
Cheat Detection for MMORPG on P2P Environments

Takato Izaiku, Shinya Yamamoto, Yoshihiro Murata,
Naoki Shibata†, Keiichi Yasumoto, Minoru Ito

Graduate School of Information Science,
Nara Institute of Science and Technology

Ikoma, Nara 630-0192, Japan

{takato-i,shiny-ya,yosihi-m,yasumoto,ito}@is.naist.jp

† Department of Information Processing and
Management, Shiga University
Hikone, Shiga 522-8522, Japan

shibata@biwako.shiga-u.ac.jp

ABSTRACT
In recent years, MMORPG has become popular. In order
to improve scalability of game system, several P2P-based
architectures have been proposed. However, in P2P-based
gaming architecture, cheats by malicious players may more
likely occur than traditional centralized architecture, since
most of game data is handled by player nodes. In this paper,
we propose a new method for detecting cheat in MMORPG
which supposes typical P2P-based event delivery architec-
ture where the entire game space is divided into subareas
and a responsible node (selected from player nodes) delivers
each event happened in the subarea to player nodes there
every predetermined time interval called timeslot. In the
proposed method, we introduce multiple monitor nodes (se-
lected from player nodes) which monitor the game state
and detect cheat when it happens. In order to allow mon-
itor nodes to track the correct game state for the corre-
sponding subarea, we let monitor nodes and a responsible
node retain a random number seed and player nodes send
their events not only to responsible node but also monitor
nodes so that the monitor nodes and the responsible node
can uniquely calculate the latest game state from the previ-
ous game state and game events which happened during the
current timeslot. Either responsible node, monitor nodes or
player nodes can detect cheat by comparing hash values of
game state which are retained by those nodes periodically,
and role back events happened since the last correct game
state. Through experiments in PlanetLab, we show that our
method achieves practical performance to detect cheats.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design; C.2.4 [Computer-Communication
Networks]: Distributed System

General Terms
Design, Security, P2P, MMORPG

Keywords
Distributed System, Cheating, Massively Multiplayer On-
line Gaming, Peer to Peer

1. INTRODUCTION
Thanks to recent progress of network technology, we are
now able to enjoy network gaming at home using PC, video
game console, and so on. However, due to popularization of
network game, servers for Massively Multiplayer Online Role
Playing Game (MMORPG) have been highly overloaded.
Accordingly, some load distribution methods based on P2P
technology have been proposed. While these methods have
good scalability to the number of players, they suffer from
preventing cheat by malicious players since most of game
data such as game state and events are managed by player
nodes. Thus, a new method for preventing cheat on P2P-
based gaming architecture is desired.

There are several research efforts for preventing cheat on
P2P-based game. In [6], Lock-Step protocol is proposed for
preventing Look Ahead Cheat in which a responsible node
(which is a special node delivering game events happened
in a subarea to player nodes there, although it is also a
player node) decides its event after seeing events taken by
other players. In Lock-Step protocol, in order to prevent
Look Ahead Cheat, each player node (including the respon-
sible node) is required to send the hash value of an event
which the corresponding player wants to issue to the respon-
sible node in advance, and then the responsible node gathers
the events of all players. However, Lock-Step protocol can-
not prevent packet falsifying by malicious responsible node.
Also, it cannot detect cheats such that malicious responsi-
ble node intentionally disposes player’s events. Furthermore,
with this protocol, delay of the entire game becomes large
depending on the largest delay among player nodes, due
to synchronization when gathering all events from player
nodes.

In [2], NEO (New Event Ordering) protocol is proposed.
This protocol takes a vote among all players based on Lock-
Step protocol. While this protocol does not need respon-
sible node, since all player nodes share the game state by
broadcasting event to each other, this protocol may exclude
some player nodes with large delay or low available band-
width from voting, in order to improve efficiency. Also, this
protocol requires each node to broadcast event to all the
other nodes, so required bandwidth increases. Moreover,
since this protocol does not determine the order of received



Figure 1: Allocation of event list to timeslot

events, game state can become inconsistent among player
nodes.

[7] proposes a method to detect cheat by collating game logs.
When a player logs out from the game system, this method
compares the logs for transmitted packets by responsible
node and received packets by player node. However, since
this method can detect cheat only when players log out, it
takes long time to detect cheat and is difficult to correct
game state while the malicious player is committing cheats
in the game system.

In [5], various cheats are classified from three points of view:
weakness of the system; types of cheat performer; and means
of cheat. Also, vulnerability against cheat is classified into
four categories: weakness of networks (e.g. DoS attack or
modification of a packet); weakness of the game program
(bug or modification of the program); weakness of the se-
curity (obtaining passwords); and weakness of the system
(modification of OS or drivers). Among these cheats, falsifi-
cation of packet is especially important in P2P-based game.
Therefore, in this paper, we focus on this type of cheat.

In this paper, we propose a new method for detecting cheat
in MMORPG which supposes typical P2P-based event deliv-
ery architecture such as [4, 8] where the entire game space is
divided into subareas and a responsible node (selected from
player nodes) delivers each event happened in the subarea to
player nodes there every predetermined time interval called
timeslot. In the proposed method, we introduce multiple
monitor nodes (selected from player nodes) which monitor
the game state and detect cheat when it happens. In or-
der to allow monitor nodes to track the correct game state
for the corresponding subarea, we let monitor nodes and a
responsible node retain a random number seed and player
nodes send their events not only to responsible node but
also to monitor nodes so that the monitor nodes and the re-
sponsible node can uniquely calculate the latest game state
from the previous game state and game events which hap-
pened during the current timeslot. Either responsible node,
monitor nodes or player nodes can detect cheat by compar-
ing hash values of game state which are retained by those
nodes periodically, and role back events happened since the
last correct game state. Depending on the network topology
among the responsible/monitor nodes and player nodes, the
responsible/monitor nodes may receive events at different
timeslots as shown in Fig. 1. In the proposed method, re-

Figure 2: Division of Game Space into Subareas

sponsible/monitor nodes follows majority decision of which
events are assigned in the timeslot.

By allocating multiple monitor nodes for each subarea, col-
lusion between the responsible node and monitor nodes can
be detected by majority voting. Since only part of nodes
participates in voting, the amount of messages can be kept
much lower than NEO protocol. Moreover, in the proposed
method, since comparison of game state is performed in suf-
ficiently long period, the problem in [7] can be avoided.

In order to show usefulness of our method, we have im-
plemented a prototype and conducted some experiments in
a WAN testbed called PlanetLab[9]. In the environment
where traffic delay between player node and responsible node
is about 200 msec, our method could detect cheat in 1 sec-
ond, and correct game state in 8 seconds, while keeping the
extra traffic at player nodes low enough.

2. PROPOSED METHOD
In this section, we first describe the target P2P-based game
system in which we want to detect cheats, and then we de-
scribe the proposed method.

2.1 Target Game System
The proposed method is constructed on top of typical P2P-
based game system such as [4, 8]. In such a game system,
player nodes first contact with a lobby server when logging
in. Lobby server is used only for management of player ac-
counts, which is just a light job and can be distributed to
multiple computers. Other heavier jobs like event process-
ing and delivering are performed by player nodes, and this
makes it possible to realize MMORPG without dedicated
servers or high speed network. In P2P-based game system,
the game space is usually divided into subareas as shown in
Fig. 2, and a responsible node is selected from player nodes
and assigned to each subarea, so that the global game state
is maintained separately as the set of sub states for those
subareas.

According to the game system in [8], we assume that time
is divided into discrete units. We call this unit timeslot.
Timeslot tn is a range of time [T0 + ∆ ∗n, T0 + ∆ ∗ (n + 1)),
where T0 is the starting time of game, ∆ is a constant value,
and n is an integer number. The game space contains multi-
ple objects. Moving objects including player characters and
other static objects are all objects. An object has attributes
like position in game space, state and so on.

For a subarea v and timeslot tn, a tuple of attributes of
all objects in v is called the game state on v at tn, and



denoted as GS(tn, v). An event is an action taken by a
player or an incident which affects the game state of the
next timeslot. An event generated by player pi at timeslot
tn is denoted as E(tn, pi). In this paper, we assume that each
player generates at most one event in a timeslot. EL(tn, v) is
the set of all events generated in a subarea v during timeslot
tn, which is called event list.

2.2 Target Cheats to be Detected
In the above P2P-based game system, the responsible node
plays an important role to deliver events to player nodes. So,
if a malicious player node is selected as the responsible node,
it can easily falsify the event list before sending it so that
some player nodes will be disadvantaged or the responsible
node will be advantaged.

Even when the responsible node is fair, it has no means
to prevent malicious player nodes from sending impossible
events.

The proposed method provides a way to detect the above
two types of cheats as well as criminals and to correct the
falsified game state to the valid one by rollback.

2.3 Assumption
We assume that all nodes participating the game has a pair
of secret and public keys, and nodes are able to obtain a
public key of any other node. We also assume that all player
nodes have a random number seed after they log into the
game system.

We regard that the whole game system is constructed as a
set of finite state machines (FSMs) where each FSM corre-
sponds to the sub game system on a subarea and transits
every timeslot. That is, each state of the FSM for subarea v
is GS(tn, v), and GS(tn+1, v) can be uniquely determined by
GS(tn, v) and EL(tn, v). Responsible node receives events
from player nodes on its responsible subarea, and generates
an event list every timeslot. Then, the responsible node
transmits the event list to all player nodes in the subarea.
Each player node receives the event list from the responsi-
ble node, and it calculates the next state. Player nodes send
events for the next time slot to the responsible node, and
the game proceeds by repeating these steps.

2.4 Method for cheat detection
In order to detect cheats, the proposed method uses multi-
ple monitor nodes for each subarea which are selected from
player nodes similarly to the responsible node, and lets each
player node sends its event not only to the responsible node
but also to the monitor nodes as shown in Fig. 3. The
responsible node and the monitor nodes compare the game
states retained by them and events received by all players
periodically.

First of all, we give an explanation when a player node tries
to forge an impossible event which is not allowed at the
current game state. A player trying to use an item which
is not possessed by the player is an example of this case.
This can be prevented at a responsible/monitor nodes by
defining the next game state of FSM transit by an event list
with impossible event to be identical to the state transit by
the event list excluding the event.

Figure 3: Communication between player nodes and
responsible/monitor nodes

Even if neither nodes commit cheating, an event sent by a
player node may be received by the responsible node and
the monitor nodes at different timeslots due to network de-
lay. If some events are assigned in different timeslots among
responsible node and monitor nodes, they cannot track the
same state in their FSMs and thereby cannot detect cheat.

In the proposed method, basically the responsible node and
the monitor nodes follow majority decision on which times-
lot each event belongs to. However, conducting majority
voting among nodes every timeslot may not be practical in
terms of delay and message overhead. So, we reduce the
number of voting by the following way. When a player node
sends an event, it attaches to the message the timeslot at
which the event is sent. If the event is not received in the
same timeslot and the delay is within a predetermined range
(called discretion range), the responsible node determines
which timeslot the event corresponds to. If the delay ex-
ceeds discretion range, voting takes place. The discretion
range for each player node is adapted according to the av-
erage delay.

In the above mechanism, some malicious player nodes may
try to disturb the smooth progress of game by intentionally
delaying events to be sent so that voting frequently takes
place. This can be avoided by prolonging the discretion
range.

The responsible node may falsify the event list. This can
be classified into two cases: the case that the responsible
node falsifies the event list, and the case that the respon-
sible node intentionally ignores some events received from
some player nodes. In order to detect the former case,
the proposed method uses digital signature. When player
node sends event to the responsible node, it adds digital
signature to the event message. In the proposed method,
the responsible node and the monitor nodes compare events
received by player nodes periodically, and authenticity for
these events can be confirmed by checking the digital signa-
tures. If the responsible node and the monitor nodes have
authentic digital signatures for all events, in spite of hav-
ing different game states, some player node is considered



Figure 4: Possible cheat to attack proposed method

to send different events to them at the same timeslot. An
example of this situation is depicted in Fig. 4. Otherwise,
the responsible node or one of monitor nodes is considered
to commit a cheat. Our method detects this case by let-
ting each player node attach the hash value of the event list
received at the last timeslot to an event which the player
wants to generate at the current timeslot. An example of
this situation is shown in Fig. 5 (a). The latter case can
be detected by majority voting among the responsible node
and the monitor nodes.

Player node may try to entrap the responsible node or one
of the monitor nodes, by sending a different event to the
node as shown in Fig. 5 (b). Our method can detect this
case by letting responsible and monitor nodes to compare
events with signatures received from each player node.

An outsider node may intrude between two nodes, and im-
personate one of the nodes. This can be prevented by the
lobby server issuing a public key certificate for each node. In
order to prevent impersonating the lobby server, an existing
method to prevent impersonating utilized on web is used.

In order to add uncertainty to the game, a mechanism to
generate random numbers is required. In order to maintain
consistency among player nodes, the responsible node, and
the monitor nodes, all nodes have to retain a common ran-
dom number seed. Since all player nodes know the seed, it
may be possible to predict random numbers of the future,
and thus it can, for example, attack at advantageous timing.
This can be avoided by making each node to send a random
number taken from its environment (e.g., /dev/urandom in
Linux) as a part of event, and all nodes update the seed
based on the numbers.

2.5 Other issues
User Moving between Subareas
When a player character moves into another subarea, game
state regarding to the player has to be handed over to the
new subarea. In this case, messages are exchanged between
the two responsible nodes of the neighboring subareas. Mon-
itor nodes of those subareas also exchange messages. And
then, the game states are compared between the responsible
nodes and monitor nodes.

A player may try to disturb the smooth progress of game

Figure 5: :Detection of cheat by responsible node
and by player node

by frequently crossing the border between two subareas so
that voting frequently takes place. This can be avoided by
making the responsible nodes tentatively progress the game
assuming that there is no cheat, and perform voting after-
ward. If cheating is detected at the vote, rollback to the last
correct game state is carried out.

Event Spreads over Multiple Subareas
Events spread over multiple subareas are treated similarly
to the case of player moving between subareas. In this case,
the responsible node at the originating subarea sends event
to the responsible nodes at the influenced subareas. Monitor
nodes of those subareas also exchange messages. Cheating
is detected by comparing the game states between the re-
sponsible nodes and monitor nodes.

Node Failures
P2P based game system has to be aware of abrupt node
failures. If the responsible node fails, the role of responsible
node must be taken over by one of the monitor nodes. As
for the failure of a monitor node, extra monitor node is
allocated.

Preventing Collusion
If more than two nodes of the responsible node or the mon-
itor nodes make collusion (e.g., under control of a single
person or group), more than two nodes may participate on
cheating. In this case, voting may not work as expected.
This can be avoided by choosing unrelated nodes as mon-
itor nodes and responsible node, for example, based on IP
address.

3. ANALYSIS OF TRAFFIC OVERHEAD
In the proposed method, each player node is required to
send event messages not only to a responsible node but also
to the associated monitor nodes. In order to investigate
whether or not our proposed method is practical, we analyze
traffic amount which typical MMORPG will produce with
the proposed method.

3.1 Supposed Environment
We assume that each event issued by a player is sent as a
packet. We call it event packet. Event packet consists of
header part and payload part. The header part should con-
tain sender (player) ID, packet (timeslot) ID, event type and



location of event. So, we can estimate that the size of header
part would be about 16 bytes if each field uses 4 bytes. The
payload part contains the event value, complementary in-
formation of event, or so on, and its size varies depending
on games. In general, the size of the payload part could be
estimated around 16 to 48 bytes.

According to [3], the perceptually adequate response time
(i.e., the time from event occurrence till getting the updated
game state) in the network game is less than 100 to 300
msec. If the response time is larger than this threshold,
game player feels strange or uncomfortable.

According to the above discussion, we suppose that the in-
terval of timeslot is 200 msec, size of event packet is 64bytes
and the maximum number of player nodes in each subarea
is 100.

In our event delivery architecture [8] without monitor nodes,
each player transmits to a responsible node an event packet
every timeslot (requiring 64bytes/200msec = 2.56Kbps up-
link bandwidth), and a responsible node receives event pack-
ets from up to 100 player nodes every timeslot and delivers
the aggregated event list to all of the player nodes (requir-
ing 64byte × 100/200msec = 256Kbps downlink bandwidth
and 64byte × 100 × 100/200msec = 25.6Mbps uplink band-
width, for the maximum).

3.2 Extra Traffic at Player Node
In the above environment, if the proposed cheat detection
mechanism is utilized with two monitor nodes for each sub-
area, the extra traffic amount which each player may pro-
duce per second will be 64byte × 2/200msec = 5.12Kbps.
So, as long as the number of monitor nodes is small, traffic
overhead by adding monitor nodes is small enough.

3.3 Traffic Dealt with Monitor Node
In the proposed method, responsible node delivers all events
taken place in a subarea to player nodes, but monitor nodes
need not. Therefore, extra traffic is not produced from mon-
itor nodes to player nodes.

The traffic amount which each monitor node may receive
is 64byte × 100/200ms = 32000byte/sec = 256Kbps, which
is equivalent to the traffic which responsible node receives.
This bandwidth can easily be achieved by ADSL, CATV
or FTTH. So, most of player nodes connecting to such a
broadband network can be selected as monitor node.

In the proposed method, responsible node and the associ-
ated monitor nodes periodically exchange messages with the
latest game states which they retain, compare those game
states, and accept a majority decision if necessary. This
message exchange happens not every timeslot but longer
time interval such as every 50 timeslots (i.e., 10 sec) and so
on. Moreover, since each message exchanged contains only
a hash value of game state, its size is likely up to 16 bytes,
and thus negligible.

If cheat is detected and responsible node and monitor nodes
reach the majority decision, one monitor node with the valid
game state has to send to player nodes the set of event lists
which must have taken place since the last valid state so

Figure 6: Message sequence to detect cheat and cor-
rect game state

that each player node can roll back the wrong events since
the last valid state and transit to the latest valid state. The
total message size for the rollback will be the product of
the event size, the maximum number of players in a sub-
area and the number of timeslots in a monitoring period,
that is, 64byte × 100 players × 50 timeslots = 320Kbyte.
The required bandwidth is 320Kbyte/10sec = 256Kbps if
we assume that cheat is detected every monitoring period.
So, each monitor node may deal with up to 512Kbps traffic
for reception of event packets from player nodes and trans-
mission of packets to player nodes for rollback. We think
this is practical enough for nodes connected to broadband
network. The required bandwidth would actually be much
smaller since cheat and rollback must happen less frequently.

4. EXPERIMENTAL RESULTS
To evaluate the proposed method, we measured time to de-
tect a cheat and correct the game state since a cheat is
committed.

4.1 The Environment of Experiment
We conducted experiments on PlanetLab [9] which is a testbed
consisting of many nodes distributed over the world. The
number of responsible node, monitor nodes, and player nodes
for a subarea are 1, 2 and 50, respectively. In order to show
that the proposed method achieves practical performance
even when the delay between nodes are large, we assigned
responsible node and monitor nodes on nodes in Japan, and
player nodes on nodes in West Coast of the US. To sim-
plify the experimental setting, we executed programs of five
player nodes in one node of PlanetLab. Programs of re-
sponsible node and monitor nodes were executed on differ-
ent nodes. Network delay between nodes within Japan was
between 10 msec and 20 msec, and that between US and
Japan was between 150 msec and 300 msec.

4.2 Method of Experiment
In the experiment, we let the responsible node commit cheat
by sending falsified event list to player nodes every 1000
timeslots (corresponding to 300sec), and we measured time
for a monitor node to detect the cheat after it is commit-
ted. In addition, we measured time to correct game state
since detection of cheat. Fig. 6 shows packet flow since a
cheat is committed until the state is corrected. In this ex-
periment, we set timeslot length to be 300 msec, and let all



nodes to refer to the approximately same clock by giving the
difference among clocks in advance. As a result, the time
difference could be regulated within 20 msec. We repeated
the above experiment 20 times and each of which was con-
tinued for 20,000 timeslots (e.g., 6000sec). Each player node
sends an event to the responsible node and monitor nodes
every timeslot. The responsible node aggregates received
events in each timeslot and sends event list to player nodes.

4.3 Results of Experiment
The average time to detect cheat and correct the game state
by rollback was 1012 msec and 8023 msec, respectively. Ta-
ble 1 shows the experimental result. Since the length of
timeslot is 300 msec, and delay between nodes are about
200 msec, the time to detect cheating is considered to be
reasonable. On the other hand, it took about 8 seconds to
correct game state of player nodes. It would be practical if
cheat is not so frequently committed.

5. CONCLUSION
In this paper, we proposed a method to detect cheat for P2P-
based MMORPG system. The proposed method makes it
possible to detect cheat of sending falsified game state by
a malicious responsible node and cheat of sending impossi-
ble event by malicious player nodes, by introducing monitor
nodes which periodically check if the responsible node main-
tains the valid game state and makes majority decision to
correct the game state if necessary. Through analysis and
experiments in PlanetLab, we confirmed that the proposed
method can detect cheat in short time with low overhead.
Part of future work will be to extend the proposed method
to deal with collusion by multiple malicious player nodes.

6. REFERENCES
[1] C. Adams: “Internet X.509 Public Key Infrastructure

Certificate Management Protocols,” March 1999,
http://www.faqs.org/rfcs/rfc2510.html.

[2] C. G. Dickey: “Low Latency and Cheat-proof Event
Ordering for Peer-to-Peer Games,” Proc. of 14th ACM
Int’l. Workshop on Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV
2004), 2004.

[3] IEEE Std 1278-1993: “IEEE Standard for Distributed
Interactive Simulation- Application Protocols
(Revision and redesignation of IEEE Std 1278-1993),”
2002

[4] B. Knutsson, H. Lu, W. Xu and B. Hopkins:
“Peer-to-Peer Support for Massively Multiplayer
Games,” Proc. of IEEE Infocom 2004, 2004.

[5] J. Yan: “A Systematic Classification of Cheating in
Online Games,” Proc. of 4th ACM Workshop on
Network and System Support for Games
(NetGames2005), 2005.

Table 1: Time for Cheat Detection and Rollback
number of players detection time rollback time

(msec.) (msec.)

50 1012 8023

[6] N. E. Daughman: “Cheat-Proof Playout for
Centralized and Distributed Online Games,” Proc. of
IEEE Infocom 2001, 2001.

[7] P. Kabus, W. Terpstra, M. Cilia, A. Buchmann:
“Addressing Cheating in Distributed Massively
Multiplayer Online Games,” Proc. of 4th ACM
Workshop on Network and System Support for Games
(NetGames2005), 2005.

[8] S. Yamamoto, Y. Murata, K. Yasumoto, and M. Ito:
“A Distributed Event Delivery Method with Load
Balancing for MMORPG,” Proc. of 4th ACM
Workshop on Network and System Support for Games
(NetGames2005), 2005.

[9] PlanetLab Consortium: “PlanetLab,”
http://www.planet-lab.org/.

[10] United Admins Limited: “Cheating Death,”
http://www.unitedadmins.com/index.php?p=

content&content=cd.




