AUTISM SPEAKS® Autism Treatment Network

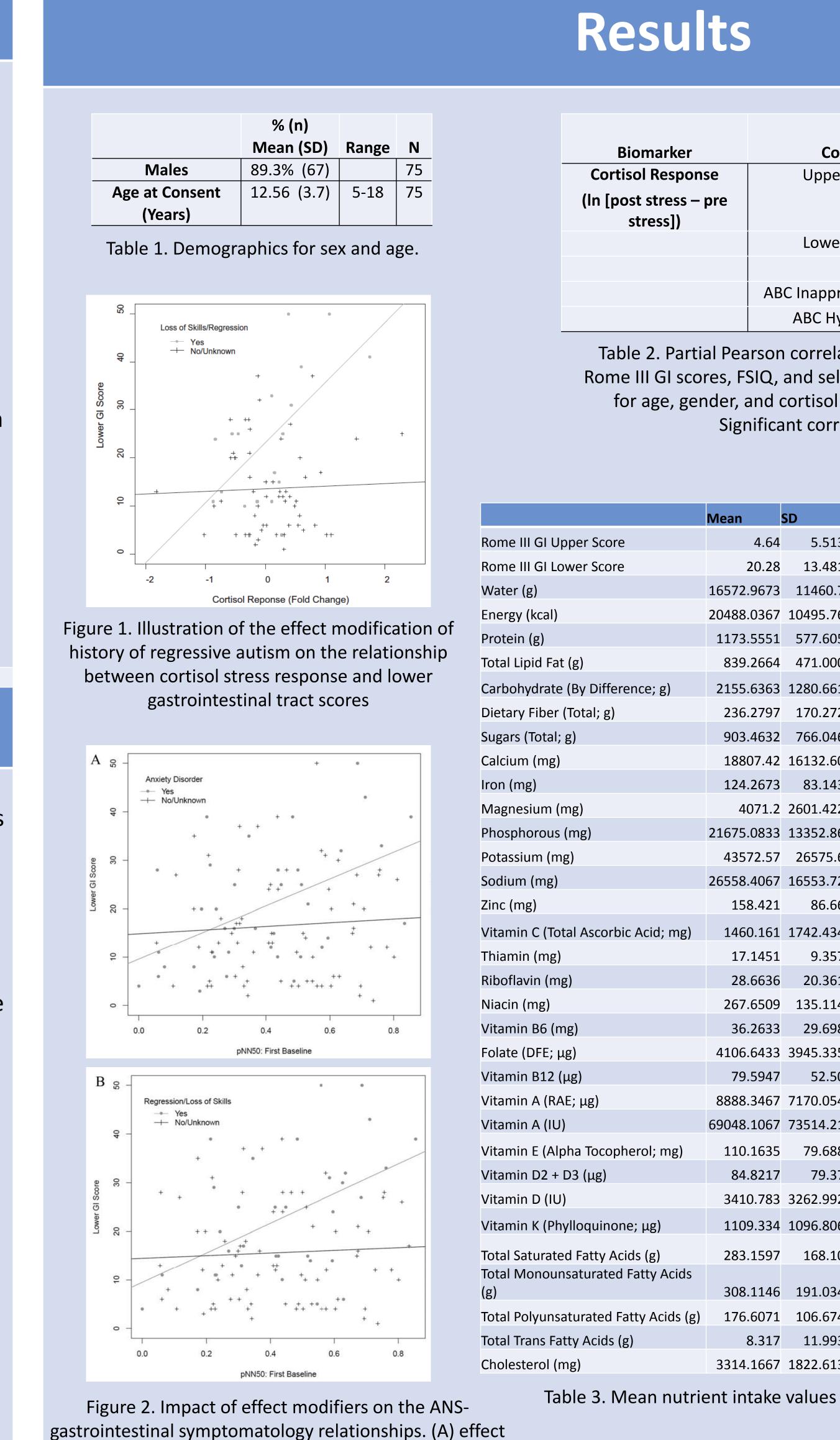
Working collaboratively across North America, to address the physical health of children and adolescents with autism.

¹School of Medicine, University of Missouri; ²Interdisciplinary Neuroscience Program, University of Missouri; ³Department of Child and Adolescent Psychiatry, Vanderbilt University Medical Center; ⁴Massachusetts General Hospital Biostatistics Center; ⁵Departments of Pediatrics, Psychology, and Psychiatry, Vanderbilt University; ⁶The Thompson Center for Autism and Neurodevelopmental Disorders, University of Missouri Autism and the Developing Brain; ¹⁵William and Nancy Thompson Chair in Radiology, Departments of Radiology, Neurology, and Psychological Sciences, University of Missouri; ¹⁶Department of Veterinary Pathobiology

⁷University of Missouri School of Medicine; ⁸Department of Health Psychology, University of Missouri; ⁹Harvard Medical School; ¹⁰Boston University School of Medicine; ¹¹Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Columbia University; ¹²Department of Psychiatry and Sackler Institute for Developmental Psychobiology, Columbia University; ¹³New York State Psychiatric Institute; ¹⁴New York Presbyterian Hospital Center for

Introduction

- Many children and adolescents with autism spectrum disorder (ASD) have significant gastrointestinal (GI) symptoms, but the etiology is not well understood.
- Studies have shown conflicting evidence on whether there are nutritional deficiencies in the various diets of individuals with ASD. However, little is known about the relationship between dietary intake and GI symptomatology in ASD.
- Many patients with ASD try gluten-free and/or casein-free diets, and there is anecdotal evidence of improvement in ASD symptoms with dietary those dietary regimens.
- A previous study conducted by this group has suggested an association between autonomic function and stress response with lower GI symptomatology.
- The goal of the present study was to assess for potential relationships between GI symptoms and nutrient intake from diet in the same sample of individuals from the previous study, and to determine whether dietary differences might have contributed to our previously observed findings of a relationship between stress responses and GI functioning in ASD.


Methods

Participants

- 75 individuals with ASD were recruited through the Autism Speaks Autism Treatment Network (ATN) and through clinic at the University of Missouri Thompson Center for Autism & Neurodevelopmental Disorders. See Table 1 for descriptive statistics.
- Assessment of Gastrointestinal Symptoms
- Gastrointestinal symptoms were assessed using the Questionnaire on Pediatric Gastrointestinal Symptomatology-Rome III (QPGS-RIII). A scoring rubric was used to create continuous variables for upper and lower GI tract symptoms.
- Assessment of stress response
- Cortisol response to tactile stimulation was utilized as a measure of stress response in these individuals. See Table 2. Assessment of Dietary intake
- Dietary intake of each individual was assessed using a Food Frequency Questionnaire, adopted from a study on Omega-3 intake in cardiac patients by Ritter-Gooder PK et al., in which respondents estimate his/her food intake over the past month.
- Responses were analyzed for nutritional intake using the online, publicly available USDA Food Composition Database that provides nutrient information for a given food.
- Nutrient information for each food marked on a subject's Food Frequency Questionnaire was obtained, and total nutrient intake for each subject was summed to give monthly nutrient intake. See Table 3.

Associations between nutrient intake and gastrointestinal symptoms in autism spectrum disorder

D.S. Severns¹, B.J. Ferguson^{2,6}, S. Marler³, L.L. Altstein⁴, E.B. Lee⁵, M.O. Mazurek^{6,8}, A. McLaughlin⁷, K. Hartnett¹⁷, E.A. Macklin^{4,9}, E. McDonnell⁴, D.J. Davis¹⁵, A. Belenchia¹⁶, C.H. Gillespie¹⁵, C.A. Peterson¹⁶, M.L. Bauman¹⁰, K.G. Margolis¹¹, J. Veenstra-VanderWeele^{12,13}, & D.Q. Beversdorf^{2,6,14}

of presence or absence of anxiety on relationship between lower GI tract scores and pNN50 baseline. (B) Effect of presence or absence of history of regression/loss of skills on the relationship between lower GI tract scores and pNN50 baseline

		Correlation		
	Covariate	(95% CI)	p-value	n
ise	Upper GI Score	-0.00 (-0.24, 0.23)	0.9755	75
pre				
	Lower GI Score	0.27 (0.04, 0.47)	0.0207	75
	FSIQ	0.27 (0.02, 0.49)	0.0365	64
	ABC Inappropriate Speech	-0.27 (-0.47, -0.04)	0.0231	74
	ABC Hyperactivity	-0.28 (-0.48, -0.05)	0.0186	74

Table 2. Partial Pearson correlations between Cortisol response and QPGS Rome III GI scores, FSIQ, and selected ABC and Vineland variables, controlling for age, gender, and cortisol pre-stress values (cortisol response only). Significant correlations are in bold (*p*<0.05).

					Rome III	
Moon		N			Lower GI Score	
	-	N 75	Rome III Upper GI Score	1		
4.64	5.51323	75	Rome III Lower GI Score	.531**		
20.28 16572.9673	13.48128 11460.771	75 75		0.013		
	10495.7657		Water (g)	-0.004		
1173.5551	577.60532	75	Energy (kcal)	-0.081		
839.2664	471.00048		Protein (g) Total Lipid Fat (g)	-0.081		
	1280.66155	75	Carbohydrate (By Difference; g)	0.129		
236.2797	170.27214			.129 .235*		
903.4632	766.04648	75	Dietary Fiber (Total; g)			
	16132.6032	75	Sugars (Total; g)	0.224		
124.2673	83.14305	75	Calcium (mg)	-0.055		
	2601.42227	75	Iron (mg)	0.088		
	13352.8603		Magnesium (mg)	-0.017		
43572.57	26575.607	75	Phosphorous (mg)	-0.067		
	16553.7216	75	Potassium (mg)	0.01		
158.421	86.6629	75	Sodium (mg)	-0.028		
1460,161	1742.43404	75	Zinc (mg)	-0.002		
17.1451	9.35754		Vitamin C (Total Ascorbic Acid; mg)	0.17		
28.6636	20.36107		Thiamin (mg)	0.016		
267.6509	135.11402	75	Riboflavin (mg)	-0.083		
36.2633	29.69813	75	Niacin (mg)	-0.089		
4106.6433	3945.33584	75	Vitamin B6 (mg)	0.338**		
79.5947	52.5026	75	Folate (DFE; µg)	0.033	0.083	
8888.3467	7170.05499	75	Vitamin B12 (µg)	-0.07	0.034	
69048.1067	73514.2181	75	Vitamin A (RAE; μg)	-0.076	0.05	
110.1635	79.68801	75	Vitamin A (IU)	0	0.056	
84.8217	79.3749	75	Vitamin E (Alpha Tocopherol; mg)	-0.032	0.005	
3410.783	3262.99249	75	Vitamin D2 + D3 (µg)	-0.202	-0.043	
1109.334	1096.80656	75	Vitamin D (IU)	-0.203	-0.044	
			Vitamin K (Phylloquinone; μg)	0.107	0.106	
283.1597	168.1027	75	Total Saturated Fatty Acids (g)	-0.073	0.029	
308.1146	191.03401	75	Total Monounsaturated Fatty Acids (g)	-0.119	0.009	
176.6071	106.67456	75	Total Polyunsaturated Fatty Acids (g)	-0.162	-0.031	
8.317	11.99395	75	Total Trans Fatty Acids (g)	-0.096	0.106	
3314.1667	1822.61335	75	Cholesterol (mg)	-0.061	0.01	
nt intake values Table 4. Correlation matrix between nutrient						

Table 4. Correlation matrix between nutrient intake values and QPGS Rome III GI scores

Gastrointestinal Symptoms

- symptoms (7.5%). See Table 1.
- Stress response
- A significant positive relationship was found between cortisol response to stress and a greater lower GI tract score. See Table
- Presence of regressive ASD significantly modified the relationship between lower GI tract score and cortisol response to stress. See figure 1.
- A significant positive correlation was identified between cortisol response to stress and FSIQ. See Figure 2.
- Dietary nutrient intake Upper GI tract symptoms were significantly correlated with
- total dietary fiber intake and vitamin B6 intake; however, these relationships did not survive correction for multiple comparisons (Bonferroni Correction). See Table 4.
- There were no significant associations between lower GI tract symptoms and dietary intake.

- regressive ASD. Nutritional intake is not associated with GI symptomatology in this sample of individuals with ASD.
- This supports the hypothesis that there may be other factors associated with the lower GI disorders in ASD, such as increased stress response.
- Diet is also therefore not likely a driving factor for the previously observed relationship between stress responses and GI functioning in ASD.
- Further studies are needed to explore non-diet associations with GI disorders in ASD.

Thompson Center for Autism & Neurodevelopmental Disorders University of Missouri

Results

- The most frequently occurring GI disorders in the sample were functional constipation (42.5%), irritable bowel syndrome
- (11.7%), lower abdominal pain associated with bowel
- symptoms (9.2%), and upper pain associated with bowel

Discussion

- Lower GI tract symptoms were positively associated with poststress cortisol concentration.
- This association was greater for children with a history of

Acknowledgements

This project was supported by University of Missouri School of Medicine Summer Research fellowship, as well as by the Health Resources and Services Administration (HRSA) of the U.S. Department of Health and Human Services (HHS) under cooperative agreement UA3 MC11054 – Autism Intervention Research Network on Physical Health. This information or content and conclusions are those of the author and should not be construed as the official position or policy of, nor should any endorsements be inferred by HRSA, HHS or the U.S. Government. This work was conducted through the Autism Treatment Network serving as the Autism Intervention Research Network on Physical Health.