
An Equational Logic Based Approach to the Security
Problem against Inference Attacks on

Object-Oriented Databases�

Yasunori ISHIHARA a Toshiyuki MORITA b† Hiroyuki SEKI b

Minoru ITO b

aGraduate School of Information Science and Technology, Osaka University
1–5, Yamadaoka, Suita, Osaka 565-0871 JAPAN

bGraduate School of Information Science, Nara Institute of Science and Technology
8916–5, Takayama, Ikoma, Nara 630-0192 JAPAN

� Preliminary versions of this article appeared in the Proc. 13th IFIP WG11.3 Conf. on

Database Security, 1999 [1], and in the Proc. 6th Int’l Conf. on Information and

Communications Security, 2004 [2].

† Currently, he is with Systems Development Laboratory, Hitachi, Ltd.

Contact: Yasunori ISHIHARA
Graduate School of Information Science and Technology
Osaka University
1–5, Yamadaoka, Suita, Osaka 565-0871 JAPAN
Phone: +81-6-6879-4516 FAX: +81-6-6879-4519
E-mail: ishihara@ist.osaka-u.ac.jp

Preprint submitted to Elsevier Science 22 December 2006

Abstract

A query is said to be secure against inference attacks by a user if there exists no database
instance for which the user can infer the result of the query, using only authorized queries
to the user. In this paper, first, the security problem against inference attacks on object-
oriented databases is formalized. The definition of inference attacks is based on equational
logic. Secondly, the security problem is shown to be undecidable, and a decidable sufficient
condition for a given query to be secure under a given schema is proposed. The idea of
the sufficient condition is to over-estimate inference attacks using over-estimated results of
static type inference. The third contribution is to propose subclasses of schemas and queries
for which the security problem becomes decidable. Lastly, the decidability of the security
problem is shown to be incomparable with the static type inferability, although the tightness
of the over-estimation of the inference attacks is affected in a large degree by that of the
static type inference.

Key words: object-oriented database, database security, inference attack, computational
complexity

2

1 Introduction

Nowadays, many people and organizations have a growing interest in data se-
curity. For a database system to be secure, secrecy, integrity, and availability of
data must be achieved appropriately with respect to a given security policy. Since
databases are often used as the core of the systems requiring high-level security
(e.g., e-business, Web services, etc.), it is desirable that the verification of the se-
curity of databases be possible. Various authorization models for databases have
been proposed and studied so far in order to both represent given security poli-
cies in a natural way and analyze the users’ authorization in a rigorous way. In
the context of object-oriented databases (OODBs), the method-based authorization
model [3,4] is one of the most elegant models since it is in harmony with the con-
cept that “an object can be accessed only via its methods” in the object-oriented
paradigm. In the model, an authorization A for a user u can be represented as a set
of rights m(c1, . . . , cn), which means that u can directly invoke method m on any
tuple (o1, . . . , on) of objects such that oi is an object of class ci with 1 ≤ i ≤ n.
On the other hand, even if m(c1, . . . , cn) �∈ A, u can invoke m indirectly through
another method execution in several models, e.g., protection mode in [5]. Although
such indirect invocations are useful for data hiding [5], they may also allow a vio-
lation of secrecy by inference attacks in some situations.

Example 1 Let Employee, Host, and Room be classes representing employ-
ees, hosts, and rooms, respectively. Suppose that a method computer returns
the host which a given employee uses, and a method location returns the room
in which a given host is placed. Also suppose that a method office, which re-
turns the room occupied by a given employee, is implemented as office(x) =
location(computer(x)).

Now suppose that the physical network topology is top secret information. In
this case, an authorization for a user u may be the one shown in Fig. 1,
where a solid (resp. dotted) arrow denotes an authorized (resp. unauthorized)
method to u. Suppose that u has obtained that computer(John) = mars
and office(John) = A626 using the authorized methods. Also suppose that u
knows the implementation body of office as its behavioral specification. Then, u
knows that location(computer(John)) = A626, and therefore, u can infer that
location(mars) = A626.

On the other hand, suppose that method computer retrieves top secret informa-
tion and therefore the authorization for u is set as shown in Fig. 2. Then, u
knows that location(mars) = A626, office(John) = A626, and office(x) =
location(computer(x)), similarly to the former case. However, u cannot con-
clude that computer(John) = mars only from the above information, since there
may be another host, say neptune, such that computer(John) = neptune and
location(neptune) = A626.

3

Let S be a database schema and c1,. . . , cn be classes in S. An n-ary query (i.e., a
composition of methods) q(x1, . . . , xn) is said to be secure at (c1, . . . , cn) against
inference attacks by u if u cannot infer the result of q(o1, . . . , on) for any objects
oi of class ci in any database instance I of S, using only authorized methods to
u. Otherwise, q(x1, . . . , xn) is insecure. For example, if computer(Employee)
and office(Employee) are authorized, then location(x) is insecure at Host since
the user can infer location(mars) = A626 under the database instance shown in
Fig. 1. On the other hand, it will be shown later that computer(x) is secure at
Employee when only location(Host) and office(Employee) are authorized. It is
important for database administrators to know which methods are secure and which
ones are not. When an administrator finds that a method which retrieves top secret
information is insecure against inference attacks by u, the administrator can prevent
u from attacking the method by changing the authorization for u.

The contribution of the paper is fourfold. First, the security problem against infer-
ence attacks is formally defined. As a formal model of OODB schemas, method
schemas [6] are adopted since they support such basic features of OODBs as
method overloading, dynamic binding, and complex objects, although the returned
value of a method execution is limited to a single object. The semantics is sim-
ply defined based on term rewriting. Then, user’s inference based on equational
logic is defined on the assumption that all the information available to the user is
the execution results of authorized methods and the implementation bodies of au-
thorized methods. Technically, user’s inference is also treated in the framework of
term rewriting. The execution result of a term can be computed as it is if the user
has authorization to all the methods in the term. Otherwise, there may exist an in-
direct way to compute the term by equivalently rewriting it to another term which
contains only authorized methods. Our definition of user’s inference provides the
rewriting rules representing such direct/indirect computation and enables us to treat
the security against inference attacks in a simple and rigorous way.

Example 2 Consider the case of Fig. 1 in Example 1 again. Let I denote the
database instance shown in Fig. 1. In this paper, user’s inference based on equa-
tional logic is treated in the framework of term rewriting as follows. First, executing
computer(John) and office(John) is authorized to the user u, and u can obtain
the execution results under I . This fact is represented by the following rewriting
rules:

computer(John) �I mars,

office(John) �I A626.

Intuitively, the rule �I represents a primitive step of inference by the user. Next, u
knows that the implementation body of office(x) is location(computer(x)). The
rewriting rule below represents this fact combined with the fact that the execution
result of office(John) is A626:

4

location(computer(John))�I A626.

Moreover, to simulate the inference based on equational logic, some more rewrit-
ing rules (e.g., location(mars) �I A626) are necessary. Then, whether the exe-
cution result of a term can be inferred corresponds to whether the term can be
reduced to an object by the rewriting rules �I . In this example, the execution result
of location(mars) can be inferred because of the rule location(mars) �I A626.
A little more complicated example will be given in Example 16 in Section 3.2.

Secondly, the security problem is shown to be undecidable. Also, a decidable suf-
ficient condition for a given query to be secure under a given schema is proposed.
The main idea of the sufficient condition is to “conservatively” approximate the
user’s inference. The user’s inference is object-level inference, while the approxi-
mation is class-level inference. To accomplish the class-level inference, the tech-
nique of type inference is used, where type inference means deriving the classes
to which the possible results of the method execution belong. Unfortunately, exact
type inference is impossible in general [6]. However, the type inference algorithm
proposed in [7] can compute a set of classes which contain all the correct classes,
although the set may contain some wrong classes. Using this algorithm, we can
conservatively approximate user’s inference.

The third contribution is to propose subclasses of schemas and queries for which the
security problem becomes decidable. We focus on the linearity of schemas and/or
queries, which is a popular notion of the field of term rewriting. A query (i.e., a term
with variables) t is linear if no variable in t appears more than once. A schema S
is linear if all the implementation bodies of the methods in S are linear. Then,
in the linear case, the security problem is shown to be decidable. More precisely,
the exact type inference of linear queries is possible under linear schemas, and the
user’s inference can be exactly simulated using the result of type inference (i.e., the
proposed sufficient condition mentioned above is also a necessary condition).

The fourth contribution is to investigate the relationship between type inferability
and decidability of the security problem (see also Table 1). The security of type-
inferable but non-linear queries is undecidable under linear schemas. On the other
hand, type inference is impossible for queries whose security is decidable under
linear schemas. These results imply that type inferability and decidability of the
security problem are incomparable (compare the second columns of Tables 1(a)
and 1(b)).

In this paper we discuss “logical” inference in OODBs in the sense that the result
of the inference is always true. The inference in statistical databases [9] is a kind
of logical inference. Ref. [10] proposes a mechanism that accomplishes maximum
data availability as long as given sensitive information is secure against logical in-
ference. Ref. [11] focuses on logical inference in OODBs. Besides inferability of
the result of a method execution, the article introduces the notion of controllability,
which means that a user can control (alter arbitrarily) an attribute-value of an ob-

5

ject in a database instance. We do not consider controllability since our query lan-
guage does not support update operations for database instances. However, since
our query language supports recursion while the one in [11] does not, detecting
inferability in our formalization is not trivial.

On the other hand, some of the recent researches concentrate on “statistical” in-
ference, i.e., inference with some statistical assumptions. Ref. [12] discusses the
inference based on Bayesian methods. In [13], a quantitative measure of inference
risk is formally defined. In [14,15], the security against statistical inference is de-
fined based on information theory.

This paper is organized as follows. In Section 2, we give the definition of method
schemas. In Section 3, we discuss inference attacks and formulate the security prob-
lem. In Section 4, we show that the problem is undecidable, and propose a sufficient
condition for a query to be secure. In Section 5, we show that the problem is de-
cidable in the linear case. In Section 6, we discuss the relationship between type
inferability and security decidability. Finally, in Section 7, we conclude this paper.

2 The OODB Model

We adopt method schemas [6,16] as a formal model of OODBs. Method schemas
have such basic features of OODBs as method overloading, dynamic binding, and
complex objects, although the returned value of a method execution is limited to a
single object. The semantics can simply be defined based on term rewriting [17].
In this section, we first introduce some notations and concepts for term rewriting.
Then, by using those notations and concepts, we restate the original definition of
method schemas.

2.1 Notations

Let F be a family of disjoint sets F0, F1, F2,. . . , where, for a nonnegative integer
n, Fn is a set of function symbols of arity n. For a countable set X of variables,
let TF (X) denote the set of all the terms freely generated by F and X . A term
t ∈ TM(X) is linear if every variable in X appears in t at most once.

For a set U , let Un denote the Cartesian product U × · · · × U︸ ︷︷ ︸
n

. Hereafter, we often

use a bold letter u to mean (u1, . . . , un) without explicitly mentioning it when n is
irrelevant or obvious from the context. Also, we write u ∈ u if u = ui for some i.

Define the set Pos(t) of positions of a term t as the smallest set of sequences of
positive integers with the following two properties:

6

• The empty sequence ε is in Pos(t).
• For each 1 ≤ i ≤ n, if r ∈ Pos(ti), then i · r ∈ Pos(f(t1, . . . , tn)), where the

center dot “·” represents the concatenation of sequences.

Each position in Pos(t) specifies a subterm of t. For example, 1 · 2 of
f(f(x, g(x)), g(x))) specifies the leftmost g(x). The subterm of t at position r is
denoted t/r. The replacement in t with t′ at position r, denoted t[r← t′], is defined
as follows:

• t[ε← t′] = t′;
• f(t1, . . . , ti, . . . , tn)[i · r← t′] = f(t1, . . . , ti−1, ti[r← t′], ti+1, . . . , tn).

Let V (t) denote the set of positions r of t such that t/r ∈ X . That is, V (t) is the
positions of variables of t, and hence, V (t) ⊆ Pos(t). Let σ : V (t) → TF (X) be
a substitution mapping, i.e., a mapping such that if t/r = t/r ′, where r, r′ ∈ V (t),
then σ(r) = σ(r′). For a term t ∈ TF (X), let tσ denote the term obtained from t
by replacing each variable t/r with σ(r). Also, let t[t/x] denote tσ, where σ is a
substitution mapping such that σ(ri) = ti with t/ri = xi for each ri ∈ V (t). For
example, f(x1, g(x1, x2))[(f(a), x1)/(x1, x2)] = f(f(a), g(f(a), x1)).

2.2 Database Schemas

Let C be a finite set of class names (or simply classes). Let M be a family of
mutually disjoint finite sets M0, M1, M2,. . . , where, for a nonnegative integer n,
Mn is a set of function symbols (or often called method names) of arity n. Each
Mn is partitioned into Mb,n and Mc,n. Let Mb =

⋃
n≥0 Mb,n and Mc =

⋃
n≥0 Mc,n.

Each mb ∈ Mb (resp. mc ∈ Mc) is called a base method name (resp. composite
method name). We say that M is a method signature.

Definition 3 (Method definition) Let c ∈ Cn. A base method definition of mb ∈
Mb,n at c is a pair (mb(c), c) for some c ∈ C. A composite method definition of
mc ∈Mc,n at c is a pair (mc(c), t) for some t ∈ TM({x1, . . . , xn}).

For 1 ≤ i ≤ n, let oi be an object of class ci (see Def. 8 for the formal definition of
objects). Informally, the above base method definition declares that the application
of mb to o = (o1, . . . , on) results in an object of c or its subclass, while the above
composite method definition states that the application of mc to o results in term
rewriting starting from t[o/x].

Definition 4 (Method schema [6,16]) A method schema S is a 5-tuple
(C,≤, M, Σb, Σc), where:

(1) C is a finite set of class names,
(2) ≤ is a partial order on C representing a class hierarchy,

7

(3) M is a method signature,
(4) Σb is a set of base method definitions, and
(5) Σc is a set of composite method definitions.

For every combination c ∈ Cn and m ∈ Mn, there must exist at most one method
definition of m at c.

When c′ ≤ c, we say that c′ is a subclass of c and c is a superclass of c′. We naturally
extend ≤ to n-tuples of classes as follows: For two tuples c = (c1, . . . , cn) and
c′ = (c′1, . . . , c

′
n), we write c ≤ c′ iff ci ≤ c′i for all i.

Example 5 An example of a method schema S1 is shown in Fig. 3. Manager is a
subclass of Employee, and Server is a subclass of Host. Method boss(e) returns
the direct boss of employee e, and method supervisor(e) returns the “second least
manager” among the indirect bosses of e.

2.3 Inheritance

Let c ∈ Cn and m ∈Mn. By Def. 4, the method definition of m at c may not exist.
In this case, the definition of m at the smallest superclass of c is “inherited” by c.
The inherited method definition is called resolution and defined as follows:

Definition 6 (Resolution) Let S = (C,≤, M, Σb, Σc), mb ∈ Mb,n, and c ∈ Cn.
Suppose that (mb(c

′), c′) ∈ Σb is the base method definition of mb at the smallest
c′ above c, i.e., whenever (mb(c

′′), c′′) ∈ Σb and c ≤ c′′, it is the case that c′ ≤ c′′.
The resolution Res(mb(c)) of mb at c is defined as c′. If such a unique base method
definition does not exist, then Res(mb(c)) is undefined, denoted ⊥.

The resolution of a composite method is defined in the same way. Suppose that
(mc(c

′), t′) ∈ Σc is the composite method definition of mc at the smallest c′ above
c. Then, Res(mc(c)) is defined as t′. If such a unique composite method definition
does not exist, then Res(mc(c)) is undefined, denoted ⊥.

Example 7 Consider schema S1 shown in Fig. 3. By Def. 6,
Res(location(Server)) = Room. In other words, class Server inher-
its method definition (location(Host), Room) ∈ Σb. On the other hand,
Res(boss(Server)) = ⊥ since no superclass of Server has a definition of boss.

2.4 Database Instance

A database instance of a method schema assigns a set of objects to each class name.
Also, it gives the semantics of base methods.

8

Definition 8 (Database instance) A database instance of a method schema S is a
pair I = (ν, μ) with the following properties:

(1) To each c ∈ C, ν assigns a finite disjoint set ν(c) of object identifiers (or sim-
ply, objects). Each o ∈ ν(c) is called an object of class c. Let OI =

⋃
c∈C ν(c).

For c = (c1, . . . , cn), let ν(c) denote ν(c1)× · · · × ν(cn).
(2) For each mb ∈ Mb,n, μ(mb) is a partial mapping from On

I to OI which satis-
fies the following two conditions. Let c, c′ ∈ Cn.
(a) If Res(mb(c)) = c′, then μ(mb) |ν(c) is a total mapping to

⋃
c≤c′ ν(c),

where “|” denotes that the domain of μ(mb) is restricted to ν(c).
(b) If Res(mb(c)) = ⊥, then μ(mb) is undefined everywhere in ν(c).
If μ(m)(o) is undefined, then we write μ(m)(o) = ⊥.

In the above definition, ν(c)’s are defined to be disjoint. This definition can be
easily modified so that ν(c) ⊆ ν(c′) for any c and c′ such that c ≤ c′. However,
as discussed later, we are often interested in the most specific (smallest) class of a
given object. Hence, it is preferable that ν(c)’s are defined to be disjoint.

2.5 Method Execution

A term in TM (OI) is called an instantiated term. That is, an instantiated term con-
sists of method names in M and objects in OI . The one-step execution relation→I

on the instantiated terms, based on the innermost reduction strategy, is defined as
follows:

Definition 9 (Method execution) For a term t ∈ TM (OI), let m(o) (o ∈ ν(c)) be
a subterm of t at position r.

(1) If m ∈Mb and μ(m)(o) �= ⊥, then t→I t[r← μ(m)(o)].
(2) If m ∈Mc and Res(m(c)) = t′ �= ⊥, then t→I t[r← t′[o/x]].

Note that taking the innermost reduction strategy (i.e., rewriting only the term in
the form of m(o)) is essential since the definition of m cannot be bound before
knowing the classes of the arguments of m.

Let →∗
I be the reflexive and transitive closure of →I . The execution result of t,

denoted t↓I , is a term t′ such that t →∗
I t′ and there exists no t′′ such that t′ →I

t′′. Since →I has Church-Rosser property [17], the execution result is uniquely
determined. If t↓I ∈ OI , then the execution of t is successful, and if t↓I �∈ OI ,
then the execution of t is aborted. In both cases (i.e., if t↓I exists), the execution
of t is terminating. On the other hand, if t↓I does not exist, then the execution of t
is nonterminating. We omit the subscript I of→I ,→∗

I , and ↓I if I is irrelevant or
obvious from the context.

9

Example 10 An example of a database instance I1 = (ν1, μ1) of S1 is
shown in Fig. 4. ν1 is represented by gray rectangles, e.g., ν1(Employee) =
{Alice, John}. μ1 is represented by arrows, e.g., μ1(boss)(John) = Alice,
μ1(computer)(John) = mars. By Def. 9, supervisor(Alice) is executed as fol-
lows:

supervisor(Alice)→I1 supervisor(boss(Alice))

→I1 supervisor(Sara)

→I1 boss(Sara)

→I1 Bob.

Thus supervisor(Alice)↓I1 = Bob.

3 The Security Problem

3.1 Authorization

Various sophisticated method-based authorization models for OODBs have been
proposed [3,4]. In this paper, however, discussing authorization models is not our
main purpose, and therefore we adopt the following simple but general method-
based authorization model.

Definition 11 (Authorization) Let S = (C,≤, M, Σb, Σc). A right is a term in
the form of m(c), where m ∈ Mn and c ∈ Cn. An authorization A is a finite
set of rights and is interpreted as follows. Suppose that a user requests to directly
invoke a method m on a tuple o of objects. Let c be the tuple of the classes such that
o ∈ ν(c). If m(c) ∈ A, then the invocation is permitted. Otherwise, it is prohibited.

An authorization is often modeled as a pair of a base authorization and a set of
inference rules. An example of an inference rule is “if u is authorized to invoke m
on objects of c, then u is also authorized to invoke m on objects of the subclasses
of c.” When c1 ≤ c and c2 ≤ c, the base authorization {m(c)} is expanded into
{m(c), m(c1), m(c2)} by this rule. In this paper, we assume that a given authoriza-
tion has already been expanded.

Example 12 Define an authorization A1 for a user u under S1 in Fig. 3 as follows:

A1 = {computer(Employee),

supervisor(Employee), supervisor(Manager),
office(Employee), office(Manager)}.

10

Consider the instance I1 in Fig. 4. Executing office(John) by u is permit-
ted since John ∈ ν1(Employee) and office(Employee) ∈ A1. On the other
hand, executing computer(Sara) is prohibited since Sara ∈ ν1(Manager) but
computer(Manager) �∈ A1.

3.2 Inference Attacks and the Security Problem

In this section, we formalize inference attacks (Def. 15). We generally assume that
user’s knowledge is modeled as a set of (in)equalities (Section 3.2.1). For example,
suppose that a user u executes office(John) and obtains the result A626. The infor-
mation that u obtains is office(John)↓ = A626. Then, we restrict the power of the
user’s inference in a reasonable way and demonstrate that user’s inference is mod-
eled as equational reasoning (Section 3.2.2). Section 3.2.3 states formal definitions.
In Def. 15, how to perform equational reasoning is defined as term rewriting rules.
Then, in Def. 17, we define the security problem. Let τ be a term representing the
query to be attacked. This term can be computed as it is if the user has authorization
to all its methods. Even if the user does not have authorization to some methods in
τ , there may exist an indirect way to compute τ by equivalently rewriting τ to an-
other term involving only authorized methods. The term rewriting rules defined in
Def. 15 are the rules that represent how to compute terms in a direct and/or indirect
way. Thus, if τ cannot be rewritten into an object by the rewriting rules, τ is said to
be secure.

3.2.1 General Attacker Model

First of all, we define the equalities which u can obtain directly from the execution
results of authorized methods and their resolutions (Def. 6) as follows:

(∗1) User u knows m(o)↓ = o iff m(c) ∈ A, o ∈ ν(c), and m(o)↓ = o ∈ OI .
That is, u knows what the result of m(o) is if executing m(o) is authorized
and the execution is successful.

(∗2) User u knows Res(m(c)) = t iff m(c) ∈ A and Res(m(c)) = t. That is, u
knows the type declaration of m at c (when m is a base method) or the be-
havioral specification of m at c (when m is a composite method), if executing
m(o) (o ∈ ν(c)) is authorized.

In Example 1, (∗1) and (∗2) are stated informally. Also suppose that user u knows
that o �= o′ for distinct objects o and o′ (e.g., u knows John �= Alice, Sara �= A626,
and so on). Then, to infer new knowledge, u can use at least four inference rules on
equalities: reflexivity, symmetry, transitivity, and substitutivity (i.e., if t i = t′i for
all i, then f(t) = f(t′)).

11

3.2.2 Assumptions on the Attacker Model

To make the attacker model theoretically simple, we would like to assume the fol-
lowing two conditions:

(Q1) User u can use no inference rules other than reflexivity, symmetry, transitiv-
ity, and substitutivity. In other words, the user’s knowledge is the congruence
closure of the direct knowledge (∗1) and (∗2).

(Q2) The knowledge of u is represented by a set of ground equalities (i.e., equalities
without variables).

In what follows, we demonstrate that assuming these conditions is reasonable.

(Q1) mentions the inference power of the user. We must exclude at least trivial
cases where the user can use other inference rules. Let us examine one trivial case
illustrated in the following example:

Example 13 Recall the second case of Example 1, where u cannot infer
computer(John)↓ = mars since there may be another host h such that
computer(John)↓ = h and location(h)↓ = A626. However, if u knows that
location(o)↓ �= A626 for any other object o in the database instance, then u can
conclude that computer(John) = mars.

In this example, u uses an inference rule such that an equality is inferred from the
contents of OI and a set of inequalities. However, such inference becomes impos-
sible if u does not know what OI is. Practically, just hiding OI from the user is
sufficient for making the inference using inequalities impossible.

(Q2) requires that non-ground equalities obtained by (∗2) can be translated into
equivalent ground equalities. The following example suggests when such transla-
tion is possible.

Example 14 Consider a schema with a composite method mc which has the same
resolution t at every class c ∈ C. Let A = {mc(c) | c ∈ C} be an authorization for
a user u.

Assume that u knows what C is. Then, u can infer that mc(t
′)↓ = t[t′/x]↓ for any

term t′ (no matter whether t′↓ ∈ OI or not), since mc has the same resolution t
at any class. Note that, in this inference, u does not need to know which class t ′↓
belongs to. In other words, u can substitute any term to the variable x in mc(x)↓ =
t↓.

On the other hand, if u does not know what C is, then u cannot conclude that
mc(t

′)↓ = t[t′/x]↓ without exactly inferring the class to which t′↓ belongs (or
inferring that the execution of t′ is aborted) since there may be another class c in
C such that t′↓ ∈ ν(c) and Res(mc(c)) �= t. However, since type inference [6,7]

12

is useless when u does not know what C is, to know the class to which t′↓ belongs
is to infer the exact value of t′↓. Consequently, u can substitute only an object of
class c to the variable x in mc(x)↓ = t↓.

Thus, when C is hidden from u, each equality Res(mc(c)) = t obtained by (∗2)
can be translated into {mc(o)↓ = t[o/x]↓ | o ∈ ν(c)}, which is a finite set of
ground equalities.

In summary, assuming (Q1) and (Q2) is practically reasonable. This means that
user’s inference can be defined as the congruence closure (by (Q1)) of a finite set
of ground equalities (by (Q2)) induced by (∗1) and (∗2). For technical reasons, we
define the congruence closure through rewriting rules �I,A introduced below. From
the correctness of Knuth-Bendix completion [17], t↓ = o iff t is reducible to o by
�I,A.

3.2.3 Formal Definitions

Now, we provide formal definitions of inference attacks and the security problem.

Definition 15 (Inference attacks) Define PI,A as the minimum set of rewriting
rules �I,A on TM(OI) satisfying the following three conditions. Intuitively, t�I,A o
means that the user knows or can infer that t↓ = o.

(A) If m(c) ∈ A, o ∈ ν(c), and m(o)↓ = o ∈ OI , then PI,A contains

m(o) �I,A o.

This corresponds to (∗1).
(B) If mc(c) ∈ A, mc ∈ Mc, o ∈ ν(c), mc(o)↓ = o ∈ OI , and Res(mc(c)) =

t �= ⊥, then PI,A contains

t[o/x] �I,A o.

This essentially corresponds to (∗2).
(C) If PI,A contains t �I,A o and t′′ �I,A o′′ such that t′′ is a proper subterm of t at

r′′, then PI,A contains

t[r′′← o′′] �I,A o.

This simulates Knuth-Bendix completion procedure and, roughly speaking,
corresponds to symmetry.

By definition, the right-hand side of each rule is an object. Note that the existence
of t �I,A o in PI,A implies t→∗

I o.

Define⇒I,A as the one-step reduction relation by �I,A. That is, t⇒I,A t′ iff there
exists a subterm t′′ of t at r′′ such that t′′ �I,A o′′ ∈ PI,A and t′ = t[r′′← o′′] (This

13

corresponds to substitutivity). Let⇒∗
I,A denote the reflexive and transitive closure

of⇒I,A (This corresponds to reflexivity and transitivity). For readability, we often
write �I and PI instead of �I,A and PI,A, respectively.

Example 16 For S1 in Fig. 3, I1 in Fig. 4, and A1 in Example 12, PI1,A1 is com-
puted as shown in Fig. 5. Rules (A1)–(A10) are obtained by Def. 15(A), and (B1)–
(B8) by Def. 15(B) with composite methods supervisor and office. Rules (C1) and
(C2) are obtained by Def. 15(C). For example, (C1) is derived from (A1) and (B5).

Rule (C1) indicates that the user can infer that location(mars)↓ = A626, as
stated in the first case of Example 1. Moreover, rule (C2) indicates that location
even for a server jupiter can be inferred. Let τ = office(boss(Sara)) and
τ ′ = office(boss(John)). Then,

τ ⇒I1 office(Bob)⇒I1 B533.

Thus user u can infer that τ↓ = B533. On the other hand, u cannot infer the value
of τ ′↓ (although τ ′↓ = B533) since no subterm of τ ′ can be rewritten by the rules
in PI1,A1 .

Definition 17 (The security problem) A term τ ∈ TM(X) is said to be secure at
a tuple c of classes under a schema S and an authorization A if there exists no
instance I = (ν, μ) of S such that τ [o/x] ⇒∗

I,A o for any o ∈ ν(c) and o ∈ OI .
Otherwise, τ is insecure at c under S and A. The security problem is to determine
whether a given τ is secure at a given c under given S and A.

4 General Case

4.1 Undecidability of the Security Problem for General Schemas

We show that the security problem is undecidable by reducing the Modified Post’s
Correspondence Problem (MPCP) [18] to the security problem. The reduction strat-
egy was obtained by modifying that of the proof of the undecidability of the type-
consistency problem [8].

Let (w,u) be an instance of the MPCP over alphabet Σ = {0, 1}, where w =
(w1, . . . , wn), u = (u1, . . . , un), and wi, ui ∈ Σ∗. A solution of (w,u) is a finite
sequence (i1, i2, . . . , ik) of indices such that wi1wi2 · · ·wik = ui1ui2 · · ·uik and
i1 = 1. In what follows, we construct a schema Sw,u, a term τ , and an authorization
A such that (w,u) has a solution iff there exists a database instance I of Sw,u under
which the execution result of τ can be inferred.

14

Sw,u has classes c, c1,. . . , cn, c′0, c′1, cok, and cdummy, where ci ≤ c for each 1 ≤ i ≤
n, c′0 ≤ cok, and c′1 ≤ cok. Each ci (1 ≤ i ≤ n) represents the index i of w and u. c′0
and c′1 represent symbols 0 and 1 in Σ, respectively. Classes c and cok represent the
“separators” and “end markers” in database instances, respectively, as explained in
the example below. Class cdummy represents dummy execution results.

Sw,u has unary base methods next and dummy, unary composite methods isw,
iswi,j, isu, and isui,j, and a binary base method post. Their method definitions are
constructed from (w,u) as follows. First, the definition of method next is:

(next(ci), c) for each 1 ≤ i ≤ n,

(next(c), cok),

(next(c′0), cok),

(next(c′1), cok).

A pair of a database instance (more precisely, the semantics of next) and an object
of class c1 is regarded to represent two things, a candidate (i1, . . . , ik) for a solution
of (w,u) and a string s over Σ, as illustrated in the following example.

Example 18 Consider the following instance (w,u) of the MPCP:

w1 = 101, u1 = 1,

w2 = 00, u2 = 100,

w3 = 11, u3 = 011.

A typical database instance I2 of Sw,u is shown in Fig. 6. In the figure, method
next is represented by arrows. Pair (I2, o1) represents the following candidate and
string. First, the candidate is represented by the sequence of objects from o1 to
the “separator” object o of class c (the upper half of the figure). In the figure, the
objects are of classes c1, c3, and c2, so the candidate is (1, 3, 2). On the other hand,
the string is represented by the sequence of objects between the “end marker”
object ook of class cok and o (the lower half of the figure). In the figure, the objects
are of classes c′1, c′0, c′1, c′1, c′1, c′0, and c′0 (in the reverse order with respect to next),
so the represented string is 1011100.

On the other hand, pair (I ′
2, o

′
1) shown in Fig. 7 represents no candidates since no

object of class c is “reachable” from o′
1 under I ′

2.

Suppose that (I, o1) represents a candidate (i1, . . . , ik) and a string s as is the case
of Fig. 6 (s is regarded as an infinite string if no “end marker” object of class cok is
reachable from the “separator” object o). To check whether the candidate is actually
a solution, we examine whether both wi1 · · ·wik = s and ui1 · · ·uik = s. Unary
composite methods isw and isu are used for that purpose. Let wi = wi,1wi,2 · · ·wi,di

15

for each i (1 ≤ i ≤ n), where wi,j ∈ Σ. The definitions of method isw and its
auxiliary composite methods iswi,j are constructed as follows:

(isw(ci), iswi,1(· · · iswi,di
(isw(next(x))))),

(isw(c), next(x)),

(iswi,j(c
′
0), next(x)) if wi,j = 0,

(iswi,j(c
′
1), next(x)) if wi,j = 1,

(iswi,j(cok), dummy(x)),

(iswi,j(cdummy), x),

where unary base method dummy is defined so that it always returns an object
of class cdummy. If wi1 · · ·wik = s, then isw(o1) returns an object of class cok.
Otherwise, isw(o1) returns an object of a class other than cok. Note that if (I, o1)
represents no candidate as is the case of Fig. 7, then the execution of isw(o1) is
nonterminating under I . Method isu is defined in the same way.

Example 19 For the instance (w,u) of the MPCP in Example 18, method isw and
its auxiliary methods are defined as follows:

(isw(c1), isw1,1(isw1,2(isw1,3(isw(next(x)))))),

(isw(c2), isw2,1(isw2,2(isw(next(x))))),

(isw(c3), isw3,1(isw3,2(isw(next(x))))),

(isw(c), next(x)),

(isw1,1(c
′
1), next(x)), (isw1,2(c

′
0), next(x)), (isw1,3(c

′
1), next(x)),

(isw2,1(c
′
0), next(x)), (isw2,2(c

′
0), next(x)),

(isw3,1(c
′
1), next(x)), (isw3,2(c

′
1), next(x)),

(iswi,j(cok), dummy(x)) for any pair (i, j),

(iswi,j(cdummy), x) for any pair (i, j).

The execution of isw(o1) under I2 in Fig. 6 is as follows:

isw(o1)→∗
I2 isw1,1(isw1,2(isw1,3(isw3,1(isw3,2(isw2,1(isw2,2(isw(o))))))))

→∗
I2 ook.

Lastly, binary base method post is defined so that it always returns an object of
class cdummy regardless of its arguments.

Define authorization A as

A = {post(cok, cok), isw(c1), isu(c1)}.

16

Let τ = post(isw(x), isu(x)).

Lemma 20 τ is insecure at c1 iff (w,u) has a solution.

PROOF. Only if part. τ involves method post. Since methods isw and isu never
invokes post, in order for the user to know the execution result of τ , the user must
invoke method post directly. By the definition of A, only post(cok, cok) is autho-
rized. Therefore, if τ is insecure at c1, there must be a pair (I, o1) such that the
execution results of both isw(o1) and isu(o1) are objects of class cok. Such (I, o1)
represents a solution of (w,u).

If part. Suppose that (w,u) has a solution. Then, there must be a pair (I, o1) such
that the execution results of both isw(o1) and isu(o1) are objects of class cok. There-
fore, the user can simply execute τ [o1/x] and obtain the execution result. That is, τ
is insecure at c1. �

Thus, we have the following theorem:

Theorem 21 The security problem is undecidable.

Note that the undecidability holds even if the “height” of the class hierarchy is
one. On the other hand, in our conjecture, the security problem is decidable if the
“height” of the class hierarchy is zero. The proof will be similar to the one of
Theorem 1 in [8], which shows the decidability of the type-consistency problem
for schemas with the height of the class hierarchy zero.

4.2 A Decidable Sufficient Condition for the Security

In this section we propose a decidable sufficient condition for a given term τ ∈
TM(X) to be secure at c. The main idea is to use classes instead of objects for an-
alyzing the security. To do so, we introduce new rewriting rules on TM(C) which
“conservatively” approximate �I,A, i.e., if τ is insecure at c, then τ [c/x] is re-
ducible to a class c by the new rewriting rules. Intuitively, each t[c/x] ∈ TM(C)
is considered as the set of instantiated terms t[o/x] such that o ∈ ν(c). In order to
compute the “execution result” of t[c/x], the result ES of type inference would be
useful, where ES is defined as follows: c ∈ ES(t, c) iff there is a database instance
I = (ν, μ) of S such that t[o/x]↓I ∈ ν(c) for some o ∈ ν(c).

In what follows, we first summarize the known results on type inference for method
schemas. Next, new rewriting rules for conservatively approximating inference at-
tacks are introduced. Then, a sufficient condition for the security is proposed (The-
orem 25) and its correctness and complexity are discussed.

17

4.2.1 Known Results on Type Inference

Unfortunately, ES is uncomputable in general [6]. However, it is possible to com-
pute an over-estimation Z : TM(C) → 2C of ES , that is, Z(t[c/x]) ⊇ ES(t, c)
for every pair of t and c. The algorithm in [7] gives an over-estimation of ES by
computing the least fixpoint of Ẑ satisfying the following four kinds of equations:

• For each c ∈ C, Ẑ(c) = {c};
• For each pair (mb(c), c′) such that Res(mb(c)) = c′, Ẑ(mb(c)) = {c | c ≤ c′};
• For each pair (mc(c), t) such that Res(mc(c)) = t, Ẑ(mc(c)) = Ẑ(t[c/x]);
• For every term m(t1, . . . , tn) ∈ TM(X) and any tuples c1,. . . , cn of classes,

Ẑ(m(t1[c1/x1], . . . , tn[cn/xn])) =
⋃

c′∈Ẑ(t1[c1/x1])×···×Ẑ(tn[cn/xn])

Ẑ(m(c′)).

Let Z be the least fixpoint of Ẑ. Also let t be an arbitrary term in TM (X). It is
guaranteed in [7] that Z(t[c/x]) ⊇ ES(t, c). Moreover, if S contains only unary
methods, then Z is identical with ES .

Example 22 Using the algorithm in [7], we can compute Z for schema S1 in
Fig. 3. The result is presented in Fig. 8. For example, Z(boss(Employee)) =
{Employee, Manager} means that for any object e of Employee, the result of
boss(e) is an object of either Employee or Manager. Actually, the obtained Z is
equal to ES1 since S1 contains only unary methods.

4.2.2 Conservative Approximation of Inference Attacks

In order to approximate inference attacks, we use an over-estimation Z of ES since
ES is uncomputable. The smaller Z(t[c/x]) is, the better approximation we have,
although the approximation is still conservative even when Z(t[c/x]) = C for
every pair of t and c. In the next definition, the class-level inference, which ap-
proximates the object-level inference �I,A, is defined as inference rules �S,A,Z on
TM(C). The definition is similar to the definition of �I,A (Def. 15) except that the
objects are replaced with the possible classes indicated by Z. Since Z is an over-
estimation of ES , all the object-level inference is captured by the corresponding
class-level inference (see Theorem 25 below for formal discussion), but the con-
verse is not necessarily true.

Definition 23 (Approximation of inference attacks) Define PS,A,Z as the mini-
mum set of rewriting rules �S,A,Z on TM (C) satisfying the following three con-
ditions:

(A) If m(c) ∈ A, then PS,A,Z contains

m(c) �S,A,Z c

18

for each c ∈ Z(m(c)).
(B) If mc(c) ∈ A, mc ∈Mc, and Res(mc(c)) = t �= ⊥, then PS,A,Z contains

t[c/x] �S,A,Z c

for each c ∈ Z(t[c/x]).
(C) If PS contains t �S,A,Z c and t′′ �S,A,Z c′′ such that t′′ is a proper subterm of t

at r′′, then PS,A,Z contains

t[r′′← c′′] �S,A,Z c′

for each c′ ∈ Z(t[r′′← c′′]).

Define⇒S,A,Z as the one-step reduction relation by �S,A,Z . Let⇒∗
S,A,Z denote the

reflexive and transitive closure of ⇒S,A,Z. For readability, we often write �S and
PS instead of �S,A,Z and PS,A,Z, respectively.

Example 24 Fig. 9 presents the contents of PS1,A1,Z for schema S1 in Fig. 3, A1

in Example 12, and Z in Fig. 8. Rules (Ai)–(Avi) are obtained by Def. 23(A), and
(Bi)–(Biv) by Def. 23(B) with composite methods supervisor and office. Rules (Ci)
and (Cii) are obtained by Def. 23(C).

Rule (Cii) indicates that the user may be able to infer the location of a server. More-
over, rules (Avi) and (Bii) together indicate that the user may be able to infer the
office of the boss of a manager. Compare this with the explanation in Example 16.

Next, consider a looser estimation Z ′, which is identical to Z except that

Z ′(supervisor(Employee)) = {Employee, Manager}.

Then, PS1,A1,Z′ contains the following two rules as well as all the rules in PS1,A1,Z:

supervisor(Employee)�S1 Employee, (Aiii′)
supervisor(boss(Employee))�S1 Employee. (Bi′)

Rules (Aiii′) and (Ai) together indicate that the user may be able to infer the com-
puter of the supervisor of an employee. However, it is impossible to do so because
the supervisor of an employee is always a manager and computer(Manager) is
unauthorized by A1. In this sence, PS1,A1,Z′ is a worse approximation than PS1,A1,Z .

4.2.3 The Proposed Sufficient Condition

The proposed sufficient condition for the security is stated as the following theo-
rem:

19

Theorem 25 Let τ ∈ TM(X). If there exists no class c such that τ [c/x] ⇒∗
S,A,Z c,

then τ is secure at c, i.e., there exists no instance I = (ν, μ) such that τ [o/x]⇒∗
I,A

o for any o ∈ ν(c) and o ∈ OI .

An overview of the correctness of the proposed sufficient condition is illustrated in
Fig. 10. We first prove that each rule in PI is conservatively approximated by a rule
in PS .

Lemma 26 If there is an instance I = (ν, μ) such that t[o/x] �I o ∈ PI for some
o ∈ ν(c) and o ∈ ν(c), then t[c/x] �S c ∈ PS .

PROOF. We use induction on the structure of the definition of �I (see Def. 15).

Basis. Consider the case that m(o) �I o (o ∈ ν(c)) is obtained from Def. 15(A).
Then, m(c) ∈ A, o ∈ ν(c), and m(o)↓ = o. Moreover, c ∈ Z(m(c)) from the
property of Z. From Def. 23(A), PS contains m(c) �S c since m(c) ∈ A and
c ∈ Z(m(c)). The case that Res(mc(c))[o/x]�I o is obtained from Def. 15(B) can
be treated in the same way.

Induction. Suppose that t′′[o′′/x′′] (o′′ ∈ ν(c′′)) is a proper subterm of t[o/x] (o ∈
ν(c)) at r′′ and that t[o/x] �I o (o ∈ ν(c)) and t′′[o′′/x′′] �I o′′ (o′′ ∈ ν(c′′))
have been obtained. Let t′[o′/x′] = t[o/x][r′′← o′′] (o′ ∈ ν(c′)), and suppose that
t′[o′/x′]�I o is obtained from Def. 15(C). By the inductive hypothesis, PS contains
both t[c/x] �S c and t′′[c′′/x′′] �S c′′. From the definition of t′[o′/x′], we obtain
t′[c′/x′] = t[c/x][r′′←c′′]. Since t′[o′/x′]�I o ∈ PI implies t′[o′/x′]↓ = o, it holds
that c ∈ Z(t′[c′/x′]). From the above inductive hypothesis and Def. 23(C), we can
conclude that t′[c′/x′] �S c ∈ PS . �

By Lemma 26, it can be easily shown that if there is I = (ν, μ) such that t[o/x]⇒∗
I

t′[o′/x′] for some o ∈ ν(c) and o′ ∈ ν(c′), then t[c/x] ⇒∗
S t′[c′/x′]. Theorem 25

is implied by this fact.

Example 27 Consider schema S1 in Fig. 3, and let τ = office(boss(x)). We can
conclude that τ is secure at Employee since no subterm of τ [Employee/x] can be
rewritten by any rule PS1,A1,Z in Fig. 9.

Example 28 We said that computer(x) is secure at Employee in the second case
of Example 1. Actually, it is not difficult to see that PS has only location(Host) �S

Room and office(Employee)�S Room. This implies that computer(x) is secure
at Employee.

The proposed sufficient condition is obviously decidable, since the right-hand side
of each rule �S,A,Z is a class and therefore the “size” of the term decreases every

20

time a rule is applied. In what follows, we summarize the time complexity of decid-
ing the sufficient condition. Define the size of a term t as |Pos(t)|, i.e., the number
of positions of t. Define the description length of Σc, denoted ‖Σc‖, as the sum of
the size of all t such that (m(c), t) ∈ Σc. Also, define the size of S, denoted ‖S‖,
as follows:

‖S‖ = |C|+ |≤|+ |M |+ |Σb|+ ‖Σc‖.

Let k be the maximum arity of all the methods. The height of t is defined as the
maximum length of the positions in Pos(t). Let L and H be the maximum size and
height of all t in {t | (m(c), t) ∈ Σc}∪{τ}, respectively. The total time complexity
(including computation of Z) is

O(kH+1L‖S‖2(|C|+ 1)2kH+1+1 log ‖S‖).

See Appendix for details.

5 Linear Case

5.1 Type Inferability of Linear Schemas

A schema S is linear if for every composite method definition (mc(c), t) in S, t is
linear. We show that linear terms are type inferable under linear schemas, which is
an improvement of the known result in [7].

Theorem 29 ES(t, c) is computable if both S and t are linear.

PROOF. Let S be a linear schema. We introduce a syntactic instance IS =
(νS, μS) of S as follows. Let N be a sufficiently large positive integer.

(1) For each c ∈ C, define

νS(c) = {c · α | α ∈ C∗ and the length of c · α is at most N}.
Here, C∗ denotes the Kleene closure of C.

(2) For each mb ∈Mb, define μS(mb) as follows:
(a) Suppose that Res(mb(c1, c2 . . . cn)) = c′. Then, for any oi ∈ νS(ci) (2 ≤

i ≤ n), define μS(mb)(c1, o2, . . . , on) = c′. Moreover, for l ≥ 1,

μS(mb)(c1 · c′1 · c′2 · · · c′l, o2, . . . , on) =

⎧⎪⎨
⎪⎩

c′1 · c′2 · · · c′l if c′1 ≤ c′,

c′ · c′2 · · · c′l otherwise.

21

(b) Suppose that Res(mb(c1, c2, . . . cn)) = ⊥. Then, for any oi ∈ νS(ci)
(1 ≤ i ≤ n), μS(mb)(o1, . . . , on) is undefined.

The first (leftmost) symbol c of an object c · α in a syntactic instance IS repre-
sents the class of the object. For a base method mb and objects (o1, . . . , on) ∈
νS(c1, . . . , cn), μS(mb)(o1, . . . , on) is the sequence obtained from the first argu-
ment o1 by the following manipulation: remove the first symbol of o1 = c1 · c′1 · α′

and if the first symbol c′1 of the remaining sequence c′1 · α′ is not a subclass of the
resolution c′ of mb at (c1, . . . , cn) then replace c′1 with c′ in order to meet the base
method definition of mb; the other arguments are simply discarded.

In what follows, we show that ES can be computed by the algorithm in [7]. See the
four kinds of equations in Section 4.2.1. Let Z be the least fixpoint of Ẑ. We already
have Z(t[c/x]) ⊇ ES(t, c) by [7] for any linear term t ∈ TM(X), and therefore, it
suffices to show the opposite containment. The set of objects of a syntactic instance
contains all the sequences of classes of length less than or equal to N . Therefore,
for any linear term t ∈ TM(X), there always exist objects of a syntactic instance
(with a sufficiently large N) which exactly encode the fixpoint computation of Z(t).
In other words, for any linear term t with variables x, there always exist objects o
of classes c such that c ∈ Z(t[c/x]) implies t[o/x] →∗

IS
c · α, which means that

t[o/x]↓IS
is an object of class c. This property can be proved by the induction on

the structure of the definition of Ẑ.

• Consider Ẑ(c). We have Ẑ(c) = {c} and c · α→∗
IS

c · α for any α ∈ C∗.
• Consider Ẑ(mb(c)). Any c ∈ Ẑ(mb(c)) must be a subclass of Res(mb(c)). For

any α ∈ C∗, let o1 = c1 · c · α and oi = ci (2 ≤ i ≤ n). Then, mb(o) =
mb(o1, . . . , on)→IS

c · α by the definition of μS.
• Suppose that c ∈ Z(mc(c)). Then, there exists t ∈ TM(X) such that

Res(mc(c)) = t and c ∈ Z(t[c/x]). By the inductive hypothesis, for any
α ∈ C∗, there exists o ∈ νS(c) such that t[o/x] →∗

IS
c · α. Therefore,

mc(o)→IS
t[o/x]→∗

IS
c · α.

• Suppose that c ∈ Z(m(t1[c1/x1], . . . , tn[cn/xn])). Then, there exists c′ =
(c′1, . . . , c

′
n) ∈ Z(t1[c1/x1]) × · · · × Z(tn[cn/xn]) such that c ∈ Z(m(c′)). By

the inductive hypothesis, for any α ∈ C∗, there exists o′ = (o′1, . . . , o
′
n) ∈ νS(c′)

such that m(o′) →∗
IS

c · α. Note that by the definition of νS , o′i = c′i · α′
i for

some α′
i ∈ C∗. By the linearity of m(t1, . . . , tn) and the inductive hypothesis

again, for every 1 ≤ i ≤ n and for such α′
i, there exists oi ∈ νS(ci) such

that ti[oi/xi] →∗
IS

c′i · α′
i. Thus, for any α, there exist o1, . . . , on such that

m(t1[o1/x1], . . . , tn[on/xn])→∗
IS

c · α.

The theorem has been proved since Z(t[c/x]) is computable and ES(t, c) =
Z(t[c/x]) if both S and t are linear. �

22

5.2 Decidability of the Security of Linear Terms under Linear Schemas

The decidability of the security of linear terms under linear schemas immediately
follows the next theorem since ES is computable under linear schemas. More con-
cretely, the sufficient condition of the security proposed in the previous section
becomes a necessary one if S and τ are linear and ES is used as Z.

Theorem 30 Let S be a linear schema and let τ be a linear term in TM (X). There
is a class c′ such that τ [c/x]⇒∗

S,A,ES
c′ iff τ is insecure at c.

It suffices to prove the only if part because the if part was shown by Theorem 25.
In what follows, for a linear term t ∈ TM (X), we write ES(t, σ) to mean ES(t, c),
where t/ri = xi and σ(ri) = ci for each i.

We show that a syntactic instance IS = (νS, μS) with sufficiently large N satisfies
the theorem. The outline of the proof is as follows (see also Fig. 11). It suffices to
show the soundness of the approximated inference attacks (i.e., that ⇒∗

S,A,ES
im-

plies ⇒∗
IS,A) in linear case. This property can be proved by showing that �S,A,ES

implies �IS ,A (Lemma 34) and then by lifting it to rewrite sequences (Lemma 35).
For Lemma 35, we need to show that the existence of an approximation rule in
Def. 23(C) guarantees the existence of an inference rule in Def. 15(C) in a syntac-
tic instance. This can be done with the help of Lemma 33, which states that type
information ES is closed under term composition.

The crucial point lies in constructing a substitution mapping into IS which shows
the soundness of the approximation in the proof of Lemma 34. Remember that only
the first argument of a base method is used for constructing the returned value of
the method in IS . If a linear term t does not contain a composite method, it is easy
to find the variable position which contributes the execution result of t (called the
principal position as defined below). For example, for term m1(m2(x1, x2), x3) for
base methods m1 and m2, the principal position is the position of x1. For an ar-
bitrary linear term t, the principal position can also be found although it needs a
recursive search since composite methods may appear in t. Furthermore, we can
choose objects that encode the fixpoint computation of ES (= Z in linear case) and
substitute the objects to the variables in t to construct a term that simulates ES in
a syntactic instance. A mapping that specifies these objects is called a consumed
string mapping (CSM for short), and is defined in parallel with the principal posi-
tion. In the proof of Lemma 34, the substitution mapping into IS will be constructed
using CSMs and principal positions.

In what follows, CSMs and principal positions are defined. Their existence is shown
in a constructive manner. Then, the soundness of the approximated inference at-
tacks is shown using CSMs and principal positions.

23

5.2.1 Definitions of CSMs and principal positions

Definition 31 Let t be a linear term in TM(X). Let σ : V (t) → C and c′ ∈
ES(t, σ). A consumed string mapping (CSM for short) of (t, σ, c′) is a mapping
β : V (t)→ C+ satisfying the following conditions:

(1) The first (leftmost) symbol of β(r) is σ(r) for each r ∈ V (t); and
(2) There is a position ξ ∈ V (t), called the principal position of (t, β), such that

(a) the last (rightmost) symbol of β(ξ) is c′, and
(b) for any mapping θβ : V (t) → OIS

such that θβ(r) = β(r) · αr, where
αr ∈ C∗, we have tθβ →∗

IS
c′ · αξ.

Here, C+ denotes the positive Kleene closure of C. See also Fig. 12.

Example 32 Consider a schema S = (C,≤, M, Σb, Σc) with

Mb = {(mb(c1, c2), c3), (m
′
b(c3), c4)},

Mc = {(mc(c1, c2), mb(x2, x1)))}.

Let t = m′
b(mb(x1, x2)). Let σ : V (t)→ C be a substitution such that σ(1 ·1) = c1

and σ(1 · 2) = c2 (hence tσ = m′
b(mb(c1, c2))). Then, β : V (t) → C+ with

β(1 ·1) = c1 · c3 · c4 and β(1 ·2) = c2 is a CSM of (t, σ, c4) and 1 ·1 is the principal
position of (t, β) because for any α1·1, α1·2 ∈ C∗,

m′
b(mb(c1 · c3 · c4 · α1·1, c2 · α1·2))→IS

m′
b(c3 · c4 · α1·1)→IS

c4 · α1·1.

Thus, β represents the prefixes of the object names that are “consumed” during the
execution of t under IS.

For another example, let t′ = mc(x1, x2). Let σ′ : V (t′) → C be a substitution
such that σ′(1) = c2 and σ′(2) = c1. Then, β ′ : V (t′) → C+ with β ′(1) = c2

and β ′(2) = c1 · c3 is a CSM of (t′, σ′, c3) and 2 is the principal position of (t′, β ′)
because for any α1, α2 ∈ C∗,

mc(c2 · α1, c1 · c3 · α2)→IS
mb(c1 · c3 · α2, c2 · α1)→IS

c3 · α2.

Note that c′ ∈ ES(t, σ) = ES(t, c), one of the preconditions in Def. 31, is equiv-
alent to c′ ∈ Z(t[c/x]) by Theorem 29. Thus, c′ ∈ ES(t, σ) means that fixpoint
computation of t[c/x] derives c′. By Theorem 29, this computation can be simu-
lated by a syntactic instance IS. For a CSM mapping β and a variable position r in
t, β(r) denotes the prefix of an object (i.e., a sequence of class names) substituted at
r which is consumed during the execution of t to simulate the fixpoint computation.

24

5.2.2 Existence of CSMs and principal positions

In this section, we will effectively show the existence of a CSM β of (t, σ, c′) and
the principal position of (t, β). If t consists of only base methods, the story is easy
to follow. By the definition of syntactic instances, each base method consumes
the first symbol of its first argument. A CSM can be constructed by concatenating
such consumed symbols. However, t may contain recursively-defined composite
methods, and therefore, we cannot use the induction on the structure of t. Instead,
we use the induction on the execution length. Since c′ ∈ ES(t, σ), there must be
a mapping θ : V (t) → OIS

such that tθ →∗
IS

o′ ∈ νS(c′) and θ(r) ∈ νS(σ(r))
for each r ∈ V (t). The following proof is based on the induction on the execution
length of tθ →∗

IS
o′.

Basis. Consider the zero-length reduction xθ = o′ ∈ νS(c′). Then, a mapping β
such that β(ε) = c′ is a CSM of (x, σ, c′). Also, ε is the principal position of (x, β).

Induction. Consider a reduction tθ →IS
t′θ′ →∗

IS
o′ ∈ νS(c′), where θ′ : V (t′) →

OIS
. Let σ′ : V (t′) → C be the mapping such that θ′(r′) ∈ νS(σ′(r′)) for each

r′ ∈ V (t′). Also, let q ∈ Pos(t) be the position contracted in the first step of this
reduction, and let m(x′′) = t/q. Assume inductively that β ′ : V (t′) → C+ is a
CSM of (t′, σ′, c′) and ξ′ ∈ V (t′) is the principal position of (t′, β ′).

(i) Suppose that m is a base method. Then, the following β is a CSM of (t, σ, c′)
(see also Fig. 13):

β(r) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

σ(r) · β ′(q) if r = q · 1,
σ(r) if r = q · i and i �= 1,

β ′(r) otherwise.

The principal position ξ of (t, β) is as follows:

ξ =

⎧⎪⎨
⎪⎩

ξ′ · 1 if ξ′ = q,

ξ′ otherwise.

(ii) Suppose that m is a composite method. Let r ′′
i denote the position of x′′

i ∈ x′′

in Res(tσ/q) (note that tσ/q is in the form of m(c)). Then, the following β is
a CSM of (t, σ, c′) (see also Fig. 14):

β(r) =

⎧⎪⎨
⎪⎩

β ′(q · r′′i) if r = q · i,
β ′(r) otherwise.

25

The principal position ξ of (t, β) is as follows:

ξ =

⎧⎪⎨
⎪⎩

q · i if ξ′ = q · r′′i ,
ξ′ otherwise.

We must show that β and ξ constructed above are indeed a CSM and the princi-
pal position. The basis can be verified easily. For the induction case, consider a
reduction tθ →IS

t′θ′ →∗
IS

o′ ∈ νS(c′).

(i) Suppose that m is a base method. By the construction, the first symbol of
β(q · i) is σ(q · i). Moreover, for any r ∈ V (t) − {q · i | 1 ≤ i ≤ n}, the
first symbol of β(r) is equal to that of β ′(r), and it is σ′(r) by the inductive
hypothesis. tθ/r must be equal to t′θ′/r, and therefore, σ′(r) = σ(r). Hence,
the condition (1) in Def. 31 holds.

For the condition (2a), there are two cases to be considered. Suppose that
q = ξ′. Since ξ = ξ′·1 = q·1, the last symbol of β(ξ) is that of σ(ξ)·β ′(ξ′), and
therefore, it is c′ by the inductive hypothesis. On the other hand, suppose that
q �= ξ′. Since ξ = ξ′, the last symbol of β(ξ) is that of β ′(ξ′), and therefore, it
is c′ again by the inductive hypothesis. Thus the condition (2a) holds.

Let θβ : V (t) → OIS
be an arbitrary mapping such that θβ(r) = β(r) · αr,

where αr ∈ C∗. Let θβ′ : V (t′)→ OIS
be a mapping such that

θβ′(r) =

⎧⎪⎨
⎪⎩

β ′(r) · αξ if r = q,

β ′(r) · αr otherwise.

Then, tθβ →IS
t′θβ′ by the definitions of method execution, and t′θβ′ →∗

IS

c′ · αξ by the inductive hypothesis. Thus the condition (2b) holds.
(ii) Suppose that m is a composite method. The first symbol of β(q · i) is equal to

that of β ′(q·r′′i), and it is σ′(q·r′′i) by the inductive hypothesis. By the definition
of r′′i , tθ/q ·i is equal to t′θ′/q ·r′′i , and therefore, σ′(q ·r′′i) = σ(q ·i). Moreover,
for any r ∈ V (t)−{q · i | 1 ≤ i ≤ n}, the first symbol of β(r) is equal to that
of β ′(r), and it is σ′(r) by the inductive hypothesis. tθ/r is equal to t′θ′/r, and
therefore, σ′(r) = σ(r). Hence, the condition (1) in Def. 31 holds.

For the condition (2a), there are two cases to be considered. Suppose that
q is a prefix of ξ′. Then, there must be j such that q · r′′j = ξ′, and therefore,
ξ = q · j. Hence the last symbol of β(ξ) is that of β ′(ξ′), and it is c′ by the
inductive hypothesis. On the other hand, suppose that q is not a prefix of ξ ′.
Then, ξ = ξ′ by the construction. The last symbol of β(ξ) is that of β ′(ξ′), and
it is c′ by the inductive hypothesis. Thus the condition (2a) holds.

Let θβ : V (t) → OIS
be an arbitrary mapping such that θβ(r) = β(r) · αr,

26

where αr ∈ C∗. Let θβ′ : V (t′)→ OIS
be a mapping such that

θβ′(r) =

⎧⎪⎨
⎪⎩

β ′(r) · αq·i if r = q · r′′i ,
β ′(r) · αr otherwise.

Then, tθβ →IS
t′θβ′ by the definitions of method execution, and t′θβ′ →∗

IS

c′ · αξ by the inductive hypothesis. Thus the condition (2b) holds.

5.2.3 Soundness of the Approximated Inference Attacks

The following lemma states that ES is closed under term composition. This prop-
erty is needed for showing that existence of an approximation rule in Def. 23(C)
implies the existence of an attacker’s inference rule in Def. 15(C), in the proof of
Lemma 34.

Lemma 33 Let t, t′, and t′′ be linear terms in TM(X) such that t = t′[q← t′′] for
some q ∈ V (t′). Let σ : V (t) → C, σ′ : V (t′) → C and σ′′ : V (t′′) → C be
mappings such that for some c′′ ∈ C,

σ′(r)=

⎧⎪⎨
⎪⎩

c′′ if r = q,

σ(r) otherwise,

σ′′(r′′)= σ(q · r′′).

Now, suppose that c′ ∈ ES(t′, σ′) and c′′ ∈ ES(t′′, σ′′). Then, c′ ∈ ES(t, σ) (see
also Fig. 15).

PROOF. Let β ′ : V (t′) → C+ and β ′′ : V (t′′) → C+ be arbitrary CSMs of
(t′, σ′, c′) and (t′′, σ′′, c′′), respectively. Define θ : V (t)→ OIS

as

θ(r) =

⎧⎪⎨
⎪⎩

β ′′(r′′) · γ′
q if r = q · r′′,

β ′(r) otherwise,

where γ′
q is the string obtained from β ′(q) by removing its first symbol. Also, let

θ′′ : V (t′′) → OIS
be a mapping such that θ′′(r′′) = β ′′(r′′) · γ′

q for all r′′ ∈ V (t′′).
Then, t′′θ′′ →∗

IS
c′′ · γ′

q = β ′(q), and therefore, tθ →∗
IS

t′θ′ →∗
IS

c′. Thus, we have
c′ ∈ ES(t, σ). �

The next lemma states that if tσ �S,A,ES
c′ exists, then under IS the corresponding

inference rule for an attacker exists. The lemma is shown by constructing a substi-

27

tution mapping which shows the soundness of the approximation using CSMs and
principal positions.

Lemma 34 Let t be a linear term in TM(X) and let σ be a mapping from V (t) to C.
If tσ �S c′ ∈ PS, then for any mapping θ : V (t)→ OIS

such that θ(r) ∈ νS(σ(r))
for each r ∈ V (t) and tθ →∗

IS
o′ ∈ νS(c′), we have tθ �IS

o′ ∈ PIS
.

PROOF. The lemma is shown by induction on the structure of the definition of �S

(see Def. 23).

Basis. Suppose that m(c) �S c′ is obtained by Def. 23(A). Let θ : V (m(x)) →
OIS

be a mapping which assigns an object oi ∈ νS(ci) to each xi. Suppose that
m(x)θ →∗

IS
o′ ∈ νS(c′). Since m(c) ∈ A, we have m(x)θ �IS

o′ by Def. 15(A).
The case of Def. 23(B) is similarly proved.

Induction. Let t, t′, and t′′ be linear terms in TM(X) such that t = t′[q← t′′] for
some q ∈ V (t′). Let σ : V (t) → C, σ′ : V (t′) → C and σ′′ : V (t′′) → C be
mappings such that for some c′′ ∈ C,

σ′(r)=

⎧⎪⎨
⎪⎩

c′′ if r = q,

σ(r) otherwise,

σ′′(r′′)= σ(q · r′′).

Note that this is the same setting of Lemma 33 (see also Fig. 15). Now suppose that
t′σ′ �S c′ is obtained by Def. 23(C) with

• tσ �S c ∈ PS for some c ∈ C;
• t′′σ′′ �S c′′ ∈ PS; and
• c′ ∈ ES(t′, σ′).

Since t′′σ′′ �S c′′ ∈ PS , c′′ must be in ES(t′′, σ′′) by Def. 23. By Lemma 33,
c′ ∈ ES(t, σ). Then, by Def. 23 again, tσ �S c′ must be in PS before t′σ′ �S c′ is
obtained.

Let θ′ : V (t′) → OIS
be an arbitrary mapping such that θ′(r) ∈ νS(σ′(r)) for each

r ∈ V (t′) and t′θ′ →∗
IS

o′ ∈ νS(c′). We will prove that t′θ′ �IS
o′ is in PIS

, using
the inductive hypothesis on t′′σ′′ �S c′′ and tσ �S c′. Let β ′′ : V (t′′) → C+ be a
CSM of (t′′, σ′′, c′′). Define θ : V (t)→ OIS

as

θ(r) =

⎧⎪⎨
⎪⎩

β ′′(r′′) · γ′
q if r = q · r′′,

θ′(r) otherwise,

28

where γ′
q is the string obtained from θ′(q) by removing its first symbol. Also, let

θ′′ : V (t′′) → OIS
be a mapping such that θ′′(r′′) = β ′′(r′′) · γ′

q for all r′′ ∈ V (t′′).
Note that θ(r) ∈ νS(σ(r)) for each r ∈ V (t) and θ′′(r′′) ∈ νS(σ′′(r′′)) for each
r′′ ∈ V (t′′). Then, t′′θ′′ →∗

IS
c′′ · γ′

q = θ′(q) ∈ νS(c′′), and therefore, tθ →∗
IS

t′θ′ →∗
IS

o′ ∈ νS(c′). Thus, by the inductive hypothesis, tθ�IS
o′ and t′′θ′′ �IS

θ′(q)
are in PIS

. Hence, by Def. 15(C), t′θ′ �IS
o′ is in PIS

. �

Lastly, as stated in the lemma below, Lemma 34 can be lifted to rewrite sequences.
Then, the only if part of Theorem 30 can be derived immediately.

Lemma 35 Let t be a linear term in TM(X) and let σ be a mapping from V (t) to
C. If tσ ⇒∗

S c′, then there is a mapping θ : V (t)→ OIS
such that tθ ⇒∗

IS
c′.

PROOF. The lemma is shown by induction on the length of tσ ⇒∗
S c′.

Basis. The lemma obviously holds if tσ = c′.

Induction. Consider a reduction tσ ⇒S t′σ′ ⇒∗
S c′, where σ′ : V (t′)→ C. Let q be

the position at which the subterm of tσ is rewritten in the first step of the reduction
(i.e., t′ can be written as t[q← x′] for some variable x′). σ′ must satisfy

σ′(r) =

⎧⎪⎨
⎪⎩

c′′ if r = q,

σ(r) otherwise,

for some c′′ ∈ C. Let t′′ = t/q and define σ′′ : V (t′′)→ C as

σ′′(r′′) = σ(q · r′′).

Then, t′′σ′′�S c′′ must be in PS . By Def. 23, c′′ must be in ES(t′′, σ′′), and therefore,
there is a CSM β′′ : V (t′′)→ C+ of (t′′, σ′′, c′′). By applying Lemma 34 to β ′′, we
have t′′β ′′ �IS

c′′ ∈ PIS
. On the other hand, by the inductive hypothesis, there is a

mapping θ′ : V (t′)→ OIS
such that t′θ′ ⇒∗

IS
c′ since t′σ′ ⇒∗

S c′.

Now, define θ : V (t)→ OIS
as follows:

θ(r) =

⎧⎪⎨
⎪⎩

β ′′(r′′) · γ′
q if r = q · r′′,

θ′(r) otherwise,

where γ′
q is the string obtained from θ′(q) by removing its first symbol. Also, let

θ′′ : V (t′′) → OIS
be a mapping such that θ′′(r′′) = β ′′(r′′) · γ′

q for all r′′ ∈ V (t′′).
Then, tθ ⇒IS

t′θ′ using t′′θ′′ �IS
c′′ · γ′

q in PIS
. Thus, we have tθ ⇒∗

IS
c′. �

29

6 Incomparability of Type Inferability and Security Decidability

For general terms and schemas, type inference is impossible and the security is
undecidable. On the other hand, for linear terms and schemas, type inference is
possible and the security is decidable. A natural question is whether the undecid-
ability of the security stems only from the impossibility of type inference. In this
section, we provide a negative answer to this question.

Theorem 36 The security of a non-linear term τ at c under a schema S is unde-
cidable even if S is linear and ES(τ, c) is computable.

PROOF. Consider the reduction from the MPCP to the security problem stated in
Section 4.1. Let τ = post(isw(x), isu(x)). Since Sw,u is linear, it suffices to show
that ESw,u(τ, c1) = {cdummy} for any (w,u).

Consider a pair (I, o1) such that the string represented by (I, o1) is empty. For any
(w,u), such (I, o1) exists and under such I , both isw(o1) and isu(o1) are terminat-
ing. Since post always returns an object of class cdummy, we have ESw,u(τ, c1) =
{cdummy}. �

Note that Theorems 30 and 36 show a tight bound of the decidability of the security
problem. That is, the non-linearity of only τ makes the problem undecidable.

In order for the security to be decidable, type inference of tuples of terms seems
necessary. The essence of the reduction stated in Section 4.1 is whether for some
pair (I, o1), both isw(o1) and isu(o1) return objects of the same class cok un-
der I . Thus, the results of “separated” type inference, i.e., ESw,u(isw(x), c1) and
ESw,u(isu(x), c1), are insufficient. However, it is open whether type inference of
tuples of terms is sufficient for the security to be decidable.

A natural next question may be whether the security problem is more difficult than
type inference. We provide a negative answer again.

Theorem 37 ES(τ, c) is uncomputable even if S is linear and the security of τ at
c is decidable.

PROOF. Consider again Sw,u and A defined in Section 4.1. Modify the definition
of post so that post(o, o′) returns an object of class cok if both o and o′ are objects
of cok, and it returns an object of class cdummy otherwise. Also, add to A the rights of
post on any class. Then, the security of τ = post(isw(x), isu(x)) at c1 is trivially
decidable (i.e., τ is always insecure at c1) since the user can invoke post on any

30

objects. However, ES(τ, c1) is uncomputable since cok ∈ ES(τ, c1) if and only if
(w,u) has a solution. �

The above theorem states that the security of τ may be easily decided using only
A. In that case, whether τ is secure or not is no help for type inference of τ . Thus,
security decidability does not imply type inferability.

7 Conclusions

We have formalized the security problem against inference attacks on OODBs, and
shown that the problem is undecidable. Then we have proposed a decidable suffi-
cient condition for a given query to be secure, by introducing class-level inference
(�S) which conservatively approximates object-level inference (�I). We believe
that the approximation is fairly tight in spite of its simple definition, since the suf-
ficient condition becomes a necessary one when the given schema is linear.

It is impossible to formalize the whole “inference engine” of the attacker. We have
focused on inference based on equational logic because it is one of the most fun-
damental and powerful kind of inference. It is practically significant that we can
verify the security against such fundamental and powerful inference, although the
linearity condition is necessary.

Although type inferability and decidability of the security problem are incompa-
rable, they still seem to be closely related. Especially, as stated in Section 6, type
inference of tuples of terms may be helpful for deciding the security problem. One
of the future works is to examine the relationship between the type inference of
tuples of terms and the decidability of the security problem.

We have assumed that a user knows the definitions of composite methods only if
the methods are authorized to the user. However, in some situations, the definitions
of unauthorized methods may be open to the public or can be guessed from the
method names, etc. Weakening this assumption makes the definition of inference
technically complicated, and therefore left as a future work.

Acknowledgements

The authors are thankful to Prof. Toru Fujiwara of Osaka University and Ms. Yumi
Shimakawa for their valuable discussions on the results on linear schemas.

31

References

[1] Y. Ishihara, T. Morita, M. Ito, The security problem against inference attacks on object-
oriented databases, in: Research Advances in Database and Information Systems
Security, Kluwer, 2000, pp. 303–316.

[2] Y. Ishihara, Y. Shimakawa, T. Fujiwara, Type inferability and decidability of
the security problem against inference attacks on object-oriented databases,
in: Proceedings of the Sixth International Conference on Information and
Communications Security, LNCS 3269, 2004, pp. 145–157.

[3] E. B. Fernandez, M. M. Larronodo-Peritrie, E. Gudes, A method-based authorization
model for object-oriented databases, in: Proceedings of OOPSLA-93 Conference
Workshop on Security for Object-Oriented Systems, 1993, pp. 135–150.

[4] H. Seki, Y. Ishihara, M. Ito, Authorization analysis of queries in object-oriented
databases, in: Proceedings of the Fourth International Conference on Deductive and
Object-Oriented Databases, LNCS 1013, 1995, pp. 521–538.

[5] E. Bertino, P. Samarati, Research issues in discretionary authorizations for object
bases, in: Proceedings of OOPSLA-93 Conference Workshop on Security for Object-
Oriented Systems, 1994, pp. 183–199.

[6] S. Abiteboul, P. Kanellakis, S. Ramaswamy, E. Waller, Method schemas, Journal of
Computer and System Sciences 51 (3) (1995) 433–455.

[7] H. Seki, Y. Ishihara, H. Dodo, Testing type consistency of method schemas, IEICE
Transactions on Information and Systems E81-D (3) (1998) 278–287.

[8] Y. Ishihara, S. Shimizu, H. Seki, M. Ito, Refinements of complexity results on type
consistency for object-oriented databases, Journal of Computer and System Sciences
62 (4) (2001) 537–564.

[9] D. E. R. Denning, Cryptography and Data Security, Addison-Wesley, 1982.

[10] C. Farkas, T. Toland, C. Eastman, The inference problem and updates in relational
databases, in: Databases and Application Security XV, Kluwer, 2002, pp. 181–194.

[11] K. Tajima, Static detection of security flaws in object-oriented databases, in:
Proceedings of the 1996 ACM SIGMOD International Conference on Management
of Data, 1996, pp. 341–352.

[12] L. Chang, I. S. Moskowitz, Bayesian methods applied to the database inference
problem, in: Database Security XII, Kluwer, 1999, pp. 237–251.

[13] K. Zhang, IRI: A quantitative approach to inference analysis in relational databases,
in: Database Security XI, 1998, pp. 279–290.

[14] M. Morgenstern, Security and inference in multilevel database and knowledge-base
systems, in: Proceedings of the 1987 ACM SIGMOD International Conference on
Management of Data, 1987, pp. 357–373.

32

[15] I. Moskowitz, L. Chang, An entropy-based framework for database inference, in:
Proceedings of the Third International Workshop on Information Hiding, LNCS 1768,
1999, pp. 405–418.

[16] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-Wesley, 1995.

[17] F. Baader, T. Nipkow, Term Rewriting and All That, Cambridge, 1998.

[18] J. E. Hopcroft, J. D. Ullman, Introduction to Automata Theory, Languages, and
Computation, Addison-Wesley, 1979.

[19] T. H. Cormen, C. E. Leiserson, R. L. Rivest, Introduction to algorithms, 1990.

Appendix: Complexity Analysis

The algorithm for deciding the sufficient condition stated in Theorem 25 consists
of the following three steps:

(S1) Compute Z0 from S using the type inference algorithm in [7], where Z0 is the
least fixpoint Z whose domain is restricted to {m(c) | m ∈ Mn, c ∈ Cn}.

(S2) Compute PS,A,Z from S, A, and Z0.
(S3) Determine whether there exists a class c such that τ [c/x] ⇒∗

S,A,Z c. If such c
exists, then output “τ may be insecure at c.” Otherwise, output “τ is secure at c.”

We analyze the time complexity of the algorithm. Define the size lt of a term t
as |Pos(t)|, i.e., the number of positions of t. Define the description length of Σc,
denoted ‖Σc‖, as the sum of lt for all (m(c), t) ∈ Σc. Also, define the size of S,
denoted ‖S‖, as follows:

‖S‖ = |C|+ |≤|+ |M |+ |Σb|+ ‖Σc‖.

For readability, we use N to mean ‖S‖. Let k be the maximum arity of all the
methods. The height of t, denoted ht, is defined as the maximum length of the
positions in Pos(t). Let L and H be the maximum size and height of all t in {t |
(m(c), t) ∈ Σc} ∪ {τ}, respectively. Note that k ≤ N and k ≤ L by definition.

First, consider (S1). The time complexity of computing Z0(m(c)) for all m ∈ Mn

and c ∈ Cn is

O(kN |C|2k+1),

which is given in [7]. In this algorithm, Z0 is implemented by a table, and retrieving
an element from Z0 takes O(kN |C|k) time. In (S1), we also reconstruct Z0 by a

33

more efficient data structure such as binomial heap [19]. The time complexity ρZ0

of retrieving an element from or inserting an element into Z0 becomes

ρZ0 = O(k log(|M | · |C|k)) = O(k2 log N).

Note that ρZ0 �= O(k log N), since the keys are terms m(c) and a key comparison
takes O(k) time. This reconstruction takes

O(|M | · |C|k(kN |C|k + ρZ0)) = O(kN |C|k(N |C|k + k log N))

time. Thus, the complexity of (S1) is

O(kN |C|k(N |C|k + k log N)). (3)

Next, consider (S2). Define Q = {t | t �S c ∈ PS}. In order to compute PS , it
suffices to compute Q, since the right-hand side of �S can be computed from the
left-hand side and Z.

Fig. 16 shows a procedure for computing Q. Suppose that variables Qans, QΔ, Q′
Δ,

and Z are implemented by binomial heaps. Let ρQans denote the complexity of
retrieving an element from or inserting an element into Qans. Define ρQΔ

, ρQ′
Δ

, and
ρZ in the same way. Then,

ρQans = ρQΔ
= ρQ′

Δ
= ρZ = O(L log |Q|),

where L is for a key comparison.

Before analyzing the procedure in Fig. 16 in detail, we estimate |Q|. Since it is dif-
ficult to estimate |Q| directly, we introduce a finite set Q0 of terms which possibly
appear in the left-hand side of �S . Formally,

Q0 =
⋃

(m(c),t)∈Σc

Xt[c/x],

where Xt (t ∈ TM(C)) is defined as follows:

Xc =C,

Xm(t) =C ∪ {m(t′) | t′i ∈ Xti}.

Intuitively, Xt is the set of all the terms obtained by replacing arbitrary subterms of
t with arbitrary classes. Clearly Q ⊆ Q0.

The size of Xt can be obtained by solving the following (in)equalities:

34

|Xc|= |C|,
|Xm(t)| ≤ |C|+

∏
i

|Xti |.

If k = 1, then

|Xt| ≤ (ht + 1)|C|,

and therefore,

|Q0| ≤
∑

(m(c),t)∈Σc

|Xt[c/x]|

≤ ∑
(m(c),t)∈Σc

(ht[c/x] + 1)|C|

=
∑

(m(c),t)∈Σc

lt[c/x]|C|

= ‖Σc‖ · |C|
≤N |C|, (4)

since lt = ht + 1 if k = 1. Next, consider the case that k ≥ 2. For any nonnegative
integer h, let Kh denote kh + kh−1 + · · ·+ k0. In what follows, we show that

|Xt| ≤ (|C|+ 1)Kht . (5)

If ht = 0, then |Xt| = |C| ≤ (|C| + 1)K0 = |C|+ 1. Suppose that Eq. 5 holds for
any term t′ such that ht′ ≤ h for some h ≥ 0. Consider a term t = m(t′) such that
ht = h + 1. Then,

|Xt| ≤ |C|+
∏
i

|Xt′i |

≤ |C|+ ((|C|+ 1)Kh)k

= |C|+ (|C|+ 1)Kh+1−1

≤ (|C|+ 1)Kh+1.

Therefore, Eq. 5 holds and

|Q0| ≤
∑

(m(c),t)∈Σc

|Xt[c/x]|

≤ ∑
(m(c),t)∈Σc

(|C|+ 1)
Kht[c/x]

≤‖Σc‖(|C|+ 1)KH

≤N(|C|+ 1)KH

35

≤N(|C|+ 1)kH+1

, (6)

using KH ≤ kH+1 if k ≥ 2. After all, from Eqs. 4 and 6, we obtain

|Q| ≤ |Q0| ≤ N(|C|+ 1)kH+1

.

Let us analyze the procedure in Fig. 16 in detail. See (T2). A straightforward algo-
rithm can compute Res in

O(kN |C|k) (7)

time. Next, see (T3) through (T7). In (T3), |A| ≤ |M | · |C|k ≤ N |C|k. If Res is
implemented by an appropriate data structure, then retrieving an element from Res
takes

ρRes = O(k log(|M | · |C|k)) = O(k2 log N)

time in (T6). In (T7), computing t[c/x] takesO(L) time. Therefore, executing (T3)
through (T7) takes

O(|A|(ρQΔ
+ log |Mc|+ ρRes + L + ρQΔ

))

=O(N |C|k(L log |Q|+ k2 log N))

=O(kH+1LN |C|k log N), (8)

using k ≤ L.

See (T8) through (T16). By QΔ and Q′
Δ, we avoid selecting a duplicated pair of

t and t′ in (T10). In other words, (T11) through (T15) are executed at most |Q|2
times, and therefore, (T16) is also executed at most |Q|2 times. Moreover, (T13) is
executed at most |Q| times, since the condition of (T12) holds at most |Q| times.

In (T11), Knuth-Morris-Pratt string matching algorithm [19] can check in O(L)
time whether t′ is a subterm of t. Constructing t[r′← c] in (T15) takes O(L) time.
Computing Qans ∪ QΔ takes O(L log |Q|) time [19]. Therefore, the complexity of
(T11) through (T16) except (T13) is

O(|Q|2(L + ρZ + ρZ + |C|(L + ρQ′
Δ
)) + |Q|2 · L log |Q|)

=O(|Q|2 · |C| · L log |Q|)
=O(kH+1LN2(|C|+ 1)2kH+1+1 log N). (9)

On the other hand, in (T13), Z(t) is computed from Z0 as follows:

36

Z(m(c)) =Z0(m(c)),

Z(m(t)) =
⋃

c∈Z(t1)×···×Z(tn)

Z0(m(c)).

The time complexity of computing Z(t) is

O(ρZ0lt|C|k+1) = O(k2L|C|k+1 log N).

The total complexity of (T13) is

O(|Q| · k2L|C|k+1 log N) = O(k2LN(|C|+ 1)kH+1+k+1 log N). (10)

Both of Eqs. 7 and 8 are bounded by Eq. 9. Furthermore, Eq. 10 is also bounded by
Eq. 9 since k ≤ N . Thus, the complexity of (S2) is given by Eq. 9.

Lastly, consider (S3). Let D = {t | τ [c/x]⇒∗
S t}. Then,

|D| ≤ |Xτ [c/x]| ≤ |Q0| = O(N(|C|+ 1)kH+1

),

since hτ ≤ H .

Fig. 17 shows a procedure for determining whether D contains a class. Suppose
that Dans, DΔ, D′

Δ are implemented by binomial heaps. By DΔ and D′
Δ, we avoid

selecting t ∈ D more than once. Therefore, (U5) through (U7) are executed at most
|D| · |Q| times. (U8) is also executed at most |D| · |Q| times. Retrieving an element
from or inserting an element into D ′

Δ takes

ρD′
Δ

= O(L log |D|) = O(kH+1L log N)

time. Computing D ∪ DΔ also takes O(L log |D|) time. Thus, executing (U2)
through (U8) takes

O(|D| · |Q|(L + ρZ + |C|(L + ρD′
Δ
)) + |D| · |Q| · L log |D|))

=O(|D| · |Q| · |C| · L log |D|)
=O(kH+1LN2(|C|+ 1)2kH+1+1 log N). (11)

(U9) can be checked in O(|D|) time. Therefore, the time complexity of executing
(S3) is given by Eq. 11.

By Eqs. 3, 9, and 11, the time complexity of the algorithm is

O(kH+1LN2(|C|+ 1)2kH+1+1 log N).

37

List of Figures

Fig. 1 An example of an insecure method.

Fig. 2 An example of a secure method.

Fig. 3 A method schema S1.

Fig. 4 A database instance I1 of S1.

Fig. 5 Contents of PI1,A1 .

Fig. 6 An example of a database instance I2 of Sw,u.

Fig. 7 Another database instance I ′
2 of Sw,u.

Fig. 8 Z for schema S1.

Fig. 9 Contents of PS1 .

Fig. 10 An overview of the conservativeness of the approximated infer-
ence attacks.

Fig. 11 An overview of the soundness of the approximated inference at-
tacks.

Fig. 12 A CSM β of (t, σ, c′) and the principal position ξ of (t, β).

Fig. 13 Inductive construction of CSM β. Case (i).

Fig. 14 Inductive construction of CSM β. Case (ii).

Fig. 15 An overview of Lemma 33.

Fig. 16 Procedure for computing Q.

Fig. 17 Procedure for determining τ [c/x]⇒∗
S c.

38

Employee Host Room

John mars A626

office

computer location

insecure

Fig. 1. An example of an insecure method.

39

Employee Host Room

John mars A626

office

computer locationneptune
?

?

secure

Fig. 2. An example of a secure method.

40

C = {Employee, Manager, Host, Server, Room}
Manager ≤ Employee, Server ≤ Host

M = {boss, computer, location, supervisor, office}
Σb = {(boss(Employee), Employee),

(boss(Manager), Manager),

(computer(Employee), Host),

(location(Host), Room)}
Σc = {(supervisor(Employee), supervisor(boss(x1))),

(supervisor(Manager), boss(x1)),

(office(Employee), location(computer(x1)))}
Fig. 3. A method schema S1.

41

Employee Host Room

John
mars

A626

computer

location

neptune

B533

Manager Server

jupiter

Alice

Sara

Bob

boss

Fig. 4. A database instance I1 of S1.

42

computer(John) �I1 mars (A1)
computer(Alice) �I1 jupiter (A2)

supervisor(John) �I1 Bob (A3)
supervisor(Alice) �I1 Bob (A4)
supervisor(Sara) �I1 Bob (A5)
supervisor(Bob) �I1 Bob (A6)

office(John) �I1 A626 (A7)
office(Alice) �I1 B533 (A8)
office(Sara) �I1 A626 (A9)
office(Bob) �I1 B533 (A10)

supervisor(boss(John))�I1 Bob (B1)
supervisor(boss(Alice))�I1 Bob (B2)

boss(Sara) �I1 Bob (B3)
boss(Bob) �I1 Bob (B4)

location(computer(John))�I1 A626 (B5)
location(computer(Alice))�I1 B533 (B6)
location(computer(Sara))�I1 A626 (B7)
location(computer(Bob))�I1 B533 (B8)

location(mars) �I1 A626 (C1)
location(jupiter) �I1 B533 (C2)

Fig. 5. Contents of PI1,A1 .

43

c

cok

c1 c2c3

,
c0

,
c0

,
c1

,
c1

,
c1

o

,
c0

,
c1

next

candidate for a solution (1,3,2)

string 1011100

o1

ook

Fig. 6. An example of a database instance I2 of Sw,u.

44

c1 c2c3
next,

o1

Fig. 7. Another database instance I′2 of Sw,u.

45

Z(boss(Employee)) = {Employee, Manager}
Z(boss(Manager)) = {Manager}

Z(computer(Employee)) = {Host, Server}
Z(computer(Manager)) = {Host, Server}

Z(location(Host)) = {Room}
Z(location(Server)) = {Room}

Z(supervisor(Employee)) = {Manager}
Z(supervisor(Manager)) = {Manager}

Z(office(Employee)) = {Room}
Z(office(Manager)) = {Room}

Z(m(c)) = ∅ for any other pairs of m and c,

Z(m(t)) =
⋃

c∈Z(t)

Z(m(c))

Fig. 8. Z for schema S1.

46

computer(Employee) �S1 Host (Ai)
computer(Employee) �S1 Server (Aii)

supervisor(Employee) �S1 Manager (Aiii)
supervisor(Manager) �S1 Manager (Aiv)

office(Employee) �S1 Room (Av)
office(Manager) �S1 Room (Avi)

supervisor(boss(Employee))�S1 Manager (Bi)
boss(Manager) �S1 Manager (Bii)

location(computer(Employee))�S1 Room (Biii)
location(computer(Manager))�S1 Room (Biv)

location(Host) �S1 Room (Ci)
location(Server) �S1 Room (Cii)

Fig. 9. Contents of PS1,A1,Z .

47

Exact type information
ES

[6,7]
⊆

Type inference
Z

�⏐⏐⏐⏐⏐⏐
typed

⏐⏐⏐⏐⏐⏐⏐
Method execution

→∗
I

(Def. 9)

⏐⏐⏐⏐⏐⏐⏐⏐⏐
used

⏐⏐⏐⏐⏐⏐�
used

⏐⏐⏐⏐⏐⏐�
Attacker rules

�I,A

(Def. 15)

Lemma 26
⊆

Approx. attacker rules
�S,A,Z

(Def. 23)
⏐⏐⏐⏐⏐⏐�

lifted

⏐⏐⏐⏐⏐⏐�
lifted

Inference attacks
⇒∗

I,A

Theorem 25
⊆

Approx. inference attacks
⇒∗

S,A,Z

Fig. 10. An overview of the conservativeness of the approximated inference attacks.

48

Exact type information
ES

Theorem 29
⊇ if linear

Type inference
Z

�⏐⏐⏐⏐⏐⏐
typed

⏐⏐⏐⏐⏐⏐⏐
Method execution

→∗
I

(Def. 9)

⏐⏐⏐⏐⏐⏐⏐⏐⏐
used

⏐⏐⏐⏐⏐⏐�
used

⏐⏐⏐⏐⏐⏐�
Attacker rules

�I,A

(Def. 15)

Lemma 34
⊇ for IS if linear

Approx. attacker rules
�S,A,Z

(Def. 23)
⏐⏐⏐⏐⏐⏐�

lifted

⏐⏐⏐⏐⏐⏐�
lifted

Inference attack
⇒∗

I,A

Lemma 35, Theorem 30
⊇ for IS if linear

Approx. inference attack
⇒∗

S,A,Z

Fig. 11. An overview of the soundness of the approximated inference attacks.

49

tσ =

σ(r1) σ(ξ) σ(r2)

exact type
inference

c′

tθβ =

r1

r1

r2

r2

ξ

ξ

β(r1) · αr1
β(ξ) · αξ β(r2) · αr2

→∗
IS

c′ · αξ

Fig. 12. A CSM β of (t, σ, c′) and the principal position ξ of (t, β).

50

tθ = = t′θ′

m

m

qq

qq

θ′(q)

tβ = = t′β′

1 i

σ(q · 1) · β′(q) σ(q · i)

β′(r)β′(r)

rr

β′(q)

→IS

→IS

by inductive hypothesis

Fig. 13. Inductive construction of CSM β. Case (i).

51

tθ = = t′θ′

m

m

qq

qq

tβ = = t′β′

i

β′(q · r′′i)

β′(q · r′′i)

β′(r)β′(r)

rr

r′′i

→IS

→IS

by inductive hypothesis

Fig. 14. Inductive construction of CSM β. Case (ii).

52

t′σ′ =

r

r

q

q

σ′(r)

σ′(r)

c′′

c′′

c′

c′

t′′σ′′ =

r′′

r′′

σ′′(r′′)

σ′′(r′′)

tσ =
exact type

exact type

exact type

inference

inference

inference

Fig. 15. An overview of Lemma 33.

53

T1 Qans←∅, QΔ←∅
T2 compute Res(m(c)) for all m(c)

T3 for each m(c) in A

T4 add m(c) to QΔ

T5 if m ∈Mc then

T6 let t be Res(m(c))

T7 add t[c/x] to QΔ

T8 while QΔ �= ∅
T9 Q′

Δ←∅
T10 for each (t, t′) in

Qans ×QΔ ∪QΔ ×Qans ∪QΔ ×QΔ

T11 if t′ is a subterm of t at r′ then

T12 if Z(t′) has not been computed then

T13 compute Z(t′) from Z0

T14 for each c′ in Z(t′)

T15 add t[r′← c′] to Q′
Δ

T16 Qans←Qans ∪QΔ, QΔ←Q′
Δ

T17 output Qans as Q

Fig. 16. Procedure for computing Q.

54

U1 Dans←∅, DΔ←{τ [c/x]}
U2 while DΔ �= ∅
U3 D′

Δ←∅
U4 for each (t, t′′) in DΔ ×Q

U5 if t′′ is a subterm of t at r′′ then

U6 for each c′′ in Z(t′′)

U7 add t[r′′← c′′] to D′
Δ

U8 Dans←Dans ∪DΔ, DΔ←D′
Δ

U9 if Dans contains a class then

U10 output “τ may be insecure at c”

U11 else

U12 output “τ is secure at c”

Fig. 17. Procedure for determining τ [c/x]⇒∗
S c.

55

List of Tables

Table. 1 Relationship between type inferability and security decidability.

56

Table 1
Relationship between type inferability and security decidability.

(a) Type inferability.

queries linear security-decidable general

schemas but non-linear

linear Y(Th. 29) N(Th. 37) N

general N[8] N N[6]

(b) Decidability of the security problem.

queries linear type-inferable general

schemas but non-linear

linear Y(Th. 30) N(Th. 36) N

general N(Th. 21) N N

57

