON (LBS/A)		SENTH	MEAN
NORTHRUP KING COKER 139	49.4	36.2	39.4	80.0	28.6	41152	30	37.2	2470	783**	1061*	922**
NORTHRUP KING COKER 130	51.0	36.0	37.0	81.3	28.6	37714	31	38.2	2376	711*	1111**	911*
DELTAPINE 50	47.6	36.2	38.2	81.2	27.0	46770	26	35.2	2538	724*	1071*	898*
CHEMBRED CBX-1232	51.0	35.8	36.5	82.6	28.4	53877	30	37.6	2328	683*	1084*	884*
DELCOT 344	51.0	36.5	37.5	81.0	29.6	51699	28	37.6	2314	690*	1064*	877*
HARTZ H1014	44.4	35.7	35.7	80.3	30.8	49521	31	39.6	2203	681*	1069*	875*
DELTAPINE X5415	46.0	36.0	37.3	80.7	30.0	44018	28	37.2	2332	661*	1082*	872*
TERRA C-40	47.6	34.7	38.5	80.7	26.5	52158	28	37.3	2334	728*	1010*	869*
CHEMBRED CBX-1207	47.6	35.8	36.8	81.5	29.5	49292	28	38.8	2220	705*	1028*	866*
DES 119	51.0	36.3	39.2	82.4	29.7	53992	26	38.6	2240	683*	1049*	866*
TERRA C-207	47.7	35.8	39.0	82.2	29.4	42987	28	39.0	2201	694*	1034*	864*
CHEMBRED CB-1135	49.4	35.8	36.6	79.8	29.2	51814	28	37.2	2296	651*	1068*	860*
NORTHRUP KING COKER 320	52.6	36.7	39.5	81.8	29.5	43102	29	37.3	2280	679*	1030*	854*
DELTAPINE 51 HYPERFORMER HS-23	51.0 51.0	35.5 35.6	37.6 35.6	78.8 79.3	26.0	43446	30	36.6	2322	677*	1024*	850*
HIPERFORMER HS-23	31.0	33.0	33.0	79.3	27.6	51240	28	36.6	2301	701*	991*	846*
DELTAPINE 20	46.0	34.7	37.8	81.4	26.8	61786	28	37.3	2254	720*	972*	846*
DELTAPINE X5690	44.3	35.3	38.8	80.7	30.4	44134	32	37.6	2238	666*	1022*	844*
STONEVILLE ST-453	49.4	34.5	36.6	79.5	27.4	50208	26	39.8	2046	609	1060*	834*
STONEVILLE ST-907	44.3	34.6	40.2	80.8	30.0	44706	32	37.8	2187	692*	971*	832*
HARTZ H1416	44.3	34.8	37.0	81.5	29.4	42643	32	36.8	2167	595	1014*	804*
CHEMBRED CB-232	49.4	35.8	35.5	80.2	27.7	50552	27	35.6	2202	609	967*	788*
HYPERFORMER HS-46	41.0	36.2	33.5	78.3	31.5	57889	32	38.4	2042	628*	945*	786*
HYPERFORMER HS-SALCOT 10		35.4	37.4	80.8	30.2	49177	26	36.6	2130	625	946*	786*
CHEMBRED CB-407	44.3	35.7	37.5	79.5	30.2	48604	33	37.5	2086	620	947*	784*
HYPERFORMER HB 90-SL	39.5	36.4	34.2	81.0	29.2	17539	32	34.9	2220	670*	822	746
HARTZ HX1432	44.4	34.5	37.8	83.5	28.6	49062	28	34.8	1892	485	836	660
TRIAL MEAN	47.5 5.0	35.6	37.3	80.8	27.8	47272	29	37.3	2239	668	1013	840
		1.6	3.0	2.2	1.8	11535	2	1.7	367	133	166	150
TRIAL C.V. %	9.1	2.3	7.1	2.3	5.3	15.0	14.9	4.2	14.5	17.6	14.4	13.5

^{**} HIGHEST YIELDING VARIETY IN THE TEST.

^{*} VARIETY THAT DID NOT YIELD SIGNIFICANTLY LESS THAN THE HIGHEST YIELDING VARIETY IN THE TEST.

PART IV

RICE VARIETIES

Rice variety trials became part of the University of Missouri's crop performance testing program in 1983. These tests are conducted to provide a reliable, unbiased, up-to-date source of information for comparing varieties. This work was supported in part by fees from organizations submitting varieties for evaluation. In addition to fees, a research gift was provided by the Missouri Rice Research & Merchandising Council.

EXPERIMENTAL PROCEDURES

<u>Location</u>. Rice plots were established on June 5, 1990 on the David and Steve Jackson farm near Dudley, Missouri. Three maturity groups of rice varieties were represented in southeast Missouri. The trial location is shown on the map below.

Field Plot Design. The trials were arranged in a randomized complete block design with four replications. Each plot consisted of six rows, 15 feet long, with a between-row spacing of 7.5 inches. The four center rows of each plot were handharvested at maturity and threshed by machine.

Entries. All public seed was provided by Drs. Karen Moldenhauer and Kenneth Gravois of the Rice Research Experiment Station at Stuttgart, Arkansas. A fee of \$100 per entry was charged for each non-public entry. A total of 36 rice varieties were compared in 1990.

Plot Management. Plots were planted with a conventional drill modified for experimental research. Fertilizer was applied at the rate of 65-18-36 preplant, and the plots were flooded. This flood was maintained throughout the growing season. An additional 46 pounds/acre of nitrogen was topdressed over the entire trial on July 21 and August 11. Thus, the total amount of nitrogen applied was 157 pounds/acre.

For primary weed control, Stam herbicide was applied on June 2. An additional application of Stam was applied on June 7, and Landax herbicide was applied on June 22. Plots were then hand weeded as necessary. Weed control was excellent.

At harvest, the plots were hand-cut in order to reduce losses which might result from maturity differences among varieties. To assure accuracy, the grain from all plots was oven-dried to a uniform moisture content, and then weighed to determine yield.

Data Recorded. At maturity, height, lodging, % head rice, % total rice, and yield were measured. Height was taken as the average distance in inches from the soil surface to the top of the plant. Lodging, which indicates the degree of erectness, was scored on a scale of 1 to 5 with 1 indicating that all plants were erect (no lodging) and 5 indicating that 80 percent, or more, of the plants were lodged. Yields calculated from the harvested area were adjusted to 12 percent moisture and reported on a pounds/acre basis.

Rice Milling Quality The dollar value of rice is determined by the milling yield, quality, and price. The price of whole kernel (fancy or head) milled rice is worth more than twice as much as brokens; therefore it is important to have a high milling percentage of whole kernels. A sample was collected from each plot of harvested grain and used to determine both milling and quality. The sample was weighed and the trash or foreign matter was removed by a Carter-Day Dockage Machine. The cleaned sample was then milled to remove hulls and bran. The amount of milled rice which remains is considered the total milling yield (contains both broken and whole kernels), and is expressed as a percentage (Total Rice %). The whole kernels are then separtated from the broken kernels by a sieve and weighed for the calculation of whole kernel or head rice milling percentage (Head Rice %).

RESULTS

Average yields for 1990 were among the highest since the University of Missouri began testing rice in 1983. Cool temperatures and delayed planting date which are normally detrimental yields were apparently compensated for by other favorable conditions. The 'Very Short Season' rice maturity class achieved the highest average yield (7461 pounds/acre) of the three maturity classes.

PERFORMANCE OF RICE VARIETIES EVALUATED ON THE DAVID AND STEVE JACKSON FARM NEAR DUDLEY (STODDARD CO.) DURING 1990. TABLE 16.

PLANTED: 5 JUNE 1990. HARVESTED: 5,19 OCT. 1990. ROW SPACING: 7.5 INCHES. INSECTICIDE: NONE. PLANTED POP.: 40 SD./SQ. FT.

FERTILIZER: N = 157; P205 = 18; K20 = 36. HERBICIDES: POST: STAM. POST: LANDAX. FUNGICIDES: ROVRAL, TILT. GROWING SEASON RAINFALL: 14.32 INCHES.

			1990 LOD-							
	FLOW- ERING	HEIGHT	GING	HEAD RICE	${f TOTAL} \ {f RICE} \ ({\it \%})$		YIEL	D (LB/ACR 1988	E)	
VARIETY	DATE	HEIGHT	(1-5)	(%)	(%)	1990	1989	1988	1987	1986
			VEF	RY SHOR	T SEASON	RICE				
RICE-TEC 7015 TEXMONT TEBONNET# ALAN RU9001007 MAYBELLE RU8901001 REXMONT	8-27 8-28 8-27 8-27 8-28 8-29 8-27 8-30 8-30 8-31	34.0 34.3 30.1 46.2 40.8 41.9 39.0 42.9 34.0 34.0 46.9 41.2	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	58.5 64.2 61.0 63.9 64.6 59.1 66.2 56.2 57.6	71.4 72.4 73.2 72.9 72.6 71.9 73.1 71.2 68.8 76.4 73.8 72.2	8118** 8001* 7914* 7817* 7619* 7481* 7388 7344 7131 7109 6808 6801	5520** 990 2265 2433 3043 4910* 3715			6695*** 4589 5649
VSS RICE AVERAGE VSS RICE LSD .05 VSS RICE C.V. %	8-29 2 1.5	39.2 1.9 3.4	1.0 NS	61.9 5.5 4.0	72.5 2.7 1.7	7461 712 6.6	3155 1013 32.2	4197 1135 19.5	6598 661 15.9	5387 911
			S	SHORT S	EASON RIC	Œ				
RU8901087 RU8801127 RU8901148 RICO-I RU8901194 GULFMONT RU8901081 MARS# LEBONNET# RU8801121 RU8901151 RU9001087	8-27 9-6 9-3 9-6 8-30 9-1 8-28 9-7 9-2 9-8 8-31	40.4 44.1 42.1 41.4 37.0 39.7 40.6 45.3 46.9 43.3 45.1 33.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	71.4 680.2 68.8 55.4 630.4 68.2 64.1 687.9 58.7	75.0 72.8 71.6 75.3 71.7 72.4 70.5 73.2 73.1 71.7	8210** 7266 7254 7060 7027 6910 6885 6745 6656 6650 6399 6188	 2442 5574** 2596 1041 3394 	5130** 5130** 4331 4828**	7570	5686* 5603* 4937
SS RICE AVERAGE SS RICE LSD .05 SS RICE C.V. %	9- 2 2 1.5	41.1 3.0 5.1	1.0 NS	64.6 2.7 1.9	72.7 1.1 0.7	6937 816 8.2	2890 881 29.8	4562 NS 16.6	8150 917 16.0	5514 1146
			ME	DIUM SI	EASON RIC	E				
RU8901191 LEMONT# RU8901176 RU8801185 RU8801179 NEWBONNET# RU8801167 KATY RU8901167 RU8701194 NORTAI JASMINE	9- 1 9- 7 9- 1 9- 1 9- 11 9- 11 9- 5 9- 2 9- 11 9- 14	46.7 36.52 42.8 47.67 46.9 43.5 47.8 47.8 38.9	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	67.4 67.0 66.8 64.8 67.3 66.8 67.5 663.8 62.5 30.2	75.5 66.7 74.5 71.4 73.2 74.8 75.3 74.8 72.0 74.8 66.8	7783** 7500* 7290* 7118* 6645 6274 6237 6216 6169 5693 5576 3094	4780* 4789** 3320 3929 4113 3308 3417 2202 865	5521* 4385 4439* -4811* 3787	7036 8699* 7507 7657	5408* 5569* 5495*
MS RICE AVERAGE MS RICE LSD .05 MS RICE C.V. %	9- 6 1 1.1	43.4 2.4 3.9	1.0 NS	63.2 3.1 2.2	72.7 NS 4.5	6300 982 10.8	3275 615 18.8	4748 1493 21.9	7774 789 10.1	5385 940
TRIAL AVERAGE		41.2	1.0	63.2	72.6	6899	3107	4502	7507	5429

^{**} HIGHEST YIELDING VARIETY IN THE TEST.

* VARIETY WHICH DID NOT YIELD SIGNIFICANTLY LESS THAN THE HIGHEST YIELDING VARIETY IN THE TEST.

NO NOT SIGNIFICANT AT THE .05 LEVEL.

CHECK VARIETY.

TABLE 17. RICE VARIETY IDENTIFICATION.

VARIETY	CI, PI, OR RU NO.	GRAT TYPE
ERY SHORT SEASON		
L202	PI483097	LONG
MAYBELLE	RU8403113	LONG
TEBONNET	PI487195	LONG
ALAN	RU8701084	LONG
MILLIE	RU8701105	LONG
M101/MARS	RU8901133	MEDI
REXMONT	PI502968	LONG
MARS/TEBONNET	RU9001004	LONG
RT7015	RICE-TEC	LONG
L201/7402003	RU9001007	LONG
L201/7402003	RU8901001	LONG
TEXMOUNT	RU8703083	LONG
,		
HORT SEASON	2 - C - C - C - C - C - C - C - C - C -	
LEBONNET	CI9882	LONG
MARS	CI9945	MEDI
RICO-I	PI502969	MEDI
GULFMONT	PI502967	LONG
BRAZOS/MARS	RU8801121	MEDI
CSL1/ZADT	RU8901151	MEDI
ZENITH/3/164986-4/NV66//NORTAI	RU8901087	MEDI
TEBONNET/LA110//LEMONT	RU9001087	LONG
ZADT/STARBONNET	RU8801127	LONG
L201/3/164986-4/NV66//NORTAI	RU8901148	LONG
TEBONNET/BLMT//VISTA/7901017	RU8901194	LONG
LEMONT//V6DW/STTD	RU8901081	LONG
ID SEASON		
KATY	PI527707	LONG
NEWBONNET	PI47580	LONG
LEMONT	PI475833	LONG
NORTAI	CI9836	SHOR
VISTA/RU7901017	RU8801167	LONG
RA73/LEBONNET	RU8701194	LONG
LABONNET/STARBONNET//NEWBONNET	RU8901191	LONG
7801067/SKYBONNET	RU8801185	LONG
VISTA/NORTAI//LEMONT	RU8901176	LONG
BP87/9902	RU8901167	LONG
STARBONNET/LEBONNET	RU8801179	LONG
JASMINE	RU8803197	LONG

The University of Missouri is an Equal Employment and Educational Opportunity Insitution.