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Abstract—One of the important issues in wireless sensor
network (WSN) is to k-cover the target sensing field and to
extend its lifetime. We propose a method tok-cover the field and
maximize the WSN lifetime by moving mobile sensor nodes to
appropriate positions for a WSN consisting of both static and
mobile sensor nodes which periodically collect environmental
information. Our target problem is NP-hard. So, we propose
a genetic algorithm (GA) based scheme to find a near optimal
solution in practical time. In order to speed up the calculation, we
devised a method to check a sufficient condition ofk-coverage of
the field. For the problem that nodes near the sink node have to
forward the data from farther nodes, we make a tree where the
amount of communication traffic is balanced among all nodes,
and add this tree to the initial candidate solutions of our GA-
based algorithm. Through computer simulations, we confirmed
that our method achieves much longerk-coverage lifetime than
conventional methods for 100 to 300 node WSNs.

I. I NTRODUCTION

Wireless Sensor Network (WSN) is a network consisting of
many small sensor nodes capable of wireless communication,
and it is used for environmental monitoring, border guards, and
so on. One of the typical applications of WSN is to period-
ically collect environmental information such as temperature
or brightness from many sensors in a large agricultural field
or a forest to asink node. In order to make such a WSN
operate for a long term, we have to carefully schedule and
adjust parameters of sensor nodes for sensing data, receiving
and transmitting the data. Since each sensor node consumes
battery amount not only for sensing data but also for receiv-
ing/transmitting the sensed data from/to other sensor nodes,
the battery lifetime varies depending on the initial amount,
the data size for transmission, the sensing frequency, and the
radio transmission distance.

Many research efforts have extended the WSN lifetime.
Tang et al. reduced power consumption by regulating commu-
nication frequency among sensor nodes[1]. Heinzelman et al.
reduced total data transmission by merging the data received
from multiple sensor nodes[2]. Most of the existing studies
supposestatic sensor nodesthat are not movable after being
deployed in the field. WSNs consisting of only static sensor
nodes cannot automatically recover unsensable areas generated
by failure or battery exhaustion of the corresponding sensor
nodes.

Recently, some studies have utilizedmobile sensor nodes
with wheels and motors for WSNs. In [3], Mei et al. repaired
unsensable areas (due to node failure or battery exhaustion)
by moving mobile sensor nodes to those areas. In [4], Wang
et al. proposed a method to guaranteek-coverage of the target
field for a WSN constructed by mobile and static sensor nodes.
Here, a given geographical field isk-coveredif any points in
the field is included in the sensing ranges of at leastk sensor
nodes. These studies aimed tok-cover the whole target field
by moving mobile nodes to places where static nodes failed
or were not placed. The existing studies do not try to extend
the WSN lifetime using mobile nodes while maintainingk-
coverage of the target field.

In this paper, we first formulate the problem to find the
positions of mobile sensor nodes and the tree (called adata
collection tree) connecting all nodes so that the target area is
k-covered and the WSN lifetime is maximized, from a given
target field, the positions of the sink node and all sensor nodes,
and the power consumption parameters for sensor nodes. This
problem is NP-hard since it implies a Minimum Geometric
Disk Cover Problem (GDC)[5] as a special case.

Secondly, we propose a heuristic algorithm based on genetic
algorithm (GA). For better search speed and solution quality,
we make a good initial candidate solution for GA considering
the fact that nodes near the sink node have to consume battery
amount for forwarding data from other nodes. We also devised
a fast decision method for a sufficient condition fork-coverage
of the target field. In this method, we check for all grid points
if at leastk sensors are placed within the circle whose center is
each grid point with a radius smaller than the sensing radius.

Through computer simulations, we confirmed that the life-
time achieved by our method is much longer than the other
conventional methods on WSNs with several hundreds of
nodes. We also confirmed that ourk-coverage judgment tech-
nique can much more accurately judgek-coverage of the target
field than other method [4] with reasonable computation time.

II. PROBLEM OF WSN LIFETIME MAXIMIZATION WITH

MOBILE NODES

In this section, we present the WSN model and formulate
the problem of maximizing lifetime of a WSN whichk-covers
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the specified target field with mobile sensor nodes.

A. WSN Model, Assumptions, and Definitions

1) Assumptions on Target WSN:We suppose a WSN in
which a massive number of small battery-driven sensor nodes
are deployed intarget field. Sensor nodes periodically sense
environmental information such as temperature, humidity or
sunlight, and send it by multi-hop communication to a station
called asink node. We denote the set of points in the target
field, the sink node, and the sensing frequency asField, Bs,
andI, respectively.

Both static nodesand mobile nodesare used as sensor
nodes. Static nodes cannot be moved from their originally
placed locations, while mobile nodes can move by wheels.
Robomote [6] is an example of a mobile node. We denote the
sets of static and mobile sensor nodes byP = {p1, ..., pl}
and Q = {q1, ..., qm}, respectively. We assume that there is
no obstacle inField, and a mobile node can move straight to
an arbitrary position inField.

Each static or mobile sensor node covers a disk with radius
R centered on it as its sensing range. We denote the sensing
range of sensor nodes by s.range. Each sensor obtains data
by sensing. We assume that the size of data obtained by each
time of sensing is fixed and the data are sent to the sink node
without compression or unification by a multi-hop path to the
sink node. We denote the data size byD.

Each sensor node has wireless communication capability
and its radio transmission range is a disk with a certain
radius centered on it. Each sensor node can freely change its
transmission power so that the radio transmission radius can be
adjusted depending on the distance to the next-hop node. We
assume no interference of wireless communication between
nodes since the supposed sensing frequency is not very high.
The transmission success rate is 100% if the receiving node
is within this disk, and 0% if outside of the disk.

We assume that each mobile or static sensor node knows
its location and informs sink nodeBs of its location by
single-hop or multi-hop communication at their deployment.
For each sensor nodes, we denote its location bys.pos.
Similarly, we denote the location of the sink node byBs.pos.
Based on the locations of all sensor nodes, the sink node
calculates the appropriate positions of the mobile nodes as
well as communication paths connecting all sensor nodes to
the sink node and informs all the nodes of the new positions
and/or new paths by single-hop or multi-hop communication.

2) Assumptions of Power Consumption:Each sensor node
s is assumed to have a battery with finite energy denoted
by s.energy. PowersTrans(k, d) andRecep(x) required to
transmit x[bit] for d[m] and receivex[bit] conform to the
formulas (1) and (2), respectively[2].

Trans(x, d) = Eelec × x + εamp × x × dn (1)

Recep(x) = Eelec × x (2)

Here, Eelec and εamp are constants representing the power
required by information processing and the power for ampli-

fication, respectively. The value ofn(≥ 0) is defined by the
antenna properties. The value is specified somewhere between
0 and 2.

PowersSens() and Listen(y) required to sense the in-
formation which isD[bit] data and listen to whether radio
messages come or not fory[s] conform to the following
formulas (3) and (4), respectively.

Sens() = Eelec × D + Esens (3)

Listen(y) = Elisten × y (4)

Mobile nodes consume battery power not only by commu-
nication but also by movement. PowerMove(d) required to
moved[m] conforms to formula (5) [7].

Move(d) = Emove × d (5)

Here,Emove is a constant. Each mobile node can move atV
[m/s] whereV is a constant value.

B. Problem Definition

When a WSN operates for a long time, batteries of some
sensor nodes will be exhausted andk-coverage will be broken.
Then, it is necessary to move mobile nodes one after another.
So, we formulate a problem to derive the schedules of when
and where each mobile node should move at each time during
WSN operation time.

Let t0 denote the initial WSN deployment time. Lettend

denote the time afterk-coverage is no longer satisfied due to
battery exhaustion. For eachq ∈ Q and eacht ∈ [t0, tend],
let Run(q, t) denote the speed (0 orV ) and direction ofq at
time t. Then, for eachq ∈ Q, we denote a speed-direction
schedule forq’s movement during time interval[t0, tend] by
formula (6).

schedule(q, [t0, tend]) =
∪

t∈[t0,tend]

{Run(q, t)} (6)

Given the information on the target fieldField, a sink node
Bs and its positionBs.pos, s.pos, s.energy, ands.range for
each sensor nodes ∈ P ∪ Q, and constantsEelec, εamp, n,
Esens, Elisten, Emove, V , D, and I, our target problem for
maximizing the WSN lifetime denoted bytlife is to decide
the scheduleschedule(s, [t0, tend]) for each nodes ∈ P ∪ Q
that satisfies condition (7).

∀t ∈ [t0, tend],∀pos ∈ Field, |Cover(pos, t)| ≥ k. (7)

where

Cover(pos, t) = {s|pos ∈ s.range(t) ∧ s ∈ P ∪ Q

∧s.energy(t) > 0}. (8)

Here,s.energy(t) ands.energy(t) represents’s sensing range
and remaining battery at timet.



We define the WSN lifetimetlife as the time from initial de-
ployment to the time when condition (7) is no longer satisfied.
We assume that for any positions of all sensor nodes which
achievek-coverage of the field, multihop communication paths
which connect all sensor nodes to the sink node and maximize
the WSN lifetime can be decided. Then, our target problem is
to obtain schedules of all sensor nodes’ speed and direction
that maximize the WSN lifetime to satisfy condition (7).
Therefore, we define the following objective function (9).

maximize (tlife) subject to (7) (9)

C. Modified Target Problem

Our target problem formulated in section II-B is to decide
speed-direction schedule ofq during time interval[t0, tend],
for eachq ∈ Q. Then, we must decide a data collection tree
including all sensor nodes whenever the positions of mobile
nodes change. Solving the problem is considered to be very
difficult because of the wide solution space. Therefore, we
adopt a heuristic method to solve this problem stepping on
the several stages as the following procedures:

1) Solving the problem to find the positions of mobile
nodes and the data collection tree for maximizingthe
WSN forecast endtime(defined later) satisfying condi-
tion (7).

2) Whenever the battery of any sensor node is newly
exhausted, go to step 1.

In the problem of step 1, its input is the same as the original
problem. Its output is the new position of each mobile node
q ∈ Q denoted byq.newpos satisfying condition (10) and the
parent node of each sensor nodes ∈ P∪Q denoted bys.send.
We have the following constraint onq.newpos.

|q.pos − q.newpos| <
V

I
(10)

Here, the new position of each mobile node is in the area
where each mobile node can move in1

I seconds.
The WSN lifetime tlife is the time of WSN termination

considering the movement of mobile nodes in the future.
It is difficult to calculate tlife strictly. So, we define the
WSN forecast endtimewhen the battery of some sensor node
is newly exhausted in the objective function (condition (9))
instead oftlife. Thus, we use the following objective function.

maximize
(

tnow + min
s∈P∪Q

(
s.energy

C(s)

−Move(|s.pos − s.newpos|)
C(s)

))
(11)

where tnow is current time, andC(s) is the energy con-
sumption of sensor nodes per second. Ifs ∈ P , |s.pos −
s.newpos| = 0. So, s.energy

C(s) − Move(|s.pos−s.newpos|)
C(s) means

the time from present until the battery of the sensor node
s ∈ P ∪ Q is exhausted.

The energy consumption of sensor nodes per unit of time
C(s) is defined, as follows:

C(s) = (Sens() + Recep((D + H) × s.desc)
+Trans((D + H) × (s.desc + 1), |s − s.send|))

×I + Listen(1) (12)

wheres.desc is the number of sensing nodes except fors in
the subtree of the data collection tree rooted ons, s.send is
the destination node of data transmission ofs, H is a header
length of a packet. Formula (12) represents that every unit of
time, each node consumes power for sensing, receiving, and
transmitting dataI times and for listening packet reception.
The node consumesRecep((D + H)× s.desc)× I power for
receiving packets since it hass.desc nodes as its descendants
and the each packet’s size isD+H. It consumesTrans((D+
H) × (s.desc + 1), |s − s.send|)) × I power for transmitting
data to nodes.send.

III. A LGORITHM

In this section, we describe the algorithm to solve the
problem defined in Section II-C.

A. Overview

Our algorithm decides the destinations of mobile sensor
nodes and a tree called adata collection treethat connects
all sensor nodes to sink nodeBs by multi-hop paths for data
collection. Whenever the battery of any sensor node is newly
exhausted, our algorithm is applied, as shown in Section II-C.

The proposed GA-based algorithm for calculating the posi-
tions of mobile nodes and a data collection tree is supposed
to be executed at the initial deployment time. The lifetime of
the whole system ends whenk-coverage of the target field is
unable to be maintained.

B. Algorithm details

GA is a well-known meta-heuristic algorithm[8]. The fol-
lowing is its basic procedure.

1) Generation of initial candidate solutions: N candidate
solutions are randomly generated.

2) Evaluation: Objective function for each candidate solu-
tion is evaluated to grade each candidate solution.

3) Selection: N candidate solutions with better evaluations
are selected.

4) Crossover: New candidate solutions are generated by
mixing two randomly selected candidate solutions.

5) Mutation : Part of candidate solutions are randomly
mutated.

6) Check termination: If the termination condition is met,
the candidate solution with the highest evaluation is
output as the solution. Otherwise, go to Step 2.

Below, we show our algorithm for each GA operation.

Encoding of candidate solution: To apply a GA, each
candidate solution has to be encoded, and the way of encoding
sometimes greatly affects the algorithm performance. The
coding in the proposed algorithm is shown in Fig. 1. Each
candidate solution contains positions for|Q| mobile nodes and
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Fig. 1. Encoding of Candidate Solution

the structure of the data collection tree consisting of|P ∪ Q|
sensor nodes. The positions for the mobile sensor nodes are
represented in polar coordinates to avoid generating impossible
destinations of mobile sensor nodes. A data collection tree is
represented by a set of node IDs.

Generation of initial candidate solutions: Initial candidate
solutions are made from random variables. Angles and dis-
tances of mobile nodes are uniformly assigned distributed
random values between 0 and2π, and 0 andDist, respectively
(here, Dist is a constant and typically set to the longest
movable distance in the target field). As an initial parent node
for each node, a node geographically closer to the sink node
is randomly selected. For efficiency, three candidate solutions
are added to the initial candidate solutions whose collection
trees are made using the minimum cost spanning tree method
where an edge cost is the square of the distance, the balanced
edge selection method proposed in Sect.III-D, and a method
that directly connects all sensor nodes to the sink node.

Evaluation: The evaluation of each candidate solution ver-
ifies how long the target sensing field isk-covered by a sim-
ulation of WSN data transmission. Thek-coverage duration
is between the time when all mobile sensor nodes arrive at
their new positions and the time whenk-coverage cannot be
maintained due to battery exhaustion of some nodes. If the
decoded data collection network does not form a tree, the
resulting evaluation is 0.

Strictly checking thek-coverage of the field is very expen-
sive, and in the proposed algorithm, a sufficient condition for
k-coverage is verified as described in Section III-E.

Genetic operators: In our proposed method, we adopted
roulette selection, an elite preservation strategy, uniform
crossover, and mutation per locus. For uniform crossover,
we treated each combination of angle and distance for a
mobile sensor node as a gene. For mutation, random value
is overwritten to a randomly selected locus.

Termination condition: The algorithm stops after a constant
number of generations (one generation corresponds to one iter-
ation of the GA algorithm in Section III-B). In the experiment,
we set 20 generations as the constant.

C. Local search technique

Our proposed method uses the local search technique in
addition to GA to improve the quality of solution.

For each mobile nodeq ∈ Q, we give moving destination
randomly in a circle (radius is 1[m]) centered onq. If
WSN lifetime improves when all mobile nodes move to the
destination, they move actually and are given new destinations.
If it is not improved, this algorithm terminates.

D. Balanced edge selection method

The nodes near the sink node tend to consume more battery
by forwarding the data transmitted from other nodes. In the
balanced edge selection method, we first decide the set of
nodes calledfirst-level nodesdirectly connecting to the sink
node. Next, we connect the remaining nodes to the first-level
nodes one by one. The idea to select the first level nodes is
as follows.

Step-1: The first level nodes is decided by testing Step-2
for every number of the nodes from 1 to|P ∪ Q| so that the
maximum power consumption by all the first level nodes is
minimized. Here, we select each node in the increasing order
of the distance from the node to the sink node.

Step-2: Data sent from the remaining nodes (other than
the first-level nodes) must be forwarded through one of the
first-level nodes to the sink node. Thus, the remaining nodes
are distributed among the first-level nodes so that the power
consumption is balanced among the first-level nodes. Here, the
power consumption of each first-level node is estimated by the
number of assigned nodes and the distance to the sink node.

Next, for each of the first-level nodes and the remaining
nodes assigned to the node, we apply the above Step-1 and
Step-2, recursively.
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Repeats 1 time
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Fig. 3. Balanced Edge Selec-
tion Algorithm Repeats 3 times

We will explain how the algorithm works using an example.
Fig. 2 depicts the situation just after the first-level nodes A
and B have been decided. In the figure, ‘A[4]’ means that the
node A has been assigned 4 remaining nodes. Here, node A
is closer to the sink Bs than node B, A has been assigned
more remaining nodes. We suppose that A and B have been
assigned{C, D, E, G} and{F}, respectively.

Next, the algorithm is recursively applied, and the second-
level nodes are decided as shown in Fig. 3. Among nodes C,
D, and E, D is closest to node A. Then, finally node G is
assigned to node C, and the data collection tree completes.

E. Algorithm for checkingk-coverage

Geometrically verifying whether any points of the target
sensing field is contained by at leastk sensor nodes’ sensing
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Fig. 5. Checkingk-coverage
by delta-k-coverage

ranges is very difficult.
In [4], Wang et al. proposed a sufficient condition fork-

coverage, where the target field is divided into squares whose
diagonals have the same lengths as the sensing radius to check
if there is at leastk sensor nodes in each square.

We propose a looser sufficient condition for thek-coverage
of the target sensing field. In our method, we put checkpoints
on grid points at intervals ofδ in the target sensing field,
and only check if each checkpoint isk-covered. However,
even if all checkpoints arek-covered, some points between
checkpoints may not bek-covered. The smallerδ is, the more
the judgement accuracy improves. The judgment accuracy
worsens whenδ is too large. Forδ <

√
2R, we define delta-k-

coverage which is a sufficient condition ofk-coverage of the
target field.

Definition 1
Checkpointc is delta-k-covered if a circle whose center and

radius are c and R −
√

2
2 δ, respectively, includes at leastk

nodes.
Fig. 4 shows that a checkpoint is delta-3-covered.
Theorem 1
Given checkpoints on grid points at intervals ofδ (δ <√
2R) in a given field1, if each checkpoint is delta-k-covered,

then the field isk-covered.
Proof
As shown in Fig. 4, if checkpointc is delta-k-covered, then

any points in the circle with radius
√

2
2 δ centered atc arek-

covered. Thus, as shown in Fig. 5, for neighboring checkpoints
c1, c2, c3, andc4, if all are delta-k-covered, any points in the
square formed by those checkpoints arek-covered. Therefore,
Theorem 1 holds.

Theorem 1 only provides a sufficient condition ask-
coverage. If we use a smaller value forδ, the condition is
closer to the necessary and sufficient condition fork-coverage.
However, the smaller value ofδ will cause more checkpoints to
be checked by delta-k-coverage. In our experiment in Section
IV, δ

R = 1
10 is used.

IV. EXPERIMENTAL VALIDATION

In this section, we show simulation results to validate the
usefulness of our proposed method.

First, in order to evaluate the overall performance of our
proposed method, we have measured the WSN operation time

1Note that outermost checkpoints must surround the target field.

TABLE I
COMMON CONFIGURATION FOR EXPERIMENTS

Parameter Value

Initial energy amount of each
node

s.energy = 32400 J (two AA batteries)

Power consumption coeffi-
cient for data processing

Eelec = 50 nJ/bit (by referring to [7])

Power consumption coeffi-
cient for signal amplification

εamp = 100 pJ/bit/m2 (by referring to
[7])

Power consumption expo-
nent

n = 2 (by referring to [7])

Power consumption coeffi-
cient for moving

Emove = 8.267 J/m (by referring to [9])

Power consumption coeffi-
cient for sensing

Esens = 0.018J/bit (by referring to [7])

Power consumption on idle
time

Elisten = 0.025 J/s (by referring to
[10])

Radius of sensing range of
each sensor

R= 20m (by referring to [10])

Degree of coverage in the
target field

k = 3

Size of data for sensed infor-
mation

D= 128bit (by referring to [11])

Sensing frequency 0.1Hz (by referring to [11])

during which the whole target field isk-covered (we call the
time k-coverage duration, hereafter), and compared it with the
performance of other conventional methods including Wang’s
method[4], for several simulation configurations.

Next, in order to evaluate the efficiency of our delta-k-
coverage judgment method, we measured and compared the
performance of our method with Wang’s method [4] in terms
of accuracy ofk-coverage judgment and its calculation time.

As a common configuration among the simulations, we used
the parameter values shown in Table I by referring to existing
literature.

Parameters of GA are determined by preliminary exper-
iments as follows: the number of solution candidates, the
number of generations, crossover rate and mutation rate are
20, 20, 1, and 0.01, respectively.

A. k-Coverage duration

We have comparedk-coverage duration of our proposed
method with conventional methods named as follows: (i)Pro-
posed Methodwhich uses all techniques in Section III; (ii)No
Balancing Methodwhich randomly generates data collection
trees as initial solution candidates in our method; (iii)Static
Method which prohibits movement of mobile nodes in our
method; and (iv)Wang+Balancing Methodwhich decides the
new positions of the mobile nodes by Wang’s Method[4] and
constructs a data collection tree by the balanced edge selection
method and GA.

The configuration of this experiment other than Table I is
provided as follows.

• Field size: 50m× 50m, 100m× 50m, and 100m× 100m
• Position of the sink node : around the south (bottom) end

in the field
• Number of sensor nodes: 100, 200, and 300
• Proportion between numbers of static and mobile nodes:

25% and 75%
• Coverage degree:k = 3
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Note that the size of the target field should be appropriately
decided so that the field can be sufficientlyk-covered by a
given number of nodes and coverage degreek. Thus, we used
field size50m × 50m with 100 nodes for the basic case, and
enlarged the field size proportionally to the number of nodes.
In the experiment, the initial positions of nodes are given by
uniform random variables.

We show simulation results in Figs. 6 and 7 for 3-coverage.
These results are average of 30 trials.

Fig.6 shows that two Proposed Methods (Balance and
Random) outperform Static Method to a great extent, inde-
pendently of the number of nodes. The reason is that finding
the appropriate positions of mobile nodes in a wide area
greatly affects the performance. Wang+Balancing Method was
not so different from Static Method. Initially, the field was
k-covered by sensor nodes in all methods. In many cases,
however, Wang’sk-coverage condition was not satisfied. Then,
Wang+Balancing Method moved mobile nodes to the new
positions so as to satisfy Wang’sk-coverage condition. When
a node exhausted its battery, Wang+Balancing Method often
could not find the new positions of mobile nodes satisfying
Wang’sk-coverage condition.

The figure also shows that Proposed Method achieves better
performance than No Balancing Method. Thus, our proposed
balanced edge selection algorithm is effective in extending the
k-coverage duration. In the figure, we see that thek-coverage
duration of all methods decrease as the number of nodes
increases. The reason is that the nodes that directly connects
sink nodeBs have to forward more data transmitted from their
upstream nodes as the number of nodes increases, even though
mobile nodes move closer to the sink node to help forwarding
the data. In Fig. 6, the best and worst values of 30 trials by
our algorithm were also shown. The difference ofk-coverage
duration of our algorithm was in the range from 84% to 109%
compared with the average. We see that our algorithm does
not output the solution with extremely bad performance.

Fig. 7 shows the computation time of each method. Pro-
posed Method takes about 120 second in the case of 300 nodes
for k = 3. This shows that it is possible to operate our method
actually.

TABLE II
THE NUMBER OF OCCURRENCES THAT THE FIELD IS JUDGED AS

k-COVERED (OUT OF 100 SIMULATION RUNS)

k=1 k=2 k = 3

Wang’s Method[4] 93 44 4

Proposed Method (δ = 0.5m) 100 100 100
Proposed Method (δ = 1.0m) 100 100 100
Proposed Method (δ = 2.0m) 100 100 100
Proposed Method (δ = 4.0m) 100 100 100
Proposed Method (δ = 8.0m) 100 100 100
Proposed Method (δ = 12.0m) 100 100 97
Proposed Method (δ = 16.0m) 96 82 48
Proposed Method (δ = 20.0m) 39 1 0

B. Efficiency ofk-coverage judgment algorithms

We have measured and compared the accuracy and com-
putation time of our delta-k-coverage judgment method and
Wang’s method[4]. Both methods are based on their own
sufficient conditions for checkingk-coverage. Thus, if one of
the methods judges affirmatively, then the field is actuallyk-
covered. Conversely, even if both methods judge negatively,
it is not always the case that the field is notk-covered. The
higher the ratio to judge that the field isk-covered is, the
higher the judgment accuracy is.

In this experiment, 300 static nodes are randomly deployed
in the 100m×100m field. In this case, the field is almost
always 3-covered. Therefore, it is expected to judge that 1,
2, and 3-coverage of the field are satisfied in all trials. We
conducted the above simulation 100 times and measured the
number of the occurrences that the field is judged to be
k-covered out of the 100 simulations. Note that on some
occurrences, the whole field is not actuallyk-covered since
node positions are randomly decided.

We conducted the above simulations by changing the value
of δ from 0.5m to23.5m by0.5m step for our delta-k-coverage
judgment method, while the diagonal length of all squares in
Wang’s method is fixed to10

√
2m, which is the sensing radius

of sensor nodes, and cannot be changed.
The experimental results on measured accuracy is shown in

Table II. Note that Table II shows part of the results for some
importantδ values.
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Fig. 8. Example of Misjudge by Wang’s Method

Table II suggests that our delta-k-coverage judgment
method is better than Wang’s method for all numbers fork
whenδ is no bigger than16m. The difference becomes bigger
as k increases. Especially, whenδ is no bigger than12m,
our algorithm almost perfectly judgedk-coverage of the field,
whereas Wang’s method judged that only 4 occurrences out of
100 was3-covered. Fig. 8 shows the example of node positions
such that the difference of the judgement between our method
and Wang’s method is extreme. In Wang’s method, the field
is divided into grids at intervals ofR√

2
, and the number of

coverage is the number of the sensor nodes in each grid. In
Fig. 8, cell A is 2-covered actually. Wang’s method judges
that cell A is not covered because there is no sensor node in
cell A. On the other hand, our method judges that cell A is 2-
covered, since each check point is delta-2-covered. Wang’s
method takes a constant computation time around 0.13ms,
while our method takes longer computation time, which is
inversely proportional toδ, for example, 159ms forδ = 1m,
2ms forδ = 8m, and 1ms forδ = 12m.

As a result, our algorithm takes longer computation time,
however it is much more practical since it is adjustable
depending on the required accuracy ofk-coverage judgment
within allowable computation time.

C. Influence of mobile nodes ratio fork-coverage lifetime

It is obvious that usingn mobile nodes will achieve longer
k-coverage lifetime than usingn static nodes. However, a
mobile node is much more expensive than a static node. In
order to investigate the influence of mobile nodes ratio to all
nodes, we measuredk-coverage lifetime for 100, 200, and
300 sensor nodes, changing the mobile nodes ratio from 0%
to 100% by 5% step.

We show the results in Fig. 9. The results are average values
of 30 simulations. Fig. 9 suggests that thek-coverage lifetime
increased sharply in the ratio from 0% to 25%, and loosely
from 25% to 100%. That means about 25% ratio of mobile
nodes will be the best when we consider the deployment cost.

V. CONCLUSION

In this paper, we formulated a problem of maximizing
the k-coverage lifetime of the field in a WSN environment
with mobile and static sensor nodes. We proposed a GA-
based algorithm to decide the positions of mobile sensor
nodes and to construct a data collection tree with balanced
power consumption for communication among nodes. We also
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Fig. 9. Improvement ofk-coverage Duration for Mobile Nodes Ratio

defined a new sufficient condition fork-coverage based on
checkpoints and proposed an algorithm to accurately judge
k-coverage in reasonably short time.

Through computer simulations, we confirmed that our
method improvedk-coverage lifetime to about 140% to 190%
compared with other conventional methods for 100 to 300
nodes. Also, we confirmed that the best cost-performance is
achieved when the mobile nodes ratio is about 25%.
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