
Task Scheduling Algorithm for
Multicore Processor Systems with Turbo Boost and Hyper-Threading

Yosuke Wakisaka, Naoki Shibata, Keiichi Yasumoto, Minoru Ito

Nara Institute of Science and Technology
Nara, Japan

{yosuke-w, n-sibata, yasumoto, ito}@is.naist.jp

Junji Kitamichi

The University of Aizu
Fukushima, Japan

kitamiti@u-aizu.ac.jp

Abstract—In this paper, we propose a task scheduling algo-
rithm for multiprocessor systems with Turbo Boost and Hyper-
Threading technologies. The proposed algorithm minimizes the
total computation time taking account of dynamic changes of
the processing speed by the two technologies, in addition to
the network contention among the processors. We constructed
a clock speed model with which the changes of processing
speed with Turbo Boost and Hyper-threading can be estimated
for various processor usage patterns. We then constructed a
new scheduling algorithm that minimizes the total execution
time of a task graph considering network contention and the
two technologies. We evaluated the proposed algorithm by
simulations and experiments with a multi-processor system
consisting of 4 PCs. In the experiment, the proposed algorithm
produced a schedule that reduces the total execution time by
36% compared to conventional methods which are straightfor-
ward extensions of an existing method.

Keywords-Task scheduling algorithm, Multicore, Turbo
Boost, Hyper-Threading

I. INTRODUCTION

In recent years, multicore processors have been widely

used in various computing environments including data

centers and supercomputers. Since the produced heat by

the processors is limiting their clock speed, technologies

that change clock speed according to the temperature and

power consumption of the processor are employed in the

latest processors. Such technologies are used in the proces-

sors manufactured by Intel and AMD, and they are called

Turbo Boost and Turbo Core[1]. We refer to both of the

technologies by Turbo Boost, hereafter. Turbo Boost is a

technique for increasing the clock speed of some processor

cores within the thermal specification when other cores are

inactive and the temperature of the processor die is low.

Some processors also employ a technology called Hyper-

Threading[2] that enables the physical resources of one

physical processor to be shared between two or more logical

cores to improve the overall throughput.

Task scheduling methods are methods for assigning a

series of tasks to a parallel processing system. If we simply

apply existing task scheduling methods such as [3], [4],

[5] to a system consisting of multicore processors, many

tasks are likely to be assigned to a same multicore processor

because communication between cores on a same processor

die is much faster than communication between dies. In

this case, Turbo Boost cannot drastically increase the clock

speed of the cores since almost all of the processor cores

are active. In some cases, distributing tasks over different

dies yields a better schedule because of the boosted clock

speed. Thus, we need a scheduling algorithm that takes those

technologies into account in order to derive the optimal

schedule for systems with these technologies. There is diffi-

culty for some existing scheduling algorithms to consider

these technologies, since if tasks are scheduled by those

methods that assigns tasks one by one to each processor

core, the clock speed for executing the task can be slower

than the estimation at the time of assignment, since the clock

speed slows down as the subsequent tasks are assigned to

the other processors on the same die.

In this paper, we propose a new task scheduling method

that takes account of both Turbo Boost and Hyper-Threading

technologies and minimizes the processing time. The pro-

posed method takes a task graph specifying dependency

among tasks by a directed acyclic graph (DAG) and a

processor graph specifying the network topology among

available processors, and outputs a schedule which is an

assignment of a processor to each task. We constructed a

clock speed model for estimating the change of effective

processing speed of each core with Turbo Boost and Hyper-

Threading. We then constructed a new scheduling algorithm

that can more accurately estimate the effective clock speed

of each core, utilizing the proposed model.

In order to evaluate the proposed method, we conducted

simulations and experiments with actual processors. We

compared the proposed algorithm with two algorithms which

are extension of the Sinnen’s scheduling algorithm[6] that

takes account of network contention, and our clock speed

model is integrated in a straightforward way. As a result, our

method reduced the total processing time by up to 36% in

the experiments with a real system. The difference between

the scheduled processing time and the actual processing time

was 5% in average, and thus we confirmed the task schedul-

ing by our method is effective in the real environments.

Copyright © 2014 CSREA Press, ISBN: 1-60132-284-4; Printed in the United States of America

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'14 | 229

II. RELATED WORK

There are many kinds of task scheduling algorithms. In

this paper, we assume that task scheduling is assigning a

processor to each task, where the dependence of the tasks is

represented by a directed acyclic graph(DAG). The problem

to find the optimal schedule is NP-hard[6], and there are

many heuristic algorithms for the problems.

List scheduling is a classical task scheduling method that

assigns the processor that can finish each task to the task in

order of a given priority of the tasks. The priority can be

given by performing topological sorting on the dependence

graph of the tasks, for example. Sinnen et al. extended

the classical list scheduling algorithm, and proposed a new

method that takes account of the communication delay and

network contention[6]. This method assigns the input tasks

to the processors while bandwidth in communication paths

are reserved for each task so as to minimize the total

processing time.

Song et al. proposed a dynamic task scheduling method

that executes linear algebraic algorithms on multicore sys-

tems with shared or distributed memories. This method

scales well, but only applicable to specific tasks.

Jongsoo et al. proposed a task scheduling program called

Team scheduling that assigns stream programs to multi-

core processors [8]. Existing stream programs adjust data

transmission timings depending on the data size in the

given stream graph so as to efficiently utilize buffers of

the processors. This technique is called Amortize. However,

deadlock may occur when a large stream graph is input.

Team scheduling achieves deadlock-freeness by applying

Amortize to a part of the stream graph and suppressing

buffer utilization. Moreover, this method achieves better

throughput for the same buffer size as the existing methods.

Gotoda et al. proposed a task scheduling method which

minimizes recovery time from a single processor failure in

multicore processor environments[7]. This method is based

on the algorithm [6] proposed by Sinnen et al., and assigns

tasks to processors considering both network contentions and

recovery time in case of failure of a multicore processor, and

produces the optimal task schedule.

As far as we surveyed, there is no existing methods that

consider the changes of clock speed by Turbo Boost or

Hyper-Threading on a multicore processor system. Unlike

these existing methods mentioned above, we propose a new

method which targets the environments with a multicore

processor system with Turbo Boost and Hyper-Threading.

The proposed scheduling method minimizes the total execu-

tion time of the input task graph taking account of the two

technologies and network contention.

III. MODELING TURBO BOOST AND HYPER-THREADING

In this section, we briefly describe Turbo Boost and

Hyper-Threading technologies. The, we describe our model

for estimating effective clock speeds determined by the two

technologies.

A. Turbo Boost and Hyper-Threading

Turbo Boost is a technology for boosting the clock speed

for each core according to the computing load on the

processor die. It monitors the temperature and the electric

power consumed by the die and dynamically increase the

clock speed of some cores if other cores are not used[1].

In this paper, we assume that it determines the clock speed

only by the computing load of the all cores on the die.

Hyper Threading is a technology for sharing hardware

resources of a physical core among multiple logical cores[2].

When more than one threads are executed on a physical core,

the performance of the threads are lower than when only

one thread is executed on the physical core. We model this

change of execution speed by regarding the clock speed as

the index of execution speed at each core, and lowering this

speed index of each logical core according to the load on

the other logical cores. Hereafter, we call this speed index

effective clock speed.

B. Modeling

As mentioned above, Turbo Boost and Hyper-Threading

technologies can be modeled so that it automatically changes

the effective clock speed according to the kind of computa-

tional loads on each core. We also assume that the effective

clock speed is instantly changed according to the change of

core usage, in the course of task execution. It is also assumed

that each processor is in one of the following states: (1) idle,

(2) computation heavy, (3) memory access heavy, and (4) in-

between of (2) and (3).

In order to construct the model, we developed a program

that consists of two parts: the part that swaps two randomly

selected elements of an 80MB array, and a part that iter-

ates a simple loop staying in the L1 cache. The program

repeats executing these two parts in turn. We adjusted the

number of loops in the second part of the program, and

measured the time to execute this program on multiple cores

simultaneously. We specified the processor affinity to each

thread so that all threads are executed on the specified cores.

We calculated the effective clock speed from the measured

processing time.

We used a PC with Intel Core i7 3770T (2.5GHz, 4

physical processors, 8 logical processors, single socket),

16GB memory, Windows 7 (64bit), Java SE (1.6.0 21, 64bit).

We used Intel Turbo Boost monitor (Ver2.5) and CPU-Z

(Ver1.61.3) to measure the physical clock speed. We first

observed how the physical clock speed changes when the

number of active physical cores is changed. We show the

result of measurement in Table I. The left column shows

the processor state, where the 4 pairs represent the usage of

four physical processors and each pair like [2, 1] indicates

the usage of logical processors within the corresponding

Copyright © 2014 CSREA Press, ISBN: 1-60132-284-4; Printed in the United States of America

230 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'14 |

physical processor. The right column shows the clock speed

for the corresponding processor usage. The table shows that

the clock speed does not depend on the ratio of memory

access, but depends only on the number of active physical

cores.

In our proposed scheduling method, Hyper-Threading is

used only if tasks are already assigned to all physical

cores. Thus, we assume that when two logical threads are

running on a physical core, the effective clock speed only

depends on the ratio of memory access at each logical core.

We calculated the effective clock speed from the ratio of

execution time by each logical processor to the execution

time when one thread is executed on each physical core.

The results are shown in Table II.

We constructed a model for effective clock speed from the

results above, and we will determine the clock speed from

the usage of the processor at which task nodes are assigned

using this model.

IV. PROBLEM FORMULATION

In this section, we formulate the problem of task schedul-

ing taking account of Turbo Boost and Hyper-Threading

technologies. The symbols used in this paper is summarized

in Table.III.

The task scheduling is to find the schedule S that min-

imizes the total execution time lt(S) from the given task

graph G and processor graph N . A schedule is a tuple of

an assignment of a processor to each task, the starting and

finishing time of each task node, and the information of

bandwidth reservation on each processor link.

A task graph G is a DAG in which each node represents

a task to be performed. Each node in a task graph is called a

task node. The amount of computation to finish task node v
is denoted by Ccomp(v). A directed arc in the graph is called

a task link, and a task link from node va to vb indicates that

Table I: Effective clock speed with Turbo Boost

EffectiveProcessor states
clock speed

[2, 1], [1, 1], [1, 1], [1, 1] 3.7
[2, 1], [2, 1], [1, 1], [1, 1] 3.5
[2, 1], [2, 1], [2, 1], [1, 1] 3.3
[2, 1], [2, 1], [2, 1], [2, 1] 3.1
[3, 1], [1, 1], [1, 1], [1, 1] 3.7
[3, 1], [3, 1], [1, 1], [1, 1] 3.5
[3, 1], [3, 1], [3, 1], [1, 1] 3.3
[3, 1], [3, 1], [3, 1], [3, 1] 3.1
[4, 1], [1, 1], [1, 1], [1, 1] 3.7
[4, 1], [4, 1], [1, 1], [1, 1] 3.5
[4, 1], [4, 1], [4, 1], [1, 1] 3.3
[4, 1], [4, 1], [4, 1], [4, 1] 3.1
[1, 1], [1, 1], [1, 1], [1, 1] 2.5
[2, 2], [2, 2], [2, 2], [2, 2] 2.6
[3, 3], [3, 3], [3, 3] [3, 3] 2.3
[4, 4], [4, 4], [4, 4], [4, 4] 2.5

Processor state: 1:idle, 2:computation heavy, 3:memory access heavy, 4:in-between
of 2 and 3

Figure 1: Example task graph

Figure 2: Example processor graph

task va must be completed before task vb begins. A task link

e also represents communication between two nodes, and the

amount of data transfer for this link is denoted Ccomm(e).
The set of all task nodes and the set of all task links are

denoted V and E, respectively. Fig. 1 shows an example of

a task graph consisting of 3 task nodes and 2 task links.

A processor graph is a graph that represents the network

topology between processors. A node with only one link is

called a processor node, that corresponds to one processor

core. A node with two or more links is called a switch. A

switch is not capable of executing a task but only relays

communication. An edge is called a processor link, and it

represents a bidirectional communication link between pro-

cessors and switches. One multicore processor is represented

by multiple processor nodes, a switch and processor links

connecting them. The set of all processor nodes and the set

of all processor links are denoted P and R, respectively.

freq(p, s) denotes a function that gives the effective clock

speed of processor p from the state s of all cores on the

same die. Fig. 2 shows an example of a processor graph

consisting of three processor cores and three switches, or

two multicore processors and a switch.

In this paper, we use a network contention model based

on the model proposed by Sinnen et al.[6], and we make

the following assumptions. When data transfer is performed

over network links between two processor nodes, due to

bandwidth limitation these network links cannot perform

Table II: Effective clock speed with Hyper-Threading

Processor Ratio of
states exec. times

Effective clock speed

[1 , 1] 1.0 2.5

[2 , 2] 0.84 2.6

[3 , 3] 0.76 2.3

[4 , 4] 0.79 2.5

Copyright © 2014 CSREA Press, ISBN: 1-60132-284-4; Printed in the United States of America

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'14 | 231

Table III: Symbols used in this paper

Symbol Meaning
V Set of all task nodes
E Set os all task links
P Set of all processor nodes
R Set of all processor links

lt(S) Completion time of the last task node in sched-
ule S

G Task graph
N Processor graph

Ccomp(v) Computation cost for task node v ∈ V
Ccomm(e) Communication cost for task link e ∈ E
freq(s) Effective clock speed determined from proces-

sor state s
ni Task node for the i-th task

w(v) Execution time for task node v
c(e) Communication time at task link e

proc(n) Processor assigned to task node n ∈ V
pred(ni) Set of all parent nodes of ni

other data transfers. We also assume the following conditions

are satisfied: if data are transferred through a series of

processor links, downstream links cannot start data transfer

before upstream links; communication inside a same die

finishes instantly; all processors on a same die share a

network interface that can be used to communicate with

devices outside the die; all communication links outside dies

have the same bandwidth. Data transfer corrensponding to

task link e over a communication link outside dies requires

Ccomm(e) length of time. One processor can execute only

one task at a time. A task node cannot be executed until

all execution of parent nodes and all corresponding data

transfers are finished. It takes Ccomp(v)/freq(p, s) length

of time for processor node p to finish execution of task node

v, where s is the state of all cores on the same die as p.

V. PROPOSED ALGORITHM

In this section, we explain our scheduling algorithm.

This scheduling problem is known as NP-Hard[6], and thus

we propose a heuristic algorithm considering both network

contention and change of clock speed with Turbo Boost and

Hyper-Threading technologies by extending the scheduling

algorithm proposed by Sinnen et al.[6]. We use the clock

speed model described in Section 3 for this purpose.

Algorithm 1 List scheduling

INPUT: Task graph G = (V,E, w, c) and processor graph
H = (P,R).

1: Sort nodes n ∈ V into list L, according to priority scheme
and precedence constraints.

2: for each n ∈ L do do
3: Find processor p ∈ P that allows earliest finish time of n.
4: Schedule n on p.
5: end for

Algorithm 2 Scheduling considering network contention

INPUT: Task graph G = (V,E, w, c) and processor graph
H = (P,R).

1: Sort nodes nj ∈ V into list L in descending order of bl,
according to precedence constraints.

2: for each n ∈ L do do
3: Find processor p ∈ P that allows earliest finish time of nj ,

taking account of network bandwidth usage.
4: for each ni ∈ pred(nj) in a definite order do
5: if proc(ni) �= p then then
6: determine route R = [L1, L2, ..., Ll] from proc(ni)

to p.
7: schedule eij on R.
8: end if
9: end for

10: schedule nj on p.
11: end for
12: return the schedule.

Scheduling algorithms based on the list scheduling do not

perform well with systems where clock speeds of the proces-

sors are controlled by Turbo Boost or Hyper-Threading. This

is because the list scheduling assigns a processor to each task

node in turn, and it cannot know the effective clock speed

for each task during assignment, since the effective clock

speed is influenced by the execution of succeeding tasks.

The proposed method tentatively assigns processors to the

all succeeding tasks assuming that these succeeding tasks

are executed in a predetermined fixed clock speed. Then, it

estimates the execution time of the tasks by applying the

proposed model for the effective clock speed. Although this

execution time is calculated using the tentative schedule, we

regard this execution time as an approximation of the actual

execution time and make the schedule based on it.

Hereafter, we first explain the traditional list scheduling

algorithm, followed by the extension by Sinnen et al. for

considering network contention. Then, we give the details

of the proposed algorithm.

A. Existing Algorithms

The classical list scheduling algorithm is shown in Al-

gorithm 1. In the list scheduling, each task is assigned to

the processor that allows the earliest finish time of the task,

in descending order of bl, that is the length of remaining

schedule.

The algorithm proposed by Sinnen, et al. is shown in

Algorithm 2. Below, we give explanation for the pseudocode.

Line 2 to 11: Each task node nj ∈ L is assigned a processor

in order of the position in L.

Line 3: The processor assigned to nj is determined taking

account of network bandwidth usage. Reserved bandwidth

in line 7 is referred here.

Copyright © 2014 CSREA Press, ISBN: 1-60132-284-4; Printed in the United States of America

232 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'14 |

Algorithm 3 The proposed scheduling algorithm

INPUT: Task graph G = (V,E, vstart, Ccomp, Ccomm), pro-
cessor graph N = (P,R) and frequency model freq

1: Sprev = an empty schedule
2: Sort nodes in V into list L in descending order of the length

of succeeding tasks, according to precedence constraints.
3: for ni ∈ LFni is the first element in L do
4: Scur = an empty schedule, Tcur = ∞
5: for each pi ∈ P do
6: Scand = Sprev

7: for each preceding task nj of ni do
8: if pi is not assigned to nj on Scand then
9: Determine route r = [L1, L2, ..., Ll] from the

processor assigned to nj to pi
10: Reserve bandwidth Ccomm(the task link from nj to

ni) on route r in Scand

11: end if
12: end for
13: Calculate finishing time of ni including communication

time assuming that ni is executed on pi with the fixed
clock speed, and add the information of finishing time to
Scand

14: Schedule all unassigned tasks in Scand using Algorithm
2 and substitute the resulting schedule for S′

cand

15: Calculate execution time of each task node in S′
cand with

the proposed model for effective clock speed
16: if the total execution time of S′

cand < Tcur then
17: Scur = Scand, Tcur = the total execution time of

S′
cand

18: end if
19: end for
20: Remove ni from L
21: Sprev = Scur

22: end for
23: return Scur

Line 4 to 9: Bandwidth of eij is reserved for the network

route between the processor assigned to ni (which is the

parent node of nj) to the processor assigned to nj .

B. Scheduling Considering Frequency Change

The pseudo code for the proposed algorithm is shown

in Algorithm 3. In the algorithm, Sprev , Scur and Scand

retain portions of schedules in which only a part of the

all assignment is specified. The total execution time for

these incomplete schedules can be calculated by assigning

processors to the all unassigned tasks using algorithm 2,

and then applying our clock speed model. Sprev retains the

best incomplete schedule in which the all tasks prior to ni

are assigned, and other tasks are not assigned. Scur and

Tcur retain the current best incomplete schedule in which

ni and the prior tasks are assigned, and the corresponding

execution time, respectively. Below, we give explanation for

the pseudocode.

Line 3 to 22: A processor is assigned to each task node.

Line 5 to 19: Each processor pi is tentatively assigned to

the first task ni in list L so that the processor that achieves

the earliest finish time of the all tasks is found.

Line 7 to 13: Processor pi is assigned to task link ni.

Line 14: The all succeeding tasks after ni are scheduled

assuming that they are executed in a fixed clock speed.

Line 15: The total execution time for this schedule is

calculated using the proposed clock speed model.

Line 16 to 18: The best processor to be assigned to ni is

determined by the execution time.

VI. EVALUATION

In order to evaluate the efficiency of the schedule gen-

erated by the proposed method and the accuracy of the

proposed model for effective clock speed, we conducted

experiments using a real system and simulation-based com-

parisons.

A. Compared Methods

As we described in Section 2, we could not find an

existing task scheduling method considering Turbo Boost

or Hyper-Threading. In order to make fair comparisons,

we integrated our clock speed model into the Sinnen’s

scheduling algorithm in a straightforward way and made

two methods: SinnenPhysical that is a scheduling algorithm

that tries to assign only physical processors to the tasks,

and SinnenLogical that tries to assign all logical processors

to the tasks. These two methods are extended so that

they utilize the clock speed model when choosing the best

processor that allows the earliest finishing time of each task1.

As a preliminary experiment, we compared SinnenPhys-
ical and SinnenLogical with the original method proposed

by Sinnen et al. that does not consider the changes of

clock speed at all, and confirmed that SinnenPhysical and

SinnenLogical generate better schedules than the original

algorithm for our system configuration.

B. Configuration

We used a PC with Intel Core i7 3770T (2.5GHz, 4 phys-

ical processors, 8 logical processors, single socket), 16GB

memory, Windows 7 (64bit), and Intel 82579V Gigabit Eth-

ernet Controller as a computing node. The system consists

of four of these PCs connected with Gigabit Ethernet. We

implemented the programs to execute the scheduled tasks

using the standard TCP socket with Java SE (1.6.0 21, 64bit).

In order to eliminate the influence of the operating system,

we stopped the background tasks except the ones required

for continuing the minimum operations of the OS. We set

the threads’ affinities to each of processor cores so that each

task node is executed on the core specified by the schedule.

We tested the two real network topologies shown in Fig. 3.

For the simulation, we also tested a fully-connected network

topology. We used 420Mbps as the bandwidth of processor

1At Line 3 in Algorithm 2, the processor assigned to nj is determined
taking account of the two technologies. Only already assigned tasks are
considered to estimate the effective clock speed.

Copyright © 2014 CSREA Press, ISBN: 1-60132-284-4; Printed in the United States of America

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'14 | 233

Tree-shaped topology Fully-connected topology Star-shaped topology

Figure 3: Processor graphs used in evaluation

links outside the dies, that is obtained by measuring the

network bandwidth on the above system.

We used task graphs for Robot Control and Sparse Matrix

Solver from the Standard Task Graph Set[9], [10] in our

evaluation. The Sparse Matrix Solver has 98 nodes and 177

links and represents a sparse matrix solver of an electronic

circuit simulation generated by the OSCAR FORTRAN

compiler. This graph has relatively high level of parallelism.

The Robot Control has 90 nodes and 135 links. The Robot

Control task graph represents a parallel task for Newton-

Euler dynamic control calculation for the 6-degrees-of-

freedom Stanford manipulator. The Robot Control task has

lower level of parallelism compared to the Sparse Matrix

Solver. Since the ratio of computation and memory access

is not specified in these task graphs, we used the 4th state

of the processor load, which is in-between of computation

heavy and memory-access heavy states described in Section

3, for the all task nodes.

C. Efficiency of Generated Schedules

We evaluated the efficiency of generated schedules by

comparing the generated schedules with the proposed

method and the two comparison methods. We calculated the

execution time of generated schedules with simulation, and

measured the execution time on the real system by assigning

and executing tasks on the processors in the real system. We

performed simulations with the combinations of the two task

graphs and the three processor graphs. In the experiments,

we combined the two task graphs and the two processor

graphs except the fully-connected topology.

We compared the total execution time of the schedules

generated by the proposed method to the schedules generated

by the compared methods. The simulation results and the

experimental results are shown in Fig. 4 and 5, respectively.

These results show that the proposed method reduced the

total execution time by up to 43% in the simulation, and up

to 36% with the real system. We can see that the proposed

method has greater effect on the Sparse Matrix Solver task

than on the Robot Control task. This is because the Robot

Control task has less parallelism, and this limits the freedom

for scheduler to choose a processor for each task. Thus, the

algorithm has smaller freedom for controlling the generated

schedule. The results also show that our method has greater

effect on the tree-shaped or the star-shaped network topology

than the fully-connected topology. This is because the fully-

connected topology requires less communication time than

other two toplogies.

D. Accuracy of Effective Clock Speed Model

In order to evaluate the accuracy of the proposed model

for effective clock speed, we compared the total execution

time of the task graphs on the real system with the simulated

results. Fig. 6 and 7 show the results. In the experiment, the

error of the estimated execution time was no more than 7%,

and the average error was 4% . We also chose 20 random

task nodes from the graphs and compared the distribution of

the execution time for each of the nodes with the simulated

results. Fig. 7 shows the 90%-tiles of the measured execution

time with the simulated time. The maximum error was 16%

and the average error was 8.5%.

The difference between the results in the simulation and

the experiments is probably coming from the fluctuation

of network bandwidth and the processor load by the back-

ground tasks in the OS. However, the errors in the results

are not significant, and the proposed clock speed model is

sufficient for estimating the execution time of each task with

Turbo Boost and Hyper-Threading.

VII. CONCLUSION

In this paper, we formulated the problem for generating

task schedules minimizing the total execution time of task

graphs considering network contention and multicore pro-

cessors with Turbo Boost and Hyper-Threading technolo-

gies. We also modeled the two technologies so that the

effective processing speed of each core can be estimated.

Then, we developed a new task scheduling algorithm for

the problem. In the experiments for evaluation, the proposed

algorithm produced a schedule that is 36% faster than the

compared methods. Since the proposed method makes the

system finish execution of the tasks earlier, it also contributes

for saving power consumption of the whole system. As a

part of our future work, we are going to make our algorithm

capable of accepting multiple task graphs in real time.

Copyright © 2014 CSREA Press, ISBN: 1-60132-284-4; Printed in the United States of America

234 Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'14 |

Figure 4: Simulation result

Figure 5: Results with real devices

REFERENCES

[1] Intel: Intel turbo boost technology in intel core microarchitec-
ture(nehalem) based processors. Technical report, Intel (2008)

[2] Marr, D.T., Group, D.P., Corp, I.: Hyper-threading technology
architecture and microarchitecture. Intel Technology Journal
6(1) (2002) 4–15

[3] Kwok, Y., Ahamad, I.: Static scheduling algorithms for
allocating directed task graphs to multprocessors. ACM
Computing Surveys(CSUR) 31(4) (dec 1999) 406–471

[4] Sinnen, O., To, A., Kaur, M.: Contention-aware scheduling
with task duplication. Journal of Parallel and Distributed
Computing 71(1) (oct 2011) 77–86

[5] Sinnen, O., Sousa, L., Sandnes, F.: Toward a realistic task
scheduling model. Parallel and Distributed Systems, IEEE
Transactions on 17(3) (mar 2006) 263–275

[6] Sinnen, O., Sousa, L.: Communication contention in task
scheduling. Parallel and Distributed Systems, IEEE Transac-
tions on 16(6) (jun 2005) 503–515

Figure 6: Comparison between estimated and real execution

time of the whole task graph

Figure 7: Comparison between estimated and real execution

time of of each task node

[7] Gotoda, S., Ito, M., Shibata, N.: Task scheduling algorithm for
multicore processor system for minimizing recovery time in
case of single node fault. In: In Proceedings of Cluster, Cloud
and Grid Computing (CCGrid), 12th IEEE/ACM International
Symposium on. (may 2012) 260–267

[8] Park, J., Dally, W.J.: Buffer-space efficient and deadlock-free
scheduling of stream applications on multi-core architectures.
In: Proceedings of the 22nd ACM symposium on Parallelism
in algorithms and architectures. (2010) 1–10

[9] Tobita, T., Kasahara, H.: A standard task graph set for fair
evaluation of multiprocessor scheduling algorithms. Journal
of Scheduling 5(5) (2002) 379–394

[10] Tobita, T., Kasahara, H.: Standard task
graph set Home Page @ONELINE (2012)
http://www.kasahara.elec.waseda.ac.jp/schedule/.

Copyright © 2014 CSREA Press, ISBN: 1-60132-284-4; Printed in the United States of America

Int'l Conf. Par. and Dist. Proc. Tech. and Appl. | PDPTA'14 | 235

