

# **EFFECTIVENESS OF CURRENT ANTI-HIV REGIMEN IN LOW- AND MIDDLE-INCOME COUNTRIES**

Seongmi Kim<sup>1,2</sup>, Leonard Rogers<sup>1,3</sup>, Jacqueline A. Flores<sup>1,3</sup>, Rohit Rao<sup>1</sup>, Shwetha D Rao<sup>4</sup>, Anders Sönnerborg<sup>4</sup>, Ujjwal Neogi<sup>4</sup>, Kamal Singh<sup>1,3,4</sup>,

<sup>1</sup>Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO; <sup>2</sup>Department of Veterinary Pathobiology, University of Missouri, Columbia, MO; <sup>3</sup>Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO; <sup>4</sup>Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm 141 86, Sweden; <sup>5</sup>Department of Biochemistry, University of Missouri, Columbia, MO

**Nevirapine (NVP)** is a first-generation non-nucleoside reverse

Our results show that overall, NVP binds RTs with lower affinity than



### Stefan G. Sarafianos<sup>1,3,5</sup>

| Enzyme    | K <sub>d.NVP</sub> (nM) |
|-----------|-------------------------|
| HIV-1B RT | 100.7 ± 17              |
| HIV-1C RT | 101.1 ± 32              |
| 01_AE RT  | 78.1 ± 7                |
| 02_AG RT  | 21.2 ± 1                |

| Enzyme    | K <sub>d.RPV</sub> (nM) |
|-----------|-------------------------|
| HIV-1B RT | 21 ± 2                  |
| HIV-1C RT | $66 \pm 7$              |
| 01_AE RT  | 31 ± 4                  |
| 02_AG RT  | 21 ± 3                  |



### Alternative approach

Adenosine analog RT inhibitor has been designed by our lab and collaborators



### EFdA binding affinity (K<sub>d.EFdA</sub>) to HIV-1B and HIV-non B RTs

| Enzyme    | K <sub>d.EFdA</sub> (μM) |
|-----------|--------------------------|
| HIV-1B RT | 0.17                     |
| HIV-1C RT | 0.23                     |
| 01_AE RT  | 0.95                     |
| 02_AG RT  | 0.20                     |

EFdA binds most of subtypes efficiently

# Conclusions

More HIV-nonB patients failed therapy (25%) than HIV-1B (9%)

NVP & RPV binding affinity varies among subtypes indicating its different efficacy in different HIV subtypes

**Both clinical and biochemical experiment** results suggest that NNRTIs has different susceptibility for different HIV-1 subtypes

Data suggest that NVP can be used for **02\_AG infections efficiently** 

Data suggest that RPV is not a good anti-HIV drug for subtype C infections

Data suggest that EFdA can be used for all subtypes as a potent anti-HIV drug

# Acknowledgments

**NIH/NIGMS P50 GM103368.**