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Abstract 

 

It is estimated that 2.6 million people in the UK suffer from diabetes, 50% of whom suffer 

from diabetic neuropathy.  Patients with diabetes have low levels of platelet and plasma 

taurine and in animal models taurine supplementation ameliorates neuropathic symptoms. The 

mechanisms behind taurine depletion and taurine supplementation are not well understood. 

Schwann cells are highly vulnerable to hyperglycaemia-induced stress which plays a key role 

in the pathogenesis of diabetic neuropathy, however, the mechanisms behind these effects are 

not well understood.  In these studies I have elucidated the effect of hyperglycaemia on 

taurine transport in isolated human Schwann cells and the mechanisms behind the beneficial 

effects of taurine supplementation. 

I demonstrated that high glucose reduces TauT expression in a dose-dependent manner and 

that high glucose inhibited the pro-oxidant increase in TauT expression and taurine uptake. 

This high glucose response was ablated by inhibition of aldose reductase, nitric oxide 

synthase as well as antioxidant treatment.  Taurine supplementation reduced glucose-induced 

increases in oxidative stress, lipid peroxidation nitrosative stress and poly(ADP-ribosyl)ation 

and these effects were not accompanied by changes in antioxidant defence. Taurine also 

restored glucose-induced increases in iNOS and nNOS expression along with phospho-p38 

MAPK abundance.   
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Chapter 1   Introduction 

Diabetes mellitus is an endocrine disease characterised by elevated blood glucose. The name 

is derived from two words; the Greek „diabetes‟ which means „to siphon or pass‟, (reflecting 

polyuria suffered by patients) and the Latin word, „mellitus‟, which means „sweet as honey‟. 

Hence, the term diabetes mellitus literally means passing excessive and sweet urine. 

In healthy individuals, insulin is secreted from β-islet cells of the pancreas in response to 

elevations of glucose. Peripheral cells, especially those in muscle and fat, respond by 

increasing cellular glucose uptake mediated by the transporter, glut 4, increasing glycogen 

synthesis as well as by reducing gluconeogenesis. In individuals with diabetes, this 

mechanism does not work, either due to decreased insulin secretion, or peripheral insulin 

resistance. The „gold standard‟ used for diagnosis is an oral glucose tolerance test (OGTT) 

where 75g glucose is consumed by the patient within 5mins, and the blood glucose 

concentration measured two hours later. Normal glucose concentration at 2h is <7.8 mM. A 

glucose concentration 7.8-11.1 mM indicates „impaired glucose tolerance‟ and >11.1 mM 

confirms the patient has diabetes. To reduce the need for an OGTT, in 1997 the American 

Diabetes Association (ADA) suggested lowering threshold for fasting glucose from 7 mM to 

6 mM and with this classification, fasting glucose measurements are now the diagnosis of 

choice (see table 1 for full WHO (World Heath Organisation) classification).  

Using this criterion approximately 2-6% of the UK (United Kingdom) population have 

diabetes, but only half to two thirds have been diagnosed (9). There are two major types of 

diabetes; Type 1, previously known as insulin-dependent diabetes mellitus (IDDM) and Type 

2, previously known as non-insulin dependent diabetes mellitus, (NIDDM).  Other types of 

diabetes exist but are much less common, such as maturity onset diabetes mellitus of the 
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young (MODY), which accounts for approximately 3% of sufferers of diabetes (9). The 

clinical manifestation of the diabetes depends upon the type of diabetes suffered. 

    

Venous Plasma Glucose 

(mM) 

Normal 
Fasting <6.0 

and 2hr 

OGTT <7.8 

Diabetes 

Fasting  >7.0 

or  

2hr 

OGTT >11.1 

Impaired glucose 

tolerance 

Fasting  <7.0 

and 2hr 

OGTT 7.8-11.1 

Impaired fasting glucose Fasting 6.0-6.9 

 

Table 1-1 - WHO Classification for Diagnostic Criteria of Diabetes (9) 

1.1  Type 1 Diabetes-Insulin Dependent Diabetes Mellitus  

  

Type 1 diabetes usually occurs in young people below the age of 35 and accounts for between 

5-25% of cases (9). Clinical manifestations are weight loss, polydipsia and polyuria. Diabetic 

comas are a common problem for Type 1 patients. Hyperglycaemic comas can be non-ketotic 

where dehydration results in a coma, or ketotic which is due to extreme insulin deficiency, 

where the body metabolises fatty acids, producing ketone bodies (10).  Accumulation of 

ketone bodies results in metabolic acidosis, which is fatal in 6-10% of patients (11). 

Hypoglycaemic comas occur due to extremely low blood glucose. 

The precise causes of Type 1 diabetes are not completely clear although the aetiology 

suggests an autoimmune condition resulting in  T-cell destruction of pancreatic β cells (10). 

Many genetic traits are implicated in Type 1 diabetes, most linked to the histocompatibility 

complex (MHC) antigens/human leukocyte antigens (HLA). Over 90% of patients with Type 
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1 diabetes in the UK have either HLA-DR3, DR4 or both. Environmental factors implicate 

viral infections such as coxsackie, especially B4, rubella, cytomegalovirus, Epstein-Barr 

virus, mumps, retroviruses and rotavirus (9).   

1.2  Type 2 Diabetes 

 

Type 2 diabetes accounts for the vast majority of cases of diabetes (75-95%) (9). Type 2 

diabetes is due either to a defect in insulin secretion, to peripheral insulin resistance or both 

(10). Type 2 diabetes is often asymptomatic, diagnosed later in life and it is rarer that patients 

will fall into either a hypoglycaemic or hyperglycaemic coma (10). Clinically, patients often 

present with other symptoms, such as recurrent urinary tract infections, or diabetic 

complications (see below) whereupon diagnosis is made.  

Type 2 diabetes is less strongly linked to autoimmunity than type 1 diabetes, but is more 

commonly part of the metabolic syndrome (also known as insulin-resistance syndrome, or 

Syndrome X) which consists of impaired insulin-stimulated glucose uptake, 

hyperinsulinaemia, truncal obesity, dyslipidaemia, hypertension, hypercoagulable state, 

polycystic ovary syndrome and microalbuminuria (10). As with Type 1, there are many 

genetic components associated with Type 2 diabetes, however, the genetics appear to be 

polygenic affecting many factors such as insulin signalling as well as fat metabolism.  

1.3  Epidemiology of Diabetes 

 

The prevalence of diabetes is increasing rapidly. In the UK there were 1.7 million cases in 

2000 AD, and this is expected to rise to 2.7 million by 2030 AD. World-wide there were 171 

million cases in 2000 AD which is expected to increase to 366 million by 2030 AD. (WHO 

http://www.who.int/diabetes/facts/world_figures/en/). The disease prevalence varies greatly 

http://www.who.int/diabetes/facts/world_figures/en/
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world-wide (figure 1-1) and the same distribution is found within multiethnic countries, such 

as in the United States of America (USA) and UK demonstrating genetic predisposition. In 

the UK relatively higher Type 2 diabetes prevalence is oberserved in ethnic groups, such as 

Caribbean, West African as well as those from the Indian subcontinent compared with white 

Caucasians (12). The same has been reported in the USA with higher disease prevalence 

among the Hispanic and African-American populations compared with white Caucasian 

groups (13).  The higher prevalence within these populations highlights life-style factors 

affecting disease prevalence, however genetic polymorphisms in minority groups have also 

been found to associate with susceptibility to Type 2 diabetes. Large-scale studies such as the 

United Kingdom Asian Diabetes Study are being conducted to identify additional 

polymorphisms.  

1.4  Complications of Diabetes 

 

The acute complications of diabetes, i.e. hypoglycaemic and hyperglycaemic comas are 

serious medical emergencies but chronic microvascular and macrovascular complications 

affect many patients and these are associated with considerable morbidity and mortality. The 

macrovascular complications, such as coronary artery disease, are complications linked to the 

metabolic syndrome. However a series of microvascular complications, such as retinopathy, 

nephropathy, and neuropathy occur, where hyperglycaemia per se is the key contributing 

factor (10). During the 1990s, two large-scale clinical trials evaluating the effect of tight 

glycaemic control on the microvascular complications were conducted i.e.  the Diabetes 

Control and Complications Trial (DCCT) in subjects with Type 1 diabetes (14) and the UK 

Prospective Diabetes Study (UKPDS) in patients with Type 2 diabetes (15). Both studies 
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demonstrated that tight glycaemic control was beneficial in reducing the microvascular 

complications of diabetes.  

Improvements in the management of diabetes have resulted in improved patient morbidiy and 

mortality. However the development of long-term complications is related to the duration of 

diabetes and the quality of antecedent glycaemic control.  In addition, many patiens with Type 

2 diabetes are unaware of their condition and therefore present late with complications already 

developed.  

 

 

 

 

 

 

 

 

 

Figure 1-1 - Prevalence Map Demonstrating 

World-Wide Diabetes Incidence 

Top 10 countries are indicated on the left, showing 

high prevalence in Asia. (Source:WHO)  
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1.4.1  Microvascular Complications of Diabetes  

1.4.1.1  Retinopathy 

Approximately 10% of patients suffering from either Type 1 or 2 diabetes for 15 years or 

more will develop severe visual impairment and approximately 2% will become blind. During 

early stages in the condition the capillary basement membrane thickens and is associated with 

a loss of pericytes embedded within. In these early stages of the disease the patient may suffer 

capillary microaneurysms, where small retinal haemorrhages can be seen clinically as red 

„dots‟(16; 17). There may also be large areas of retinal capillaries with reduced blood flow.  

This induces the formation of new blood vessels either along the disc, or elsewhere (17; 18). 

These changes are asymptomatic, but may progress to haemorrhage, scar tissue formation and 

finally retinal detachment, which will result in loss of vision (16).  

1.4.1.2  Nephropathy 

After 15 years of diabetes, 35% of patients will have nephropathy and between 10-20% of the 

patients will die from kidney failure. Nephropathy is associated with increased kidney size, 

afferent and efferent arterial fibrosis, thickening of the glomerular basement membrane and 

expansion of the mesangium (19). The electrical charge of the basement membrane is altered 

increasing the passage of albumin. Hence, the initial sign of nephropathy is microalbuminuria 

which usually occurs 5-15 years after onset of diabetes (20). This can progress into 

proteinuria and albuminuria, signifying the beginning of nephropathy. From this point there is 

on average a reduction of 10ml/min/1.73m
2
 in glomerular filtration rate, ultimately leading to 

end-stage renal failure (19). 
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1.4.1.3  Neuropathy 

There are three classical syndromes of diabetic neuropathy, (i) distal symmetrical 

sensorimotor polyneuropathy, (ii) diabetic autonomic neuropathy (DAN) and (iii) focal 

neuropathy. The prevalence of DAN depends upon the criteria used for study, but estimates 

range between 20-40% of patients with diabetes (21). The most studied and clinically 

important form of DAN is cardiovascular autonomic neuropathy (CAN), which results from 

damage to autonomic nerves that innervate the heart. This can produce tachycardia, exercise 

intolerance, postural hypotension and there is a five fold increase in five year mortality rate in 

individuals with CAN than those without cardiovascular autonomic involvement (21; 22). As 

well as CAN, DAN also results in other autonomic dysfunctions, such as constipation, 

diarrhoea and incontinence (21; 23).  

Diabetic focal neuropathies are normally seen in patients over 50 years of age (24). These can 

occur suddenly and are caused by microvascular infarcts.  Depending upon the nerve(s) 

affected this can result in cranial, truncal, proximal or multifocal diabetic neuropathy (25). 

Electrophysiological studies demonstrate a reduction in both nerve conduction as well as 

amplitude due to both demyelination and axonal degeneration (26).  The prognsosis for focal 

neuropathy is generally good and the condition will frequently resolve itself (24; 26).   

Estimates vary for the prevalence of diabetic peripheral neuropathy, however, it is thought 

that up to 50% of diabetic patients may have the condition, half of which maybe 

asymptomatic (26). Due to the subtle nature of both Type 2 diabetes as well as neuropathy at 

the point of diagnosis of diabetes, 10% of patients already have diabetic peripheral 

neuropathy (27).  

In general, the pathology of diabetic peripheral neuropathy in Type 1 and Type 2 diabetes is 

considered to be similar (although some authorities dispute this). Diabetic peripheral 



8 

 

neuropathy is associated with progressive nerve fibre degeneration (26).   Initially the 

condition affects the small nerve fibres. Early on there is a loss of intra-epidermal nerve fibres 

as shown in figure 1-2, which can be measured by immunohistochemical staining (1; 28).  

Pain also occurs early in diabetic neuropathy. Nerve fibre loss is also associated with 

noiceceptive pain, however, neuropathic pain can also result from DRG hyperexcitibility (29; 

30) and sensitisation which occurs in brainstem nuclei (31).  

The condition can progress with loss of vibration, pressure and proprioception perceptions. 

Finally motor deficits and muscle wasting may develop affecting up to 5% of diabetic 

patients. Diabetic peripheral neuropathy and the consequent lack of sensation is the second 

largest cause for amputations, following accidental trauma (32) with the lifetime risk of foot 

amputations for neuropathic patients being 15% (27).  

Parallelling the clinical symptoms is the histopathology. Microangiopathy which is common 

to all microvascular complications appears as a thickening of the basement membrane and 

swollen endothelial cells and occurs in early stage diabetic neuropathy (28). The 

microangiopathy also correlates with a reduction in nerve fibre density (33). Nerve fibre 

degeneration occurs due to severe demyelination. Onion bulb formation is also visible, which 

occurs due to successive demyelination and remyelination (34). In the absence of this 

regeneration, the nerve fibre will be lost. 

Both DCCT and UKPDS demonstrated that progression of diabetic peripheral neuropathy was 

dependent on glycaemic control (35; 36).  The DCCT also demonstrated a causal relationship 

between glycaemic control and disease incidence, a finding that was inconclusive in UKPDS 

(37; 38). This is primarily due to the vascular component of diabetic peripheral neuropathy 

and the metabolic syndrome being similar; as are many of the risk factors such as  cigarette 
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smoking, alcohol consumption, hypercholesterolemia, low HDL, elevated triglycerides and 

hypertension (27; 39-42).  It is also of note that men develop neuropathy earlier than women 

(27; 43). 

Studies in the USA have found no differences between the rates of neuropathy between blacks 

and Hispanics (44), on the other hand, in France rates of neuropathy are higher in Algerians 

(45). In a recent study Asians with type 2 diabetes were found to have less large and small 

fibre neuropathy compared to Europeans. In this study it was concluded this occurance was 

due to improved skin microvascularisation (46).  
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Figure 1-2 - Progressive Loss of Epidermal Nerve 

Fibres in Diabetic Patients 

(1) 

A Healthy patient, with normal density of 

epidermal nerve fibres 

B  Slightly reduced nerve fibre density 

C  Complete clearance of nerve fibres 
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1.4.1.4  Diabetic Foot Ulceration 

Patients with diabetes can have dry, atrophic skin due to reduced collagen production and an 

increased abundance of active matrix metalloproteinases (47). This reduced skin integrity 

means patients can more easily be wounded, especially on their feet, where foot deformities, 

ill-fitting shoes or the presence of foreign bodies can easily damage the skin, forming 

ulceration (48). Exacerbating this effect is peripheral neuropathy (see above) whereby 

decreased sweating contributes to skin cracking and fissure formation. Reduced sensation 

predisposes to wound formation and approximately 80% of patients with foot ulceration also 

have neuropathy (48). Peripheral vascular disease and reduced peripheral blood flow can 

result in local ischaemia and together with hyperglycaemia can impair skin repair and reduce 

immune defence (49). The combination of neuropathy and ischaemia has been termed “the 

neuroischaemic foot” and predisposes to infections, and finally necrosis and gangrene (48).  

1.4.1.5  Vascular Deficits in Diabetic Neuropathy  

The presence of endoneurial microangiopathy, thickening of the basement membrane of the 

vasa nervorum, and endothelial cell swelling may contribute to the development of diabetic 

peripheral neuropathy. These defects are induced by hyperglycaemia as well as vascular risk 

factors associated with neuropathy such as increased blood pressure, cholesterol, triglycerides 

as well as smoking (42). The above facts, combined with increased platelet aggregation, result 

in reduced nerve blood flow, lumen occlusion and ischaemia (50). A vascular component to 

diabetic peripheral neuropathy is supported by the salutary effects of vasodilators such as 

angiotensin-converting enzyme inhibitors, which improve nerve blood flow and subsequently 

nerve conduction velocity and Na
+
/K

+
- ATPase activity in experimental diabetic peripheral 

neuropathy (51).  
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It was initially thought the vascular and metabolic aspects of diabetic peripheral neuropathy 

were separate; it is now clear they are linked (52). Increased glucose flux results in augmented 

oxidative stress, and decreased NADPH.  Oxidative stress contributes to endothelial damage 

reducing endoneurial blood flow and increasing tissue ischaemia. These result in a vicious 

cycle with local ischaemia directly increasing oxidative stress and reduced blood flow 

reducing oxidant buffering from the blood  (53). NADPH is an essential cofactor for nitric 

oxide (NO) generation by endothelial nitric oxide synthase (eNOS) as illustrated in figure 1-3 

(51). NO generation from eNOS is essential for vasodilation; therefore NADPH depletion 

impairs vasodilation, further aggravating the vascular deficits (53; 54).   

 

 

 

 

 

 

 

 

 

Figure 1-3 – Adose Reductase Flux and 

Vasodilation 

Increased flux through aldose reductase depletes 

intracellular NADPH, which is a cofactor for the 

generation of NO by eNOS required for vasodilation. 

Increased aldose reductase flux inhibits NO generation 

by eNOS, therefore reducing vasodilation. 
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1.4.1.6  Schwann Cells in Diabetic Neuropathy 

Schwann cells are the support cell of the peripheral nervous system (PNS), the most obvious 

function being to wrap around neuronal axons acting as an insulating barrier impenetrable to 

ion movement. In myelinating Schwann cells, this barrier is created by proteins and lipids that 

form concentric layers of myelin surrounding the axon, with the bulk of the Schwann cell 

cytoplasm and nucleus residing close to the external plasma membrane, an area known as the 

neurilemma (55; 56) (figure 1-4A). In non-myelinated cells, the barrier is the plasma 

membrane of the Schwann cell. The Schwann cell barrier is discontinuous and at most each 

Schwann cell covers 1-2mm of the axon (57).  The unmyelinated areas of the discontinuous 

barrier are known as nodes of Ranvier where ions can cross the axonal membrane (figure 1-

4B). This enables currents to jump between nodes, resulting in fast, energy- efficient 

transmission known as „saltatory conduction‟.  

Schwann cells play large role in the response of the PNS to injury. When Schwann cells lose 

axonal contact they de-differentiate, and along with invading macrophages are able to 

phagocytose debris such as myelin and axons produced by injury. Schwann cells distal to the 

lesion however, remain differentiated and secrete growth factors such as neurotrophic factor 

(NT) 4, glial derived neurotrophic factor (GDNF) and nerve growth factor (NGF) to promote 

axonal survival and re-growth (7; 58).   
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Figure 1-4 – Schwann Cell Structure 

A.  Micrograph of myelinating Schwann cell. The myelin sheath 

surrounds the peripheral axon forming barrier to ion transport. 

The bulk of the Schwann cell cytoplasm is in the neurilemma 

close to the external plasma membrane. Taken from 

http://dekmaihiso.web44.net/Neurons_I.html 

B. Image of the myelinating Schwann cell surrounding the axon 

creating nodes of Ranvier down the axon enabling fast, energy 

efficient salutatory conduction. Taken from 

http://cc.oulu.fi/~aheape/Myelin3.gif 

C.  

 

 

 

 

http://dekmaihiso.web44.net/Neurons_I.html
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The role of Schwann cells in neuropathy is demonstrated by demyelination and onion-bulb 

formation, caused by repeated episodes of demyelination and remyelination as well as 

reduced nerve re-generation and reduced neurotrophism observed in models of neuropathy 

(28; 34). Glucose uptake into Schwann cells is insulin-independent (59). They highly express 

the enzyme aldose reductase (60), which has been implicated in glucose toxicity (61; 62) (see 

section 1.4.2.1). Together these make Schwann cells vulnerable to hyperglycaemic toxicity; 

hence Schwann cells have been identified as the critical focus of oxidative/nitrosative stress in 

diabetic models (28). Despite neuropathy progressing independently in Schwann cells and 

nerve most studies on neuropathy have been performed on whole nerves and the effects on 

Schwann cell signalling are not well understood (63).  

Studies examining the effects of diabetes and hyperglycaemia on Schwann cells are limited; 

however, those conducted demonstrate clear Schwann cell dysfunction.  Oxidative/nitrosative 

stress, poly(ADP-ribosyl)ation and inducible nitric oxide synthase (iNOS) protein expression 

are increased (64). Additionally there is altered arachidonic acid biosynthesis (65) and 

reduced neurotrophic factor-induced nerve growth factor secretion (66), the latter of which is 

restored with aldose reductase inhibition (67). Glial derived neurotrophic factor expression is 

increased in Schwann cells in models of diabetic as well as non-diabetic peripheral 

neuropathies, an effect correlated to axonopathic diseases (68). Nerve regeneration is also 

impaired in neuropathy and Schwann cells demonstrate altered neurotrophism in neuropathic 

models in response to injury. Nerve growth factor and insulin-like growth factor-1 expression 

are altered; these effects are reversed with aldose reductase inhibition (63). Lastly Myelin 

proteins P0 as well as myelin basic protein are both glycated in neuropathy, and animals with 

heterozygous knockout of peripheral myelin protein 22 suffer neuropathic-like symptoms 

(63). 
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1.4.2  Metabolic Deficits of Diabetic Neuropathy 

 

The DCCT and UKPDS demonstrated the beneficial effect of tight glycaemic control on 

microvascular complications and identified hyperglycaemia as the initiating cause of tissue 

damage instigating microvascular complications. Most cells are able to regulate the 

intracellular glucose concentration and will maintain a constant intracellular glucose 

concentration independent of plasma glucose. However, those cells damaged by 

hyperglycaemia e.g. retinal pigment endothelial cells (RPE), mesangial cells as well as 

Schwann cells and neurones, are unable to effectively do this (2). Increased intracellular 

glucose results in the pathogenic complications through four main mechanisms, i) increased 

polyol pathway flux, ii) increased advanced glycated end product generation, iii) protein 

kinase C (PKC) activation and iv) increased hexosamine pathway flux.   

1.4.2.1  Polyol Pathway  

Aldose reductase is the first enzyme in the polyol pathway. Aldose reductase catalyses the 

reduction of toxic aldehydes produced by reactive oxygen species (ROS) into inactive 

alcohols. This process uses the cofactor NADPH which is oxidised to NADP+ (figure 1-5).  

Aldose reductase has low affinity (high Km) for glucose and in normal glucose concentrations 

metabolism of glucose through aldose reductase is very small (4). In the hyperglycaemic 

environment however, high intracellular glucose increases polyol pathway flux. The result is a 

large proportion of glucose being converted into the polyalcohol and osmolyte, sorbitol. 

Sorbitol is further oxidised into fructose by sorbitol dehydrogenase (SDH) using the cofactor 

NAD
+
 which is reduced to NADH (figure 1-5). Increased polyol pathway flux augments 

intracellular sorbitol and fructose content, which has been seen in the lens (69) nerve (52; 70) 

and retina (71) of diabetic animal models.  
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There are a number of mechanisms by which this pathway contributes to the microvascular 

complications. The increase in intracellular sorbitol results in osmotic disturbances and 

compensatory efflux of other organic osmolytes such as myoinositol and the antioxidant 

taurine (72; 73). Depletion of these factors have been identified as key components in the 

complications of diabetes (74-76). Conversion of glucose into sorbitol by aldose reductase 

requires the cofactor NADPH, which is also required for the generation of the antioxidant 

reduced glutathione (GSH) as shown in figure 1-5. Aldose reductase-mediated depletion of 

NADPH results in the reduction of intracellular GSH observed in many different studies of 

diabetes (3; 4; 77), with aldose reductase inhibition restoring GSH content (78).  The end-

product of the polyol pathway is fructose. Although fructose feeds into glycolysis by 

conversion into fructose-1-phosphate by fructokinase, it is a much better substrate for non-

enzymatic glycation than glucose. Hence, increased polyol pathway flux also results in an 

increase in non-enzymatic glycation. Finally increased aldose reductase flux also increases 

diacylglycerol (DAG) formation increasing  PKC activation (3). Therefore increased polyol 

pathway flux increases intracellular sorbitol and fructose, whilst depleting NADPH and 

NAD+. 

The importance of aldose reductase flux in the development of diabetic complications remains 

controversial, although it has been demonstrated that aldose reductase inhibition has many 

beneficial effects in animal models (52; 67; 79-83). Genetic studies have demonstrated 

patients with high aldose reductase expression are predisposed to complications such as 

neuropathy, whereas patients with a low aldose reductase expression have a lower 

susceptibility to such complications (58; 84).  Diabetic mice that over-express aldose 

reductase in Schwann cells developed nerve GSH depletion and exacerbated nerve conduction 
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velocity deficits (85), whereas aldose reductase knockout mice are protected from GSH 

depletion and experimental neuropathy (86).  

Although aldose reductase inhibitors, such as sorbinil showed promising results in animal 

models, clinical trials with these agents struggled to demonstrate efficacy and high levels of 

side-effects were reported (3). Since then, different versions of the drug have been trialed with 

some success. Fidarestat demonstrated good efficacy both at restoring sorbitol content and 

improving nerve conduction velocity, however, due to side-effects, phase three trials were 

halted in early 2000 (54). Data from more recent aldose reductase inhibitors such as 

Zenarestat and Ranirestat have proven to be more positive, both in reducing sorbitol content 

and improving nerve conduction velocity (54; 87). However, side-effects remain a 

complicating factor for Zenarestat where high creatinine levels were recorded, demonstrating 

kidney toxicity (3).  

Currently the only aldose reductase inhibitor licensed for use is Epalrestat, which is licensed 

in Japan. Although well tolerated, the clinical benefits are limited and only high doses display 

benefits with slightly delayed onset of neuropathy (54). Even though aldose reductase 

inhibitors have been trialled for 30 years they still remain a promising therapeutic target and 

with each generation the efficacy improves while side effects decrease.  
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1.4.2.2  Advanced Glycated End Products  

Protein glycation is the result of non-enzymatic addition of saccharides to proteins, lipids and 

nucleic acids. There are four major sources of advanced glycated end products (AGEs) in vivo 

which all originate from reactive carbonyl intermediates (88). These comprise i) intracellular 

oxidation of glucose to form glyoxal, ii) degradation of Amadori products, iii) aberrant 

metabolism of glyceraldehyde-3-phosphate and iv) dihydroxyacetone phosphate to form 

Figure 1-5 - The Polyol Pathway 

Aldose reductase reduces toxic aldehydes produced by ROS into inactive 

alcohols and glucose into sorbitol using the cofactor NADPH, which is 

oxidised to NADP+. Sorbitol dehydrogenase (SDH) oxidises sorbitol into 

fructose using NAD+ as a cofactor. In hyperglycaemia, increased polyol 

pathway flux increases intracellular accumulation of sorbitol as well as 

fructose, whilst depleting NAD+ and NADPH, the latter of which is 

required for the regeneration of GSH. (2)  
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methylglyoxal. These precursors react with amino groups of intracellular and extracellular 

proteins, lipids and nucleotides to form advanced glycated end products (AGE) (89; 90).    

 

Glycation has been seen in transcription factors (91; 92), along with  tubulin, neurofilament, 

axons in nerve fibres and myelin proteins in Schwann cells (88; 93). Glycated proteins have 

altered functions (2) and in models of diabetes, glycation of superoxide dismutase (SOD) 

reduces activity (94; 95). 

 

AGE precursors can diffuse out of the cell and modify extracellular matrix components and 

plasma proteins. AGE modification alters the functional properties of several extracellular 

matrix proteins. For example AGE modification of type I collagen causes cross-linking and 

reduced elasticity in large vessels (4; 96). AGE modification of extracellular matrix proteins 

also interferes with the interaction between the matrix and the cell. For example AGE 

modification of laminin molecules reduces neurite outgrowth (4).  

 

AGE modified plasma proteins can bind to the AGE receptor (RAGE) activating the receptor 

and triggering production of inflammatory cytokines. Activation of  RAGE on macrophages 

and mesangial cells results in increased production of interleukin-1 (IL-1), insulin-like growth 

factor-1 (IGF-I), tumour necrosis factor-α (TNF-α), transforming  growth factor-β (TGF-β), 

nuclear factor kappa beta (NFκB), macrophage colony-stimulating factor, granulocyte-

macrophage colony stimulating factor and platelet derived growth factor (PDGF), resulting in 

increased iNOS expression and generating oxidative/nitrosative stress (2-4; 32). Diabetic 

RAGE knockout mice show significant improvement in diabetic peripheral neuropathy and 

display decreased expression of NFΚB and PKC compared to wild-type diabetic models. 
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Although this decrease in NFκB and PKC was present in peripheral nerves and DRGs, the 

most pronounced effect was witnessed in Schwann cells (97).  

 

Clinically, compounds capable of cleaving AGE have low efficacy and produce relatively 

high proportions of adverse events. For example aminoguanidine reduced Hb-AGE in 

patients, but no benefit was seen in neuropathic end-points and one trial had to be ended due 

to flu-like side effects and gastrointestinal disturbances (3; 98).   

1.4.2.3  Hexosamine Pathway 

The majority of intracellular glucose is metabolised through glycolysis, initially being 

converted into glucose-6 phosphate and then to fructose-6 phosphate before progressing 

through the rest of the glycolytic pathway. However, some fructose-6 phosphate is diverted 

from glycolysis through a glycolytic signalling pathway, the hexosamine pathway, as shown 

in figure 1-6. Here fructose-6 phosphate is converted into uridine diphosphate-N-acetyl 

glucosamine (UDP-GlcNAc), which donates GlcNAc to serine and threonine residues on 

transcription factors such as Sp1, often at phosphorylation sites. 

 

In aortic endothelial cells, hyperglycaemia induces a 2.4-fold increase in the hexosamine 

pathway flux (4). This results in a 1.7 fold increase in Sp1 glycosylation by GlcNAc and a 70-

80% decrease in serine/threonine phosphorylation, increasing Sp1 activity (99). This 

increased Sp1 activation is responsible for increased expression of genes including TGF-β and 

platelet plasminogen activator inhibitor PAI-1 (100), the expression of both is increased in 

hyperglycaemia (3). 
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Benfotiamine is a lipophilic analogue of thiamine/vitamin B1 that diverts fructose-6 

phosphate from the hexosamine pathway into the pentose pathway by activating transketolase, 

which converts fructose-6 phosphate into pentose-5 phosphate. This reduces both hexosamine 

Figure 1-6 - The Hexosamine Pathway 

Fructose-6 phosphate (F-6-P) is diverted from glycolysis into the 

glycolytic signalling pathway, the hexosamine pathway.  

Glucosamine:fructose-6 phosphate amidotransferase converts fructose-6 

phosphate into glucosamine-6 phosphate which is then converted into 

diphosphate-N-acetyl glucosamine (UDP-GlcNAc). Glycosylation by the 

addition of GlcNAc is catalysed by O-GlcNAc transferase (OGT) which 

donates GlcNAc to serine and threonine residues on transcription factors 

such as Sp1. Glycosylation of Sp1 in this way increases production of 

PAI-1 and TGF-β1.  

Benfotiamine is an analogue of transketolase (TK) which diverts 

fructose-6 phosphate away from glycolysis into the pentose phosphate 

pathway (3). 
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pathway flux as well as AGE whilst generating NADPH by increasing pentose-pathway flux. 

Clinical studies have demonstrated benfotiamine improves neuropathic pain as well as nerve 

conduction velocity and is currently available in the USA as a dietary supplement (3).  

 

1.4.2.4  PKC Activation 

PKC is a ubiquitous second messenger, the activation of which (primarily β and δ) is 

increased in various tissues in diabetic animal models, such as the retina (101), heart, aorta 

(102) and renal glomerulus (103-105). This is due to increased levels of de novo synthesis of 

diacylglycerol (DAG) which activates PKC. PKC activation has a plethora of effects, but one 

example is that increased activation of PKC-β which has been implicated in the over-

expression of vascular endothelial growth factor (VEGF), PAI-1, NFκB and TGF-β, all 

associated with microvascular complications (3). PKC-β activation has also been implicated 

with vascular deficits, being associated with decreased NO production, reducing eNOS 

expression in cultured endothelial cells (106) and inhibition ameliorates vascular dysfunction 

in diabetic rats (105). 

This same pattern does not follow in the nerve, where PKC activity is unchanged (104; 107; 

108). Despite this, in STZ-D rats, selective PKC-β inhibition improved motor nerve 

conduction velocity, sciatic nerve blood flow and reduced nerve sorbitol content without 

affecting PKC-β activity within the nerve itself (108). This suggests the inhibitor may not 

have been acting directly upon the neurone and the beneficial effects observed were due to 

improvements in vascular deficits rather than metabolic components. This also potentially 

explains why ruboxistaurin, a competitive PKC-β inhibitor, that in clinical trials demonstrated 

effective management of retinopathy, nephropathy and endothelial vasodilation, does not have 

the same beneficial effect for neuropathy (3). This drug is in development for the US market 
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for treatment of retinopathy, but the Federal Drug Administration requires additional efficacy 

data before approval for patient use.   

1.4.3  Oxidative stress 

1.4.3.1  The Biochemistry of Oxidative Stress 

A radical is a molecule with an unpaired electron (e
-
) in the outer orbit which can initiate 

reactions by removal of an e
-
 from other molecules to complete its own orbital. The electronic 

structure of O2 favours reduction by the addition of one electron at a time, generating oxygen 

radicals. Reactive oxygen species (ROS) such as superoxide (O2
-
) and hydrogen peroxide 

(H2O2) are generated naturally through biochemical processes such as oxidative 

phosphorylation and inflammation. These radicals are themselves highly reactive, however, 

they can also form even more reactive species such as the hydroxyl radical (OH
.
) and singlet 

oxygen (O2
2-

) (figure 1-7). Due to the highly reactive nature, the production of ROS is under 

tight control, however, when the cellular antioxidant capacity is overwhelmed by ROS 

production, oxidative stress occurs causing cellular damage (7; 109).  

Oxidative stress will cause damage to all major macromolecules within cells, i.e. proteins, 

lipids as well as nucleotides. ROS are also able to attach to iron sulphur centres of enzymes, 

releasing the iron atoms and inhibiting enzyme function (7). Additionally OH
.
 reacts with 

proline, histidine, arginine, cysteine and methionine residues on proteins resulting in cross-

linking, fragmentation and aggregation (109).  

Phospholipids present in membranes are subject to lipid peroxidation. This is initiated by OH
.
 

removing hydrogen from polyunsaturated fatty acids. The resulting lipid radical reacts with 

O2 forming lipid peroxy radicals, lipid peroxide, 4-hydroxynoneal adducts (4HNE) and 

monoaldehyde (MDA), the latter two being commonly used to detect levels of lipid 
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peroxidation (110). One common product of lipid peroxidation is „age spots‟ observed on the 

hands of the elderly. Lipid peroxidation products and the pigment lipofuscin cross-link 

causing brown spots to form. Lipid peroxidation also increases membrane permeability 

leading to increased Ca
2+

 influx. Ca
2+

 influx also occurs in organelles and increased 

mitochondrial Ca
2+

 may lead to apoptosis (109).   

The most important consequence of ROS is damage to both mitochondrial and nuclear DNA. 

Since the majority of ROS arise from the electron transport chain (ETC), mitochondrial DNA 

(mtDNA) is more vulnerable to damage from ROS compaired with nuclear DNA. Damage to 

mtDNA will result in mutations affecting energy production. This would be most important in 

neurones with high energy demand. Nuclear DNA is protected to some degree from oxidant 

damage by the protective coat of histones; however, OH
.
 radicals can attack, especially where 

Fe
2+

 ions non-specifically bind to DNA, and result in single-strand DNA breaks (2; 7; 109).  
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1.4.3.2  Oxidative Stress in Diabetes 

Increased oxidative/nitrosative stress has been implicated as a key pathogenetic pathway in 

the complications of diabetes (4; 7; 111; 112). Increased oxidative stress has been identified in 

the nerve (113-115), eye (71), vasculature, kidney (116; 117) and heart (118) in diabetic 

rodent models, and in diabetic patients (119-122). Each of the four pathways outlined in 

sections 1.4.2.1-4 as well as vascular dysfunction contribute unique stresses in diabetes, 

however they do have one end result in common; they all increase oxidative stress. The 

Figure 1-7 - The Formation and Decomposition of Reactive Oxygen 

Species 

Superoxide (O2
-
) is formed from processes such as electron transport in the 

mitochondria and inflammation. O2
-
 is converted into hydrogen peroxide 

(H2O2) by superoxide dismutase (SOD). H2O2 is converted into H2O and 

O2 by either glutathione peroxidase or catalase. In the presence of a metal, 

ion H2O2 will form the highly reactive hydroxyl radical (OH
.
). Nitric oxide 

produced by NO synthase, can react with O2
-
 forming the highly reactive 

peroxynitrite (ONOO
-
).  Peroxynitrite reacts with CO2, forming CO3 and 

NO2 and the latter reacts with the aromatic ring of the amino acid tyrosine, 

forming covalent tyrosine nitrosylation.  

Adapted from Vincent et al., 2004.(7) 
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unifying hypothesis states that oxidative stress is the main factor contributing to the metabolic 

and vascular components of microvascular complications of diabetes (2; 123). 

Furthermore, excess glucose metabolism leads directly to the generation of oxidative stress. 

Glucose metabolism through the Krebs cycle generates electron donors NADH and FADH2. 

In the ETC NADH donates electrons (e
-
) to complex 1; FADH2 donates e

-
 to complex 2. Both 

these complexes pass e
-
 to coenzyme Q (CoQ) from where the e

-
 are passed to complex III, 

cytochrome C, complex IV and finally to molecular oxygen from where they are reduced to 

form water. As e
-
 move through the complexes I, III and IV energy stored within the e

-
 is used 

to pump protons across the inner mitochondrial membrane into the intermembrane space, 

creating a potential difference across the inner mitochondrial membrane. This potential 

difference provides the energy for ATP synthase to add a phosphate to ADP, generating ATP 

(figure 1-8) (2; 4; 109). 

Hyperglycaemia increases flux through glycolysis and the Krebs cycle, causing 

overproduction of both NADH and FADH2, increasing the potential difference across the 

inner mitochondrial membrane (124). This occurs up to a point, at which electron transfer 

inside complex III is blocked causing e
-
 to back up at CoQ, which donates e

-
 to molecular 

oxygen, generating superoxide. This results in increased superoxide production (2; 4).  

1.4.3.3  Antioxidant Treatment and Neuropathy 

Considering the association between oxidative stress and diabetes, treatment with antioxidants 

has been an attractive prospect to reduce diabetic complications. The most thoroughly 

examined is α-lipoic acid (ALA) (also known as thioctic acid). ALA is a naturally occurring 

antioxidant found ubiquitously in animal products as well as plants such as spinach and 
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broccoli. ALA is a potent scavenger of ROS and RNS, and also reduces other antioxidants 

such as vitamin C and glutathione from their oxidised to reduced active state (125; 126). 

 

In animal models ALA corrects nerve growth factor deficits (127), sensory nerve conduction 

velocity, endoneurial blood flow, restores GSH and GSH/GSSG ratio and taurine content in 

the sciatic nerve of STZ-D diabetes (115). Clinical studies examining the effect of ALA 

Figure 1-8 - The Electron Transport Chain 

NADH and FADH2 donate electrons to complex I and II. These pass 

electrons through complex Q and through complex III and IV. As 

complex I, III and IV the energy stored is utilised to pump protons across 

the inner mitochondrial membrane, into the inter-membrane space. The 

potential difference generated is used to drive ATP synthase which adds 

a phosphate (Pi) onto ADP to generate ATP. Alternatively, uncoupling 

proteins release the potential difference generating heat. This mechanism 

is utilised by hibernating animals, helping them to keep warm (4).  
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treatment on diabetes have shown significant improvements in some neuropathic symptoms 

and reduced nerve fibre degradation (128; 129). In a review of current clinical trials, Foster 

concluded ALA treatment improved neuropathic deficits and sensory symptoms, but not the 

pain associated with diabetes  (130; 131). One difficulty with ALA treatment is achieving 

sufficient bioavailability. Although ALA is rapidly absorbed and plasma concentration is 

reached within 30 minutes to 1 hour, the drug also has a high clearance rate and the half-life is 

30 minutes (131). Hence, clinical studies using parenteral administration have demonstrated 

more positive outcomes. Further large –scale trials with ALA are being conducted (3; 131). 

1.4.3.4  Antioxidant Defence System 

Oxidative stress is potentially damaging therefore ROS production, a consequence of many 

biochemical processes, is tightly controlled.  There are enzymes e.g. superoxide dismutase 

(SOD) and catalase and small molecules (such as glutathione, taurine, vitamin C and E), that 

detoxify ROS and a balance exists between ROS production and the activity and abundance 

of these detoxifying molecules.  In physiological situations increased ROS results in increased 

expression and activity of the antioxidant defence system, quenching ROS and reducing 

oxidative damage.  

In diabetes, however, this does not always occur and although the response of the antioxidant 

defence system is tissue-specific, despite increased ROS production, the activity of one or 

more members is often reduced. This dysregulation exacerbates the effect of increased ROS 

production and tips the balance further towards oxidative damage, resulting in tissue damage. 

The action and response of each member is considered below. 

1.4.3.4.1 Glutathione 

Glutathione (GSH) is a major cellular antioxidant made up of a tripeptide consisting of 

glycine, cysteine and glutamic acid (γ-glutamylcysteinylglycine) (132). The sulphydryl group 
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(SH) of glutathione is able to reduce ROS, whereupon it becomes oxidised into oxidised 

glutathione (GSSG) (133). This protective action of GSH against ROS is facilitated by the 

interaction of GSH with enzymes such as glutathione peroxidase (GPx), where GSH acts as a 

cofactor. GPx is a selenium-containing antioxidant that catalyses the reduction of hydrogen 

peroxide as well as lipid peroxides (figure 1-7), using GSH as a cofactor, which is converted 

into GSSG. The reduction of GSSG back into GSH is performed by glutathione reductase, 

which uses NADPH as a cofactor and hydrogen donor (132; 134).  

In diabetes, increased aldose reductase flux depletes the cellular pool of NADPH, required for 

the regeneration of GSH from GSSG by glutathione reductase. In concert the activity of 

glutathione reductase is reduced in experimental (77) as well as clinical diabetes (135). This 

in combination with increased ROS (hence GSH utilisation) results in GSH depletion in the 

nerve of diabetic rodents (75; 115) as well as immortalised mouse Schwann cells (65) and  

patients with diabetes (136).  

1.4.3.4.2 Superoxide Dismutase 

Superoxide dismutase catalyses the dismutation of superoxide into oxygen and hydrogen 

peroxide (figure 1-7), thereby reducing the chance of superoxide reacting with nitric oxide 

(NO) to form peroxynitrite. There are three different isoforms of SOD; SOD1 (Cu/Zn SOD) is 

cytosolic and contains a copper and zinc ions as metal cofactors (137). SOD2 (MnSOD) is 

contained in the mitochondria and contains a manganese metal cofactor and SOD3 

(extracellular SOD) is secreted into the extracellular matrix where it forms glycosylated 

homotetramer with the extracellular matrix (138).  

It is known that SOD 2 can be glycated on lysine residues reducing its activity (94) and this 

increased glycation and reduced activity have been observed in erythrocytes from diabetic 
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patients (95).  Despite this, results from animal models as well as in cell culture have shown 

varied results with respect to SOD activity (65; 77; 139).  In the nerve in STZ-D rats, SOD 

activity tended to decrease and in immortalised Schwann cells SOD activity was significantly 

decreased. Similarly, although clinical data have demonstrated reduced SOD activity in 

erythrocytes of diabetic patients with both type 1 and type 2 diabetes (140-142),  the results  

have not been unanimous and many studies also observe increases in SOD activity (135; 143; 

144). 

1.4.3.4.3 Catalase 

Catalase is a tetrameric enzyme consisting of four identically arranged subunits each 

containing a porphyrin haem centre (134). Catalase is located intracellularly in peroxisomes 

where, like glutathione, it decomposes H2O2 into H2O and O2 (see figure 1-7).  As with SOD, 

variable results are observed in models of diabetes suggesting that responses maybe tissue- 

specific.  Increases in catalase activity were observed in the heart, aorta and brain in animal 

models, but decreases in kidney, liver and erythrocytes (77). In nerve of STZ-D rats catalase 

tended to decrease, whereas in immortalised Schwann cells, there was no change in catalase 

activity (65).  In clinical studies decreased catalase activity in erythrocytes isolated from 

diabetic patients (135; 142) was also discovered. 

1.4.3.4.4 Antioxidant Treatment and Antioxidant Defence 

The response of the antioxidant defence to antioxidant treatment appears to be both tissue- 

and drug-specific. For example, despite consistently reducing oxidative stress, ALA restores 

GSH, GSH/GSSG ratio, taurine content and reverses the trend to decrease in SOD and CAT 

activities in the nerve of STZ-D rats (115). In isolated immortalised mouse Schwann cells 

ALA, but not N-acetyl cysteine, restored GSH content; but ALA failed to restore SOD 
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activity (65). Although taurine reduced oxidative stress markers in nerve, it failed to restore 

GSH content only affecting the ascorbate/dehydroascorbate system (145).  This suggests 

antioxidants affect different tissues to differing degrees and the response of the antioxidant 

defence system to hyperglycaemia may not represent oxidative stress present.  

1.4.4 Nitric Oxide 

 

Increased levels of nitrate and nitrite (NOx) have been observed in serum of patients with 

diabetes (142). Nitric oxide (NO) is a short-lived, second messenger generated by nitric oxide 

synthases (NOS), neuronal NOS (nNOS), inducible NOS (iNOS) and endothelial NOS 

(eNOS), also known as NOS I-III respectively. NOS catalyses the conversion of L-arginine 

into NO and L-citrulline, using the cofactor NADPH as an electron donor. Regulation of NO 

production from iNOS is thought to be primarily by de novo synthesis and mRNA stability 

(146). NO production from eNOS and nNOS is dependent upon phosphorylation by Akt, 

eNOS at Ser 1177 (147) and nNOS at Ser 1412 (148) and Ca
2+ 

influx. NOS activation is 

dependent upon calmodulin. Calmodulin is constitutively bound to iNOS, however, the 

binding of calmodulin to eNOS and nNOS which results in their activation, is dependent upon 

Ca
2+

. Therefore eNOS and nNOS activation is dependent upon elevations in Ca
2+

 

concentration.  

NO produced by each NOS has specific actions. The expression of iNOS is increased by 

cytokines and by NFκB which acts as a transcription factor. At high concentrations > 1µM 

NO produced from iNOS forms part of the inate immune system with direct cytotoxic actions 

on pathogens (149). At lower concentrations NO production by iNOS can modulate 

production of inflammatory cytokines indirectly after reacting with the superoxide anion (146; 

150; 151) and iNOS inhibitors reduce inflammation (152). In diabetes, increased iNOS has 
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been seen in clinical as well as experimental models of diabetes e.g. in the retina (153; 154), 

heart (155), vascular endothelium (156), smooth muscle (157), human Schwann cells (64), 

retinal cells (158) and coronary artery endothelial cells (159). Increases in iNOS expression 

are thought to be linked to increases in inflammatory pathways mediated by  NFκB and TGF-

α  (160-162). In vitro aldose reductase inhibition as well as PARP-1 inhibition prevents 

increased iNOS expression (64; 163). In addition diabetic iNOS knockout mice have 

improved motor and sensory nerve conduction velocity compared to diabetic wild type mice 

(164). 

In neurons nNOS is often localised close to NMDA (N-methyl-D-aspartic acid) receptors and 

is activated by glutamate binding. The subsequent Ca
2+

 influx (165), together with the NO 

generated, is able to mediate neurotransmission. Studies on nNOS expression in diabetes have 

produced varied results; nNOS expression is increased the retina (166; 167) and 

gastroduodenal tract (168) of STZ-D rats and in the kidney cortex of Otsuka Long Evans 

Tokushima Fatty rats (169), but is decreased in the kidney cortex of STZ-D rats (170) and in 

high glucose-treated, immortalized mouse Schwann cells (171). nNOS knockout STZ-D mice 

demonstrate improved motor and sensory nerve conductivity compared with diabetic wild 

type mice, suggesting an impact of increased nNOS expression (172).  

NO production from eNOS activates signal transduction via cGMP initiating vasodilation. In 

diabetic neuropathy, vascular deficits are an important component of the condition. It would 

therefore be anticipated that eNOS expression and NO production would be reduced. 

However in models of diabetes eNOS expression is variable, for example eNOS expression 

increased  (173) and decreaed in human aortic endothelial cells (174). eNOS knockout mice 

demonstrate accelerated nephropathy (175), but this may simply suggestthe local effects of 



34 

 

eNOS on the vasculature may be different from NO produced from either iNOS or nNOS 

(53).  

Clinically, increases in nitrate and nitrite are observed in serum of patients with both Type 1 

(176) and Type 2 diabetes (142; 144), demonstrating overall increased NO production. NO 

signalling is locally acting, therefore it is likely that dysregulation of each NOS contributes 

individual components in diabetic complications. For example, it is possible that increased 

iNOS expression is a consequence and contributing factor to increased inflammation in 

diabetes, nNOS affects neurological components and eNOS vascular deficits.  

1.4.4.1  Reactive Nitrogen Species 

As well as a signalling molecule, NO is a reactive radical which reacts with O2
- 

forming 

highly reactive nitrogen species (RNS) such as peroxynitrite (ONOO
-
) or nitrite (NO2) (figure 

1-7). These can further react with CO2, or H
+
 to form other RNS such as 

nitrosoperoxycarbonate (ONOOCO2
−
) and nitrogen dioxide (NO2) (177). RNS are known to 

react with all classes of biomolecules such as transition-metal ions in metalloproteins, amino 

acid residues (thiols, amines and tyrosines) unsaturated lipids and DNA bases (178). The 

reactions between peroxynitrite and DNA can cause single strand breaks and nitration of 

guanine, which can activate PARP (179). Physiologically RNS protein modification, such as 

3-nitrotyrosine and S-nitrosylation is used in cell signalling, however, excess protein 

modification may have pathological consequences. In diabetes, treatment of STZ-D mice with 

a peroxynitrite decomposition catalyst (FP15) corrected both motor and sensory nerve 

conduction velocities (180).  

1.4.4.2  3-Nitrotyrosine 

Protein tyrosine nitration is a covalent protein modification in which an NO2 group is 

substituted onto ortho carbons of the aromatic ring of tyrosine. Peroxynitrite reacts with CO2 
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generating CO3
-
 and NO2. NO2 reacts with carbons in the aromatic ring of the amino acid 

tyrosine, forming covalent tyrosine nitration (181). 

Tyrosine nitration can result in loss, gain or no change of function, however these modified 

proteins are also more susceptible to proteolytic degradation (182). There is speculation that 

nitrotyrosine is used in physiological cell-signalling, however definitive evidence is lacking. 

However, abundant evidence exists to suggest that pathological tyrosine nitration is increased 

in the lung in respiratory diseases such as asthma (183), cardiovascular diseases (184) and in 

the serum of diabetes patients (182; 185). In neuropathy increased nitrotyrosine levels have 

been observed in the peripheral nerve, spinal cord and dorsal root ganglion in animal models 

of both Type 1 and Type 2 diabetes and in cultured human Schwann cells exposed to high 

glucose (32).  

Phosphorylation by the addition of a phosphate group from ATP onto a target residue is an 

essential mechanism for signal transduction. In vitro, protein tyrosine nitration has been seen 

to impair intracellular processes dependent upon tyrosine phosphorylation, e.g.tyrosine 

nitration has been seen to prevent phosphorylation of p34 cdc2 (cyclin-dependent kinase) 

(186), platelet cell adhesion molecule 1 (187) and a focal adhesion kinase (188; 189). Since 

many signalling pathways are dependent on tyrosine phosphorylation, widespread tyrosine 

nitration could inhibit many signalling pathway, for example, since, the insulin receptor is a 

tyrosine kinase, tyrosine nitration could patially inhibit tyrosine phosphorylation and affect 

insulin signalling, resulting in insulin resistance (190). In human umbilical
 
vein endothelial 

cells in vitro both peroxynitrite and high glucose were shown to inhibit Akt activation at 

Ser473 and thus inhibit insulin signalling  (191).  Although this finding requires confirmation 

in other systems, it demonstrates a potential mechanism behind peripheral insulin resistance 

induced by hyperglycaemia.   



36 

 

 

1.4.4.3  S-nitrosylation 

NO is also able to nitrosylate reduced sulphur (thiol) protein residues by formation of a 

nitrosylating intermediate N203 (192).  Nitrosylation occurs in a wide variety of proteins, most 

commonly on cysteine residues. S-nitrosylation will alter protein conformation, most 

commonly resulting in rapid degradation, but can also increase protein stablility (193), either 

way, the conformational change can alter protein function (194). Like nitration, nitrosylation 

can regulate protein function in physiology, however, hyper S-nitrosylation has been observed 

in many different disease pathologies such as Alzheimer‟s, asthma, pulmonary hypertension 

and both Type 1 and Type 2 diabetes (192). 

 

In diabetes increased S-nitrosylation is attributed to increased iNOS expression and, like 

increased nitrotyrosine, is linked to insulin resistance. S-nitrosylation of Akt, the insulin 

receptor substrate 1 (IRS-1) and the insulin receptor β subunit are all increased in diabetic 

mouse models (195; 196). S-nitrosylation of Akt inhibits insulin mediated activation (195), 

whereas S-nitrosylation of the IRS-1 appears to target it for ubiquitination (197).  

1.4.5 Poly(ADP-ribose) polymerase 

 

There are a wide range of protein modifications which regulate protein function e.g.  

glycation, phosphorylation and ubiquitination.  Poly(ADP-ribosyl)ation is the process by 

which ADP-ribose polymers (PAR) are attached via an ester bond to glutamic acid, aspartic 

acid or lysine residues, mediated by the enzyme poly(ADP-ribose) polymerase (PARP) (198). 

There are currently 18 known members of the PARP family, two of which, PARP1 and 2 are 

known to play a role in DNA repair (198). PARP1 binds as a homodimer to single-strand 
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DNA breaks, or nicks, where it is activated and catalyses the cleavage of nicotinamide 

adenine dinucleotide (NAD+) forming nicotinamide and ADP-ribose, the polymers of which 

are added to nuclear proteins (199; 200).  

Increased oxidative/nitrosative stress seen in diabetes results in DNA damage and PARP1 

activation (3; 7; 201). In both isolated culture as well as animal models of diabetes, both 

increased activation of PARP1 as well as increased PAR have been observed. Although 

PARP1 plays a beneficial role in DNA repair, it is possible that hyperactivation in diabetes 

leads to detrimental effects (3; 200). Excess cleavage of NAD+ by PARP, would exacerbate 

the effect of increased flux through sorbitol dehydrogenase further depleting  NAD+, leading 

to energy dysfunction (3). In addition NAD+ is required as a cofactor for the conversion of 

glyceraldehyde dehydrogenase (GAPDH). GAPDH is modified with ADP-ribose polymers in 

response to diabetes- induced superoxide, reducing GAPDH activity (99; 202). Reduced flux 

through GAPDH will increase the abundance of the glycolytic intermediates such as glucose 

and fructose-6 phosphate, which will increase flux through the polyol and hexosamine 

pathways respectively as well as increasing AGE formation (2) (figure 1-9).  

In models of diabetes increased PAR and PARP-1 activation are corrected by both aldose 

reductase inhibitors as well as a peroxynitrite decomposition catalyst, FP15 (203).  In addition 

PARP inhibition reduces oxidative/nitrosative stress as well as iNOS expression in high 

glucose-treated human Schwann cells (64) as well as improving thermal hypoalgesia, 

mechanical hyperalgesia, nerve conductivity and  restoring intraepidermal nerve fibre loss in 

animal models (203-205).  
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Figure 1-9 - Feed-Forward Cycle of Microvascular Complications 

The four major pathways of microvascular complications (increased AGE, 

increased polyol flux, increased PKC activity and increased hexosamine 

pathway flux) all increase oxidative/nitrosative stress. This induces DNA 

damage and PARP-1 activation. PARP-1 activity depletes NAD+ , which 

exacerbates the effect of increased flux through sorbitol dehydrogenase also 

decreasing NAD+. PARP-1 adds poly(ADP-ribose) residues onto nuclear 

proteins, including GAPDH. Combined the reduction in NAD+ along with 

poly(ADP-ribosyl)ation of GAPDH reduces GADPH activity, resulting in 

back-up of glycolytic intermediates such as glucose and fructose-6 phosphate. 

This acts as a feed-forward cycle further increasing AGE, PKC activity and 

flux through polyol and hexosamine pathways, exacerbating the effect of 

hyperglycaemia.  
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1.4.6  Mitogen Activated Protein Kinase 

 

Mitogen activated protein kinases (MAPK) are a group of serine/threonine kinases that are 

activated by phosphorylation at conserved tyrosine and threonine residues, in response to 

extracellular stimuli. There are three main groups of MAPKs i.e.  p38 MAPK, extracellular 

signal-regulated kinases (ERK, also known as p42/44 MAPK)  and c-Jun N-terminal kinase/ 

stress activated protein kinase (JNK/SAPK, also known as p46/54 MAPK) each of which 

consist of several isoforms (206). Each MAPK has a specific signalling cascade leading to 

activation (figure 1-10). The first member of the cascade is a MAPK kinase kinase 

(MAPKKK), which is activated by small GTP-binding proteins that phosphorylate and 

activate MAPK kinase (MAPKK) (207). These phosphorylate and activate the MAPKs 

themselves, which subsequently phosphorylate their nuclear and cytoplasmic targets. Each 

signalling cascade is specific for the MAPK. Each MAPKK has specificity to the MAPK 

subgroup and each MAPK has a unique set of targets upon which it acts, causing a variety of 

effects (206). For example in Schwann cells p42/44 MAPK activation is required for survival 

and proliferation as well as synthesis of growth factors such as BDNF, NGF or GDNF (6). 

P38 MAPK and JNK/SAPK mediate cellular stress with activation of both, increased in 

response to oxidative, nitrosative stress and osmotic stress (59; 190). Aditionally MAPK 

signalling cascades are also facilitated by scaffold proteins. Although these have no enzymatic 

activity, they organise the specific MAPK pathways enabling simultaneous interaction, 

increasing efficiency.  

As with many signalling cascades, MAPK activity depends upon the balance between 

phosphorylation and dephosphorylation. Mostly activation of MAPK is transient with 

phosphorylation/dephosphorylation occurring rapidly and MAPK are only phosphorylated for 
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a matter of minutes (207). Dephosphorylation of MAPK is mediated by MAPK phosphatases 

(MKP) (6). MKPs are divided into three groups, depending upon their preference for (i) 

dephosphorylating tyrosine, (i) serine/threonine or both (iii) tyrosine and threonine (6; 207).  

In diabetes, MAPKs have been seen as the transducers between hyperglycaemia and the 

biochemical stress in diabetic complications. Increases in p38 MAPK and JNK/SAPK 

phosphorylation have been observed in DRGs (208) and sciatic nerve (209) of STZ-D rats as 

well as in hyperglycaemia-treated immortalized Schwann cells (210) and sural nerves from 

patients with end-stage neuropathy undergoing lower-limb amputations (208).  There also is 

evidence demonstrating an association between activation of p38 MAPK and JNK/SAPK in 

relationship to chronic pain in diabetic neuropathy (211).  

P38 MAPK is a mediator of osmotic stress and is thought to be involved in aldose reductase 

regulation (212; 213). Aldose reductase inhibition reduces p38 activation and specific 

inhibition of p38 MAPK also prevents the diabetes-induced reduction in motor and sensory 

nerve conduction velocity (209). The downstream consequences of increased JNK/SAPK are 

less clear. JNK/SAPK activation can have a neuroprotective role in sensory neurons. In 

antioxidant treated STZ-D rats the normalisation of nerve conduction velocity was associated 

with further increases in JNK/SAPK activation (214). However, in aldose reductase knockout 

mice there was no increase in JNK/SAPK activity in response to diabetes (86), and treatment 

of STZ-D rats with an aldose reductase inhibitor reduced JNK/SAPK activation (215). The 

discrepancy between the data may demonstrate cell and model specificity as well as the use of 

regenerating/non-regenerating models with JNK/SAPK not active in non-regenerating models 

(6). 
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The response of p42/44 MAPK is more varied than either p38 MAPK or JNK/SAPK. Many 

studies have demonstrated increases in p42/44 in DRGs from STZ-D rats (208) sciatic nerves 

from STZ-D rats (216) as well as in high glucose- exposed human RPE cells, where the 

increase was linked to increases in iNOS. However, no change was seen in p42/44 MAPK in 

sural nerves from STZ-D rats (217)  and no consistent results seen in immortalised Schwann 

cells treated in 25 mM glucose (210).  Inhibition of p42/44 MAPK reduced hyperalgesia in 

STZ-D rats (218), iNOS expression, but neither ROS nor cell viability in RPE cells (219). 

 

 

Figure 1-10 - MAPK Signalling Pathways 

Each MAPK subgroup is part of a three kinase cascade with 

unique MAPKK and effectors (6). 
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1.4.6  Akt/ Protein Kinase B 

 

Akt/ Protein kinase B (PKB) is a serine/threonine kinase with a pleckstrin homology domain 

(PH) in its NH2 terminal region and a catalytic domain that is closely related to protein kinase 

C (PKC) and protein kinase A (PKA) (8; 190).  Akt is activated by receptor tyrosine kinases 

(RTK) by a variety of stimuli such as growth factors, cytokines or insulin. Upon insulin 

binding, the RTK dimerises, resulting in autophosphorylation and downstream 

phosphorylation of insulin receptor substrate (IRS) 1 and 2. Phosphorylation of IRS provides 

binding sites for phosphatidylinositol 3-kinase (PI3K), which binds at the SH2 domain, of 

IRS producing phosphatidylinositol 3-phosphate (PI3P) (8). Akt has an affinity for PI3P via 

the plecstrin homology domain (PH) and binding of Akt to PI3P triggers translocation of Akt 

to the plasma membrane (220; 221). The increase in phosphoinositides also activates 

phosphoinositol- dependent kinases (PDK1 and PDK2), which activate Akt upon its 

membrane translocation by phosphorylation at threonine 208 and serine 473 (figure 1-11) 

(222). Dephosphorylation of Akt is performed by protein phosphatases such as protein 

phosphatase 2A, protein tyrosine phosphatase or agonists of Akt such as ceramides. 

The downstream targets of Akt are many and varied, such as modulating  growth and cell 

survival, increasing nitric oxide production by phosphorylation of eNOS at serine 1177/1179 

(147),  influencing glucose metabolism via glucose transporter 4 (Glut4), or glycogen-

synthase kinase-3 (GSK-3) (figure 1-11) (8). Upon activation by the insulin receptor, Akt 

associates with vesicles containing Glut4 inducing translocation of the vesicles to the plasma 

membrane, whereby Glut4 mediates glucose uptake (220). Akt also promotes glycogen 

synthesis by phosphorylating and inactivating GSK-3(222); when active GSK-3 inhibits 

glycogen synthesis by phosphorylating glycogen synthase, shown in figure 1-11.  
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Considering the involvement of Akt on insulin signalling and glucose uptake it is not 

surprising that Akt has been investigated in models of insulin resistance, or that Akt 

phosphorylation is reduced in models of both Type 1 and Type 2 diabetes. What is unclear, 

however, is whether the reduction in Akt phosphorylation is secondary to insulin 

resistance/impaired insulin secretion, or due to prolonged hyperglycaemia. Consequences of 

prolonged hyperglycaemia such as ROS and RNS (190) as well as glucosamine, a product of 

the hexosamine pathway, reduce Akt activation (124; 223). The potential downstream effects 

of reduced Akt activation are unclear; however, it is possible this could contribute to 

secondary insulin resistance in type 1 patients. Reductions in Akt phosphorylation could also 

contribute to vascular dysfunction, by reducing NO production from eNOS. In addition 

considering the essential role Akt has in growth and cell-cycle progression, reduced Akt 

activation may reduce cell survival and lead to increased apoptosis.   
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Figure 1-11 - Insulin Signalling via Akt 

Insulin binding to the insulin receptor phosphorylates and activates the insulin 

receptor substrate (IRS), providing a binding for phosphatidylinositol 3-kinase 

(PI3K), which binds at the SH2 domain. This produces phosphatidylinositol 3-

phosphate, which induces Akt translocation to the plasma membrane. PI3K also 

increases abundance of other phosphoinositides which activate phosphoinositol 

dependent kinases (PDK1/2), which in turn phosphorylate and activate Akt. 

Activated Akt is involved in translocation of Glut4 containing vesicles to the 

plasma membrane and also inactivates glycogen-synthase kinase-3 (GSK-3), 

increasing glycogen synthesis (8). 
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1.5  Taurine 

 

Taurine (2-aminoethanesulphonic acid) (figure 1-12) is a free amino acid found as zwitterions 

in most body fluids. Taurine was first discovered in 1827 as a component of  bile (224) where 

taurine plays an essential role in conjugation to bile acids thus enabling solubility at 

physiological pH (224). Taurine has since been found to act as an organic osmolyte, an 

antioxidant, a scavenger of carbonyl compounds, a modulator of cytosolic calcium, an 

analgesic, and to have neurotrophic properties (75; 76; 113; 145; 225; 226). 

 

 

 

 

 

 

Humans have relatively low levels of taurine synthesis and are dependent upon dietary taurine 

intake. Taurine is therefore described as being conditionally essential. Taurine is found 

ubiquitously in animal products along with nuts, legumes and sulphur rich vegetables such as 

sprouts, cabbage, onions, garlic and turnips. Taurine deficiency is rare; however, it has been 

seen in both vegans (227)  as well as patients with diabetes. The uncommon nature of taurine 

deficiency is, in part due to the ability to synthesise taurine from cysteine (see section 1.5.1) 

and partly due to the inverse regulation of taurine transport in the renal proximal tubules 

(228). TauT expression is down-regulated in the proximal tubule in response to high taurine 

Figure 1-12 - Chemical Structure of Taurine (2-

aminoethanesulphonic acid) 
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diet and increased following taurine deprivation, hence, regulating the taurine body pool. 

Newborn children however, have very low capacity to either synthesise, or preserve taurine 

stocks (74), hence since the 1970‟s taurine has been added into baby formula. Taurine is also 

required for normal skeletal muscle function (229).  

1.5.1  Taurine Biosynthesis 

 

Taurine is synthesised from cysteine by metabolism through the cysteine sulphate pathway 

(figure 1-13). Cysteine is oxidised to cysteine sulphinic acid by cysteine dioxygenase, which 

is then decarboxylated by cysteine sulphinate decarboxylase (CSD) to form hypotaurine. This 

latter step is rate-limiting, hence the capacity for taurine synthesis is thought to be dependent 

upon the level of CSD. All cells appear capable of different levels of taurine synthesis, with 

CSD activity higher in the liver and brain than in the sciatic nerve (230) and maybe absent 

from the axon altogether (5; 230; 231). CSD activity has not been measured in Schwann cells. 

All mammals are dependent upon dietary taurine intake (232), however, levels of taurine 

synthesis varies between mammals. Rodents such as rats and mice have high levels of taurine 

synthesis, compared to humans (5; 230; 233; 234). Cats do not express CSD and are entirely 

reliant upon dietary taurine intake; as such cats with taurine- restricted diets have been used as 

models of taurine deficiency.  
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Figure 1-13 – Taurine Biosynthesis 

Pathway of taurine biosynthesis from cysteine and 

methionine (5) 
 

1.5.2  Taurine Transporter 

 

The plasma taurine concentration is approximately 50 µM (235) whereas the intracellular  

taurine concentrations range from 5-50 mM (74; 236; 237) varying due to the demand for 

taurine. For example leukocytes have high taurine concentrations 20-50 mM, due to the 

ability for taurine to scavenge HOCl generated during an inflammatory response (74). This 

high intracellular taurine concentration is achieved by active transport across the cell 

membrane, mediated by a high affinity low capacity transporter known as the taurine 

transporter (TauT). The active transport of taurine across the cell membrane is dependent 

upon the movement of 2Na
+
 ions and one Cl

-
 ions per taurine molecule.  The energy required 

for taurine transport is derived from the movement of sodium down its electrochemical energy 

gradient generated by the Na
+
K

+
 ATPase and taurine uptake is by secondary active transport 

(228; 236).  
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Intracellularly it is unclear whether taurine is evenly concentrated across the cytoplasm, 

whether there are intracellular stores of taurine, or even whether there are different 

concentrations in organelles such as the mitochondrial or nucleus. The case is the same for 

TauT. It is unclear whether TauT protein is expressed entirely on the cell membrane, if there 

are intracellular stores of TauT or even if TauT it is required for the movement of taurine into 

the mitochondria. Since there is an unsaturable Na
+
-independent taurine uptake it is possible 

that TauT is only required for the intracellular concentration of taurine and the transporter is 

not required for taurine movement between organelles.  

1.5.3  Taurine Deficient Animal Models 

 

Cats have very low levels of CSD expression and are reliant upon dietary taurine intake; 

hence cats were used as a model for taurine deficiency. Cats deficient in taurine suffer taurine 

deficiency syndrome, characterised by CNS dysfunction, growth retardation and immune 

deficiency (5) and interestingly blindness caused by retinal degradation (238). 

 

As well as cats being used as a taurine deficient animal model, the TauT knockout mouse has 

also been developed (239). Although the levels of CSD are higher in all mice compared to 

humans, taurine concentrations were decreased by about 98% in skeletal and heart muscle, by 

80 to 90% in the brain, kidney, plasma, and retina and by 70% in the liver. The intracellular 

taurine content has not been recorded (240), however, this does demonstrate an important 

model illustrating the importance of TauT for sufficient taurine content. In a similar manner to 

taurine-deficient cats, the most prominent morphological feature of TauT knockout mice is 

retinal degeneration with a rapid loss of the photoreceptor cells due to apoptosis (239). 
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Although there is no recorded reduction in lifespan TauT knockout mice do suffer age-related 

disorders such as visual, auditory and olfactory dysfunctions along with liver fibrosis (239).   

 

Unfortunately despite the studies which have been performed on taurine-deficient animal 

models, none has explored the similarities between taurine-deficient animal models and 

diabetic animals. Neither have they explored the effects on Schwann cell function or nerve 

conductivity, the effects of which maybe subtle and therefore require specific measurement. 

The TauT knockout model does however demonstrate the importance of TauT expression for 

maintaining sufficient circulating and tissue taurine content.  

 

Studies have been conducted in both cell culture and animal models using guanidinoethane 

sulfonate (GES) as a competitive inhibitor for taurine uptake. These studies are commonly 

used to investigate the effects of taurine as a neurotransmitter, for example demonstrating 

taurine activation of glycine receptors in subplate neurons in the rat cerebral cortex (241) or 

enhancing corticostriatal neurotransmission in the rat forebrain via gamma-aminobutyric acid 

and glycine receptors (242) . Corresponding to animal models, no studies have been 

conducted specifically exploring the effects of GES in diabetes.  

 

1.5.4  Molecular Identity of the Taurine Transporter 

 

TauT has been cloned from various tissues and animal species such as mouse (243) and rat 

brain (244), dog renal MDCK (Madin-Derby canine Kidney) cell line (245), human thyroid 

(246) placenta (247), retinal pigment epithelial cell line (248), mouse retina (249) and bovine 

endothelial cells (250). These have demonstrated that TauT shares up to 90% sequence 
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similarity between mammals, illustrating the importance of TauT in mammals. These studies 

also showed that TauT belongs to the super-family of Na
+
 and Cl

-
 dependent transporters, 

such as those for serotonin, dopamine, noradrenalin, γ-aminobutyric acid (GABA) and 

creatinine (237). The TauT gene is located on human chromosome 3p21-25, encoding a 

protein between 590 and 655 amino acids in length with a molecular weight of approximately 

65-70kDa. Hydropathy plots indicate there are 12 transmembrane regions with the protein 

having intracellular C and N terminals (237). 

1.5.4.1  Gating of Transport 

Several potential phosphorylation sites have been identified on TauT that affect taurine 

transport. Han et al., 1999 identified Ser 322 on S4 loop as a location for PKC 

phosphorylation leading to reduced taurine affinity (251).  Furthermore by substituting 

charged residues in the S4 loop, other amino acid residues on S4 were found to play an 

important role in the gating of taurine transport by altering the Km of the transporter, 

demonstrating direct interaction between this loop and taurine binding (236). In addition 

elevations in cAMP and subsequent PKA activation increased taurine uptake, an effect 

blocked by PKA inhibition (228). As for PKC-mediated phosphorylations,  these effects were 

shown to alter TauT affinity for taurine rather than its expression, (252; 253). In these studies 

however, the site of PKA phosphorylation was not ascertained.  

1.5.4.2  Regulation of Expression 

The compatible osmolyte hypothesis suggests organic osmolytes are co-ordinately regulated; 

hence accumulation of one leads to depletion of another. Accumulation of sorbitol leads to 

depletion of other organic osmolytes such as myoinositol and taurine, which occurs through 

TauT downregulation. In common with the function of taurine as an osmolyte, the promoter 

region of TauT contains a tonicity response element (TonE) and TauT expression is increased 
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in hypertonic conditions. The other major function of taurine is as an antioxidant and the 

TauT promoter also contains an antioxidant response element (ARE) and expression is 

increased in pro-oxidant conditions. In addition TauT expression is also upregulated by NO 

donors and down regulated by glucose, calmodulin as well as taurine. The promoter region of 

TauT has been identified in both rat (254) and human leukocytes (73).  These studies also 

demonstrated TauT promoter region contains binding sites for proto-oncogenes such as p53, 

WT1, ERG the activator protein 1 (AP-1) as well as two oestrogen receptor half sites and the 

transcription factor Sp1 (236), the activity of which is increased by increasing hexosamine 

pathway flux.   

1.5.5  Taurine Efflux Pathway 

 

Taurine efflux pathway has been measured pharmacologically and is mediated by the volume 

sensitive organic-anion channel (VSOAC) which is an unselective mediator of efflux of 

organic osmolytes such as myoinositol, glutamate, betaine, sorbitol and taurine (255). 

Regulation of VSOAC is by osmolarity with hypotonicity inducing taurine efflux. Unlike 

taurine uptake, efflux is independent of Na
+
, Cl

-
 (256) as well as  extracellular taurine (236). It 

is unsaturable and taurine flow is linear down the concentration gradient, all characteristics 

typical of an ion channel (256). However, the molecular identity of VSOAC has not yet been 

identified, nor whether the changes observed in diabetes, (i.e. sorbitol accumulation), affect 

function.  
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1.5.6  Taurine and Diabetes 

 

No studies exist comparing the effects of taurine deficiency and diabetes in either cats or 

TauT knockout mice. The clearest similarity is the retinal degradation suffered by both. 

Patients with poorly controlled diabetes have high urinary taurine excretion (5) and in patients 

with either Type 1 or Type 2 diabetes, platelet and plasma taurine concentration is reduced 

(74; 235; 257).  In addition an inverse correlation between HbA1c and log plasma taurine 

content has been observed (257). This reduction in taurine is due to a reduction in renal 

taurine reabsorption (258) and hyperglycaemia causes taurine depletion in major sites of 

diabetic complications such as the nerve, lens  (259), RPE cells (73) and mesangial cells 

(260).  

1.5.6.1  TauT Regulation in Diabetes 

The down regulation of TauT by high glucose was first demonstrated by Stevens et al. 1999 

(261) in retinal pigment epithelial cells (RPE) where glucose decreased taurine transport and 

TauT expression. This observation has since been repeated in erythrocytes isolated from 

patients with Type 2 diabetes, where taurine uptake via TauT was reduced compared to non-

diabetic controls (235). TauT downregulation in the vascular endothelium, Schwann cells, 

axons and neurovasculature would result in taurine depletion in key sites implicated in 

diabetic neuropathy. 

The proposed mechanisms mediating this down-regulation are shown in figure 1-14. One 

mechanism centres on the increased aldose reductase flux and accumulation of the organic 

osmolyte, sorbitol, seen in hyperglycaemia. The increase in intracellular sorbitol causes a 

compensatory decrease in intracellular osmolytes such as myoinositol and taurine. This occurs 

in concert with the compatible osmolytes hypothesis studying that organic intracellular 
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osmolytes respond co-ordinately to changes in external osmolarity. Confirming this 

hypothesis, Nakashima et al., 2005 (73) demonstrated that RPE cells which express high 

levels of aldose reductase have lower TauT expression and taurine content than low aldose 

reductase- expressing RPE cells.  

As well as increased aldose reductase flux, protein kinase C (PKC) isoforms are upregulated 

in diabetes and by hyperglycaemia (see section 1.4.2.4). PKC activation is able to reduce 

taurine uptake both by reducing TauT expression (5) as well as function (236). In RPE cells 

exposed to high glucose, inhibition of PKC with bisindolylmaleimide (BIM) overcomes the 

glucose-induced reduction in taurine uptake (261), demonstrating the effect of PKC activity 

on taurine transport. The Na
+
 gradient required for taurine uptake is generated by the Na

+
K

+
 

ATPase. The activity of Na
+
K

+ 
ATPase reduced in the diabetic nerve, acts to reduce the Na

+
 

gradient and therefore taurine uptake. 
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Figure 1-14 - Potential Mechanisms of Taurine Depletion 

Hyperglycaemia increases DAG and PKC activity, which can 

phosphorylate TauT at Ser 322 and reduce taurine uptake.  

Glucose increase aldose reductase flux, increasing intracellular 

content of the osmolyte sorbitol, which results in a compensatory 

decrease in other organic osmolytes such as taurine. 

Taurine uptake is dependent upon Na
+
 gradient. The activity of 

Na
+
K

+
 ATPase is decreased in diabetes, reducing the Na

+
 gradient 

and therefore taurine uptake 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



55 

 

 

 

1.5.6.2  Taurine Supplementation in Diabetes 

The reduction in circulating and intracellular taurine can be replenished by taurine 

supplementation. This has been demonstrated in the nerve of STZ-D rats (145) as well as in 

plasma and platelet taurine concentration in diabetic patients (257). The latter study was after 

a short, 90 day supplementation with 1.5g/day taurine. This study was useful in demonstrating 

that dietary taurine intake can reverse taurine deficiency and platelet aggregation. The 

beneficial effects of taurine supplementation have been demonstrated in diabetic animal 

models, especially for models of peripheral neuropathy. Taurine prevents nerve blood flow 

and nerve conduction velocity reduction in Zucker diabetic fatty rats (262), along with 

hyperalgesia (225) nerve growth factor deficits (145) and calcium signalling in STZ-D rats. 

The potential mechanisms for the beneficial effects are discussed below.   

1.5.6.2.1 Antioxidant Actions of Taurine 

One of the major actions of taurine is as an antioxidant and in vitro TauT expression and 

taurine uptake are increased in response to pro-oxidants (73), suggesting increased taurine 

uptake as a defensive response. In isolated culture and animal models of diabetes, taurine 

supplementation reduces markers of oxidative stress in different tissues i.e. lipid peroxidation 

in plasma (263), heart, muscle, liver, kidney (264) and sciatic nerve (145) and decreased 

superoxide formation in β-islet cells from rats infused with high glucose (265). There is no 

human data measuring changes in oxidative stress following taurine supplementation.  

 

The mechanism(s) by which taurine acts as an antioxidant however, are unclear. The taurine 

precursor hypotaurine is able to neutralize classic ROS, but, Aruoma et al., (1988) (266) 
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established that taurine is incapable of directly scavenging classic ROS, O2
-
, OH

.
 and H2O2. 

Many studies attribute the antioxidant effect of taurine to an indirect mechanism, by 

upregulating the cellular antioxidant defence system. In most of these studies, however the 

effects seem to be a reversal of toxic effects rather than directly increasing antioxidant 

defence enzymes (76).  

 

One example of this is the prevention of glutamate-induced neurotoxicity and subsequent 

ROS increase. Prolonged activation of the N-methyl D-aspartate (NMDA) receptor by 

glutamate results in overload of intracellular and mitochondrial Ca
2+

, causing mitochondrial 

damage and ROS production (267). Taurine reduces ROS production in glutamate-induced 

neurotoxicity, but neither by a direct antioxidant mechanism, nor by increasing the 

antioxidant defence system. Instead taurine has a direct effect on Ca
2+

 uptake via the Na
+
/Ca

2+
 

exchanger, reducing Ca
2+

 influx and thereby reducing cellular toxicity and ROS (268; 269). 

Hence, it is possible the effects of taurine on glucose-induced oxidative stress are due to an 

indirect effect on other mechanisms increasing oxidative stress such as a carbonyl scavenging, 

rather than directly on ROS, or antioxidant defence (76).   

1.5.6.2.2 Anti-inflammatory Actions 

Hypochlorous acid (HOCl) is a major bactericidal agent generated by polymorphonuclear 

leukocytes and eosinophils. Although taurine is unable to scavenge classic ROS, it does react 

with HOCl in a 1:1 ratio neutralizing HOCl and forming the less toxic oxidant taurine 

chloramines (74). Hence, taurine acts as an anti-inflammatory agent by neutralising HOCl. It 

has been demonstrated that taurine chloramines act as an inflammatory mediator to reduce 

iNOS, TNF-α, IL6 and IL8 in polymorphonuclear cells (270-273). These pro-inflammatory 
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mediators are seen to be increased in diabetic patients (162) and due to hyperglycaemia (161; 

274). 

1.5.6.2.3 Carbonyl Scavenging 

Taurine is a free amino acid and therefore it has a free amino group which reacts with 

carbonyl groups forming a Schiff base with the sugar carbonyl, sparing the proteins from 

glycation (5; 275). Taurine supplementation reduces AGE and protein glycation in many 

diabetic models; isolated human erythrocytes (276; 277), fructose-fed rats, (278) and fructose-

treated bovine lens (279). Taurine is able to scavenge both toxic aldehydes and other  

carbonyl compounds (74; 76).  

1.5.6.3.4 Glucose Uptake and Insulin Sensitivity 

As early as the 1930s, studies reported the hypoglycaemic effects of taurine (5). Subsequent 

work also showed that taurine supplementation improves insulin sensitivity and reduces 

circulating glucose concentration in diabetic models. Relatively  recently taurine has been 

seen to increase insulin secretion from fresh mice islets (280). However, this observation is 

still controversial and in many diabetic animal models (69; 145; 225; 262) no change in blood 

glucose following taurine supplementation was shown.  It is interesting to note that the earlier 

studies generally demonstrated the hypoglycaemic effects, which are not demonstrated in the 

more modern studies. It is unfortunate that Franconi et al., 1995 (257) did not measure either 

HbA1C or glucose concentration after taurine supplementation in the human study as this 

would have helped solve the discrepancy between the studies.  

1.5.6.3.5 Calcium Signalling 

Abnormal [Ca
2+

] in diabetes is thought to contribute to the development of diabetic 

neuropathy and the associated pain (281). Resting [Ca
2+

] is increased in sensory neurons and 

DRGs in both STZ-D rats and mice (282)  and the amplitude of multiple voltage-gated 
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calcium channels is also increased in diabetic models (282). Ca
2+

 overload is reported in 

diabetic mitochondria, which is important as mitochondrial dysfunction is repeatedly cited as 

a result of the metabolic dysfunction observed in diabetes (282). 

 

Taurine is known to modulate Ca
2+

 homeostasis (74). It  is able to counter glutamate-induced 

Ca
2+

 elevations (see above, taurine as an antioxidant) (283), inhibit excessive Ca
2+

 

accumulation in cardiomyocytes (284) and attenuate abnormal Ca
2+

 signalling in sensory 

neurons of STZ-D rats (225). How taurine does this is unclear and may differ in different 

situations. For instance in glutamate- induced neurotoxicity, taurine is able to lower [Ca
2+

] by 

directly affecting the Na
+
/Ca

2+
 exchanger (268; 269). However, other studies have 

demonstrated interactions between taurine and either phospholipids, or phosphoinositol, by 

inhibiting phosphoinositide turnover (283) or by altering Ca
2+

 binding to membrane 

phospholipids (225).  

1.5.6.2.6 Na
+
K

+
ATPase 

Na
+
K

+
 ATPase is a ubiquitously expressed membrane pump that utilises ATP to export three 

Na
+
 ions and import 2 K

+
 ions (285). Many cellular functions are coupled to the movement of 

sodium ions, for example in the nerve, the Na
+
 gradient is required for nerve impulses to 

travel, however it is also required for the transport of molecules such as myoinositol and 

taurine. Na
+
K

+
 ATPase activity is reduced by oxidative and nitrosative stress and in diabetes 

Na
+
K

+
 ATPase activity is disrupted (51). In the sciatic nerve, lens, heart and erythrocytes this 

disruption resulted in a decrease in activity. Considering the role of the Na
+
K

+
 ATPase in the 

nerve, decreased activity impairs nerve impulses and there is a close correlation between 

decreased Na
+
K

+
 ATPase activity and diabetic neuropathy (285).  Taurine supplementation 

restores Na
+
K

+
 ATPase activity in the nerve of STZ-D rats (75), as well as the retina of STZ-
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D rats (286) and in peroxynitrite-treated liver samples (287). Although the mechanism of this 

action is unclear, since the Na
+
K

+
 ATPase is down-regulated by oxidative and nitrosative 

stress, it is likely to be an antioxidant effect.  

1.5.6.2.7 Blood Flow and Platelet Aggregation 

As discussed above (section 1.4.1.5) there is considerable debate about the role of metabolic 

vs. vascular disturbances in the progression of diabetic neuropathy. In diabetic animal models 

taurine partially restored nerve blood flow in both STZ-D mice (75) and Zucker diabetic fatty 

rats (262). The mechanism of these effects is not clear, however, the results are similar to that 

of antioxidants observed in STZ-D rats (115; 277) demonstrating they could be due to 

reducing ROS and restoring function in vascular smooth muscle cells (74), or restoring NO 

signalling. Despite this, taurine has a wide-range of beneficial effects on blood flow. 

 

Taurine is able to increase cholesterol solubility increasing its excretion and several studies 

have demonstrated that taurine administration is able to reduce serum cholesterol in both 

diabetic animals (288) and human subjects. In particular Zhang et al., 2004 (289) 

demonstrated taurine supplementation reduced circulating triglycerides and reduced BMI in 

obese young non-diabetic adults.  

 

Platelet hyper-aggregation is a contributing factor for complications and there is a close 

relationship between platelet aggregation in diabetic patients and diabetic complications (5). 

Taurine is found in high concentration in platelets (10-50 mM (5)) and clinical studies have 

demonstrated this concentration is reduced in diabetic patients. Oral taurine supplementation 

however, can reverse this depletion and normalise platelet hyper-aggregation (74) in diabetic 

patients. Interestingly this effect was not found  in obese, non-diabetic men (290). In this 
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study baseline plasma taurine levels were normal and although this was increased by taurine 

supplementation, platelet taurine content was not measured. It therefore appears taurine 

depletion, possibly induced by hyperglycaemia, would be required for taurine to be effective 

at normalising platelet aggregation.  

 

Taurine is regularly seen to have anti-hypertensive effects both in non-diabetic animal 

models, as well as humans (291; 292). The anti-hypertensive effects of taurine could be due to 

antioxidant or anti-inflammatory effects; however, taurine also attenuates the actions of 

angiotensin II on Ca
2+

 signalling and protein synthesis demonstrating other possible 

mechanisms for the anti-hypertensive action of taurine (74). Many of the actions of taurine on 

hypertension are by suppression of the sympathetic nervous system which may also have 

effects on nerve blood flow, thereby reducing hypertension (292). 

 

1.6 Rationale 

As outlined in the introduction, the hyperglycaemia that accompanies diabetes causes cell 

dysfunction by a combination of pathways. These pathways are unified by increasing 

oxidative stress, nitrosative stress and poly(ADP-ribosyl)ation. In diabetic patients and in 

models of diabetes, circulating and intracellular taurine levels are depleted and TauT 

expression reduced.  In diabetic animal models taurine supplementation reduces lipid 

peroxidation, attenuates functional deficits and ameliorates thermal and mechanical 

hyperalgesia (225; 262). The mechanisms behind the reduction in TauT expression and how 

taurine is able to achieve these beneficial effects are not clear.  The research outlined in this 

thesis addresses these pathways in human Schwann cells.  
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The rationale for using Schwann cells is that they play an important role in maintaining 

peripheral nerve function with actions including neurotrophic support as well as the synthesis 

and maintenance of nerve myelin (34; 55; 63). In diabetes, nerve demyelination and the 

resultant impairment of nerve conduction velocity, are thought to reflect Schwann cell 

dysfunction (293).  The enzyme aldose reductase is highly expressed in Schwann cells (60) 

and has been implicated in the development of oxidative/nitrosative stress and glucose-

toxicity (61; 62).  As glucose uptake into Schwann cells is insulin-independent (59) they are 

vulnerable to hyperglycaemic toxicity as well as oxidative/nitrosative stress. In early models, 

data obtained from whole nerves were thought to mirror that of Schwann cells. However, it is 

now clear that disease progression in neurones and Schwann cells are independent. As such, 

the impact of glucose insult on Schwann cells and the role it plays in the development of 

neuropathy is unclear.  Another aim of the thesis is to clarify this role.  

 

Although rodent models of diabetes have been used to study diabetic complications, they may 

not accurately reflect the human condition, especially since taurine synthesis is higher in 

rodents than humans. To perform these studies I utilised a cell strain derived from human 

Schwann cells isolated from spinal cord of a healthy male (ScienCell).  In vitro work allows 

the environment to be defined giving reliable results which are less subject to uncontrollable 

and unknown influences.  The cell strain is well characterised and has been used in other 

studies (64; 294). Cell identity has been confirmed by immunohistochemical staining with 

Schwann cell markers S-100, GFAP (glial fibrillary acid protein) and CD90. Cells grow for 

15 passages with no reported changes in phenotype, after which growth slows. Passages 6-9 

were used in all experiments.  
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Complications of diabetes arise due to chronic exposure to high glucose. For this reason cells 

were incubated for 7 days with pathophysiologically relevant high glucose concentrations (up 

to 30 mM). This glucose concentration is thought to model the effect of chronic 

hyperglycaemia in man. To determine the effect of moderate hyperglycaemia, cells were 

incubated in 10 mM glucose. To assess glucose-induced cellular dysfunction, 2 methods were 

used: i) Oxidative stress was measured directly using a fluorogenic dye and indirectly by ii) 

Western blots for a lipid peroxidation product, 4HNE adducts. The fluorogenic dye enables 

direct semi-quantitative assessment of ROS generation. Western blotting against 4HNE 

adducts was used to gain quantitative assessment of changes induced by oxidative stress and 

also enabled measurement of lipid peroxidation. Together these techniques enabled 

quantitative assessment of changes in oxidative stress. Tyrosine nitration and poly(ADP-

ribosyl)ation were measured by Western blots using antisera against these protein 

modifications.  

To explore the effects of glucose on TauT expression, I examined transcriptional changes in 

mRNA by qRT-PCR and I also examined protein expression by Western blotting.  These 

methods are both quantitative and reproducible. The posttranslational regulation of TauT 

function is not well understood and it is not known whether there are intracellular pools of 

TauT. Hence, the relationship between TauT expression and taurine transport is unclear. As 

such taurine uptake studies were performed enabling accurate measurement of taurine uptake 

and a functional analysis of TauT. Calculation of Michaelis-Menten kinetics established 

whether perturbations of taurine uptake were related to Vmax or the Km of the transporter, 

enabling determination of whether changes in taurine uptake are transcriptional, post-

translational or due to modification of the transporter.   
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The effect of taurine supplementation on the effects of hyperglycaemia in Schwann cells was 

examined. Despite taurine inversely regulating TauT expression in physiological cell culture 

systems and re-uptake in the kidney, exogenous taurine supplementation consistently 

increases intracellular taurine content. In human patients, dietary taurine supplementation 

restored plasma and platelet taurine content (257) and in STZ-D rats dietary taurine 

supplementation restored nerve taurine content (75).  In vitro exogenous taurine 

supplementation,  150-250 µM restores taurine content in erythrocytes exposed to high 

glucose (276). Therefore in these studies exogenous taurine supplementation of 250 µM was 

used. To establish whether effects of taurine were mediated by antioxidant mechanism the 

effects of taurine were compared to that of a standard antioxidant, D-L α-lipoic acid (ALA). 

ALA is a potent free radical scavenger which has been shown to have therapeutic benefits in 

both experimental and clinical diabetic neuropathy. 

In these ways the effects of hyperglycaemia on oxidative/nitrosative stress along with 

antioxidant defence systems in Schwann cells were explored along with the mechanisms of 

action of taurine supplementation in ameliorating these damages. 
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Chapter 2 Materials and Methods 

2.1  Cell Culture Model Verification 

The human Schwann cell strain, isolated from spinal cord of a healthy male (ScienCell 

Carlsbad, California) (295-298) was used. Identity was confirmed by immunohistochemical 

staining with Schwann cell markers S-100, GFAP (glial fibrillary acid protein) and CD90. 

Cells grow for approximately 15 passages with no visible change of growth or morphology 

and passages 6-9 are used in these studies.  Cells were cultured at 37
o
C in a 5% CO2:95% O2, 

humidified atmosphere in Dulbecco‟s modified Eagles‟ media (DMEM) (Lonza) 

supplemented with 10% fetal bovine serum (FBS), 100 U/ml penicillin, 100 µg/ml 

streptomycin, 2 mM L-glutamine. Cell medium was changed every 2-3 days. Twenty four h 

prior to treatment medium was changed, and replaced with DMEM containing high (7.5, 10, 

15, 22 and 30 mM) or normal (5 mM) glucose and supplemented with 5% newborn bovine 

calf serum (BCS), and other experimental conditions and passaged as required  

 

2.2  Protein assay 

For all measurements of protein concentrations the Bicinchoninic Acid (BCA) method was 

used. In alkaline solutions, proteins reduce Cu
2+

 to Cu
+
 in a concentration-dependent manner. 

BCA is a chromogenic reagent specific for Cu
+
 that forms a purple reagent with an 

absorbance maximum at 562nm.   

 

2.3  Western Blotting 

Western blotting was used to measure the relative abundance of specific proteins. The 

procedure is divided into three separate stages; protein separation by sodium dodecyl 
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sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), transfer of proteins onto a 

membrane and detection with target-specific antibodies. 

 

Human Schwann cells were grown for 7 days in experimental conditions. At 7 days cells were 

washed in Hank‟s balanced salt solution (HBSS) (3 times) and lysed in 2% SDS containing 

1% protease inhibitor cocktail (Sigma).  Protein concentration was measured using the BCA 

method.  

 

For protein separation, the standard Laemmli method (299) was used. Protein samples (40 µg) 

were denatured by heating for 5mins at 100
o
C in Novagen sample buffer (Merck) in a 4:1 

ratio. The sample buffer contained SDS, the head of which binds hydrophobic regions of 

proteins with the negatively charged tail pointing outwards. This ensures the protein charge is 

masked by the negatively charged SDS so the proteins have the same overall negative charge 

and are separated based on size rather than isoelectric point or shape. The sample buffer also 

contained a reducing agent, dithiothreitol (DTT), which reduces the intra and inter-molecular 

protein covalent disulphide bonds, denaturing the secondary and tertiary protein structure.  

 

Polyacrylamide concentrations from approximately 5-20% enable resolution of different 

protein sizes, low percentage gels being more effective at resolving higher molecular weight 

proteins.  The resolving gel contained 10% acrylamide:bisacrylamide (29:1), 0.1% SDS, 375 

mM Tris-HCl pH 8.8 0.05% ammonium persulphate (APS). Polymerisation was initiated by 

0.05% N, N, N', N'-tetramethylethylenediamine liquid (TEMED) and added into 1.5mm 

casting plates. To ensure oxygen did not penetrate and to form a meniscus-free surface, water 

was poured on top. A stacking gel of 10%   acrylamide:bisacrylamide (29:1), 0.1% SDS, 125 
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mM Tris-HCl and 0.05% APS and 0.1% TEMED, pH 6.8  and poured  on top of the resolving 

gel and wells were formed. 

 

Denatured samples, along with Bio-Rad pre-stained proteins were loaded onto the 

polyacrylamide gel and the protein separated at 150V for 2hrs on ice, in running buffer 

containing 25 mM Tris 192 mM glycine and 0.1% SDS pH 8.3. The negatively charged 

proteins migrate towards the anode and are size-separated. 

 

After separation, proteins are transferred onto a Polyvinylidene difluoride (PVDF) membrane. 

Proteins were transferred at 100V for 1hr 15min at 4
o
C, in transfer buffer (25 mM Tris 192 

mM glycine, pH 8.3). The proteins migrated out of the gel and into the membrane. The 

efficiency of the transfer was assessed by treating the membrane with ponceau red and the 

gel. After transfer, the proteins are stably bound to the membrane from where it is possible to 

detect the specific target with antisera. 

 

2.3.1  Detection 

 The membrane was blocked in 3% non-fat dry milk in phosphate buffered saline (PBS, 10 

mM phosphate buffer, 2.7 mM potassium chloride and 137 mM sodium chloride, pH 7.4) for 

1hr at room temperature. Membranes were incubated overnight at 4
o
C with target specific 

antibody (table 2-1) diluted in antibody diluent (PBS containing 3% non-fat dried milk as 

carrier protein , a detergent, 0.05% Tween-20 to aid antibody penetration and 0.05% sodium 

azide, to prevent bacterial growth and allow antibody re-use). Membranes were incubated for 

2hrs at room temperature with species-specific secondary antibody (table 1), diluted in 
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antibody diluent. The secondary antibody binds specifically to the primary antibody and is 

coupled to an enzyme, in this case Horseradish Peroxidase (HRP).  

 

Target Animal Dilution Catalogue number Supplier 

TauT Rabbit 1:1500 AB5414P Millipore 

4HNE Rabbit 1:1500 393207 Merck 

3NT Mouse 1:1500 05-233 Millipore 

PAR Mouse 1:1000 ALX-804-220-R100 Alexis Biochemicals 

Actin Rabbit 1:200 A5060 Sigma 

p38 Rabbit 1:1500 9926 Cell Signaling 

Phospho-p38 Rabbit 1:1500 9211S Cell Signaling 

SAPK/JNK Rabbit 1:1500 9926 Cell Signaling 

phospho-SAPK/JNK Rabbit 1:1500 4671S Cell Signaling 

p42/44 Rabbit 1:2000 9926 Cell Signaling 

Phospho-p42/44 (Thr202/Tyr204) 
Rabbit 1:2000 4370S Cell Signaling 

AKT Rabbit 1:1500 9272 Cell Signaling 

phospho-AKT (Ser 473) Rabbit 1:1500 9271S Cell Signaling 

Anti-rabbit Goat 1:4000 NA934 GE healthcare 

Anti-mouse Goat 1:2000 A9917 Sigma 

 

Table 2-1 – Antibodies for Western Blots 

 

If an HRP tagged secondary antibody is used, the membrane is incubated with the enzyme 

substrate so the bound secondary antibodies will emit light, proportional to the abundance of 

the protein. This can be visualised by incubation with film, the light emitted appearing as dark 

bands on the light film, or captured using CCD (charge coupled device) camera. Use of 

fluorescent secondary antibodies rather than HRP-linked enables protein visualisation using a 
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CCD camera with appropriate emission filters. This detection requires a more expensive set-

up; however, it does improve detection sensitivity, quantitation and also enables multiplexing 

of samples.  

 

In these studies HRP linked secondary antibodies were used with enhanced 

chemiluminescence detection reagents (Roche). To confirm equal loading, membranes were 

stripped 10min with stripping buffer (Pierce) at room temperature and membranes were re-

probed as described above, using β-actin antisera.  

 

2.3.2  Calculating Molecular Weight 

The molecular mass of the developed bands can be accurately calculated by the use of 

calibration standards run alongside the protein samples. By plotting log protein size vs 

migration distance of the protein (relative mobility [RF]) a standard curve can be drawn and 

the size of the bands of interest can be calculated. 

 

2.3.3  Quantitation 

The bands on the Western blot can be quantified either indirectly from a dark film, or directly 

from capture of fluorescence emitted using a CCD camera.  In this study Western blots were 

quantified indirectly from the dark film using a Syngene Ingenious system and quantified 

using automatic band location on GeneTools software. For all experiments bands were 

normalised for protein loading with β-actin.  
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2.3.4  Method Development  

Initially only non-specific bands independent of the antibody used were seen on western blots, 

other than β-actin where specific bands were always visualised. Removal of Tween-20 from 

the antibody diluent and changing the blocking solution from a commercial blocking solution 

(Roche) to 3% milk, removed the non-specific background, however, no specific bands were 

seen. 

  

Altering the concentrations of the primary and secondary antibodies was unsuccessful in 

visualising proteins, hence, the incubation buffer was altered from Tris-buffered saline (TBS) 

to phosphate buffered saline (PBS) which is a more effective buffer at pH 7.4; this however 

failed to improve the blots. Other methodological alterations attempted including reducing the 

number and duration of washing, removing Tween-20 from the wash buffers, re-introducing 

Tween-20 into the antibody diluents. None of these enabled protein visualisation.   

 

Lysing cells by sonication rather than using RIPA (Pierce, containing 25 mM Tris-HCl pH 

7.6, 150 mM NaCl, 1% NP-40, 1% Sodium deoxycholate and 0.1 % SDS) buffer was also 

attempted without success. Finally harvesting cells by addition of 2% SDS directly to the cells 

rather than trypsinisation enabled protein-specific bands to be seen on the blots. The effect of 

SDS lysis rather than trypsinisation and sonication is illustrated in figure 2-1, where clearer 

specific bands are observed with cells lysed in SDS.  Lastly re-introducing Tween-20 into the 

antibody diluents improved the intensity of the blots.  
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2.4  Assay of ROS Generation 

 

For measurement of ROS, OxyBurst fluorogenic OxyBurst green 2'7'-

dichlorodihydrofluorescein diacetate (H2DCFDA) (Invitrogen) dye was used. The dye 

contains lipophilic acetate groups that enable diffusion into the cell. Cleavage of acetyl groups 

by intracellular esterases results in much greater cell retention and exposes the dihydrocalcein 

which is oxidised to green-fluorescent calcein and can be monitored by fluorescence 

microscopy with excitation λ =492-495nm emission 517-527nm 

 

Figure 2-1 - Comparison of Two methods of Cell Harvest and 

Lysis 

A. Human Schwann cells were treated with 50 µM H2O2 for 6hrs 

and run on western blots probed with an antibody for 4HNE 

adducts 

B. Human Schwann cells were treated for 2hrs with 50 µM 

peroxynitrite and the run on a western blot, probed with an 

antibody for 3NT. 
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For measurement of intracellular ROS generation, human Schwann cells were grown for 7 

days in treatment conditions. On day 5 cells were plated onto poly-L-lysine coated slides. 

After culture for 2 further days, cells were washed twice in Dulbecco‟s PBS and incubated in 

HBSS containing 10 µM OxyBurst green 2'7'-dichlorodihydrofluorescein diacetate 

(H2DCFDA) reagent for 1h at 37
o
C. Cells were mounted on microscope slides and imaged on 

a fluorescence microscope at λ = 518nm 

2.5  Superoxide Dismutase Activity Assay  

 

Human Schwann cells were grown for 7 days in experimental conditions, washed twice in 

PBS, harvested, by scraping in cold Hank‟s balanced salt solution (HBSS) and ruptured by 

sonication 3 x 10 sec at 30W on ice. Protein content was measured using the BCA method 

and total cellular SOD activity kit was measured using superoxide dismutase activity assay kit 

(bioassay systems). Cell lysate was incubated with a tetrazolium salt (WST-1 ((2-(4-

Iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt)) and 

xanthine oxidase (XO) (figure 2-2). Upon reduction by the superoxide anion WST-1 produces 

a formazan dye with peak absorption at 450nm. The rate of reduction is proportional to the 

activity of XO which is inhibited by SOD. Hence, the activity of SOD can be measured 

indirectly by the rate of inhibition of formazan production.  
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2.6  Catalase Activity Assay 

 

Human Schwann cells were grown for 7 days in experimental conditions, washed twice in 

PBS, harvested in cold HBSS and lysed by sonication 3 x 10 sec at 30W on ice. Protein 

content was measured using the BCA method and total catalase activity measured using a 

catalase activity kit (Cayman chemicals). With an optimal concentration of H2O2, catalase 

reacts with methanol to form formaldehyde. The formaldehyde produced can be measured by 

incubation with Purpald (4-amino-3-hydrazino-5-mercapto-1,2,4-triazole) forming a bicyclic 

heterocycle. Upon oxidation the bicyclic heterocycle changes from a colourless compound to 

a purple colour which can be measured spectrophotometrically at 540nm.   

 

 

Figure 2-2 – SOD Assay 

SOD activity was measured indirectly by the xanthine oxidase system. A 

tetrazolium salt (WST-1) is reduced by superoxide to produce a formazan 

dye, with peak absorbance at 450nm. The rate of reduction of WST1 is 

linearly proportional to the activity of xanthine oxidase, which is inhibited by 

the activity of superoxide dismutase. Hence, the activity of SOD can be 

measured by the inhibition of the formazan dye production, which is 

inversely proportional to SOD activity. 
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2.7  Reduced Glutathione Concentration 

 

Human Schwann cells were grown for 7 days in experimental conditions, washed twice in 

PBS, harvested in cold (HBSS) containing 50 mM 2-(N-morpholino)ethanesulphonic acid 

(MES) and lysed by sonication 3 x 10 sec at 30W on ice. Protein content was measured using 

the BCA method and reduced glutathione was measured using a commercial kit (Bioassay 

Systems). Total GSH was measured by incubation with DTNB (5,5‟-dithiobis2-nitrobenzoic 

acid) which forms a yellow 5-thio-2-nitrobenzoic acid (TNB) when it reacts with GSH which 

can be measured at 412nm.  

 

2.8  Measurements of Cell Viability 

 

Propidium iodide (PI) is a fluorogenic molecule with an excitation wavelength of 544 nm and 

emission of 612 nm. PI binds DNA in a similar manner to ethidium bromide, intercalating 

between DNA bases with little or no sequence specificity. Once bound the fluorescence 

emitted is enhanced 20-30 fold.  

 

PI is permeable to dead cells, but not live, hence PI staining is an accurate and highly 

sensitive method of assaying cell death. In this study human Schwann cells were grown for 7 

days in experimental conditions, on day 5 cells were plated onto poly-L-lysine coated wells. 

After culture for 7 days propidium iodide (PI) (final concentration 10 µg/ml) was added, 

incubated at 37
o
C, 5% CO2 for 10mins. A reading was taken to quantify dead cells.  For total 

cell DNA content cells were lysed by addition of 0.1% Triton X-100 containing 10 µg/ml PI 

for 10min at 37
o
C, 5% CO2 and assayed at excitation 544 nm emission of 612 nm.   
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2.9  Quantitative Reverse Transcription Polymerase Chain Reaction 

2.9.1  RNA Extraction 

Human Scwhann cells were harvested by trypsinisation and frozen in liquid nitrogen. RNA 

was extracted using Invitrogen micro to midi total RNA purification system. Cells were lysed 

in lysis buffer containing 1% β-mercaptoethanol, to reduce disulphide bonds and guanidinium 

isothiocyanate, which destroys all protein-protein interactions. Together these inactivate 

RNases, protecting the RNA from degradation. The lysate was added to a homogenisation 

spin column (Invitrogen) to reduce the viscosity, removing DNA from the sample. RNA was 

precipitated from the eluate by the addition of ethanol to 70% and added to the spin column 

(Invitrogen) which contains a silica-based membrane that binds the RNA. The impurities are 

removed by washes with wash buffers provided with the kit. RNA was eluted in RNase free 

water. 

 

Quantitation and purity of RNA was measured by dissolving a sample of RNA in Tris-EDTA 

(TE) buffer and measuring absorbance at 260 and 280nm. DNA and RNA absorb ultraviolet 

light, with an absorption peak at 260nm. Aromatic amino acids in protein absorb at 280nm. 

The ratio of 260:280 nm reading can be used to asses RNA purity, and the absorption at 

260nm to assess RNA quantity. 

 

2.9.2  Principles of PCR  

PCR was first described by Saiki et al., 1988 (300). A thermostable DNA polymerase isolated 

from Thermus aquaticus was used to amplify DNA at high temperatures. Taq polymerase is 

used for the exponential amplification of very small quantities of DNA isolated from cells or 

tissues.  The principles are further described in appendix 1.  
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2.9.3  Reverse Transcription PCR (RT-PCR) 

This technique is based upon traditional PCR, but utilising RNA-dependent DNA polymerase 

(reverse transcriptase) isolated from dsRNA viruses, to form complementary DNA (cDNA) 

from the mRNA template thus enabling gene expression to be measured. The first step is for 

target specific primers to bind to the mRNA and for reverse transcriptase to synthesise the 

cDNA strand from the mRNA template. After completion of this reaction, standard PCR is 

conducted using the target-specific DNA primers, which amplify the cDNA of interest.  

 

2.9.4  Hot Start PCR 

Thermophilic DNA polymerases have small, but measurable polymerase activity at room 

temperature. Hence, at room temperature DNA polymerase activity will catalyse the extension 

of annealed 3` ends, resulting in non-specific amplification. In addition the 5`-3` exonuclease 

activity of DNA polymerase degrades free 5` ends, potentially destroying annealed primer and 

template, resulting in lower yield. Hot start PCR inhibits the polymerase activity, by using a 

wax barrier, reducing this non-specific polymerase activity and increasing the yield.  

 

2.9.5  Quantitative PCR 

Traditional methods of quantitation are either by Northern (mRNA), Southern (DNA) blots or 

ethidium bromide staining on an agarose gel. However, Northern and Southern blots are time-

consuming and require large samples for analysis and measurements using agarose gels are 

only semi-quantitative , therefore  I chose to use quantitative PCR. Over the typical PCR the 

amount of product plateaus, hence at this point only large changes in starting mRNA can be 

measured. The development of quantitative PCR (qPCR) systems have removed these limits 

in end-point detection. qPCR enables accurate quantitation, high throughput processing as 
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well as multiplexing of samples. In qPCR the levels of newly synthesised DNA is traced 

(using fluorophores) as they rise above background levels to the plateau, the increase in 

fluorescent signal being proportional to the amount of DNA synthesised at each cycle. A 

threshold is defined above the background level and the cycle at which the fluorescence for a 

particular sample crosses the threshold is determined as Ct. The lower the Ct value, the earlier 

the fluorescence passes above the threshold and hence the more abundant the initial target.  

 

There are three major types of fluorescent dyes used for q-PCR, intercalating dyes (e.g. 

SYBR-green) and hybridisation probes (e.g. Taq-man) are discussed in appendix 1. In this 

study Lux (light upon extension) primers were used. Lux primers have one standard primer 

and one primer labelled with a fluorophore. The fluorescent label is located near the 3` hairpin 

structure, which intrinsically quenches the fluorophore. When the primer becomes DNA 

bound, the hairpin structure is unravelled and the fluorescence is unquenched, resulting in an 

increase in fluorescent signal (figure 2-3). Since LUX primers do not require a separate probe, 

the primers are cheaper than Taq-man, however, the lack of this separate probe makes them 

less sensitive.  
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2.9.6  Relative Quantitation 

The most common quantitation for qPCR is relative quantitation, where the treated sample is 

compared to not only a normal sample run on the same plate, but an internal control as well. 

During the exponential phase of PCR the quantity of DNA doubles with every cycle, hence, if 

one target has a Ct value 4 cycles earlier than another, it has 2
4
 = 16 times more initial 

template. This premise is used to quantify the initial amount of target quantified relative to a 

reference gene (normally a housekeeping gene such as β-actin or 18S). The difference 

between the Ct of the reference and target gene is calculated and known as ∆Ct. The relative 

quantity (RQ) of the treated sample can then be calculated comparing the ∆Ct of the treated 

sample to a control sample (known as ∆∆Ct) from this the relative quantity (RQ) can be 

calculated. 

Relative quantity = 2 
– (∆ CT sample – ∆ Ct control) 

 

Figure 2-3 - Lux Primers 

The fluorophore is attached near the 3` hairpin structure that 

intrinsically quenches the fluorescence. When the primer becomes DNA 

bound, the hairpin structure unravels, unquenching the fluorescence 

increasing the emitted fluorescence. 
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qPCR is performed using fluorescence probes meaning multiplex assays can be performed 

with both target and reference gene amplified in the same tube or well. The use of a reference 

gene in the same well reduces potential error caused by slight differences in the contents of 

each well, i.e. template or primer concentrations. Traditionally housekeeping genes such as 

GAPDH, or β-actin were used as reference gene; however, more recently the use of ribosomal 

RNA such as 18S is more common. Whichever housekeeping gene is used with relative 

quantitation, it is necessary to demonstrate the expression of the reference gene is not altered 

by any of the treatment groups. In addition the ∆∆Ct method assumes both the internal control 

and target are amplified with similar efficiency. It is necessary to demonstrate this is the case 

by running ∆Ct over different RNA concentrations. If the amplification efficiency is similar 

the gradient of the trend line will be less than 0.1 (301).  

 

In this project primers Fam-labelled LUX primers for TauT, nNOS and iNOS were used to 

measure gene expression of these targets. TauT primers were designed and optimised by Dr 

Wei Zeng at the boundary between exons 1 and 2 (5„TCTTGGAGATCATCATAGG‟3 and 

3‟CGGCATTACAACGGAGG„5) producing a 200bp target, the size confirmed by agarose 

gel electrophoresis from the qPCR product (figure 2-4A).  nNOS and iNOS primers were 

certified primers (Invitrogen) nNOS in exon 12, producing a produce 50-100bp product, 

iNOS between exons 18 and 19 producing a 50-100bp product. Again these targets were 

confirmed by agarose gel electrophoresis from the qPCR product (figure 2-4B). 
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2.9.7  Method Development for nNOS and iNOS  

Initial PCR using the NOS primers were performed using the same cycling conditions as used 

for TauT (insert cycling conditions), using tenfold dilutions of RNA concentration, 200ng, 

20ng, 2ng and 0.2ng RNA. The nNOS curves were clear, but with little differentiation 

between RNA concentration, they also came up a little too late, with 200ng being measurable, 

demonstrating low expression. No iNOS fluorescence was visible.   

 

Figure 2-4 - Confirmation of PCR products 

1.5% agarose gels confirming q-PCR products 

A. 200bp TauT product  multiplexed with 100bp actin – performed 

by Dr W Zeng 

B. 50-100bp nNOS and iNOS products. Samples not multiplexed 

with actin 
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The first strand cDNA synthesis stage was altered, by reducing the temperature from 50
o
C – 

45
o
C and increasing synthesis time from 25- 30mins. This improved the nNOS curves 

slightly, and reduced the Ct values to approx 30, for the 20ng RNA (figure 2-5A); however, 

the differentiation at the lower RNA concentration was still not sufficiently clear. These 

changes also enabled iNOS fluorescence to be observed with differentiation observed between 

different RNA concentrations (figure 2-5B).  

 

To increase primer binding, the primer binding and elongation steps were split into two. The 

primer binding temperature was reduced from 68
o
C to 60

o
C with the extension temperature 

remaining at 68
o
C. Lastly, to further improve primer binding, the MgSO4 concentration was 

increased from 3 mM to 5 mM and lastly to reduce the chances of interference between actin 

and the NOS primer, the amount of actin primer was reduced, by half (to 0.1 µM), which 

improved both NOS and actin.  Further reduction of actin primer had no effect on NOS and 

had a detrimental effect on the actin curves. Final amplification plots for iNOS and nNOS are 

shown in figure 2-6. Final cycling parameters are shown in table 2. 
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Table 2-2 - q-RT-PCR Cycling Parameters 

 

 TauT iNOS/nNOS 

 50
o
C 30 min 45

o
C 30 min 

re
p
ea

t 
4
0
 c

y
cl

es
 

95
o
C 2 min 95

o
C 2 min 

95
o
C 15 sec 95

o
C 15 sec 

60
o
C 1 min 55

o
C 30 sec 

 68
o
C 30 sec 
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Figure 2-5 – Initial NOS qPCR 

Amplification Curves 

Early PCR cycles for A. nNOS and B. iNOS 

along with the corresponding actin curves 
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2.9.8  Final PCR Method 

RNA was extracted from treated human Schwann cells using the micro-midi RNA extraction 

kit (Invitrogen). RNA 20ng was treated with 1 unit of DNase I (Invitrogen) for 15min. DNase 

I was heat-inactivated by incubation for 10mins with 2.5 mM EDTA and q-RT-PCR was 

conducted using the Invitrogen superscript
®

 III Platinum
®
 One-Step q-RT-PCT kit  following 

Figure 2-6 – Final NOS Amplification 

Curves 

Final q-RT-PCR for A. nNOS and B. iNOS 

along with the corresponding actin curves 
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manufacturer‟s instructions and run on an ABI 7000 machine. Results were analysed using 

SDS software as recommended by the manufacturer. Data are expressed as cycle threshold 

(Ct) values (the cycle number at which the exponential fluorescence increase crosses a 

calculated threshold) and were used to calculate the ∆Ct value (∆Ct = Ct of target gene 

(TauT) – Ct of endogenous control (actin)). ∆∆Ct is calculated as the difference between the 

sample ∆Ct and that of the internal control (i.e. control cells cultured in 5 mM glucose). Data 

are expressed as relative quantity (RQ) which is calculated as 2
-(∆∆Ct)

.  In each assay triplicate 

conditions were run and the sample was run on at least 4 different independent cell 

treatments. Fam-labelled TauT lux primers were custom-made by Invitrogen nNOS and iNOS 

FAM-labelled LUX primers as well as Joe- labelled actin (used as an endogenous control) 

were certified primers from Invitrogen.  

 

2.10  Taurine Uptake Studies 

2.10.1  Liquid Scintillation Counting 

Liquid scintillation counting is used to measure low energy β emitters. The liquid scintillation 

cocktail absorbs the energy emitted by the radioisotope and re-emits them as flashes of light. 

These light emissions pass into a photomultiplier tube that emits an electrical pulse 

proportionate to the number of photons, corresponding to the number of individual β 

emissions. 

 

 If the efficiency of conversion of the β energy emitted into light was 100% the number of 

disintegrations per minute (DPM) would be the same as converted into light and counted on 

the scintillation counter, expressed as counts per minute (CPM). This is not the case due to 

quenching and the efficiency of counting (CPM/DPM) needs to be taken into account. This is 



85 

 

normally done by the counter itself, by reading a standard of known activity through the 

sample to determine the quenching in the sample.  

2.10.2  Transporter Kinetics 

Michaelis-Menten kinetics describes the kinetics of simple enzymes or transporters. The 

activity of the enzyme (E) can be described as the rate of product (P) formation from the 

enzyme substrate (S) (see below). These equations can be equally used to describe the activity 

of transporters (such as TauT) in the same manner, where the substrate is extracellular taurine 

and the product is intracellular taurine.  

 

In simple systems the rate of conversion of ES to P is rapid and this reaction is dependent 

upon the substrate concentration, the maximum velocity of the enzyme (Vmax) and the 

affinity the enzyme has for the product, denoted by the Michaelis-Menten constant (Km). 

 A saturation curve of velocity of reaction (V) versus substrate concentration [S] will result in 

a hyperbolic curve, described by the Michaelis-Menten equation (see below) and enable 

derivation of the Vmax and Km.  

 

The Vmax is the asymptote of the graph, where the rate of product formation reaches 

saturation; the Km is the substrate concentration at half Vmax. An enzyme with a low affinity 

will have a high Km, a high affinity enzyme having a low Km.  In biological systems 

perturbations in Vmax are generally due to either changes in expression or non-competitive 

inhibition. Whereas changes in Km are generally due to competitive inhibition (as a higher 
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substrate concentration is needed to reach enzyme saturation) or due to protein modification 

such as phosphorylation affecting enzyme-substrate interaction.  

2.10.3  Final Taurine Uptake Method 

For measurements of taurine uptake human Schwann cells were grown for 7 days in treatment 

conditions. On day 5 cells were plated onto 24 well plates cultured for a further 24 hours to 

reach 80% confluence. Cells were washed twice in serum-free DMEM pre-warmed at 37
o
C. 

Uptake was initiated by adding warmed serum-free media containing 6.9 nM [
3
H] taurine and 

increasing concentrations of unlabelled taurine (1-50 µM). At the time of these studies tritium 

was the only available label for taurine. Since tritium is a low energy isotope, 15 minutes 

incubation was used for uptake in all experiments. At the end of the incubation the medium 

was aspirated and cells washed twice in ice-cold HBSS. Cells were lysed by addition of 200µl 

2% SDS, and transferred to 2ml of scintillation cocktail (Ecoscint) for liquid scintillation 

counting. Data are expressed as uptake in picomoles of taurine per milligram of protein per 

minute.  

Active taurine transport via TauT is dependent upon both Na
+
 as well as Cl

-
; hence the 

influence of Na
+
- independent uptake was assessed by a time-course and saturation curve and 

compared to Na
+
-dependent uptake. This was performed in uptake buffer containing 20 mM 

HEPES, 140 mM NaCl, 5.4 mM KCl, 1.8 mM CaCl2, 0.8 mM MgSO4   and 5 mM glucose 

(pH 7.4). For Na
+
-independent uptake, choline chloride replaced NaCl.  

2.11  Statistical analysis 

 

All data were analysed using Gaphpad Prism software. For comparison within the same 

treatment group a one way analysis of variance (ANOVA) was performed. For comparison 

between different treatment groups, a two-way ANOVA wsa performed.In both cases the 
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Bonferroni correction was used. The Bonferroni correction uses a stricter confidence 

threshold which safeguards against type I error incurred by using repeated T-tests.    
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Chapter 3  - Taurine Transporter Dysregulation in High Glucose-Exposed 

Human Schwann Cells 

3.1  Introduction 

Increased oxidative/nitrosative stress has been implicated as a key pathogenetic pathway (4; 

7; 111; 112) in microvascular complications of diabetes.  Intracellular taurine depletion may 

result in wide-ranging metabolic perturbations including impaired cellular response to 

oxidative/nitrosative stress with resultant cytotoxicity.  

Intracellular taurine concentration is maintained by the Na
+
Cl

-
 -dependent taurine transporter 

(TauT) which, in Madin-Darby Canine Kidney (MDCK)  cells and retinal pigment epithelial 

cells (RPE) (236), is  known to be regulated by  glucose, oxidative stress and changes in 

osmolarity. Disruption of taurine transport has been identified as the important  pathway 

leading to its intracellular depletion (73; 261). Flux through the enzyme aldose reductase at 

key sites for diabetes complications has been viewed as a critical link between 

hyperglycaemia, oxidative stress and the cell dysfunction seen in diabetes (4; 73). This 

pathway increases intracellular fructose, sorbitol, protein glycation and oxidative/nitrosative 

stress (4; 32). Increased sorbitol production can contribute to osmotic imbalance resulting in a 

compensatory reduction of other osmolytes such as myoinositol and taurine (73; 261; 302). 

Deficiency of these “compatible osmolytes” may result in their becomeing rate-limiting for 

normal metabolic functions (73; 303).  

Covalent protein tyrosine nitration due to increased production of reactive nitrogen species 

(RNS) has been observed in models of both diabetes, such as in Schwann cells, neurons and 

epineurial blood vessels (304). Tyrosine nitration impairs tyrosine phosphorylation and as 

such affects many intracellular signaling pathways. However, the role of nitrosative stress on 

TauT regulation has never been explored.  
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I have examined the effects of hyperglycaemia on the effect of glucose on TauT regulation in 

human Schwann cells. I have also studied the effect of oxidative stress, nitrosative stress and 

increased polyol pathway flux. 

3.2  Methods 

Methods used are as described in Chapter 2 with the following additions. 

3.2.1  Taurine Transporter Western Blot 

 Two separate polyclonal TauT antibodies were used, i.e. an affinity purified antibody  made 

by the laboratory of Martin Stevens (75) and  a commercial TauT antibody (Millipore) (305; 

306). Both identified a 69kDa TauT band (figure 3-1), identified as the size of TauT.  The 

staining from the commercial antibody was clearer and hence was used for all subsequent 

studies. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1 – Comparison of Two TauT Antibodies 

Western blots using homemade and purchased (Millipore) TauT 

antibodies. In both blots the same 69 kDa band was seen, 

however, in the homemade antibody the band was considerably 

fainter and there was a band slightly higher at 80 kDa. 
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3.2.2  Validation of Actin mRNA as an Internal Control   

Actin was chosen as an endogenous control and commercial certified actin primers 

(Invitrogen, Carlsbad, USA) were utilised. To validate its use, the amplification efficiency of 

actin vs. target primers were checked (figure 3-2) over 10 fold dilutions of RNA between 

0.2ng and 200ng. The trend-line gradients from these were all less than 0.1, demonstrating 

similar amplification efficiencies of actin compared to target primers, allowing the ∆∆Ct 

method of analysis to be used. To further validate the use of actin, actin mRNA expression 

did not alter with any of the treatment groups (Figure 3-3). 

 

 

 

 

 

 

 

 

 

Figure 3-2 - Validation of Actin and TauT Amplification Efficiencies  

q-PCR was run with 10 fold dilutions of untreated RNA from 200ng to 

0.2ng. There was limited change in ∆Ct over different RNA 

concentrations, demonstrated by the gradient of the linear regression < 0.1. 

Data expressed as mean ± SEM of 6 separate experiments. 
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Figure 3-3 - Actin Expression with Increasing Glucose 

Concentrations and Raffinose 

No significant changes in the actin expression (Ct) were 

observed in these treatments. Data expressed as mean ± 

SEM of 6 separate experiments. 

Figure 3-4 - Actin Expression with α-lipoic acid, 

Sorbinil and Taurine 

No significant changes in the actin expression (Ct) were 

observed in these treatments. Data expressed as mean ± 

SEM of 6 separate experiments. 
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Figure 3-6 - Actin Expression with SNP and L-name 

No significant changes in the actin expression (Ct) were 

observed in these treatments. Data expressed as mean ± 

SEM of 6 separate experiments. 

Figure 3-5 - Actin Expression with Sin-1 

No significant changes in the actin expression (Ct) were 

observed in these treatments. Data expressed as mean ± 

SEM of 6 separate experiments. 
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3.2.3  Taurine Uptake 

Between 1-50 µM taurine, the Na
+
-independent uptake was non-saturable (figure 3-5) and 

uptake did not alter over time (figure 3-4), a response typical of simple diffusion. The Na
+
-

dependent taurine uptake was linear over 60 minutes  (figure 3-4) and saturable following 

Michaelis-Menten kinetics with a Vmax of 54 pmole/min/mg protein and Km 8.4 µM (figure 

3-5), data typical for TauT (261; 307). Intracellular taurine content is typically in the mM 

range, 10-50 mM (74; 236; 237) and the plasma taurine content is ~50 µM (235) hence Na
+
-

independent uptake accounts for very little of total taurine uptake physiologically. This was 

mirrored in these studies where the influence of Na
+
-independent uptake was negligible 

(figure 3-5) and hence was not routinely taken into account in subsequent studies. 

 

 
Figure 3-7 - Taurine Uptake Time-Course 

A linear (R
2
=0.9866) Na

+
-dependent uptake is observed over 

60mins. Na
+
-free uptake is negligible with no alteration in DPM 

over time gradient 0.0061 
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Figure 3-8 - Na
+
-Dependent and Na

+
-Independent Taurine 

Uptake Saturation Curves 

Na
+
-dependent taurine uptake is saturable following Michaelis-

Menten kinetics with a Vmax of 54 (pmole/min/mg protein) and 

Km of 8.4 µM. Na
+
-independent uptake is unsaturable and linear 

(R
2
=0.9922) typical of simple diffusion. 
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3.3  Results 

3.3.1  Effect of Hyperglycaemia on TauT Expression and Taurine Transport 

Studies in RPE cells have demonstrated TauT is down regulated by high glucose 

concentrations (73; 261). To determine whether these effects are replicated in Schwann cells 

the effect of high glucose on TauT mRNA and protein expression, as well as activity in 

human Schwann cells were explored.  

Changes in TauT mRNA expression were measured in human Schwann cells by qRT-PCR 

after exposure to 5, 7.5, 10, 15, 22 and 30 mM glucose for 7 days. The data shown in figure 3-

6A shows the abundance of TauT mRNA declined in dose-dependent fashion with increasing 

glucose concentration. Expression was reduced by 14% in 10 mM glucose with maximal 

reduction (66 ± 6% p<0.05) in 30 mM glucose. No decrease was found when the osmotic 

control, 25 mM raffinose, was utilised in place of glucose.  

The abundance of TauT protein expression in response to increases in glucose was measured 

by western blotting. The results are shown in figure 3-6B which demonstrate, in a similar 

manner to mRNA regulation, TauT protein expression decreased in a dose-dependent fashion. 

TauT protein levels were reduced by 63 ± 12% (p<0.05) in glucose concentrations above 15 

mM. Again this effect was not reproduced by 25 mM raffinose.  

To ascertain whether reductions of TauT expression were replicated by uptake, measurements 

of taurine uptake were performed and Michaelis-Menten kinetics calculated which are shown 

in figure 3-6C. These demonstrated that 30 mM glucose reduced TauT Vmax (maximum 

velocity) by 41% from 61 ± 5 pmoles/min/mg protein to 42 ± 3 pmoles/min/mg protein 

(p<0.001), while increasing the Km by 50% from 10 µM ± 2 to 16 ± 2 (p=0.16). Again these 

effects were not reproduced by 25 mM raffinose. 
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Figure 3-9 - Concentration Dependent Effects of Chronic Glucose Exposure 

on the mRNA, Protein Expression and Taurine Transport 

A) TauT mRNA expression was measured by q-RT-PCR using TauT 

specific primers. Data expressed as relative quantity of 6 separate 

experiments mean ± SEM p<0.05 (one-way ANOVA). 

B) Representative western blot analysis of TauT protein expression. Equal 

protein loading confirmed with β-actin. Quantitation performed by 

densitometry 5 mM glucose is taken as 100% and data expressed as fold 

change vs. 5 mM glucose as mean ± SEM of 5 separate experiments 

*p<0.05 (one-way ANOVA).  

C) Kinetic plots were obtained by measuring taurine uptake in cells treated 

in different glucose concentrations for 7 days. Michaelis-Menten plots for 

Na
+
 dependent taurine uptake are shown at 5 and 30 mM glucose, with 25 

mM raffinose as an equimolar osmotic control. Vmax and Km were 

obtained by non-linear regression using Prism software.*P<0.05 vs. 5 

mM glucose †P=0.16 vs. 5 mM glucose ‡ P>0.5 vs. 5 mM glucose. 

 

Data published – see chapter 7.3 (appendix) 
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3.3.2  Time-course of Effects of Glucose on TauT mRNA Expression 

To ascertain the time-dependent effects of high glucose on TauT gene expression, a time-

course was performed over 7 days (30 mM) and changes in TauT mRNA expression were 

measured. These data are shown in figure 3-7. There was a gradual downregulation of TauT 

mRNA expression over time in response to high glucose, with significant decreases after 4 

days with a 25 ± 6% (p<0.05) decrease observed. 

 

 

 

 

 

 

 

 

 

 

Figure 3-10 - Effect of High Glucose on TauT mRNA Expression Over 7 

Days 

TauT mRNA expression was measured by q-RT-PCR using TauT specific 

primers. Data expressed as relative quantity of 6 separate experiments mean ± 

SEM *p<0.05 (one-way ANOVA). 
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3.3.3  Effect of Aldose Reductase Inhibition on TauT Gene Expression and 

Taurine Transport 

To establish the impact of aldose reductase flux on TauT downregulation, cells were co-

incubated for 7 days with glucose together with the aldose reductase inhibitor sorbinil (10 

µM). The effects on TauT mRNA expression are shown in figure 3-8. Inhibition of aldose 

reductase reversed the hyperglycaemia-induced reduction of TauT gene expression, 

increasing mRNA expression to levels 2.9 and 3.8 fold above 5 mM glucose in 10 and 30 mM 

glucose respectively (both  p<0.05) (figure 3-8A). The effects of sorbinil on measurements of 

TauT kinetics are shown in figure 3-8B. Aldose reductase inhibition restored TauT Vmax, 

increasing it to 98% above 5 mM from 54 ± 4 pmoles/min/mg protein to 107 ± 14 

pmoles/min/mg protein. There was no change in Km compared to untreated 30 mM glucose.  

3.3.4  Effect of Oxidative Stress on TauT Expression and Taurine Transport 

To explore the effect of oxidative stress on TauT expression and taurine transport, Schwann 

cells were incubated for 6 hours with the pro-oxidants, 100 µM H2O2 or 50 µM primaquine 

(PQ). The effect of pro-oxidants on TauT protein expression was measured by western blot 

and the results are shown in figure 3-9A.  H2O2 and PQ increased TauT protein abundance 2 

fold and 3 fold respectively (p<0.05 both). Co-treatment for 6 hrs with 30 mM glucose 

however, completely prevented this pro-oxidant-induced increase in TauT protein expression. 

The functional increases in protein were confirmed by measurements of taurine transporter 

kinetics and the data are shown in figure 3-9B. PQ (50 µM) increased TauT Vmax by 61% 

from 48 ± 4 pmoles/min/mg protein to 78 ± 7 pmoles/min/mg protein (P<0.005). In a similar 

manner to protein expression, this response was almost completely abolished by co-treatment 

with 30 mM glucose, which reduced TauT Vmax to 57 ± 4 pmoles/min/mg protein. No 
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significant changes in Km were seen either with pro-oxidant treatment, or glucose co-

treatment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 

B 

Figure 3-11 - Effect of Aldose Reductase Inhibition (ARI) with 10 

μM sorbinil on TauT mRNA Expression and Kinetics   

A) TauT mRNA expression was measured by q-RT-PCR using 

TauT specific primers. Data expressed as relative quantity of 6 

separate experiments mean ± SEM *p<0.05 vs. 5 mM glucose 

(one-way ANOVA) †p<0.05 vs. respective glucose concentration 

(two-way ANOVA). 

B) Kinetic plots were obtained by measuring taurine uptake in cells 

treated in different glucose concentrations for 7 days. Michaelis-

Menten plots for Na
+
 dependent taurine uptake are shown. 

*p<0.05 †p<0.05 vs. respective glucose concentration 

Data published – see chapter 7.3 (appendix) 
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A 

B 

Figure 3-12 – Effect of Pro-oxidants on TauT Protein Expression and Kinetics  

A)  Effect of pro-oxidant treatment for 6hrs with 100 µM H2O2 and 50 µM primaquine 

(PQ) on TauT protein expression in normal and high (30 mM) glucose. Representative 

western blot for TauT shown. Equal protein loading confirmed by β-actin. Quantitation 

performed by densitometry and data expressed as mean ± SEM of 5 separate experiments. 

* P<0.05 vs. 5mM glucose (one-way ANOVA) † p<0.05 vs. respective glucose (two-way 

ANOVA). (B) Treatment for 6hrs with 50 µM PQ in normal and high glucose on TauT 

kinetics *p<0.05 vs. normal control †p<0.05 vs. PQ 

Data published – see chapter 7.3 (appendix) 
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3.3.5  Effect of Antioxidants on TauT Gene Expression and Taurine Transport 

Treatment of STZ-D rats with the antioxidant D-L α-lipoic acid (ALA) restores nerve taurine 

content (115). Therefore the effect of co-treatment with glucose and ALA was performed to 

determine the effects of ALA and antioxidant treatment on TauT expression and kinetics. 

Figure 3-10A shows the effects of ALA on TauT mRNA expression. In 5 mM glucose ALA 

reduced TauT mRNA by 23 ± 15%, although this did not reach significance (p=0.1). In 10 

and 30 mM glucose 100 µM ALA completely prevented the glucose-mediated  reduction of 

TauT gene expression, with TauT mRNA increased by 15 ± 22% and 60 ± 10% (p<0.05) 

respectively over levels measured in 5 mM glucose. This effect was duplicated by treatment 

with 250 µM vitamin C and with 250 µM taurine, shown in figure 3-10B.  Both restored TauT 

expression in 30 mM glucose by 94 ± 5% and 82 ± 8% respectively compared to untreated 5 

mM glucose (both p<0.05 compared to untreated 30 mM glucose). 

Similarly kinetic studies, shown in figure 3-10C, demonstrated that ALA restored the 30 mM 

glucose-mediated reduction of TauT Vmax, resulting in a 51% increase above 5 mM glucose 

from 54 ± 4 pmoles/min/mg protein to 82 ± 7 pmoles/min/mg protein (p<0.05) with no 

significant change in Km vs. untreated 30 mM glucose. Co-treatment with vitamin C also 

restored TauT Vmax in 30 mM glucose to 57 ± 4 pmoles/min/mg protein with no significant 

difference compared to untreated 5 mM glucose.  
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    untreated vitamin C taurine  

Glucose (mM) 

5 1.02 1.22 1.18 

10 0.86 0.93 1.15 

30 0.34 0.83† 0.94† 

B 

Figure 3-13 - Effect of Antioxidant Treatment on Taurine Transport 

A) Effect of treatment with 100 µM ALA on TauT mRNA expression   

B) Effect of treatment with 100 µM vitamin C and 250 µM taurine on TauT 

mRNA expression.. Data expressed as relative quantity of 6 separate 

experiments mean ± SEM *p<0.05 vs. 5 mM glucose (one-way ANOVA) 

†p<0.05 vs. respective glucose concentration (two-way ANOVA) C) Effect of 

treatment with 100 µM ALA on TauT kinetics*p<0.05 vs. 5 mM glucose 

†p<0.05 vs. respective glucose concentration 

Data published – see chapter 7.3 (appendix) 
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3.3.6  Effect of NO Donors on TauT Expression and Taurine Transport 

The abundance of RNS, such as peroxynitrite is increased by hyperglycaemia and 

nitrotyrosine is increased in both patients and models of diabetes. RNS and peroxynitrite is 

reduced by antioxidants. Hence, to determine whether the restorative effects of antioxidants 

on TauT mRNA expression and Vmax were due to changes in RNS and NO, Schwann cells 

were incubated for 24 hours with the nitric oxide donor, sodium nitroprusside (SNP) and the 

peroxynitrite donor 3-morpholinosydnonimine (SIN-1).  

The effects of both SIN-1 and SNP on TauT mRNA expression are shown in figure 3-11A. 

Both donors reduced TauT expression. The reduction of TauT expression was maximal with 

10 µM SIN-1 which resulted in a 35 ± 5% decrease in TauT mRNA expression (p<0.05).  

SNP exposure resulted in maximal reduction of TauT mRNA at 100 µM 29± 7% respectively 

(p<0.05 both).  

The effects of SIN-1 and SNP on TauT kinetics are shown in figure 3-11B. 10 µM SIN-1 

reduced TauT Vmax from 48 ± 4 pmoles/min/mg protein to 39 ± 2 pmoles/min/mg protein 

(p<0.05), whereas 100 µM SNP reduced TauT Vmax to 28 ± 2 pmoles/min/mg protein 

(p<0.005). No significant change in the Km was observed for either donor. 

 

 

 

 

 

 



105 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-14 – Effects of Nitric Oxide and Peroxynitrite on TauT 

Expression and Taurine Uptake 

 A) TauT expression was measured by q-RT-PCR. Data expressed as 

relative quantity of 6 separate experiments mean ± SEM p<0.05. * P<0.05 

vs. untreated (one-way ANOVA)  

B) Kinetic plots obtained by measuring taurine uptake in Schwann cells. 

Michaelis-Menten plots for Na
+
 dependent taurine uptake are shown. 

Vmax and Km were obtained by non-linear regression using Prism 

software* p<0.01 vs. untreated †p<0.05 vs. untreated ‡ p>0.2 vs. untreated  

B 

A 
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3.3.7  Effect of NOS Inhibitor on TauT Expression and Taurine Transport 

To determine the effect of glucose-mediated NO generation on TauT expression, human 

Schwann cells were exposed for 7 days to 30 mM glucose in the presence and absence of 50 

µM of the NOS inhibitor N-nitro-L-arginine methyl ester (L-NAME).   

The effects of NOS inhibition on TauT mRNA are shown in figure 3-12A. Treatment with L-

NAME had no effect on TauT mRNA expression in normal glucose concentrations, however 

in high (30 mM) glucose, L-NAME prevented the high glucose-mediated reduction, restoring 

TauT mRNA expression from 46 ± 6% to 93 ± 11% (p<0.05)  

TauT kinetics are shown in figure 3-12B and demonstrate that L-NAME had no effect on 

TauT kinetics in normal glucose concentration, 51 ± 2 pmoles/min/mg protein in 5 mM 

compared to 53 ± 3 pmoles/min/mg protein treated with 50 µM L-NAME. In 30 mM glucose, 

however, L-NAME restored TauT Vmax from 33 ± 3 pmoles/min/mg protein to 60 ± 4 

pmoles/min/mg protein (p<0.05) with no change in Km. 
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B 

Figure 3-15 – Effect of NOS inhibition on TauT mRNA expression  and Kinetics 

A) Effects of 50 µM L-name on high glucose-induced downregulation of TauT 

mRNA expression. Data expressed as relative quantity of 6 separate 

experiments mean ± SEM *p<0.05 vs. 5 mM glucose (one-way ANOVA) 

B) Effects of 50 µM L-name on high glucose-induced downregulation taurine 

uptake *p<0.05 vs. 5 mM glucose 
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3.4   Discussion 

This study demonstrates for the first time that exposure of Schwann cell to pathophysiological 

concentrations of glucose causes a dose-dependent reduction in TauT mRNA expression, 

protein levels, and Vmax of TauT uptake. This is consistent with previous studies conducted 

in RPE cells (73; 261) and the observation of decreased circulating and intracellular taurine 

concentrations in diabetic models and patients. The gradual nature of the reduction illustrates 

the down-regulation of TauT expression is unlikely to be a direct effect of glucose, but due to 

a gradual build-up of intracellular metabolites or protein modification such as non-enzymatic 

glycation, nitrotyrosine or glycosylation by N-acetyl glucosamine.  

In Schwann cells, glucose flux through aldose reductase is seen as an important link between 

hyperglycemia and oxidative stress in diabetic neuropathy. This study demonstrates aldose 

reductase inhibition reversed the glucose-induced decrease in TauT mRNA expression and 

Vmax in human Schwann cells. In common with other osmoregulatory genes, such as aldose 

reductase, TauT is transcriptionally upregulated by tonicity response element (TonE)  

contained in the 5` region of the gene, in response to hypertonic stress  (236; 308). The 

„compatible osmolyte‟ hypothesis suggests that organic osmolytes such as sorbitol, taurine 

and myoinositol respond coordinately to changes in external osmolarity (72; 73). It is thought 

that increases in intracellular sorbitol due to greater aldose reductase flux, may contribute to 

the transcriptional down regulation of TauT expression (73). Hence aldose reductase 

inhibition depletes intracellular sorbitol resulting in a compensatory increase in TauT 

expression.  

Pro-oxidants alone increased TauT protein expression as well as TauT Vmax. The TauT 

promoter contains an antioxidant response element (ARE) which is activated in response to 
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pro-oxidants (73). AREs are known to be activated by pro-oxidant stress and genes known to 

contain ARE are involved in protecting the cell from oxidative damage. They include 

glutathione S-transferases (309), γ–glutamylcysteine transferase catalytic and regulatory 

subunits (310). The pro-oxidant response of TauT demonstrates the paradox whereby 

oxidative stress increases TauT expression, whereas high glucose (which increases oxidative 

and nitrosative stress by a wide range of pathways) down regulates TauT expression and 

taurine transport. The TauT response to pro-oxidant stimuli was blocked by co-treatment with 

30 mM glucose which illustrates that a component of glucose-induced stress, other than 

oxidative stress is responsible for the down-regulation of TauT. 

Further demonstrating the paradox of TauT down-regulation in high glucose, treatment with 

the antioxidant ALA restored TauT mRNA expression and Vmax. This effect was repeated 

with antioxidant treatment with vitamin C and taurine. Antioxidants would not be expected to 

alter sorbitol content; hence it appears antioxidants neutralize a component of glucose 

toxicity, such as glycation, 3-nitrotyrosine, or S-nitrosylation which impairs the TauT 

response to oxidative stress. This parallels studies in streptozotocin diabetic rats where ALA 

restored nerve taurine content without affecting sorbitol content  (115) and in the composite 

nerve, taurine restored taurine content without affecting either sorbitol or myoinositol 

abundance (75). 

To examine the nature of the antioxidant-sensitive component and to ascertain the effect of 

increased nitric oxide and nitrotyrosine on TauT expression, Schwann cells were incubated 

with SNP an NO donor and SIN-1 a peroxynitrite donor. These demonstrated that both NO 

and peroxynitrite reduce TauT mRNA expression and TauT Vmax to a similar extent. In 5 

mM glucose, NOS inhibition had no effect on TauT expression, however, in high glucose co-

treatment with the NOS inhibitor L-NAME reversed the glucose-induced decrease in TauT 



110 

 

expression and Vmax without affecting the Km. These demonstrates that RNS and/or NO 

down regulate taurine transport and increased RNS and NO in diabetes could therefore 

contribute to TauT downregulation. Since antioxidants reduce RNS, it is likely this is the 

component they affect, restoring taurine transport. 

This study highlights the paradox of glucose-mediated TauT downregulation. High glucose 

exposure decreases taurine transport whereas pro-oxidants upregulate taurine transport. TauT 

expression and kinetics are restored by aldose reductase inhibition, antioxidant treatment and 

NOS inhibition, whilst NO and peroxynitrite alone reduced TauT expression and taurine 

transport. Together these data implicate intracellular sorbitol as well as nitrosative stress in 

glucose-induced TauT downregulation.  
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Chapter 4  -  Effect of High Glucose and Taurine Supplementation on Oxidative 

Stress and the Antioxidant Defence System in Human Schwann Cells 

4.1  Introduction 

 

Increased oxidative stress, driven by glucose has been identified in the nerve (113-115), eye 

(71), vasculature (311), kidney (312; 313)  and heart (314) in diabetic rodent models and in 

diabetic patients (119-122). Oxidative stress occurs due to an imbalance in the production of 

reactive oxygen species (ROS) in concert with impaired antioxidant defence. Excess ROS 

production can have  many  down-stream pathogenic effects within the cell including protein 

nitration, formation of poly(ADP-ribosyl)ated (PAR) protein polymers and apoptosis (315-

320). Antioxidant approaches have been shown to prevent or reverse complications in 

experimental diabetes (145).  Glycation of superoxide dismutase (SOD) has been 

hypothesised as the mechanism behind the observed reduction in SOD activity in some 

models, however, this, in similar fashion to increased activity of catalase (CAT) appears to be 

tissue-specific and has never been examined in human Schwann cells.  Antioxidant defence 

may also be compromised because increased aldose reductase flux depletes intracellular 

NADPH, an essential cofactor for regenerating reduced glutathione (GSH), resulting in GSH 

depletion in many diabetic models (4; 32).   

Hyperglycaemia-induced taurine depletion has been demonstrated in the nerve (321), lens 

(322) and mesangial cells (323) of diabetic rodents. Circulating taurine levels are reduced in 

diabetic patients (257). Intracellular taurine depletion may result in wide-ranging metabolic 

perturbations including impaired cellular response to oxidative/nitrosative stress with 

resultant cytotoxicity. Indeed taurine replacement has been shown to attenuate oxidative stress 

and functional deficits in these tissues (76; 145; 264), and to ameliorate thermal and 

mechanical hyperalgesia (225; 262) in diabetic rodents. The antioxidant mechanism of taurine 
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is unclear, since  taurine is unable to directly scavenge classic ROS (266). Some studies have 

attributed the antioxidant action of taurine as an indirect effect by acting upon the antioxidant 

defence system, however, it is unclear whether this occurs in diabetes (76).  

In this study I examined whether hyperglycaemia increases oxidative stress and PAR 

abundance in human Schwann cells. I also determined the activity of both SOD and CAT and 

the level of GSH. The effects of taurine on all these parameters were examined. 

4.2  Methods 

Methods used are described in Chapter 2 with the following additions. 

4.2.1  Western Blot Antibody Selection 

Hydroxyl radical (OH
.
) removes a hydrogen from polyunsaturated fatty acids producing lipid 

radical which reacts with O2 forming lipid peroxy radicals such as 4-hydroxy-2-noneal 

(4HNE). 4HNE is a highly reactive aldehyde which reacts non-enzymatically with histidine, 

lysine and cysteine amino-acid side-chains, forming stable adducts. The abundance of 4HNE 

adducts is used as a measure of ROS in biological systems. A well-characterised commercial 

antibody against 4HNE adducts was used in Western blots  (Merck) ((64; 324; 325) and total 

band density was determined. 

 

ROS and RNS are known to cause DNA strand breaks. Poly-ADP-ribose-polymerase 1 

(PARP) is a nuclear enzyme known to be activated by DNA strand breaks. Upon activation 

PARP cleaves nicotinamide adenine dinucleotide (NAD
+
) forming nicotinamide and ADP-

ribose residues, and the latter attaches to nuclear proteins forming poly(ADP-ribosyl)ated 

protein polymers. The abundance of poly(ADP-ribosyl)ated  proteins was measured by 

Western blot using a well-characterised commercial antibody (Alexis) (326-328) and total 

band density was determined. 
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4.3  Results 

4.3.1  Effect of High Glucose on Oxidative Stress 

The changes in oxidative stress in human Schwann cells after chronic (7 day) exposure to 5, 

10 and 30 mM glucose were explored using H2DCFDA reagent to assay ROS generation. The 

results are shown in figure 4-1A which demonstrate that fluorescence intensity was increased 

in 10 and 30 mM glucose compared to 5 mM glucose.  This experiment was repeated 3 times 

with consistent increases 

 

To confirm this finding, Western blotting against stable 4HNE adducts, was performed on 

cells treated with high glucose for 7 days, shown in figure 4-1B. 4HNE abundance was 

increased by 30 ± 4% and by 20 ± 5% (both p<0.05) on exposure to 10 and 30 mM glucose, 

respectively 

4.3.2  Effect of High Glucose on PAR Formation 

To assess the effect of high glucose on PAR formation, Western blotting of PAR proteins was 

performed in Schwann cells incubated in high glucose for 7 days and data are displayed in 

figure 4-2. PAR protein abundance was increased dose-dependently,  26 ± 7% in 10 mM and 

40 ± 13% in 30 mM glucose (p<0.05). 
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A 

B 

Figure 4-1 – Effect of High Glucose on Oxidative Stress 

Effect of high glucose on oxidative stress (A) representative images of 

ROS fluorescence measured using H2DCFDA and (B) representative 

western blots of 4HNE adducts. Equal protein loading confirmed by β-

actin. Quantitation performed by densitometry and data expressed as mean 

± SEM of 5 separate experiments. * P<0.05 vs. 5mM glucose (one-way 

ANOVA). Data published – see chapter 7.3 (appendix) 
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Figure 4-2 – Effect of High Glucose on Poly(ADP-ribosyl)lated Protein 

Abundance 

Effect of high glucose on poly(ADP-ribosyl)lated protein abundance. 

Equal protein loading confirmed by β-actin. Quantitation performed by 

densitometry on total bands and data expressed as mean ± SEM of 5 

separate experiments. * P<0.05 vs. 5mM glucose (one-way ANOVA) 

Data published – see chapter 7.3 (appendix) 
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4.3.3  Effect of High Glucose on the Antioxidant Defence System 

To determine the response of the antioxidant defence in response to glucose-induced 

oxidative stress, the activities of SOD and catalase were measured, along with GSH 

concentration in human Schwann cells after chronic (7 days) exposure to 5, 10 and 30 mM 

glucose. 

The activity of SOD was increased by 41 ± 24% in 10 mM and  70 ± 18% in 30 mM glucose 

(p<0.05 compared with untreated), shown in figure 4-3A. As illustrated in figure 4-3B 

catalase activity was increased 3 fold at 10 mM and 30 mM glucose (both p<0.05), clearly 

demonstrating mobilisation of the antioxidant defence system in response to high glucose. 

The abundance of GSH was reduced by 16 ± 6% at 10 mM and by 28 ± 4% at 30 mM glucose 

(p<0.05), shown in figure 4-3C. No change was observed when 30 mM L-glucose was used as 

an osmotic control.  
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Figure 4-3 – Effect of High Gluocse on Antioxidant Defence 

Effects of high glucose on SOD and catalase activity and GSH 

concentration. Data expressed as mean ± SEM * p<0.05 vs. untreated 5 

mM glucose (one-way ANOVA). Data published – see chapter 7.3 

(appendix) 
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4.3.4  Effect of Taurine on High Glucose-Induced Oxidative Stress 

The effects of taurine on glucose-induced increases in oxidative stress were explored by co-

treatment with glucose and 250 µM taurine for 7 days. As shown in figure 4-4, the increase in 

H2DCFDA fluorescence induced by high glucose was abrogated by concurrent treatment with 

250 µM taurine.  

 

 

 

 

 

 

 

 

 

4.3.5  Effect of Taurine on High Glucose-Induced 4HNE Abundance 

The effect of co-treatment with glucose and 250 µM taurine on 4HNE abundance is shown in 

figure 4-5. In high glucose conditions, taurine treatment reduced 4HNE abundance compared 

to untreated 5 mM control with a 9% reduction at both 10 and 30 mM  (p<0.05 both vs. 

respective glucose concentration). At 5 mM glucose, taurine addition resulted in a similar 

reduction in 4HNE abundance, 9 ± 3% reduction, p=0.2.  

Figure 4-4 - Effect of Taurine on High Glucose-Induced Oxidative 

Stress 

Effect of high glucose and taurine on oxidative stress. Representative 

images of ROS fluorescence measured using H2DCFDA  

Data published – see chapter 7.3 (appendix) 
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Figure 4-5 - Effect of Taurine on High Glucose-Induced 4HNE 

Abundance 

Effect of high glucose on 4HNE abundance. Representative western blots 

of 4HNE adducts. Equal protein loading confirmed by β-actin. 

Quantitation performed by densitometry and data expressed as mean ± 

SEM of 5 separate experiments. * P<0.05 vs. 5mM glucose (one-way 

ANOVA) † p<0.05 vs. respective glucose (two-way ANOVA). 

Data published – see chapter 7.3 (appendix) 

 

. 
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4.3.6  Effect of Taurine on High Glucose-Induced PAR Abundance 

The effects of taurine co-treatment on PAR protein abundance are shown in figure 4-6. 

Taurine reduced PAR protein abundance compared to untreated 5 mM control, with a 14 ± 

2% reduction at 5 mM glucose and reductions of 12 ± 19% and 3 ± 14% in 10 and 30 mM 

glucose respectively (p<0.05 vs. respective glucose concentration) 

4.3.7  Effect of Taurine Treatment on the Antioxidant Defence System 

To ascertain whether the antioxidant effects of taurine were due to upregulation of antioxidant 

defence systems, the effects of taurine treatment in normal and high glucose were measured 

and compared to the antioxidant ALA and shown in Table 4-1. In 5 mM glucose taurine 

treatment resulted in a 3 fold increase in catalase activity (p<0.05), and a 50 ± 21% increase in 

SOD activity (p=0.144).  ALA also increased SOD activity in 5 mM glucose by 79 ± 18% 

(p<0.05) and CAT activity 3 fold (p<0.05). The response of GSH to ALA, however, differed 

from that of taurine, since ALA increased GSH concentration at 5 mM glucose by 22 ± 10% 

(p<0.05), whereas taurine decreased GSH concentration by 23 ± 4% (p<0.05). In high 

glucose, taurine treatment had no additive effect on either SOD or catalase activity and did 

not restore GSH content, whereas ALA restored GSH content and had some additive effect on 

catalase activity, although this was not statistically significant.  
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Figure 4-6 - Effect of Taurine on High Glucose-Induced PAR 

Abundance 

Effect of high glucose and taurine on poly(ADP-ribosyl)ated 

protein abundance. Equal protein loading confirmed by β-actin. 

Quantitation performed by densitometry on total bands and data 

expressed as mean ± SEM of 5 separate experiments. * P<0.05 

vs. 5 mM glucose (one-way ANOVA) † p<0.05 vs. respective 

glucose (two-way ANOVA) 

Data published – see chapter 7.3 (appendix) 
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SOD activity 

(% control) 

catalase  activity 

nmol/min/ml/mg 

protein 

GSH 

[µM] 

G
lu

co
se

 [
m

M
] 

5 

untreated 100 ± 11 139 ± 48 36 ± 1.6 

taurine 150 ± 21 519 ± 72* 28 ± 1.4* 

ALA 179 ± 18* 444 ± 92* 44 ± 3.7* 

10 

untreated 141 ± 24 500 ± 32* 31 ± 2.0 

taurine 142 ± 10 493 ± 78* 29 ± 1.8 

ALA 168 ± 16 606 ± 87* 32 ± 1.5 

30 

untreated 170 ± 18* 349 ± 69* 26 ± 1.5* 

taurine 167 ± 15 504 ± 80* 29 ± 1.8 

ALA 145 ± 16 616 ± 109* 33 ± 3.0† 

25 mM L-glucose untreated 

  

36 ± 2.7 

 

 

 

 

 

Table 4-1 - Effect of Taurine Treatment on the 

Antioxidant Defence System 

Effects of high glucose co-treated with either 250 µM taurine 

or 100 µM ALA on SOD and CAT activity and GSH 

concentration. Data expressed as mean ± SEM * p<0.05 vs. 

untreated 5 mM glucose  (one-way ANOVA) † p<0.05 vs. 

respective glucose (two-way ANOVA) 

Data published – see chapter 7.3 (appendix) 
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4.4  Discussion 

There is substantial evidence for increased oxidative/nitrosative stress in peripheral nerve of 

diabetic rodents (32; 304). In experimental diabetic neuropathy, increased ROS abundance 

and nitrotyrosine immunoreactivity have been observed in the epineurial blood vessels (304) 

which may be etiologically important in the development of nerve perfusion deficits. 

Oxidative stress, PARP activation (329) and apoptosis in dorsal root ganglion neurones have 

also been implicated in the development of functional and structural deficits (330). However, 

the effects of pathophysiological elevations of glucose on Schwann cell metabolism and 

function remain less well characterised. In the studies reported herein, in common with 

Obrosova et al., 2005 I demonstrated that high glucose increased oxidative stress, lipid 

peroxidation and PAR abundance in human Schwann cells. These effects demonstrate high 

glucose directly inducing oxidative stress within Schwann cells, independent of the nerve, or 

vascular deficits.  It also suggests Schwann cell dysfunction in diabetes is directly due to 

effects of glucose on Schwann cells rather than vascular deficits.  

The response of the antioxidant defence system to glucose-induced oxidative stress is tissue 

specific and the response in human Schwann cells is unclear. In this study in non-

immortalised human Schwann cells the activity of both SOD and catalase increased in 

response to glucose-induced increases in oxidative stress. The abundance of GSH however 

decreased. These combined responses demonstrate some mobilisation of antioxidant defence 

in response to glucose-induced oxidative stress, but considering the increase in oxidative 

stress and PAR in high glucose, the response is insufficient.  

Depletion of GSH is a common observation in models of diabetic neuropathy, seen in the 

sciatic nerve of diabetic rodents (75; 115) as well as immortalised mouse Schwann cells. 
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Changes of SOD and catalase in diabetes are much more inconsistent than those of GSH and 

vary depending upon both tissue and model. In the nerve of STZ-D rats the activity of both 

SOD and catalase tended to decrease (115). In the only previous study in Schwann cells 

exposed to high glucose, increased oxidative stress was associated with decreased SOD 

activity, while the activity of catalase remained unchanged (65). This study was performed in 

immortalised mouse Schwann cell and mice have lower aldose reductase expression than in 

humans (85; 114). Whether the differences between my  study and that of Miinea et al are due 

to species differences known to occur in diabetes (77; 139; 331; 332), or due to the 

immortalization of the cells, is yet to be determined.  

Taurine is known to have a potent ability to reduce ROS and lipid peroxidation but the precise 

mechanism(s) of its antioxidant effect remain uncertain. Aruoma et al., 1988 (333) established 

that taurine is incapable of directly scavenging superoxide anion, hydroxyl radical and 

hydrogen peroxide, although, it is known to scavenge hypochlorite produced by 

morphonuclear leukocytes and eosinophils (76). While of relevance in whole animal models, 

in isolated cell culture, this mechanism does not account for the antioxidant effect observed 

and many authors cite indirect mechanisms of ROS scavenging by taurine, e.g. by increasing 

the activities of other members of the antioxidant defence system (76).  

This study demonstrates that in normal glucose concentrations (5 mM) taurine has an indirect 

affect on SOD and catalase, increasing the activity of both in a similar manner to ALA. 

Taurine however, decreased GSH abundance in normal glucose, which was increased by 

ALA. The mechanism of this effect is unclear however; since taurine and GSH are both 

synthesized from cysteine, depletion of GSH may reflect reduced synthesis, due to decreased 

cysteine uptake (334), or structural differences between the antioxidants or varying targets of 

antioxidant activity. 
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The effect of taurine  on markers of oxidative stress has previously been explored in animal 

models of diabetes, where taurine has been found to reduce lipid peroxidation in the plasma 

(263), heart, muscle, liver, kidney (264) and sciatic nerve (145) and decrease superoxide 

formation in β-islet cells from rats infused with high glucose (265). My study demonstrates 

for the first time the ability of taurine to reduce glucose-induced ROS generation and lipid 

peroxidation in Schwann cells. I also demonstrated for the first time that taurine can 

completely prevent the accumulation of PAR proteins. The effect of taurine on PAR protein 

abundance is consistent with that observed for aldose reductase inhibitors (80-82) and direct 

PAR inhibition (64). The mechanism of this effect is unknown, however, a mechanism 

involving the attenuation of oxidative or nitrosative stress is likely to be involved. PARP 

inhibition reduces oxidative stress and 4HNE abundance in human Schwann cells (64) and in 

STZ-D rats restores nerve conductivity (203), effects similar to taurine treatment. Considering 

the effect of taurine on PAR in 5 mM glucose, it is possible that taurine-mediated effects are 

through actions on this pathway.  

Increased oxidative stress and PAR accumulation are signatures of glucose-induced cell 

dysfunction and normalisation of these abnormalities demonstrates the ability of taurine to 

reduce diabetes-induced Schwann cell dysfunction. These effects would likely improve nerve 

growth factor and myelin deficits observed in diabetes due to Schwann cell dysfunction. This 

reversal would also affect oxidative stress in the peripheral nerve and endoneurium. 

In high glucose, taurine treatment had no additive effect on SOD or catalase activity and did 

not restore GSH content, whereas ALA restored GSH content. In experimental diabetic 

neuropathy in the rat, taurine treatment was found to reduce lipid peroxidation, attenuate 

deficits of nerve conduction, dorsal root ganglion neuron calcium signalling, endoneurial 

blood flow and hyperalgesia (225). In this animal model in the composite nerve, no changes 
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in SOD activity or GSH abundance  (145) were observed with taurine treatment, with taurine 

being found to selectively impact only the ascorbate/dehydroascorbate system.  

These effects are indicative of direct antioxidant actions. It is possible this is due to the effects 

of taurine on Ca
2+

 signalling or AGE scavenging, or through PARP inhibition, therefore 

reducing ROS generation by normalising these deficits. Another possibility, is based around 

work from Suzuki (335; 336) and Kirino (337) who found that taurine forms conjugates with 

uridines of mammalian mitochondrial tRNA and in certain mitochondrial diseases these 

taurine modifications were lacking. This raises the possibility that taurine may be important in 

synthesis of mitochondrial proteins, such as those in the electron transport chain. Deficiency 

in synthesis of these proteins may lead to diversion of electrons from respiratory transport to 

oxygen, increasing formation of superoxide anion and resulting in back-up glycolytic 

metabolites, increasing flux through pathways associated with diabetic complications, such as 

polyol pathway (76). This suggests that rather than a direct antioxidant effect of taurine, 

taurine supplementation reverses the pro-oxidant effect of taurine depletion, brought about by 

TauT down regulation.   

In conclusion in a key site for diabetic complications, glucose increased oxidative stress and 

PAR abundance, SOD and catalase activity, while disrupting the glutathione system. Taurine 

supplementation restored ROS, 4HNE and PAR back to levels found in normal glucose. This 

action was achieved without changes in classic antioxidant defence systems demonstrating 

direct antioxidant taurine actions.  
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Chapter 5  - Effect of Taurine on Nitrosative Stress and NO Regulation in 

High Glucose 

5.1  Introduction 

 

Reactive nitrogen species (RNS) are produced by the reaction between nitric oxide (NO) and 

superoxide (O2
-
) (178) to form the highly reactive peroxynitrite (ONOO

-
). This can further 

react with CO2, or H
+
 to form other RNS such as nitrosoperoxycarbonate (ONOOCO2

−
) and 

nitrogen dioxide (NO2
-
) (177). RNS are known to induce DNA damage, poly(ADP-ribose) 

polymerase activation and nitration of amino acids on proteins (178), which is known to 

modify protein function. For many receptor tyrosine kinases, e.g. the insulin receptor, 

phosphorylation of tyrosines is an important signalling event, and thus tyrosine nitration can 

prevent its phosphorylation and can block growth factor and insulin actions (190). Increased 

nitrotyrosine has been observed in the peripheral nerve, spinal cord and dorsal root ganglion 

in animal models of both type 1 and type 2 diabetes mellitus (32) and is associated with 

increased levels of nitrate and nitrite in the serum of patients with both Type 1 (176) and Type 

2 diabetes (142; 144)  as well as increased expression of both iNOS and nNOS in various 

tissues.  

In this study I therefore examined the effect of glucose and taurine co-treatment on iNOS and 

nNOS expression along with nitrotyrosine abundance. Akt plays a critical role in insulin 

signalling and is activated by insulin binding to receptor tyrosine kinases (8). Akt activation is 

reduced by oxidative and nitrosative stress and also in models of diabetes (8; 190). Whether 

this reduction is due to reduced insulin secretion and/or hyperglycaemia is controversial (8). 

Therefore in the isolated Schwann cell model I examined the effect of high glucose on Akt 

protein expression and activation.  
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In results Chapter 4, I demonstrated that taurine supplementation reduced glucose induced 

oxidative stress, lipid peroxidation, and poly(ADP-ribose) accumulation. Some of the  MAPK 

pathways are activated by oxidative/nitrosative stress and have been seen as transducers of 

glucose-induced cellular stress (6; 59). Therefore I examined the effects of high glucose and 

taurine co-treatment on activation and protein expression on p38 MAPK, p42/44MAPK and 

JNK/SAPK.  

5.2  Methods 

5.2.1  Actin Validation 

To validate the use of actin as an endogenous control in mRNA quantitation, the amplification 

efficiency of actin vs. iNOS and nNOS primers were checked over 10 fold dilutions of RNA 

between 0.2ng and 200ng  (figure 5-1). The trend-line gradients from these were all less than 

0.1, demonstrating similar amplification efficiencies of actin compared to target primers, 

allowing the ∆∆Ct method of analysis to be used. 

5.2.2  Antibody Selection 

The levels of nitrotyrosine were measured by Western blot using a well-characterised 

commercial antibody against nitrotyrosine, which is used as a marker of RNS and can also be 

used as a marker of NO production (Millipore) and inflammation (338-341). Densitometry 

was used for quantitation, total band density being determined. Although this antibody is 

specific for nitrotyrosine and will not recognise S-nitrosylation of cysteine on amino acids, it 

should reflect NO production from NOS.  
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A 

B 

Figure 5-1 - Validation of Amplification Efficiencies of Actin and 

Target A) nNOS B) iNOS.  

q-PCR was run with 10 fold dilutions of untreated RNA from 200ng to 

0.2ng, except with iNOS where there was no detectable  target with 

0.2ng RNA. For each primer there was limited change in ∆Ct with 

different RNA concentrations, demonstrated by the gradient of the 

linear regression < 0.1. Data expressed as mean ± SEM of 6 separate 

experiments. 
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5.3  Results 

5.3.1  Effect of High Glucose on nNOS and iNOS mRNA Expression 

In order to determine the effect of high glucose on iNOS and nNOS mRNA expression 

analysis by qRT-PCR after exposure of human Schwann cells to 5, 7.5, 10, 15, 22 and 30 mM 

glucose was examined. The data are shown in figure 5-2.  

The expression of iNOS was significantly increased at glucose concentrations >15 mM, with 

a 77 ± 25% and  55 ± 20% increase at 22 and 30 mM glucose respectively (p<0.05 both vs. 5 

mM glucose). nNOS expression was increased at glucose concentrations >10 mM with dose-

dependent increases of 60 ± 14%, 89 ± 20% and 120 ± 24%  in 15, 22 and 30 mM 

respectively (p<0.05 all). No increase was found when the osmotic control, 25 mM raffinose, 

was used in place of glucose, iNOS 10 ± 9% increase, nNOS 5 ± 7% decrease. 

5.3.2  Effect of High Glucose on Protein Nitrotyrosine Content 

To determine the effect of sustained high glucose levels on the formation of nitrotyrosine, 

Western blotting was performed against nitrotyrosine. A representative blot and pooled 

densitometry data are shown in figure 5-3. The abundance of nitrotyrosine was increased by 

46 ± 16% in 10 mM and by 56 ± 11% in 30 mM glucose (p<0.05) compared to 5 mM 

glucose. These experiments were repeated 4 times with consistent increases observed. 
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Figure 5-2 - Concentration Dependent Effects of Chronic Glucose 

Exposure on the Expression of iNOS and nNOS mRNAs 

iNOS and nNOS mRNA expression was measured by q-RT-PCR using 

TauT specific primers. Data expressed as relative quantity of 6 separate 

experiments mean ± SEM p<0.05. * p<0.05 vs. 5 mM glucose (one-way 

ANOVA). 
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Figure 5-3 - Effect of High Glucose on Protein Nitrosylation 

 A representative Western blot of nitrosylated proteins is   shown. Equal 

protein loading confirmed by β-actin. Quantitation was performed by 

densitometry and data expressed as mean ± SEM of 5 separate 

experiments. * p<0.05 vs. 5 mM glucose (one-way ANOVA) 
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5.3.3  Effect of Taurine on iNOS and nNOS mRNA Expression 

To further document the effect of taurine supplementation on glucose-mediated events, the 

effect of taurine co-treatment on iNOS and nNOS mRNA expression was performed in human 

Schwann cells exposed to normal (5 mM) and high (10-30 mM) glucose. To determine 

whether the effects of taurine on NOS were antioxidant-mediated, they were compared to the 

antioxidant ALA. The data are shown in figure 5-4 

In 5 mM glucose, neither taurine nor ALA affected iNOS mRNA expression (figure 5-4A) In 

10 mM glucose, taurine treatment increased iNOS mRNA expression 45 ± 5% (p<0.05), 

whereas the 12 ± 7% increase observed with ALA, was not statistically significant. In 30 mM 

glucose, co-treatment with either taurine or ALA entirely prevented glucose-mediated 

upregulation of iNOS with 50 ± 15% and 40 ± 5% reductions in iNOS expression compared 

to untreated 30 mM glucose (p<0.01 both).  

The corresponding changes in nNOS expression are shown in figure 5-4B. In normal glucose 

(i.e. 5 mM)  both taurine and ALA increased nNOS expression compared to control by 130 ± 

43% and 81 ± 18% respectively (p<0.05 both). In 10 mM glucose, neither co-treatment with 

taurine, nor ALA had any significant effect on nNOS expression compared with untreated 10 

mM. In 30 mM glucose the effects of ALA and taurine differed: Taurine decreased nNOS 

expression by 44 ± 18% to levels similar to 5 mM glucose, whereas ALA co-treatment did not 

affect nNOS expression.    
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B 

Figure 5-4 - Effect of Taurine and ALA on iNOS and nNOS mRNA 

Expression 

Effect of treatment with 100 µM ALA and 250 µM taurine on (A) iNOS 

and (B) nNOS mRNA expression in normal and high glucose. Data 

expressed as relative quantity of 6 separate experiments mean ± SEM * 

p<0.05 vs. 5mM glucose (one-way ANOVA) †p<0.05 vs. respective 

glucose (two-way ANOVA) 

 

 



135 

 

5.3.4  Effect of Taurine on Nitrotyrosine  

In Chapter 4, I demonstrated that taurine reduces oxidative stress in glucose-exposed human 

Schwann cells. To determine whether taurine also reduces nitrosative stress, I measured the 

effect of taurine co-treatment in normal (5 mM) and high (10 and 30 mM) glucose on 

nitrotyrosine.  In response to co-treatment with 250 µM taurine, the abundance of 

nitrotyrosine, measured by densitometry of nitrotyrosine on Western blots, was significantly 

reduced to levels below 5 mM untreated glucose, with reductions at 5, 10 and 30 mM glucose 

of 50 ± 10%, 54 ± 7% and 56 ± 11% respectively (p<0.05 all) figure 5-5. 

5.3.5  Effect of Polyol Pathway Flux on iNOS and nNOS mRNA Expression 

Flux through the polyol pathway increases oxidative/nitrosative stress and depletes 

intracellular taurine. To explore the effect of increased polyol pathway flux on iNOS and 

nNOS expression, human Schwann cells were co-treated with 5, 10 and 30 mM glucose, 

along with the aldose reductase inhibitor, sorbinil (10 µM).  

The response of iNOS expression to sorbinil is shown in figure 5-6A, demonstrating that 

sorbinil  increased iNOS expression in normal glucose media (5 mM) and in 10 mM glucose 

by 74 ± 20%  and 72 ± 13% respectively (p<0.05 both). In 30 mM glucose however, sorbinil 

reduced glucose-stimulated iNOS expression from 181 ± 12% to 130 ± 10%, a reduction of 

22 ± 10% (p<0.05). As shown in figure 5-6B, sorbinil increased nNOS expression by 45 ± 

10% at 5 mM glucose (p<0.05). In 10 mM glucose sorbinil had no effect on nNOS 

expression. In 30 mM glucose sorbinil, in parallel with taurine, prevented the glucose- 

mediated increase of nNOS expression, with a 59 ± 7% reduction from 220 ± 24% to 91 ± 

7.5% compared to untreated 30 mM glucose.  
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Figure 5-5 - Effect of High Glucose and Taurine Treatment on 

Tyrosine Nitration 

Representative western blots of 3NT protein shown. Equal protein loading 

confirmed by β-actin. Quantitation was performed by densitometry and 

data expressed as mean ± SEM of 5 separate experiments. * p<0.05 vs. 

5mM glucose (one-way ANOVA) †p<0.05 vs. respective glucose (two-

way ANOVA) 
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B 

Figure 5-6 - Effect of Polyol Pathway Flux on iNOS and nNOS mRNA 

Expression 

Effect of the aldose reductase inhibition with 10 µM Sorbinil on (A) iNOS 

and (B) nNOS mRNA expression.  Data expressed as relative quantity of 6 

separate experiments mean ± SEM * p<0.05 vs. 5mM glucose (one-way 

ANOVA) †p<0.05 vs. respective glucose (two-way ANOVA) 
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5.3.6  Effect of High Glucose on p38, p42/44, JNK/SAPK and Akt 

To determine the effect of high glucose and taurine supplementation on the transduction 

pathways involved in diabetic complications in particular those activated by cellular stress i.e. 

p38 and SAPK and those mediating cell growth and survival i.e. p42/44 MAPK and Akt, 

levels of total and phosphorylated kinases, were examined by Western blot in response to 10 

mM and 30 mM glucose and co-treatment with 250 µM taurine. In order to determine whether 

the taurine effects were mediated by an antioxidant mechanism, they were compared with 

those mediated by ALA.  The responses are shown in figure 5-7. 

Phospho-p38 MAPK was increased by 50 ± 16% and 32 ± 14%  in 10 and 30 mM glucose 

respectively (p<0.05). Taurine reduced phospho-p38 expression by 50% in 5, 10 and 30 mM 

glucose, a finding similar to those of ALA. There were no detectable changes in the 

abundance of total JNK/SAPK or phospho-JNK/SAPK either by high glucose or co-treatment 

with taurine or ALA. Phospho-SAPK was not detectable in any of the treatment groups.  

The abundance of phosphorylated p42/44 MAPK and Akt were reduced in 10 and 30 mM 

glucose to below the level of detection, with no changes in total p42/44 MAPK or Akt. 

Taurine co-treatment in 5 mM glucose also reduced phospho-p42/44 MAPK and phospho-Akt 

expression to undetectable levels and at higher glucose concentrations in the presence of 

taurine, expression remained undetectable. ALA in 5 mM glucose had no discernable effect 

on phospho-p42/44 MAPK but in higher glucose concentrations ALA restored levels of both 

phospho-p42/44 MAPK and Akt to levels observed in 5 mM glucose. 
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Figure 5-7 - Effect of High Glucose and Treatment with Taurine and 

ALA on MAPK Family Members and Akt  

(A) Representative western blots shown, equal protein loading confirmed 

by β-actin. Quantitation of phospho-p38 (B) performed by densitometry 

and normalised by β-actin. Data expressed as mean ± SEM of 5 separate 

experiments * p<0.05 vs. 5 mM glucose (one-way ANOVA) † p<0.05 vs. 

respective glucose (two-way ANOVA). 
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5.3.7  Effect of High Glucose on Schwann Cell Growth and Death 

Hyperglycaemia reduces growth and induces apoptosis in neuropathic models (342). To 

determine the effect of hyperglycaemia on Schwann cell growth and apoptosis, Schwann cell 

growth was measured using propidium iodide in 5, 10 and 30 mM glucose and the effects are 

shown in Table 5-1.  Elevation of glucose to 10 mM and 30 mM glucose did not increase the 

proportion of dead cells in the culture. Assessment of DNA content in the cell layer however, 

showed that glucose reduced Schwann cell growth dose-dependently by 6 ± 2% (p=0.132) 

and 11 ± 2% (p<0.05) at 10 and 30 mM glucose respectively. 

To determine whether effects of taurine on Schwann cell growth and apoptosis could be 

antioxidant-mediated, they were compared to the antioxidant ALA. These measurements 

demonstrated that neither treatment affected the proportion of dead cells in the culture. 

Measurements of DNA content however, showed that both taurine and ALA restored the 

glucose-induced reduction in Schwann cell growth with a 0 ± 1% and 4 ± 2% increase 

respectively compared to untreated 5 mM glucose.  
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% dead cells 

relative to 

control 

G
lu

co
se

 [
m

M
] 

5 

untreated 100.0 ± 3.2 

taurine 100.0 ± 2.0 

ALA 100.0 ± 3.7 

10 

untreated 98.2 ± 2.3 

taurine 102.7 ± 2.0 

ALA 104.0 ± 1.6 

30 

untreated 101.8 ± 1.1 

taurine 101.5 ± 1.2 

ALA 102.9 ± 2.0 

   

Schwann cell 

growth % 

control  

G
lu

co
se

 [
m

M
] 

5 

untreated 100.0 ± 3.5 

taurine 100.0 ± 1.5 

ALA 100.0 ± 3.6 

10 

untreated 94.4 ± 1.8 

taurine 101.1 ± 1.8 

ALA 102.4 ± 1.6  

30 

untreated 89.0 ± 1.8 * 

taurine 100.4 ± 1.3 
†
  

ALA 103.7 ± 2.1 
†
 

Table 5-1 - Effects of High Glucose, Taurine and ALA on Cell Death 

and DNA Content   

Total levels of DNA were measured using the PI method. A) the relative 

proportion of dead cells within the culture compared to 5 mM control 

which is fixed at 100%. B) total number of cells within the cultures. Data 

expressed as relative quantity of sextuplicate experiments mean ± SEM 

p<0.05. * p<0.05 vs. untreated 5 mM glucose (one-way ANOVA) †p<0.05 

vs. respective glucose (two-way ANOVA) 

 

A 

B 
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5.4  Discussion 

 

Accumulation of nitrotyrosine along with increased iNOS expression have been seen as key 

pathogenic markers in diabetes complications and are increased in the sciatic nerve of STZ-D 

rats (82). In this study in isolated human Schwann cells I have shown that high glucose 

increased nitrotyrosine and iNOS mRNA expression, in agreement with data from Obrosova 

et al., 2005. I further demonstrated that high glucose increases nNOS mRNA expression. Due 

to the role of NO in vasodilation, RNS injury is thought of in conjunction with vascular 

deficits; however, this study in isolated cells demonstrates RNS injury in Schwann cells 

independent of the vasculature. Considering the cell permeability of RNS this suggests that 

glucose-induced RNS produced within Schwann cells, could directly damage the vasculature 

and nerve. The linked role of iNOS, RNS and inflammation also show that glucose can induce 

production of inflammatory stimulators within isolated Schwann cells. NO production is 

spatially regulated and NO production from nNOS is thought to affect neuronal signalling. 

The glucose-induced increase in nNOS mRNA suggests this may impact upon neuronal 

signalling, possibly affecting pain response. 

Taurine reduced nitrotyrosine abundance by 50% in Schwann cells at all glucose 

concentrations. A similar effect of taurine has been observed in endotoxin-exposed 

hepatocytes (343). RNS is generated from NO and O2
-
, therefore a reduction in either NO, or 

O2
-
 will decrease RNS. In 5 and 10 mM glucose, the taurine-mediated nitrotyrosine reduction 

was accompanied by an increase in nNOS. At these levels of glucose, the reduction in 

nitrotyrosine by taurine therefore probably reflects an antioxidant action, reducing O2
-
 

production rather than by decreasing NO production. Further to the effect of taurine against 

oxidative stress shown in Chapter 4, the reduction of nitrotyrosine by taurine demonstrates a 
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protective affect against nitrosative stress. RNS causes DNA damage, resulting in PARP 

activation so the effect of taurine on nitrotyrosine demonstrates a potential mechanism by 

which taurine reduces glucose-mediated PAR accumulation which was shown in Chapter 4. 

This effect also suggests taurine could prevent dysregulation of tyrosine phosphorylation 

which occurs due to RNS.  

In very high glucose (30 mM), taurine restored iNOS mRNA expression to levels observed in 

5 mM glucose. The response of iNOS to taurine was similar to that of ALA, consistent with 

an antioxidant effect. Taurine reduces inflammation by scavenging hypochlorite (HOCl) (74; 

270). The combined effects of taurine on nitrotyrosine and iNOS suggest another mechanisms 

by which taurine can reduce inflammatory mediators or signalling in diabetes.   

Interestingly the response of nNOS to taurine differed from ALA, because although taurine 

prevented high-glucose mediated nNOS upregulation, ALA treatment was without effect.   

This suggests that the effect of taurine on nNOS is unlikely to be mediated by an antioxidant 

action, but could be mediated by carbonyl scavenging or by restoring Ca
2+

 signalling.  Ca
2+

 

influx mediated by glutamate binding to NMDA receptors activates nNOS (165; 166) and 

since taurine has been shown to attenuate excessive Ca
2+

 flux in diabetes (225; 344),  

normalization of Ca
2+

 signalling by taurine in human Schwann cells may underpin its effect 

on nNOS expression.  

As shown in Chapter 3, aldose reductase inhibition prevents deficits of taurine transport in 

human Schwann cells and is also able to restore intracellular taurine in complications-prone 

diabetic tissues such as the nerve and retina (261; 345).  I found that the aldose reductase 

inhibitor sorbinil ablated the high (30 mM) glucose-induced increase in both iNOS and nNOS 

expression, suggesting the increase in NOS expression is at least in part, mediated by aldose 
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reductase. In lower glucose concentrations however, only iNOS expression was significantly 

increased by aldose reductase inhibition. Although the mechanisms of the effect of aldose 

reductase inhibition on nNOS are unclear, the close parallelism of these effects and taurine 

suggest that restoration of intracellular taurine could be an important component of this 

response. 

The effects of taurine and ALA were compared on glucose-induced changes in MAPK family 

members and Akt. MAPKs have been identified as transducers linking high glucose to 

biochemical deficits in diabetes. P38 mediates responses to osmotic stress including the 

regulation of genes such as aldose reductase and taurine. Together with SAPK/JNK these are 

activated by oxidative stress, RNS and increased polyol pathway flux in the peripheral nerves 

of diabetic rodents and patients (208). Aldose reductase-sensitive phosphorylation and nuclear 

migration of p38 MAPK has been demonstrated in DRG sensory neurons of diabetic rodents 

and specific inhibition of p38 prevents Na
+
 channel phosphorylation and NCV slowing (346).  

This study demonstrates a clear increase in phospho-p38 MAPK in response to increasing 

glucose, and a trend to an increase in total p38. Consistent with the report of Yuan et al 2009 

(219) no changes were seen in SAPK/JNK and only phospho-JNK was detectable. To my 

knowledge, this is the first communication to demonstrate that taurine reduced phospho-p38.  

Activation of sensory neuron‟s p38 MAPK has been invoked in the development of 

hyperalgesia and thus the salutary effect of taurine to prevent hyperalgesia in diabetic rodents 

could be mediated via this mechanism (211).  

Phosphorylation of both Akt and p42/44 MAPK signalling intermediates were inhibited by 

incubation with 10 mM and 30 mM glucose compared with 5 mM glucose.  ALA prevented 

the glucose-mediated reduction of phospho-p42/44 MAPK and phospho-Akt suggesting that 

ROS are responsible for this inhibition. This is compatible with the increases in nitrotyrosine I 
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documented earlier, that can block tyrosine phosphorylation and thus insulin signalling. 

Taurine treatment however failed to restore either phospho-p42/44 MAPK or phospho-Akt 

and reduced levels in 5 mM glucose. These data are compatible with an effect of taurine, 

reported in other cell lines, to increase phosphatase activities. Taurine increased activities of 

p42/44 MAPK phosphatase in human retinal pigment epithelial cells and protein tyrosine 

phosphatase in rat vascular smooth muscle cells which are responsible for the 

dephosphorylation of MAPK and Akt respectively (347; 348). These results show that taurine 

does not restore high glucose-induced signalling deficits and the results on Akt may, in part 

explain the inconsistent results in relation to taurine and glucose uptake in animal models 

discussed in the introduction. Despite the inability of taurine to maintain Akt and MAPK 

phosphorylation at control levels in high glucose-treated cells, the small reductions in cell 

growth and survival mediated by high glucose, were reversed by treatment with taurine or 

ALA. Whether other means to promote cell survival have been activated, remains to be 

determined.  

In conclusion, taurine can abrogate high glucose-mediated accumulation of nitrotyrosine, p38 

activation, impaired growth and increased NOS expression in human Schwann cells. Taurine 

appears to play an important role in the regulation of nNOS in particular, with a mechanism of 

action which is at least partially independent of an antioxidant effect.  

 

 

 

 



146 

 

Chapter 6  - Discussion and Future Work 

Increased oxidative/nitrosative stress in key sites is critical in the pathogenesis of diabetic 

complications, linking high glucose to cell dysfunction. Crucial to this is the role of the 

antioxidant defence system, the response of which is tissue specific (77). In Chapter 4, I have 

demonstrated that in response to pathophysiological elevations of glucose, activities of SOD 

and catalase are increased, demonstrating mobilization of antioxidant defence in Schwann 

cells however, GSH is depleted. Consistent with other reports (4; 32) GSH depletion is most 

likely due to NADPH depletion caused by increased flux through aldose reductase. In contrast 

to the increase in SOD and catalase, the mRNA and protein expression of TauT as well as the 

Vmax of taurine uptake were reduced in a dose-dependent manner. The response of TauT to 

glucose-induced oxidative stress is not found with the „clean‟ pro-oxidants such as 

primaquine or H2O2. These increased the TauT protein expression and Vmax. This is 

consistent with the findings of Nakashima et al.,(73) who showed an antioxidant response 

element contained within the TauT promoter region. A panel of pro-oxidants, H2O2, 

primaquine, artemisinin, diethyl maleate and buthionine sulfoximine, also all increased TauT 

protein expression (73). Paradoxically however, as I show in Chapter 3, elevated glucose 

increases oxidative stress, yet decreases TauT expression and taurine uptake, and actually 

inhibits the response of TauT to oxidative stress.  

Figure 6-1 illustrates potential mechanisms behind this downregulation. Previous studies have 

suggested increased polyol pathway flux as the primary driver behind glucose-induced TauT 

downregulation (73; 261; 349). Increased intracellular concentration of the osmolyte sorbitol 

results in compensatory depletion of other organic osmolytes such as myoinositol and taurine 

to restore osmotic balance. This has been previously demonstrated in retinal pigment 

epithelial cells by inhibiting aldose reductase as well as over-expression of the enzyme (73). 
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In Chapter 3 I further emphasised the link and showed that inhibition of aldose reductase 

increases TauT expression and Vmax both in normal and high glucose. Previous studies have 

also shown roles for reduced Na
+
K

+
ATPase activity and increased PKC activity in TauT 

downregulation (261). I also demonstrated increased NO and nitrosative stress in diabetes 

plays a role in TauT downregulation. To establish the potential role played by nitrosylative 

stress, cells can be treated with a nitrosylating agent such as S-nitrocysteine and TauT 

expression, Km and Vmax measured. It is likely that reversal of these stresses is the 

explanation for the reversal of TauT downregulation by antioxidants demonstrated in Chapter 

3 and by Stevens et al., (115).  

Other potential mechanisms of TauT dysregulation in high glucose could be explored and the 

contribution of AGE or N-acetyl glucosamine determined. N-acetyl glucosamine is increased 

in diabetes and induces increases in non-enzymatic glycation and glycosylation, which can 

result in modification of transcription factors which affects protein expression. Indeed the 

activity of Sp1, which regulates TauT transcription, is increased by N-acetyl glucosamine. 

Assessment of TauT expression and activity after incubation of Schwann cells with precursors 

of these pathways, such as 3-methoxyglucose and glucosamine, as well as inhibitors of these 

pathways, such as aminoguanidine and Benfotiamine, may resolve their roles. 
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In diabetes taurine is depleted intracellularly and in plasma and hence beneficial effects of 

taurine supplementation have been explored in my in vitro studies as well as in in vivo 

models. Plasma and cellular taurine content inversely regulated TauT. Despite this and 

glucose-induced TauT downregulation, in human and animal models, dietary taurine 

supplementation restores plasma and intracellular taurine content. Similarly in cell culture 

models exogenous taurine supplementation restores intracellular taurine content (278). Due to 

the low levels of taurine supplement and high intracellular content, this restoration cannot be 

explained by Na
+
 independent uptake, which is passive. In these studies I demonstrated that 

antioxidants including taurine restore TauT mRNA expression, however, taurine 

supplementation also restores Na
+
K

+
ATPase activity, which maintains the Na

+
 gradient down 

which taurine is transported (278). A combination of these factors could explain how 

exogenous taurine uptake restores taurine flux into the cell, therefore restoring intracellular 

taurine content in diabetes and also explains how relatively modest elevations in extracellular 

taurine can have dramatic effects on intracellular function.   

In these studies I have demonstrated that in human Schwann cells, hyperglycaemia increases 

oxidative stress, nitrosative stress and PAR abundance. I used specific antibodies and Western 

blotting to detect and quantify these modifications. While this method requires multiple steps, 

any of which is subject to technical variation, the data I obtained were consistent with those 

observed in similar studies using Schwann cells (64). Immunohistochemical techniques would 

enable subcellular distribution to be determined, but quantification is even more difficult. 

Other methods exist for measuring protein nitrosylation, such as an enzyme-linked 

immunosorbent assay but these also require the use of antibodies and concerns of specificity 

exist.  Nitrotyrosine is  measurable by HPLC with electrochemical detection (343) following 
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acid hydrolysis of the protein regrettably was not available to me but additional data using 

this technique would substantiate my results.   

In Chapters 4 and 5 I demonstrated that taurine has many of the beneficial effects typical of an 

antioxidant. Figure 6-2 illustrates the taurine mediated effects reducing hyperglycaemia 

induced cellular dysfunction. The taurine mediated reduction of oxidative stress has been 

observed in many models of diabetes, but in these studies I also showed that taurine also 

reduces nitrosative stress and PAR. In addition by comparing other effects with the 

antioxidant ALA, I demonstrated other antioxidant actions, restoring iNOS expression and 

phospho-p38 abundance. The data suggest that taurine down regulates p38 expression, 

resulting in decreased phospho-p38.  This effect could be further explored by examining the 

effect of taurine on p38 mRNA expression in comparison to treatment with other antioxidants 

such as ALA, N-acetyl cysteine or vitamin C. 

In diabetic models, PAR has been observed as a key determinant in complications and has 

been suggested as a unifying mechanism of diabetic complications (2). Treatment with PARP 

inhibitors reduces nitrotyrosine, iNOS expression and oxidative stress in human Schwann 

cells (64) and reversed nerve blood flow and conduction deficits in STZ-D rats (203). Since 

there are similarities between the response of direct PARP inhibition and taurine treatment it 

is possible that taurine could act directly inhibiting PARP, subsequently resulting in the 

beneficial effects seen. To establish whether this is occurring direct measurements of PARP 

expression, which is increased in diabetes as well as activity can be measured.  
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Figure 6-2 - The Effects on the Pathway of Glucose-

Mediated Cellular Dysfunction by Taurine 

 Taurine reduces oxidative stress, iNOS and nNOS 

expression, nitrosative stress and poly(ADP-ribosyl)ation.  
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The increases in nitrotyrosine were correlated with increases in iNOS and nNOS expression. 

Increases in iNOS and nNOS protein and mRNA expression have been previously seen in 

models of diabetes and both iNOS and nNOS knockout STZ-D mice demonstrate improved 

nerve conduction velocity compared to wild-type STZ-D mice. However, the relative impact 

of increased iNOS and nNOS expression on either nitrosative stress, or other aspects of 

neuropathy have not been determined either in animal models or in my in vitro work.  This 

could be elucidated by using selective inhibitors of iNOS and nNOS, (BYK402750 and 1-(2-

trifluoromethylphenyl)-imidazole (TRIM) respectively) on glucose-induced Schwann cell 

dysfunction. Interestingly, in STZ-D rats, NOS inhibition with  L-NAME (which inhibits all 

NOS enzymes) failed to improve nerve conduction velocity (52).  Conceivably L-NAME 

exacerbates the vascular deficits by inhibition of eNOS rather than the potential positive 

effects gained by iNOS of nNOS inhibition. Therefore examination of the effect of non-

selective NOS inhibition, i.e. with L-NAME on oxidative/nitrosative stress and poly(ADP-

ribosyl)ation , in isolated Schwann cell cultures would identify potential beneficial effects 

independent of the vascular component. These data could also be compared with selective 

iNOS or nNOS inhibition enabling the relative components of each to be measured.  

In these studies I examined the effects of high glucose and taurine on 3-nitrotyrosine. 

However, S-nitrosylation also results from NO production and is increased in diabetes (192; 

350). Aberrant 3-nitrotyrosine and S-nitrosylation both occur due to reactions between NO 

and superoxide resulting in RNS generation (350). The relative change in 3-nitrotyrosine and 

S-nitrosylation due to high glucose would therefore be predicted to be similar. However, it is 

possible that different mechanisms of RNS scavenging exist, or turn-over of nitrated or 

nitrosylated proteins occur at different rates, which would result in relatively different 

abundance. Measurement of S-nitrosylation in high glucose would confirm this. In a similar 
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way that 3-nitrotyrosine affects tyrosine signalling, S-nitrosylation affects protein signalling 

dependent upon cysteine. Both impair insulin signalling, 3-nitrotyrosine directly affecting the 

insulin receptor which is a receptor tyrosine kinase, S-nitrosylation affecting downstream 

pathways of IRS and Akt signalling (192). Since, 100 proteins are currently known to be S-

nitrosylated (351; 352) and it is likely more will be identified,  aberrant S-nitrosylation could 

have many downstream consequences.   

Taurine reduces iNOS and nNOS mRNA expression as well as oxidative stress.  Taurine 

should reduce S-nitrosylation in the same way as 3-nitrotyrosine. However the failure of 

taurine to reverse high-glucose induced Akt downregulation could be due to a failure of 

taurine to affect S-nitrosylation. Measuring the effect of taurine treatment on S-nitrosylation 

would further explore this. Technically, measurement of S-nitrosylation is more difficult than 

that of 3-nitrotyrosine. The most common method used is the biotin switch method. The 

biotin switch method is a three stage technique. Firstly free cysteine thiol residues are blocked 

with methyl methane thiosulfonate (MMTS), the remaining cysteine thiol residues are 

converted to thiols by transnitrosation by ascorbic acid before being labelled by S-

biotinylation and detected by immunoblotting. By immunoprecipitating with the target protein 

prior to the biotin switch, it is also possible to detect S-nitrosylation on specific target proteins 

(351-354).  

The mechanism behind the taurine-mediated down-regulation in iNOS expression is unclear. 

Considering the response of iNOS to taurine mirrored that of ALA, it is likely to be 

antioxidant-mediated although further confirmation of these using different antioxidants such 

as ascorbic acid and N-acetyl cysteine should be sought. Increases in iNOS expression in 

diabetes have been linked to mobilisation of the immune response, due to oxidative stress and 

AGE binding to RAGE. These increase NFκB and TNF-α, both of which regulate iNOS 
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expression.  To further explore whether taurine is affecting this mechanism the response of 

AGE, RAGE and NFκB to taurine supplementation could be measured. Taurine is known to 

react with hypochlorite HOCl forming taurine chloramines, which reduces expression of 

TNF-α and NFκB. Measuring the response of these factors to taurine treatment in high 

glucose would determine whether this occurs in high glucose in a manner similar to that 

observed with aldose reductase inhibition (160), which also increases TauT expression and 

taurine transport.  

Taurine‟s antioxidant activity is well established, but since taurine itself is unable to directly 

scavenge the major pro-oxidants (266) the mechanism of this action is unclear. Some authors 

cite indirect actions, by increasing the activity of the antioxidant defence system. In chapter 4 

taurine, like ALA increased SOD and catalase activities in 5 mM glucose, however, like ALA 

there were no measurable effects in 10 mM or 30 mM glucose. These observations have been 

repeated by Dr Zeng in our laboratory studying SOD and catalse mRNA expression in human 

fibroblast cells in response to both taurine and 30 mM glucose (unpublished observations). 

Both taurine and high glucose independently increased SOD and catalase mRNA expression, 

but there was no additive effect when combined. These data demonstrate that the antioxidant 

effects of taurine in hyperglycaemic conditions are not achieved by mediating actions on the 

antioxidant defence system.  

Some authors have cited direct actions of taurine that could induce an antioxidant effect e.g. 

effects on mitochondrial superoxide production, AGE, Ca
2+ 

signalling or restoration of 

mitochondrial protein synthesis.  To explore whether these mechanisms could be responsible, 

studies examining the impact of high glucose with and without taurine supplementation on 

AGE formation, Ca
2+

 signalling and on mitochondrial superoxide generation would be 

revealing 
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Taurine derivatives are found in uridine in mitochondrial tRNAs (335; 336) and Schaeffer et 

al., 2009 suggested that due to this role taurine depletion in diabetes could reduce 

mitochondrial protein synthesis. Reduced synthesis of proteins involved the ETC would result 

in back-up metabolites, resulting in production of superoxide, rather than ATP formation, 

thereby increasing mitochondrial superoxide generation. These authors suggest restoration of 

intracellular taurine concentration would restore mitochondrial protein synthesis and therefore 

reduce oxidative stress.  This hypothesis could be tested by measuring the impact of 

hyperglycaemia on mitochondrial protein synthesis and RNA abundance. It could be further 

explored whether taurine supplementation restored mitochondrial protein synthesis or RNA 

abundance. 

 Not all the actions of taurine appear to be antioxidant-mediated. In Chapter 5, I demonstrated 

that taurine increased nNOS expression in 5 mM glucose. NO production from nNOS is 

regulated by Ca
2+ 

influx, resulting in calmodulin binding and it is also regulated by Akt 

phosphorylation at Ser 1412 (148),  phosphorylated Akt was reduced by taurine. Therefore, 

increased nNOS expression will not necessarily result in increased NO production. Measuring 

NO production from nNOS is technically difficult. The half-life of NO is very short, 1-40 

seconds, so indirect methods are often employed measuring levels of NO2
-
 and NO3

-
 ions 

using the Greiss reaction. However, NO production in Schwann cells is also very low, making 

this difficult.  Measuring nNOS phosphorylation and Ca
2+

 signalling, using Fura 2 in response 

to high glucose and taurine supplementation would help to further establish whether these 

treatments affect NO production from nNOS. In these studies taurine increased nNOS 

expression in normal glucose. NO production from nNOS is thought to regulate nerve 

conduction and in diabetic animals taurine increased nerve conduction velocity. Therefore 

measuring nerve conductivity in non-diabetic animal models would ascertain whether taurine 
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can increase nerve conductivity in normal animals. However, in non-diabetic rats, no change 

was observed in sensory or motor nerve conduction velocity following taurine 

supplementation (262). 

One of the major factors associated with the pathogenesis of diabetic neuropathy is vascular 

deficits. Reduction in nerve blood flow exacerbates neuropathy creating periods of ischaemia 

and reducing the purging of pro-oxidants from the nerve, both of which increase oxidative 

stress. Reduced NO production from eNOS partly reflects increased NADPH utilisation 

following increased polyol pathway flux (see section 1.4.1.5) which is required as a cofactor 

for NO generation by eNOS (52; 53). In a similar manner to nNOS, NO production from 

eNOS is dependent upon its phosphorylation by Akt as well as Ca
2+

 influx. In STZ-D treated 

rats, taurine restores nerve blood flow deficits but discrimination of whether this is a neural or 

an endothelial effect has not been determined. Whether taurine regulates eNOS expression 

and NO production from endothelial cells is unknown. To elucidate this, I would perform a 

similar set of experiments as in Chapter 3, but in endothelial cells such as human vascular 

endothelial cells (HUVECs). I would measure eNOS expression and phospho-eNOS. In 

addition I would also measure Akt and phospho-Akt as well as Ca
2+

 signalling in response to 

both high glucose and taurine supplementation. Were taurine to increase NO production from 

eNOS, this could be a mechanism by which taurine improves blood flow deficits, which 

would not only be important in neuropathy, but also in diabetic ulceration and potentially 

diabetic autonomic neuropathy as well.  

In Chapter 5, I examined the response of MAPK and Akt to hyperglycaemia and taurine 

supplementation. Signalling via MAPK phosphorylation is transient, with 

phosphorylation/dephosphorylation occurring rapidly within minutes.  The studies contained 

herein were all designed to represent chronic hyperglycaemia and were undertaken following 
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7 days incubation in high glucose. In animal models of diabetic neuropathy p38 MAPK 

inhibitors (FR167653 or CNI-1493)  were found to improve neuropathic pain (355) and 

SB239063 was found to improve  nerve conduction velocity (356) and aldose reductase 

inhibition reduced expression of phospho-p38 MAPK (209). Although the impact of 

hyperglycaemia on p42/44 MAPK are more varied, use of p38 and p42/44 inhibitors and 

activators (such as 4-(2-Aminoethyl)benzenesulfonylfluoride hydrochloride or N-

Arachidonoylethanolamine(all-Z)-N-(2-Hydroxyethyl)-5,8,11,14-eicosatetraenamide) would 

demonstrate the impact of these signalling pathways on high-glucose induced Schwann cell 

dysfunction and further explore the effects found within these studies.  

Inhibition of p38 MAPK with SB203580 reduces taurine uptake in a murine macrophage cell 

line (357), however, the effect of p38 or p42/44 MAPK inhibition on taurine transport in 

diabetes has not been explored. The use of p38 MAPK and p42/44 MAPK inhibitors and 

activators in Schwann cells in normal and high glucose would also enable the impact of these 

cell-signalling systems on TauT regulation in normal and high glucose to be measured.  

Taurine supplementation reduced the stress kinase phospho-p38 MAPK in high glucose, a 

response similar to that evoked by ALA, indicating an antioxidant effect. However, both 

taurine and glucose reduced phospho-p42/44 MAPK and phospho-Akt a response which 

differed from ALA, hence this change was not antioxidant-mediated. Studies in other cell 

culture systems have shown that taurine increases the activity of p42/44 MAPK phosphatase 

in human retinal pigment epithelial cells and protein tyrosine phosphatase in vascular smooth 

muscle cells which are responsible for the dephosphorylation of MAPK and Akt respectively 

[18, 48]. Studies on the activity of MAPK phosphatase and tyrosine phosphatase in response 

to both concentrations of high glucose as well as taurine treatment would resolve whether this 

also occurred in Schwann cells.  
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Most of the effects of taurine appear to be antioxidant effects, but other such as restoration of 

nNOS expression, phospho- p42/44 MAPK and phospho-Akt seem independent of 

antioxidant mechanisms. The mechanisms of action of taurine supplementation are still 

unclear with three major actions regularly cited, being that of i) an antioxidant, ii) scavenger 

of carbonyl compounds and iii) restoration of Ca
2+

 signalling. 

The studies herein have demonstrated many beneficial effects of taurine supplementation; 

however, the effects of taurine are not entirely beneficial. In STZ-D rats, taurine 

supplementation further depletes myoinositol (75) and high taurine doses can slow nerve 

conduction velocity and result in hyperexcitability (145). Potential side-effects of taurine 

administration are also suggested by the data on p42 MAPK and Akt where taurine failed to 

restore phosphorylation in high glucose and reduced phosphorylation in 5 mM glucose.   

In patients with diabetes there is a reduction in circulating taurine as well as a deficiency in 

intracellular taurine (257). It is possible the effects of taurine in diabetic neuropathy are due to 

correcting taurine deficiency. To determine this, models of taurine deficiency can be used. 

Taurine deficiency can be induced by either incubating Schwann cells in serum free media, 

deficient of taurine or using siRNA to partially or totally knock out TauT expression. By 

repeating the experiments set out in Chapters 4 and 5 using taurine deficient cell-culture 

systems, these models would enable comparison between the impact of taurine deficiency and 

hyperglycaemic insult on Schwann cells.  

TauT knockout mice suffer from renal, retinal and olfactory dysfunction along with reduced 

exercise capacity, a reduction in taurine-evoked synaptic enhancement and neuroceptor 

expression. Additionally increased GABAA, AMPA and kainite receptor densities were 

observed in the brain (239; 358). There are, however, no published studies on the effects on 
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peripheral nerves in the TauT knockout mouse. The effects of taurine depletion on cats have 

focused on the retinal degradation (238) and in a similar manner to the TauT knockout mouse 

there are no studies examining the effect of taurine deficiency on peripheral nerve function in 

cats. Examining nerve conduction velocity, nerve blood flow and oxidative stress within the 

peripheral nerve in either taurine deficient model and comparing these data with the 

equivalent diabetic animal models, may delineate the extent to which taurine depletion is 

responsible for the nerve conduction deficits observed in diabetic neuropathy. 

From these studies it is clear taurine supplementation has many benefits in isolated cell 

models. These findings add to those already performed in diabetic animal models, 

demonstrating significant benefits of taurine supplementation (75; 145; 225; 262) . In all these 

studies taurine content was increased by oral taurine supplementation, something that has also 

been effective in human patients (257). However, demonstrated in these studies and in others 

involving STZ-D rats, taurine content can be restored  by aldose reductase inhibition (261), 

ALA treatment (115) and potentially by prevention of 3-NT accumulation or a direct TauT 

agonist. This illustrates that rather than restoration of taurine content per se being the end 

goal, it can be observed as part of a global therapeutic strategy encompassing many factors of 

the condition. For example taurine restoration could be achieved by inhibition of iNOS. 

Applying this strategy would encompass the benefits from two targets into one therapy and 

may also remove potential side-effects of taurine supplementation, such as myoinositol 

depletion.   
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Chapter 7 -  Appendix 

7.1   Principles of PCR 

Traditional PCR consists of 3 distinct phases, denaturation, annealing and elongation (figure 

6).  

 

Denaturation 

Heating the mixture to 94-96
o
C for 20-30 seconds causes the DNA template and primers to 

melt by disrupting the hydrogen bonds between the complementary strands, yielding single 

DNA strands and enabling primer binding.   

 

Annealing 

Lowering the temperature to 45-65
o
C allows primer binding to the complementary sequence 

of the DNA template. The specificity of primer binding will depend upon the annealing 

temperature (the higher the annealing temperature the more specific the primer binding), salt 

content and magnesium concentration. 

 

Extension/elongation 

The temperature is then increased to that optimum for the DNA polymerase used, normally 

taq polymerase, generally at 72
o
C. Taq polymerase synthesises a new complementary strand 

from the template in a 5` to 3` direction. 

 

These steps are then repeated. Denaturing the newly formed dsDNA enables formation of new 

templates for the second-round of annealing and extension steps. These cycles are repeated 

between 20 and 40 times depending upon what is required. 
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7-1 - Schematic of polymerase chain 

reaction 

http://en.wikipedia.org/wiki/Polymerase_c

hain_reaction 
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7.2  Alternative q-PCR dyes 

7.2.1  Intercalating dyes (e.g. SYBR-Green)  

Intercalating dyes bind to double stranded DNA, upon which the dye fluorescence increases 

over a hundred fold. Hence, as the DNA is amplified the emitted fluorescence increases. 

These dyes are cheap, sensitive and since the dye binds to any dsDNA, no further 

optimisation is required over standard PCR. The only disadvantage they have over other 

systems is that the dye will bind any dsDNA, making it less selective than other systems and 

with potential problems of primer:dimers resulting in fluorescence. 

 

7.2.2  Hybridisation-Probes e.g. taq-man 

Hybridisation probes work using the forster energy resonance transfer system (FRET). As 

well as two primers, a separate probe that binds to the target sequence with a fluorescent 

reporter dye and quencher attached is used. Whilst the probe is still intact the quencher greatly 

reduces the fluorescence emitted by the reporter dye. During PCR the probe anneals 

downstream of one of the primers and is cleaved during extension by the 5` to 3` exonuclease 

activity of taq polymerase. This cleavage separates reporter and quencher increasing the 

fluorescence signal from the reporter dye.  

 

This system has an advantage in that in addition to the specific primer binding, binding of the 

probe to the target sequence is also required. This means that unlike intercalating dyes, the 

fluorescence emitted is specific for the target, ensuring the result is more specific for the 

target sequence.  
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