

James A. Roth and Earl M. Kroth

Special Report 26 February, 1963 University of Missouri

AGRICULTURAL EXPERIMENT STATION

CONTENTS

Introduction	•	•	۰	•	•	۰	•	•	•	•	۰	۰	•	•	•	•	•	•	•	•	•	•	. 3
Cotton Experiments.	0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• 4
Soybean Experiments	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	12
Corn Experiment	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	15
Wheat Experiments .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	16
Sugar Beets and Corn			•				•	•	•	•	•	•	•	•	•			•					20

SOIL FERTILITY AND PLANT NUTRITION RESEARCH IN SOUTHWEST MISSOURI- 1962

James A. Roth and Earl M. Kroth

This report presents the results of fertility experiments in the production of cotton, soybeans, wheat, and corn in Southeast Missouri. These experiments included application of different rates of nitrogen, phosphorus, potash, minor elements, and limestone on several of the major soil types.

The 1962 growing season was nearly ideal but intermittent rains and showers during the harvest season resulted in poor quality of the early cotton. Farm yields were in general slightly better than in 1961.

Studies with corn were conducted at the Sikeston and Clarkton experimental fields. Wheat experiments were located at the Portageville, Clarkton, and Sikeston experimental fields, and on land of three farmer cooperators. Experiments with cotton were placed on two soil types at Portageville, the sand of the Clarkton field, fine sandy loam at Sikeston, and on fields of six farmer cooperators.

Some data were obtained from the newly established rotation studies, including alfalfa, Sudan grass, and grain sorghum, but these figures will not be reported as some changes in these rotations are advisable.

Experiments to determine the effect of nitrogen on yield of sugar beets were also conducted at the Sikeston farm.

Experiments with soybeans were completed on the Clarkton, Sikeston and Portageville Experiment Fields and on fields of seven farmer cooperators.

		Soil Tests – Topsoil										
		%		Pounds 1	per Acre		pH				nical Ar	
Location	Soil Type	<u> </u>	P_2O_5	К	Mg	Ca	Salt	H+	CEC	Sand	Silt	Clay
Clarkton Sikeston Portageville	Sand Silt loam Sandy loam	0.9 1.7 1.8 2.4	192 200 300 189	220 356 380 455	40 160 380 940	400 1100 3600 6500	4.0 4.9 5.9 5.5	2.5 4.0 2.0 4.0	4.0 7.9 13.1 24.8	87 29 49 20	6 52 35 29	7 19 16 51
Portageville J. R. Blades 4 miles west of Parma J. A. Roth	Sharkey clay Sharkey clay	2.4	185	290	840	4000	4.8	3.5	17.5	27	36	37
2 miles N. E. Malden French & Maddox	Sharkey clay loam	1.4	179	200	800	4000	5,8	1.5	15.0	26	53	21
5 miles south Malden	Sharkey clay loam	2.1	176	160	670	4580	5.7	2.0	15.5	48	32	20

SUMMARY OF SOIL TEST VALUES FOR COTTON 1962

4

BASIC SOIL TREATMENTS

Soil Trea	tment	Clarkto Fie		Portage Exp. 1	
** Plowdown	Annual Starter	First Picking	Total Yield	First Picking	Total Yield
None	None	1192	1487	276	453
None	50+50+50	1487	1903	806	1354
None	100+50+50	911	1379	1226	1921
None	100+0+0	1097	1490	1228	1872
None	100+100+100	1277	1791	924	1619
None	150+100+100	1303	1664	1074	1752
0+200+0	100+0+0	1523	1929	1202	1899
0+200+0	100 + 50 + 50	1647	1999	1144	1911
0+0+200	100+0+0	1094	1644	1069	1684
0+0+200	100 + 50 + 50	812	1540	985	1689
0+100+200	100+0+0	1199	1746	1071	1655
0+100+200	100+50+50	1268	1903	859	1503
0+200+200	100+0+0	1088	1650	1011	1650
0+200+200	100 + 50 + 50	1280	1801	1165	1875
0+400+200	100+0+0	554	1183	1067	1759
0+400+200	100 + 50 + 50	884	1480	1011	1734
0+1000+200	100+0+0	1271	1828	533	1107
0+1000+200	100 + 50 + 50	1533	2076	789	1440
0+200+100	100+0+0	1163	1605	806	1361
0+200+100	100 + 50 + 50	1221	1722	816	1443
0+200+400	100+0+0	622	1277	1681	2353
0+200+400	100+50+50	825	1421	1578	2253
0+100+100	100+0+0	891	1340	1206	1831
0+100+100	100 + 50 + 50	1146	1759	1070	1805
0+400+400	100+0+0	403	825	953	1672
0+400+400	100+50+50	799	1208	951	1684
0+200+200					
Sul-Po-Mag 0+200+200	None	1297	1749		
Sul-Po-Mag	100+50+50	1307	1818		

Yields of Seed Cotton (Pounds per acre)

Cotton Variety

Auburn M

Rex

**Plowdown 1961 at Portageville.

Plowdown 1962 at Clarkton plus 2 Ton dolomitic limestone.

At the Clarkton field 50+50+50 gave the most economical yield of seed cotton. Additional amounts of nitrogen, phosphorus, or potash did not increase yields, but often caused yield decreases of Auburn M. cotton. At Portageville on the Sharkey clay soil 100+50+50 was the most effective treatment, producing 1921 lbs. of seed cotton, compared with 453 lbs. for no treatment. A plow down treatment of 0+200+400 in 1961 did give a 432 lb. increase with 100 lbs. N at planting time. This same trend was observed for this treatment in 1961.

LIMESTONE AND NITROGEN

Yield of Seed Cotton (Pounds per acre)

		Clarl Exp.		Portageville Exp. Field		
Soil Treatment						
* Limestone	Annual Fertilizer	First Picking	Total Yield	First Picking	Total Yield	
None	25+50+50	943	1451	720	928	
None	50+50+50	803	1244	1130	1519	
None	100+50+50	1029	1438	1329	1820	
2 T Dolomitic	25+50+50	1107	1565			
2 T Dolomitic	50+50+50	1235	1693			
2 T Dolomitic	100+50+50	1192	1638			
2 T Calcium Carbonate	25+50+50	1195	1621	843	1089	
2 T Calcium Carbonate	50+50+50	1176	1618	1270	1723	
2 T Calcium Carbonate	100+50+50	1415	1998	1415	1911	
4 T Dolomitic	25+50+50	1208	1615			
4 T Dolomitic	50+50+50	1389	1791			
4 T Dolomitic	100+50+50	1376	1759			
4 T Calcium Carbonate	25+50+50	1212	1752	961	1270	
4 T Calcium Carbonate	50+50+50	1146	1726	1549	2003	
4 T. Calcium Carbonate	100+50+50	1189	1700	1549	2058	
8 T Dolomitic	25+50+50	1683	2050			
8 T Dolomitic	50+50+50	1549	2129			
8 T Dolomitic	100+50+50	1493	2011			
8 T Calcium Carbonate	25+50+50	1366	1765	1094	1438	
8 T Calcium Carbonate	50+50+50	1382	1814	1619	2046	
8 T Calcium Carbonate	100+50+50	1405	1805	1704	2234	
12 T Dolomitic	25+50+50	1608	2123			
12 T Dolomitic	50+50+50	1703	2224			
12 T Dolomitic	100+50+50	1765	2198			
12 T Calcium Carbonate	25+50+50			981	1261	
12 T Calcium Carbonate	50+50+50			1299	1740	
12 T Calcium Carbonate	100+50+50			1465	1949	
24 T Calcium Carbonate	25+50+50			1157	1424	
24 T Calcium Carbonate	50+50+50			1511	1933	
24 T Calcium Carbonate	100+50+50			1636	2053	
500 # Fine Lime						
Annually	25+50+50	442	874	860	1128	
500 # Fine Lime						
Annually	50+50+50	508	937	1109	1526	
500 # Fine Lime						
Annually	100+50+50	544	1028	1340	1889	
Cotton Variety		Aubu	m M.	Re	ex	

*Limestone plowed down Portageville 1961; Clarkton 1962.

At Clarkton both dolomitic and calcium limestone gave yield increases at rates ranging from 2T to 8T per acre with 25+50+50 as the starter fertilizer. In some cases 50+50+50 and 100+50+50 out yielded 25+50+50. The Sharkey clay at Portageville gave consistent responses from 2T/A to 8T/A of calcium limestone for each of the three starter fertilizers, the top yield being with 100+50+50 on the 8T/A limestone rate.

RATES OF NITROGEN AND STARTER FERTILIZERS

Yie	lds	of	Seed	Cotton	
(E	Pour	ds	per	Acre)	

	J. R. I Par First		French - Maddox Gideon	Portageville Exp. Field (Clay) First Total		Sikeston Clarkton Exp. Field Exp. Field Total* First Total		Field	Portag Exp. (Loan	Field n)
Soil Treatment	Picking	Yield	Total* Yield	Picking	Yield	Total* Yield	First Picking	Yield	First Picking	Total
	1 Ioning	Tiona	11010	Ticking	11010	1 leiu	FICKING	1 leiu	PICKINg	Yield
No Treatment	730	1022	1927			1714	984	1551	1252	1426
0+50+50	631	911	2358	655	827	1838	1046	1473	1188	1470
25+50+50	1156	1407	2560			1912	1157	1550	1562	1926
50+50+50	1343	1693	3021	1304	1703	1858	1154	1601	1508	1921
100+50+50	1291	1892	2835	1374	2107	1756	1059	1583	1454	1855
150+50+50	1314	1851	2991	1410	2077	1760	1118	1593	1538	1914
50+0+0	1156	1570	2433			1892	822	1334	1520	1864
100+0+0	1215	1635	3400			1627	1150	1657	1630	2033
25+25+25	923	1273	2775			1581	1193	1734	1696	1951
50+50+50 (15-15-15)	1075	1455	3073			1809	1072	1737	1509	1921
50+50+50+Fine Lime	1092	1501	2983			1889	1238	1745	1348	1724
50+50+50+Trace Minerals	1209	1653	2641			1700	1310	1866	1713	2038
100+100+100 (15-15-15)	1349	1822							1445	1912
100+100+100 (16-16-16)	1139	1618				1598	915	1439		
50+50+50 (16-16-16)						1881	1182	1804		
Cotton Variety	DPL-S	L	Rex	Rex		Rex	Aubu	ırn M	Re	ex

*Only one picking.

A starter fertilizer of 25+50+50 gave nearly optimum yields at two locations and 50+50+50 was optimum at one location. The response to nitrogen at Portageville showed only 112 pounds increase in seed cotton for 75 # N. The data from the Clarkton field gave indication of benefit from application of trace minerals.

SOURCE OF NITROGEN

	т р	Blades*	Doth T	'arm***	D-14 C	1 alastatut
	4 Mi. west		2 Mi. N. E			nter***
-	First	L Falilla	First	. maruen	<u> </u>	eville
Soil Treatment	Picking	Total	Picking	Total	Picking	Total
No Nitrogen	2534	2759	885	1090	954	1174
100 #N (Ammonium Nitrate)	2207	2860	1331	1860	1153	1646
100 #N (Ammonium Sulphate) 2418	2883	1245	1792	1011	1423
100 #N (Sodium Nitrate)	2149	2766	1231	1660	1114	1591
100 #N (Anhydrous)	2025	2482	684	976	1220	1584
100 #N (Agua Ammonia)	2323	2744				
25 # N (Urea)	2505	2766	1199	1527	1073	1472
50 # N (Urea)	2541	2868	1213	1555	1275	1642
100 #N (Urea)	2468	2889	1094	1477	1282	1651
100 #N (32% Solution)	2381	2831	1167	1641	995	1412
200 # N (32% Solution)	1982	2519				
100+34+0 (30-10-0)	2511	2954	1176	1655	1094	1582
*50 # N - Before squaring	2476	2817				
*50 ∦ N – At first bloom	2418	2766				
*50 ∦ N – At first ½" boll	2360	2767				
*100 # N - At first길" boll			1154	1496	990	1311
* <u>100 # N - At first bloom</u>					1284	1765

Yields of Seed Cotton

*All plots starter of 12+48+48 at planting.

Ammonium Nitrate - Nitrogen sidedressed June 12 unless indicated. *18+72+72 starter to all plots. Nitrogen sidedressed at first bloom. ****0+50+50 starter to all plots. Nitrogen sidedressed July 2.

Ammonium nitrate at 100 # N/A gave the most consistent yield increases at the three locations. Urea at 100 lbs. N/A equaled ammonium nitrate at two locations. On the Blades farm 50 # N/A as urea equaled the 100 # N/A. The data from Portageville indicate that a stage of growth may be more important than calendar date for the time of sidedressing with nitrogen.

INFLUENCE OF FERTILITY TREATMENT ON VARIETIES

Soil Trea	atment	Clarkton	Field	Portage	ville
		First		First	
Starter	Sidedress	Picking	Total	Picking	Total
Auburn M					
50+50+50	0	1060	1462	1097	1489
100+100+100	0	1223	1583	997	1335
100+100+100	50 # N	1007	1420	1078	1513
100+100+100	100 # N	1003	1395		
Rex					
50+50+50	0	822	1169	1077	1469
100+100+100	0	868	1266	949	1492
100+100+100	50 # N	668	1061	958	1304
100+100+100	100 # N	642	1002	reason maked strength strength	
Dixie King					
50+50+50	0	1150	1612	1015	1345
100+100+100	0	973	1372	1069	1486
100+100+100	50 # N	1071	1497	880	1373
100+100+100	100 # N	862	1320		
Delfos 9169					
50+50+50	0	932	1250	1052	1561
100+100+100	0	778	1171	1082	1605
100+100+100	50 # N	1038	1464	867	1385
100+100+100	100 # N	648	1008		
DPL Smooth Le	af				
50+50+50	0	1155	1662		
100+100+100	0	1150	1575		
100+100+100	50 # N	1166	1559		
100+100+100	100 # N	1172	1631		

Yields of Seed Cotton

The above data indicate that 50+50+50 fertilizer was nearest optimum for the varieties tested at the two locations. In several cases high rates of nitrogen depressed the yields.

PORTAGEVILLE FIELD - CLAY SOIL

Yields of Seed Cotton (Pounds per Acre)

		Cover Crop Exper		
			First	Total
			Picking	Yield
*Cotton -	No cover crop		2254	2254
*Cotton -	Rve		1910	2254 1910
	Rye and Vetch		1917	1910
*Cotton - 1	Dixie Crimson Clov	/er	2190	2190
	Austrian Winter Pe		2068	2150
*Cotton -		40	1969	1969
	Field Brome		2187	2187
*Cotton - 1			2002	2002
		Rotation Experim	ent.	······································
1962	1963	1964		
*Cotton	Cotton	Cotton	1989	1989
*Cotton	Soybeans	Corn-grain	2107	2107
*Cotton	Soybeans	Corn-Silage	2187	2187
*Cotton	Soybeans to	Wheat to		
	Wheat	Sudan	2046	2046
*Cotton	Soybeans to	Wheat to		
	Wheat	Soybeans	2200	2200
*Cotton	Soybeans to	Wheat to		
	Wheat	Milo	1947	1947
*Cotton	Soybeans	Soybeans	1827	1827
*Cotton	Fescue	Fescue	1209	1209
*Cotton	Alfalfa	Alfalfa	1942	1942
	<u>T</u>	race Element Expe	riment	
	Soil Treat	ment		
*No Trace			1685	2025
**150 # Tra	ace Element Mix		1731	2062
**150 # Tra	ace Element Mix (L	ess Iron)	1800	2139
**150 # Tra	ice Element Mix (L	ess Copper)	1912	2286
*150 # Tra	ice Element Mix (L	ess Zinc)	1939	2274
*150 # Tra	ice Element Mix (L	ess Manganese)	1816	2247
**150 # Tra	ice Element Mix (L	ess Boron)	1694	2103
*150 # Tra	ice Element Mix (L	ess Magnesium)	1880	2274
*Starter 50)+50+50 plus 50 # N	[

Sidedressed all cotton plots.

**Starter 100+83+50

Stands of the cover crops were poor due to a very dry fall in 1961. Yields on all plots where cover crops were planted were less than that of the no-cover crop plots.

Yields of cotton on the rotation study were about the same for all rotations excepting for the one containing fescue which was 800 pounds of seed cotton less than continuous cotton. These second year data can only indicate trends and need, perhaps, for additional nitrogen on the fescue plots and plowing the fescue in the fall.

Yields on trace element treated plots showed no benefit from the treatments.

SOIL TEST CORRELATION - POUNDS OF SEED COTTON HARVESTED

		Potash E	xperiment		Phos	phate Exper	iment	
Soil Treatment	100+50+0	100+50+50	Increase	Soil Test**	100+0+50	100+50+50	Increase	Soil Type
Harvey Lee (South) Qulin Portageville Exp. Field	2731	2705	-26	1100	2876	2994	118*	Clay Loam
(Loam)	1590	2289	699	380	1935	2129	194*	Silt Loam
Sikeston Exp. Field Portageville Exp. Field	1714	1685	-29	300	1534	1639	105*	Sandy Loam
(Clay)	1298	1315	17	250	1427	1363	-64*	Clay
Clarkton Exp. Field Sikeston Exp. Field-	828	974	146	230	1297	1196	-101	Sand
Pasture	1392	1397	5	180	1380	1383	3	Sandy Loam
J. R. Blades-Parma	1680	1886	206*	130	1540	1738	198*	Clay
W. D. Maddox-Gideon	2671	2711	40	130	2828	2764	-64	Clay
Harvey Lee (North)	1708	1964	256*	115	2458	2588	130*	Clay Loam
Geo. Hausner-Bernie	2054	2273	219*	90	2124	2127	3	Silt Loam
Louis Kalkbrenner-								
Poplar Bluff	1035	2088	1053*	80	1936	2067	131*	Silt Loam

*Significant increase or decrease. **Micro-moles per liter (μ M/L).

See discussion at end of following table.

SOIL FERTILITY EXPERIMENT - SOYBEANS - 1962

SOIL TEST CORRELATION - YIELDS IN BUSHELS PER ACRE

		Potash 1	Experiment	;	Phos	phate Exper	riment	
Location	11+48+0	12+48+48	Increase	Soil Test**	12+0+48	12 + 48 + 48	Increase	Soil Type
Portageville Exp. Field-								
Loam	36	36	0	260	36	35	-1	Silt Loam
Sikeston Exp. Field-							-	SHU LOUIII
Rn 85	40	41	1	240	40	40	0	Sandy Loam
J. R. Blades, Parma	46	46	0	220	47	45	-2	Clay
Portageville Exp. Field-								•
Gumbo	37	38	1	220	33	38	5*	Clay
Sikeston Exp. Field-								·
Pasture	37	35	-2	185	36	35	-1	Sandy Loam
Clárkton Exp. Field	14	14	0	130	40	40	0	Sand
Roth-Graded Field-								
Fill Area	40	39	-1	115	39	37	-2*	Clay Loam
Maddox & French-								
Gideon (South)	34	34	0	115	28	32	4*	Clay
Maddox & French-								
Gideon (North)	29	38	9*	90	30	35	5*	Clay
Geo. Hausner, Bernie								
(North)	34	40	6*	74	37	40	3*	Silt Loam
Roth-Graded Field-	.0.0	0.7	-					
Cut Area	36	37	1	51	38	37	-1	Clay Loam
Geo. Hausner, Bernie	91	94	04	10	0.0		Ort	011 ×
(South) L. Kalkbrenner,	31	34	3*	46	32	34	2*	Silt Loam
Poplar Bluff	18	27	9*	44	26	0.0	0	0114 T
Geo. Hausner, Bernie	10	41	5.	44	26	26	0	Silt Loam
(Late Beans)	21	29	8*	41	23	26	3*	Cilt Loom
(Late Deallo)	41	40	0.	41	40	20	5"	Silt Loam

.

 (T_{i}, T_{i})

÷.

SOIL FERTILITY EXPERIMENT - SOYBEANS - 1962 (CONTINUED)

	No Treatment	100 # Potash	Potash Soil Value**	0+50+50
Miller-Hunterville-(Early Soybeans)	16	17	36	
Miller-Hunterville-(Late Soybeans)	21	32*	36	
Flannigan-Hunterville	21		38	25

<u>၂</u>

*Significant **Micro-moles per liter (µM/L).

Developing chemical soil tests, results of which will provide reliable guides for the use of fertilizer on different kinds of soils, is one objective of soil fertility investigations. During 1962, chemical tests of soils for phosphorus and potassium were investigated using both cotton and soybeans as test crops. The test for potassium was a new one. In most cases significant increases in yields as a consequence of adding potassium fertilizer occured when the soil test values for potassium were below 100 to 130 μ M/L and no responses were obtained when the test values were higher.

Soil tests for phosphorus have not been completed. However, there was a favorable response to phosphorus fertilizer banded near the row for both cotton and soybeans at most of the locations.

SOIL FERTILITY EXPERIMENT - SOYBEANS - 1962

Soil Treatment	Clarkton Exp. Field Sandy Soil (1) Bu. per Acre	Portageville Exp. Field Silt Loam Soil (2) Bu. per Acre
No Trans Elemente	-1 /7	10
No Trace Elements	17	40
150 # Traces Less Iron	20 18	38
150 # Traces Less Copper 150 # Traces Less Zînc	18	40 38
	23	
150 # Traces Less Manganese 150 # Traces Less Boron	23 16	40
150 # Traces Less Boron 150 # Traces Less Magnesium	20	40 37
150 # Complete Traces	20 17	40
No Fertilizer	11	39
(1) $13+50+50$ all plots.		(2) 0+50+50 all plots
(I) 13+30+30 all procs.		except no fertilizer.
		except no leithizer.
	Geo. Ha	usner
	Berni	e
	Clay Loa	m Soil
	Bu. per	Acre
No Treatment	22	
12+50+50	30	
12+50+50+300 # Fine Lime	29	
48+48+48+ Trace Minerals	29	
100 # Es-Min-el	23	
300 # Fine Lime	24	

TRACE ELEMENTS

No benefit from application of trace minerals on yield of soybeans was noted in 1962, with the possible exception on the sand of the Clarkton Field. Absence of manganese may have increased the yield 6 bu./A over no treatment at this location.

Sikeston Ex Soil Type:	perimen Dexter `	t Field Very Fine	Sandy L	oam				
Topsoil Subsoil	$\frac{OM}{1.5}$ 1.2	<u>Р</u> 230 115	$\frac{\mathrm{K}}{405}$ 340	<u>Mg</u> 100 90	<u>Ca</u> 1750 1900	Ph 5.4 5.5	$\frac{H}{2.5}$	CEC 7.8 7.5
U.S. 523W	Corn pla	anted Apr	il 28, 196		1- Dom A o			

Number of		Bushels Per Acre									
Plants	Pounds of Applied Nitrogen Per Acre										
Per Acre	_0_	25	50	75	100	<u>150*</u>	200**				
12,000	74	74	100	105	99	93	9 8				
15,000	54	74	94	114	116	105	106				
19,000	53	54	83	99	110	113	118				
21,000	52	60	81	107	97	94	104				

* 50 pounds nitrogen sidedressed. **100 pounds nitrogen sidedressed.

These results show that 75 pounds of nitrogen on the 15,000 planting rate produced the most economical yields on this soil. This is in contrast with 150 pounds of nitrogen producing 137 bu./A. on an unirrigated site at Portageville in 1961.

			Soil Test %Pounds per Acre pHME/100 gms_							Mech. Analysis Percent			
Location	Soil Type		OM	P_2O_5	K	Mg	Ca	Salt	H+	CEC	Sand	Silt	Clay
Sikeston	Dexter Sandy loam	Topsoil Subsoil	$2.4 \\ 1.5$	350 182	475 431	93 106	$\begin{array}{c} 1470 \\ 1285 \end{array}$	5.0 5.2	2.0 1.0	6.7 5.3	35 51	50 30	15 19
Clarkton	Dexter Sand	Topsoil Subsoil	1.0 1.0	240 98	$\begin{array}{c} 135\\ 135\end{array}$	30 44	0 0	4.4 4.4	3.5 4.0	100 mm 200 mm	85 82	7 8	8 10
Kalkbrenner 5 mi. N. W. Qulin	Waverly Silt Loam	Topsoil Subsoil	$1.8 \\ 1.2$	44 10	290 220	620 650	$1860 \\ 1750$	6.3 6.1	2.0 2.0	9.6 9.4	0 0	77 76	$\begin{array}{c} 23\\ 24 \end{array}$
Roth-Filled Soil 2 mi. N. E. Malden	Sharkey Clay Loam	Topsoil Subsoil	2.0 1.8	110 61	420 270	1200 870	$\begin{array}{c} 2810\\ 2810 \end{array}$	6.0 5.8	0.5 1.0	13.1 11.9	39 40	$\frac{37}{32}$	24 28
Roth-Cutsoil 2 mi. N. E. Malden	Sharkey Clay Loam	Topsoil Subsoil	1.0 0.9	9 5	$\begin{array}{c} 315\\ 305 \end{array}$	$\begin{array}{c} 1200\\ 1120 \end{array}$	$\begin{array}{c} 3765\\ 2810 \end{array}$	5.9 6.1	$1.5 \\ 1.0$	16.3 12.9	26 21	53 50	21 29
Portageville Exp. Field 7 mi. east of	Sharkey Clay	Topsoil	2.4	189	455	940	6500	5.5	4.0	24.7	20	29	51
Portageville		Subsoil	1.0	170	455	940	5800	5.5	3.0	22.0	16	20	64

SUMMARY OF SOIL TESTS FOR WHEAT PLOTS 1962

SOIL FERTILITY EXPERIMENT - SMALL GRAIN - 1962

TOPDRESSING NITROGEN

	and the second	Bushel per Acre
Wheat Experiment		20
No Treatment	Manual	39 46
33 # N Ammonium Nitrate	March March	40 50
66 # N Ammonium Nitrate	March	51
100 # N Ammonium Nitrate	March	49
132 # N Ammonium Nitrate		
66 # N Urea	March	49
66 ∦ N Ammonium Sulphate	March	50
66 # N Sodium Nitrate	March	47
33 # N Ammonium Nitrate	April	42
66 $\#$ N Ammonium Nitrate	April	49
Barley Experiment		
No Treatment		32
33 ∉ N Ammonium Nitrate	March	46
66 ∦ N Ammonium Nitrate	March	53
100 # N Ammonium Nitrate	March	53
132 # N Ammonium Nitrate	March	57
66 # N Urea	March	52
66 # N Ammonium Sulphate	March	59
66 # N Sodium Nitrate	March	53
33 # N Ammonium Nitrate	April	43
66 # N Ammonium Nitrate	April	47

Portageville Experiment Field - Clay Soil

These results show (1) that there were no differences between the sources of nitrogen used in this experiment as regards yields per acre; (2) that March may be the best time for topdressing nitrogen; and (3) that 66 lbs. of nitrogen per acre produced only four more bushels per acre than 33 lbs. nitrogen.

Basic						D	oth
Plowdown	Starter	Top Dress	Sikeston	Clarkton	Kalkbrenner	Fill	Cut
	Influence of Star	ter <u>Fertilizers</u> and <u>Nitro</u>	ogen Topdresse	<u>d in Spring on</u>	Wheat Yield		
No Treatment			29	4	20	25	9
	9+36+36		29	6	25	28	20
	None	33 # N March	40	13	34	36	11
	9+36+36	33 # N March	36	8	37	36	31
	None	66 # N March	43	7	36	36	13
	9+36+36	66 # N March	41	9	42	38	33
	9+36+36	100 # N March	40	8	42	37	31
	9+36+36	132 # N March	39	12	43	34	33
	Influence of	Basic or Plowdown Appl	lication of Ferti	lizer on Whea	t Yield		
No Treatment			29	4	20	25	9
0+400+0	9+36+36	None	31	.9	28	30	17
0+400+0	9+36+36	33 # N March	42	14	39	37	33
0+400+0	9+36+36	66 ∦ N March	42	16	45	39	40
0+400+0	9+36+36	100 # N March	37	18	39	36	42
0+400+0	9+36+36	132 # N March	39	16	42	37	44
	Influer	nce of Time of Nitrogen	Applications on	Yield of Whea	<u>t</u>		
No Treatment			29	4	20	25	9
	9+36+36	66 <i>#</i> N at Seeding	39	9	39	33	33
	9+36+36	66 # N January	43	8	39	33	31
	9+36+36	66 # N March	42	9	45	32	32
	9+36+36	66 # N April	42	9	39	29	30
	9+36+36 100 <i>#</i> Traces	66 ∦ N March	40	8	44	30	29

SOIL FERTILITY EXPERIMENTS - WHEAT - 1962 (CONTINUED)

	Soil Treatment						11
Basic							oth
Plowdown	Starter	Top Dress	Sikeston	Clarkton	Kalkbrenner	Fill	Cut
	In	fluence of Starter Fertil:	izer <u>Ratios on Y</u>	lield of Wheat			
No Treatment			29	4	20	25	9
no rreatment	9+36+36	66 ≠ N March	43	21	43	29	33
		75+36+36 March	45	17	39	28	16
	9+0+36	66 # N March	42	11	38	25	10
	9+36+0	66 # N March	44	24	44	29	32
	6 + 24 + 24	69 # N March	43	20	39	28	24
	12+48+12	63 # N March	45	24	42	29	32

SOIL FERTILITY EXPERIMENTS - WHEAT - 1962 (CONTINUED)

These data show that where phosphorus has a low soil test value (cut area, Roth farm), applications of phosphorus and potash increased yields in combination with a topdressing of nitrogen. Except for the cut area, 33 lbs. of nitrogen topdressed in March gave the most economical yield increases of wheat regardless of location. Heavier application of phosphorus than that in a starter is indicated where soil test values are quite low as illustrated in the cut area on the Roth farm. These data show that where cuts are made in land-forming, soil tests should be made on the cut area and fertilizer applied accordingly.

Fertility Studies on Sugar Beets

Sikeston was one of five locations in Missouri where rates of nitrogen on the production of sugar beets were studied in 1962.

Phosphorus and potash levels were at an optimum. 100 lbs. nitrogen/A produced 12.1 T/A vs. 0.7 T/A produced by 50 lbs./A preplant. Both these yields were better than that produced by 100 lbs./A at time of blocking the beets. Percent sucrose was also highest (13.1%) at the 100 lb./A level of nitrogen spread as a preplant application. Percent sucrose at Sikeston compared favorably with that at most of the other locations but the yield of beets was considerably lower than at the other sites; e.g. at the Northwest Missouri Research Center at Spickard, the yield was 19.3 T/A. The percent sucrose of these beets was 15.7%.

Fertilizer Experiment With Corn on Dexter Sand

An experiment to determine the effect of different rates of nitrogen, phorsphous, and potash on yields of corn was made on the Clarkton field, using US 523W as the variety. Application of 100+50+50 produced the highest yield of 76 bushels/A. Although the experiment was irrigated, higher application rates of the nutrient elements and other proportions were not effective in increasing yields. The planting rate was 16,500 stalks per acre.