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Abstract— In this paper we provide experimental results and
extensions to our previous theoretical findings concerning the
combination of forecasts that have been diversified by three
different methods: with parameters learned at different data
aggregation levels, by thick modeling and by the use of different
forecasting methods. An approach of error variance based
pooling as proposed by Aiolfi and Timmermann has been com-
pared with flat combinations as well as an alternative pooling
approach in which we consider information about the used
diversification. An advantage of our approach is that it leads to
the generation of novel multi step multi level forecast generation
structures that carry out the combination in different steps of
pooling corresponding to the different types of diversification.
We describe different evolutionary approaches in order to
evolve the order of pooling of the diversification dimensions.
Extensions of such evolutions allow the generation of more
flexible multi level multi step combination structures containing
better adaptive capabilities. We could prove a significant error
reduction comparing results of our generated combination
structures with results generated with the algorithm of Aiolfi
and Timmermann as well as with flat combination for the
application of Revenue Management seasonal forecasting.

I. I NTRODUCTION

A. Motivation

In [1] and [2] we have provided a theoretical analysis of
the behaviour of forecasts that have been diversified by three
different methods: with parameters learned at different data
aggregation levels, by thick modeling [3] and by the use of
different function spaces. We have also mentioned that a side
effect of the application of different types of diversification
is that the number of forecasts to combine can get very
big and that the resulting errors in the estimated covariance
matrix can lead to high weight estimation errors [4]. We
have therefore analysed the approach of error variance based
pooling as proposed by Aiolfi and Timmermann [5] in order
to handle that problem. We could show theoretically that
we risk a significant loss in the expected forecast accuracy
because of typical inhomogeneities in the covariance matrix
for the analysed case. If covariance information is available
in a sufficiently high quality, it is possible to run a clustering
directly based on covariance information. We have consid-
ered a case when covariance information may not be avail-
able and proposed a new pooling approach that avoids the
covariance inhomogeneities in considering only information
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that is contained in a simplified covariance representation
based on knowledge about the forecast generation process.
One of the main advantages of the proposed approach is that
the covariance matrix does not have to be calculated. We
have compared the results of our approach with the approach
of Aiolfi and Timmermann and explained the reasons for
significant improvement of the proposed approach. Another
advantage of our approach is that it leads to the generation
of novel multi step multi level forecast generation structures
that carry out the combination in different steps of pooling.

In this paper we present experimental results that support
our theoretical findings. We also describe different evolution-
ary approaches in order to evolve the order of pooling of the
dimensions. Extensions of such evolutions allow the genera-
tion of more flexible multi level multi step combination struc-
tures containing better adaptive capabilities. We compare the
results of the algorithm of Aiolfi and Timmermann with flat
combination and different combination structures that we
have evolved for the application of Revenue Management
seasonal forecasting.

In the next section we shortly summarize the two alter-
native pooling approaches. We start with a short summary
of the approach of Aiolfi and Timmermann, describe then
our alternative approach and finish with the extension of
this approach in order to generate multi step combination
structures. Section III provides then different versions of
evolution of combination structures. After a short motivation
we propose alternatives of how to determine the order of
diversification dimensions used for pooling in our algorithm.
Evolving that order avoids the time and cost consuming
determination of the best structures based on static test data
and allows additionally the adaptation to changed situations.
Then we discuss different issues resulting from an analysis
of the generated combination structures. Proposed solutions
of these issues lead to the generation of much more flex-
ible combination structures that can be obtained by some
modifications in the proposed evolutionary algorithm. The
last sections provide an introduction into the application,
experimental results and conclusions.

II. T HE COMPARED POOLING APPROACHES

A. The pooling approach of Aiolfi and Timmermann

In the context of forecast combination, Aiolfi and
Timmermann [5] studied different approaches of individual
forecast clustering connected with different combination
models and trimming. They used quantiles and k-means
clustering based on past forecast performance in order
to find the optimal number of clusters and the optimal
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separation points between the forecast sets. All approaches
analysed by Aiolfi and Timmermann run a clustering which
is purely based on information about error variance terms.
Correlation information is interpreted as inaccurate and
not taken into account. We refer here to the algorithm
which they called CEW in [5]. It generates a set of cluster
forecasts{cŷ} based on a set of input forecasts{ŷ} with an
algorithm that can be summarised as follows:

Algorithm 1: F cew({ŷ}) → {cŷ}
1) order{ŷ} → {ŷr} depending on the ranks of forecast

performance meaning the total error variancesδ2

2) determine I disjunct clustersc ⊂ {ŷ} by k-means
clustering based onδ2

3) remove the last cluster containing the worst forecasts
(trimming)

4) for each clusterc: run a simple average combination
F av in order to achievecŷ = F av(c)

5) apply an additional trimming of{cŷ}.
The results of the clusters{cŷ} are than combined using

a linear combination model in order to achieve the total
combined forecastcombŷ = F lin({cŷ}).

B. Pooling based on the diversification

In [2] we have motivated theoretically why, seen from the
covariance aspect, we should only cluster predictions which
have been diversified by only one type of diversification.
We have shown that choosing elements including more than
one diversification contains the risk of inhomogeneities in
the covariance matrix. This can lead to the application
of suboptimal combination weights and a loss of relevant
information.

Let a forecast generation spaceS = D1 × . . . × DK

be given with each dimensionD representing one type of
diversification. In order to avoid the problems caused by
the mentioned inhomogeneities in the covariance matrix we
have proposed to apply a pooling that is based on only one
dimensionD of S.

The algorithm that we have proposed realizes a multi
level fusion Fml of a set of forecasts{ŷ} into a set of
clustered forecasts{cŷ} corresponding to one diversification
dimensionD. We pool forecasts that differ corresponding
to D, but are not diversified corresponding to all of the
other diversification dimensions. In order to avoid too much
variations in the error variances in such sets of forecasts we
follow a trimming strategy and eliminate all those forecasts
with relatively bad quality related to that dimension. We
discard, e.g., the obviously bad parameter values for a given
model at a given level or predictions at completely instable
levels for a given model with given parameter settings.

Algorithm 2: Fml({ŷ}, D) → {cŷ}
1) define clusterc corresponding to each elements ∈

S/{D}
2) remove the worst forecasts in each clusterc by trim-

ming

3) for each clusterc run a linear combinationF lin in
order to achieve the forecastcŷ = F lin(c)

The forecast generation space corresponding to the gener-
ated clusters{cŷ} is S/{D} meaningS reduced by dimen-
sion D. Depending on the strength of the used trimming
strategy thesimple average modelor the optimal model
with assumption of independence[4] can be chosen as
combination modelF lin.

The trimming that we use is guided by the total error
variance of the best forecast per cluster. All forecasts of
which the total error variance differs more thanλ% of that
of the best forecast of the cluster are removed. The number
of accepted predictions per pool is restricted as well. Details
related to the definition of the forecast generation space and
the algorithm as well as an example can be found in [2].

C. Generation of multi step combination structures

As we have just mentioned, the result of a pooling related
to a dimensionD is again a set of forecasts the generation
of which can be described by the forecast generation space
S/{D}. If S/{D} contains only one element (meaning all
exsting dimensions have already been aggregated or have the
range1), the pooling has generated a final result which can
be used as the final combined forecasts. Otherwise we can
combine the remaining forecasts using a flat combination as
do Aiolfi and Timmermann.

But as the number of resulting forecasts can still be big,
there is the other option to repeat the pooling approach based
onS/{D} with a chosen dimensioñD 6= D. This idea leads
to an approach of the successive generation of pools and
so the generation of multi step combination structures. Each
step leads to the reduction of one dimension ofS so that the
total number of steps is defined by the dimensionality ofS.

Figure 1 shows an extract of the resulting structure for
an example containing diversification concerning the use of
two levels, four methods and two parameters controlled by
thick modeling. We getS = D1×D2×D3×D4 = [0, 1]×
[0, . . . , 3]× [0, . . . , 10]× [0, . . . , 8]. In this example we have
used the trimming approach of selecting not more than the
best three forecasts per pool.

III. E VOLVING MULTI STEP MULTI LEVEL COMBINATION

STRUCTURES

A. Motivation for using evolutionary computation

Even if good experimental results show that the use of
multi step structures may be a way to overcome the problems
of combining a big number of forecasts, the approach of
using such predefined multi step structures is limited in the
sense that it needs a lot of expert knowledge in order to
identify promising ones. Potential structures, once identified,
have to be verified by experiments using try and error
principles. And as the fixed structures contain only limited
adaptive capabilities, they would have to be rebuilt on a
regular basis.

The best structures do not necessarily need to be the intu-
itive ones. Often solutions found in nature do not follow our



Fig. 1. Extract of a more complex combination structure withS = D1 ×
D2×D3×D4 = [0, 1]× [0, . . . , 3]× [0, . . . , 10]× [0, . . . , 8]. Below the
line it is indicated which dimensionD has been chosen in each step.

intuition. All these reasons motivate the search for dynamic
approaches generating and adapting structures automatically.
The generated optimal structures need to be able to work well
in a changing environment. Evolutionary computation offers
common algorithms to solve such kind of problems. In [6] we
have already presented evolutions of multi level multi step
combination structures. We have used genetic algorithms and
evolutionary programming in order to evolve combination
structures purely based on the total error variances. Now we
present alternative evolutions that consider our theoretical
findings presented in [2].

B. Evolving the order of dimensions used for pooling

We have seen that algorithmFml needs in each step the
information which dimensionD is used for the next step of
pooling. In the example shown in figure 1 first we combine
dimensionD3, than dimensionD4 and so on.

The question of which dimension to choose next is a
crucial task. As we assume covariance information as not
reliable we do not have the needed information in order
to make this decision on a theoretical basis. Even if we
had reliable covariance information, we could determine
the ‘ideal‘ dimension for pooling only for the next step
of pooling. We would need to have higher order statistics
information in order to know the correlation of forecats
representing the results of the first step of pooling based
on the original forecasts. This means that even with reliable
covariance values there is the need for a very time expen-
sive recalculation of covariances after each step of pooling.
An alternative option is the determination of the order of
dimensions used for pooling using an evolutionary strategy.
We will now describe different options of how we can define

such a kind of evolution.
1) Description of genes and chromosomes:Let’s assume

we have a forecast generation space given byS = D1 ×
. . . × DK with K the number of diversified dimensions
as already described above. The generation of combination
structures following algorithmFml is determined by a vector
that indicates the order of the dimensionsD to be used for
pooling.

We define genes asg ∈ N . They represent each an index
k of a dimension of the forecast generation space. Chromo-
somes are defined as vectors of disjunct genescr ∈ NK .
The order of the genes in a chromosome describes the order
dimensions used for pooling. The example for a chromosome
cr ∈ N 4 corresponding to the pooling described in figure 1
is provided in figure 2 as parent1.

2) The fitness:The most simple and intuitive criterion to
optimize is defined by the quality of the resulting forecasts.
We want to learn combination structures which generate high
quality combined predictions measured on unseen data. The
fitness is calculated as a mean absolute deviation value on
the level of forecasting and is given as

f =
1

t2 − t1 + 1

t2∑
t=t1

|combŷt − yt|, (1)

where t represents a time index over the evaluation period
[t1, t2].

3) Crossover: Two types of child generation have been
used in separate experiments.

The first type generates a child based on two parent
elements. The crossover considers the position of the dimen-
sions in the chromosomes of the two parents. The child is
calculated using the following algorithm :
• initialise the childcrchild without any genes
• loop k = 1 to K

- select randomly one of the parentscrp1

- if gene crp1
k is not yet contained in the child→ add

genecrp1
k to the child

- if gene crp2
k of the other parent is not yet contained

in the child→ add genecrp2
k to the child

An Example of two parents with a generated child is
shown in figure 2.

The second crossover uses only one parent element. The
child is generated by an exchange of any randomly selected
gene with a neighboured gene. If we accept the child only
if it performs better than its parent similar to Tabu Search,
this type of evolution can be carried out with a very small
population or even a single chromosome. Figure 2 provides
also an example for this type of crossover.

4) Mutation: The mutation has been used in order to adapt
the trimming percentage. We have carried out a mutation
in each fifth crossover. During the mutation the trimming
percentageλ has been randomly modified up to 10 percent
of the previous value. We have experimented with two types
of representation ofλ: a global representation with the
same value used for all steps of pooling and a separate
representation per combined pool.



Fig. 2. Example for two types of crossover. The first crossover shown
above the line is based on two parents, the second one on a single parent
element.

5) Observed behaviour and resulting issues:While the
choice of the crossover operator did not have a big impact
on the out of sample quality of the resulting structures,
the evolved combination structures performed very different
corresponding to the selected mutation. An analysis of the
resulting structures showed that both approaches of mutation
cause a different type of problems.

The use of a separate representation per combined pool
of λ generated structures that suffer from overfitting. The
big number of evolved parameters (one per pool) led to very
flexible structures that have been strongly influenced by the
noise in the historical data.

The use of a single parameter for the whole structure did
not allow a sufficient adaptation in relation to the different
types of diversification. While in the case of thick modeling
extreme parameter values lead to the generation of bad
quality forecasts that can be trimmed without any problem
(and need to be trimmed), the situation can be different
for the use of different levels or methods. Forecasts that
perform worse than the best forecast per pool can contain
divers information and therefore be relevant. The result of
this type of mutation have been stable and well performing
combination structures, but often relevant information got
lost because of trimming.

Therefore there is a need for flexible and stable combina-
tion structures that respect the homogeneity of the covariance
matrix, but trimming of relevant information is avoided.

C. Evolving more dynamic pooling structures

1) Extension 1: Additional pooling of elements of diver-
sification dimensions:The first approach in order to fulfil
these needs is based on the idea of additional poolings of
elements of a dimension. The subsets are then treated like
separate diversification dimensions.

Example : We split dimensionD1 into two poolsD1.1 and
D1.2. The split is based on the total error variances following
e.g. the approach of k-means clustering as proposed by Aiolfi
and Timmermann. We achieve a bigger total number of pools
of forecasts that are less divers concerning the total error
variance. The splitting is carried out as a mutation during
the evolution. Each dimension is split only once.

The approach has the following positive effects: (a) there
is a bigger set of resulting combination structures and with
that a higher flexibility, (b) as also in this approach we
combine in each step elements differing only concerning one
diversification we respect the homogeneity of the covariances
and (c) the splitting has an impact on the trimming because
smaller pools of comparable forecasts cause less trimming

Example for mutation:

The pooling of the split dimensions does not necessary
need to be carried out as a sequence. During the following
evolution the order of the pooling of the parts can be varied
in relation to other dimensions.

This enables the generation of a large variety of combina-
tion structures. An example for a resulting structure is shown
in figure 3.

Fig. 3. Extract of a more complex combination structure withS = D1 ×
D2×D3×D4 = [0, 1]× [0, . . . , 3]× [0, . . . , 10]× [0, . . . , 8]. Dimension
3 has been split into subsets of elements[0, 6] and [7, 10]. ‘*‘ stands for
an aggregated subset of a dimension. Below the line it is indicated which
dimensionD has been chosen in each step.

2) Extension 2: Element-specific order of pooling:The
pooling approaches as described above consider the same
order of pooling for all elements. If we have e.g. combined
the elements corresponding to pooling in relation to a first
dimension and we achieve 20 pools representing each com-
bination of elements of the resulting dimensions, we would
choose the same dimension for the next step of pooling
for each resulting pool. This dimension is not necessarily
the best choice for each of the elements. We can generate
more flexible combination structures by making the choice
in relation to the resulting pool.

The chromosomes are now represented as trees of genes in
which each node corresponds to the index of the next diversi-
fication dimension to be combined, the branches correspond
to the resulting pools. Figure 4 shows an example. For the
child generation we have used an approach that represents an
extension of the child generation based on a single parent.
We randomly select a gene and exchange it with all of its
children.



Fig. 4. An example of a chromosome with element-specific order of pooling

IV. EXPERIMENTS

In [6] we have described a testbed based on which we
have carried out first experiments concerning the evolution
of multi level multi step combination structures for the
application of seasonal forecasting in Revenue Management
for Airlines. The chosen testbed for our new experiments
included booking data of the same origin-destination pairs
(ODs) of a major German carrier. We compared the described
new approaches with the approach of Aiolfi and Timmer-
mann as well as the existing commercial forecasting system.
Data from 2001 to October 2006 has been splitted into the
following sets: the years 2001 to 2003 have been used for
learning the parameters of to the individual forecasts, years
2004 and 2005 have been used as training set for the evolu-
tion, 2006 represents the test set. We have used a population
size of 20 chromosomes, a probability of crossover of 0.7
and a probability of mutation of 0.05.

A. Description of the Application: Methods

In O&D Revenue Management Systems [7] seasonal
predictions have to be carried out at a very fine level
where the behaviour changes very quickly so that it is
not possible to take a large number of historical data into
account[8]. Predictions have to be generated not only for
different flights or origin-destination-itinerary pairs (the so
called ODIs), but also separately for different fareclasses (F)
representing different prices and booking restrictions as well
as different point of sales (POS). Lets assume we have to
model a seasonal dependency of the booking behaviour on
the calendar week in terms of seasonal factors1. In our
examplet represents a weekly time index, the variablext

represents the corresponding calendar weekxt ∈ [1, 53], bt

the number of bookings achieved in weekt, yt a seasonal
factor representing the deviation between bookings in the
given calendar week and the total booking expectationyt =

bt

E(b) .
Figure 5 showsy depending onx together with two

examples for learned seasonal factors. They are both based
on estimations of the seasonal factorsshist

x per year

shist
x = min(max(

1
2ΦI + 1

ΦI∑

i=−ΦI

[yx+i], Φlow), Φhigh).

(2)

1Of course there are other (seasonal) impacts like e.g. day of week
dependencies. We will restrict our argumentation to dependencies on the
calendar week and assume no other known impacts to the booking behaviour
in order to keep the example simple.

Fig. 5. Measured seasonal factors during 2 years with two learned curves
shist
x . Learning 1 is carried out with a set of parameters that allow a very

high flexibility: Φlow = 0, Φhigh = 5 and ΦI = 0. Learning 2 is
carried out with parameters that generate a more stable curve:Φlow = 0.5,
Φhigh = 2 andΦI = 2.

which have then been averaged over the two years in order
to represent an estimation for the total historical behaviour.

The two examples of learning the seasonal behaviour
differ concerning the used parametersΦI , Φlow andΦhigh.
ParameterΦI represents the size of the neighbourhood of a
calendar week that is taken into account for the estimation
of the seasonal behaviour. A bigger value means a noise
reduction and the generation of smoother seasonal curves.
But it also represents a restriction in modelling quick changes
in the seasonal behaviour between neigoured weeks. The
other two parametersΦlow and Φhigh are also used for
stabilisation purposes. They represent a lower and an upper
limit on the expected seasonal factors. Strong restrictions
again mean a noise reduction and allow for instance to avoid
a zero season assumption in case of no historical bookings
measured at the ODIFPOS level for a given calendar week,
but represent also a restriction in flexibility of the learned
seasonal factors.

The learned seasonal factors can be used in order to gen-
erate predictions for future seasonal behaviour. We have to
consider already measured bookingsbτ for a future departure
t that should be predicted,τ representing a given number of
days prior to the departure. We apply the learned seasonal
behaviour to the future demand:

ŷhist
t =

bt,τ + shist
x ∗ (̂bt − bt,τ )

b̂t

(3)

with x the calendar week corresponding to the future time
index t.

An alternative option is to estimate the seasonal behaviour
based on the already measured bookingsbτ . We can calculate
the currently measured seasonal behaviour withyt,τ =
min(max( bt,τ

E(bτ ) , Φlow), Φhigh) and estimate the future be-
haviour with

ŷcurr
t =

bt,τ + Φcorr ∗ yt,τ ∗ (̂bt − bt,τ )

b̂t

(4)

ParameterΦcorr ∈ [0, 1] describes how much we transfer the
measured season to the future and how much we apply a ‘no
season assumption‘ for the future.



Fig. 6. Subset of diversified predictions for the seasonal behaviour 30 days
prior to departure. .

B. Used Diversifications

We have diversified the calculation concerning the three
already mentioned criteria: (a) the used method of prediction
ŷhist

t or ŷcurr
t , (b) thick modelling concerning the parameters

ΦI , Φlow,Φhigh andΦcorr and (c) the level of determination
of the seasonal factorsshist

x and the current seasonyt,τ

(aggregated over Fareclass and/or Point of Sale and/or Day
of the Week). Figure 6 shows an example of a subset of input
predictions.

C. Experimental Results

Table I shows the resulting percentage improvement com-
pared to the current commercial forecasting system using
seasonal single level predictions that are already well tuned
and optimised. In this system different methods are combined
using a predefined rule based system which determines
linear combination weights based on different impacts like
the size of the numbers to predict. It can be seen that
evolving the order of dimensions allows the generation of
structures which are only slightly worse than the best found
order of dimensions. The evolutionary approach can therefore
be evaluated as useful in order to determine the order of
dimensions automatically. It can also be clearly seen, that
approaches, which allow only the combination of forecasts
that have been diversified only by one type of diversification,
generally perform better than approaches that do not contain
this restriction. But we can also see that there is the risk of
instabilities based on overfitting if the potential structures are
too flexible. Each of the extensions to the algorithm that we
have proposed perform very well, but if the two extensions
are applied both, the structures became too flexible and the
out of sample forecast accuracy significantly decreases.

V. SUMMARY AND CONCLUSIONS

We have presented experimental results that support our
theoretical findings described in [2]. We have described
different evolutionary approaches in order to solve the prob-
lem of determining the order of the dimensions used for
pooling in our pooling algorithm. Based on an analysis of
the resulting structures we have proposed two extensions of
such evolutions that allow the generation of more flexible

TABLE I

EXPERIMENTAL RESULTS,THE FIRST COLUMN INDICATES THE

STRUCTURE OF THE COMBINATION PROCESS. THEN THE RESULTS ARE

REPRESENTED AS AN IMPROVEMENT PERCENTAGE MEASURED ON THE

HIGH LEVEL (O&D) AND THE LOW LEVEL (ODIFPOS).
∗ :MSMLP STANDS FOR‘ MULTI STEP MULTI LEVEL POOLING‘

∗∗ :FC STANDS FOR‘ FORECAST‘

structure high low

flat comb. (best subset of 5 input fc∗∗ at low level) -5 -3

flat comb. (best subset of 5 input fc∗∗ at high level) +3 +2

flat multi level comb. (best subset of 5 input fc) +5 +3

flat multi level comb. (best subset of 20 input fc) -5 -3

static (best found structure) +9 +7

dynamic evolution [6] +6 +8

pooling of Aiolfi and Timmermann +5 +6

msmlp∗ (best found order of dimensions) +11 +8

msmlp∗ (evolved) +8 +7

msmlp∗ (evolved + extension 1) +15 +12

msmlp∗ (evolved + extension 2) +11 +11

msmlp∗ (evolved + both extensions) +3 +5

multi level multi step combination structures. We compared
the results of the algorithm of Aiolfi and Timmermann with
flat combination and different combination structures that we
have evolved for the application of Revenue Management
seasonal forecasting. We could clearly beat the algorithm of
Aiolfi and Timmermann and achieve an improvement up to
12 percent compared to the current system.
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