
Transcasting: Cost-Efficient Video Multicast
for Heterogeneous Mobile Terminals

Morihiko Tamai ∗, Keiichi Yasumoto ∗, Naoki Shibata †, Minoru Ito ∗, Klara Nahrstedt ‡

∗ Nara Institute of Science and Technology
Ikoma, Nara 630-0192, JAPAN

{morihi-t,yasumoto,ito}@is.naist.jp

† Shiga University
Hikone, Shiga 522-8522, JAPAN
shibata@biwako.shiga-u.ac.jp

‡ University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

klara@cs.uiuc.edu

Abstract— This paper presents a cost-efficient video multi-
cast method for live video streaming to heterogeneous mobile
terminals over a content delivery network (CDN), where CDN
consists of a video server, several proxies with wireless access
points, and overlay links among the server and proxies. In this
method, the original video sent from the server is converted
into multiple versions with various qualities by letting proxies
execute transcoding services based on the users’ requirements,
and delivered to mobile terminals along video delivery paths. To
suppress the required computation and transfer costs in CDN,
we propose an algorithm to calculate cost-efficient video delivery
paths which minimizes the sum of the computation cost for
proxies and the transfer cost on overlay links. Our basic idea
for deriving cost-efficient delivery paths is to place transcoding
service on different proxies in load-balancing manner, and to
construct a minimal Steiner tree from all transcoding points
of requested qualities. The overall goal of the placement is
the balance between computation and transfer cost. Through
simulations, we show that our algorithm can calculate more cost-
efficient video delivery paths and achieve lower request rejections
than other algorithms.

I. INTRODUCTION

There is always a big demand for mobile users to watch
live videos of big events such as Olympic games, World Cup
soccer games, and major league baseball through their mobile
terminals. Recent progress and spread of mobile terminals
and fast bandwidth wireless communication technologies have
enabled to stream videos to the mobile terminals. Besides it,
as an infrastructure to stream videos to a lot of user termi-
nals simultaneously, content delivery network (CDN) such as
Akamai [1] is available. However, since mobile terminals are
diverse in quality and have different screen sizes, computation
powers, battery amounts, and available network bandwidths,
it is difficult to stream live video to those diverse mobile
terminals efficiently in terms of provider’s and user’s benefits.
For efficient live video streaming to heterogeneous mobile
terminals, it is required that (1) each mobile terminal receives
live video with the best quality within its capability (in terms
of screen size, network bandwidth, and computation power)
and in the video format to easily play back the video with
as small energy as possible, and (2) resource consumption in
CDN is the smallest and no more than the CDN’s available
capacity.

To realize the above efficient live video streaming to het-
erogeneous mobile terminals, a lot of research efforts have
been made so far, such as simulcasting [2], layered video
coding (e.g., MPEG-4 FGS[3]), or MDC (Multiple Description
Coding) approaches [4], [5], [6], [7], [8], [9], [10]. In the
simulcasting method, several quality versions of a video are

proxy
mobile

terminal

video

server
TT

transcoding

service

overlay

network
TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

access

point

Fig. 1. Content Delivery Network.

generated on-demand on the video server by on-line transcod-
ing so that each quality version of the video is delivered to
user terminals through a multicast tree independently of other
versions of the video. In this method, the video server may
be overloaded due to transcoding of video and transmission
of many versions. In the layered video coding or MDC-based
method, each user terminal is required to have multiple buffers
for simultaneously processing the multiple layers or streams
of video data. Thus, it is more costly than playing back single
layer/stream video. Moreover, this method can only reduce
one parameter of video (e.g., only bit rate) and cannot adjust
each of quality parameters (i.e., picture size, frame rate, and
bit rate). Therefore, it may not be suitable for applications in
diverse mobile terminals.

In this paper, in order to satisfy the above requirements
(1) and (2), we propose a method called transcasting, where
each CDN proxy executes transcoding and forwarding services
to realize an efficient live video multicast to heterogeneous
mobile terminals. In the proposed method, we assume that a
CDN consists of a video server, proxies with wireless access
points, and overlay links between proxies and the server as
shown in Fig. 1. We also assume that each mobile terminal
joins the CDN by connecting to the closest proxy. In the
proposed method, in order to satisfy the above requirements
(1) and (2), a video is delivered to mobile terminals by letting
proxies transcode a video into various quality versions in
real-time according to requests of the mobile terminals. The
advantage of this method is that it satisfies the requirement (1),
that is, each mobile terminal can receive the video with more
suitable quality and play it back with less energy than the
layered coding or MDC-based method. For the requirement
(2), we have to solve the problem to find the best video
delivery paths including transcoding points for each requested
quality so that the cost required for video delivery on CDN

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NAIST Academic Repository

https://core.ac.uk/display/75905627?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

is minimized. In this paper, we propose an algorithm where
for each requested quality, more than one proxy transcodes
the original video to the requested quality version and each
proxy delivers the transcoded version to the corresponding
mobile terminals through the minimum cost multicast tree.
Through computer simulation, we show that our algorithm
outperforms other algorithms including simulcasting method
in terms of the computation and transfer costs required for
video delivery on CDN, and that the algorithm can reduce
the number of rejected requests from mobile terminals even
when the computation capacities for proxies and bandwidth
capacities of overlay links are limited.

This paper is structured as follows. In Sect. II, we briefly
explain some studies related to this work. Sect. III describes
the target environment and formulates the problem of video
multicasting to heterogeneous mobile terminals. We give our
proposed algorithm to solve the problem as well as other
algorithms in Sect. IV, evaluate performance of the algorithms
in Sect. V, and concludes the paper in Sect. VI.

II. RELATED WORK

Some techniques to multicast video to diverse terminals
through peer-to-peer network are proposed in [8], [9], [10],
[11]. In P2P network, each node of the overlay network
corresponds to user terminal. Due to user node’s joining
and/or leaving the network and degree of network congestion,
overlay network topology as well as available bandwidths on
overlay links dynamically change. Thus, in order to provide
stable video streaming through P2P network, a mechanism for
adapting to the fluctuation of overlay network is essential. On
the other hand, overlay links in CDN are more stable than
that in P2P network, thus the interest in CDN will be how to
construct the video delivery paths which minimize the total
cost required for video delivery on CDN. The above existing
studies focus mainly on the mechanism to absorb fluctuation
of the network, but do not consider minimization of required
cost.

There are some studies on video multicasting to diverse
terminals which take into account minimization of resource
consumption at proxies and network [12], [13], [14]. These
existing studies suppose that proxies provide transcoding ser-
vice as well as various services such as text composition and
translation of human voice. Services are executed at different
proxies, and each user terminal receives the resulting video
after applying the original video to a series of these services.
Therefore, these studies suppose that each user terminal is
given beforehand a service specification which describes in
what order services should be applied to the video before
reaching the terminal. In [12], Wang et, al. have proposed an
algorithm to derive video delivery paths which satisfy service
specifications and minimize the bandwidth consumption and
end-to-end delay in CDN. In [13], [14], algorithms to derive
delivery paths minimizing the computation power consump-
tion at proxies as well as network resource consumption in
CDN have been proposed. The above existing studies require
service specifications in advance, and it would be difficult to
find the set of service specifications which minimize resource
consumption. Unlike the above existing studies, our proposed
method does not need service specifications in advance and
can derive the video delivery paths which minimize the total
computation and transfer cost required for video delivery on
CDN.

In [15], we have presented our preliminary work for the
heterogeneous video multicasting with resource minimization

TABLE I

NOTATIONS.

Notation Meaning

s video server
P set of proxies
M set of mobile terminals
L set of overlay links among the server

and proxies, and among proxies themselves
W set of overlay links between proxies

and mobile terminals
G = (V, E) overlay network, where V = {s} ∪ P ∪ M

and E = L ∪ W
Acomp(p) computation capacity of p ∈ P
Abw(u, v) bandwidth capacity of (u, v) ∈ L
Clink(u, v) link cost per unit of bandwidth of (u, v) ∈ L

qorig quality of original video
Q set of all qualities which the users can request
q.s, q.f , and q.b picture size, frame rate, and bit rate of the

quality q
q(m) video quality which m ∈ M requested
Q set of video qualities which are

required by at least one mobile terminal
P(q) set of proxies to which mobile terminals

requesting quality q are connected
R(v) set of all qualities which v ∈ V receives

along video transcasting tree
〈u, q, v, q′〉 a transform relation, where u, v ∈ V

and q, q′ ∈ Q
S set of transform relations

Ccomp(q, q̂, q̄) function to calculate required computation cost
for transcoding and forwarding videos from an
input quality q, a set of transcoded qualities q̂,
and a list of forwarded qualities q̄

Cdec(q) function to calculate required computation cost
to decode a video with a quality of q

Cenc(q) function to calculate required computation cost
to encode a video with a quality of q

CompCost(S, p) amount of incurred computation cost on
p ∈ P when the video delivery is realized
based on a set of transform relations S

Bbw(S, u, v) amount of consumed bandwidth on
(u, v) ∈ L when the video delivery is realized
based on a set of transform relations S

TrferCost(S, u, v) amount of incurred transfer cost on
(u, v) ∈ L when the video delivery is realized
based on a set of transform relations S

in CDN. Our contribution in this paper and the difference
from the previous work are as follows: First, we have modified
the problem formulation from the previous work so that we
can get more gains in saving total required cost by making
user’s request for video quality discrete. Second, for the mod-
ified problem, we have developed a much more sophisticated
algorithm to derive delivery paths with less cost. Third, we
have conducted thorough evaluation of the proposed algorithm
through simulations by comparing it with several general
methods including our previous work.

III. HETEROGENEOUS VIDEO MULTICASTING PROBLEM

In this section, we present the system model and formulate
the problem of transcasting, i.e., cost-efficient video multicast-
ing for heterogeneous mobile terminals. The notations used in
this section and subsequent sections are summarized in Table I.

A. Models, Assumptions, and Definitions

1) Network Model: An overlay network which consists of
a video server, proxies and mobile terminals is modeled as an
undirected graph G = (V,E), where V is the set of nodes and

m1

m2

m3

m4

m5

mobile

terminal

computation

capacity

7
(8,3)

(4,2)

(2,2)

(3,3)

(3,1) (4,9)

(3,4)

bandwidth

capacity

video server

proxy

link cost

per unit of

bandwidth s

p1

p4

p2

p3

p54

6

5

3

m1

m2

m3

m4

m5

s

p1

p4

p2

p3

p5

qorig

q1

q2

q3

q4

qorig

q1

q1
q1

q4

q3

q3

(a) (b)

video quality

T

T

T

transcoding

service

T

Fig. 2. Example of an overlay network and a video transcasting tree.

E is the set of overlay links among the nodes in V . We denote
the video server, the set of proxies, and the set of mobile
terminals as s, P and M , respectively. The set of nodes V
is V = {s} ∪ P ∪ M . We denote the set of overlay links
among the video server and proxies, and among the proxies
themselves as L. For each mobile terminal m ∈ M , we assume
that the nearest proxy p ∈ P can be determined using a DNS-
based server selection scheme [16], and regard that there is an
overlay link between m and p. We denote the set of overlay
links between mobile terminals and proxies as W . The set of
overlay links E is E = L∪W . An example of overlay network
is shown in Fig. 2(a). For example, (s, p1) ∈ L, (p1, p3) ∈ L,
and (p3,m1) ∈ W hold, in Fig. 2(a).

For each proxy p ∈ P , a fixed amount of computation
resources is available. We denote the computation capacity
of proxy p as Acomp(p). Let (u, v) be an overlay link in L.
Then, a fixed amount of bandwidth is allocated on (u, v) by
using a network level QoS technique such as DiffServ [17].
We denote the bandwidth capacity of (u, v) as Abw(u, v). We
assume that there is sufficiently available bandwidth on each
overlay link in W . For each (u, v) ∈ L, a link cost per unit
of bandwidth is associated. We denote the link cost per unit
of bandwidth of (u, v) as Clink(u, v). We assume that a link
cost per unit of bandwidth has a positive value.

2) Service Model: The video server provides the video
delivery service with transcoding services on proxies for a
live video stream such as Olympic game. Before the video
server starts a video delivery, it announces the starting time of
the video delivery and all video qualities which the users can
request. We denote the quality of the original video as qorig .
The set of all qualities which the users can request is denoted
by Q. Here, qorig is contained in Q (i.e., qorig ∈ Q). We
assume that each video quality is decided by three parameters:
picture size, frame rate, and bit rate. For each quality q ∈ Q,
the picture size, frame rate, and bit rate are denoted by q.s,
q.f and q.b, respectively.

Mobile terminals with diverse capabilities in terms of screen
sizes, computation powers, wireless transmission speeds, and
(remaining) battery amounts request the video delivery service.
Each mobile terminal sends a video delivery request with one
of the video qualities in Q to the video server before the pre-
scheduled starting time of the video delivery, and receives the
video stream through the nearest proxy after the video delivery
starts. The quality request made at a mobile terminal m ∈ M
is denoted by q(m), where q(m) ∈ Q.

During the video delivery, each proxy receives video
streams from the video server or an upstream proxy, changes

the video quality in the streams by using the transcoding
services if necessary, and forwards the resulting streams to
mobile terminals or a downstream proxy along the video
multicast tree. Each proxy can execute multiple transcoding
services and each service can handle one stream. For quality
q, q′ ∈ Q, we denote q′ ≤ q if and only if (q′.s ≤ q.s) ∧
(q′.f ≤ q.f) ∧ (q′.b ≤ q.b) holds. Since it is impossible to
transcode a video from lower quality to higher quality, q′ ≤ q
has to be satisfied when transcoding video from quality q to
quality q′.

3) Transform Relation: Video transcasting delivery from
the video server to each mobile terminal is realized by finding
a video multicast tree connecting the video server and each
mobile terminal with input/output video qualities for each
proxy. We call this tree a video transcasting tree. Fig. 2(b)
shows an example of video transcasting tree on the overlay
network of Fig. 2(a) when quality requests on mobile terminals
are q(m1) = q1, q(m2) = q2, q(m3) = q1, q(m4) = q3, and
q(m5) = q4.

Let Q(⊆ Q) denote the set of video qualities which are
required by at least one mobile terminal. For each q ∈ Q,
P(q) denotes the set of proxies to which mobile terminals
requesting quality q are connected. Here, note that P(q) �= ∅.
For example, in Fig. 2(b), P(q1) = {p3, p4} holds.

For a node v ∈ V , let R(v) denote the set of all video
qualities received by v. For example, R(p4) = {q1, q3} holds
for proxy p4 in Fig. 2(b). R(m) = {q(m)} holds for each
mobile terminal m ∈ M . For convenience, we assume R(s) =
{qorig} holds. In the video transcasting tree, we say that
transform relation 〈u, q, v, q′〉 exists, if and only if for a node
v ∈ P∪M and a video quality q′ ∈ R(v), a video quality q and
a node u ∈ {s}∪P exist, which satisfy q′ ≤ q, q ∈ R(u), and
(u, v) ∈ E, where u forwards a video of quality q′ through the
overlay link (u, v). For transform relation 〈u, q, v, q′〉, if q �= q′
holds, a transcoding service from quality q to q′ is executed on
u. On the other hand, if q = q′, u just forwards the video to v.
For example, on transform relation 〈p4, q3, p5, q4〉 in Fig. 2(b),
proxy p4 executes a transcoding service from quality q3 to q4.
On the other hand, on transform relation 〈p3, q1, p4, q1〉 in
Fig. 2(b), proxy p3 just forwards the video of quality q1 to
proxy p4. A video transcasting tree can be represented as a
set of transform relations. For example, the video transcasting
tree shown in Fig. 2(b) consists of 11 transform relations. We
denote a set of transform relations by S.

4) Computation Cost: Each proxy incurs some amount of
computation cost due to transcoding and forwarding videos.
We assume that a function to calculate the required compu-

tation cost for transcoding and forwarding videos from an
input video quality, a set of transcoded video qualities, and a
list of forwarded video qualities, is given. Let F (p, q) denote
the list of forwarded video qualities which is derived from a
received video quality q ∈ R(p) at a proxy p ∈ P . Given a
set of transform relations S, a proxy p ∈ P , and a quality
q ∈ R(p), F (p, q) is defined as follows: F (p, q) = 〈q′ ∈
Q | 〈p, q, v, q′〉 ∈ S, v ∈ P ∪ M〉. For example, F (p3, q1) =
〈q1, q2, q1〉 in Fig. 2(b). Here, q1 appears twice in F (p3, q1),
because it is forwarded to both m1 and p4. Similarly, let
T (p, q) denote the set of video qualities transcoded from an
input quality q ∈ R(p) at a proxy p ∈ P . T (p, q) is defined
as follows: T (p, q) = {q′ ∈ F (p, q) | q′ �= q}. For example,
T (p3, q1) = {q2} in Fig. 2(b).

The amount of computation cost incurred on a proxy p ∈ P
by transcoding a video of quality q to |T (p, q)| versions
with different qualities and by forwarding videos to |F (p, q)|
downstream nodes is calculated by Ccomp(q, T (p, q), F (p, q)).
Here, Ccomp is a function to calculate the required compu-
tation cost from an input video quality, a set of transcoded
video qualities, and a list of forwarded video qualities. Cdec(q)
denotes a function to calculate the computation cost to decode
a video with a quality of q. Cenc(q) denotes a function to
calculate the computation cost to encode a video with a quality
of q. As a result, Ccomp(q, T (p, q), F (p, q)) is defined as the
sum of Cdec(q),

∑
q′∈T (p,q) Cenc(q′) and the cost for receiving

a video with a quality of q and sending videos with qualities of
F (p, q). We will look into deeper insight of Ccomp in Sect. V
for experiments.

The amount of incurred computation cost on a proxy p ∈ P
when the video delivery is realized based on a set of transform
relations S is denoted by CompCost(S, p) and is defined as:

CompCost(S, p)
def
=

∑

q∈R(p)

Ccomp(q, T (p, q), F (p, q)).

5) Transfer Cost: Each overlay link incurs some amount
of transfer cost due to transferring video streams. Let D(u, v)
denote the list of transferred video qualities on an overlay link
(u, v) ∈ L. Given a set of transform relations S and an overlay
link (u, v) ∈ L, D(u, v) is defined as follows: D(u, v) = 〈q′ ∈
Q | 〈u, q, v, q′〉 ∈ S ∨ 〈v, q, u, q′〉 ∈ S, q ∈ Q〉. For example,
D(p4, p5) = 〈q4〉 in Fig. 2(b).

The amount of consumed bandwidth on an overlay link
(u, v) ∈ L when the video delivery is realized based on a
set of transform relations S is denoted by Bbw(S, u, v) and is
defined as:

Bbw(S, u, v)
def
=

∑

q∈D(u,v)

q.b.

The amount of incurred transfer cost on an overlay link
(u, v) ∈ L when the video delivery is realized based on a set
of transform relations S is denoted by TrferCost(S, u, v)
and is defined as:

TrferCost(S, u, v)
def
= Clink(u, v) × Bbw(S, u, v).

B. Problem Definition

Given an overlay network G and requested quality q(m) ∈
Q for each mobile terminal m ∈ M , our target problem is to
find a set of transform relations S which satisfies all of the
following conditions (1)–(4):

for each 〈u, q, v, q′〉 ∈ S, (u, v) ∈ E ∧ q′ ≤ q. (1)

for each m ∈ M,
∃p0, p1, . . . , pk ∈ P, ∃q0, q1, . . . , qk ∈ Q s.t.

〈s, qorig, p0, q0〉, 〈p0, q0, p1, q1〉, . . .
. . . , 〈pk, qk,m, q(m)〉 ∈ S.

(2)

for each p ∈ P, CompCost(S, p) ≤ Acomp(p). (3)

for each (u, v) ∈ L, Bbw(S, u, v) ≤ Abw(u, v). (4)

The condition (1) means that all transform relations in S have
to go through an overlay link in E, and they have to be
involved in either just forwarding of a stream or transcoding
to a lower quality and forwarding the resulting stream. The
condition (2) means that for each m ∈ M , S has to contain a
feasible route from the video server s to m. The condition (3)
and (4) are the constraints on computation capacity of each
proxy and bandwidth capacity of each overlay link.

Generally speaking, there are more than one solutions for
S which satisfy all of the above conditions. In this paper, we
consider the following problem to find a video transcasting
tree which reduces the total amount of incurred cost on the
overlay network:

minimize
∑

p∈P

CompCost(S, p)

+
∑

(u,v)∈L

TrferCost(S, u, v)

subject to constraints (1)–(4).

(5)

The objective function in Equation (5) is the sum of all
computation cost incurred on each proxy p ∈ P and transfer
cost incurred on each overlay link (u, v) ∈ L when the video
delivery is realized based on a set of transform relations S.

IV. TRANSCASTING TREE CONSTRUCTION ALGORITHMS

In this section, first we briefly address the Steiner tree
problem, and then give our algorithms based on the Steiner
tree to solve the problem formulated in Sect. III-B.

A. Steiner Tree Problem

Given an undirected graph G = (V, E , c) and a subset of
vertices D ⊆ V , where V , E , and c are a set of vertices,
a set of edges, and a cost function mapping from E to N+,
respectively, Steiner tree problem is the problem to find a tree
with the minimum total cost among all trees in G each of
which includes all vertices of D. The tree is called the minimal
Steiner tree. This problem is known as NP-hard problem
[18], and several heuristic algorithms are proposed to compute
approximated solutions (e.g., [19]). Our transcasting problem
described in Sect. III-B implies the Steiner tree problem, and
we have the following theorem.

Theorem 1: The transcasting problem is NP-hard.
Proof: We show that the transcasting problem is NP-

hard by reducing the Steiner tree problem to it. For both the
Steiner tree problem and the transcasting problem, we consider
the corresponding decision problems which ask if there is a
(Steiner or transcasting) tree which has a cost equal to or less
than a given integer k. Given an instance of the Steiner tree
problem (i.e., an undirected graph G = (V, E , c), a subset of
vertices D ⊆ V , and an integer k), we construct an instance
of the transcasting problem as follows. We select an arbitrary
node from D, and regard it as the video server s. The set of
proxies P and the set of overlay links L are set to P = V−{s}

and L = E , respectively. We set the computation capacity of
each proxy p ∈ P to infinity. For each overlay link (u, v) ∈ L,
we set the bandwidth capacity to infinity, and set the link cost
per unit of bandwidth to be Clink(u, v) = c((u, v)). The set
of all qualities Q is Q = {qorig} where qorig.b = 1. For each
proxy p ∈ P , if p ∈ D, then we assume that only one mobile
terminal which requests qorig is connected to p. Otherwise,
we assume that no mobile terminals are connected to p. The
above construction can be done in polynomial time.

In the Steiner tree problem, if there is a Steiner tree of cost
k or less, we can construct a corresponding transcasting tree
of cost k or less by connecting s and all proxies in P(qorig)
along the Steiner tree. Conversely, in the transcasting problem,
if there is a transcasting tree of cost k or less, we can construct
a corresponding Steiner tree of cost k or less based on the set
of transform relations which represents the transcasting tree.
This shows that the transcasting problem is NP-hard.

In the following subsections, we propose two heuristic
algorithms to solve the transcasting problem: two-layered tree
algorithm and its extension divided tree algorithm.

B. Two-layered Tree Algorithm
In simulcasting [2], for each quality q ∈ Q, a minimal

Steiner tree containing a video server s as its root and all
proxies in P(q) is constructed so that the video is delivered
through the tree. In this method, however, the video server has
to transcode the video to |Q| versions with different qualities.
So, the server may be overloaded when |Q| is large. Similarly
to simulcasting, the two-layered tree algorithm proposed below
constructs a minimal Steiner tree for each quality q ∈ Q, but
it assigns the roots of the Steiner trees for Q to different
proxies, aiming at load distribution of transcoding points.
Those assigned proxies are called transcoding proxies, here-
after. Each transcoding proxy transcodes the original video to
the version with quality q by executing a transcoding service.
Two-layered tree algorithm constructs a video transcasting tree
in the following two hierarchies: first-level Steiner tree which
is the minimal Steiner tree including the video server s and all
the transcoding proxies, and second-level Steiner tree which
is the minimal Steiner tree constructed for each quality q ∈ Q
including a transcoding proxy as its root and all proxies in
P(q). The details on construction of these trees are shown
below.
Step 1 (Construction of second-level Steiner tree): Let

q1, q2, ..., and q|Q| denote items of Q in increasing
order of their bit rates.
For i = 1 to |Q|, carry out the following sub-steps.

Step 1-1: Compute the minimal Steiner tree including all
proxies of P(qi) over the CDN (the root of
the Steiner tree, i.e., the transcoding proxy,
is decided later in Step 2). Here, in order to
consider bandwidth constraint, we remove
overlay links whose bandwidth capacities
are less than qi.b before computation. If
some proxies in P(qi) are excluded from
the tree, the requests of mobile terminals
connecting to the proxies are rejected.

Step 1-2: qi.b units of bandwidth are subtracted from
the bandwidth capacity of each overlay link
contained in the calculated Steiner tree.

Step 2 (Decision of transcoding proxy): Let q1, q2, ..., and
q|Q| denote items of Q in increasing order of their
bit rates.
For i = 1 to |Q|, carry out the following sub-steps.

m
1

s
p
2

p
3 p

1

p
4

p
7

p
6

p
5m

3

m
4

m
8

m
7

m
6

video

server
proxy

mobile

terminal

request

quality

900k

500k

900k

500k

900k

500k

second-level Steiner

tree for quality of 900k

(b)(a)
transcoding proxy

for quality of 900k
transcoding proxy

for quality of 500k

(c)

first-level Steiner tree

(d)

m
5

900k

m
2

500k

m
1

s
p
2

p
3 p

1

p
4

p
7

p
6

p
5m

3

m
4

m
8

m
7

m
6

m
5

m
2

second-level Steiner

tree for quality of 500k

m
1

s
p
2

p
3 p

1

p
4

p
7

p
6

p
5m

3

m
4

m
8

m
7

m
6

m
5

m
2

m
1

s
p
2

p
3 p

1

p
4

p
7

p
6

p
5m

3

m
4

m
8

m
7

m
6

m
5

m
2

Fig. 3. Construction of video transcasting tree using two-layered tree
algorithm.

Step 2-1: For each proxy p in P(qi), if it satisfies
the following three conditions, then p is
regarded as a candidate of a transcoding
proxy for quality qi: (1) p is not excluded
from the Steiner tree derived in Step 1-1; (2)
there is a path between p and s where each
overlay link in the path has a bandwidth
capacity no less than qorig.b; and (3) the
computation cost required for transcoding a
video of quality qorig to the version with
quality qi does not exceed the computation
capacity of p.
If there are multiple candidates, then one is
selected at random for the transcoding proxy
of quality qi. If there is no candidate, the
transcoding proxy for qi is not decided.

Step 2-2: if a transcoding proxy is decided, then the
computation cost required for transcoding
from quality qorig to qi is subtracted from
the computation capacity of the proxy. If a
transcoding proxy is not decided in Step 2-1,
mobile terminals requesting qi are rejected,
and qi.b units of bandwidth are added to
each overlay link of the Steiner tree derived
in Step 1-1.

Step 3 (Construction of first-level Steiner tree): Compute
the minimal Steiner tree including a video server s
and all transcoding proxies.

In Fig. 3, we show an example of transcasting tree construc-
tion by the two-layered tree algorithm. Fig. 3 (a) depicts the
topology of an overlay network (CDN) with requested qualities
of mobile terminals1. Fig. 3(b) depicts the situation just after
the second-level Steiner trees for requested qualities are con-
structed (i.e., after Step 1). Fig. 3(c) shows the situation after a

1In the figure, each requested quality is shown only by bit rate for space
limitation, but actually given by a tuple of picture size, frame rate, and bit
rate.

transcoding proxy is assigned to the second-level Steiner tree
for each quality (i.e., after Step 2). Finally, Fig. 3(d) shows
the situation after the first-level Steiner tree is constructed.

C. Divided Tree Algorithm

In two-layered tree algorithm, for each quality q ∈ Q, only
one transcoding proxy is assigned in q’s Steiner tree and a
version of quality q is generated at the proxy and transferred
to other proxies (and to mobile terminals) through the tree. In
this method, the number of transcoding services is small, thus
the totally required computation cost is also small for video
delivery. On the other hand, since the second-level Steiner
tree for each quality q generated by this algorithm contains
all proxies of P(q), the tree size tends to be large and may
incur large amount of transfer cost in CDN. For this problem,
we propose the divided tree algorithm below by extending the
two-layered tree algorithm.

In the divided tree algorithm, we divide second-level Steiner
tree for each q ∈ Q to multiple sub-trees by removing
some overlay links included in the tree. Then, we assign a
transcoding proxy to each of the divided sub-trees. This algo-
rithm increases the computation cost, but decreases bandwidth
consumption on the removed links and thus can decrease the
total transfer cost. The problem is how many sub-trees each
second-level Steiner tree should be divided to, to minimize the
overall computation and transfer cost.

In the divided tree algorithm, for each second-level Steiner
tree of quality q ∈ Q, the highest cost’s overlay link is picked
up and the transfer cost through the link is compared with the
computation cost for executing an additional encoder for the
quality q. If the transfer cost incurred on the link is larger than
the computation cost incurred by the additional encoder, the
link is removed so that the second-level Steiner tree is divided
to two sub-trees. For the divided second-level Steiner tree, the
same procedure is repeated. If there is no overlay link whose
transfer cost is larger than the computation cost of adding an
encoder, then tree division ends. The detailed procedure is
shown below. Note that the following procedure is executed
just after Step 1-1 of the two-layered tree algorithm.
Step 1-1’ (Division of second-level Steiner tree): Let G =

(V, E) denote a graph representing the second-level
Steiner tree for quality q, where V ⊆ {s} ∪ P and
E ⊆ L are the set of nodes and the set of edges,
respectively, which are included in the second-level
Steiner tree for quality q. Carry out the following
sub-steps.

Step A: If there are more than one edge in G, then select
the edge (u, v) with highest cost (details
of selection method are explained later).
Otherwise, finish division of the current tree.

Step B: Evaluate if the following inequality holds for the
selected edge (u, v):

Cenc(q) < Ctrfer(q, u, v), (6)

where Ctrfer(q, u, v)
def
= q.b × Clink(u, v).

Step C: If the inequality (6) holds, edge (u, v) is removed
from G and go to Step A. Otherwise, finish
division of the current tree.

In the divided tree algorithm, a transcoding proxy is assigned
to each sub-tree. So, Step 2-1 and Step 2-2 of the two-layered
tree algorithm are applied for each of the divided sub-trees.

We will explain how to select the highest cost’s edge in
Step A through an example shown in Fig. 4. Fig. 4 (a) depicts

4

3

2

4

2

3

5

p
4

p
2

p
1

p
6

p
5

p
7 p

8

p
9

p
10

p
11

3
3

2

4

3

2 3

p
4

p
2

p
1

p
6

p
7

p
9

p
10

p
11

3

2
6

8

4

3

2 3

p
4

p
2

p
1

p
6

p
7

p
106

4

3

2 3

p
4

p
2

p
1

p
6

p
7

p
10

p
11

6

5

(a) (b)

(c) (d)

link cost per

unit of bandwidth

p
3

p
3

p
3

p
3

p
9

p
10

p
11

3

2

Fig. 4. An example of the process of merging edges.

divided second-level Steiner

tree for quality of 900k

(b)(a)

(c)

first-level Steiner tree

(d)

m
1

s
p
2

p
3 p

1

p
4

p
7

p
6

p
5m

3

m
4

m
8

m
7

m
6

m
5

m
2

divided second-level Steiner

tree for quality of 500k

m
1

s
p
2

p
3 p

1

p
4

p
7

p
6

p
5m

3

m
4

m
8

m
7

m
6

m
5

m
2

m
1

s
p
2

p
3 p

1

p
4

p
7

p
6

p
5m

3

m
4

m
8

m
7

m
6

m
5

m
2

m
1

s
p
2

p
3 p

1

p
4

p
7

p
6

p
5m

3

m
4

m
8

m
7

m
6

m
5

m
2

transcoding proxy

for quality of 900k
transcoding proxy

for quality of 500k

Fig. 5. Construction of video transcasting tree using divided tree algorithm.

an instance of the second-level Steiner tree. Here, black nodes
are proxies to which mobile terminals requesting quality q ∈ Q
are connected (i.e, the proxies belong to the set P(q)). White
nodes are proxies to which no mobile terminal requesting q
is connected. Given this situation, first the highest cost’s edge
(p7, p8) may be removed in Step A. However, when doing so,
proxy p8 will receive the video version with q, although no
mobile terminal connected to p8 requests quality q. This means
the wastage of bandwidth. To avoid such a situation, we apply
the following pre-processing to the second-level Steiner tree
for q before Step A: if a white node has exactly two edges,
we merge those two edges to one edge and remove the white
node so that the merged edge has the sum of the link costs of
the two edges as its cost. For example, if we apply the above
pre-processing to the graph in Fig. 4(a), the new graph shown
in Fig. 4(b) is derived. In this example, edges (p4, p5) and
(p5, p6), edges (p7, p8) and (p8, p9) are merged, respectively.
Fig. 4(c) shows the situation that the link (p7, p9) which has
the largest cost is removed from Fig. 4(b). When a link is
removed, some edges which can be merged may appear (e.g.,
edge (p9, p10) and (p9, p11)) as shown in Fig. 4(c). In that

case, we further merge those edges as shown in Fig. 4(d).
An example of transcasting tree construction by the divided

tree algorithm is shown in Fig. 5. Here, note that the topology
of the overlay network and qualities requested by mobile
terminals are the same as in Fig. 3(a). Also note that the
second-level Steiner tree for each quality before division is the
same as in Fig. 3(b). Fig. 5(a) depicts the sub-trees generated
by dividing the second-level Steiner tree for quality 500 Kbps.
In this example, overlay links between proxies p4 and p6

are removed. Fig. 5(b) depicts the sub-trees generated by
dividing the second-level Steiner tree for quality 900 Kbps.
In this example, the overlay link between proxies p4 and p5

is removed. Fig. 5(c) shows the situation after a transcoding
proxy is assigned to each sub-tree. Finally, Fig. 5(d) shows
the situation after the first-level Steiner tree is constructed.
Note that in Fig. 5(d), we can consider further optimization
by letting the proxy p1 or the server node s to execute a
transcoding service from the original quality to 900 Kbps
instead of p6, and forward 900 Kbps of video to p6. If the
bit rate of the original video is much higher than 900 Kbps,
we can reduce large amount of transfer cost incurred on
the overlay link between p1 and p6. However, in our target
environment, each proxy has many mobile terminals, and some
of the terminals always request video with highest quality. In
such a situation, further optimization of first-level Steiner tree
is not required.

V. EVALUATION

In this section, we give evaluation results on the transcasting
approach using our divided tree algorithm through computer
simulations. We have used the following four algorithms to
construct video transcasting tree and compared performance
among them.

(1) simulcasting: it transfers video through |Q| Steiner trees
whose roots are at the video server s, and all transcoding
services for Q are executed at s. Each Steiner tree for a
quality q ∈ Q is constructed in increasing order of their bit
rates. (2) two-layered tree: it transfers video through the video
transcasting tree constructed by the two-layered tree algorithm
explained in Sect. IV-B. (3) divided tree: it transfers video
through the video transcasting tree constructed by the divided
tree algorithm explained in Sect. IV-C. (4) full divided tree
[15]: it transfers video through completely divided sub-trees
for each quality q ∈ Q which are generated by dividing the
second-level Steiner tree for q to sub-trees so that each sub-
tree contains only one proxy with mobile terminals requesting
q.

In the experiment, we have evaluated the algorithms by
the following metrics: (i) Total required computation and
transfer costs when there is no limitation on computation or
bandwidth capacities in CDN; (ii) Required computation and
transfer costs per mobile terminal when there is limitation
on either computation capacity or transfer capacity, or both
capacities in CDN, and the number of rejected requests; and
(iii) computation time to construct video transcasting tree. We
have implemented a heuristic algorithm in [19] and used it
to construct the minimal Steiner tree in each of the above
algorithms.

A. Experimental Setup

In the experiment, we use the BRITE topology generator
[20] to generate AS-level network topology based on Waxman
model for CDN. In the generated topology, we select one node
as a video server, and assign other nodes as proxies. Each

 0

 1

 2

 3

 4

 5

 6

 0 2e+06 4e+06 6e+06 8e+06 1e+07

encode

decode

co
m

pu
ta

tio
n

tim
e

(s
ec

on
d)

picture size * frame rate

Fig. 6. Computation time to decode/encode MPEG-1 video with length of
60 seconds.

mobile terminal connects to a proxy selected at random. In the
following experiments, we assume that the number of proxies
is 100. The quality of the original video is 640×480 pixels
for picture size, 30fps for frame rate, and 1.5 Mbps for bit
rate. We consider 5 quality levels for each quality parameter.
That is, each mobile terminal can request the video quality for
picture size among 640×480, 576×432, 505×379, 423×317,
and 320×240, for frame rate among 30 fps, 25 fps, 20 fps,
15 fps, and 10 fps, and for bit rate among 1.5 Mbps, 1.2 Mbps,
0.94 Mbps, 0.66 Mbps, and 0.38 Mbps (i.e., |Q| = 125). Each
mobile terminal selects one value among 5 quality levels for
each quality parameter at random, and requests video with the
decided quality. We specify the link cost for each overlay link
per unit of bandwidth (Mbps) between 1 and 5 at random.

B. Computation Cost for Transcoding

In this subsection, we show an example of the function
Ccomp described in Sect. III-A. In general, Ccomp consists of
parts to calculate required computation costs for decoding an
input quality, for encoding a set of output qualities, and for
processing packets of video streams. In the experiment, we
assume that transcoding of a video is conducted by decoding
the received video stream, dropping some frames, resizing the
surviving frames, and re-encoding the frames. We approximate
computation cost required for transcoding to be the sum of
decoding and encoding by considering that costs for dropping
and resizing of frames are small enough to be ignored.

We have conducted an experiment to investigate the compu-
tation cost for transcoding service. For the purpose, we have
investigated the relationship between the number of pixels
per second in a video (i.e., product of number of pixels in
a picture frame and frame rate) and time taken by decoding
and encoding of the video. In the experiment, we used a
desktop PC (Intel Core2 Duo E6600 (2.4GHz), 2GB RAM,
Linux 2.6.18.1), and measured decoding and encoding time
with FFmpeg [21] for some MPEG-1 videos whose lengths
are 60 seconds. Experimental result is shown in Fig. 6. Fig.
6 suggests that time taken for decoding and encoding is
almost linear to the number of pixels per second in the video.
According to the result in this experiment, we assume that the
computation cost required for transcoding a video is linear
to the number of pixels per second in the video. Based on
this assumption, the amounts of computation cost required
for decoding and encoding video are defined as follows:
Cdec(q) = τd (q.s × q.f) for decoding a video of a quality q,
Cenc(q′) = τe (q′.s × q′.f) for encoding a video of a quality
q′. Here, τd and τe denote the computation costs required to
process one pixel per second to decode and encode a video,
respectively. In order to calculate computation cost, we specify

 0

 5000

 10000

 15000

 20000

 25000

 0 5000 10000 15000 20000 25000
 0

 5000

 10000

 15000

 20000

 25000

 0 5000 10000 15000 20000 25000
 0

 5000

 10000

 15000

 20000

 25000

 0 5000 10000 15000 20000 25000

full divided tree

re
qu

ire
d

co
m

pu
ta

tio
n

co
st

number of mobile terminals

(a) required computation cost

re
qu

ire
d

tr
an

sf
er

 c
os

t

number of mobile terminals

(b) required transfer cost

to
ta

l r
eq

ui
re

d
co

st

number of mobile terminals

(c) total required cost

simulcasting
two-layered tree

divided tree
simulcasting
two-layered tree

divided tree

full divided tree

simulcasting
two-layered tree

full divided tree

divided tree

Fig. 7. Required cost vs. number of mobile terminals (no limitations on computation or bandwidth capacities).

the values for τd and τe as follows: τd = 1/(qorig.s×qorig.f)
and τe = 5τd. Here, we specify the value of τd so that the
computation cost for decoding the original video will be 1.
Also we specify the value of τe based on the ratio between
the time for decoding and encoding in Fig. 6. In the following
experiments, we assume that required computation cost on
proxies for processing packets of video streams can be ignored.

C. Evaluation Results

1) Required Cost for Video Delivery under No Limitations
on Computation or Bandwidth Capacities: We compare the
above algorithms in terms of the required computation and
transfer costs when there is no limitation on computation
or bandwidth capacities in CDN. We show the results in
Fig. 7(a)–(c). Horizontal axis of each figure represents the
number of mobile terminals. Vertical axes of Fig. 7(a),
Fig. 7(b), and Fig. 7(c) represent required computation cost,
required transfer cost, and total required cost (sum of the
required computation and transfer costs), respectively.

Fig. 7(a) shows that full divided tree takes more computa-
tion cost than other algorithms. On the other hand, Fig. 7(b)
shows that simulcasting and two-layered tree take more trans-
fer cost than other algorithms. In both figures, we can see
that required cost in divided tree falls in the middle between
full divided tree, and simulcasting and two-layered trees. As
a result, in Fig. 7(c), we can see that divided tree takes
less total cost than other algorithms, and its gain over the
other algorithms increases as the number of mobile terminals
increases.

2) Number of Rejected Requests from Mobile Terminals
and Required Cost Per Mobile Terminal for Video Delivery
under Limitations on Computation and Bandwidth Capacities:
We compare the four algorithms with respect to the number
of rejected requests from mobile terminals and required cost
per mobile terminal when there is limitation on computation
capacity of each proxy and bandwidth capacity of each overlay
link. For simulcasting, the video server has the same compu-
tation capacity as one proxy. In the following experiments, we
set the number of mobile terminals to 25,000.

First, we show the results when there is a limitation
on computation capacity of each proxy (without limitation
on bandwidth capacity of each overlay link). Fig. 8(a) and
Fig. 8(b) show the number of rejected requests from mobile
terminals and required cost per mobile terminal, respectively.
Here, a required cost per mobile terminal is calculated by
dividing the required total cost in overlay network by the
number of accepted requests. Horizontal axis of these figures
represents a computation capacity of each proxy. For example,

when this value is 150, it means that each proxy has enough
computation capacity to be able to decode 150 videos with the
qualities of the original video, simultaneously.

Fig. 8(a) shows that simulcasting and full divided tree
have larger number of rejected requests than two-layered tree
and divided tree. According to the figure, divided tree has
larger number of rejected requests than two-layered tree when
computation capacity of each proxy is less than 150. The
reason is that divided tree algorithm assigns a transcoding
proxy to each sub-tree in increasing order of bit rate of video
quality and for some sub-trees for higher quality, transcoding
proxies may not be assigned due to the computation capacity
of each proxy, which results in rejected requests of mobile
terminals. However, Fig. 8(b) shows that divided tree greatly
reduces required cost per mobile terminal than two-layered
tree. Thus, when the numbers of rejected requests in divided
tree and two-layered tree are almost the same (i.e., when
computation capacity of each proxy is more than 100 in
Fig. 8(a)), divided tree can derive video transcasting tree
with smaller cost than two-layered tree. We note that, in
Fig. 8(b), required cost per mobile terminal of simulcasting
increases as computation capacity of each proxy increases.
The reason is that each Steiner tree for a requested quality is
constructed in increasing order of the bit rate of the quality.
Thus, in simulcasting, when computation capacity of each
proxy increases (i.e., the computation capacity of the video
server increases), the video server can execute transcoding
services for the requested qualities with higher bit rates, and
they will incur more transfer cost on overlay links.

Next, we show the results when there is a limitation on
bandwidth capacity of each overlay link (without limitation on
computation capacity of each proxy). Fig. 9(a) and Fig. 9(b)
show the number of rejected requests and required cost per
mobile terminal, respectively. Horizontal axis of these figures
represent constraint on bandwidth capacity of each overlay link
in Mbps. Fig. 9(a) suggests that full divided tree and divided
tree have smaller number of rejected requests than simulcast-
ing and two-layered tree even when bandwidth capacity is
small (e.g., less than 30 Mbps). Two layered tree has larger
number of rejected requests than simulcasting when bandwidth
capacity is less than 50 Mbps. The reason is that in two-layered
tree, large amount of bandwidth is consumed by second-
level Steiner trees and many requests may be rejected due
to bandwidth shortage for transferring original quality video
from a server node to proxies of root nodes of second-level
Steiner trees, since the first-level Steiner tree is constructed
after all second-level trees are constructed. Fig. 9(b) shows that
divided tree takes smaller required cost per mobile terminal

 0

 5000

 10000

 15000

 20000

 25000

 0 50 100 150 200 250 300
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 50 100 150 200 250 300

simulcasting
full divided tree
divided tree
two-layered tree

nu
m

be
r

of
 r

ej
ec

te
d

re
qu

es
ts

computation capacity of each proxy

(a) number of rejected requests

simulcasting
full divided tree

divided tree

two-layered tree

re
qu

ire
d

co
st

 p
er

 m
ob

ile
 te

rm
in

al

computation capacity of each proxy

(b) required cost per mobile terminal

Fig. 8. Number of rejected requests and required cost per mobile terminal vs. computation capacity of each proxy (no limitation on bandwidth capacity).

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 20 40 60 80 100

simulcasting

full divided tree
divided tree
two-layered tree

nu
m

be
r

of
 r

ej
ec

te
d

re
qu

es
ts

bandwidth capacity of each overlay link (Mbps)

(a) number of rejected requests

simulcasting
full divided tree
divided tree

two-layered tree

re
qu

ire
d

co
st

 p
er

 m
ob

ile
 te

rm
in

al

bandwidth capacity of each overlay link (Mbps)

(b) required cost per mobile terminal

Fig. 9. Number of rejected requests and required cost per mobile terminal vs. bandwidth capacity of each overlay link (no limitation on computation capacity).

 0

 5000

 10000

 15000

 20000

 25000

 0 50 100 150 200 250 300 350

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4
simulcasting
full divided tree

divided tree
two-layered tree

nu
m

be
r

of
 r

ej
ec

te
d

re
qu

es
ts

computation capacity
of each proxy
bandwidth capacity of
each overlay link (Mbps)

(a) number of rejected requests

re
qu

ire
d

co
st

 p
er

 m
ob

ile
 te

rm
in

al

simulcasting
full divided tree
divided tree

two-layered tree

(b) required cost per mobile terminal

 50 903010 70 110

 0 50 100 150 200 250 300 350
computation capacity
of each proxy
bandwidth capacity of
each overlay link (Mbps)

 50 903010 70 110

Fig. 10. Number of rejected requests and required cost per mobile terminal vs. computation capacity of each proxy and bandwidth capacity of each overlay
link.

than full divided tree. Thus, divided tree can derive more cost-
efficient video transcasting tree than full divided tree when
the numbers of rejected requests in these algorithms are the
same (i.e., when bandwidth capacity is more than 30 Mbps
in Fig. 9(a)). In two-layered tree and simulcasting, required
cost per mobile terminal decreases when bandwidth capacity
is more than 30 Mbps and 60 Mbps, respectively. The reason
is that when bandwidth capacity is large, the Steiner tree with
the smaller transfer cost can be found.

Finally, we show the results when there is a limitation on
computation capacity of each proxy and bandwidth capacity
of each overlay link. Fig. 10(a) and Fig. 10(b) show the
number of rejected requests and required cost per mobile
terminal, respectively. The horizontal axis of these figures
represent both computation capacity and bandwidth capacity.
Fig. 10(a) shows that divided tree has smaller number of
rejected requests than other algorithms. Fig. 10(b) shows that

as computation capacity and bandwidth capacity reach certain
threshold, divided tree takes less required cost per mobile
terminal than simulcasting.

As a result, it is shown that divided tree can derive more
cost-efficient video transcasting tree and achieve smaller num-
ber of rejected requests than other algorithms in wide range
of CDNs which have different constraints on computation and
bandwidth capacities.

In the above experiments, we specified a link cost per unit
of bandwidth for each overlay link as a random number in the
range of [1:5] and configured one unit of computation cost as
the computation cost required to decode the original video. In
general, these configurations on link cost and computation cost
depend on CDN, and different configurations may be used for
each CDN. Thus, some configurations may exist where two-
layered tree or full divided tree is more cost-efficient than
divided tree. However, as described in Sect. IV-C, divided

 0

 1

 2

 3

 4

 5

 6

 40 60 80 100 120 140 160 180 200

simulcasting

full divided tree
divided tree
two-layered tree

number of proxies

co
m

pu
ta

tio
n

tim
e

(s
ec

on
d)

Fig. 11. Computation time for deriving video transcasting tree.

tree algorithm decides whether to divide each second-level
Steiner tree further or not, taking into account the balance
between transfer cost and computation cost. Thus, divided
tree algorithm can derive a video transcasting tree similar to
the two-layered tree when computation cost is much higher
than link cost, and derive a video transcasting tree similar
to the full divided tree when link cost is much higher than
computation cost. Consequently, divided tree algorithm can
derive cost-efficient video transcasting tree in wide range of
configurations of CDN than other algorithms.

3) Computation Time for Transcasting Tree Construction:
We have measured computation time of the four algorithms for
deriving video transcasting tree. In this experiment, we used
the following desktop PC: Intel Core2 Duo E6600 (2.4GHz),
2GB RAM, Linux 2.6.18.1. We supposed that there is no
limitation on computation capacity or bandwidth capacity. The
number of mobile terminals was 25,000.

The experimental result is shown in Fig. 11. The horizontal
axis of the figure represents the number of proxies in the
overlay network. Fig. 11 suggests that there is almost no
difference of computation time among the four algorithms. The
reason is that most time consuming part of each algorithm is
the calculation of the minimal Steiner trees, and that time for
dividing each tree is relatively small. According to the figure,
when the number of proxies is 200, each mobile terminal has
to send its request about 6 seconds before the video broadcast
starts. We believe that this is practical enough.

In order to treat mobile terminals which request a video
after its broadcast starts, the divided tree algorithm may be
executed periodically to optimize the video transcasting tree
accommodating new requests from those terminals. If the
reconstruction period of the video transcasting tree is 30
minutes, the computation time is about 1% of the period, so
the overhead by this computation time and path establishment
time seems small enough for practical use.

VI. CONCLUSIONS

In this paper, we proposed transcasting, a cost-efficient
video multicast method for heterogeneous mobile terminals
with different quality requests. In the proposed transcasting
method, a minimum cost multicast tree is constructed for
each requested quality, and the original video is transcoded
at proxies to a version with each of requested quality and the
version is delivered through the corresponding multicast tree.
We have developed an algorithm where a multicast tree of
each quality is divided to appropriate number of sub-trees so
that total required cost for video delivery is minimized taking
into account balance between required computation cost and
required transfer cost.

Through simulations, we confirmed that the proposed di-
vided tree algorithm outperforms simulcasting method [2],
in which a server transcodes the original video to multiple
versions with different qualities, and other method [15].

REFERENCES

[1] Akamai home page, http://www.akamai.com/.
[2] S. Y. Cheung, M. H. Ammar, and X. Li, On the Use of Destination Set

Grouping to Improve Fairness in Multicast Video Distribution, Proc. of
the 15th Annual Joint Conf. of the IEEE Computer and Communications
Societies (INFOCOM’96), pp. 553–560, 1996.

[3] W. Li, Overview of Fine Granularity Scalability in MPEG-4 Video
Standard, IEEE Trans. on Circuits and Systems for Video Technology,
Vol. 11, No. 3, pp. 301–317, 2001.

[4] S. McCanne, V. Jacobson, and M. Vetterli, Receiver-driven Layered
Multicast, Proc. of ACM SIGCOMM’96, pp. 117–130, 1996.

[5] B. J. Vickers, C. Albuquerque, and T. Suda, Source Adaptive
Multi-Layered Multicast Algorithms for Real-Time Video Distribution,
IEEE/ACM Trans. on Networking (TON), Vol. 8, No. 6, pp. 720–733,
2000.

[6] T. Kim and M. H. Ammar, A Comparison of Layering and Stream
Replication Video Multicast Schemes, Proc. of the 11th Int’l Workshop
on Network and Operating Systems Support for Digital Audio and Video
(NOSSDAV’01), pp. 63–72, 2001.

[7] J. Apostolopoulos, T. Wong, W. Tan, and S. Wee, On Multiple De-
scription Streaming with Content Delivery Networks, Proc. of the 21st
Annual Joint Conf. of the IEEE Computer and Communications Societies
(INFOCOM’02), pp. 1736–1745, 2002.

[8] Y. Cui and K. Nahrstedt, Layered Peer-to-Peer Streaming, Proc. of the
13th Int’l Workshop on Network and Operating Systems Support for
Digital Audio and Video (NOSSDAV’03), pp. 162–171, 2003.

[9] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K. Sripanidkulchai,
Distributing Streaming Media Content Using Cooperative Networking,
Proc. of the 12th Int’l Workshop on Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV’02), pp. 177–186, 2002.

[10] V. N. Padmanabhan, H. J. Wang, and P. A. Chou, Resilient Peer-to-Peer
Streaming, Proc. of the 11th IEEE Int’l Conf. on Network Protocols
(ICNP’03), pp. 16–27, 2003.

[11] T. Sun, M. Tamai, K. Yasumoto, N. Shibata, M. Ito, and M. Mori, MT-
cast: Robust and Efficient P2P-based Video Delivery for Heterogeneous
Users, Proc. of the 9th Int’l Conf. on Principles of Distributed Systems
(OPODIS’05), pp. 176-190, 2005.

[12] M. Wang, B. Li, and Z. Li, sFlow: Towards Resource-Efficient and Agile
Service Federation in Service Overlay Networks, Proc. of the 24th In-
ternational Conference on Distributed Computing Systems (ICDCS’04),
pp. 628–635, 2004.

[13] X. Gu and K. Nahrstedt, Distributed Multimedia Service Composition
with Statistical QoS Assurances, IEEE Trans. on Multimedia, Vol. 8,
No. 1, pp. 141–151, 2006.

[14] J. Jin and K. Nahrstedt, Service Composition for Generic Service
Graphs, ACM Multimedia Systems Journal, Vol. 11, No. 6, pp. 568–
581, 2006.

[15] S. Yamaoka, T. Sun, M. Tamai, K. Yasumoto, N. Shibata, and M. Ito,
Resource-Aware Service Composition for Video Multicast to Heteroge-
neous Mobile Users, Proc. of the 1st ACM Int’l Workshop on Multimedia
Service Composition (MSC’05) (ACM Multimedia 2005 Workshop),
pp. 37–46, 2005.

[16] A. Shaikh, R. Tewari, and M. Agrawal, On the Effectiveness of DNS-
based Server Selection, Proc. of the 20th Annual Joint Conf. of the IEEE
Computer and Communications Societies (INFOCOM’01), pp. 1801–
1810, 2001.

[17] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, An
Architecture for Differentiated Services, IETF RFC 2475, 1998.

[18] R. M. Karp, Reducibility among combinatorial problems, Complexity of
Computer Computations (R. E. Miller and J. W. Thatcher eds.), Plenum
Press, pp. 85–103, 1972.

[19] L. Kou, G. Markowsky, and L. Berman, A Fast Algorithm for Steiner
Trees, Acta Informatica, Vol. 15, No. 2, pp. 141–145, 1981.

[20] A. Medina, A. Lakhina, I. Matta, and J. Byers, BRITE: An Approach
to Universal Topology Generation, Proc. of the 9th Int’l Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication
Systems (MASCOTS’01), pp. 346–353, 2001.

[21] FFmpeg, http://ffmpeg.mplayerhq.hu/.

