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1 Introduction

In this paper, we propose a technique to flexibly imple-
ment Genetic Algorithms (GAs) for various problems on
FPGAs. For the purpose, we propose a common architec-
ture for GA. The proposed architecture allows designers to
easily implement a GA as a hardware circuit consisting of
parallel pipelines which execute GA operations. The pro-
posed architecture is scalable to increase the number of par-
allel pipelines. The architecture is applicable to various
problems and allows designers to estimate the size of re-
sulting circuits. We give a model for predicting the size of
resulting circuits from given parameters. Based on the pro-
posed method, we have implemented a tool to facilitate GA
circuit design and development. Through experiments using
Knapsack Problem and Traveling Salesman Problem (TSP),
we show that the FPGA circuits synthesized based on the
proposed method run much faster and consume much lower
power than software implementation on a PC, and that our
model can predict the size of the resulting circuit accurately
enough.

2 Genetic Algorithms

GA is a technique for efficiently finding near optimal so-
lutions for combinatorial optimization problems. GA uses
multiple individuals (i.e., candidate solutions) where each
individual includes a chromosome representing a point in
a search space of a given problem. GA works as follows:
(1) Individuals are generated with randomly decided chro-
mosomes. The set of individuals is calledpopulation; (2)
Thefitness valueis calculated for each individual. The fit-
ness value represents how close to the optimal solution the
individual is; (3) Theselectionoperation selects a certain
number of individuals with better fitness values from pop-
ulation. (4) Thecrossoveroperation is applied to generate
new individuals. (5) Themutationoperation is applied to
mutate the chromosome of the new individuals at a certain
probability. The above operations from (2) to (5) are repeat-
edly applied specified times or until a good approximation
close to the optimal solution is obtained.
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Figure 1. Basic Architecture

3 Proposed Architecture
The proposed architecture is composed ofBasic Archi-

tecture corresponding to a single pipeline of GA opera-
tions andParallel Architecturewhich combines multiple
GA pipelines efficiently.

In the basic architecture, processes of GA are di-
vided into four submodules named management module,
crossover module, mutation module and evaluation module,
as shown in Figure 1. Each chromosome is coded as a string
of n bits. Buses between neighboring modules have width
of m bits. n andm are given as parameters.

Each module is designed so that it receivesm bits of
data every clock, and outputsm bits of data every clock (it
may take some clocks to output the firstm bit data after the
first m bit data is input). Therefore,d n

me clocks are used
to process each chromosome, wheren ≥ m. Each module
receives and processes data in pipelined manner.

We adopt simplified Minimal Generation Gap (MGG)
model [1] to reduce required memory amount. In this
model, two individuals are picked up from the current pop-
ulation. Crossover and mutation operations are applied to
these individuals to generate a new offspring. This offspring
individual is then evaluated. Selection operation selects the
individuals with the higher fitness values from the family
(an offspring individual and the parent individuals) and re-
moves the worst individual in the family.

The management module stores the population in mem-
ory. As shown in Figure 1, following items are received
from the evaluation module: the address and the fitness
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value of the parent individual with lower fitness value
(parentworse), and the chromosome of the newly gener-
ated individual and its fitness value. The fitness value of
parentworse is compared with that of the new individual. If
fitness value of the new individual is higher than that of the
parentworse, chromosome and fitness value of the new in-
dividual are overwritten toparentworse in the memory and
they are sent to crossover module. Otherwise, chromosome,
fitness value and address of randomly selected individual
are sent to crossover module.

The crossover module has a registerr which retains the
chromosome, the address and the fitness value of the lat-
est individual received from the management module. It
applies the crossover operator to the chromosome received
from the management module (parent2) and the chromo-
some retained inr (parent1), and generates a new chromo-
someoffspring. The crossover module compares fitness val-
ues ofparent1andparent2, and sends the address and the
fitness value ofparentworse to the mutation module. The
chromosome ofoffspringis also sent to the mutation mod-
ule.

The mutation module applies the mutation operator to
the chromosome ofoffspringand sends the chromosome of
the resulting individual (offspring2) to the evaluation mod-
ule. Also, the module sends the address and the fitness value
of parentworse to the evaluation module.

The evaluation module calculates the fitness value of the
new individualoffspring2. Also, this module sends follow-
ing items to the management module: the address and the
fitness value ofparentworse and the chromosome and the
fitness value ofoffspring2.

In the parallel architecture, the GA pipeline developed
based on the basic architecture is regarded as an island of
the IGA model [2], and the individual exchange mecha-
nism between neighboring GA pipelines is implemented.
The immigration moduleis inserted between the manage-
ment module and the crossover module. The immigration
module is connected to the management modules of its GA
pipeline and the neighbor pipeline, and it periodically re-
ceives individuals from the neighbor GA pipeline.

4 Prediction Model

In this section we describe the prediction model of GA
circuit size. According to preliminary experiment, we con-
firmed that we can predict the size of each module with a
linear function of a problem size and a population size. Be-
cause we adopt simple communication interface between
modules, we see that approximate total circuit size can be
calculated as the sum of the sizes of modules used in the
whole circuit. In our approach, we first synthesize modules
with different problem sizes, and then obtain linear func-
tions using multiple regression.
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Figure 2. search efficiency (TSP, eil51)

5 Experimental Results and Evaluation
In this section, we show the performance of the circuits

implemented based on our proposed architecture and the ac-
curacy of our prediction model through experiments.

We conducted logic synthesis for the circuit descriptions
using Altera Quartus II. We used Altera Cyclone FPGA de-
vices as target devices. We used 64bit Knapsack Problem
and a TSP instance called eil51. We compared the circuits
implemented based on our method with software implemen-
tation of traditional GA (see Sect. 2) executed on a PC with
Pentium4 2.4GHz and 256MB memory. Hereafter we refer
to the software implementation as SGA.

At first, we measured how good solutions can be ob-
tained within specified execution time for our circuits and
the SGA. For Knapsack Problem, we confirmed that our
circuits achieve much better performance than SGA. The
results of TSP are shown in Figure 2. In Figure 2, the
lower fitness value means the better solution. The number
in parentheses indicates the number of concurrent pipelines
in the circuit. Figure 2 shows that with our circuits can-
didate solutions converge to semi-optimal solutions much
more quickly than SGA and that the quality of solutions in
our circuits is much better than SGA as long as the same
crossover is used. It also shows that the performance of
our circuits can be greatly improved by increasing the num-
ber of GA pipelines. We also confirmed that the generated
circuit consumes 1/80 of TDP (Thermal Design Power) of
Pentium4 2.4GHz, at most. Finally, we evaluated our pre-
diction model and confirmed that prediction error is within
3% at the maximum for both Knapsack Problem and TSP.
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