
Prediction learning
in robotic manipulation

by

Marek Kopicki

A thesis submitted to

The University of Birmingham

for the degree of

Doctor Of Philosophy

Computer Science

The University of Birmingham

April 2010

iii

Abstract

This thesis addresses an important problem in robotic manipulation, which is the ability to

predict how objects behave under manipulative actions. This ability is useful for planning of

object manipulations. Physics simulators can be used to do this, but they model many kinds

of object interactions poorly, and unless there is a precise description of an object’s properties

their predictions may be unreliable. An alternative is to learn a model for objects by interacting

with them. This thesis specifically addresses the problem of learning to predict the interactions

of rigid bodies in a probabilistic framework, and demonstrates results in the domain of robotic

push manipulation. During training, a robotic manipulator applies pushes to objects and learns to

predict their resulting motions. The learning does not make explicit use of physics knowledge, nor

is it restricted to domains with any particular physical properties.

The prediction problem is posed in terms of estimating probability densities over the possible

rigid body transformations of an entire object as well as parts of an object under a known action.

Density estimation is useful in that it enables predictions with multimodal outcomes, but it also

enables compromise predictions for multiple combined expert predictors in a product of experts

architecture. It is shown that a product of experts architecture can be learned and that it can

produce generalization with respect to novel actions and object shapes, outperforming in most

cases an approach based on regression.

An alternative, non-learning, method of prediction is also presented, in which a simplified

physics approach uses the minimum energy principle together with a particle-based representation

of the object. A probabilistic formulation enables this simplified physics predictor to be combined

with learned predictors in a product of experts.

The thesis experimentally compares the performance of product of densities, regression,

and simplified physics approaches. Performance is evaluated through a combination of virtual

experiments in a physics simulator, and real experiments with a 5-axis arm equipped with a simple,

rigid finger and a vision system used for tracking the manipulated object.

iv

Acknowledgments

First of all, I would like to thank my supervisor Jeremy Wyatt. This thesis would have never

been possible without his support and encouragement. Also, many ideas in this thesis were born

during discussions with Jeremy.

I owe much to Aaron Sloman who convinced me that robotics could be even my life

endeavour. I am also grateful to Aaron for many insightful discussions which helped me to find

the right path.

I am very thankful to Richard Dearden who had to read all my progress reports as a member

of my thesis group. Feedback from Richard, although sometimes tough, was invaluable for me.

I am indebted to Rustam Stolkin for reading drafts of the thesis and very helpful comments.

None of the experiments with our Katana robot would be possible without Rustam's support and

without a robotic finger he designed and built.

I am very grateful to Sebastian Zurek for his invaluable help in implementing many

algorithms from this thesis and for numerous interesting discussions.

I am also very thankful to my friends and colleagues for their support, in particular to

Micheal Zillich and Thomas Mörwald for a vision tracking system, and to Damien Duff for

many interesting discussions.

My special thanks goes to Evariste Demandt who convinced me to return to science after a

few years break. I would never have come for PhD otherwise.

Jestem szczególnie wdzięczny mojej rodzinie – mamie, bez której wyjechałbym już na dobre

z Birmingham kilka razy, tacie, który zawsze podtrzymywał i podtrzymuje moje

zainteresowania naukowe, no i mojej siostrze za chwile otuchy we właściwym czasie.

Contents

Table of contents viii

List of figures xi

1 Introduction 1
1.1 Motivation . 1

1.2 Hypothesis and contributions . 2

1.3 Domain of testing . 3

1.4 Approach . 5

1.5 Roadmap . 6

2 Predicting and learning of body movements 8
2.1 When action involves prediction . 9

2.2 Internal models . 11

2.2.1 Motor system variables . 11

2.2.2 Forward models . 12

2.2.3 Inverse models . 13

2.3 State estimation . 13

2.4 Motor control . 15

2.4.1 Basic control schemes . 15

2.4.2 Feedback controller . 17

2.4.3 Composite control system . 17

2.5 Motor learning . 17

2.5.1 Basic learning schemes . 18

2.5.2 Learning algorithms . 21

2.5.3 Learning movement primitives . 22

2.5.4 Modular motor learning . 24

2.6 Summary . 27

3 Predicting object motion during manipulation 29
3.1 Introduction to prediction learning in pushing manipulation 30

v

CONTENTS vi

3.2 Physics-based prediction . 31

3.2.1 Physics engines . 31

3.2.2 Collisions . 32

3.2.3 Contact resolution methods . 35

3.3 Pushing manipulation in literature . 38

3.3.1 Pushing and planning . 38

3.3.2 Learning . 39

3.4 Summary . 39

4 Controlling a robotic manipulator 41
4.1 Robot design . 42

4.1.1 Manipulator joints . 42

4.1.2 Manipulator configuration space . 44

4.1.3 Manipulator workspace . 45

4.2 Robot kinematics . 46

4.2.1 Forward kinematics . 47

4.2.2 Forward instantaneous kinematics . 49

4.2.3 Inverse kinematics problem . 51

4.2.4 Inverse instantaneous kinematics problem 57

4.3 Robot control . 60

4.3.1 Joint space control . 61

4.3.2 Workspace control . 63

4.3.3 Golem controller . 65

4.4 Robot planning . 66

4.4.1 Path planning problem . 67

4.4.2 Sampling-based approaches to path planning 68

4.4.3 Incorporating differential constraints . 72

4.4.4 Golem trajectory planner . 74

4.5 Summary . 78

5 Prediction learning in robotic pushing manipulation 79
5.1 Representing interactions of rigid bodies . 80

5.1.1 A three body system . 80

5.1.2 Body frame representation . 81

5.2 Prediction learning as a regression problem . 83

5.2.1 Quasi-static assumption . 83

5.3 Predicting rigid body motions using multiple experts 84

5.3.1 Combining local and global information with two experts 84

5.3.2 Incorporating information from additional experts 87

CONTENTS vii

5.3.3 Incorporating additional information into the global conditional density

function . 89

5.3.4 Learning as density estimation . 90

5.4 Results . 92

5.4.1 Introduction . 92

5.4.2 Generalization to predict motions from novel actions 97

5.4.3 Generalization to objects with novel shapes 100

5.4.4 Experiments with a real robot . 103

5.5 Summary . 106

6 A simplified physics approach to prediction 111
6.1 Principle of minimum energy . 111

6.2 Implementation . 112

6.2.1 Finding a trajectory at equilibrium . 112

6.2.2 Probability density over trajectories . 113

6.3 Results . 114

6.3.1 Overview . 114

6.3.2 Performance of a simplified physics approach 115

6.3.3 Shape generalization . 116

6.4 Summary . 117

7 Discussion 119
7.1 Conclusions . 119

7.2 Summary . 120

7.3 Future work . 122

A Rigid body kinematics 124
A.1 Introduction . 124

A.2 Rotations . 126

A.2.1 Rotation matrices . 126

A.2.2 Exponential coordinates of rotation . 129

A.2.3 Euler angles . 131

A.3 Rigid body transformations . 132

A.3.1 Homogeneous representation . 132

A.3.2 Exponential coordinates of rigid body transformations 133

A.4 Rigid body velocity . 136

A.4.1 Angular velocity . 136

A.4.2 Rigid body velocity . 138

CONTENTS viii

B Matrix algorithms 142
B.1 Preliminaries . 142

B.2 Singular value decomposition . 142

C Global optimization over continuous spaces 144
C.1 Differential evolution . 144

C.2 Simulated annealing . 146

D A* Graph search algorithm 148

Bibliography 160

List of Figures

1.1 Pushing experiment setup . 4

1.2 Reference frames and interacting objects . 5

2.1 Forward models . 12

2.2 Forward and inverse models . 13

2.3 Sensorimotor integration model . 14

2.4 An open-loop feedforward controller . 16

2.5 A feedback controller . 16

2.6 A composite controller . 18

2.7 A generic supervised learning system. 19

2.8 Direct inverse modelling. 19

2.9 Convexity problem. 20

2.10 Feedback error learning. 21

2.11 Dynamic movement primitive . 23

2.12 Context estimation . 25

2.13 The MOSAIC model . 26

3.1 Mass-aggregate engines . 31

3.2 Body deformation . 34

3.3 Coulomb’s law of sliding friction . 35

4.1 The Katana manipulator . 43

4.2 Joint types . 44

4.3 The Katana manipulator model . 45

4.4 Newton Iteration . 53

4.5 Golem inverse kinematic solver . 56

4.6 Generic joint space controller . 61

4.7 Joint space controller . 63

4.8 Workspace controller . 64

4.9 Probabilistic roadmap iteration . 69

4.10 Golem path planning . 75

ix

LIST OF FIGURES x

4.11 Golem local path planning . 76

4.12 Golem path optimization . 77

5.1 Setup with global expert . 80

5.2 Two bodies system reference frames . 81

5.3 Transformations in the inertial frame . 82

5.4 Transformation in the body frame . 82

5.5 Quasi-static assumption . 83

5.6 Local shapes on the table top . 85

5.7 Local shapes with reference frames . 85

5.8 Setup with global and local expert . 86

5.9 Product of distributions . 88

5.10 Multi-expert flow chart . 88

5.11 Multi-expert frame poses . 89

5.12 Setup with global and local expert + contact frame 89

5.13 Performance measure . 95

5.14 Local experts . 96

5.15 Experiment 1: interpolative generalization of push directions 98

5.16 Experiment 2 and 3: extrapolative generalization of action (examples) 99

5.17 Experiment 2 and 3: extrapolative generalization of push directions (results) . . . 100

5.18 Experiment 4 and 5: extrapolative generalization to novel shapes (examples) . . . 101

5.19 Experiment 6: interpolative generalization to novel shapes (examples) 102

5.20 Experiment 4, 5 and 6: generalization to novel shapes 102

5.21 Experiment 7: generalization to novel shapes with shape information (results) . . 103

5.22 Experiment 7: generalization to novel shapes with shape information - shifted

flange (examples) . 104

5.23 Experiment 7: generalization to novel shapes with shape information - shifted

flange (results) . 104

5.24 Experiment 8: real pushes and learning data (results) 105

5.25 Experiment 8 and 9: comparison of prediction errors with real and virtual learning

data . 106

5.26 Experiment 8 and 9 with a real robot: tipping 107

5.27 Experiment 8 and 9 with a real robot: toppling 107

5.28 Experiment 8 and 9 with a real robot: sliding 108

6.1 Simplified physics particles . 113

6.2 A simplified physics approach (matching reality) 115

6.3 Simplified physics (examples) . 116

6.4 A simplified physics approach (shape generalization) 117

LIST OF FIGURES xi

A.1 Rotation of a rigid body . 127

A.2 Rotation of a point . 127

A.3 Rotation of a rigid body about axis . 129

A.4 Geometric interpretation of a rigid body transformation 133

C.1 Differential evolution trial vector . 145

C.2 Differential evolution crossover . 146

Chapter 1

Introduction

1.1 Motivation

This thesis is about predicting what can happen to objects when they are manipulated by an agent,

for example a robot. Although in this thesis we consider only simple pushing manipulation by

a robot, we argue that our findings are more generally applicable to predicting more complex

interactions.

Predicting what can happen to objects is important for a robot, because it can use its predictions

to help produce plans by imagining the effects of actions prior to executing them.

There is evidence that the central nervous system also predicts the consequences of motor

actions. Internal predictive models which link motor actions and perception have been postulated

in neuroscience [Miall and Wolpert, 1996][Wolpert and Flanagan, 2001]. These models consist

of two major types: the inverse model, which predicts the motor command required to achieve a

particular desired next state of a motor system, and the forward model which predicts the next state

of a motor system given motor commands. Estimating the state of a motor system often utilises

only proprioceptive information, however forward and inverse models can also take into account

other task-specific information which are not directly related to the state of the motor system. For

example, in golf such variables may involve terrain properties, wind direction and speed and many

others. In this way a player using a forward model is able to predict the future state of a ball and

appropriately modify the action in changing conditions to be able to hit a ball into a hole.

Prediction is already used in robotic manipulation, in particular when it involves planning

and interaction with the real world. Because the real world is governed by laws of physics,

conventionally most previous robotic approaches use either physics simulators or other kinds of

physics-derived parametric models. Unfortunately, in order to predict the motion of a golf ball

in a simulation, one needs to know a lot of parameters and various constraints. Even then, the

trajectory of a ball, for example in the grass, may not be possible to predict because of the inherent

limitations of the model employed. Consequently, many previous approaches, especially those

involving planning, are restricted to simple 2D problems only. This has led some researchers to

1

CHAPTER 1. INTRODUCTION 2

suggest the abandonment of analytic approaches in some cases: “Clearly analytical solutions to

the forward dynamics problem are impossible except in the simplest of cases, so simulation-based

solutions are the only option” [Cappelleri et al., 2006].

Learning of forward models is one of the most promising alternatives which could avoid

many of the aforementioned problems since it does not need to refer to any fixed model of the

world, and thus avoids the limitations of such models. Affordance-based robotic systems such as

[Fitzpatrick et al., 2003] or [Ridge et al., 2008] enable learning of the preprogrammed qualitative

behaviour of objects during pushing and poking actions. These systems however do not provide

quantitative predictions which are essential in planning. On the other hand, there exist more

generic learning systems such as modular motor learning [Wolpert and Kawato, 1998][Wolpert,

2003] which employ forward models to decide on a context in which a particular movement is

performed. A context variable describes a way in which the body of a robot is influenced by

the external factors such as the carried mass of an object. However, such forward models link

prediction directly with body movements so that they are not only difficult to learn [Lonini et al.,

2009], but also they do not attempt to solve the problem of generalization with respect to variation

in the properties of the manipulated objects and the environment.

In this thesis we explore alternative approaches to using physics engines and to the aforementioned

learning methods. Specifically we:

• explore how forward models can be learned with a high accuracy and generalized to

previously unencountered objects and actions

• explore a simplified physics approach which can be combined with the prediction learning

approach

In the reminder of this introductory chapter, we describe the main hypothesis and the various

contributions made in the thesis. We describe the domain in which we test the results and sketch

the learning approach we take. Finally, we give a roadmap for the rest of the thesis.

1.2 Hypothesis and contributions

The principle question addressed in this thesis is as follows:

Can we learn to predict the object behaviour of an object when it is subjected to robotic pushing

actions? In particular, can we create a physics-independent learning system which can learn the

object behaviour merely from observing a series of pushes and resulting motions?

Contributions of this thesis include:

• We pose the learning to predict problem as a problem of probability density estimation

(Section 5.3). We contrast it with a regression formulation (Section 5.2) and show

CHAPTER 1. INTRODUCTION 3

that density estimation has some advantages: (i) it enables predictions with multimodal

outcomes, (ii) it can produce compromise predictions for multiple combined predictors.

• We show how in density estimation we can employ a product of experts architecture to carry

out learning and prediction (Section 5.3).

• We show that a product of experts architecture can produce generalization with respect to

(Section 5.4): (i) push direction, (ii) object shape. We explore various alternative products

of experts for encoding the object shape. We show that the best product of experts encodes

constraints - pairs of surfaces or contacts between interacting objects.

• We present a non-learning predictor - a simplified physics predictor - using the minimum

energy principle together with a particle-based representation of the object (Section 6.1).

• We show how to combine a product of experts predictor with a simplified physics predictor

(Section 6.2).

• We present an optimization algorithm for robot path planning which is a part of the

decoupled path planning approach, and which uses local path planning prior to running

the optimization algorithm itself (Section 4.4.4).

1.3 Domain of testing

A typical setup as used in experiments in this thesis consists of:

• Katana 6D - a manipulator with 5 axes or a virtual model of Katana 6D. The manipulator is

equipped with a finger at the end-effector (see Figure 1.1).

• 3D rigid objects with fixed or variable shapes.

• In each experimental trial a robot moves its finger towards an object on a random line

trajectory of variable length and direction.

• The object is observed by a camera, and a 6DOF motion of the object is extracted by a visual

tracking algorithm.

Depending on the object shape and pose, the finger trajectory, physical properties of the finger

and the object, several behaviours of the object can be observed. For example (see Figure 1.1):

• The object can rotate clockwise or anticlockwise.

• It can tilt and return to its initial pose.

• It can topple.

• It can be pushed forward

CHAPTER 1. INTRODUCTION 4

Figure 1.1: Depending on the object shape and pose, the finger trajectory and physical properties of

the finger and the object, several different behaviours of the object can be observed. For example,

the object can tilt (top right panel) and then return to its initial pose (middle left) or topple (middle

right). The object can also rotate clockwise (bottom left) or anticlockwise (bottom right).

• The finger might not touch the object, which will thus remain stationary.

Even though the motions of a pushed object may be uncertain and complex, at first sight

this domain may appear somewhat simplistic and limited. However, we suggest that it is in fact

fundamental and generalizable. The motion of a manipulated object is dependent on the contacts

it has with both passive and active surrounding objects, with each such contact constraining

and influencing the motion. In this thesis we show that it is possible to learn to predict the

consequences of one such contact situation, and furthermore that a combination of experts can

encode multiple constraints due to many such contacts. Hence these ideas can potentially be

generalized to arbitrarily complex problems where a rigid body moves in response to an arbitrary

number of contacts with surrounding objects. For example, if we can learn to predict how an

CHAPTER 1. INTRODUCTION 5

object behaves when pushed by a single finger, we should be able to extend this to predict how

an object will behave when contacted by multiple fingers of a complex hand during grasping or

dexterous in-hand manipulation operations.

1.4 Approach

Representations

We assume that our system consists of three objects: a robotic finger, an object and an environment.

Furthermore, we assume that at any moment in time we are given the shapes of all three interacting

objects as in Figure 1.21.

Each object has its own rigidly attached reference frame. Furthermore, each object can be

(optionally) decomposed into sub-shape parts or local shapes. Each local shape has its own rigidly

attached reference frame. If two objects’ shapes or objects’ local shapes are considered identical,

they also share the same reference frame and they use the same local shape expert.

At

Finger Object

Environment

Bt

O

Bt
l

Figure 1.2: Reference frames at time t, attached to the finger At , the object Bt and a static

environment O. An example local shape with frame Bl
t is also attached to the object.

Objects, as well as their local shapes have their own unique behaviour which can be described

as joint distributions in the following form:

p(Xn
t+1,X

n
t ,Y n

t) (1.1)

where Xn
t and Xn

t+1 are a reference frame X at time step t and t +1 respectively, which correspond

to a (local) shape n. Y n
t represents a number of additional variables which can be taken into

account, such as pose of the finger, pose of the environment, some shape parameters (e.g. length),

etc.

Learning

Learning consists of a number of learning trials, where in each trial a robot performs a random push

action towards an object. Shapes of the object and environment are fixed during each trial, although

1In future work shapes could be recovered by e.g. a stereo vision system.

CHAPTER 1. INTRODUCTION 6

they can vary from trial to trial. In each trial, depending on the types of the involved objects, at

each time step t a number of distributions of the form 1.1 are constructed and simultaneously

learned.

Prediction

Prediction at a single time step t is performed by finding the most likely rigid body transformation

q which transforms the object’s frame Bt at time t into frame Bt+1 at next time step t +1, i.e. that

q which maximizes the following product:

max
q ∏

n=1...N
pn(Xn

t+1|Xn
t ,Y n

t) (1.2)

where pn are conditional probability densities conditioned on variables which are known at time

t, and where for rigid bodies frame Xn
t+1 at time t + 1 can be assumed to be a known function of

transformation q, frame Xn
t and parameter Y n

t at time t, i.e.:

Xn
t+1 ≡ f n(Xn

t ,Y n
t ,q) (1.3)

If Xn is the object frame B (Figure 1.2), Function 1.3 has the form of the transformation q itself:

f n(Xn
t ,Y n

t ,q)≡ qXn
t (1.4)

However, if Xn is the frame Bl of an object local shape, Function 1.3 depends on q and also on

object frame B (for details see Chapter 5).

1.5 Roadmap

The remaining chapters of this thesis are briefly described below:

Chapter 2: Predicting and learning of body movements introduces some of the mathematical

models which have been used in psychology in the field of sensorimotor control, most notably

forward models which are the main subject of this thesis. These models inspired many successful

robotic systems which are capable of learning and performing complex body movements. Systems

which are the most interesting and relevant to this thesis are presented in later sections of this

chapter.

Chapter 3: Predicting object motion during manipulation introduces the problem of

interaction between a robot and the physical environment in terms of simple pushing manipulation

tasks. Chapter 3 introduces rigid body simulators which can be seen as an alternative to learning

about behaviour of objects manipulated by a robot. Furthermore, the chapter reviews some of the

robotics frameworks which have been successfully applied in the pushing domain and which are

relevant to the subject of this thesis.

CHAPTER 1. INTRODUCTION 7

Chapter 4: Controlling a robotic manipulator describes algorithms which have been

employed to control a robotic manipulator used in all the experiments in this thesis. The algorithms

described in Chapter 4 take a classical path planning approach rather than a learning route to the

motion control problem, mostly due to limitations of the manipulator, but also because it allowed

us to focus on the prediction learning problem independently of learning control. The chapter also

describes an optimization algorithm used in path planning which is a minor contribution of the

thesis.

Chapter 5: Prediction learning in robotic pushing manipulation is the main chapter of this

thesis. The chapter introduces all variants of the product of experts prediction approach together

with representations which were outlined in the introduction Chapter 1. Furthermore, Chapter 5

attempts to explain the generalization mechanism of our approach using a few simple examples.

The last section of the chapter describes experiments performed to test our prediction approaches,

both in the virtual environment as well as in reality using a system composed of a 5-axis robotic

manipulator and a vision-based tracking system.

Chapter 6: A simplified physics approach to prediction describes a simplified physics

approach which is an alternative method for improving predictions in the case of limited

information about the manipulated object. The approach in the current form does not allow

for learning, however a probabilistic formulation enables the simplified physics predictor to be

combined with other learned predictors such as a product of experts.

Chapter 7: Conclusions summarizes the findings of the thesis and discusses ongoing and future

work.

Chapter 2

Predicting and learning of body
movements

A basketball player can bounce a ball off the floor without looking at it. He is able to predict the

trajectory of the ball, so that he knows how to move his hand in order to catch, push or bounce the

ball - all under a variety of different conditions: after pushing the ball from different directions,

while standing, running or turning his body. Furthermore, he is able to take a decision whether to

shoot directly to the basket or to rebound the ball off the backboard and down through the hoop,

or instead to pass the ball to a team-mate. To a large extent these decisions rely on the ability to

predict consequences of the player’s actions. Basketball playing is an example of a sensorimotor

skill which links sensory information with motor actions in goal-oriented recipes of how to act in

response to a flow of sensory input [Berthoz, 1997].

Although basketball playing is a complex skill, it turns out that the central nervous system

(CNS) also makes use of these mechanisms in much simpler actions such as for example eye

movements or hand reaching movements. These mechanisms allow our brain to perform many of

the most vital and basic activities in our life:

• performing motor actions in noisy environments

• predicting consequences of motor actions

• acquiring new sensorimotor skills

• adapting to changing environment conditions

This chapter introduces mathematical models which have been used in psychology to explain

some of the above phenomena within the field of sensorimotor control. These models have also

been applied in cognitive robotics to build systems which successfully learn and perform complex

body movements.

8

CHAPTER 2. PREDICTING AND LEARNING OF BODY MOVEMENTS 9

Prediction of sensory consequences of motor actions, further referred to as sensory prediction,

has been recognized as a key mechanism in many biological systems [Berthoz, 1997]. It enables

(see also [Miall and Wolpert, 1996][Wolpert and Flanagan, 2001]):

• Estimating the outcome of an action before the actual sensory feedback is available (as in

the case of for example fast arm reaching movements), or when the sensory feedback is

incomplete or noisy due to some external factors (playing tennis in the evening).

• Cancelling sensory effects of the movement of the body itself, as opposed to the movement

which is influenced by for example some external load. The sensory discrepancy can then

be used for the accurate movement control.

• Finding a discrepancy between the expected sensory outcome of an action and the desired

outcome, which can be used in learning and planning.

• Finding a sensory outcome of an action without actually performing it, to mentally simulate

or rehearsal multiple actions which are required in planning tasks.

Sensory prediction is an important part of modern sensorimotor control frameworks and it is

also a main subject of this chapter. The chapter is split into the following sections:

• Section 2.1 reviews a few simple experiments which provide direct evidence that the CNS

predicts sensory consequences of motor actions.

• Section 2.2 introduces model variables of a motor system as well as forward and inverse

models as representations of relations between motor commands and sensory input.

• Section 2.3 investigates the problem of estimation of the state variable of a motor system.

• Section 2.4 investigates the problem of sensorimotor control as a problem of obtaining motor

commands for a desired sensory input and using online sensory feedback.

• Section 2.5 investigates the problem of learning in sensorimotor control.

• Section 2.6 summarizes the chapter and presents some open issues in sensorimotor learning.

2.1 When action involves prediction

Findings in experimental psychology confirm that perception and motor actions are tightly coupled

in the CNS. The idea that prediction of sensory input is closely linked with motor commands was

first introduced over a century ago by Helmholtz. He proposed that the CNS compares sensory

input with sensory predictions based on the motor command [Helmholtz, 1867]. He performed

a simple experiment to demonstrate this. When the eye is moved by a gentle touch with a finger

(through the eyelid) the subjective location of all visible objects changes as well, while this is not

CHAPTER 2. PREDICTING AND LEARNING OF BODY MOVEMENTS 10

the case if the eye was moved by the eye muscles alone. Because motor commands issued to the

finger do not usually affect the retinal image, the CNS fails to predict the sensory change caused

by the finger.

Prediction involves not only movements of the eye but also movements of all other parts of

the body. Let us perform another simple experiment. 30-40 cm in front of you, move your finger

in a semi-erratic way, similar to Brownian motion. If you do not move too fast you will find no

problems to track the finger with your eyes. However if you ask your colleague to perform a similar

movement, accurate tracking becomes almost impossible. Movements generated by ourselves are

often referred to as active and the latter ones as passive (see [Steinbach and Held, 1968] and

[Wexler and Klam, 2001]). If the movement of a tracked object or a finger is for example periodic,

tracking is again possible no matter if the movement is active or passive.

Continuous eye tracking from the above example, also called ocular pursuit, is possible only

when the CNS is able to predict where a finger is going to be in a few hundreds of milliseconds.

This is necessary for three reasons. Firstly, the CNS needs time to process sensory information

and then to generate motor commands (transduction). Secondly, transport of neuronal signals from

and to the CNS takes time. Finally, any change of linear or angular velocity of parts of the body

may also take time due to their complex physical properties.

In this way the CNS controls the eyes to follow the future (from the CNS’ point of view - due to

the mentioned delays) location of a finger, but in fact at the same time the eyes are directed exactly

at the finger. We are able to follow even semi-erratic movements because, the CNS has direct

access to motor commands i.e. to the movement plan, while this is not the case for the movement

performed by our colleague. On the other hand, if the movement is “predictable” for example

periodic, tracking becomes again possible even if the CNS does not know motor commands. If the

CNS were not predicting the future location of a tracked object we would never be able to catch

it, this is because a direct estimate of the object location which is based on the retinal image alone

is always delayed.

The target occlusion or disappearance is a frequently studied aspect of eye tracking. Piaget

claims that already small children are able to predict that a toy train which disappears at one

end of a tunnel will appear at the other end [Piaget, 1937]. Two possible explanations of this

result have been proposed, and one of them uses tracking prediction mechanism linked with the

eye movement. There have been many experiments with target occlusion performed since the

Piaget experiment in 1937. All of them indicate that the eye continues to track the target after

an unexpected disappearance for at least 200 ms (see [Becker and Fuchs, 1985] and [Barnes and

Asselman, 1991]), which is the delay caused by the CNS’ processing. It takes about 200 ms for

sensory feedback caused by the object disappearance to influence any further motor actions.

Perhaps the most intensively studied aspect of eye movements are eye saccades. Eye saccades

are the fastest movements a human body is capable of producing with an angular velocity up to

800 degree per second. Saccades take about 200 ms to initiate, and they last from 20 ms up to

200 ms, depending on their amplitude. The retinal image at such high velocities becomes blurred,

CHAPTER 2. PREDICTING AND LEARNING OF BODY MOVEMENTS 11

however the CNS suppresses the image making humans effectively blind during eye saccades.

This saccadic suppression or saccadic masking makes it impossible to detect visual stimuli such

as a flash of light or even to detect changes of the target location [Bridgeman et al., 1975] during

the saccade. On the other hand, it turns out that just before a saccadic eye movement the CNS

appropriately shifts the retinal image so that it matches the image after the saccade. It predicts in

this way sensory consequences of the intended, but not yet produced eye movements using only

motor commands[Duhamel et al., 1992].

2.2 Internal models

Any motor system such as a robot or a human must be able to control the relationship between

sensory input and motor commands. In general, there can be two transformations considered:

motor to sensor transformations called forward models, and sensor to motor transformations called

inverse models. Although the CNS may internally represent this sensory input - motor output

relation in a different way, decomposition into forward and inverse models has turned out to be

very successful in psychology and robotics [Mehta and Schaal, 2002].

2.2.1 Motor system variables

Transformations represented by forward and inverse models have to cope with high dimensional

sensory and motor command spaces. There are about 600 muscles in the human body. A complete

description of the 600-dimensional motor command domain would require encoding 2600 possible

muscle activations assuming that each muscle can only be in a contracted or relaxed state [Wolpert

and Ghahramani, 2000]. The sensory input space can have more dimensions than motor command

space. This “curse of dimensionality” can be avoided by introducing a state variable of the

modelled system.

The state of a motor system consists of all necessary variables that, together with other

characteristic constants, are sufficient to predict or control the system. The state can involve a

set of activations of muscle groups (also called synergies), spatial pose and velocity of the hand,

or in case of a robot - positions and velocities of the robot’s joints. The state can also involve

variables which arise from interaction with an environment such as the shape of a manipulated

object, contact relations, mass etc. It has been shown that damage to the parietal cortex leads to an

inability to maintain such state variables [Goodbody and Husain, 1998].

The output of a motor system specifies its behaviour which can be directly controlled via

motor commands. Unlike the state of a motor system, the output is assumed to be completely

observable. An example is the spatial pose of the end-effector of a robot. The output is usually a

complex function of the state and it may not be invertible due to the fact that a single output may

correspond to multiple different possible states.

To summarize, it is assumed that a motor system can be modelled as a system with:

CHAPTER 2. PREDICTING AND LEARNING OF BODY MOVEMENTS 12

• An input which specifies motor commands to a motor system: for example torques applied

to joints of a robot.

• An output which specifies the behaviour of a motor system: for example Cartesian

coordinates of the end-effector of a robot.

• A state of a motor system: for example joint coordinates of a robot, i.e. positions and

velocities of the robot’s joints.

Depending on the problem, it is frequently assumed that an output and a state of a motor

system are the same variable, i.e. that the state is completely observable.

2.2.2 Forward models

forward
dynamic
model

predicted
sensory

feedback

forward
output
model

predicted
next state

current
state

motor
command

Figure 2.1: A cascaded forward dynamic model and forward output model can predict sensory

feedback given the current state and motor command (see [Miall and Wolpert, 1996]).

Forward models represent causal relationships between actions and their consequences.

Forward models predict changes of the environment or changes of a motor system (a configuration

of the agent’s body) in response to a given action - usually a motor command. There are three

types of forward models. The first two predict changes of the motor system alone, and the third

one predicts changes of the environment.

The first type of forward model predicts or mimics changes of the state of a motor system in

response to motor commands. For a robotic agent the state variable can involve joint angles and

velocities, while motor commands can be torques applied to the joints of a robot. Such a forward

model is frequently called a forward dynamic model and represents a many-to-one mapping which

predicts the next state of a motor system given the current state and the outgoing motor commands

(see Figure 2.1). The mapping can be many-to-one because different actions may cause the same

state change, while the same action causes always the same state change.

The state of a motor system may not be accurately known for the internal models, but in

addition the sensory feedback can be taken into account. A forward output model predicts the

sensory feedback using the predicted state from a forward dynamic model. The sensory feedback

CHAPTER 2. PREDICTING AND LEARNING OF BODY MOVEMENTS 13

may involve for example position and velocity of the human arm sensed by muscle spindles or 2D

coordinates of the end-effector of a robot as seen on a video camera image. A cascaded forward

dynamic model and forward output model can predict the sensory feedback given the current state

and motor command (see [Miall and Wolpert, 1996]).

The third type of forward model predicts the behaviour of the external environment due either

to some external cause or to actions of the embedded agent. Exteroceptive senses such as vision or

even touch provide very high dimensional sensory data which are very difficult to interpret because

of the complexity of the physical environment. Building and learning such models remains a

challenge in robotics even in very simple cases. These types of models are discussed in Chapter 3.

2.2.3 Inverse models

forward
model

inverse
model

desired
output

current
state

motor
command predicted

sensory
feedback

Figure 2.2: Relationship between a forward model and an inverse model. The forward model is a

compound model shown in Figure 2.1.

Inverse models invert the causal flow of the motor commands. Similarly to forward models,

inverse models encapsulate knowledge about the behaviour of a motor system, but instead of

answering a question “what sensory feedback of a motor system causes the given motor command”

they answer “what motor command is required for the desired output of a motor system”. The

input for an inverse model of a robot can be for example the current and the desired spatial pose of

the end-effector, while the output would be a motor command that causes a robotic arm to move

to the desired pose (see Figure 2.2). As forward models represent many-to-one transformations,

inverse models can be one-to-many transformations, i.e. the desired output can be achieved with

many different motor commands. This so-called convexity problem can be avoided by taking into

account additional variables - e.g. the state of a system. The convexity problem is further discussed

in Section 2.5.

2.3 State estimation

The state of a motor system encapsulates all the information which is necessary to control a robot.

The state cannot be sensed directly, however it can be estimated indirectly from a flow of the

CHAPTER 2. PREDICTING AND LEARNING OF BODY MOVEMENTS 14

forward
dynamic
model

forward
output
model

 next state
estimate

current
state

estimate

motor
command

variable
Kalman

gain

predicted
next state

predicted
sensory

feedback

sensory

error

actual
sensory

feedback

state
correction

+

+

+
-

Figure 2.3: Sensorimotor integration model recursively estimates the state of a motor system by

combining predictions from a dynamical forward model and from a forward output model together

with sensory feedback [Wolpert et al., 1995][Wolpert and Ghahramani, 2000].

input (motor commands) and the output (sensory feedback) of a system. Such a sensorimotor

integration, also known as an observer [Goodwin and Sin, 1984], provides an estimate of the state

integrating motor commands and sensory feedback despite considerable delays caused by the CNS

and time-varying noise and clutter of the feedback.

[Wolpert et al., 1995] investigated target-reaching arm movements in the absence of visual

feedback but in variable conditions affecting proprioception - in null, assistive, or resistive force

fields. Error analysis of the end location of the movements provides a direct support for the

existence of an internal forward model in the CNS which integrates proprioceptive sensations

with motor commands in a similar fashion to the Kalman filter.

The Kalman filter recursively estimates the state of a linear dynamic system from noisy

measurements [Kalman, 1960]. Sensorimotor integration modelled by the Kalman filter

(Figure 2.3) recursively combines two sources of information which together contribute to the

state estimate at the next time step. The first source is the state prediction provided by a forward

dynamic model from the current state estimate and the motor commands. The second source

provides a correction of the state prediction which depends on the sensory error modulated by

the variable Kalman gain. The sensory error is generated by comparing the predicted sensory

feedback from a forward output model with the actual sensory feedback. On the other hand, the

variable Kalman gain depends on the uncertainty of the sensory prediction (as compared to the

uncertainty of the state prediction), so that if the uncertainty is low the sensory prediction mostly

contributes to the state estimate, and vice-versa - if the uncertainty is large the state prediction

takes over the state estimate.

CHAPTER 2. PREDICTING AND LEARNING OF BODY MOVEMENTS 15

2.4 Motor control

The problem of controlling a motor system is directly addressed by the inverse model which

can be seen as a simple controller with a desired behaviour as inputs and corresponding motor

commands as outputs. However robust sensorimotor control in a variable environment requires

incorporating various other factors such as a sensory feedback or the inevitable delays caused by

the finite processing speed of the CNS or any artificial robotic system. Such a control is realized

by a predictive controller introduced further in this section.

2.4.1 Basic control schemes

Following the definitions introduced in Section 2.2.1, we assume that a motor system can be

modelled as a system with:

• Input u which specifies motor commands to a motor system.

• Output y which specifies the behaviour to a motor system.

• State x of a motor system.

The functional relationship between the input, the internal state and the output is many-to-one,

and is described by a forward dynamic model. For discrete time variables t it can be written as

(see Figure 2.4):

yt+1 = h(xt ,ut) (2.1)

A forward model predicts the behaviour of a system yn+1 at the next time step t +1, given current

state xt and motor command ut . Conversely, an inverse mapping between spatial coordinates, joint

coordinates and motor commands is described by an inverse model:

ut = h−1(xt ,yt+1) (2.2)

An inverse model estimates motor command ut required to achieve the desired behaviour of a

system yt+1 at the next time step t +1, given current state xt .

A problem of controlling of a motor system is a problem of achieving the desired behaviour

of its output. In general, there are two classes of controllers [Jordan, 1996][Jordan et al., 1999]:

1. An open-loop feedforward controller which entirely relies on an inverse model of a system

(Figure 2.4)

2. A feedback controller which entirely relies on a feedback from the output of a system

(Figure 2.5)

CHAPTER 2. PREDICTING AND LEARNING OF BODY MOVEMENTS 16

Feedforward
Controller

ut
Plant

yt1
* yt

Figure 2.4: A feedforward controller is simply an inverse model of a system (plant). y∗ denotes

the desired output of a system [Jordan et al., 1999].

Feedback
Controller

ut
Plant

yt
* yt

Figure 2.5: A feedback controller uses feedback from the output of a system (plant) to correct

control signal u [Jordan et al., 1999].

CHAPTER 2. PREDICTING AND LEARNING OF BODY MOVEMENTS 17

Motor control based on inverse models is referred to as predictive control. Feedforward

controllers guarantee stability of control regardless of noise in the output or the state of a motor

system [Jordan, 1996]. However, feedforward controllers will not maintain the desired output if

the actual state of a motor system diverges from the internal estimate of the state (e.g. because of

any external disturbances), or if the controller itself comprises an inaccurate inverse model of a

system.

2.4.2 Feedback controller

The simplest feedback controller uses the output of a motor system to correct a motor command.

Given desired output y∗ of a system, error-correcting feedback control can be expressed as:

ut = K(y∗t −yt) (2.3)

where K is referred to as a gain, and where for simplicity we assumed that y and u are one-

dimensional vectors. It can be shown that for high values of K, an error-correcting feedback

controller is an equivalent to an open-loop feedforward controller [Jordan, 1996], i.e. the feedback

controller utilizes the implicit inverse of a motor system. In contrast to feedforward controllers,

feedback controllers guarantee maintaining the desired output of a system, however for high values

of K, due to delays and high nonlinearities in the feedback loop, the controlled system may become

unstable.

2.4.3 Composite control system

A composite control system consists of both a feedforward controller and a feedback controller,

so that it combines the best of both worlds (Figure 2.6). The motor command of a composite

controller is a sum of signals from a feedforward controller and a feedback controller:

ut = u f f
t +u f b

t (2.4)

If the inverse model is an accurate model of a modelled system and there are no external

disturbances applied to it, motor command u f b
t from a feedback controller is negligible. A

composite control signal given by 2.4 is then entirely determined by a feedforward controller.

On the other hand, if the inverse model is inaccurate or there are some external disturbances,

motor command u f b
t from a feedback controller drives the system towards desired output y∗1.

2.5 Motor learning

Successful control of a motor system requires an accurate inverse model. In robotics there are well

known classical methods for computing the inverse transformation, using either inverse kinematics

1Assuming that a feedforward controller provides a reasonable estimate of a motor command for desired output y∗.

CHAPTER 2. PREDICTING AND LEARNING OF BODY MOVEMENTS 18

+
+

Feedback
Controller

ut
Plant

yt1
* ytFeedforward

Controller

ut
ff

ut
fb

Delay

yt
*

Figure 2.6: A composite controller consists of both a feedforward controller and a feedback

controller [Jordan et al., 1999]. Delay box stands for a one-time-step time delay.

(global methods) or inverse manipulator Jacobian (local methods) (see Chapter 4). However,

computing the inverse transformation for humanoid robots with 30 or more degrees of freedom2

may be difficult. Furthermore, a fixed inverse model would not allow for specialization in a desired

action domain or for adaptation to variable conditions3. Alternatively, inverse models can be

determined through learning.

2.5.1 Basic learning schemes

Assuming that the desired output of a system is known, the motor learning problem falls into the

domain of supervised learning. For a suitable cost function J, learning becomes an optimization

problem:

J =
1
2
‖y∗−y‖2 (2.5)

where y∗ and y are the desired and the actual outputs respectively. A generic supervised learning

system is shown in Figure 2.7.

The simplest method of acquiring an inverse model of the controlled system is called direct

inverse modelling. The idea is to present to a learner various test inputs, observe outputs, and

provide the input-output pairs as a training data, as it is shown on Figure 2.8. The cost function is

defined as

J =
1
2
‖ut − ût‖2 (2.6)

where ût denotes the estimated controller input at time t.

2Number of degrees of freedom corresponds to the number of joints and also their type (see Section 4.1).
3Such as interaction with a variable environment or a change of the configuration of a body, e.g. due to defects or

growth of a body as in biological systems.

CHAPTER 2. PREDICTING AND LEARNING OF BODY MOVEMENTS 19

+
_

Learner
x y

y*

Figure 2.7: A generic supervised learning system [Jordan et al., 1999].

+ _ Feedback
Controller

ut
Plant

yt1

xt

ut

Figure 2.8: The direct inverse modelling approach [Jordan and Rumelhart, 1992]. x̂t is the

estimated state of the controlled system at time t.

CHAPTER 2. PREDICTING AND LEARNING OF BODY MOVEMENTS 20

Figure 2.9: A learning algorithm averages vectors lying in the non-convex input joint space area

onto a single vector which may lie outside the area (a small circle). Therefore such an averaged

vector may not be an inverse image of the output vector from Cartesian space (a dot). Reprinted

without permission from [Jordan et al., 1999].

Unfortunately, direct inverse modelling has two serious drawbacks[Jordan and Rumelhart,

1992]. Firstly, direct inverse modelling may not converge to correct solutions for such nonlinear

systems such as robotic arms. The problem is referred to as a convexity problem, because of the

non-convexity of areas in the input space (e.g. the joint space of a robotic manipulator), which

correspond to the same values in the output space (e.g. the Cartesian space of the end-effector

of a robotic manipulator). A learning algorithm averages vectors lying in the non-convex input

space area onto a single vector which may lie outside the area. Therefore such an averaged vector

may not be an inverse image of the output vector (Figure 2.9). The one degree of freedom case of

the convexity problem is called “the archery problem” because there can be two angles for which

a projectile reaches a target [Jordan et al., 1999]. Secondly, the method is not goal-directed so

it requires random sampling of the input space. There is no direct way to find some u which

corresponds to a desired output y∗.
Feedback error learning is a method of learning a composite control system (Figure 2.10).

The error signal used for learning a feedforward controller is now simply a signal from a feedback

controller u f b. So defined learning error allows the controller to avoid the convexity problem.

This is because instead of averaging in the output space of y, feedback error learning finds a single

solution for a given desired output y∗, due to the fact that feedback error u f b is always greater than

zero in the areas which lie outside of the inverse image (see Figure 2.9).

In contrast to the direct inverse modelling, feedback error learning is goal directed, therefore

it can be used online. Instead of random sampling of the task space, as it is the case in the

direct inverse modelling, feedback error learning can sample the space paired with the output goal

signal y∗t+1. Furthermore, during online learning feedback error u f b from a feedback controller

additionally compensates the difference between the actual behaviour and the desired behaviour.

CHAPTER 2. PREDICTING AND LEARNING OF BODY MOVEMENTS 21

+
+

Feedback
Controller

ut
Plant

yt1
* ytFeedforward

Controller

ut
ff

ut
fb

Delay

yt
*

Figure 2.10: The feedback error learning uses a signal from a feedback controller to learn a

feedforward controller [Jordan et al., 1999].

As an alternative to supervised learning, reinforcement learning algorithms can be used as well

[Jordan et al., 1999]. Reinforcement learning algorithms do not need a performance vector (i.e.

a correct joint signal) for each point in the task space, but only a scalar evaluation. The common

way is to define for each point in the goal space, a set of possible responses together with the

associated probability of selecting each response. If the reward is high, the selection probability is

increased, otherwise the probability is decreased. While reinforcement learning algorithms allow

delayed rewards, they are usually slower than supervised methods.

2.5.2 Learning algorithms

The learning schemes introduced so far are very general, and they do not restrict a learner to any

particular choice. The motor learning problem can be defined as a classification problem, which

involves labelling input patterns, or as a regression problem, which involves finding a functional

relationship between inputs and outputs, i.e. in this case a nonlinear function approximation

with high dimensional input. In further discussion we focus on a regression approach and briefly

present an example method which is widely used in motor learning - the locally weighted projected

regression (LWPR) [Schaal and Atkeson, 1998] [Vijayakumar and Schaal, 2000].

LWPR is an incremental function approximation algorithm which computes prediction ŷ for a

point x (mapping f : x→ ŷ) as a weighted sum of linear models:

ŷ = ∑
M
m=1 wmŷm

∑
M
m=1 wm

(2.7)

where all linear models ŷm are centred at points cm ∈ℜn:

ŷm = (x− cm)T bm +b0,m = x̃T
mβm (2.8)

where x̃m = {(x− cm)T ,1}T and βm are the parameters of the locally linear model. The region

of validity of each local linear model, called its receptive field, is determined by weights wm(x)

CHAPTER 2. PREDICTING AND LEARNING OF BODY MOVEMENTS 22

computed from a Gaussian kernel:

wm(x) = exp
(
−1

2
(x− cm)T Dm(x− cm)

)
(2.9)

where Dm is a distance metric that determines the size and the shape of region m.

LWPR allows for a convenient allocation of resources, while dealing with the bias-variance

dilemma - a trade-off between over-fitting and over-smoothing. More importantly, since each

local model is learned independently, LWPR directly addresses the negative inference problem - a

problem of forgetting useful knowledge when learning from new data (for details see [Schaal and

Atkeson, 1998]).

2.5.3 Learning movement primitives

While a composite control system (Figure 2.10) can potentially learn an arbitrary movement,

restricting possible classes of movements can reduce the search space during learning and action

recognition. Dynamic movement primitives (DMP) [Ijspeert et al., 2001] [Schaal et al., 2004] are

defined by systems of nonlinear differential equations, whose time evolution naturally smooths

generated trajectories in the kinematic space.

Within the reinforcement learning paradigm, the motor learning problem can be reformulated

as a problem of finding a task specific policy [Peters et al., 2003] [Schaal et al., 2004]:

u = π(y∗,w, t) (2.10)

where y∗ is a desired system state, u is a motor command, and w is an adjustable set of parameters

specific to the policy π (e.g. weights of a neural network). Learning of π quickly becomes

intractable for even a small number of dimensions of the state-action space. However, introducing

prior information about the policy can significantly simplify learning, e.g. in terms of a desired

trajectory.

To increase flexibility, it seems reasonable to provide a set of trajectory primitives rather than

a single desired one. Thus, instead of learning a single policy, a robot can learn a combination of

policy primitives [Schaal et al., 2004]:

u = π(y∗,w, t) =
N

∑
i=1

π
i(y∗,wi, t) (2.11)

On the other hand, it is possible to rewrite the control policy 2.10 as a differential equation [Schaal

et al., 2004]:

ẏ∗ = f (y∗,w, t) (2.12)

the problem of sensorimotor control is then entirely “shifted” to the kinematic space, indepen-

dently of the complex dynamical properties of an entire system. The relationship between kine-

matic variable y and motor command u can then be learned by one of the controllers introduced in

CHAPTER 2. PREDICTING AND LEARNING OF BODY MOVEMENTS 23

+
+

Feedback
Controller

u
Plant

y*Movement
Primitive

u ff

u fb

Feedforward
Controller

y

+

_

Task-specific
Parameters

Figure 2.11: A composite controller with the dynamic movement primitives (DMP) [Schaal et al.,

2004]. Each DMP can generate trajectories in the kinematic space (the joint space), or alternatively

in the task space (e.g. the Cartesian space).

the previous section independently on the control policy (which does not involve any more the mo-

tor command variable u as in Equation 2.11). A composite controller with the dynamic movement

primitives shown in Figure 2.11, translates a desired kinematic state of the arm y∗, i.e. locations,

velocities and accelerations into torques u. Consequently, complex trajectories in the kinematic

space can be generalized over the entire space, since all the nonlinearities due to dynamics of the

system are accommodated by the controller.

Without delving into unnecessary details, dynamical systems can have two types of attractors4:

a fixed point and a limit cycle. The appropriate sets of differential equations [Ijspeert et al.,

2001] can generate discrete trajectories (discrete DMP) and rhythmic trajectories (rhythmic DMP)

respectively. The shape of trajectories is controlled by a nonlinear function f which can be

conveniently approximated by a locally linear parametric model 2.7 introduced in the section

2.5.2. In addition, rhythmic DMPs can be parametrized by an energy level.

DMPs can be learned in two modes [Schaal et al., 2004]:

Imitation learning. Given the spatiotemporal characteristic of the sample trajectory y, locally

weighted learning (Section 2.5.2) finds the weights of a function estimator of the nonlinear

function f .

Reinforcement learning. The DMP learned by imitation can be further improved with respect

to an optimization criterion. The Natural-Actor Critic (NAC) [Peters et al., 2003] is a

special stochastic gradient method, which injects noise to the control policy in order to

avoid suboptimal solutions. A careful design of control policies can allow a humanoid robot

to play drums or even walk [Schaal et al., 2004].

4We are not dealing here with strange attractors (with fractal structure).

CHAPTER 2. PREDICTING AND LEARNING OF BODY MOVEMENTS 24

The DMPs invariance property also facilitates their further recognition and classification by

using parameters of a function estimator, and e.g. a nearest neighbour classifier.

2.5.4 Modular motor learning

Forward and inverse models introduced so far, are able to capture only one-to-one relation between

motor commands (e.g. torques) and the actual joint configuration of a robot5. For example a single

controller can be trained to perform a particular trajectory for a robotic manipulator. However, the

same controller will generate different trajectory if the hand attached to the manipulator holds a

heavy object. In other words, if the context of a movement changes, the trajectory generated by a

single controller will change as well.

[Wolpert and Ghahramani, 2000] [Wolpert and Kawato, 1998] propose to use context-

specialized controllers and Bayesian approach to estimate the probability of using a particular

context (e.g. whether a hand holds an empty or a full container - see Figure 2.12). According

to Bayes’ theorem, the context posterior probability can be factored into a product of the prior

and the likelihood. The prior p(context) is a probability of a particular context before the

movement, without taking into account the sensory feedback. The prior can be estimated for

example from vision. The likelihood p(sensory feedback|context) is a probability of observing

the current sensory feedback given a particular context. The likelihood can be estimated using a

forward model specialized for a particular context (see Figure 2.12). Bayes’ theorem states that

the posterior probability of a particular context can be estimated as:

p(context|sensory feedback) ∝ p(sensory feedback|context)p(context) (2.13)

The idea of using a Bayesian approach to estimate the context of movements was formalized in

the MOSAIC model [Wolpert and Kawato, 1998] and [Haruno et al., 2001]. The MOSAIC model

splits up experience into multiple internal models which correspond to the movement contexts.

Each internal model consists of a pair of forward and inverse models, so that within each pair a

forward model is learned to predict the behaviour of the associated inverse model (see Figure 2.13).

The system state prediction of the i-th forward model at the next time step t +1 is given by

ŷi
t+1 = φ(wi,yt ,ut) (2.14)

where wi are parameters of the model (e.g. weights of a neural network). Assuming that the

system dynamics is disturbed by Gaussian noise with standard deviation σ i, the likelihood of the

i-th context for a given system state yt can be written as [Wolpert and Kawato, 1998]:

li
t = p(yt |wi,ut , i) =

1√
2π|σ |i)2

exp
(
−|yt − ŷi

t |2

2|σ i|2

)
(2.15)

5Assuming that there is no perception ambiguity.

CHAPTER 2. PREDICTING AND LEARNING OF BODY MOVEMENTS 25

Figure 2.12: Context estimation for two contexts: an empty and a full carton of milk [Wolpert

and Ghahramani, 2000]. Before the movement, prior probability estimated from vision is

high for the full-carton context p(high) and low for the empty one p(empty). However, after

the movement has begun the actual sensory feedback matches the feedback generated by a

forward model specialized for the empty-carton context rather than the full one. Consequently,

the posterior probability p(empty|sensory feedback) is higher than p(full|sensory feedback).

Reprinted without permission from [Wolpert and Ghahramani, 2000].

CHAPTER 2. PREDICTING AND LEARNING OF BODY MOVEMENTS 26

The responsibility predictor activates modules according to their prior probabilities before any

movement is generated. Prior probability π i of module i is estimated using responsibility predictor

η parametrized by δ i and contextual signal z:

π
i
t = η(δ i

t ,zt) (2.16)

where contextual signal z may involve a target location, an estimate of an object mass, etc.

Figure 2.13: The MOSAIC model consists of N modules [Wolpert and Kawato, 1998], where each

inverse model is associated with a corresponding forward model. Modules are trained according to

their ability to predict the current context (responsibility estimator). Reprinted without permission

from [Wolpert and Kawato, 1998].

Finally, the responsibility estimator activates modules according to their (normalized)

posterior probabilities computed using Bayes’ theorem:

λ
i
t =

π i
t l

i
t

∑
n
j=1 π i

t li
t

(2.17)

The MOSAIC model can operate in the following modes:

Action production and learning Given contextual signal zt , the responsibility predictor initiates

movement by generating responsibility predictions πt for t ≥ 0. At time t > 0, forward

CHAPTER 2. PREDICTING AND LEARNING OF BODY MOVEMENTS 27

models receive an efference copy of motor commands and produce predicted state ŷt+1.

The predicted state is then compared to desired state y∗t+1, yielding the prediction error

(y∗t+1− ŷt+1). In the learning mode, the prediction error is used to learn forward models,

and together with feedback error u f b, to learn inverse models (e.g. in the feedback error

learning scheme introduced earlier in this chapter). The responsibility predictor can be

learnt by comparing responsibility predictions π with posterior probabilities λ .

Action observation During recognition, inverse models produce motor commands which

correspond to the observed action. Although in fact all motor commands are inhibited, their

efference copy is passed to forward models. At time t forward models generate predicted

states ŷt+1, which are then compared with observed state yt+1 at the next time step t + 1

yielding the prediction error (yt+1− ŷt+1). The prediction error pattern defines the level of

certainty that a particular action is being demonstrated.

Imitation: Imitation combines action observation followed by action production.

The HMOSAIC model consists of several layers of the MOSAIC model [Wolpert, 2003]. Due

to bidirectional interaction of the lower and the higher modules during learning and control, the

HMOSAIC model can learn how to chunk actions into elementary movements (low level), their

sequences (mid level), and symbolic representation (high level). The inputs of the higher-level

modules are the responsibilities of the lower-level modules, i.e. the higher-level forward models

learn how to predict the posterior probabilities of lower-level models. On the other hand, the

higher-level control models learn the prior probabilities to the lower-level control models, i.e. the

higher-level inverse models generate actions for further elaboration on the lower levels.

The HMOSAIC model is capable of learning progressively both the basic movements at the

lowest level, and their hierarchical temporal order at the higher levels [Wolpert, 2003]. Because

of the tree-like structure the HMOSAIC model can also learn multiple ways to achieve a single

target goal. This is a kind of generalization which enables recognition of the target goal of an

observed action, even though the comparison of the responsibilities of the lower-level modules

may significantly differ.

2.6 Summary

The chapter introduces mathematical models for sensorimotor learning in the context of sensory

prediction. Sensory prediction is thought to be an important mechanism found in many organisms

which facilitates not only perception but also action performance and action learning.

We started with psychological findings supporting the hypothesis that the CNS predicts

sensory consequences of motor actions (Section 2.1). We presented example experiments with eye

and hand tracking. The next Section 2.2 introduces internal models which enable us to control the

relationship between sensory input and motor commands. The forward dynamic model, forward

CHAPTER 2. PREDICTING AND LEARNING OF BODY MOVEMENTS 28

sensory model and inverse model have been also suggested to exists in the cerebellum [Miall and

Wolpert, 1996][Wolpert et al., 1998]. Section 2.3 introduces a sensorimotor integration scheme

for the state of a motor system. It estimates state variables which are required to predict and

control the motor system such as hand or head position. The existence of such state variables has

also been suggested [Goodbody and Husain, 1998].

The later sections introduce mathematical frameworks enabling motor control and learning of

a robot using the hypothesized internal models. Section 2.4 discusses predictive control schemes

which use an inverse model. An inverse model predicts motor commands required to achieve a

desired system behaviour. An inverse model combined with a feedback controller provides an

effective way of controlling robotic systems. Section 2.5 investigates learning of a motor system.

Typically learning of a single controller can be reduced to a regression problem. Significantly

better results can be obtained by constraining the space of possible movements to trajectories

generated by dynamic movement primitives.

Section 2.5.4 introduces modular motor learning which is particularly relevant to this thesis.

Modular motor learning combines several pairs of forward and inverse models where each pair

corresponds to a movement context. Each movement context accounts for a particular situation

which affects a movement, for example for a heavy or light object grasped by a robotic arm. Some

of the problems related to the application of modular motor learning to the pushing experiments

in this thesis are described in more details in the next Chapter 3.

Chapter 3

Predicting object motion during
manipulation

The previous chapter presented sensorimotor frameworks which enable a robot to successfully

learn and perform movements of the robot’s body, subject to some task goals. Unfortunately,

knowledge of how to move the robots’s own body is not alone sufficient to successfully complete

many simple manipulation tasks such as object pushing or grasping. In particular, because the

manipulated objects are not a part of the robot’s body, forward and inverse models cannot be used

directly without incorporating additional information about the objects’ behaviour.

This chapter introduces the problem of interaction between a robot and the physical

environment in terms of simple pushing manipulation tasks. Despite its seeming simplicity,

pushing manipulation poses several interesting challenges to a robotic learning system. The

chapter also reviews some of the robotics frameworks which have been successfully applied in

the pushing domain and which are relevant to the subject of this thesis.

The contents of this chapter are split into the following sections:

• Section 3.1 introduces prediction learning in robotic pushing manipulation as an important

instance of a problem of interaction learning with the physical world. The section discusses

advantages of learning to predict as opposed to prediction methods which use physics-based

models and do not involve learning.

• Section 3.2 introduces physics-based predictors and discusses some of the problems of

modelling real-word interactions. Physics simulations, although not “biologically inspired”,

can be seen as natural contenders to universal predictors of the physical world.

• Section 3.3 reviews robotic approaches in the pushing manipulation literature. Some of the

approaches address a problem of prediction learning, most notably a problem of affordance

learning. Others make use of prediction during planning of pushing actions. The approaches

in this group have usually limited or no learning capabilities.

29

CHAPTER 3. PREDICTING OBJECT MOTION DURING MANIPULATION 30

• Section 3.4 summarizes the chapter and the challenges posed by the interaction between a

robot body and the physical environment.

3.1 Introduction to prediction learning in pushing manipulation

Pushing manipulation has received comparatively little attention in the robotics research

community. However, pushing operations are encountered very frequently in our everyday

manipulation. They are often connected with grasping in various ways. For example they

frequently precede grasping phase when some parts of the hand touch and move an object before

achieving a stable grasp. During pushing of a heavy object however, grasp may only stabilize a

contact with the object.

For example, in a typical grasping operation, the robot opens a two-jaw gripper wide enough

to accommodate both the workpiece to be grasped and any uncertainty in the workpieces position.

Then the gripper begins to close. Generally the workpiece will be closer initially to one

jaw than to the other, and the closer jaw will make contact first. In general, such situations

result in translation and rotation of the pushed body before the second jaw makes contact, but

particularly severe difficulties are caused by tipping or toppling of the workpiece during grasping

attempts. Furthermore, deliberate manipulation by pushing may often actually be preferable to a

conventional pick and place type operation, especially in cases where the initial and goal positions

of the workpiece share a common support surface. Push manipulation avoids the complexities of

grasping and releasing an object and can greatly extend the manipulation capabilities of robots

which lack the size, strength or grasping hardware, necessary to physically lift an object.

Similarly as in the sensorimotor learning, the ability to predict the movement of an object

in response to a movement of the pusher or equivalently in response to motor commands, is

fundamental to control or planning by a human or by a robot. A prediction problem as discussed in

this thesis is a problem of finding the trajectory of a rigid object given the movement of a pushing

robotic finger and a static ground plane with optional obstacles. Furthermore, we are interested

in learning to predict these trajectories from a number example pushes for various shapes. Apart

from its interesting as a “cognitive way” of solving the prediction problem, prediction learning has

several useful advantages over fixed computation models such as physics simulations:

• It enables adaptation to changing environment conditions without explicit re-estimation of

the model parameters.

• It can improve prediction in the process of learning with arbitrary accuracy, providing that

the learning model is appropriately constructed.

• It provides plausible predictions in situations which are difficult or impossible to model -

for example due to complexity of the physical interactions.

• It provides plausible predictions despite large sensory noise.

CHAPTER 3. PREDICTING OBJECT MOTION DURING MANIPULATION 31

Despite the seeming simplicity of pushing operations, prediction learning of objects’

movements in pushing manipulation is challenging for several reasons:

• Objects may have complex physical properties which are difficult to model. They can have

variable coefficients of friction, restitution, etc. Furthermore, objects themselves do not

have to be rigid.

• Variations in the object shape are potentially infinite and they have a critical influence on

motion.

• The motion of an object depends on surface-surface contacts with other objects. Again,

potential variability here is infinite.

3.2 Physics-based prediction

3.2.1 Physics engines

One of the most obvious ways of predicting the movement of a pushed object is to use physics

laws. Physics-based predictors, in particular physics engines as for example NVIDIA PhysX

[PhysX, 2009] used in some of the experiments in this thesis, predict movements of bodies 1

in response to applied forces or as a consequence of mutual collisions.

Figure 3.1: Bodies in mass-aggregate engines are represented by a set of particles (red circles)

connected by links. The figure shows a character simulation in Twig engine (reprinted without

permission from [Horswill, 2008]).

The mass-aggregate engines represent bodies by a set of mass points or particles connected

by massless rods or links [Millington, 2007]. The body motion can be computed using Verlet

integration [Verlet, 1967]. For example Twig [Horswill, 2008] can simulate characters using a

1Physical objects with a non zero mass.

CHAPTER 3. PREDICTING OBJECT MOTION DURING MANIPULATION 32

mass-aggregate physics engine which is based on Jakobsens work on the Hitman engine [Jakobsen,

2003] (see Figure 3.1). Similar systems of masses connected by springs are also used by NVIDIA

PhysX [PhysX, 2009] to simulate cloths.

The most popular and relevant to this thesis are rigid-body engines. Shapes of the simulated

rigid bodies are represented by geometric primitives such as spheres, cylinders, parallelepipeds,

convex or concave triangle meshes. The body movements are then simple to describe by rigid

body transformations (see Appendix A). Given the initial configuration of the interacting bodies,

the engine subsequently detects all possible collisions as a set of contacts and modifies movement

of the simulated bodies according to one of the contact resolution methods (see Section 3.2.2).

3.2.2 Collisions

Impact occurs when at least two bodies collide with each other within a short period of time. This

causes high levels of forces, high acceleration and deceleration as well as fast energy dissipation.

Impact is closely related to contact which involves a continuous rather than discontinuous process

of two bodies touching each other over a sustained period of time. The difference between impact

and contact corresponds to two major classes of contact resolution methods:

1. Impulse-momentum or discrete methods (Section 3.2.3.1) assume that a single collision

between two bodies does not significantly affect the bodies’ motion during the impact [Kim,

1999]. This assumption limits the approach primarily to rigid bodies. The dynamic analysis

of a single collision can be split then into two parts, where the second part usually resolves

slipping, sticking and reverse motion [Gilardi and Sharf, 2002].

2. Continuous methods or force based methods (Section 3.2.3.2) assume that interaction forces

change in a continuous rather than impulse/discontinuous manner. The bodies’ motion

is resolved by adding and subtracting forces during the contact resolution period. The

methods from this group can offer more realistic approximation of the real behaviour of

the system than discrete methods, in particular in situations which involve more complex

contact configurations [Gilardi and Sharf, 2002].

Contact resolution methods are further discussed in Section 3.2.3.

3.2.2.1 Conservation laws

Two fundamental empirical laws of nature are particularly useful in analysis of collisions between

bodies: conservation of momentum and conservation of energy [Landau and Lifshitz, 1976].

Linear momentum p of a particle with mass m and with linear velocity v is defined as:

p = mv (3.1)

CHAPTER 3. PREDICTING OBJECT MOTION DURING MANIPULATION 33

Angular momentum L of a particle with linear momentum p which moves in a reference frame

with radial vector r is defined as:

L = p× r (3.2)

Alternatively, a body rotating around fixed axis with angular velocity ω and inertia tensor I
(represented by 3×3 real matrix) has angular momentum given by:

L = Iω (3.3)

The law of conservation of momentum states that the sums of linear momentum and angular

momentum of all bodies of a closed system are constant, i.e.

∑
i

pi = const (3.4a)

∑
i

Li = const (3.4b)

Consequently, momentum of a particular body can be exchanged with other bodies, but the total

momentum of the system of bodies is always preserved.

The law of conservation of energy states that the total amount of energy of a closed system

remains constant over time. Although, the total energy of a system of colliding bodies is preserved,

it can change their form from the kinetic energy into plastic deformation of bodies or into heat and

sound in energy dissipation process. The energy loss El caused by impact can be approximated by

negative work done by contact force Fc during the collision [Stronge, 1992]:

El =−
∫

Fc · δ̇dt =−
∫

Fcdδ (3.5)

where time-dependent variable δ models the body surface deformation. From the law of

conservation of energy we have:

E1
k = E2

k −El (3.6)

where E1
k and E2

k are kinetic energy of the bodies before and after the collision. If El = 0 the

collision is perfectly elastic, if E2
k = 0 the collision is perfectly plastic.

The energy loss is directly related with the phenomenon of wave propagation within colliding

bodies. Because bodies are not perfectly rigid, stress caused by the body deformation propagates

with a finite velocity, this in turn results in oscillations. Details of this process are studied in

[Stronge, 2004].

CHAPTER 3. PREDICTING OBJECT MOTION DURING MANIPULATION 34

time

deformation

A

O
compression restitution

B

C D

Figure 3.2: Body deformation during impact consists of compression and restitution phases (see

[Gilardi and Sharf, 2002]).

3.2.2.2 Restitution

The body deformation during impact depends on many physical properties such as material, shape

or approach velocity. Nevertheless one can distinguish two deformation phases: compression and

restitution [Gilardi and Sharf, 2002]. The compression phase begins when two bodies first make

contact at point O on the time-deformation diagram in Figure 3.2, and finishes at point A of the

maximum deformation of a body. The restitution phase starts at point A and it can finish on the

same point A (perfectly plastic collision), point B (partially plastic collision), point C (perfectly

elastic collision with no energy loss) or point D (partially elastic collision with energy loss but no

permanent deformation).

The body deformation caused by impact is very difficult to model, however the impact energy

loss El can be conveniently approximated by a coefficient of restitution e such that 0 ≤ e ≤ 1. If

the collision is perfectly elastic then e = 1, for a perfectly plastic collision e = 0.

There have been proposed several definitions of the coefficient of restitution. For example,

Newton model is discussed in [Whittaker and McCrea, 1988], Poisson model [Routh, 1905] or

Stronge model [Stronge, 2004].

3.2.2.3 Friction

Friction is another key aspect of impact and contact dynamics, it causes energy dissipation and

may stop or even reverse the body movement. Coulomb’s law is the most widely used model of

friction due to its simplicity and good approximation accuracy [Mason, 2001].

Consider a solid block on the table as in Figure 3.3 with clean, dry and unlubricated surfaces.

A slowly rising force Fa is applied to the block with the gravity force Fn = mg normal to the

surface. The tangential force Ft prevents the block from movement until Fa reaches level Fts. The

motion begins and Fa decreases to Ftd . Fts and Ftd can be approximated by

CHAPTER 3. PREDICTING OBJECT MOTION DURING MANIPULATION 35

F a

F t

F t F a

F n

s F n
d Fn

Figure 3.3: Coulomb’s law of sliding friction describes the body motion using the static coefficient

of friction µs and the dynamic coefficient of friction µd .

Fts = µsFn (3.7)

Ftd = µdFn (3.8)

where µs is the static coefficient of friction and µd the dynamic coefficient of friction. Two

situations are possible:

1. Sticking if there is no motion |Fa| ≤ µs|Fn|.

2. Sliding when |Fa|= µd |Fn|

The main problem with Coulomb’s law is the discontinuity of the tangential force due to static

and dynamic behaviour. A non-local model of friction [Oden and Pires, 1983] relates a value

of friction at one point to values of friction in the point neighbourhood. A non-linear friction

model allows a continuous transition from the sticking phase to the sliding phase [Haessig Jr and

Friedland, 1991] [Oden and Pires, 1983].

3.2.3 Contact resolution methods

3.2.3.1 Discrete methods

The discrete methods assume that impact between bodies is instantaneous and results in impulse

forces and discontinuous changes of the kinematic variables (velocities) but without instantaneous

displacements of the interacting bodies. The model usually assumes that colliding bodies are rigid

and all the bodies’ deformations can be approximated using coefficients of restitution and friction.

The collision problem can be solved using the law of conservation of momentum 3.4b called

impulsemomentum principle for collisions. The time integral of the contact force Fc is called

CHAPTER 3. PREDICTING OBJECT MOTION DURING MANIPULATION 36

impulse. Linear impulse P represents a change of the body momentum between t1 and t2 caused

by force Fc:

P =
∫ t2

t1
Fc(t)dt (3.9)

If p is the momentum of the colliding body, r is the distance from the centre of the mass to the

point of impact, L is the angular momentum, P and M are the linear and angular impulses, then

the relations between these variables before the impact at time t1 and after the impact at t2 for two

colliding bodies, specified with subscripts 1 and 2, can be expressed by [Brach, 2007][Gilardi and

Sharf, 2002]:

pt2
1 −pt1

1 = P (3.10a)

pt2
2 −pt1

2 =−P (3.10b)

Lt2
1 −Lt1

1 = r1×P+M (3.10c)

Lt2
2 −Lt1

2 = r2×P−M (3.10d)

where the change of linear and angular velocities as well as the linear and angular impulses have

to be computed. In order to solve the above equations additional relations must be provided. In

many approaches the angular impulse M is neglected. The motion of the body at the contact

can be decomposed into normal and tangential directions, so the kinematic constraints involving

coefficients of restitution and friction can be applied (for details see [Gilardi and Sharf, 2002]).

Applications of restitution and friction models (Sections 3.2.2.2 and 3.2.2.3) in many situations

may violate the law of energy conservation during the frictional impact2. The inconsistent results

are consequence of the definition of coefficients of restitution and may result in possible changes

of slipping direction or overestimation of the final velocity after the impact [Stronge, 1991]. To

account for these inconsistencies [Stronge, 1992] proposed the coefficients of restitution and

friction to be independent. [Brach, 2007] introduced energy and kinematics constraints on the

impulse ratio which describe the body behaviour in tangential directions

Furthermore, some of the inconsistencies arise due to the discontinuities in Coulomb’s law of

friction, so that no or multiple solutions may exist. Alternative models have also been proposed

(see Section 3.2.2.3), however no optimal solution has been found yet [Gilardi and Sharf, 2002].

Another problem is related to the basic assumption of the model: the objects’ rigidity and

vanishingly short duration of impacts. Bodies can have multiple contacts and the order of resolving

them can yield different results [Stronge, 2004].

3.2.3.2 Continuous methods

Continuous models, also referred to as compliant contact models, overcome some of the

weaknesses of the discrete methods [Gilardi and Sharf, 2002]. Unlike the discrete methods, the
2I.e. involving friction.

CHAPTER 3. PREDICTING OBJECT MOTION DURING MANIPULATION 37

continuous models explicitly account for the deformations caused by the forces during impact.

A large class of continuous models, the explicit models, relate the contact normal force Fn as an

explicit function of the local surface indentation δ [Brach, 2007]:

Fn ≡ Fn(δ , δ̇) = Fδ (δ)+F
δ̇
(δ̇) (3.11)

Several models have been proposed to approximate force Fn. Hertz’s model ([Hertz, 1896])

assumes elastic deformations and originally does not include damping:

Fn = kδ
m (3.12)

where k and m are material and geometry-specific constants. The model has been later extended

to plastic deformations in [Abrate, 1998]. [Goldsmith, 1960] introduced spring-dashpot model

represented by a linear damper to account for energy dissipation with force Fn approximated as:

Fn = kδ +bδ̇ (3.13)

A more physically realistic model introduced in [Hunt and Crossley, 1975] combines advantages

of the Hertz’s model and the spring-dashpot model. The model includes a non-linear damping

term into the contact normal force Fn formula:

Fn = bδ
p
δ̇

q + kδ
m (3.14)

Furthermore, as shown in [Hunt and Crossley, 1975] damping coefficients can be related with the

coefficients of restitution.

There are two major groups of methods with respect to the type of equations of motion for

the colliding bodies (for details see [Gilardi and Sharf, 2002]). Methods in the first group solve

an explicit functional relationship between the contact force and the generalized coordinates3,

including dependencies on material properties and other geometric properties. The second group

of methods takes into account the surface deformation due to collision using flexibility properties

of the contacting bodies, however without employing the surface normal forces.

Continuous methods have important advantages over discrete methods. They do not need to

distinguish between impact and contact situations and naturally extend to situations with multiple

bodies and contacts [Gilardi and Sharf, 2002]. Furthermore they allow for using any friction

model, including the models described in Section 3.2.2.3.

Continuous methods employing a non-linear damping term can model the real behaviour of

the system quite well, however the appropriate parameters of the model can be difficult to obtain

in practice.

3Positions and velocities.

CHAPTER 3. PREDICTING OBJECT MOTION DURING MANIPULATION 38

3.3 Pushing manipulation in literature

3.3.1 Pushing and planning

A majority of engineering literature which addresses the problems of robotic manipulation by

pushing, focuses on planning and relies on physics-based prediction of simple 2D shapes sliding

over a flat 2D surfaces. Fundamental work in this field comes from Mason [Mason, 1982][Mason

and Salisbury, 1985][Mason, 1986] who was one of the first to identify pushing operations as

fundamental in manipulation, and especially in grasping. Mason developed a detailed analysis of

the mechanics of pushed, sliding objects and determines conditions, in terms of centre of friction,

centre of gravity, point of application and direction of motion of an applied force from a position

controlled pusher, required for translation, clockwise rotation and counter-clockwise rotation of a

pushed object. The work can be considered “qualitative” in that exact conditions are found which

can determine which of various qualitatively different behaviours of the pushed object will occur.

Masons work was extended by Peshkin and Sanderson [Peshkin and Sanderson, 1985], [Peshkin

and Sanderson, 1986], [Peshkin and Sanderson, 1988], who attempt to put quantitative bounds on

the rate at which these predicted motions occur. This rate information is important for planning

guaranteed manipulation strategies. This work also built on ideas from the automation community,

where pushing operations had long been a familiar tool for orienting components travelling on a

factory conveyor belt, by using systems of fences, e.g. [Mani and Wilson, 1985].

Later work proposed methods of path planning for push manipulation of 2D objects. The

behaviour of the workpiece during grasping is discussed by Brost [Brost, 1988], who finds grasp

strategies which bring the workpiece into a unique orientation in the gripper, despite substantial

uncertainty in its initial orientation and position. Lynch [Lynch, 1992] developed a method for

finding the set of all possible motions of a sliding object, in response to an applied push. Using

this information it is possible to find the set of pusher motions which maintain a particular pusher-

slider contact configuration. Such motions may be continued indefinitely and can be used for

planar parts transfer operations, comprising what Lynch terms a stable non-grasp. More recently,

Cappelleri [Cappelleri et al., 2006] has developed path planning techniques for push manipulation

of 2D sliding objects. Cappelleri has examined push manipulation of millimetre scale objects

with a manipulated needle. He solves a millimetre scale 2D version of the classic peg in the hole

problem, using physics simulations to predict the workpiece movements which will result from

applied robot push primitives, and then planning a sequence of such pushes to achieve an end

goal state, using a modified Rapidly Exploring Random Tree (RRT) algorithm. Other work on 2D

manipulation by pushing includes the use of a mobile robot vehicle to push objects around a floor

space [Yoshikawa and Kurisu, 1991].

In contrast, we know of comparatively little literature which addresses the more complex

problems of predicting the results of push manipulations on real 3D bodies, which are free to

tip or roll, as well as perform simple translation and rotation under sliding. This problem is further

CHAPTER 3. PREDICTING OBJECT MOTION DURING MANIPULATION 39

compounded by the fact that real 3D objects will behave in very different ways depending on their

poses relative to both the manipulator and the surface on which they rest. Hence, models of the

workpieces dynamics, kinematics, friction parameters etc. which are learned in one configuration

may be completely unusable once, for example, the object has toppled over into another pose

relative to the tabletop.

3.3.2 Learning

Metta [Metta and Fitzpatrick, 2003], use a robot arm to push various parts of the environment,

in order to aid a vision system in identifying which parts of a scene comprise distinct objects,

according to a criterion of consistent regions of optic flow. However, this work does not attempt

to learn how to predict the the motions that will result from such pushes. Robotic systems have

been developed to learn pre-specified binary affordance classes, e.g. rolling versus non-rolling

objects [Fitzpatrick et al., 2003] or liftable versus non-liftable objects [Paletta et al., 2007].

Ridge [Ridge et al., 2008] present experiments where a robot arm coupled to a vision system

learns affordances of various different objects by applying pushes and then observing the resulting

motions. The system performs simple push actions on everyday objects (e.g. a pepsi can and a

mobile phone) that are placed on a work surface. The vision system extracts the resulting motion

of the pushed objects and gathers features such as mean velocity, total distance travelled and

final object orientations. These features, with the associated object label, are used to train a self

organizing map, thereby learning to distinguish between objects that roll (e.g. Pepsi can) and those

that do not (e.g. mobile phone).

This kind of approach is limited, in that affordances learned for a specific object and push

action, may not be generalizable to a new object or even the same object but in a different

orientation or subjected to a different kind of push. Furthermore, although certain primitive classes

of motion, e.g. rolling, may be predicted, such systems cannot predict the explicit rigid body

motion that will result when an object is subjected to a push, and are thus of limited value for

either planning or control during push manipulation operations.

3.4 Summary

This chapter introduced pushing manipulation as an important aspect of interaction of a robot

with the physical environment. In particular it focused on prediction of the motion of an object

subjected to a pushing movement of a robotic manipulator. This kind of prediction is performed

by physics simulators, which indeed are used as predictors in robotic scenarios. As it is argued in

Section 3.1, learning to predict may offer several benefits over prediction performed by fixed

models4 which may not be able to match reality in situations where accurate predictions are

essential (e.g. during planning) or when only noisy sensory data is available.

4I.e. models which explicitly encode some aspects of physics, despite tuning the parameters of a model.

CHAPTER 3. PREDICTING OBJECT MOTION DURING MANIPULATION 40

Section 3.2 is a brief introduction to physics engines. Physics engines represent objects usually

as geometric primitives and predicts their motion in terms of rigid body transformations using laws

of physics. They subsequently detect all collisions as sets of contacts and modify the movement

of simulated bodies using contact resolution methods. Unfortunately, none of these methods are

without drawbacks. Friction and restitution are particularly difficult to model, and frequently

lead to situations which violate the law of energy conservation. Furthermore, the order in which

contacts are resolved is critical and have great influence on the predicted motion. On the other

hand, continuous methods are relatively insensitive to the contact resolution order since they

explicitly handle deformations during a single contact. These models, however, are expensive

and appropriate parameters of the model can be difficult to obtain in practice.

Section 3.3 presented a literature review on pushing manipulation in robotics which can be

split into two major groups. Approaches from the first group are focused on planning, usually

employing physics-based forward models. Most of the approaches from this group is also limited

to 2D simplified world. Approaches from the second group enable learning of the objects’

behaviour, however they are mostly focused on the preprogrammed qualitative behaviour of

objects during pushing and poking actions.

Chapter 4

Controlling a robotic manipulator

One of the most important problems of control and movement planning for a robotic manipulator,

is the problem of finding motor commands such that the manipulator body follows a desired

trajectory. This control problem could be addressed by some of the sensorimotor learning

approaches presented in Chapter 2. However, the algorithms described in this chapter take a

classical path planning approach rather than a learning approach to this motion control problem.

One of the reasons for abandoning the learning approaches in this context, is that they do not

provide sufficiently simple and flexible ways to handle constraints which in practice have to be

imposed on-line on the motion of a manipulator in the presence of obstacles1 This approach also

allows us to focus on the prediction learning problem independently of learning control.

The algorithms presented in this chapter are suitable for any open-chain robotic manipulator

with position control, such as the Katana 6M180 [Neuronics AG, 2004] - a robotic manipulator

which has been used in the most of the robotic experiments in this thesis. The algorithms have

been implemented as part of the control software framework and they entirely replaced the original

manufacturer’s Katana control software2.

Although, the presented algorithms are mostly based on the state-of-art algorithms for the

manipulator control and path planning, there are a few minor contributions which are described in

the final section of this chapter.

The chapter consists of the following sections:

• Section 4.1 briefly describes the design of typical robotic manipulators, introducing some

basic concepts such as the number of degree of freedom, joint types, the joint space and the

workspace of a manipulator.

1The robotic manipulator used in the pushing experiments, the Katana 6M180 [Neuronics AG, 2004], is a purely

position controlled manipulator without any compliance capabilities or motor current limitation features. Consequently,

any position error during movement execution, in the presence of a table, may immediately cause serious damage to

the manipulator.
2Katana Native Interface only allows for movements by specifying the movement end-point computed by the build-

in inverse kinematic module. It does not allow for any trajectory or path control between the start point and the end

point of a movement.

41

CHAPTER 4. CONTROLLING A ROBOTIC MANIPULATOR 42

• Section 4.2 contains a derivation of formulas for the forward kinematics and the forward

instantaneous kinematics using the notation introduced in Appendix A. The section

discusses methods of solving the inverse kinematics problem and the inverse instantaneous

kinematics problem which are required by the motion control algorithms.

• Section 4.3 introduces the problem of controlling the motion of a robotic manipulator given

the desired trajectory in the joint space or the workspace of a robotic manipulator.

• Section 4.4 discusses the problem of planning trajectories of the manipulator body in

the presence of other bodies, and presents methods for collision detection during path

and trajectory planning. The section also describes a trajectory planner used in pushing

experiments from this thesis, which combines the trajectory planner together with a

capability to change the movement plan online, i.e. during its execution.

• Section 4.5 summarizes the movement planning methods used by the Golem framework and

in the experiments in this thesis.

4.1 Robot design

A typical robotic manipulator (also called a robotic arm) consists of a set of rigid links

interconnected by joints. If the links are connected serially, one after the other, a robotic

manipulator is called then an open-chain robotic manipulator. Joints are usually actuated by

motors (although passive joints can also be used), so that a whole manipulator can be controlled to

perform given tasks. A tool or end-effector, usually a gripper, is attached at the end of the chain of

links. The Katana 6M180 robotic arm is an example of an open-chain manipulator with a simple

gripper with two fingers as shown in Figure 4.1.

In classical mechanics the degree of freedom (DOF) is the number of independent variables

which must be specified to uniquely determine the position of a system. A rigid body in a 3D

Euclidean space requires at least 6 numbers to uniquely specify its pose or configuration, i.e the

position and orientation of the body (see Appendix A). In the case of a robotic manipulator the

number of degree of freedom or degree of mobility refers to a number of independent variables

which uniquely determine the position of each joint of the manipulator (usually excluding a

gripper). Therefore the number of DOF depends on a number of joints as well as on their type.

4.1.1 Manipulator joints

There are several joint types which are used in robotic manipulators. However four of them are

the most frequently used: revolute, prismatic, cylindrical and spherical.

A revolute joint is by far the most common type of joint used in robotics (see left top panel

in Figure 4.2). It is a 1-DOF joint, which means that there is one number required to uniquely

CHAPTER 4. CONTROLLING A ROBOTIC MANIPULATOR 43

Figure 4.1: The Katana 6M180 robotic manipulator is a 5-DOF manipulator consisting of 5 joints

([Neuronics AG, 2004]). The Katana manipulator also has a gripper with two fingers mounted at

the end-effector.

specify its configuration - a rotation angle around a fixed axis. The Katana manipulator is built of

5 such joints.

A prismatic joint is another commonly used joint. It has 1-DOF which corresponds to a pure

translational movement along a fixed axis (see right top panel in Figure 4.2).

A cylindrical joint has 2-DOF which correspond to translational movement along a fixed axis

and rotational movement around the same axis (see left bottom panel in Figure 4.2). This kind of

joint is usually built as a combination of a prismatic joint and revolute joint.

A spherical joint has 3-DOF and is capable of arbitrary rotations around a fixed point (see

right bottom panel in Figure 4.2). Spherical joints are usually built as a combination of 3 revolute

joints such that their axes of rotation intersect at a single point. In this way the orientation of a

joint can be uniquely parametrized by three angles.

All variables parametrizing the configuration of an arbitrary joint will be further referred as to

CHAPTER 4. CONTROLLING A ROBOTIC MANIPULATOR 44

Figure 4.2: 4 most frequently used joint types: 1-DOF revolute joint (left top panel), 1-DOF

prismatic joint (right top panel), 2-DOF cylindrical joint (left bottom panel) and 3-DOF spherical

joint (right bottom panel).

joint variables.

4.1.2 Manipulator configuration space

The configuration of each manipulator joint i is determined by a corresponding joint variable θi.

Interestingly, all joints with 2 or more DOF, as for example cylindrical joints or spherical joints

(Section 4.1.1), can be represented as a combination of 1-DOF revolute joints and prismatic joints

[Murray et al., 1994].

Joint variables parametrizing manipulator joints are limited to the intervals θi ∈ [ai,bi] ⊂ R,

where a particular choice of ai and bi depends on the manipulator design. For a revolute

joint the (half-open) interval is naturally associated with a unit circle in the plane S1 such that

0 < bi−ai ≤ 2π .

The set of all joint variables constitutes the joint space C (more generally the configuration

space) of a manipulator. The joint space of a manipulator consisting of p revolute joints

and r prismatic joints is defined as a Cartesian product of p unit circles and r intervals C =

S× . . .×S×R× . . .×R = Tp×Rr, where Tp is a p-torus and Rr is a r-cube. For example the

joint space of the 5-DOF Katana manipulator is a 5-torus C = T5.

An element θ ∈ C is called the manipulator configuration. The reference configuration of a

manipulator is defined as a configuration which corresponds to θi = 0 for all joint variables. A

particular choice of the reference configuration is arbitrary, however to simplify calculations it is

usually assumed that the manipulator is “stretched” along one of the coordinate axes of the base

CHAPTER 4. CONTROLLING A ROBOTIC MANIPULATOR 45

x

y

z

S

T

θ
1

θ
2

θ
3

θ
4

θ
5

q1,2 q3 q4,5

Figure 4.3: The Katana 6M180 manipulator (without a gripper) at the reference configuration

in the Golem virtual environment in the top panel.The Katana model in the bottom panel shows

base frame S, tool frame T , and the 5 axes of rotation of revolute joints with corresponding joint

variables θi and points qi (see definition of twist in Appendix A.3.2).

frame - for example the Y axis for the Katana manipulator (see Figure 4.3).

4.1.3 Manipulator workspace

One of the most important characteristics of a robotic manipulator is the ability to reach using

its end-effector as large as possible volume of space (as compared to the manipulator body size)

at possibly all orientations. The manipulator workspace is defined as the set of all end-effector

configurations which can be achieved by some choice of joint angles.

CHAPTER 4. CONTROLLING A ROBOTIC MANIPULATOR 46

Two subspaces of the manipulator workspace can be considered:

• The reachable workspace is the set of all positions which can be reached by some choice of

joint angles irrespectively to the end-effector orientation.

• The dexterous workspace is the set of all positions which can be reached by some choice of

joint angles and for an arbitrary orientation of the end-effector.

It is clear that manipulators which have less than 6 DOF cannot have the dexterous workspace

(of volume larger than zero). This is because there are (almost) no end-effector configurations

for which there can be found a corresponding set of joint angles. An example of such a robotic

manipulator is the Katana 6M180 which has 5 DOF.

4.2 Robot kinematics

The kinematics of a robotic manipulator describes the relationship between the joint variables and

the configuration of the parts of a robot body, in particular the configuration of the end-effector of

a robot. There can be two kinds of relations considered:

1. A many-to-one mapping between the joint variables and the configuration of the robot end-

effector. The problem of finding this mapping is called the forward kinematics problem if it

involves joint positions, or the forward instantaneous kinematics problem if it involves the

joint velocities and the velocity of the robot’s end-effector. Solutions to these problems can

be always found analytically for any set of joint variables.

2. A one-to-many relation between the configuration of the robot end-effector and the joint

variables. The problem of finding joint positions for a given configuration of the end-

effector is called the inverse kinematics problem. The problem of finding joint velocities for

a given velocity of the end-effector is called the inverse instantaneous kinematics problem.

The exact solutions to these problems may not exist, however it is always possible to find

approximate solutions.

A formal derivation of formulas for the forward kinematics and the forward instantaneous

kinematics is contained in Sections 4.2.1 and 4.2.2.

The problem of finding joint positions and velocities for a given end-effector configuration

and velocity is of particular importance for the motion control of a robotic manipulator (see

Section 4.3). A simple point-to-point motion of a manipulator requires at least computing joint

positions which correspond to the final desired configuration of the end-effector. This problem can

be solved using inverse kinematics algorithms described in Section 4.2.3. A more general case can

involve intermediate points on a trajectory with specified configurations of the end-effector as well

as its velocity - the linear and the angular velocity of the end-effector. This problem is addressed

in Section 4.2.4.

CHAPTER 4. CONTROLLING A ROBOTIC MANIPULATOR 47

4.2.1 Forward kinematics

Consider a model of the Katana manipulator as an example of an open-chain robotic manipulator

(see Figure 4.3). One can attach a reference frame to each link of the manipulator. In particular, the

base frame S is attached to the first immovable link, for example at the bottom of the manipulator.

The tool frame T is attached to the last link of the manipulator, i.e. to its end-effector.

The forward kinematics problem is a problem of finding the configuration of the tool frame T

given a set of joint variables θ ∈ C of a particular robotic manipulator. The forward kinematics is

represented by mapping gst : C → SE(3) which determines a rigid body transformation between

the tool frame T and the base frame S. The forward kinematics can be conveniently represented

as a product of exponentials of twists corresponding to the each joint of a manipulator ([Murray et

al., 1994]).

The transformation eξ̂ θ associated with twist ξ̂ (see introduction in Appendix A) moves frame

B from its initial configuration gab(0) in the frame A to the final configuration gab(θ) as below

(see Equation A.61):

gab(θ) = eξ̂ θ gab(0) (4.1)

Twist ξ̂ can represent any rigid body transformation including motion generated by a joint between

frames A and B attached to its two adjacent links, with θ corresponding to the amount of rotation

for a revolute joint or to the amount of translation for a prismatic joint.

Following Equation A.46, the rotational motion of a revolute joint i around axis ωi ∈ R3 with

any point qi ∈ R3 on the axis is represented by twist ξ̂i with twist coordinates:

ξi =

[
−ωi×qi

ωi

]
(4.2)

The cross product used in the above expressions allows for an arbitrary choice of a point qi on

the axis ωi. For example, for the Katana manipulator, point q1 corresponding to twist ξ̂1 can

lie anywhere on Z axis of the local reference frame, while point q2 corresponding to twist ξ̂2

anywhere on X axis. For convenience they both are chosen to lie at the origin the same frame (see

Figure 4.3).

Furthermore, following Equation A.53, the translational motion of a prismatic joint i in the

direction pointed by vi ∈ R3 is represented by twist ξ̂i with twist coordinates:

ξi =

[
vi

0

]
(4.3)

Consider the Katana manipulator at the reference configuration for which all joints apart from

the last one have been fixed at zero position so that θ1 = 0,θ2 = 0,θ3 = 0,θ4 = 0 with variable θ5

(Figure 4.3). From Equation 4.1 follows that the rigid motion associated with twist ξ̂5 and θ5 can

be written as:

CHAPTER 4. CONTROLLING A ROBOTIC MANIPULATOR 48

gst(θ5) = eξ̂5θ5gst(0) (4.4)

where twist coordinates ξ5 are constructed as in Equation 4.2 and where gst(0) represents the rigid

body transformation between tool frame T and base frame S at the reference configuration. After

applying a movement, let the last joint 5 be fixed and move only joint 4 with associated twist ξ̂4

and joint variable θ4. The end-effector configuration becomes:

gst(θ4,θ5) = eξ̂4θ4gst(θ5) = eξ̂4θ4eξ̂5θ5gst(0) (4.5)

Repeating the above procedure for all the other joints gives a formula for the manipulator

forward kinematics. It turns out that the above procedure is also independent on the order in

which the movements are applied to joints ([Murray et al., 1994]).

Applying a movement first to joint 4 is simple and gives:

gst(θ4) = eξ̂4θ4gst(0) (4.6)

Moving joint 5 is not so straightforward because the movement of joint 4 has already changed the

rotation axis ω5 of joint 5 and consequently the twist coordinates ξ5. Applying movements to each

joint in descending order as before allows us to avoid this situation.

For a given g ∈ SE(3) one can introduce Adg - a 6×6 matrix called the adjoint transformation

(see A.88):

Adg =

[
R p̂R

0 R

]
(4.7)

Then the changes of the twist coordinates ξ5 for transformation eξ̂4θ4 can be represented as follows:

ξ
′
5 = Ad

eξ̂4θ4
ξ5 (4.8)

The corresponding twist ξ̂ ′5 transforms according to Equation A.84, so that the transformation

generated by ξ ′5 and θ5 is given by:

eξ̂ ′5θ5 = eeξ̂4θ4 (ξ̂5θ5)e−ξ̂4θ4 = eξ̂4θ4eξ̂5θ5e−ξ̂4θ4 (4.9)

where in the last step identity A.94 has been used. The combined transformation is:

gst(θ5,θ5) = eξ̂ ′5θ5eξ̂4θ4gst(0) = eξ̂4θ4eξ̂5θ5e−ξ̂4θ4eξ̂4θ4gst(0) = eξ̂4θ4eξ̂5θ5gst(0) (4.10)

which is the same as Equation 4.5.

The above procedure can be generalized to arbitrary number of joints n with joint variable

θ = (θ1, . . . ,θn)∈C = Rn. The forward kinematics gst : C → SE(3) of an open-chain manipulator

can be written as:

CHAPTER 4. CONTROLLING A ROBOTIC MANIPULATOR 49

gst(θ) = eξ̂1θ1eξ̂2θ2 . . .eξ̂nθngst(0) (4.11)

The major advantage of forward kinematics in the above form as compared to e.g. Denavid-

Hartenberg parameters ([Denavit and Hartenberg, 1955]) is its simplicity. Creation of the forward

kinematics map comes down to specifying twists coordinates ξi for each joint i in terms of axes

of rotation ωi or directions of translation vi and their spatial locations - points qi (see for example

Katana manipulator on Figure 4.3). Rigid body transformation gst for a particular joint variable

vector θ is then obtained as a product of exponentials of matrices ξ̂iθi using formulas A.56 and

A.57.

4.2.2 Forward instantaneous kinematics

The forward instantaneous kinematics problem for an open-chain manipulator addresses the

problem of finding the end-effector velocity, given the positions and the velocities of the

manipulator joints.

The end-effector velocity can be expressed in terms of the instantaneous spatial velocity of a

rigid body introduced in Section A.4. From Equation A.76 it follows that the instantaneous spatial

velocity of the end-effector is given by a twist:

V̂ s
st = ġst(θ)g−1

st (θ) (4.12)

where gst(θ) is the manipulator forward kinematics 4.11. gst(θ) depends on joint variable vector

θ ∈Rn which changes in time as the manipulator moves along a trajectory θ(t). Therefore a chain

rule can be applied to ġst(θ), so that Equation 4.12 becomes:

V̂ s
st =

n

∑
i=1

(
∂gst

∂θi
θ̇i

)
g−1

st (θ) =
n

∑
i=1

(
∂gst

∂θi
g−1

st (θ)
)

θ̇i (4.13)

Because V̂ s
st is a twist, Equation 4.13 can be rewritten in twist coordinates:

V s
st = Js

st(θ)θ̇ (4.14)

where Js
st(θ) is a 6×n matrix called the spatial manipulator Jacobian ([Murray et al., 1994]):

Js
st(θ) =

[(
∂gst

∂θ1
g−1

st

)∨
. . .

(
∂gst

∂θn
g−1

st

)∨]
=
[
ξ
′
1 . . .ξ ′n

]
(4.15)

where the column vectors ξ̂ ′i in the above matrix are also twists, because V̂ s
st is a twist and θi are

independent variables. The spatial manipulator Jacobian is a linear operator which depends on

joint positions θ and which maps joint velocities θ̇ onto twist coordinates of the spatial velocity

of the end-effector.

Twists ξ̂ ′i can be further expanded using the forward kinematics formula 4.11:

CHAPTER 4. CONTROLLING A ROBOTIC MANIPULATOR 50

ξ̂
′
i = eξ̂1θ1 . . .eξ̂i−1θi−1

(
∂eξ̂iθi

∂θi

)
eξ̂i+1θi+1 . . .eξ̂nθngst(0)g−1

st

= eξ̂1θ1 . . .eξ̂i−1θi−1 ξ̂ieξ̂iθieξ̂i+1θi+1 . . .eξ̂nθngst(0)g−1
st

= eξ̂1θ1 . . .eξ̂i−1θi−1 ξ̂ieξ̂iθieξ̂i+1θi+1 . . .eξ̂nθngst(0)
(

g−1
st (0)e−ξ̂nθn . . .e−ξ̂1θ1

)
= eξ̂1θ1 . . .eξ̂i−1θi−1 ξ̂ie−ξ̂i−1θi−1 . . .e−ξ̂1θ1 (4.16)

It is a twist transformation as in Equation A.84 which corresponds to the transformation of twist

coordinates given by Equation A.87, so that:

ξ
′
i = Ad

eξ̂1θ1 ...eξ̂i−1θi−1
ξi (4.17)

Thus twist coordinate ξ ′i is just a twist coordinate ξi that is transformed to the current manipulator

configuration, using a product of twists that correspond to “earlier” joints than the i-th joint in the

manipulator chain.

One can also consider the instantaneous body velocity V̂ b
st (see Equation A.81) of the end-

effector which twist coordinates are related with the body manipulator Jacobian as below:

V b
st = Jb

st(θ)θ̇ (4.18)

where Jb
st(θ) is a 6×n body manipulator Jacobian matrix:

Jb
st(θ) =

[(
g−1

st
∂gst

∂θ1

)∨
. . .

(
g−1

st
∂gst

∂θn

)∨]
=
[
ξ
′′
1 . . .ξ ′′n

]
(4.19)

Calculations similar to those from Equation 4.16 show that twist coordinates ξ ′′i and ξi are also

related via twist coordinates transformation:

ξ
′′
i = Ad

g−1
st (0)e−ξ̂nθn ...e−ξ̂iθi

ξi (4.20)

4.2.2.1 Manipulator Jacobian

The manipulator spatial and body Jacobians represent a relationship between the joint velocities

and the spatial and body velocity of the end-effector. One can also represent the relationship

between the joint velocities and the end-effector velocity as given in Equation A.89:

Vst =

[
ṗst

ωs
st

]
= Jst(θ)θ̇ (4.21)

where Jst(θ) is called the manipulator Jacobian, sometimes the geometric Jacobian (see

[Sciavicco and Siciliano, 2000]) or just the Jacobian. The manipulator Jacobian can be obtained

from the spatial manipulator Jacobian Js
st using the adjoint transformation A.88. From Equation

A.90 it follows that:

CHAPTER 4. CONTROLLING A ROBOTIC MANIPULATOR 51

Jst(θ) =

[
I −p̂st

0 I

]
Js

st = AdgsJ
s
st (4.22)

where pst is the current location of the origin of tool frame T , and the corresponding transformation

gs is given by Equation A.91.

The manipulator Jacobian can also be obtained from the body manipulator Jacobian Jb
st . As

before, Equation A.92 gives:

Jst(θ) =

[
Rst 0

0 Rst

]
Jb

st = AdgbJb
st (4.23)

where Adgs is a 6× 6 real matrix, Rst is the current orientation of the tool frame T , and the

corresponding transformation gb is given by Equation A.93.

4.2.2.2 Analytical Jacobian

The forward kinematics of a manipulator with n joints is represented in Equation 4.11 as a mapping

gst : Rn → SE(3). One can choose a particular coordinate for the rigid body transformation gst ,

for example as a translation between the origin of the base frame and the tool frame followed by

a rotation represented by Euler angles (see Appendix A.2.3). The forward kinematics becomes

then a mapping gst : Rn → Rm, where m is a number of parameters representing the rigid body

transformation (6 for the translation and Euler angles representation).

The analytical Jacobian is created by differentiating the forward kinematics map gst : Rn→Rm

with respect to joint variables θ :

Ja
st(θ) =

∂gst(θ)
∂θ

(4.24)

where Jacobian Ja
st(θ) is a m×n real matrix.

4.2.3 Inverse kinematics problem

The relationship between the joint positions θ ∈ Rn = C and the end-effector configuration

gst : C → SE(3) is called the forward kinematics (see Equation 4.11):

gst(θ) = eξ̂1θ1eξ̂2θ2 . . .eξ̂nθngst(0) (4.25)

where the joints’ twist coordinates ξ̂i, the manipulator reference configuration gst(0) with the base

frame S and the tool frame T are all given.

The inverse kinematics problem for an open-chain manipulator in its basic formulation is a

problem of finding the joint positions θ for a given desired configuration of the end-effector g∗st
such that:

g∗st = gst(θ) (4.26)

CHAPTER 4. CONTROLLING A ROBOTIC MANIPULATOR 52

For a given g∗st the inverse kinematics problem may have the following number of solutions:

1. No solutions. It is a typical case for kinematically insufficient manipulators (see Section

4.2.4).

2. A discrete number of solutions. For example a 6-DOF manipulator can have up to 16

solutions for a given joint configuration.

3. An infinite number of solutions. It is a typical case for kinematically redundant manipulators

(but not only), when for a fixed g∗st the manipulator joints are still free to move. The set of

all θ which satisfy Equation 4.26 is called the self-motion manifold3.

In practice there can be various kinds of constraints imposed on the solutions of the Equation

4.26, i.e. on the joint positions θ as well as on the corresponding end-effector configuration gst(θ).

One can distinguish two types of constraints:

• Hard constraints which can be represented as a set of conditions. They usually involve

position limits in the joint space or obstacle boundaries (including boundaries of all the

manipulator links) in the workspace of a manipulator.

• Soft constraints which can be represented as an objective function. In the joint space they

can involve preferred position, distance to the joint limits or to the manipulator singularities.

In the workspace they can involve the preferred position or orientation of the end-effector.

In this way solutions to the unconstrained inverse kinematic problem (constrained by the

manipulator design only) from Equation 4.26 may no longer be valid in the constrained case.

A more general constrained inverse kinematics problem can involve searching for solutions which

satisfy the imposed hard constraints while minimizing objective functions related to the soft

constraints. Such a formulation of the inverse kinematics problem is particularly well-suited for

optimization methods, however other methods can also be used here.

Methods of solving the inverse kinematic problem can be split into two main groups [Siciliano

and Khatib, 2008]:

• Analytical methods explicitly solve the forward kinematics equation 4.25 (closed-form

methods and symbolic elimination methods [Tolani et al., 2000]). Methods from this

group offer the best performance, however solutions can be found only for predefined

types of manipulators with no more than 6 DOF. Furthermore, they are unable to solve

the constrained version of the inverse kinematics problem.

• Numerical methods iteratively solve the forward kinematics equation 4.25. They can usually

take into account imposed constraints offering greater flexibility at the price of poorer

performance.
3The joints which are free to move have joint velocities in the Jacobian null space, i.e. the motion along self-motion

manifold is the manipulator internal motion (Section 4.2.4).

CHAPTER 4. CONTROLLING A ROBOTIC MANIPULATOR 53

Due to the aforementioned limitations, the analytical methods will not be further considered

here. The following subsections briefly describe some of the most important types of the numerical

methods (for other references see [Siciliano and Khatib, 2008] and [Tolani et al., 2000]). The last

subsection 4.2.3.4 presents a method used in the Golem framework.

4.2.3.1 Newton-Raphson methods

The Newton-Raphson method finds successively better approximations of the root x of a real-

valued function f (x) using the following procedure (Figure 4.4):

x(i+1) = x(i)− f (x(i))
f ′(x(i))

(4.27)

x x(i+1) x(i)

f(x(i))

α

Figure 4.4: Single step i of the Newton-Raphson method approximates the root x of a function

f (x) making use of the relation: tanα = f ′(x(i)) = f (x(i))/(x(i)− x(i+1)).

Pieper [Pieper, 1968] was one of the first to apply the Newton-Raphson method to the inverse

kinematics problem. The solution is the root of a system of equations

e(θ)≡ gst(θ)−g∗st (4.28)

It is a multidimensional case with the error function e : Rn → Rm, θ ∈ Rn and gst(θ) ∈ Rm

representing a discrepancy between the current and the desired configuration of the end-effector.

The iteration 4.27 becomes

θ
(i+1) = θ

(i)− J−1(θ (i))e(θ (i)) (4.29)

where J−1 is a n×m inverse algebraic Jacobian matrix of function e.

The Newton-Raphson methods are local methods and the success of finding a global minimum

of function 4.28 for highly nonlinear gst(θ) largely depends on a good initial guess of θ , so that

their convergence in practice can be very slow. Furthermore, the methods are likely to fail in the

neighbourhood of singularities where the Jacobian becomes rank deficient (Section 4.2.4).

CHAPTER 4. CONTROLLING A ROBOTIC MANIPULATOR 54

The Newton-Raphson methods can be extended if the Jacobian is not square as it is required to

be in Equation 4.29. Klein [Klein and Huang, 1983] proposes to use the Jacobian pseudo-inverse

for the kinematically redundant manipulators (Section 4.2.4.1). Wampler [Wampler, 1986] used

the damped least squares method for the Jacobian inversion (Section 4.2.4.2).

4.2.3.2 Jacobian transpose methods

The Jacobian transpose method was first used in the inverse kinematics problem by [Balestrino

et al., 1984] and [Wolovich and Elliott, 1984]. The method interprets displacements in the joint

space as torques and the error vector e as a force, what allows for the Jacobian transpose in the

place of the inverse Jacobian [Balestrino et al., 1984]. Equation 4.29 becomes then

θ
(i+1) = θ

(i)−αJT (θ (i))e(θ (i)) (4.30)

where α can be interpreted a stiffness constant of a spring which pulls the end-effector towards a

goal.

It can be shown that if α is sufficiently small it will always reduce magnitude of the error

vector e. On the other hand, if e is in the null space of Jacobian N(JT) (Appendix B), no further

progress can be made since JT e = 0.

4.2.3.3 Optimization methods

Optimization methods pose the inverse kinematics problem as a nonlinear optimization problem

(see for example [Zhao and Badler, 1994] or [Badler et al., 1993]). Methods from this group are

the slowest among the numerical methods, however they are the most flexible with respect to the

manipulator types or imposed constraints.

Optimization methods usually address the constrained inverse kinematics problem as a

problem of finding a minimum of a function f : Rn→ R with respect to the joint variables θ :

min
θ

f (θ) (4.31)

where function f incorporates all constraints imposed on the forward kinematics map 4.25

including the desired configuration of the end-effector g∗st .

Constraints can be represented as a set of weighted objective (or goal) functions combined

linearly as in Equation C.3 or using max function as in Equation C.4. For example Badler [Badler

et al., 1993] proposes a variety of goals for the end-effector configuration and defines for each of

them a potential function:

1. for the position goal irrespectively to the end-effector orientation

2. for the orientation goal irrespectively to the end-effector position

3. for the aiming goal where a line on the end-effector “aims” at a given point

CHAPTER 4. CONTROLLING A ROBOTIC MANIPULATOR 55

4. for the plane goal where a point on the end-effector lies on a given plane

4.2.3.4 Golem inverse kinematics solver

The Golem inverse kinematics solver (Golem IKS) uses a version of differential evolution (DE),

an optimization method described in Appendix C. Golem IKS uses an asynchronous (immediate)

update of a population member instead of iterating through all population members and then

adding newly generated members to the next generation g+1.

For each newly generated crossover vector or a candidate solution which is a vector of joint

variables θ ∈ Rn, Golem IKS computes the following objective functions:

1. The position objective function is defined as a squared Euclidean distance between two

points:

fpos = ‖p∗− p‖2 (4.32)

where p∗, p ∈ R3 are a desired position of the origin of the tool frame and a position of the

origin of the tool frame corresponding to the joint variables θ .

2. The orientation objective function is defined as a squared rotation metric distance proposed

in [Kuffner, 2004]:

frot = (1−‖−q∗ ·q‖)2 (4.33)

where q∗ and q are unit quaternions representing a desired orientation of the tool frame and

an orientation of the tool frame corresponding to the joint variables θ .

3. The home position objective function is defined as a squared Euclidean distance between

two joint variables:

fhome = ‖θ home−θ‖2 (4.34)

where θ home ∈ Rn is a “home” or default position of a manipulator. fhome plays a more

important role for kinematically redundant manipulators where it limits the variability of

joints (the manipulator internal motion) which are in the manipulator Jacobian null space.

4. The current position objective function is defined as an Euclidean distance between two

points:

fcur = ‖pcur− p‖2 (4.35)

CHAPTER 4. CONTROLLING A ROBOTIC MANIPULATOR 56

where pcur, p ∈ R3 are the current position of the origin of the tool frame and a position of

the origin of the tool frame corresponding to the joint variables θ . fcur plays an important

role in limiting variability of solutions in a case where there exist changes of θ which do

not change values of the other objective functions (i.e. when θ is in their Jacobian null

space). For example small rotations of the first (base) manipulator joint on Figure 4.5 will

not (significantly) increase values of fpos nor frot .

Figure 4.5: The Golem inverse kinematics solver finds an optimal pose of the end-effector of a

5-DOF robotic manipulator (yellow) for a given desired pose (below the end-effector) and in the

presence of obstacles (gray).

All the above objective functions are linearly combined into a single objective function f :

f = wpos fpos +wrot frot +whome fhome +wcur fcur (4.36)

where wpos,wrot ,whome,wcur ∈ R are normalizing weights.

Furthermore, hard constraints can be checked against a candidate solution θ . Hard constraints

involve only collisions between the manipulator links and given obstacles (also see Section 4.4).

A candidate solution θ becomes a member of the new generation g + 1 if it satisfies hard

constraints and if its objective value is smaller than the objective value of a randomly chosen

default vector (see Appendix C). A procedure of generation and testing candidate solutions stops

either after a predefined number of steps or when a predefined maximum running time has been

exceeded (see an example on Figure 4.5).

CHAPTER 4. CONTROLLING A ROBOTIC MANIPULATOR 57

4.2.4 Inverse instantaneous kinematics problem

The relationship between joint positions θ ∈Rn and the end-effector configuration V ∈R6 is given

by Equation 4.21:

V = J(θ)θ̇ (4.37)

The inverse instantaneous kinematics problem for an open-chain manipulator is a problem of

finding the joint velocities θ̇ for given positions of the manipulator joints θ and the velocity of

the end-effector V , such that the Equation 4.37 is satisfied. It is a system of linear equations with

coefficients determined by θ which may have no exact solutions depending on the properties of

the Jacobian matrix J(θ) ∈ R6×n.

Consider a more general case where J is a m×n real matrix, so that θ̇ ∈ Rn and V ∈ Rm. The

rank plus nullity theorem states that (Equation B.4):

dim(R(J)) = rank(J) = r dim(N(J)) = n− r (4.38)

R(J) is the range of J which is an r-dimensional subspace of Rm of all end-effector velocities that

can be generated by some joint velocities for given joint positions. N(J) is the null space of J

which is a (n− r)-dimensional subspace of Rn of all joint velocities for given joint positions that

do not generate any end-effector velocity.

If m < n a manipulator is kinematically redundant, otherwise if n < m a manipulator is

kinematically insufficient (the case of the Katana manipulator). While m and n are constant for

a given manipulator, a value of r can change depending on the current joint positions. There can

be the two cases regarding the value of r and m:

1. If r = m then the Jacobian matrix is full rank. Equation 4.37 can be solved. There can be

always found joint velocities for a given desired end-effector velocity.

2. If r < m then the Jacobian matrix can be rank deficient if r < n, or full rank otherwise.

Equation 4.37 may have no solutions. There are end-effector velocities that cannot be

generated by any set of joint velocities. For example for Katana manipulator at the reference

configuration (Figure 4.3) there are no joint velocities which can generate the linear velocity

for the end-effector along Y axis.

A configurations of joint positions which corresponds to the second case with r < m is called

singularity of matrix J.

There have been developed several techniques to exploit the Jacobian null space if only

N(J) 6= 0. One can define matrix P ∈ Rn×n such that ([Sciavicco and Siciliano, 2000])

R(P) = N(J) (4.39)

If the joint velocity θ̇ ∗ is a solution to Equation 4.37 then joint velocity θ̇ given by

CHAPTER 4. CONTROLLING A ROBOTIC MANIPULATOR 58

θ̇ = θ̇
∗+Pθ̇

null (4.40)

is a solution as well, since from the assumption 4.39 follows that JPθ̇ null = 0 for arbitrary θ̇ null .

θ̇ null generates the internal motion of a manipulator such that it does not change the configuration

of the end-effector. The internal motion was used to avoid joint position limits [Liegeois, 1977], or

e.g. to return the joint positions back to the rest positions to help to avoid singular configurations

[Girard and Maciejewski, 1985].

The following subsections describe the most important methods of finding solutions to

Equation 4.37.

4.2.4.1 Jacobian pseudo-inverse

A pseudo-inverse method offers a general way of solving Equation 4.37 in a form:

θ̇ = J†V (4.41)

where J† ∈ Rn×m is the pseudo-inverse or the Moore-Penrose inverse of matrix J ∈ Rn×m. J†

is defined for all matrices and is unique for a given J [Meyer, 2000]. J† satisfies the following

properties:

JJ†J = J (4.42a)

J†JJ† = J† (4.42b)(
JJ†)T

= JJ† (4.42c)(
J†J
)T

= J†J (4.42d)

The solutions to the Equation 4.41 for a given matrix J ∈ Rn×m have the following properties:

1. If m = n and J is full rank, then J† = J−1 and there exists the exact solution θ̇ = J−1V .

2. If m > n or m = n and J is rank deficient, then there are no exact solutions and its

approximation θ̇ minimizes ‖Jθ̇ −V‖. Therefore pseudo-inverse gives θ̇ which is the

closest to the desired V (in the sense of least square).

3. If m < n then there exist an infinite number of solutions θ̇ . Pseudo-inverse method finds θ̇

such that it minimizes the norm ‖θ̇‖.

Despite providing solutions for all matrices J, the pseudo-inverse method tends to have

stability problems in the neighbourhood of singularities. Exactly at a singularity the method is

well-behaved, however in practice due to round-off errors singularities are rarely reached. Instead,

in the neighbourhood of a singularity for even small velocities V , the method can generate very

large joint velocities θ (see the next subsection and Equation 4.53).

CHAPTER 4. CONTROLLING A ROBOTIC MANIPULATOR 59

4.2.4.2 Damped least squares

The damped least squares, also known as the Levenberg-Marquardt method [Mor, 1977], avoids

problems with singularities of the pseudo-inverse method. Instead of finding a θ̇ that is a best

solution to the Equation 4.37, one can minimize the expression [Wampler, 1986]:

min
θ̇

(
‖Jθ̇ −V‖2 +λ

2‖θ̇‖2) (4.43)

with a non-zero damping constant λ ∈ R. Equivalently one can minimize:

min
θ̇

∥∥∥∥∥
[

J

λ I

]
θ̇ −

[
V

0

]∥∥∥∥∥ (4.44)

which can be written in the equation form (multiplying both sides by [JT λ I]) [Buss, 2004]:

[
J

λ I

]T [
J

λ I

]
θ̇ =

[
J

λ I

]T [
V

0

]
(4.45)

and then

(JT J +λ
2I)θ̇ = JTV (4.46)

As it will be shown the matrix JT J + λ 2I is invertible, the above equation can be rewritten in a

form:

θ̇ = (JT J +λ
2I)−1JTV (4.47)

where JT J is n×n and usually n > m, however [Buss, 2004]:

(JT J +λ
2I)−1JT =

(JT)−1(JT J +λ
2I)JT (JT)−1︸ ︷︷ ︸

I

−1

=
(
(JJT +λ

2I)(JT)−1)−1

= JT (JJT +λ
2I)−1 (4.48)

where JJT is m×m and therefore (JJT +λ 2I)−1 is simpler to compute.

Coefficients of the matrix (JJT +λ 2I)−1 can be found using the singular value decomposition

method (SVD) described in Appendix B.2. Following the identity B.5 matrix J ∈ Rm×n can be

factorized as follows:

J = UDV T (4.49)

where U ∈ Rm×m and V ∈ Rn×n are such that UTU = I and V TV = I, and D ∈ Rm×n is a diagonal

matrix with entries σ1 ≥ σ2 ≥ . . .≥ σr > σr+1 = . . . = σp = 0 for p = min(m,n).

Matrix JJT +λ 2I from Equation 4.48 can be rewritten as:

CHAPTER 4. CONTROLLING A ROBOTIC MANIPULATOR 60

JJT +λ
2I = (UDV T)(V DTUT)+λ

2I = U(DDT +λ
2I)UT (4.50)

The m×m matrix DDT +λ 2I is diagonal with entries σ2
i +λ 2 > 0 for all i. Hence DDT +λ 2I is

non-singular and its inverse is a m×m matrix with entries (σ2
i +λ 2)−1. The matrix given by 4.48

can now be written as:

JT (JJT +λ
2I)−1 = (V DTUT)(U(DDT +λ

2I)UT)−1

= (V DTUT)(UT)−1(DDT +λ
2I)−1U−1

= V DT (DDT +λ
2I)−1UT = VAUT (4.51)

where A = DT (DDT +λ 2I)−1 ∈ Rn×m is a diagonal matrix with entries:

aii =
σi

σ2
i +λ 2 (4.52)

From Equation B.6 it follows that the matrix given by 4.51, i.e. a solution to the damped least

square method 4.47 can be written as:

JT (JJT +λ
2I)−1 =

p

∑
i=1

σi

σ2
i +λ 2 viuT

i =
r

∑
i=1

σi

σ2
i +λ 2 viuT

i (4.53)

where p = min(m,n), and where vi and ui are column vectors of matrices V and U .

It is clear that for λ > 0, the matrix 4.53 can be computed for any J. If λ = 0, the damped

least squares method reduces to the pseudo-inverse method as it is visible in Equation 4.43. If

σi → 0 for any i the matrix entries may become arbitrary large. If λ > 0 the matrix 4.53 also

behaves as pseudo-inverse J† if only σi� λ , however unlike J† all its entries are well-behaved in

the neighbourhood of singularities, i.e. when σi→ 0 for some i.

The damping constant λ decides the quality of solutions to Equation 4.47, however it should

not be chosen to be too small to avoid problems at singularities. Diagonal entries σi of D as well

as matrices U and V can be found as described in Appendix B.2.

4.2.4.3 Golem inverse instantaneous kinematics solver

The damped least squares method is also used in the Golem framework. It computes joint

velocities for a desired end-effector velocity using Jacobian 4.22 computed from the generic

formula for the spatial manipulator Jacobian 4.17.

4.3 Robot control

The position control of a robotic manipulator is a problem of finding motor commands such

that the manipulator body follows the desired trajectory. In a typical robotic manipulator motor

commands correspond to torques which are applied to joints through various actuators - e.g.

CHAPTER 4. CONTROLLING A ROBOTIC MANIPULATOR 61

electric motors. The dynamics of a robotic manipulator describes the dependency between the

motion of manipulator body parts and the applied actuator torques. Lagrangian formalism enables

expressing the manipulator dynamics in the form of a second-order differential equation which

relates actuator torques with joint variables and also directly with workspace coordinates of the

end-effector (see [Ortega and Spong, 1988] and [Murray et al., 1994]).

There are two common ways of controlling a robotic manipulator with respect to the desired

trajectory type4:

1. Joint space control specifies the control problem for a given desired trajectory in the

manipulator joint space.

2. Workspace control or operational space control specifies the control problem for a given

desired trajectory in the manipulator workspace, usually in terms of the position and

orientation of the end-effector.

Both types of the manipulator control are briefly presented in the following Sections 4.3.1 and

4.3.2. The last Section 4.3.3 describes the controller used in the Golem framework.

4.3.1 Joint space control

Joint space control addresses a problem of finding actuator torques τ ∈ Rn such that the robotic

manipulator follows the corresponding desired joint space trajectory θd(t) ∈ Rn, where n is the

number of manipulator joints. It is a problem of finding τ for a given instantaneous (at a particular

time t) desired joint position θd and velocity θ̇d (also acceleration θ̈d) using sensory feedback θ

and θ̇ . A generic joint space controller is shown in Figure 4.6.

Controller Manipulator
 , ̇d , ̇d +

_

Figure 4.6: A generic joint space controller computes actuator torques τ such that the manipulator

follows a desired joint space trajectory θd(t), θ̇d(t). The controller can also use sensory feedback

θ(t), θ̇(t) to correct the trajectory error.

The joint space control problem is not so simple because in general the dependency between

τ and θd is nonlinear for the following reasons:

1. The manipulator links are interconnected, a motion of a single joint which results from the

applied actuator torque depends on the configuration of the entire manipulator.
4Other control methods can involve e.g. desired forces/torques applied to the manipulated objects

CHAPTER 4. CONTROLLING A ROBOTIC MANIPULATOR 62

2. A motion of a joint additionally depends on the current position and velocity of a joint due

to gravity, elasticity and friction.

3. Joint actuators are not linear devices, they also have limits on the maximum possible torques.

Lagrangian mechanics provides general methods to describe the motion of a mechanical

system which can account for the majority of the above dependencies. The motion of a

mechanical system is described by Lagrange equations which require specifying the kinetic and

potential energy of a modelled system [Arnold, 1989]. Solving Lagrange equations for a robotic

manipulator gives the following equations of motion (for derivation see [Murray et al., 1994] and

[Ortega and Spong, 1988]):

M(θ)θ̈ +C(θ , θ̇)θ̇ +N(θ , θ̇) = τ (4.54)

where θ(t) ∈Rn is the manipulator joint trajectory, τ ∈Rn are the actuator torques, M(θ) ∈Rn×n

is the manipulator inertia matrix, C(θ , θ̇)∈Rn×n is the Coriolis matrix and the term N(θ , θ̇)∈Rn

accounts for gravitation, friction and other external forces applied to joints.

The simplest control strategy can involve computing torque τ directly from the desired joint

trajectory {θd , θ̇d , θ̈d}:

M(θd)θ̈d +C(θd , θ̇d)θ̇d +N(θd , θ̇d) = τ (4.55)

The obtained open-loop control law is not however very robust, since does not take into account

the accumulating discrepancy between the actual state and the desired state. This discrepancy

is unavoidable in practice not only because it is difficult to create sufficiently good model of a

manipulator (in terms of M(θ), C(θ , θ̇) and N(θ , θ̇)), but also because of unmodeled external

forces applied during e.g. object manipulation.

Instead of controlling torques directly, one can require the manipulator to follow the trajectory

{θd , θ̇d} and calculate the (nonlinear) torque needed to overcome the inertia of the manipulator

body by modifying the desired torque acceleration {θ̈d}. It is the computed torque control law

which is defined as follows ([Ortega and Spong, 1988]):

M(θ)(θ̈d−Kvė−Kpe)+C(θ , θ̇)θ̇ +N(θ , θ̇) = τ (4.56)

with trajectory error e = θ −θd , and where Kv and Kp are constant gain matrices. Equation 4.56

consists of two components which can be separated to give [Murray et al., 1994]:

M(θ)(θ̈d)+C(θ , θ̇)θ̇ +N(θ , θ̇)︸ ︷︷ ︸
τ f f

+M(θ)(−Kvė−Kpe)︸ ︷︷ ︸
τ f d

= τ (4.57)

The feedforward component τ f f provides the amount of torque which would be sufficient to follow

a given trajectory if the manipulator was perfectly modelled by M(θ), C(θ , θ̇) and N(θ , θ̇). The

CHAPTER 4. CONTROLLING A ROBOTIC MANIPULATOR 63

feedback component τ f d provides the amount of torque which corrects any resultant trajectory

error.

The computed torque control law is an example of a feedback linearization method for

controlling a nonlinear system via nonlinear feedback which is represented by matrix components

(for details see e.g. [Spong, 1996]). The computed torque controllers are very robust, although

they are computationally expensive.

A PD controller is a simple alternative to the computed torque law, and can be seen as

linearised equation 4.56 (matrices M and C become diagonal):

τ =−Kvė−Kpe (4.58)

where as before e = θ −θd , and Kv and Kp are constant gain matrices. The above formula has no

feedforward term providing additional torque which is necessary to follow exactly along a desired

trajectory. Frequently Equation 4.58 is extended by an additional integral term eliminating steady-

state errors (PID controller). Furthermore, if Kv and Kp are diagonal, Equation 4.58 can be split

into n independent equations, providing a simple way of controlling each joint separately.

4.3.2 Workspace control

Workspace control addresses the problem of controlling the robotic manipulator’s motion for a

given desired trajectory of the end-effector in the manipulator workspace coordinates gd(t) ∈
SE(3), where gd(t) is assumed to be at least once differentiable (velocity control). The following

subsections briefly introduce two the most important ways of solving the workspace control

problem [Siciliano and Khatib, 2008].

4.3.2.1 Kinematics inversion

Controller Manipulator
 , ̇d , ̇d +

_
Inverse
kinematics

g d , ġd

Figure 4.7: A workspace controller realized as a combination of a joint space controller and an

inverse kinematics solver.

The simplest way of solving the workspace control problem is to find desired joint positions

θd and joint velocities θ̇d which correspond to gd(t) and ġd(t) and then use one of the joint

space controllers. This requires solving inverse kinematics and instantaneous inverse kinematics

CHAPTER 4. CONTROLLING A ROBOTIC MANIPULATOR 64

problems using for example algorithms described in Section 4.2. A workspace controller which

realizes these tasks is shown in Figure 4.7.

There are two major problems related to this kind of control approach:

1. Solving in real-time an inverse kinematics and instantaneous inverse kinematics can be a

CPU demanding task, even for modern computers.

2. Due to the nonlinearity of the forward kinematics map, trajectory errors which are decoupled

in the joint space will be no longer decoupled in the manipulator workspace. Consequently,

it is difficult to meaningfully control errors in the workspace by e.g. adjusting gain matrices

Kv and Kp of the computed torque controller in the joint space.

4.3.2.2 Direct workspace control

Controller Manipulator
 , ̇+

_
g d , ġd Forward

kinematics

g , ġ

Figure 4.8: A generic workspace controller controls trajectory errors directly in the workspace.

It is possible to overcome some of the difficulties of using the joint space controller by

formulating the workspace control problem directly in the end-effector coordinates. A generic

workspace controller is shown on Figure 4.8.

So defined control problem requires parametrization of the forward kinematics mapping such

that gst : Rn→Rm where m is a number of parameters representing the rigid body transformation.

Differentiation of the mapping gst yields

ẋ = Ja(θ)θ̇ (4.59)

where Ja(θ) is the analytical Jacobian of gst (Section 4.2.2.2). Assuming that J has its inverse, the

following relationships hold:

θ̇ = J−1ẋ θ̈ = J−1ẍ+
(

d
dt

J−1
)

ẋ (4.60)

Substituting the above relationships into the Lagrange manipulator Equation 4.54 and multiplying

it by J−T = (J−1)T gives [Murray et al., 1994]:

J−T M(θ)J−1ẍ+
(

J−TC(θ , θ̇)J−1 + J−T M(θ)
d
dt

J−1
)

ẋ+ J−T N(θ , θ̇) = J−T
τ (4.61)

CHAPTER 4. CONTROLLING A ROBOTIC MANIPULATOR 65

which can be rewritten as [Murray et al., 1994]:

M̃(θ)J−1ẍ+C̃(θ , θ̇)ẋ+ Ñ(θ , θ̇) = F (4.62)

where

M̃(θ) = J−T M(θ)J−1 (4.63a)

C̃(θ , θ̇) = J−TC(θ , θ̇)J−1 + J−T M(θ)
d
dt

J−1 (4.63b)

Ñ(θ , θ̇) = J−T N(θ , θ̇) (4.63c)

F = J−T
τ (4.63d)

Equation 4.62 has the same structure as the manipulator Equation 4.54 defined in joint space

coordinates5. In particular the computed torque controller becomes:

M̃(θ)(ẍd−Kvė−Kpe)+C̃(θ , θ̇)ẋ+ Ñ(θ , θ̇) = F (4.64)

where xd is the desired workspace trajectory, e = x− xd is the trajectory error, and Kv and Kp are

constant gain matrices.

4.3.3 Golem controller

A controller used in the Golem framework was designed to work mainly with the Katana

manipulator, therefore it also shares some of its limitations.

Katana 6M180 is an open-chain manipulator with five degrees of freedom (DOF) (plus one

degree for a gripper). The Katana provides an integrated PID controller with a separate control

of each joint actuator (diagonal gain matrices in Equation 4.58). However, the original Katana

firmware could accept only a small predefined number of joint trajectories represented by a set of

third degree polynomials in a form:

θd(t) = a3t3 +a2t2 +a1t +a0 (4.65)

where a0,a1,a2,a3 ∈ R are the polynomial coefficients and t = [0, tmax) is a time variable within a

given time interval. The trajectories had to be sent to the Katana PID controller prior to execution

of the movement. Therefore it was virtually impossible to create any more complex trajectory6.

This limitation has been removed thanks to cooperation with the Katana manufacturer

(Neuronics AG [Neuronics AG, 2004]). A new redesigned firmware is capable of accepting

single trajectories of the form of 4.65 online, one by one without interrupting the movement.

5It can be proven from Lyapunov stability theory that controllers built using the Equation 4.62 are stable as well
[Murray et al., 1994]

6Consequently the original Katana user interface (Katana Native Interface) did not allow (and still does not) for a

true trajectory control.

CHAPTER 4. CONTROLLING A ROBOTIC MANIPULATOR 66

Furthermore, the firmware buffer has been redesigned to minimize communication latencies

between the controller and a PC interface.

4.3.3.1 Control modes

The Golem controller can operate in two modes:

1. In the joint space control mode the controller works according to the scheme 4.6. The

controller accepts sequences of pairs (θd , θ̇d) which are subsequently transformed into third

degree trajectories 4.65 and sent to a manipulator. Each trajectory requires 4 parameters to

be fully specified, i.e. two consecutive pairs (θd , θ̇d).

2. In the workspace control mode the controller works according to the scheme 4.7.

The controller accepts sequences of pairs (gd , ġd) where gd is the desired end-effector

configuration. Configurations gd use angle-axis parametrization of rotation (Appendix

A). The corresponding pair (θd , θ̇d) is computed using the inverse kinematics and inverse

instantaneous kinematics methods described in Subsection 4.2.4.3.

The inverse kinematics method 4.2.3.4 is based on the differential evolution optimization

algorithm (see Appendix C) with an initial population which is a set of joint variables {θ}.
The population {θ}t at time t is generated only locally by sampling from a Gaussian with

a centre attached at the manipulator configuration θ t . The configuration θ t is obtained by

extrapolation of a trajectory polynomial from the previous time step t−1.

4.4 Robot planning

The motion planning for a robotic manipulator is the problem of finding a joint space trajectory

between a given initial configuration and a goal configuration of a manipulator. The initial and the

goal configurations can be specified in either the joint space or in the workspace of a manipulator.

By specifying some ad hoc trajectory between these configurations, motion planning can be also

considered as the joint space control problem or the workspace control problem respectively (see

Section 4.3). However in many cases a given fixed trajectory may not be feasible due to various

kinds of constraints imposed on the motion of a manipulator. Instead, one can search for a

trajectory such that it does not collide with obstacles while it can minimize various objectives

such as for example maximum velocity or acceleration of joints given the movement duration7.

Path planning is a basic instance of the motion planning problem that does not consider

differential constraints, i.e. constraints that are related to the velocity and the acceleration of

a manipulator body. The path planning problem for a robotic manipulator is introduced in

Section 4.4.1. Sampling-based approaches to the planning problem are among the most general

and successful ones and they are introduced in Section 4.4.2. Approaches which address the

7The motion planning problem can be further complicated by uncertainties, sensory feedback, etc. [LaValle, 2006].

CHAPTER 4. CONTROLLING A ROBOTIC MANIPULATOR 67

differential constraints are introduced in Section 4.4.3. The last section 4.4.4 describes the motion

planner used in the Golem framework.

4.4.1 Path planning problem

Two fundamental notions in the path planning problem involve:

1. The configuration space C or a C-space which is an Euclidean n-space - a set of all

possible configurations of a robot. A single element q ∈ C = Rn uniquely represents the

configuration a robot. The configuration space of a robotic manipulator corresponds to a set

of all possible joint variables θ (Section 4.1.2).

2. The workspace W which is an Euclidean m-space - a set of points Rm with m = 2 (plane)

or m = 3 (3D space). The workspace W should not be confused with the manipulator

workspace which is a space of positions and orientations of the end-effector of a manipulator

(Section 4.1.3).

The workspace W contains two closed subsets: an obstacle region O ⊂W and a robot body

A ⊂ W . O and A are usually represented as sets of geometric primitives. While an obstacle

region O is assumed to be static, a robot body A (q) is a function of its configuration q.

The C-space obstacle region Cobs is defined as:

Cobs = {q ∈ C : A (q)∩O 6= /0} (4.66)

The free space C f ree is a space of all configurations that avoids collisions:

C f ree = C \Cobs (4.67)

The path planning problem is defined as follows [Siciliano and Khatib, 2008]. For given:

1. Workspace W = Rm with m = 2 or m = 3

2. Obstacle region O ⊂W

3. Robot body A (q)⊂W which can be determined for any configuration q ∈ C

4. An initial configuration qI ∈ C f ree

5. A goal configuration qG ∈ C f ree

find a continuous path τ : [0,1]→ C f ree such that τ(0) = qI and τ(1) = qG.

A simplified version of the path planning problem known as the piano mover’s problem where

an obstacle region and a robot body are represented by polyhedra has been shown to be PSPACE-

complete [Reif, 1979]. However, if the differential constraints are taken into account, it is not

known yet if the problem is decidable except for some special cases [Cheng et al., 2007].

CHAPTER 4. CONTROLLING A ROBOTIC MANIPULATOR 68

4.4.2 Sampling-based approaches to path planning

Sampling-based planners make use of advances in modern collision detection algorithms which

are capable of efficiently computing whether a particular configuration q is collision free, i.e. if

q∈C f ree. A planner samples configuration space C and constructs a roadmap which approximates

collision free paths τ : [0,1]→C f ree. In this way a planner does not access the configuration space

directly, but only through a collision detection algorithm.

Sampling-based planners cannot assure that a collision-free path will be found in a finite time.

Despite this limitation sampling-based planners are capable of solving real-world problems which

are impractical to solve by complete approaches [Siciliano and Khatib, 2008].

A roadmap is represented as an undirected graph G(V,E) with a set of vertices V which are

sampled configurations in the free space C f ree and a set of edges E which are collision-free paths

determined by a local planner. Sampling-based planners are usually classified with respect to the

way in which the graph G(V,E) is constructed:

1. Multi-query planners construct a complete graph G(V,E) which approximates the connec-

tivity of the entire free space C f ree. Assuming that the obstacle region Oobs does not change,

multiple planning queries can be efficiently answered using the same initially created graph.

2. Single-query planners construct a graph G(V,E) online for each new planning query. To

efficiently answer a given query the single-query planners try to minimize the exploration

of the configuration space C .

Multi-query and Single-query planners are described in Section 4.4.2.1 and Section 4.4.2.2.

The most important sampling techniques are described in Section 4.4.2.3, local planners in Section

4.4.2.4, and finally collision detection techniques in Section 4.4.2.5. More details on sampling-

based planners can be found in a survey [Tsianos et al., 2007] and [Geraerts and Overmars, 2004].

4.4.2.1 Multi-query planners

Probabilistic Road Map (PRM) methods have been developed independently by different sites

[Overmars, 1992] [Kavraki and Latombe, 1994] [Kavraki et al., 1996] [Amato and Wu, 1996]

[Svestka, 1997]. PRM is an efficient and general approach which constructs a graph G(V,E)

approximating the connectivity of the entire free space C f ree. A typical PRM method constructs

G(V,E) using the following procedure (also see [Siciliano and Khatib, 2008]):

1. Initialize G(V,E) with an empty set of vertices V and an empty set of edges E.

2. Sample a random configuration s ∈ C f ree using sampling techniques from Section 4.4.2.3.

3. Find all neighbouring vertices q from G(V,E) such that their distance µ to s is small enough

given some predefined metric d, e.g. d : C ×C → R.

CHAPTER 4. CONTROLLING A ROBOTIC MANIPULATOR 69

s

Cobs

Cobs

C free

Figure 4.9: In each iteration of the PRM method, for a sampled configuration s, the neighbouring

vertices q within a predefined distance µ are selected. Then, for each neighbouring vertex q the

method tries to construct a collision-free path to s (dashed lines). Each collision-free local path is

inserted to the graph as an edge (continuous lines).

4. For each neighbouring vertex q attempt to construct a collision-free path τlocal : [0,1]→
C f ree such that τlocal(0) = s and τlocal(1) = q using one of the local planners from Section

4.4.2.4.

5. If the path τlocal is found insert it into G(V,E) as an edge.

6. Break the procedure if a termination condition is satisfied - e.g. a total number of vertices

of G(V,E) equals to some predefined limit. Otherwise return to step 2.

A single iteration of the PRM method is shown on Figure 4.9. Vertices in the graph G(V,E)

comprise clusters which may (a single cluster) or may not (multiple clusters) be interconnected by

edges (local paths).

In order to solve a planning query an initial and a goal configuration qI,qG ∈ C f ree are added

to the graph. If the query configurations belong to the same graph cluster, a shortest (optimal) path

can be found using e.g. A? algorithm (Section D). If the query configurations do not belong to the

same graph cluster, a continuous path connecting qI and qG does not exist. New vertices can be

added to the graph or the entire graph can be rebuilt.

CHAPTER 4. CONTROLLING A ROBOTIC MANIPULATOR 70

4.4.2.2 Single-query planners

Single-query planners focus on efficient answering a single planner query. They explore the

configuration space by generating incrementally tree data structures initialized at known (usually

at initial and goal) configurations eventually connecting them. A typical single-query planner

constructs a graph G(V,E) using the following tree-expansion procedure [Siciliano and Khatib,

2008]:

1. Initialize G(V,E) with an empty set of edges E and a set of vertices V which includes at

least an initial configuration qI ∈ C f ree.

2. Select a local initial configuration s ∈ V , and a local goal configuration u which may or

may not be in V . If there can be no other goal configurations u selected, or some other

termination condition is satisfied, report a failure and break the procedure.

3. Attempt to construct a collision-free path τlocal : [0,1]→ C f ree such that τlocal(0) = s and

τlocal(1) = u using one of the local planners from Section 4.4.2.4.

4. If the path τlocal is found insert it into G(V,E) as an edge and insert u as a vertex if it is not

already in V . Otherwise return to step 2.

5. If the graph G(V,E) contains a solution path from qI to qG, report a success and break the

loop. Otherwise return to step 2.

Path search performed by the above procedure generates a tree rooted at the configuration s

from the first iteration. Unidirectional planners generate a tree rooted at a single configuration,

usually qI . Bidirectional (see for example [Kuffner Jr and LaValle, 2000]) and multidirectional

(see for example [Plaku et al., 2005]) planners use two and more such configurations - qI , qG or

configurations placed e.g. near narrow passages to avoid being trapped. One of the drawbacks

of using more than a one tree is an increasing difficulty of determining the optimal connections

between them.

The tree-expansion procedure critically depends on the second step where the (local) initial

and goal configurations are selected for further tree expansion.

Rapidly exploring random trees (RRT) [LaValle, 2001] bias tree-expansion towards a Voronoi

region proportionally to its volume. A generalized version of RRT, rapidly exploring dense trees

(RDT) use a bidirectional search generating two trees rooted at qI and qG [LaValle, 2006]. RDT

spends roughly half of the time expanding the trees and the other half trying to connect them.

Heuristically-guided random trees [Urmson and Simmons, 2003] bias the search towards low-

cost paths using a total cost of the path from the initial configuration qI and estimation of the

remaining cost to a goal configuration qG. Similar principles are exploited in [Diankov and

Kuffner, 2007] using a version of the A? graph search algorithm. Utility-guided random trees

[Burns and Brock, 2007] evaluate several aspects of the tree expansion: the utility value of the

configuration s to be expanded, the expansion distance and direction and connection attempts.

CHAPTER 4. CONTROLLING A ROBOTIC MANIPULATOR 71

4.4.2.3 Sampling techniques

The efficiency of sampling-based planners largely depends on a way in which vertices V of the

graph G(V,E) are generated. Vertices are samples of the free configuration space s ∈ C f ree. The

most popular sampling techniques of the entire configuration space C are listed below [Geraerts

and Overmars, 2004] [LaValle, 2006]:

• Random methods generate samples with uniformly generated random coordinates in the

allowable configuration space C . The corresponding poses of a robot in a workspace may

not be uniformly spread due to the nonlinearity of the forward kinematics map.

• Grid methods choose samples on a grid. The process starts with some initial grid resolution,

subsequently doubling it every step until the required grid resolution is obtained.

• Cell-based methods attempt to generate uniformly spread samples in the workspace. The

procedure generates samples within a single cell in the workspace, divides it into 2D sub-

cells for D = 2 or D = 3 and repeats the process within each sub-cell.

The C-space obstacle region Cobs can occupied critical regions of the configuration space. There

have been developed several techniques which either generate samples between obstacles or close

to obstacle boundaries, for example [LaValle, 2006]:

• Voronoi region-based methods [Wilmarth et al., 1999][LaValle, 2001] generate samples

near Voronoi regions of obstacles.

• A Gaussian sampling method generates samples near obstacles using Gaussian distribution

and two samples such that one lies in the free space C f ree while the other in the obstacle

region Cobs [Boor et al., 1999].

4.4.2.4 Local planners

Local planners attempt to construct a collision free path connecting the local initial and the local

goal configurations s,u ∈V of the graph G(V,E). There is a trade-off between the ability to create

collision free paths and the efficiency of a planner expressed in terms of the number of attempted

connections per unit of time. Furthermore, local planners should be deterministic to avoid storing

parameters of each local path connecting graph nodes.

Although there exist other methods [Amato et al., 1998], in majority of cases the optimal

strategy is to choose a simple straight line local path in the configuration space. The path can then

be efficiently tested for collisions as described in Section 4.4.2.5.

4.4.2.5 Collision detection

A path generated by a local planner needs to be determined if it is collision free, i.e. if

τlocal : [0,1]→ C f ree for a given τlocal(0) = s and τlocal(1) = u. Testing for collisions a continuum

CHAPTER 4. CONTROLLING A ROBOTIC MANIPULATOR 72

of configurations on the path τlocal can be very expensive therefore the majority of methods use

only a discrete set of configurations lying on the path. Collision detection algorithms can then

be abstracted as a simple black-box boolean-valued function f f ree : C → {true, f alse} which

indicates if a particular configuration q ∈ C is collision free (true) or not (f alse) 8.

There are two most important methods of discretization of the local path used [Geraerts and

Overmars, 2004]:

1. An incremental method performs a collision check in small steps starting from configuration

s to u or from u to s.

2. A binary method checks a middle configuration on the path and if the configuration is

collision free, the method recursively checks the two created halves of a path in a breath-first

manner.

The collision detection function f f ree : C → {true, f alse} checks if a robot body A (q) ⊂
W represented as a set of n geometric primitives (robot links) A1(q), . . . ,An(q) for a given

configuration q, collides with an obstacle region O ⊂ W represented as a set of m geometric

primitives O1, . . . ,Om. The function f f ree has to test for collisions each pair of geometric primitives

from a set A1(q), . . . ,An(q),O1, . . . ,Om.

There is a performance trade-off between the number of primitives and the representational

complexity of a single geometric primitive. Collision checking between planes, spheres, capsules

or cylinders is significantly faster than between non-convex polyhedra. On the other hand

representations of bodies as sets of such simple geometric primitives may not be sufficient. One

way to alleviate this problem is to decompose each body into a tree [LaValle, 2006]. Vertices of

a tree represent bounding primitives that contain some subsets of primitives comprising the body.

A bounding primitive which corresponds to the root contains all body geometric primitives. The

method avoids unnecessary collision checks between bodies’ primitives if the two tested bodies are

far apart. It recursively tests for collisions in the bounding primitives hierarchy only if a collision

is detected at a higher level of the hierarchy.

4.4.3 Incorporating differential constraints

Differential constraints limit the velocity q̇ and also the acceleration q̈ of the moving robot’s body.

Because they depend on the current configuration q ∈ C they are referred as to local constraints,

in contrast to global constraints represented by obstacle region O ⊂W .

Differential constraints on C are usually expressed in the form of a state transition equation

ẋ = f (x,u) where u ∈ U is an action chosen from action space U , and x ∈ X represents both a

configuration and velocity x = (q, q̇) from a state space X of C-space.

By ignoring velocity q̇, one can define the obstacle region Xobs as:

8In order to improve collision detection performance some algorithms can also return information about a distance

between obstacles’ boundaries [Jimenez et al., 2001]

CHAPTER 4. CONTROLLING A ROBOTIC MANIPULATOR 73

Xobs = {x = (q, q̇) ∈ X : A (q)∩O 6= /0} (4.68)

The region of inevitable collision Xric takes into account velocity q̇ [LaValle, 2006]:

Xric = {x(0) ∈ X : for any ũ ∈U∞,∃t > 0 such that x(t) ∈ Xobs} (4.69)

where x(t) is a state at time t obtained by integrating the action trajectory which is a function of

the form ũ : [0,∞)→U from a set of all possible action trajectory functions U∞:

x(t) = x(0)+
∫ t

0
f (x(t ′),u(t ′))dt ′ (4.70)

The existence of Xric which always subsumes Xobs shows that planning methods introduced in

the previous section may need to be extended to fully address differential constraints. Traditionally

three categories of the planning problem under differential constraints are considered [LaValle,

2006]:

1. Nonholonomic planning incorporates nonholonomic constraints which cannot be converted

into constraints that do not involve derivatives. The term was originally introduced for

wheeled mobile robots which cannot move sideways.

2. Kinodynamic planning incorporates constraints on at least velocity and acceleration on C

in a form of an equation ẋ = f (x,u). Nonholonomic planning can also be seen as a form of

kinodynamic planning.

3. Trajectory planning is a problem of determining the path and velocity of a moving robot

body. The problem can be considered as a version of kinodynamic planning that includes

only velocity constraints.

The following subsections present briefly some of the most important group of approaches

developed to address a problem of planning under differential constraints [LaValle, 2006]. The last

subsection 4.4.3.2 describes decoupled approaches which includes a method used by the Golem

planner.

4.4.3.1 Kinodynamic planning

The kinodynamic planning problem can be addressed directly in the state space X using sampling.

Sampling-based approaches explore the state space X by constructing one or more reachability

trees, usually on a lattice. This requires discretization of action space and time. Reachability trees

do not need to form a regular lattice. RRT [LaValle, 2001] can be used directly in the state space.

RRT expands trees in a random fashion covering new space in an efficient way.

Although methods from this group provide a probabilistic completeness guarantee [LaValle,

2006], they are computationally expensive mainly due to the high dimensionality of X .

CHAPTER 4. CONTROLLING A ROBOTIC MANIPULATOR 74

4.4.3.2 Decoupled approaches

Approaches from this group split a planning problem with differential constraints into a set of

simpler problems. A typical decoupled approach procedure is shown below [LaValle, 2006]:

Path planing. Find a collision-free path τ : [0,1]→ C f ree ignoring differential constraints. Use

one of the introduced path planning algorithms from Section 4.4.1.

Path optimization. Transform path τ into a new path τ ′ so that velocity constraints on C are

satisfied. This step usually involves path smoothing.

Path profiling. Compute a timing function σ : [0,T] → [0,1] for τ ′ so that σ ◦ τ ′ is a time

parametrized path on C f ree. The state space trajectory x(t) must satisfy ẋ = f (x(t),u(t))

in the time interval [0,T].

Trajectory control. Choose a feedback control law π : X→U which minimizes the error between

a desired and measured state.

Methods presented in Section 4.4.3.1 are capable of solving steps 1-2 or even 1-3 for low

dimensional problems. Methods from Section 4.3 address the control problem in the step 4.

4.4.4 Golem trajectory planner

The Golem trajectory planner follows a typical procedure from the decoupled approach group

from Section 4.4.3.2. The procedure steps are described in more details in the following sections.

4.4.4.1 Path planning

The Golem path planner is a single-query planner realized as a heuristically-guided random tree

which expands using the A? graph search algorithm (see Figure 4.10).

Vertices of a graph G(V,E) are a combination of uniform sampling of the joint coordinates

(as in random methods from Section 4.4.2.3) and vertices generated from Gaussians localized at

joint configurations called generators. There are at least two generators specified - an initial and

a goal configurations θI,θG ∈ C f ree. Similarly as in Gaussian sampling methods (Section 4.4.2.3)

generators can facilitate path searching in narrow passages between objects.

Heuristic function f used by the A? graph search algorithm (see Appendix D) estimates the

cost of moving from configuration θi ∈ C f ree to θ j ∈ C f ree for a given goal θG ∈ C f ree and “home”

configuration θhome ∈C . Home configuration θhome limits the variability of joints (the manipulator

internal motion) which are in the manipulator Jacobian null space similarly as in the Golem inverse

kinematics solver (Section 4.2.3.4). Heuristic function f is a linear combination of the following

functions:

f = wdist fdist(θi,θ j)+wgoal fgoal(θ j,θG)+whome fhome(θ j,θhome) (4.71)

CHAPTER 4. CONTROLLING A ROBOTIC MANIPULATOR 75

Figure 4.10: The Golem path planner generates a number of collision-free manipulator

configurations (yellow dots) and then runs the A? graph search algorithm to find a path (cyan line

segments) in the obstacle field (transparent grey boxes) between an initial and goal configurations.

where wdist ,wgoal,whome ∈ R are normalizing weights. Functions fdist , fgoal , fhome provide a

bounded distance between two specified joint configurations θi and θ j and are defined as below:

fgoal,home(θi,θ j) = ‖θ j−θi‖2 (4.72)

fdist(θi,θ j) = w joint‖θ j−θi‖2 +wpos fpos(θi,θ j)+wrot frot(θi,θ j) (4.73)

where ‖ ∗ ‖ is the Euclidean distance (norm). fpos(θi,θ j) and frot(θi,θ j) measures linear and

angular distance between the end-effector workspace configurations corresponding to the joint

configurations θi and θ j. fpos and frot are defined as in Equation 4.32 and Equation 4.33.

Local planner uses a typical straight line search. An incremental or (as an option) binary

collision detection method is used (Section 4.4.2.5). Geometric primitives involve only convex

shapes: planes, spheres, cylinders, boxes and convex meshes.

4.4.4.2 Local path planning

Initial path τ generated by the path planner shown in Figure 4.10 has to be further optimized.

However because path optimization additionally takes into account differential constraints, the

entire optimization process is usually time consuming and solutions can be easily trapped in local

minima.

One of the methods of avoiding some of these problems is to re-run the above path planning

procedure “locally”. The local path planning generates (using generators) a new set of “local”

CHAPTER 4. CONTROLLING A ROBOTIC MANIPULATOR 76

Figure 4.11: The Golem path planner re-runs the basic path planning procedure by generating

a new set of “local” vertices (yellow dots) in the neighbourhood of the initial path (cyan line

segments) and find a new local path (magenta line segments).

vertices of a graph Glocal(V,E) in the neighbourhood of initial path τ and find a new local path

τlocal connecting the same initial and goal configurations θI,θG. The Golem path planner re-runs

the local path planning procedure a small predefined number of times simultaneously decreasing

a distance threshold dmax in function isExpandable() in the A? graph search algorithm (see

Appendix D). The resultant path is shown in Figure 4.11.

4.4.4.3 Path optimization

A local path consists of N joint configurations τlocal = {θ1, . . . ,θN} ∈ C f ree such that θ1 = θI and

θN = θG. There is also given a velocity profile:

v(s) : [0,1]→ R (4.74)

where s ∈ [0,1] is a normalized path distance computed along a given path τ using function fdist

given by Equation 4.73.

τlocal is optimized with respect to the acceleration and velocity constraints using a procedure

similar to the simulated annealing (see Appendix C):

1. Pick randomly a configuration θi ∈ τlocal such that i = 2 . . .N−1.

2. Generate a new configuration θ ∗i using the following procedure:

θ
∗
i, j = θi, j + ri, jrand(−∆T,+∆T) (4.75)

CHAPTER 4. CONTROLLING A ROBOTIC MANIPULATOR 77

Figure 4.12: The Golem path optimization procedure computes an optimized path (black line

segments with local coordinate frames) with respect to the acceleration and velocity constraints.

where j is a coordinate index, rand() randomly generate a value within the specified range,

∆T is selected according to the logarithmic annealing schedule (Appendix C) and ri, j is an

estimate of variability of θi, j approximated as below:

ri, j = c0
j +

i+l

∑
k=i−l

ck
j|θk−1, j−θk+1, j| (4.76)

where l > 0 and ck
j > 0 are predefined constants.

3. Find the energy difference ∆E between the new state θ ∗i and the previous state θi:

∆E = E(θ ∗i)−E(θi) (4.77)

The state energies E(θ ∗i) and E(θi) are computed as follows:

E(θi) = fdist(θi,θi−1)+ fdist(θi,θi+1)+wvel
fdist(θi+1,θi−1)

∆ti
(4.78)

where fdist is given by Equation 4.73 and where the last term represents a velocity penalty

for a given constant wvel and a time delta ∆ti estimated for a specified θi and a velocity

profile given by Equation 4.74.

4. Accept a new configuration θ ∗i if ∆E < 0 or a random number p ∈ [0,1] is smaller than

exp(−∆E/kBT). However, do not accept the configuration θ ∗i if the new path segments

CHAPTER 4. CONTROLLING A ROBOTIC MANIPULATOR 78

cause a collision or if fdist(θ ∗i ,θi−1) or fdist(θ ∗i ,θi+1) are higher than some predefined

minimum distance.

5. Break the procedure after a predefined number of steps has been completed (proportional to

the entire length),

An example optimized path τopt after approx. 2000 iterations is shown in Figure 4.12.

4.4.4.4 Path profiling

The Golem path profiling procedure for each configuration θi ∈ τopt finds corresponding velocity

θ̇i by differentiation a 3-rd degree polynomial which can be determined from the (path) neighbours

of θi. The resultant pairs θi and θ̇i comprise a complete joint space trajectory.

4.4.4.5 Trajectory control

A joint space control method which transforms a sequence of pairs θi and θ̇i into corresponding

torques is described in Section 4.3.3.1.

4.5 Summary

This chapter introduced methods which are implemented in the Golem software framework and

used in all robotic experiments in this thesis. A typical pushing experiment as described e.g. in

Section 3.1 consists of at least two parts:

1. An approach movement to the initial pose of a forward pushing movement.

2. A forward movement towards an object.

During a single experiment both parts are usually repeated several times. The approach

movement uses methods of path planning with collision detection described in Section 4.4.4.3.

Collision detection is particularly important at the beginning and at the end of the experiment

where a manipulator has to safely move from and to its home position among various obstacles

(usually a table but not only).

The forward movements are realized using a workspace control method described in

Section 4.3.3. The workspace straight line trajectory is generated online from a velocity profile

(Equation 4.74) and the starting and the final poses of the end-effector (via interpolation).

Although, the presented algorithms are mostly based on the state-of-art algorithms for the

manipulator control and path planning, there are a few minor contributions. Most importantly a

local path planning method (Section 4.4.4.2) and an optimization method for the final trajectory

of a robotic manipulator (Section 4.4.4.3).

Chapter 5

Prediction learning in robotic pushing
manipulation

This chapter addresses the problem of learning to predict how objects behave under simple robotic

pushing actions, i.e. a problem of learning of forward models in pushing manipulation. As

described in Chapter 2 and Chapter 3, forward models play a central role in many sensorimotor

control frameworks. Furthermore, Chapter 3 argues that the learning of forward models for

manipulated objects could offer several benefits over using for example physics simulators.

Unfortunately, because of the variability of the shape and other properties of the physical objects,

learning of such models poses some additional difficulties, as opposed to learning of forward

models for a robot body alone1.

This chapter formulates the prediction problem for a manipulated object as a problem of

predicting a rigid body transformation of the object given the movement of a robotic manipulator.

Such simple but generic forward models can be learned purely from experience providing that

the given object and environment are fixed. This approach might not be very practical however,

especially in situations where the object shape and other physical properties are changing. The

subsequent sections propose various improvements which make use of additional knowledge, e.g.

about the object contacts or the centre of mass. In particular, a method using the product of contact

experts is proposed to allow better generalization over the object shape and applied actions. All the

introduced models are experimentally tested in a virtual environment as well as in real experiments

using 5-axis Katana robotic manipulator with a vision-based tracking system.

The chapter consists of the following sections:

• Section 5.1 introduces basic representations used in forward models in this chapter. The

section discusses various problems related to learning of these models, in particular

the dimensionality problem and the problem of generalization across many objects with

different physical properties. The section also proposes a simplifying quasi-static world

assumption which is used throughout the rest of the chapter.
1The configuration and properties of the body of a robot are usually assumed constant.

79

CHAPTER 5. PREDICTION LEARNING IN ROBOTIC PUSHING MANIPULATION 80

• Section 5.2 formulates the prediction learning problem as a problem of function estimation

(regression) using representations introduced in the previous section. The section briefly

discusses some of the shortcomings of this approach.

• Section 5.3 formulates the prediction learning problem as a density estimation problem. The

most likely prediction can be found as a maximum of a product of probability densities,

where each density is an expert specialized in predicting the behaviour of a particular

contact between interacting objects’ shape parts. The chapter also describes a kernel density

estimation method used to implement the forward model.

• Section 5.4 proposes evaluation criteria for the introduced forward models. The section

describes experiments which have been used to test the models in a virtual environment as

well as in real experiments using a system composed of the Katana robotic manipulator with

a vision-based tracking system.

• Section 5.5 summarizes the chapter and briefly discusses future work on forward models in

pushing manipulation.

5.1 Representing interactions of rigid bodies

5.1.1 A three body system

At

Finger Object

Environment

T
At , Bt

T
Bt ,O

Bt

O

Figure 5.1: 2D projection at time t of a robotic finger with frame At , an object with frame Bt , and

a ground plane with constant frame O.

Consider three reference frames A, B and O in a 3-dimensional Cartesian space. For example

frame A can represent a robotic finger which pushes an object with frame B which in turn is placed

on a table top with frame O as in Figure 5.1. While frame O is fixed, A and B change in time and

are observed at discrete time steps ..., t−1, t, t +1, ... every non-zero ∆t. A frame X at time step t

is denoted by Xt , a rigid body transformation between a frame X and a frame Y is denoted by T X ,Y

(see Figure 5.2).

From classical mechanics we know that in order to predict a state of a body, it is sufficient to

know its mass, velocity and a net force applied to the body. We do not assume any knowledge of

CHAPTER 5. PREDICTION LEARNING IN ROBOTIC PUSHING MANIPULATION 81

Figure 5.2: A system consisting of three interacting bodies with frames A and B in some constant

environment with frame O can be described by six rigid body transformations T At ,Bt , T Bt ,O,

T At−1,At , T At ,At+1 , T Bt−1,Bt , and T Bt ,Bt+1 .

the mass and applied forces, however the transformations of a body, with attached frame B, over

two time steps T Bt−1,Bt and T Bt ,Bt+1 encode its acceleration - the effect of the applied net force.

Therefore, if the net force and the body mass are constant, the transformations T Bt−1,Bt and T Bt ,Bt+1

provide a complete description of the state of a body at time step t in absence of other bodies. A

triple of transformations T Bt ,O, T Bt−1,Bt and T Bt ,Bt+1 provide a complete description of a state of a

body in some fixed frame of reference O which accounts for a constant or stationary environment.

Similarly, transformations T At ,O, T At−1,At and T At ,At+1 provide such a description for some other

body with frame A.

The state of a system consisting of three bodies with frames A and B in some constant

environment with frame O can be described by the six transformations as it is shown in Figure 5.2,

where T At ,O has been replaced by a relative transformation T At ,Bt . The transformation T Bt ,O can

be omitted, if the environment does not affect the motion of the bodies or it is explicitly modelled

by one of them.

5.1.2 Body frame representation

We expect that the behaviour of interacting bodies represented by rigid body transformations as

in Figure 5.2 shares some statistical similarities independently on their global poses with respect

to some current inertial frame I. Consider two scenes (1) and (2) as shown in Figure 5.3. A

pose change between time step t and t + 1 as observed in instantaneous object body frame A(1)

and the same object in another instantaneous body frame A(2) given inertial frame I are both

the same. However because transformations T I,A(1)
and T I,A(2)

are different, the corresponding

transformations in the inertial frame (with subscript i) are also different, i.e. T
A(1)

t ,A(1)
t+1

in 6= T
A(2)

t ,A(2)
t+1

in .

Instead of using inertial frame-dependent transformation T At ,At+1
in , one can represent object

transformations as observed in the object body frame. Body frame transformation T At ,At+1
body (with

CHAPTER 5. PREDICTION LEARNING IN ROBOTIC PUSHING MANIPULATION 82

At
1

T
I , At

1

I

T
I , At1

1

At1
1

T in
At
1 , At1

1

At
2

T
I , At

2

I

T
I , At1

2

At1
2

T in
At
2 , At1

2

Figure 5.3: In the above two scenes a pose change between time step t and t + 1 as observed in

instantaneous object body frame A(1) and the same object in another instantaneous body frame

A(2) given inertial frame I are both the same. However because transformations T I,A(1)
and

T I,A(2)
are different, the corresponding transformations in the inertial frame are also different, i.e.

T
A(1)

t ,A(1)
t+1

in 6= T
A(2)

t ,A(2)
t+1

in .

At1
T body
At , At1

I=At

Figure 5.4: The body frame transformation T At ,At+1
body represents movement instantaneous object

frame At at time t overlaps with inertial frame I.

subscript b) is obtained by moving instantaneous frame A, so that at time t it overlaps with inertial

frame I (see Figure 5.4). Given some instantaneous object frame At at time t, transformation

T At ,At+1
in and because T I,At+1 = T At ,At+1

in T I,At = T I,At T At ,At+1
body , one can obtain transformation T At ,At+1

body

in the body frame as follows (also see Appendix A):

T At ,At+1
body = (T I,At)−1T At ,At+1

in T I,At (5.1)

Similarly from a given transformation in body frame, instantaneous object frame At at t and using

Equation 5.1, one can obtain expression for transformation T At ,At+1
in in the inertial frame

T At ,At+1
in = T I,At T At ,At+1

body (T I,At)−1 (5.2)

If not stated otherwise in further discussion we will keep subscripts in while dropping

subscripts body assuming that all transformations T X ,Y are transformations in the body frame

X obtained from T X ,Y ≡ T X ,Y
body = (T I,X)−1T X ,Y

in T I,X .

CHAPTER 5. PREDICTION LEARNING IN ROBOTIC PUSHING MANIPULATION 83

5.2 Prediction learning as a regression problem

The prediction problem can now be stated as: given we know or observe the starting states and

the motion of the pusher, T At ,At+1 , predict the resulting motion of the object, T Bt ,Bt+1 . This is a

problem of finding a function:

f : T At ,Bt ,T Bt ,O,T At−1,At ,T Bt−1,Bt ,T At ,At+1 → T Bt ,Bt+1 (5.3)

Function 5.3 is capable of encoding all possible effects of interactions between rigid bodies A

and B, providing their physical properties and applied net forces are constant in time. Furthermore,

it can be learned purely from observations for some fixed time delta ∆t.

There are two problems related to relying on such a function:

1. Limited or no generalization capability. A function approximating interactions between

bodies A and B cannot be used for any other bodies of e.g. different shape or mass. This is

because function 5.3 implicitly encodes information about the surfaces of A and B, which

play a critical role in collisions. In this way a slight change of the objects’ shape can

cause a dramatic deviation of the predicted transformation T Bt ,Bt+1 . Consequences of surface

deformations are further discussed in the experimental section 5.4.

2. Dimensionality problem. For a rigid body transformation represented as a set of 6 or

7 numbers, the domain of function 5.3 has 30 or 35 dimensions. This problem can be

alleviated by a quasi-static assumption introduced in the following section 5.2.1.

5.2.1 Quasi-static assumption

Frame A Frame B

At1

T
At , Bt T

Bt , Bt1
T
At , At1 At

Bt1

Bt

T
Bt ,O

O

Figure 5.5: In quasi-static conditions two interacting bodies with frames A and B in constant

environment with frame O can be described by only four rigid body transformations T At ,Bt , T Bt ,O,

T At ,At+1 and T Bt ,Bt+1 .

CHAPTER 5. PREDICTION LEARNING IN ROBOTIC PUSHING MANIPULATION 84

In many robotic operations, manipulations are slow, one can assume quasi-static conditions,

and it is often possible to ignore all frames at time t − 1 as it is shown in Figure 5.5.

This conveniently reduces the dimensionality of the problem to 18 dimensions if rigid body

transformations are represented by 6 numbers using e.g. Euler angles. Function 5.3 can then

be rewritten in a simpler form:

f : T At ,Bt ,T Bt ,O,T At ,At+1 → T Bt ,Bt+1 (5.4)

The quasi-static assumption comes at a price however. Function 5.4 no longer encodes the

complete information about a state of the system, in particular the velocity of frame A and B.

For example transformations T At ,Bt ,T Bt ,O,T At ,At+1 comprising the domain of Function 5.4 can be

exactly the same for two very different situations. In the first situation a robotic finger approaches

a non-moving (yet) object, while in the second the object begins to move after being pushed by

the finger. Still the movement of the finger, the relative pose between the finger and the object as

well as the object pose on the table are all the same. This ambiguity can be removed by encoding

explicitly the causal relation between the finger movement and the object movement. In order to

do this, two phases of the approaching before touching the object and after touching are split by

detecting a moment the finger touches the object2.

5.3 Predicting rigid body motions using multiple experts

5.3.1 Combining local and global information with two experts

It is clear that we need to enable generalization of predictions with respect to changes in shape.

Consider two objects lying on a table top. Figure 5.6 shows two situations that are identical except

for the shape of object A. It is clear that the same transformation of A’s position will lead to

different motions for object B in each case, mostly due to a potentially infinite number of ways

shapes A and B can vary. How can we then encode the way in which the shapes of A and B alter

the way they behave? We use a product of several densities to approximate the density over the

rigid body transformation instead of a single value as given in the function 5.4.

In the simplest case one can approximate two densities, conditioned on local and global

information respectively. We define the global information to be the information about changes

of the pose of the whole object. The local information is specified by changes of the pose of the

surfaces of A and B at the contact point, or the point of closest proximity, between the object and

the finger. We model this local shape as a pair of planar surface patches, of limited extent (see

Figure 5.7). Statistically, the greater the starting distance between these local surface patches of A

and B, and/or the smaller the magnitude of the transformation T At ,At+1 , the less likely it is that the

objects will collide, and hence the less likely it is that the pose of shape B will change between

t and t + 1, or equivalently the more likely that the transformation T Bt ,Bt+1 will be an identity

2In practice no algorithm could work without applying this trick.

CHAPTER 5. PREDICTION LEARNING IN ROBOTIC PUSHING MANIPULATION 85

At

At1

Bt=B t1

At1
At

Bt

Bt1

Figure 5.6: Two scenes, each with two objects on a table top, viewed from above. Between the

two scenes only the shape of A is different. Yet when A moves the resulting transformation T Bt ,Bt+1

will be quite different. This shows that our predictors must take some aspect of the shape of A and

B into account.

transformation Id. On the other hand, if the local surfaces A and B are close a large portion of

possible transformations T At ,At+1 will cause collisions.

At
T
At , B t

Bt
T
Bt , Bt1

T
At , At1

At1

Bt1

At
T
At , B t

Bt
T
Bt , Bt1

T
At , At1

At1

Bt1

Figure 5.7: Two scenes, each with two objects on a table top, viewed from above. Local shapes

A and B, transformations T At ,At+1 and T At ,Bt are the same in each scene. Still, the transformation

T Bt ,Bt+1 is different because local shapes belong to different parts of objects.

Transformations T At ,Bt , T At ,At+1 and T Bt ,Bt+1 , observed over many experimental trials for many

different objects form a conditional distribution:

{T Bt ,Bt+1 |T At ,At+1 ,T At ,Bt} (5.5)

While conditional distribution 5.5 for global frames may become unimodal, for local shapes is

highly multi-modal. To see this consider two scenes with two objects, where the initial conditions

are identical (Figure 5.7). Local shapes A and B, transformations T At ,At+1 and T At ,Bt are the same

in each scene. Still, the transformation T Bt ,Bt+1 is different because local shapes belong to different

parts of objects.

CHAPTER 5. PREDICTION LEARNING IN ROBOTIC PUSHING MANIPULATION 86

At

Finger Object

Environment
T
At
l , Bt

l
Bt
l

T
At , Bt

T
Bt ,O

At
l

Bt

O

Figure 5.8: 2D projection at time t of a robotic finger with global frame At , an object with global

frame Bt , and a ground plane with constant global frame O. Local frames Al
t and Bl

t describe the

local shape of the finger and an object at their point of closest proximity.

Consider a 2D projection at time t of a robotic finger with global frame At , an object with

global frame Bt , and a ground plane with constant global frame O (Figure 5.8). Similarly, local

frames Al
t and Bl

t describe local shapes belonging to a finger and an object. The global conditional

density function can be defined as:

pglobal(T Bt ,Bt+1 |T At ,At+1 ,T At ,Bt ,T Bt ,O) (5.6)

and similarly a local conditional density function as:

plocal(T Bl
t ,B

l
t+1 |T Al

t ,A
l
t+1 ,T Al

t ,B
l
t) (5.7)

The only problem is to determine the above three transformations in the body frame of the local

shapes. For a particular situation shown in Figure 5.8 from object rigidity and using Equation 5.1

we have:

T Al
t ,A

l
t+1 = (T I,Al

t)−1T At ,At+1
in T I,Al

t (5.8a)

T Bl
t ,B

l
t+1 = (T I,Bl

t)−1T Bt ,Bt+1
in T I,Bl

t (5.8b)

where I is the inertial frame. T Al
t ,B

l
t can be determined directly from the shape frame:

T Al
t ,B

l
t = (T I,Al

t)−1T Al
t ,B

l
t

in T I,Al
t (5.9)

To predict the rigid body transformation of an object when it is in contact with others we are

faced with how to represent the constraints on motion provided by the contacts. We do this using

a product of experts. The experts represent by density estimation which rigid body transforms are

(in)feasible for each frame of reference. In the product, only transformations which are feasible

in both frames will have high probability. For the finger-object scenario a prediction problem can

then be defined as finding that transformation T Bt ,Bt+1
in in the inertial frame which maximizes the

product of the two conditional densities (experts) 5.6 and 5.7:

CHAPTER 5. PREDICTION LEARNING IN ROBOTIC PUSHING MANIPULATION 87

max
T

Bt ,Bt+1
in

pglobal((T I,Bt)−1T Bt ,Bt+1
in T I,Bt |T At ,At+1 ,T At ,Bt ,T Bt ,O)×

plocal((T I,Bl
t)−1T Bt ,Bt+1

in T I,Bl
t |T At ,At+1 ,T Al

t ,B
l
t) (5.10)

where identity 5.8b has been used.

Starting with some initial state of the finger A0 and the object B0, and knowing a trajectory

of the finger A1, . . .AN over T time steps, one can now predict a whole trajectory of an object

B1, . . .BN by sequentially solving a problem of maximization of the product 5.10.

There are two major advantages of using such products of densities, e.g. over attempting to

directly approximate the function of equation 5.3:

1. Generalization. Even small differences in a local object surface can cause very different

reactions T Bt ,Bt+1
in for some given action T At ,At+1

in (see the experimental section 5.4). However,

such changes are unlikely to be predicted by a global density function alone. Hence,

computing T Bt ,Bt+1
in as the maximizer of the product of densities, equation 5.10, enhances the

ability of the system to generalize between different objects and actions, because both local

and global densities must simultaneously support the predicted motion hypothesis T Bt ,Bt+1
in

(see Figure 5.9).

2. More efficient movement encoding and learning. Combining information from both local

and global frames, allows objects’ properties to be separated into those that are common

to many objects and those that are specific to the particular object in question. Common

properties (e.g. impenetrability) tend to be encoded in the local surface patches distribution,

function 5.7, whereas the global density function 5.6 encodes information specific to the

object, such as its overall behaviour. The global density function 5.6 tends not to require

many learning trials to provide accurate predictions, when combined with the local density

function 5.7, which is shared or common to many different objects or situations. Thus this

combination provides a movement encoding and learning method which is highly efficient.

5.3.2 Incorporating information from additional experts

In addition to learning how an object moves in response to a push, it is desirable if we can also

incorporate learned information about the inherent tendencies of parts of an object to move in

various directions with respect to the environment or any other objects, but regardless of whether

it is being pushed or not. This additional information may help when predicting the motions of

previously unseen objects, because it provides some prior knowledge about what kinds of motions

are possible and which are not.

We can incorporate this additional information by attaching an arbitrary number of additional

coordinate frames Bsnt to various parts of the object. We then learn densities for the future

CHAPTER 5. PREDICTION LEARNING IN ROBOTIC PUSHING MANIPULATION 88

max pglobal max plocalmax pglobal× plocal

T Bt , Bt 1

p

Figure 5.9: Varying object shape: maxpglobal alone (equivalently regression) does not provide

correct predictions as well as any linear combination of e.g. maxpglobal and maxplocal cannot

be used either. Maximum of the product of pglobal and plocal provides approximate but correct

predictions.

 p T in
Bt , Bt1

pglobal T
Bt ,B t1∣T

At ,A t1 , T
A t , Bt , T

B t ,Ot

plocal T
B t
l , B t1

l

∣T
At
l , At1

l

,T
At
l , Bt

l

pT
B t
SN , Bt1

SN

∣T
Bt
SN ,E t

SN

Local shape
expert NT

Bt
S N , Et

S N

Local shape
expert 1T

Bt
S1 , E t

S1

Local
expert

T
At
l ,Bt

l

T
At
l , At1

l

Global
expert

T
At , At1

T
At , Bt

T
Bt ,O

pT
B t
S1 , Bt1

S1

∣T
Bt
S1 ,E t

S1

Figure 5.10: Inputs and outputs of learned prediction system. The approach described in section

5.3.1, uses only local and global experts. This can be extended to include opinions from multiple

local shape experts represented by coordinate frames SN .

motions of each of these frames, conditioned only on their relative pose T ESk
t ,BSk

t with respect

to a corresponding pose ESk
t of a patch on a ground plane at the present time step, ignoring any

information about the motions of the pushing finger. For the k-th such frame, we estimate the local

contact conditional density:

p(T BSk
t ,BSk

t+1 |T ESk
t ,BSk

t) (5.11)

which represent probability density over possible rigid body transformations in the body frame

CHAPTER 5. PREDICTION LEARNING IN ROBOTIC PUSHING MANIPULATION 89

Object

Environment

Bt
S1

Bt
S2

Bt
S3

T
Et
S1 , Bt

S1

E t
S2

E t
S1 E t

S3
T
Et
S3 , Bt

S 3

Figure 5.11: Co-ordinate frames can be attached to an arbitrary number of local shapes, and local

experts can be learned for each of these frames, predicting a distribution of how the frame may

move next, given where it is at the present time step.

of the k-th local contact. The subsequent motion of the object in the inertial frame can now be

predicted as:

max
T

Bt ,Bt+1
in

pglobal((T I,Bt)−1T Bt ,Bt+1
in T I,Bt |T At ,At+1 ,T At ,Bt ,T Bt ,O)×

plocal((T I,Bl
t)−1T Bt ,Bt+1

in T I,Bl
t |T At ,At+1 ,T Al

t ,B
l
t)×

∏
k=1...N

p((T I,BSk
t)−1T Bt ,Bt+1

in T I,BSk
t |T ESk

t ,BSk
t) (5.12)

5.3.3 Incorporating additional information into the global conditional density
function

5.3.3.1 Finger-object contact

Finger Object

Environment
T
At
l , Bt

l

Bt
l T

Bt
l , Bt

T
Bt ,O

At
l

Bt

O

Figure 5.12: An alternative setup to the one from Figure 5.8 redefines the global conditional

density function using local frame Bl
t .

The global conditional density function as in Equation 5.6 describes “global” behaviour of all

three interacting objects. From physics we know that contacts between objects are responsible

CHAPTER 5. PREDICTION LEARNING IN ROBOTIC PUSHING MANIPULATION 90

for forces and therefore determine the objects behaviour. Contacts between an object and the

environment can be arbitrarily complex and they are all handled by term T Bt ,O in density 5.6.

However assuming that there is only one contact between the finger and an object one can use more

efficient representation of the global conditional density function, in which term T At ,Bt is replaced

by T Bl
t ,Bt or equivalently by T Al

t ,Bt (see Figure 5.12). This representation is simpler because it takes

into account only a local shape (Bl
t or Al

t)-object relation instead of a more complex finger-object

relation. The global conditional density function can be then redefined as:

pglobal(T Bt ,Bt+1 |T At ,At+1 ,T Bl
t ,Bt ,T Bt ,O) (5.13)

In general it is safer to use more general definition 5.6. However incorporating explicitly

the finger-object contact information might be beneficial in some cases, as it is shown in the

experimental part of this chapter (see Section 5.4.3).

5.3.3.2 Parametrization of objects’ properties

Any additional knowledge about properties of the interacting objects (including the robotic finger

and the environment) which vary in time can also be incorporated into the global conditional

density function. These properties may involve shape variations such as length of an object,

but also properties which cannot be expressed by shape such as friction, restitution, viscosity,

dislocated centre of mass, etc. The global conditional density function can be then expressed as:

pglobal(T Bt ,Bt+1 |T At ,At+1 ,T At ,Bt ,T Bt ,O,X) (5.14)

where X ∈ Rn is some n-dimensional vector describing additional objects’ properties.

Property vector X can also be seen as a predictor context in a similar vein as the movement

context in modular motor learning described in Section 2.5.4, although without autonomous

learning and estimation of X3.

5.3.4 Learning as density estimation

We use non-parametric kernel density estimation in which all learning samples are stored during

learning. The learning samples create a global joint distribution, local joint distribution and N

local contact joint distributions:

{T At ,Bt ,T Bt ,O,T At ,At+1 ,T Bt ,Bt+1} (5.15)

{T Al
t ,B

l
t ,T At ,At+1 ,T Bt ,Bt+1} (5.16)

{T BSk
t ,BSk

t+1 ,T ESk
t ,BSk

t } for k = 1 . . .N (5.17)

3Which is an interesting issue to investigate

CHAPTER 5. PREDICTION LEARNING IN ROBOTIC PUSHING MANIPULATION 91

We address 3D rigid bodies, subject to 6-DOF transformations, so that distributions 5.15, 5.16

and 5.17 have 4×6 = 24, 3×6 = 18 and 2×6 = 12 dimensions respectively. During prediction

conditional densities 5.6, 5.7 and 5.11 are created online from learning sample sets (i.e. from the

above joint distributions).

Consider N D-dimensional sample vectors Xi drawn from some unknown distribution. We

would like to find an approximation of this distribution in the form of a density function p(X).

Kernel density methods with Gaussian kernels (see e.g. [Scott and Sain, 2004]) estimates the

density p(X) for any given vector X as a sum of N identical multivariate Gaussian densities centred

on each sample vector Xi:

p(X) = Cnorm ∑
i=1...N

exp
[
−1

2
(X−Xi)T C−1(X−Xi)

]
(5.18)

where a constant Cnorm = [N(2π)D/2|C|1/2]−1 and C is a D×D sample covariance matrix. For

simplicity, we assume that C is diagonal. The above equation can be re-written in a new simpler

form ([Scott and Sain, 2004]):

p(X) =
1
N ∑

i=1...N

[
∏

j=1...D
Kh j(X

j−X j
i)

]
(5.19)

where Kh j are 1-dimensional Gaussian kernel functions:

Kh j(X
j−X j

i) =
1

(2π)1/2h j
exp

[
−1

2
(X j−X j

i)2

h2
j

]
(5.20)

and D parameters h j are called bandwidth H ≡ (h1, . . . ,hD). The bandwidth H is estimated

from all distribution learning samples using the “multivariate rule-of-thumb” see [Scott and Sain,

2004].

Let us decompose each D-dimensional sample vector Xi into two vectors: K-dimensional Yi

and L-dimensional Zi so that Xi ≡ (Yi,Zi)T and D = K +L. Knowing bandwidth H or equivalently

diagonal covariance matrix C for sample set {Xi} ≡ {(Yi,Zi)T}, we can compute conditional

density p(Z|Y) for some given vectors Y and Z using the following two step procedure:

1. Find a set of M weighted samples {(Zi,wi)} representing a conditional distribution for

given vector Y , such that Yi which corresponds to Zi lies within some predefined maximum

Mahalanobis distance dmax to vector Y . Mahalanobis distance di between sample vector Yi

and vector Y is defined as:

di = (Y −Yi)T C−1
Y (Y −Yi) (5.21)

where diagonal covariance CY is defined as:

C =

[
CY 0

0 CZ

]
(5.22)

CHAPTER 5. PREDICTION LEARNING IN ROBOTIC PUSHING MANIPULATION 92

Weights wi are computed from distance di as:

wi = exp[−di/2] (5.23)

and normalized for all M weights wi. Normalized weight wi can be interpreted as a

probability of generating Yi from a multivariate Gaussian centred at Y with covariance CY .

2. Compute conditional probability density p(Z|Y) as:

p(Z|Y) = ∑
i=1...M

wi exp
[
−1

2
(Z−Zi)T C−1

Z (Z−Zi)
]

(5.24)

For simplicity, the density product 5.10 is maximized using the differential evolution

optimization algorithm [Storn and Price, 1997]4 which is described in Appendix C. This requires

the ability to evaluate and sample from each distribution comprising product 5.10.

All conditional distributions are represented as a weighted set of samples {(Zi,wi)}.
Computation of a probability density for some given vector Z is realized as in Equation 5.24.

Sampling consists of a two step procedure:

1. Choose vector Zi from a set of samples {(Zi,wi)} using an importance sampling algorithm

with importance weights wi ([Bishop, 2006]).

2. Sample from a multivariate Gaussian centred at Zi with covariance CZ .

5.4 Results

5.4.1 Introduction

5.4.1.1 Experimental setup

We have tested the introduced prediction algorithms in simulation experiments using the PhysX

physics engine [PhysX, 2009]. We also performed real experiments using a 5-axis Katana robotic

manipulator [Neuronics AG, 2004] equipped with a single rigid finger and where we capture the

motion of the polyflap using a vision model-based tracking system [Mörwald et al., 2009]. We

use both because simulation experiments are useful in that they can provide large amounts of test

data with perfectly known ground-truth, but they do not necessary corresponds to reality. This is

the reason we tested the ability of our approach to predict motions of a real object being pushed

by a real robot.

They are used to study three phenomena:

4In the optimal scenario the mean shift method [Comaniciu and Meer, 2002] should be used here.

CHAPTER 5. PREDICTION LEARNING IN ROBOTIC PUSHING MANIPULATION 93

Generalization with respect to actions performed. We study the generalisation ability of vari-

ous predictors when the actions vary from those in the training set. We vary the actions in

two ways. In experiment 1 we study interpolative generalisation where actions are novel

but drawn from the same Euclidean space as the training set. We then study extrapolative

generalisation (Experiment 2 and 3) by drawing actions from a space which sits outside that

from which the training actions were drawn.

Generalization with respect to shape. We study the generalisation ability of various predictors

when presented with novel shape. We train the predictors on a simple fixed polyflap shape,

and then test on novel polyflap (Experiment 4), and on a box object (Experiment 5). This is

extrapolative generalisation with respect to shape because the test set lies outside the set of

shapes used for training. In Experiment 6 we train a varying set of shapes (all polyflaps) and

then we test generalisation with respect to shapes which are interpolations of the training

shapes.

Convergence. In Experiment 1 we also study the rate of convergence on the test set as a function

of the number of training pushes.

All the above prediction problems have been addressed in simulation environments in Section 5.4.2

and Section 5.4.3. Real experiments are presented in Section 5.4.4 addressing only the first

prediction problem mostly due to limitations of the vision tracker.

In each test scenario, we compare the performance of three approaches (further called

predictors):

1. A multiple expert method with global, local and local shape experts (see Section 5.3).

2. A single global expert method as a ground-truth comparison to the multiple expert method

(see Section 5.2).

3. A state of the art regression method described in Section 5.4.1.5.

Multiple experimental trials were performed, in which a robotic arm equipped with a finger

performs a random pushing movement of length approximately 25 cm towards an object placed at

a random initial pose (Figure 5.26). In each experiment data samples are stored over a series of

such random trials. Each trial lasts 10 seconds, while data samples are stored every 1/15th of a

second.

We performed 10-fold cross-validation where at the beginning of each experiment all the trials

are randomly partitioned into 10 subsets. Prediction was then subsequently performed (10 times)

on each single subset, while learning was always performed on the remaining 9 subsets of these

trials. All the results were then averaged to produce a single estimation.

CHAPTER 5. PREDICTION LEARNING IN ROBOTIC PUSHING MANIPULATION 94

5.4.1.2 Model selection

In model selection we are concerned with identifying a model that is likely to generalise well

to unseen data. In particular we need to optimise generalisation performance with respect to

model complexity and the hyper-parameters of the learning algorithms used. For a single KDE

learner we used one hyper-parameter which equally scales all the bandwidth parameters h j from

Equation 5.20. For LWPR there are also a small number of hyper-parameters which are described

in details in [Klanke et al., 2008].

In this initial study we have not looked at how generalisation performance varies with hyper-

parameters. However for the parameters we have performed 10-fold cross validation in all our

experiments. This gives us limited evidence that while we have not optimized with respect to the

hyper-parameters, some generalisation is possible.

In practice however, we note that the extrapolative kind of generalisation we ask our learners

to perform is quite unusual in that generalisation studies normally assume that the test set is drawn

independently from the same density over the input space as the training set (the i.i.d. assumption).

In the case of extrapolative generalisation with respect to both shape and action direction our

problem is rather different from (and harder than) this.

5.4.1.3 Performance measure

In all experiments, we take the output of either a physics simulator or the tracked pose of a

real object to be ground-truth, and compare it against predictions forecast by the learned system.

Prediction performance is evaluated as follows.

At any particular time step, t, a large number, N, of randomly chosen points p1,t
n , where

n = 1 . . .N, are rigidly attached to an object at the ground-truth pose, and the corresponding points

p2,t
n to an object at the predicted pose (see Figure 5.13). At time step t, an average error Et can

now be defined as the mean of displacements between points on the object at the predicted pose

and points on the object at the ground-truth pose:

Et =
1
N ∑

n=1...N
|p2,t

n − p1,t
n | (5.25)

Note that for each robotic push action, we predict approximately 150 consecutive steps into

the future, with no recursive filtering or corrector steps, hence it is expected that errors will grow

with range from the initial object pose. We therefore find it more meaningful to normalize all

errors with respect to an “average range”, Rt , of the object from its starting position, defined as:

Rt =
1
N ∑

n=1...N
|p1,t

n − p1,0
n | (5.26)

For a test data set, consisting of K robotic pushes, each of which breaks down into many

consecutive predictions over T time steps, we can now define an normalized average error:

CHAPTER 5. PREDICTION LEARNING IN ROBOTIC PUSHING MANIPULATION 95

Figure 5.13: Randomly chosen points (white dots) rigidly attached to the object at the ground-

truth pose (solid colour). Not shown corresponding points are also attached to the object at the

predicted pose (wire-frame).

Eav =
1
K ∑

k=1...K

1
T ∑

t=1...T

Et

Rt
(5.27)

For each set of test data, we also report an normalized final error, E f which represents the

typical discrepancy between prediction and ground truth that has accumulated by the end of each

full robotic push:

E f =
1
K ∑

k=1...K

|p2,T
n − p1,T

n |
RT

(5.28)

The normalized average error and the normalized final error for each prediction method and in

each experiment are collected in Table 5.1.

5.4.1.4 Prediction with multiple experts

The multi-expert method uses local contact experts in order to improve prediction of the object

motion. We tested two types of objects: a polyflap (an object consisting of two flat square flanges)

and a box. In both cases apart from the local expert describing finger-object contact behaviour

(see Section 5.3.1), 3 additional experts are used (see Figure 5.14):

Polyflap case: The first edge type is represented by 2 identical experts attached to the front and

the top part of a polyflap. Another edge in the middle of a polyflap is represented by a

separate expert.

CHAPTER 5. PREDICTION LEARNING IN ROBOTIC PUSHING MANIPULATION 96

Figure 5.14: In the polyflap case (top panel) the first edge type is represented by 2 identical experts

attached to the front and the top part of a polyflap (small white surface patches with reference

frames). A separate expert represents the edge in the middle of a polyflap. In the box case (bottom

panel) there are 3 identical experts attached to 3 different parts of a box.

Box case: All edges are assumed to be of the same type therefore all 3 experts are identical

although attached to different parts of a box.

If two or more experts are identical they all share the same joint distribution during learning and

prediction.

The parameter scaling the bandwidth of distributions was tuned by hand on a test set from

Experiment 1 and kept constant throughout all the experiments.

CHAPTER 5. PREDICTION LEARNING IN ROBOTIC PUSHING MANIPULATION 97

5.4.1.5 Prediction by regression

To provide a comparison with a more conventional function approximation approach, we

employed a powerful regression algorithm – Locally Weighted Projection Regression (LWPR)

[Vijayakumar et al., 2005]. LWPR is an online algorithm that uses dimensionality reduction to

learn non-linear mappings from high-dimensional input spaces, by using a set of local models.

Thus we attempted to predict the rigid body motion of an object (frame B) subjected to a push

from a finger (frame A), by learning a non-linear function G. The function G is analogous to the

global expert of the probabilistic approach in section 5.3.

The input domain for the regression was an 18 dimensional vector formed by the concatenation

of three 6-DOF transformations, where each transformation was represented as a displacement and

three Euler angles. The 6 dimensional output vector was simply the change in pose of object B, so

that

G : T At ,Bt ,T Bt ,O,T At ,At+1 → T Bt ,Bt+1 . (5.29)

The hyper-parameters for LWPR were tuned by hand on a test set from Experiment 1. The

(diagonal) distance metric D was held fixed, and initialized so that the local model receptive fields

were small for the finger-object interaction T At ,Bt , and large for the other input dimensions.

The regression scheme was implemented using the LWPR software library [Klanke et al.,

2008].

5.4.2 Generalization to predict motions from novel actions

5.4.2.1 Interpolative generalization of push directions

In Experiment 1 with a virtual robot, pushes with random directions were applied to a polyflap of

a fixed shape. Some pushes were randomized about a direction approximately orthogonal to the

contacted polyflap face, and some were randomized about a direction at an oblique angle. Both

orthogonal and oblique pushes were used during training, new examples of each class of push

direction were then used in testing. We consider this a test of “interpolative” generalization, in that,

although the test pushes are different from any particular push in the training set, the directions of

the test pushes lie within a space of directions that are reasonably spanned by training examples.

Figure 5.15 shows how the average and final prediction error decreases with increased

number of trials used in learning for four tested prediction methods. The density-based methods

outperforms LWPR regression in each case. It is also clear that using the introduced prediction

error in the interpolative generalization case, multiple expert methods do not show any advantage

over the single global expert method if they are learned on the same data.

CHAPTER 5. PREDICTION LEARNING IN ROBOTIC PUSHING MANIPULATION 98

10 100 1000
0.000

0.020

0.040

0.060

0.080

0.100

0.120

number of trials

no
rm

al
iz

ed
 a

ve
ra

ge
 e

rro
r

global
global+local
global+local+shapes
LWPR

10 100 1000
0.000

0.050

0.100

0.150

0.200

0.250

0.300

number of trials

no
rm

al
iz

ed
 fi

na
l e

rro
r

global
global+local
global+local+shapes
LWPR

Figure 5.15: Experiment 1. Decrease in average (top) and final (bottom) prediction errors with

increased number of trials used in learning, for four different prediction method.

5.4.2.2 Extrapolative generalization of push directions

In Experiment 2, only the orthogonal type of pushes were used during training, pushes being

applied to both the front and rear surfaces of a polyflap. However, only the oblique type pushes

were used during testing. We consider this to be a test of “extrapolative” generalization, in that the

push directions used in testing are all qualitatively different from those used in training - the test

push directions do not lie in the same region of data covered by the training examples.

The regression method makes the smallest error mostly because it manages to differentiate

between tipping/toppling and forward pushing as it is shown in Figure 5.16. The single expert

CHAPTER 5. PREDICTION LEARNING IN ROBOTIC PUSHING MANIPULATION 99

Figure 5.16: Experiment 2 and 3. All methods frequently make an error regarding whether to

tip or to topple (top left). However, the regression method manages to differentiate between

tipping/toppling (top left) and forward pushing (middle left), while the density-based methods

predict only the first type of behaviour (bottom left). The multiple expert method steadily predicts

a simple forward movement (top right) which is nevertheless far closer to the actual polyflap

behaviour than physics-violating predictions of the regression and the single expert methods

(middle right and bottom right). The ground-truth and the predicted poses are shown as solid

and wire-frame shapes respectively.

method predicts only tipping and toppling, thus the multiple experts method which also uses the

global density is unable to overcome this error. Predictions of the regression and the single expert

frequently violates impenetrability constraint of a rigid body. Because multiple experts help in

preserving this constraint, the multiple expert method tends to make smaller errors than the single

expert one as it is shown in Figure 5.17. Predicted trajectories are usually more stable so as the

final error E f (Figure 5.16).

In Experiment 3, only the orthogonal type pushes to the front of a polyflap were used in

CHAPTER 5. PREDICTION LEARNING IN ROBOTIC PUSHING MANIPULATION 100

oblique pushes back pushes
0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

no
rm

al
iz

ed
 a

ve
ra

ge
 e

rro
r

global
global+local+shapes
LWPR

oblique pushes back pushes
0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

no
rm

al
iz

ed
 fi

na
l e

rro
r

global
global+local+shapes
LWPR

Figure 5.17: Experiment 2 and 3. Extrapolative action generalization errors for oblique pushes

and back pushes.

training, along with oblique type pushes. In contrast, the system was tasked to make predictions

for orthogonal type pushes applied to the back of a polyflap.

The regression method and the single expert method fail to predict the polyflap behaviour

(see Figure 5.17). Although the multiple expert method steadily predicts a simple forward

movement of a polyflap it does not violate physics and roughly corresponds to the actual behaviour

(Figure 5.16).

5.4.3 Generalization to objects with novel shapes

5.4.3.1 Extrapolative generalization to novel shapes

In Experiment 4, training data featured only an ordinary polyflap constructed from two square

faces joined at right angles. However, predictions were then made for test data in which the

geometry of the polyflaps varied randomly in several ways, see Figure 5.18. Variations included:

the angle at which the two rectangular flanges of the polyflap were connected; the width of each

rectangular flange; the transverse offset of one flange with respect to the other. We again consider

this to be an example of “extrapolative” generalization, in that the different kinds of test shape are

not spanned by the single shape used during training.

All prediction methods performed well with a slight advantage of the multiple expert method

(Figure 5.20). A typical error is related to inability to differentiate between tipping/toppling

behaviour of a polyflap (Figure 5.18).

In Experiment 5, the system is trained on a polyflap, but in testing it is required to predict the

motions of a box shaped object. This is a severe test of “extrapolative” generalization.

Similarly as in Experiment 3 the multiple expert method predicts a simple forward movement

of a box without violating physics (Figure 5.18). In contrast the single expert and the regression

methods constantly violate physics although they predict some sort of forward movement. As

in Experiment 2 the regression method frequently manages to predict qualitative character of a

movement such as rotation or toppling.

CHAPTER 5. PREDICTION LEARNING IN ROBOTIC PUSHING MANIPULATION 101

Figure 5.18: Experiment 4 and 5. An example of shape variation and tipping/toppling error (top

left). The multiple expert method trained on a polyflap predicts a simple forward movement of

a box (top right). In contrast, the single expert method (bottom left) and the regression method

(bottom right) constantly violate impenetrability constraints. The ground-truth and the predicted

poses are shown as solid and wire-frame shapes respectively.

5.4.3.2 Interpolative generalization to novel shapes

In Experiment 6, all training and testing data involve polyflaps constructed from two square

flanges. Shape variation consists in varying the angle at which the two square flanges are connected

along a common edge (see Figure 5.19). The shapes used for training are different from those

encountered by the predictors during testing, however we consider this a form of “interpolative”

generalization task, in that the test and training shapes are qualitatively similar and the range of

test shapes can be considered to be spanned by the range of training examples.

This experiment is informative, in that it reveals limitations of the regression method as well

as the single expert method. Since the regression technique does not encode information about

the object shape variability, it is difficult for it to generalize in situations where small changes in

shape can cause significant and qualitative changes in the resulting motion, even when the robotic

push is the same. For example, see Figure 5.19, when subjected to a downwards push, the angle

at which the polyflap flanges are joined, determines whether it will be pushed towards the left or

towards the right. In contrast to regression, the product of experts techniques cope much better

with this kind of shape generalization.

CHAPTER 5. PREDICTION LEARNING IN ROBOTIC PUSHING MANIPULATION 102

Figure 5.19: Experiment 6 reveals limitations of the single expert and the regression methods

which fail to predict the motion of a polyflap when subjected to a downward push (bottom panel).

Both methods constantly predict the same motion of a polyflap. The multiple expert method can

cope well with this kind of shape variations (top panel). The ground-truth and the predicted poses

are shown as solid and wire-frame shapes respectively.

variable polyflap box downward pushes
0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0.180

no
rm

al
iz

ed
 a

ve
ra

ge
 e

rro
r

global
global+local+shapes
LWPR

variable polyflap box downward pushes
0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

no
rm

al
iz

ed
 fi

na
l e

rro
r

global
global+local+shapes
LWPR

Figure 5.20: Experiment 4, 5 and 6. Shape generalization errors for a variable polyflap

(Experiment 4), a box (Experiment 5) and downward pushes (Experiment 6).

5.4.3.3 Incorporating additional shape information into the global expert

As we could see in Experiment 6, the single expert method failed because the corresponding

conditional density function 5.6 is not capable to determine whether a polyflap is pushed towards

the left or towards the right (Figure 5.19). We extended Experiment 6 by two predicting methods

to test if introducing additional information about contacts and about shape variability can improve

CHAPTER 5. PREDICTION LEARNING IN ROBOTIC PUSHING MANIPULATION 103

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

downward pushes

no
rm

al
iz

ed
 a

ve
ra

ge
 e

rro
r

global
global+local+shapes
LWPR
global+contact f rame
global+parameter

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

downward pushes

no
rm

al
iz

ed
 fi

na
l e

rro
r

global
global+local+shapes
LWPR
global+contact f rame
global+parameter

Figure 5.21: Experiment 7. Prediction errors with two additional single expert methods which

incorporate information about a finger-polyflap contact (global + contact frame) and the angle

between two flanges of a polyflap (global + parameter).

prediction performance of the single expert method (see Section 5.3.3).

The global conditional density function has been modified by incorporating a finger-object

contact frame (Equation 5.13) and information about the angle between two flanges of a polyflap

(Equation 5.14). In both cases the single expert method was able to determine two push cases.

As it is shown in Figure 5.21, the multiple expert method is still a winner mostly because the

additional experts manage to incorporate other constraints of the moving polyflap.

In Experiment 7 the upright flange of a polyflap is randomly shifted along the bottom flange

(Figure 5.23). Because the global frame (B) of a polyflap is attached to the upright flange, the

single expert and the regression methods alone have no chance to determine e.g. whether a polyflap

should be pushed forward or to be toppled. Not surprisingly, Figure 5.23 shows that a finger-

object contact frame does not improve predictions. However incorporating information about the

upright flange shift significantly improves performance over the single expert method. The basic

multiple expert method also performs very well preventing in most cases from impossible polyflap

movements, despite occasional “qualitative” mistakes (see Figure 5.22). The multiple expert

method with a flange shift information is the best performer in this experiment (Figure 5.23).

5.4.4 Experiments with a real robot

In the following experiments, we demonstrate the learned predictors on a real robotic manipulator.

A 5-axis Katana robotic manipulator [Neuronics AG, 2004] is equipped with a single rigid finger

(Figure 5.26, Figure 5.27 and Figure 5.28). It applies pushes to a metal polyflap on a table-top, and

the resulting motions are tracked by a model-based vision system [Mörwald et al., 2009]. At the

time of the experiment, the positioning accuracy of the arm was order +/- 2mm, and the polyflap

has been manufactured to a similar level of precision.

The experimental setup (i.e. type and variability of push actions, size and pose of the polyflap)

roughly corresponds to the setup of Experiment 1.

CHAPTER 5. PREDICTION LEARNING IN ROBOTIC PUSHING MANIPULATION 104

Figure 5.22: Experiment 7. The basic single expert method frequently generates physically

impossible movements (left panel). However, the basic multiple expert method performs very

well preventing from impossible polyflap movements, despite occasional “qualitative” mistakes

(right panel).

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

shifted flange

no
rm

al
iz

ed
 a

ve
ra

ge
 e

rro
r

global
global+local+shapes
LWPR
global+contact
f rame
global+parameter
global+local+shapes
+parameter

0.000
0.020
0.040
0.060
0.080
0.100
0.120
0.140
0.160
0.180
0.200

shifted flange

no
rm

al
iz

ed
 fi

na
l e

rro
r

global
global+local+shapes
LWPR
global+contact
f rame
global+parameter
global+local+shapes
+parameter

Figure 5.23: Experiment 7. Prediction errors with three additional methods.

5.4.4.1 Real experimental learning data

In Experiment 8 we have trained the system on 9, 90 and 900 pushes of a real robot. We

evaluated the performance of the multiple and the single expert methods and the regression

method. Figure 5.24 shows that the average and final prediction error decreases with increased

number of trials used in learning for all tested prediction methods. All density-based methods

performed reasonably well learned with even so little as 9 example pushes. The multiple expert

method performs particularly well with 90 learning trials where local experts successfully prevent

CHAPTER 5. PREDICTION LEARNING IN ROBOTIC PUSHING MANIPULATION 105

9 90 900
0.000

0.050

0.100

0.150

0.200

0.250

0.300

number of trials

no
rm

al
iz

ed
 a

ve
ra

ge
 e

rro
r

global
global+local+shapes
LWPR

9 90 900
0.000
0.050
0.100
0.150
0.200
0.250
0.300
0.350
0.400
0.450
0.500

number of trials

no
rm

al
iz

ed
 fi

na
l e

rro
r

global
global+local+shapes
LWPR

Figure 5.24: Experiment 8 with a real robot. Decrease in average (top) and final (bottom)

prediction errors with increased number of trials used in learning, for three different prediction

method.

from violating impenetrability constraints as it is frequently the case with the other tested methods.

However, the multiple expert method does not significantly improve its performance with 900

learning trials. Also, none of the tested method achieves the level of performance from Experiment

1. One of the reasons for this is that the vision tracker was not able to provide a sequence of

tracked object poses of pose-independent quality. We found that tipping and toppling movements

were particularly difficult to track.

CHAPTER 5. PREDICTION LEARNING IN ROBOTIC PUSHING MANIPULATION 106

global global+local+shapes LWPR
0.000

0.050

0.100

0.150

0.200

0.250

no
rm

al
iz

ed
 a

ve
ra

ge
 e

rro
r

real learning data
virtual learning data

global global+local+shapes LWPR
0.000

0.100

0.200

0.300

0.400

0.500

no
rm

al
iz

ed
 fi

na
l e

rro
r

real learning data
virtual learning data

Figure 5.25: Experiment 8 and 9. Predictors trained in a simulation are unable to match predictors

trained in the real experiment.

5.4.4.2 Virtual experimental learning data

In Experiment 9, we have trained the system on 900 simulated robot pushes which correspond

to those from Experiment 8. Parameters of a simulation were tuned by hand to match the real

system. Then we attempted to predict the motion of the real polyflap when it is pushed by the

real robot. Figure 5.26 and Figure 5.27 show two distinct qualitative behaviours where predictions

are convincingly accurate. Figure 5.28 shows that the predicted behaviour is physically plausible

and qualitatively correct, however a quantitative error has resulted from learning on simulated

data rather than real test data: while the system has correctly learned to predict the motion of

the polyflap within the physics simulator, the physics simulator does not accurately model the

frictional interactions of the real world, leading to a discrepancy between the predicted and real

polyflap motions in this case.

Figure 5.25 presents a comparison of prediction methods learned in a real experiment

(Experiment 8) and in a virtual experiment (Experiment 9), all with 900 learning trials. Clearly,

predictors trained in a simulation are unable to match predictors trained in a real experiment

despite some problems with the polyflap pose tracking.

5.5 Summary

In this chapter we have introduced an array of methods for learning to predict the motions

of objects during robotic manipulation tasks, that are able to encode physics information

without explicitly representing physics knowledge. We show that various geometric relations

between parts of objects can be represented as statistically independent shape/contact experts -

distributions, when used in products of experts allow us to generalize over shape and applied

actions, as well as to effectively learn in high dimensional spaces.

We have also presented an alternative prediction system based on a state of the art regression

method. The regression method and the single expert method show some advantage only when

CHAPTER 5. PREDICTION LEARNING IN ROBOTIC PUSHING MANIPULATION 107

Figure 5.26: Experiment 8 and 9. Prediction (green wire frame) for a real experiment (red wire

frame denotes visual tracking). The polyflap tips forward before rocking back to its starting

position. Predictions were generated by the multiple expert method.

Figure 5.27: Experiment 8 and 9. Prediction (green wire frame) for a real experiment (red wire

frame denotes visual tracking). The polyflap tips forward and then topples over. Predictions were

generated by the multiple expert method.

CHAPTER 5. PREDICTION LEARNING IN ROBOTIC PUSHING MANIPULATION 108

Figure 5.28: Experiment 8 and 9. Prediction (green wire frame) for a real experiment (red wire

frame denotes visual tracking). Blue wire frame denotes prediction of a physics simulator. Note

that the learned statistical predictor has correctly learned to replicate the physics simulator data

that it was trained on, but fails to properly predict the real object motion because the physics

simulator training data does not always correspond well with reality. Predictions were generated

by the multiple expert method.

there is low variation in shape and action, but its performance deteriorates where shape variation

occurs that substantially affects object behaviour. In contrast, the multiple experts approaches

extrapolate comparatively well in such situations.

Furthermore, we have shown that the introduced prediction methods can be successfully used

to learn to predict from real experiments with a small number of examples. All methods trained

in a real experiment provide substantially better predictions than methods trained in a simulation.

The multiple experts method shows the best performance of all other methods, especially when

trained with a small number of example pushes.

Future work will investigate (for more details see Chapter 7):

• Product of experts can incorporate observations during prediction using recursive Bayesian

filter.

• Autonomous selection and construction of experts could allow to select and also construct

experts in an autonomous way to provide the best prediction results.

CHAPTER 5. PREDICTION LEARNING IN ROBOTIC PUSHING MANIPULATION 109

• Shape invariant experts constructed using information about contacts and the centre of mass

of an object can be common for a large set of objects.

• Learning to predict in compliant manipulation and grasping which involves motor torques

rather than a kinematic type of actions.

• Applying products of experts in inverse models.

• Combining forward and inverse models in modular motor learning.

CHAPTER 5. PREDICTION LEARNING IN ROBOTIC PUSHING MANIPULATION 110

Experiment Prediction method Eav E f

1 (1000 trials) single expert (global) 0.0203 0.0638

multiple experts (global+local) 0.0226 0.0712

multiple experts (global+local+shapes) 0.0227 0.0716

regression (LWPR) 0.0426 0.1326

2 single expert (global) 0.0836 0.2816

multiple experts (global+local+shapes) 0.0783 0.2266

regression (LWPR) 0.0607 0.1893

3 single expert (global) 0.1503 0.3669

multiple experts (global+local+shapes) 0.0141 0.0393

regression (LWPR) 0.1392 0.3600

4 single expert (global) 0.0537 0.1696

multiple experts (global+local+shapes) 0.0463 0.1537

regression (LWPR) 0.0536 0.1636

5 single expert (global) 0.1666 0.4286

multiple experts (global+local+shapes) 0.1114 0.2722

regression (LWPR) 0.1175 0.2332

6 single expert (global) 0.0345 0.1188

multiple experts (global+local+shapes) 0.0098 0.0359

regression (LWPR) 0.0328 0.1287

single expert (global+contact frame) 0.0157 0.0607

single expert (global+parameter) 0.0151 0.0558

7 single expert (global) 0.0578 0.1688

multiple experts (global+local+shapes) 0.0338 0.0867

regression (LWPR) 0.0557 0.1815

single expert (global+contact frame) 0.0575 0.1596

single expert (global+parameter) 0.0301 0.0799

multiple experts (global+local+shapes+parameter) 0.0286 0.0697

8 (900 trials) single expert (global) 0.0794 0.1424

multiple experts (global+local+shapes) 0.0781 0.1460

regression (LWPR) 0.1043 0.2026

9 single expert (global) 0.1888 0.3700

multiple experts (global+local+shapes) 0.1887 0.3721

regression (LWPR) 0.1675 0.3281

Table 5.1: Comparative performance of tested prediction methods.

Chapter 6

A simplified physics approach to
prediction

The previous chapter presented a set of methods for learning to predict the behaviour of objects

in simple robotic manipulation tasks. The methods incorporate information about objects’ shapes

and other physical properties in terms of distributions. The local distributions encode information

about the behaviour of objects’ local shape parts during interactions and can be shared among

many objects. However, the global distribution is unique to a particular object or object category,

therefore the generalization capabilities of such global distributions are limited, in particular with

respect to objects of different shapes.

This chapter introduces a simplified physics approach as an alternative method for improving

predictions in the case of limited information about the manipulated object. Experimental results

confirm that this simple method can be successfully used in prediction.

The chapter consists of the following sections:

• Section 6.1 introduces the principle of minimum energy which underlies the simplified

physics approach.

• Section 6.2 describes implementation details of the simplified physics approach.

• Section 6.3 presents the results of experiments which compare the simplified physics

predictions with methods introduced in the previous chapter.

• Section 6.4 summarizes the chapter and briefly discusses future work on the simplified

physics approach.

6.1 Principle of minimum energy

A simplified physics approach is an alternative method for predicting the motion of an object

subjected to pushing action. The approach relies on the principle of minimum energy known from

111

CHAPTER 6. A SIMPLIFIED PHYSICS APPROACH TO PREDICTION 112

thermodynamics as a consequence the second law of thermodynamics applied to closed systems.

The principle of minimum energy states that the total energy of a closed system decreases and

reaches a local minimum value at equilibrium, where a closed system is a system with fixed

entropy and other parameters such as volume or mass, but which can exchange energy with other

connected systems [Landau and Lifshitz, 1980].

A system consisting of a robot, an object and a ground plane can also be considered as a closed

system1. From the principle of minimum energy we know that the total energy of our system must

reach a local minimum for a given amount of work introduced to the system. Each movement of

a robotic finger, if it touches an object, produces some amount of work, which in the prediction

scenario is unknown because the corresponding movement of the object is unknown. However,

this movement can be computed by searching for such movements which minimize the produced

amount of work, given known physical properties of the system.

A simplified physics approach uses a very simple model of physical interactions (see also

Chapter 3), which can be split into the physical phenomena and the corresponding work done by

moving objects as follows:

1. Mass via work done by accelerating a given object.

2. Gravity force via work done while moving in a given potential field.

3. Friction via work done by two objects in contact moving in tangential direction. It is

the simplest case of Coulomb’s law of sliding friction with dynamic friction only (see

Section 3.2.2.3).

4. Restitution via work done by two objects in contact moving in directions normal to the

contacting surfaces.

6.2 Implementation

6.2.1 Finding a trajectory at equilibrium

The simplified physics approach represents the object body by a set of N “volumetric” particles

vi
t with index i at discrete time step t randomly generated at time step t = 0 and then rigidly

attached to the object throughout all prediction time steps (see Figure 6.1). Trajectory of an object

is approximated by a sequence of rigid body transformations q which are found by solving a

problem of minimizing the energy function E(q) at each time step t = 2, . . . ,T :

min
q

E(q, t) (6.1)

Energy function E(q) consists of four work type-specific functions which correspond to four ways

of producing work as described in the previous section:

1Only by analogy.

CHAPTER 6. A SIMPLIFIED PHYSICS APPROACH TO PREDICTION 113

Figure 6.1: A set of “volumetric” particles (yellow dots) representing the object body (green solid

shape).

E(q, t) = Ea(q, t)+Eg
i (q, t)+E f

i (q, t)+Er
i (q, t) (6.2)

where each work function computes work during movement generated by q as follows2:

Ea(q, t) = Ca‖
N

∑
i=1

(qvi
t−1−2vi

t−1 + vi
t−2)‖ (6.3)

Eg
i (q, t) =−Cg

N

∑
i=1

G · (qvi
t−1− vi

t−1) (6.4)

E f
i (q, t) = C f ∑

i∈Vf

‖qvi
t−1− vi

t−1‖ (6.5)

Er
i (q, t) = Cr ∑

i∈Vr

di(qvi
t−1) (6.6)

where C∗ ∈ R+ are work type-specific constants, G ∈ R3 is the gravity vector, Vf is an index set

of all particles which are in contact with the ground plane, Vr is an index set of all particles which

penetrate a robotic finger or the ground plane with the corresponding penetration depth di.

Transformation q which minimizes E(q) can be computed using e.g. a differential evolution

optimization algorithm described in Appendix C.

6.2.2 Probability density over trajectories

Energies E(q) can be transformed into a probability density function over possible transformations

q by using a Boltzmann distribution [Landau and Lifshitz, 1980]:
2Work functions are only a crude approximation of real physical phenomena and do not even preserve physical

units.

CHAPTER 6. A SIMPLIFIED PHYSICS APPROACH TO PREDICTION 114

pBoltzmann(E(q)) =
exp
(
−E(q)

kT

)
Z(T)

(6.7)

where k is Boltzmann constant and T is temperature. Z(T) is a partition function (a normalization

constant) which for a given temperature can be computed from:

Z(T) = ∑
q

exp
(
−E(q)

kT

)
(6.8)

A basic prediction scenario requires computation of only the most likely trajectory, therefore

normalization constant Z(T) need not to be estimated and can be assumed a non-zero constant.

Importantly, the modelled system consisting of an object and a robotic arm is a macroscopic

system, therefore laws thermodynamics cannot be applied directly. Consequently, the temperature

in 6.7 cannot be interpreted as temperature in thermodynamics.

pBoltzmann(E(q)) can be used as an approximation of the global conditional density function

given by Equation 5.6 and it can be combined in a product with other experts as was discussed in

Chapter 5. The global conditional density function can be replaced with pBoltzmann(E(q)) so that

Equation 5.12 now becomes:

max
T

Bt ,Bt+1
in

pBoltzmann(E(T Bt ,Bt+1
in))×

plocal((T I,Bl
t)−1T Bt ,Bt+1

in T I,Bl
t |T At ,At+1 ,T Al

t ,B
l
t)×

∏
k=1...N

p((T I,BSk
t)−1T Bt ,Bt+1

in T I,BSk
t |T ESk

t ,BSk
t) (6.9)

where symbol T stands for a rigid body transformation. All predictions can be now computed

using the same procedure as described in Section 5.3.4, i.e. by minimizing product 6.9.

pBoltzmann(E(q)) depends on several constants which have to be estimated for a particular sys-

tem, but crucially it also depends on temperature T . When temperature T→∞, pBoltzmann(E(q))→
1 for any transformation q, consequently pBoltzmann(E(q)) has no influence on a result of the max-

imization procedure 6.9. On the other hand, when temperature T → 0, pBoltzmann(E(q)) becomes

very rugged, likely with a single peak only, so that the other factors in the product 6.9 have no

impact on the maximization result3.

6.3 Results

6.3.1 Overview

The experimental setup is identical to that described in Section 5.4. Product 6.9 involves the same

local shape experts as in the multiple expert method which have to be learned prior to prediction.

3This temperature property of pBoltzmann(E(q)) also enables to control the process of learning of the global expert.

CHAPTER 6. A SIMPLIFIED PHYSICS APPROACH TO PREDICTION 115

For comparison we present the results of the simplified physics approach alongside the results

already shown in Chapter 5, for the various learned predictors. The normalized average error and

the normalized final error for each experiment are collected in Table 6.1.

6.3.2 Performance of a simplified physics approach

global global+local+shapes LWPR physics low T
0,000

0,050

0,100

0,150

0,200

0,250

no
rm

al
iz

ed
 a

ve
ra

ge
 e

rro
r

real learning data
virtual learning data

+local+shapes
global global+local+shapes LWPR physics low T

0,000

0,050

0,100

0,150

0,200

0,250

0,300

0,350

0,400

0,450

no
rm

al
iz

ed
 fi

na
l e

rro
r

real learning data
virtual learning data

+local+shapes

Figure 6.2: Prediction errors of a simplified physics approach compared to prediction errors of

learning methods from Experiment 8 (“virtual learning data”) and Experiment 9 (“real learning

data”).

In order to test the performance of a simplified physics approach, we have repeated

Experiments 8 and 9 (see Section 5.4.4) using the simplified physics predictor combined with

learned local experts as in Equation 6.9 for low temperature T (“physics low T+local+shapes”).

Note that the low temperature means that the physics predictor dominates over contributions from

the local and shape predictors with which it is combined. Figure 6.2 shows the performance of

simplified physics versus various kinds of learned prediction methods.

Bars labelled “virtual learning data” represent prediction errors for predictors trained on data

from a physics simulator and then tested on real data (Experiment 8). Bars labelled “real learning

data” represent prediction errors for predictors both trained and tested on real data (Experiment

9). This comparison is important, because it reveals that, in the absence of data with which to train

a global expert, it is better to use a simplified physics predictor than to attempt to use a physics

simulator - the simplified physics provides better predictions than those which can be achieved by

using a physics simulator to train a predictor.

It is observed that the learned global expert (when combined with local experts) somewhat

outperforms the simplified physics predictor. However, the simplified physics is of broadly

comparable performance, but does not need prior observations of a particular object in order for

training.

Note that in these proof of principle experiments, parameters of the simplified physics

predictor (constants C∗ from Equation 6.6) were manually tuned to match the real data, while

temperature T was set to a low value. However we note that varying these parameters does not

CHAPTER 6. A SIMPLIFIED PHYSICS APPROACH TO PREDICTION 116

greatly impact performance. Also note that, once tuned, these same parameters should be adequate

for making predictions about many different objects.

In summary, predictions provided by a simplified physics approach are not as good as the

ones by learning methods trained on real data. However, these predictions are significantly better

than predictions obtained by learning methods trained on virtual data. Consequently, a simplified

physics approach provides an overall better approximation of the objects real behaviour than the

physics simulator we used. For example, a real-world polyflap rotating behaviour is predicted

better than by a physics simulator (see Figure 6.3).

Figure 6.3: A few examples of predictions generated by the simplified physics approach. A real-

world polyflap rotating behaviour (top panel) is predicted better than by a physics simulator (as

for example in Figure 5.28).

6.3.3 Shape generalization

These are experiments performed in a simulation environment, in which firstly (Experiment 4 from

Section 5.4.4) predictors were trained on a fixed-shape polyflap and then tested on new polyflaps

of varying shapes, and secondly (Experiment 5 from Section 5.4.4) predictors were trained on a

fixed-shape polyflap but tested on a box-shaped object. The simplified physics predictor was tested

with low and high temperatures T (“physics high T+local+shapes”). Note that the low temperature

means that the physics predictor dominates over contributions from the local and shape predictors

with which it is combined, whereas in the high temperature case, the contributions from the local

and shape predictors are much more significant. Constants C∗ were manually tuned to match the

physics simulator predictions.

CHAPTER 6. A SIMPLIFIED PHYSICS APPROACH TO PREDICTION 117

variable polyflap box
0,000

0,020

0,040

0,060

0,080

0,100

0,120

0,140

0,160

0,180

no
rm

al
iz

ed
 a

ve
ra

ge
 e

rro
r

global
global+local+shapes
LWPR
physics low T
+local+shapes
physics high T
+local+shapes

variable polyflap box
0,000

0,050

0,100

0,150

0,200

0,250

0,300

0,350

0,400

0,450

no
rm

al
iz

ed
 fi

na
l e

rro
r

global
global+local+shapes
LWPR
physics low T
+local+shapes
physics high T
+local+shapes

Figure 6.4: Prediction errors of the simplified physics approach compared to the predictions

obtained in the shape generalization Experiment 4 (“variable polyflap”) and Experiment 5 (“box”).

Figure 6.4 compares prediction results for a simplified physics approach against predictions

made by learned experts, for the shape generalization exercises of Experiment 4 and Experiment 5.

Low temperature settings improves prediction performance mostly because the local shape experts

alone are not capable to provide predictions of relatively complex behaviour of a polyflap. On the

other hand, the local shape experts alone (high temperature settings) can provide a relatively good

approximation of e.g. forward movement of a box which is difficult to predict using the physics

approach, but they failed to predict e.g. a box rotating behaviour which is relatively simple for the

simplified physics to predict.

6.4 Summary

This chapter introduced a simplified physics approach as an alternative to using a learned global

conditional density. As shown in the experimental results part of the chapter, the approach can

provide reasonable predictions without learning, which are better than those obtained by training

a learned predictor on data from a physics simulator.

Consequently this is a method of choice in situations where the global conditional density is

not provided, e.g. in situations where no prior training data is available with which to train a

learned global expert. Importantly, by making use of the Boltzmann distribution, the simplified

physics predictor can provide a probability density over predicted trajectories. This is useful

because it means that it can be combined with learned local shape experts in a product of experts,

by using a product of densities.

Future work will investigate (for more details see Chapter 7):

• Improving energy function E(q), which currently causes a bottleneck due to expensive

object particle representation.

• Online estimation of the constants C∗ from observed examples.

CHAPTER 6. A SIMPLIFIED PHYSICS APPROACH TO PREDICTION 118

Experiment Prediction method Eav E f

4 (extended) single expert (global) 0.0537 0.1696

multiple experts (global+local+shapes) 0.0463 0.1537

regression (LWPR) 0.0536 0.1636

physics (physics low T+local+shapes) 0.0662 0.1867

physics (physics high T+local+shapes) 0.0972 0.2923

5 (extended) single expert (global) 0.1666 0.4286

multiple experts (global+local+shapes) 0.1114 0.2722

regression (LWPR) 0.1175 0.2332

physics (physics low T+local+shapes) 0.1223 0.2529

physics (physics high T+local+shapes) 0.1180 0.2542

8 (extended, real data) single expert (global) 0.0794 0.1424

multiple experts (global+local+shapes) 0.0781 0.1460

regression (LWPR) 0.1043 0.2026

physics (physics low T+local+shapes) 0.0847 0.2235

9 (extended, virtual data) single expert (global) 0.1888 0.3700

multiple experts (global+local+shapes) 0.1887 0.3721

regression (LWPR) 0.1675 0.3281

Table 6.1: Comparative performance of tested prediction methods.

Chapter 7

Discussion

In this thesis we addressed the problem of learning to predict the behaviour of objects subjected

to simple robotic manipulation. This chapter discusses the key contributions of the thesis in

Section 7.1 and summarises the thesis in Section 7.2. The last Section 7.3 discusses ongoing

and future work.

7.1 Conclusions

In this thesis we have shown that:

• It is possible to build systems which are able to learn to predict the behaviour of objects in

simple robotic manipulation.

• The proposed product of experts predictor can be trained to make accurate predictions

with a degree of generalization to objects of significantly different shapes as well as to

significantly different actions.

• The product of experts predictor does not make explicit use of physics knowledge and can

be successfully trained and used in a virtual as well as in the real world.

• Relationship between moving and motionless objects can be represented by distributions

called global experts. Global experts encode behaviour specific to the entire system of

interacting objects. In general, global experts are different for different objects involved.

• Global experts alone correspond to regression predictors if the involved distributions are

unimodal. They can be trained for particular systems of interacting objects and offer a

reasonably effective method for predicting motions of objects of fixed shape, but have

difficulty generalizing to new objects with significantly different shapes or to significantly

different actions.

• Relationship between parts or local shapes of moving and motionless objects (also called

contacts) can be represented by distributions called local experts. Local experts encode

119

CHAPTER 7. DISCUSSION 120

behaviour specific to the involved pairs of local shapes, but in particular impenetrability of

rigid objects. Local experts can be shared among different interacting objects as long as

they share local shapes.

• Local experts can be trained for particular objects, and then can be combined to make

predictions about new objects different from those encountered during training as long as

they share the same local shapes used in particular local experts.

• Product of experts predictor poses the prediction learning problem in terms of density

estimation, so that it is possible to usefully combine the (often conflicting) predictions of

multiple global and local experts, by means of a product of densities.

• A simplified physics approach, based on the minimum energy principle, can make

significantly more accurate predictions than a physics simulator, yet does not require explicit

training data for the object being manipulated. By expressing trajectories of moving objects

probabilistically using the Boltzmann distribution, the simplified physics predictor can be

combined with learned local experts and offers potential for generalization capabilities

beyond those of learned global experts, in particular in cases where sufficient data may

not be available to train a global expert.

7.2 Summary

Chapter 1 is an introduction to this thesis. We presented our motivation and the most important

contributions of this thesis. Furthermore, we outlined the key prediction learning approach and

briefly described the types of experiments used in later chapters.

Chapter 2 introduced mathematical models for sensorimotor learning in the context of sensory

prediction. The chapter begun with psychological findings which supports the hypothesis that the

central nervous system predicts sensory consequences of motor actions. It introduced forward

model and inverse model which have been suggested to exists in the cerebellum and which enable

us to control the relationship between sensory input and motor commands. Furthermore, the

chapter introduced mathematical frameworks enabling motor control and learning of a robot using

the hypothesized internal models. It discussed predictive control schemes which use an inverse

model. The final section introduced the modular motor learning approach which employs forward

models to decide on a context in which a particular movement is performed. The modular motor

learning is one of the approaches which can be potentially used in object manipulation learning.

Chapter 3 argued that learning to predict may offer several benefits over prediction performed

by fixed models which explicitly encode some aspects of physics. The chapter introduced physics-

based predictors (physics engines) which subsequently detect all collisions as sets of contacts and

CHAPTER 7. DISCUSSION 121

then modify movement of the simulated bodies using contact resolution methods. Unfortunately,

there is no optimal contact resolution method, since all of them suffer from drawbacks such as

violation of the law of energy conservation or difficulties with tuning the method parameters’. The

chapter also presents a literature review on pushing manipulation. Some approaches are focused

on planning and employ physics-based forward models, however they are mostly limited to 2D

simplified world. Other approaches enable learning of the objects’ behaviour, however they are

mostly focused on the preprogrammed qualitative behaviour of objects during pushing and poking

actions.

Chapter 4 introduced path planning and other control methods of a robotic manipulator used

in all experiments in this thesis. The chapter introduced manipulator kinematics and methods of

solving the inverse kinematics problem and the inverse instantaneous kinematics problem which

are required by the motion control algorithms. Further sections introduced a problem of planning

trajectories of the manipulator body in the presence of obstacles as well as they presented methods

for collision detection with path and trajectory planning. The chapter finished with a description of

a trajectory planner used in pushing experiments from this thesis. The planner uses an optimization

algorithm in path planning which is also a minor contribution of the thesis.

Chapter 5 is the main chapter of this thesis. The chapter introduced a set of methods for

learning to predict the motions of objects during robotic manipulation tasks, that are able to encode

physics information without explicitly representing physics knowledge. We presented the product

of experts architecture which allow us to generalize over shape and applied actions, as well as

to effectively learn in high dimensional spaces. We demonstrated that the products of experts

methods can be successfully used to learn to predict from real experiments with a small number of

examples. For comparison, we also presented an alternative prediction system based on a state of

the art regression method which shows some advantage only when there is low variation in shape

and action, but its performance deteriorates where shape variation occurs that substantially affects

object behaviour. In contrast, the product of experts methods extrapolate comparatively well in

such situations.

Chapter 6 introduced a simplified physics approach as an alternative to using a learned global

conditional density. The approach can provide reasonable predictions without learning, which are

better than those obtained by training a learned predictor on data from a physics simulator. A

simplified physics approach can be a method of choice in situations where the global conditional

density is not provided. Importantly, by making use of the Boltzmann distribution, a simplified

physics approach can provide a probability density over predicted trajectories. This is useful

because it means that it can be combined with learned local shape experts in a product of experts,

by using a product of densities.

CHAPTER 7. DISCUSSION 122

7.3 Future work

Ongoing and future work will explore several possible extensions to this work, including:

Bayesian filtering. An obvious and important extension to the current product of experts

predictor is to incorporate online observations during prediction. Recursive Bayesian filters

recursively estimate the probability density over a sequence of states of a system given a sequence

of observations, where each estimation step consists of a prediction step and an update step

[Doucet et al., 2000]. While the prediction step is already realized by our product of experts’

predictor, the update step corresponds to an observation model which could use data obtained

form a vision system but also from other sensing modalities such as force-torque sensors. Such

a Bayesian filter could be realized for example as a particle filter which uses a set of weighted

samples to model an inherently multimodal distribution over multiple hypothesis object poses (in

contrast the present prediction framework only maintains a single hypothesis from one time step

to the next).

Autonomous selection of experts. As shown in the experiments in Chapter 5, multiple expert

predictors improve predictions when the learning data is sparse or when there is no good

approximation of a global expert for a particular object or situation. Intuitively, because each

local expert is designed to be shared or re-used during generalization to many new objects, they

will never perfectly reflect the actual behaviour of any particular object. Thus, there is generally a

trade-off between the number and type of experts and the quality of their predictions. Therefore, a

useful task of future work is to search for a procedure for selecting the optimal set of experts from

a predefined set of possible experts.

Autonomous construction of experts. A more general alternative to a predefined set of possible

experts would be to construct these experts using some common underlying representation for all

types of experts. One of the possibilities might involve a hierarchical shape decomposition, e.g.

similar to that presented in [Fidler and Leonardis, 2007].

Shape invariant experts. One can incorporate more physics knowledge into experts. It is

known from mechanics, that movement of a body is determined by a net force and torque

which incorporates friction, gravity and applied forces. Although these forces are not directly

observable in our kinematic predictor, in the simplest cases they could be approximated by experts

which encode the centre of mass frame, a finger-object contact frame (see Section 5.3.3) and an

environment-object contact frame.

Learning to predict in compliant manipulation and grasping. So far products of experts were

used in prediction without taking into account motor torques or in general motor commands which

CHAPTER 7. DISCUSSION 123

generate the manipulator movements. In this scenario some motor commands may not produce

any movement of an immovable or heavy object. The situation can be further complicated in

multi-finger grasping where for example two or more fingers work in opposition.

Products of experts in inverse models. An inverse model for a system consisting of a robotic

finger, an object and a static environment can provide a distribution over finger transformations or

directly over manipulator commands for a desired object transformation. Inverse models can also

be created as products of experts with a single global expert but also with multiple local experts

which provide additional constraints. For example, one can train a local expert which assures that

a finger will always maintain contact with an object surface during pushing. This is not something

which can be guaranteed by a global expert alone, due to shape variability. A product of multiple

experts can be an alternative solution to feedback and optimization methods which are used in

control, and can be used to avoid the convexity problem (see Section 2.5).

Combining forward and inverse models in modular motor learning. Modular motor

learning, introduced in Section 2.5.4, combines multiple forward and inverse models into pairs,

where within each pair a single forward model predicts the effects of actions of the corresponding

inverse model, i.e. the performance of each forward model provides confidences or weightings

with which to combine the corresponding inverse models to generate a net control signal. We

can explore modular motor learning by building such modules, where each module contains

both a forwards and inverse model, and where these forwards and inverse models are themselves

constructed as products of experts according to the product of densities model described in this

thesis. Pairing forward and inverse models would enable the introduction of multiple motor

primitive experts which correspond to different “qualitative” behaviours of objects, for example to

tipping or rotating. A set of such primitives could comprise a single global expert of a particular

object, however many of the primitives can be shared among different objects. Motor primitive

experts could be automatically assigned to the existing pairs of models during learning, but better

generalization could be achieved by searching for modules corresponding to different global

experts, but which provide similar predictions.

Appendix A

Rigid body kinematics

Rigid body kinematics studies motion of rigid bodies regardless of the causes of the motion.

Motion of rigid bodies preserves distances between body parts (i.e. without deformation) and

can be represented by rotation followed by translation. However such a representation suffers

from singularities - there exists infinitely many combinations of rotations1 and translations which

correspond to the same body movement. Two hundred years ago Chasles and Poinsot proved that

each rigid body movement can be uniquely represented by a movement called a screw motion

consisting of rotation about an axis and translation along it. A version of a screw motion called

twist models rigid body movement in terms of instantaneous angular and linear velocities. Twist

formalism has been used to represent arm kinematics and Jacobian in Chapter 4.

A.1 Introduction

This section introduces a few useful concepts including a notion of a rigid body and a trajectory.

Euclidean n-space denoted by Rn is a space of all tuples of real numbers (x1,x2, . . . ,xn). The

elements of the Euclidean space are called points. There will be further considered movements of

bodies only in a three dimensional Euclidean space R3.

Given two points p,q∈R3, one can construct a vector v∈R3 as a directed line segment going

from p to q with coordinates

v = q−p = (q1− p1,q2− p2,q3− p3) (A.1)

and a magnitude defined as a function ‖·‖ : R3→ R called Euclidean norm:

‖v‖=
√

v2
1 + v2

2 + v2
3 (A.2)

A magnitude of a vector v = q− p is a measure of the length of vector v or equivalently

the distance between points q and p. Although technically points and vectors are both tuples of

1Regardless of the representation of rotation.

124

APPENDIX A. RIGID BODY KINEMATICS 125

real numbers, their interpretation is different. A point specifies location in R3, while a vector is

location independent and can be attached to any point in R3.

A movement of a point in R3 can be described by trajectory, i.e. a parametrized curve

p(t) = (p1(t), p2(t), p3(t)) ∈ R3. (A.3)

where t is a continuous time parameter.

A body in R3 can be represented as a set of points. A rigid body is a body such that the distance

between any two points q and p belonging to the body remains fixed for all movements. In other

words, for arbitrary t:

‖q(t)−p(t)‖= ‖q(0)−p(0)‖= const (A.4)

Instead of looking directly for trajectories of all points of a given body, one can consider a

continuous family of mappings g(t) : R3 → R3 in some fixed coordinate frame. Mapping g(t)

describes how a point belonging to a given body moves as a function of time t, so that if a body

moves along a continuous path, g(t) maps the coordinates of a point at initial time 0 to the new

coordinates at time t.

In order to represent rigid body movements, mapping g is also required to preserve the body

orientation. This condition is required to avoid situations where for example a rigid body is

internally reflected on a Y Z-plane, i.e. where points with coordinates (x,y,z) are mapped onto

(−x,y,z). This can be achieved if mapping g is additionally required to preserve the cross product

between vectors created from the body points.

Mapping g : R3 → R3 is called a rigid body transformation if for all points p,q,r ∈ R3

preserves the following quantities:

length : ‖g(p)−g(q)‖= ‖p−q‖
cross product : g((p−q)× (q− r)) = g(p−q)×g(q− r)

(A.5)

An important consequence of Definition A.5 is that a dot product of any two vectors is also

preserved by any rigid body transformation g. For two vectors v and w the following relation holds

(see [Murray et al., 1994]):

vT w = g(v)T g(w) (A.6)

Because rigid body transformations preserve both cross and dot products, a set of orthogonal

vectors is mapped into a set of orthogonal vectors. In particular, a set of three orthonormal

vectors x,y,z ∈ R3 which defines Cartesian coordinate frame is also preserved by any rigid body

transformation g.

It will be further assumed that all coordinate frames are right-handed Cartesian frames (unless

it is stated otherwise), i.e. frames for which:

APPENDIX A. RIGID BODY KINEMATICS 126

x = y× z (A.7)

The cross product between any two vectors v,w ∈ R3 is defined as:

v×w =

v2w3− v3w2

v3w1− v1w3

v1w2− v2w1

 (A.8)

Because cross product is a linear operator, the above equation can be rewritten in the operator form

v̂ : w 7→ v×w or equivalently using wedge operator v∧ : w 7→ v×w, where v̂ = v∧ is a 3×3 matrix

defined as:

v̂ =

v1

v2

v3

∧

=

0 −v3 v2

v3 0 −v1

−v2 v1 0

 (A.9)

and then:

v×w = v̂w = v∧w (A.10)

It is useful to provide an inverse to wedge operator - vee operator ∨, which extracts elements

of matrix A.9 back into R3 vector:

0 −v3 v2

v3 0 −v1

−v2 v1 0

∨

=

v1

v2

v3

 (A.11)

A.2 Rotations

A.2.1 Rotation matrices

Consider two coordinate frames: inertial frame A which is an immovable frame attached to some

observer, and body frame B which is a variable frame attached to a body. A rigid body is rotated

about the centre of inertial frame A which before rotation overlaps with body frame B as it is

shown in Figure A.1.

Let vectors xab,yab,zab ∈ R3 be the coordinates of the principal axes of frame B as seen in

frame A. Rotation matrix R ∈ R3×3 is a matrix constructed by stacking these vectors next to each

other as follows:

Rab = [xab yab zab] (A.12)

APPENDIX A. RIGID BODY KINEMATICS 127

x

y

z

x
ab

z
ab

y
abA

B

Figure A.1: Rotation of a rigid body about the centre of inertial frame A (solid lines) which before

rotation overlaps with body frame B (dotted lines).

x

y

z

x
ab

z
ab

y
abA

B
q

Figure A.2: A point q seen in inertial frame A (solid lines) and body frame B (dotted lines).

Rotation matrix Rab can be seen as a transformation which takes coordinates of a point from

frame B to frame A. If a point q has coordinates qb = (xb,yb,zb) in frame B, then the coordinates

of q relative to A are given by (Figure A.2):

qa = xabxb +yabyb + zabzb = [xab yab zab]

xb

yb

zb

 (A.13)

Because the columns r1,r2,r3 ∈R3 of rotation matrix R define a rotated inertial frame they are

mutually orthonormal. One can write six equations of the form:

APPENDIX A. RIGID BODY KINEMATICS 128

rT
i r j = δi j (A.14)

where i, j = 1, . . . ,3. The above expression can be written in the equivalent matrix form:

RRT = RT R = I (A.15)

Because det(RRT) = det(R)det(RT), a determinant of rotation matrix can be detR =±1. However,

it is known from linear algebra that:

detR = rT
1 (r2× r3) (A.16)

On the other hand, because Equation A.7 implies that r1 = r2 × r3, which substituted to

Equation A.16 gives:

detR = rT
1 r1 = 1 (A.17)

In general, n-dimensional real matrices Rn×n that satisfy the above two properties A.15 and

A.17 are called special orthogonal matrices. They are denoted by:

SO(n) = {R ∈ Rn×n : RRT = I,detR = +1} (A.18)

A set of all matrices SO(n) comprise a group with the operation of matrix multiplication. In

particular, for n = 3 rotation matrices comprise group SO(3) and they satisfy the following four

axioms (for more details see e.g. [Gilmore, 1973]):

1. Closure: If R1,R2 ∈ SO(3), then R1R2 ∈ SO(3).

2. Identity: There exists an identity matrix I ∈ SO(3) such that for every R∈ SO(3), RI = IR =

R.

3. Inverse: For each R ∈ SO(3), there exists a unique inverse matrix R−1 ∈ SO(3), such that

R−1R = RR−1 = I.

4. Associativity: If R1,R2,R3 ∈ SO(3), then (R1R2)R3 = R1(R2R3).

Rotation matrices display various interesting and useful properties. In particular, direct

calculations show that for given R ∈ SO(3) and v ∈ R3 the following property holds:

Rv̂RT = R̂v (A.19)

APPENDIX A. RIGID BODY KINEMATICS 129

z

x

y

q(0)

q(t)

ω

v(t)

Figure A.3: Rotation of a rigid body with attached point q about axis ω .

A.2.2 Exponential coordinates of rotation

Consider point q attached to a rigid body which rotates anti-clockwise with a constant unit angular

velocity about fixed axis ω , as it is shown in Figure A.3.

The instantaneous linear velocity v of point q at time t can be written as:

v(t) = q̇(t) = ω×q(t) = ω̂q(t) (A.20)

where the operator form A.9 of the cross product is used, and where ‖ω‖= 1 due to unit angular

velocity of the body.

The above Equation A.20 is a time invariant linear differential equation with a solution:

q(t) = eω̂tq(0) (A.21)

where q(0) is the initial position of point q at time t = 0, and eω̂t is a matrix exponential given by:

eω̂t = I + ω̂t +
(ω̂t)2

2
+

(ω̂t)3

3
+ . . . (A.22)

In this way, given axis ω at unit velocity and θ units of time, the matrix exponential generates

a rotation matrix:

R(ω,θ) = eω̂θ = I + ω̂θ +
(ω̂θ)2

2
+

(ω̂θ)3

3
+ . . . (A.23)

where ω represents a rotation axis and θ is the amount of rotation. In other words, for any

skew-symmetric matrix ω̂ ∈ so(3) and θ ∈ R holds eω̂θ ∈ SO(3) (see [Murray et al., 1994]).

The components of a vector ωθ ∈ R3 are called the exponential coordinates or the canonical

coordinates for the rotation matrix R.

From Definition A.9 it follows that ω̂ is a skew-symmetric matrix, i.e. a matrix that satisfies:

APPENDIX A. RIGID BODY KINEMATICS 130

ω̂
T =−ω̂ or ωi j =−ω ji (A.24)

In general, n-dimensional real matrices ωn×n that satisfy the above property A.24 are denoted by:

so(n) = {ω ∈ Rn×n : ω
T =−ω} (A.25)

The sum of any elements of so(n) is an element of so(n), also the scalar multiple of any

element of so(n) is an element of so(n). In particular, if n = 3, for any two vectors v,w ∈ R3 and

for θ ∈ R from Definition A.9 follows that (v+w)∧ = v̂+ ŵ and (θv)∧ = θ v̂.

A set of all matrices so(n) comprise a linear vector space with Rn×n matrices as vectors and

with two operations: vector addition and scalar multiplication (for more details see e.g. [Gilmore,

1973]).

Given any â ∈ R3, directly from Definition A.9 follows that (see [Murray et al., 1994]):

â2 = aaT −‖a‖2I (A.26)

â3 =−‖a‖2â (A.27)

If â = ω̂θ and ‖ω‖= 1, recursively using the above formula one can obtain:

eω̂θ = I +
(

θ − θ 3

3
+

θ 5

5
− . . .

)
ω̂ +

(
θ 2

2
− θ 4

4
+

θ 6

6
− . . .

)
ω̂

2 (A.28)

which equals:

eω̂θ = I + ω̂ sinθ + ω̂
2(1− cosθ) (A.29)

The above formula is known as Rodrigues formula, and offers an efficient way of computing the

matrix exponential or just the corresponding rotation matrix. An alternative geometrical derivation

of the above formula can be found in [Mason, 2001].

Rodrigues formula A.29 can be also used to compute ω and θ for any R ∈ SO(3). Assuming

‖ω‖= 1, direct calculations show that (see [Murray et al., 1994]):

θ = arccos
(

r11 + r22 + r33−1
2

)
(A.30)

ω =
1

sin(θ)

r32− r23

r13− r31

r21− r12

 (A.31)

where ri j are coefficients of the matrix R. Results A.30 and A.31 clearly shows that the exponential

map is many-to-one map from (ω,θ) onto SO(3). For a given matrix R there exist arbitrary many

values θ ±2πn satisfying A.30. Furthermore, A.31 shows that ω has a singularity for θ =±2πn.

APPENDIX A. RIGID BODY KINEMATICS 131

Relations A.30 and A.31 show that any orientation R ∈ SO(3) is equivalent to rotation about a

fixed axis ω ∈ R by an angle θ ∈ [0,2π), which are frequently called angle-axis representation.

A.2.3 Euler angles

Instead of looking for a specific rotation axis and angle, one can use principal axes of a coordinate

frame to describe the desired rotation. Rodrigues formula A.29 helps to construct rotation matrices

for each of the principal axis:

R(x̂,φ) = ex̂φ =

1 0 0

0 cosφ −sinφ

0 sinφ cosφ

 (A.32)

R(ŷ,β) = eŷβ =

cosβ 0 sinβ

0 1 0

−sinβ 0 cosβ

 (A.33)

R(ẑ,α) = eẑα =

cosα −sinα 0

sinα cosα 0

0 0 1

 (A.34)

Rotation of body frame B in inertial frame A can be described by a sequence of rotations about

the principal axes of frame A without actually moving frame A, but applying these rotations only

to frame B. It is assumed that initially both frames A and B coincides.

ZYZ Euler angles describe rotation of frame B as a sequence of rotations about ẑ, ŷ and ẑ

principal axes of frame A by the corresponding angles α , β and γ . The net rotation is given by

([Mason, 2001]):

Rab = R(ẑ,α)R(ŷ,β)R(ẑ,γ)

=

cosα cosβ cosγ− sinα sinγ −cosα cosβ sinγ− sinα cosγ cosα sinβ

sinα cosβ cosγ + cosα sinγ −sinα cosβ sinγ + cosα cosγ cosα sinβ

−sinβ cosγ sinβ sinγ cosβ

 (A.35)

where the matrix representations A.33 and A.34 have been applied.

Given R ∈ SO(3) with coefficients ri j one can solve Equation A.35 for angles α , β and γ . If

β 6=±2πn the solutions are ([Mason, 2001]):

β = arctan2
(√

r2
31 + r2

32,r33

)
α = arctan2(r23/sinβ ,r13/sinβ) (A.36)

γ = arctan2(r32/sinβ ,−r31/sinβ)

APPENDIX A. RIGID BODY KINEMATICS 132

Similarly to angle-axis representation, ZYZ Euler angles representation is also a many-to-one map

from (α,β ,γ) onto SO(3). There exist infinitely many angles α =−γ for β = 0 representing the

identity transformation I.

A.3 Rigid body transformations

A.3.1 Homogeneous representation

Rigid body transformation between body frame B and inertial frame A can be represented by

rotation Rab ∈ SO(3) followed by translation pab ∈ R3. Given point qb in frame B, qa in frame A

the transformation can be written as:

qa = pab +Rabqb (A.37)

It turns out that rigid body transformations have a particularly simple representation in R4×4.

Points in R3 are represented by vectors in R4 with 1 at the fourth coordinate. Any point q ∈ R3

has a corresponding vector q̄ ∈ R4 constructed as it is shown below:

q̄ =

q1

q2

q3

1

 (A.38)

The sum of points is undefined, however the difference between two points is a vector with 0 at

the fourth coordinate. Hence, a vector v ∈ R3 is represented by a vector v̄ ∈ R4 as follows:

v̄ =

v1

v2

v3

0

 (A.39)

Consequently, the sum and the difference between two vectors remains a vector.

Transformation A.37 can be now rewritten in a new R4×4 operator form called the

homogeneous representation of a rigid body transformation. For a point q̄ ∈ R4 transformation

A.37 becomes:

q̄a =

[
qa

1

]
=

[
Rab pab

0 1

][
qb

1

]
= ḡabq̄b (A.40)

In more general form, for p ∈ R3 and R ∈ SO(3) rigid body transformation ḡ can be written as:

q̄ =

[
R p

0 1

]
(A.41)

APPENDIX A. RIGID BODY KINEMATICS 133

Rigid body transformations comprise a special Euclidean group denoted as SE(3):

SE(3) = {(p,R) : p ∈ R3,R ∈ SO(3)} (A.42)

It is easy to check that elements of SE(3) indeed satisfy the four group properties similarly

to the rotation matrices as it was shown in Section A.2.1. In particular, a composition of two

transformations: transformation ḡab between frame B and A, and transformation ḡbc between frame

C and B is given by:

q̄ac = q̄abq̄bc =

[
RabRbc Rab pbc + pab

0 1

]
(A.43)

which is an element of SE(3). The inverse of transformation q̄ (see A.41) is also an element of

SE(3):

q̄−1 =

[
R−1 −R−1 p

0 1

]
(A.44)

A.3.2 Exponential coordinates of rigid body transformations

The exponential mapping which represents rigid body rotations (Equation A.23) can be also

introduced for rigid body transformations.

x

y

z

p(0)

p(t)

ω

q p(t) - q

Figure A.4: Rotation of a rigid body with attached point p about axis ω which is anchored at point

q (on axis ω).

Consider a rigid body which rotates anti-clockwise with a constant unit angular velocity about

an arbitrary axis ω ∈ R3 and ‖ω‖ = 1 which is anchored at some point q ∈ R3 as on Figure A.4

(also see [Murray et al., 1994]). The instantaneous linear velocity of point p at time t can be

written as:

APPENDIX A. RIGID BODY KINEMATICS 134

ṗ(t) = ω× (p(t)−q) (A.45)

Defining 4×4 matrix ξ̂ ([Murray et al., 1994]):

ξ̂ =

[
ω̂ v

0 0

]
=

[
ω̂ −ω̂×q

0 0

]
(A.46)

with v =−ω̂×q, Equation A.45 can be conveniently rewritten in homogeneous coordinates:[
ṗ

0

]
=

[
ω̂ −ω̂×q

0 0

][
p

1

]
= ξ̂

[
p

1

]
(A.47)

or equivalently:

˙̄p = ξ̂ p̄ (A.48)

It is a differential equation with a solution:

p̄(t) = eξ̂ t p̄(0) (A.49)

Similarly to Equation A.22 the matrix exponential of the 4 matrix ξ̂ t is defined as:

eξ̂ t = I + ξ̂ t +

(
ξ̂ t
)2

2
+

(
ξ̂ t
)3

3
+ . . . (A.50)

where t is an equivalent of the total amount of rotation. Hence, the matrix exponential transforms

the initial location of point p to its location after rotating t radians.

Similarly one can represent translational motion when the rotation axis is undefined. The

velocity of point p attached to a body moving on a line with a unit velocity v is:

ṗ(t) = v (A.51)

A solution of the above equation is an equivalent of solution A.49:

p̄(t) = eξ̂ t p̄(0) (A.52)

where t is the total amount of translation, and

ξ̂ =

[
0 v

0 0

]
(A.53)

A space of pairs of a vector R3 and a 3×3 antisymmetric matrix so(3) is defined as follows:

se(3) = {(v, ω̂) : v ∈ R3, ω̂ ∈ so(3)} (A.54)

APPENDIX A. RIGID BODY KINEMATICS 135

An element ξ̂ ∈ se(3) is referred to as twist and can be conveniently represented in homogeneous

coordinates as a R4×4 matrix:

ξ̂ =

[
ω̂ v

0 0

]
(A.55)

Twist ξ̂ depends on only 6 parameters - vector ξ = (v,ω) ∈ R6 which is called the twist

coordinates of ξ̂ .

A pair of any skew-symmetric matrix ω̂ ∈ so(3) and any θ ∈R always generates SO(3) matrix

through the matrix exponential A.23. Similarly, a pair of any twist ξ̂ ∈ se(3) and any θ ∈ R
always generates SE(3) matrix through the matrix exponential A.50. Two separate cases have to

be considered ([Murray et al., 1994]):

1. Rotation axis ω is undefined, i.e eξ̂ θ is a pure translation. For θ ∈ R and ξ̂ as in

Equation A.53 the following holds (see [Murray et al., 1994]):

eξ̂ θ =

[
I vθ

0 1

]
(A.56)

which is an element of SE(3) in homogeneous representation A.41.

2. Rotation axis ω is defined, i.e. eξ̂ θ involves rotation. For θ ∈ R and ξ̂ as in Equation A.46

the following holds (see [Murray et al., 1994]):

eξ̂ θ =

[
eω̂θ (I− eω̂θ)(ω× v)+ωωT vθ

0 1

]
(A.57)

which again is an element of SE(3) in homogeneous representation A.41.

Furthermore, the exponential map: se(3)→ SE(3) is a many-to-one surjective mapping, i.e. given

g ∈ SE(3), there exists ξ̂ ∈ se(3) and θ ∈ R such that g = eξ̂ θ . To solve a problem of finding ξ̂

for a given rigid body transformation g ∈ SE(3), again two separate cases have to be considered

(see [Murray et al., 1994]):

1. A pure translation case, where rotation matrix R is an identity matrix I. For a given

translation p, g = (I, p) and:

ξ̂ =

[
0 p

‖p‖

0 0

]
θ = ‖p‖. (A.58)

2. Rotation matrix R is defined, so g = (R, p). The following equation must be solved:

eξ̂ θ =

[
eω̂θ (I− eω̂θ)(ω× v)+ωωT vθ

0 1

]
=

[
R p

0 1

]
(A.59)

APPENDIX A. RIGID BODY KINEMATICS 136

From the above: R = eω̂θ must be solved for ω and θ (see Section A.2.2), and then

p = (I− eω̂θ)(ω × v) + ωωT vθ for v. Twist ξ̂ is obtained by substituting ω and v into

Equation A.55.

The exponential map for a twist is many-to-one as a consequence of multiple values of ω and

θ which satisfy R = eω̂θ in Equation A.59 (see Equations A.30 and A.31).

The exponential map for a twist gives the motion of a rigid body relative to the same reference

frame. The rigid body transformation eξ̂ θ applied to a point at its initial coordinates p(0) ∈ R3

moves it to the new coordinates p(θ) within the same frame. For homogeneous representations of

points:

p̄(θ) = eξ̂ θ p̄(0) (A.60)

Similarly, the transformation eξ̂ θ moves body frame B from its initial configuration gab(0) in the

frame A to the final configuration gab(θ) still in the same frame A:

gab(θ) = eξ̂ θ gab(0) (A.61)

A.4 Rigid body velocity

A.4.1 Angular velocity

Consider a rotational motion of a rigid body with attached body frame B in fixed inertial frame A

such that the origins of both frames coincide. A trajectory of a body can then be represented as

time parametrized Rab(t) ∈ SO(3). Any point q attached to the rigid body has fixed coordinates qb

in body frame B and moves on a trajectory in inertial frame A as follows:

qa(t) = Rab(t)qb (A.62)

The velocity of a point in frame A is

vqa(t) =
d
dt

qa(t) = Ṙab(t)qb (A.63)

Ṙab(t) maps coordinates of a point from body frame B to inertial frame A. A velocity of a point

given its coordinates in the inertial frame can be obtained from Equation A.63 as follows:

vqa(t) = Ṙab(t)R−1
ab (t)Rab(t)︸ ︷︷ ︸

I

qb = Ṙab(t)R−1
ab (t)qa = Ṙab(t)RT

ab(t)qa (A.64)

where because R(t) ∈ SO(3), R(t)−1 = R(t)T . It turns out that given R(t) ∈ SO(3), matrices

Ṙ(t)RT (t) ∈ R3×3 and RT (t)Ṙ(t) ∈ R3×3 are skew-symmetric (see Definition A.25). This can be

shown by differentiating the identity ([Murray et al., 1994]):

APPENDIX A. RIGID BODY KINEMATICS 137

R(t)R(t)T = I

which gives

Ṙ(t)R(t)T + Ṙ(t)T R(t) = 0

and because (AB)T = BT AT :

Ṙ(t)R(t)T =−Ṙ(t)T R(t) =−(Ṙ(t)R(t)T)T

from Definition A.25 follows that Ṙ(t)RT (t) ∈ so(3). Similarly, by differentiating R(t)T R(t) = I

one can show that RT (t)Ṙ(t) ∈ so(3).

Ṙ(t)RT (t) ∈ so(3) is called the instantaneous spatial angular velocity and is denoted by

ω̂
s
ab = ṘabRT

ab (A.65)

Because matrix ω̂s
ab is an element of so(3), it can be represented by vector ωs

ab ∈ R3. From

Equations A.64 and A.65 follow that:

vqa(t) = ω̂
s
abqa = ω

s
ab×qa (A.66)

ωs
ab ∈ R3 is the instantaneous angular velocity of the object with body frame B as seen in inertial

frame A.

The instantaneous angular velocity of the object with body frame B as seen in the same

body frame B can be obtained by transforming velocity vector vqa(t) to frame B and then using

Equation A.63 as below:

vqb(t) = RT
abvqa(t) = RT

abṘab(t)qb (A.67)

where as it was shown before RT (t)Ṙ(t) ∈ so(3). RT (t)Ṙ(t) is called the instantaneous body

angular velocity and is denoted by:

ω̂
b
ab = RT

abṘab (A.68)

Again, because matrix ω̂b
ab is an element of so(3), it can be represented by vector ωb

ab ∈R3. From

Equations A.64 and A.68 follow that:

vqb(t) = ω̂
b
abqb = ω

b
ab×qb (A.69)

The relationship between ωs
ab and ωb

ab can be obtained using Equations A.65 and A.68:

ω̂
b
ab = RT

abṘab = RT
abṘab RT

abRab︸ ︷︷ ︸
I

= RT
abω̂

s
abRab (A.70)

APPENDIX A. RIGID BODY KINEMATICS 138

Alternatively, from Equation A.19 follows that RT
abω̂s

abRab = (RT
abωs

ab)
∧, so:

ω
b
ab = RT

abω
s
ab (A.71)

A.4.2 Rigid body velocity

Consider a general case where a trajectory of a rigid body with attached body frame B and seen

in inertial frame A is represented by time-parametrized rigid body transformation gab(t) ∈ SE(3).

Any point q attached to the rigid body has fixed coordinates qb in body frame B and moves on a

trajectory in inertial frame A as follows (similarly as in Equation A.62):

q̄a(t) = gab(t)q̄b (A.72)

where time-parametrized gab(t) as well as points qa(t) and qb are represented in homogeneous

coordinates. In particular gab(t) is defined as

gab(t) =

[
Rab(t) pab(t)

0 1

]
(A.73)

The velocity of point qa in frame A can be obtained by differentiating Equation A.72:

v̄qa(t) =
d
dt

q̄a(t) = ġabq̄b = ġabg−1
ab q̄a (A.74)

From Equations A.73 and A.44 follows that:

ġabg−1
ab =

[
Ṙab ṗab

0 0

][
RT

ab −RT
ab pab

0 1

]

=

[
ṘabRT

ab −ṘabRT
ab pab + ṗab

0 0

]

=

[
ω̂s

ab vs
ab

0 0

]
(A.75)

where ω̂s
ab ∈ so(3) is the instantaneous spatial angular velocity as defined in Equation A.65 and

vs
ab is a R3 vector. Consequently ġabg−1

ab has a form of twist as in Equation A.55 and because of

Definition A.54 is also an element of se(3). ġabg−1
ab is called the spatial velocity V̂ s

ab ∈ se(3):

V̂ s
ab = ġabg−1

ab =

[
ω̂s

ab vs
ab

0 0

]
(A.76)

The twist coordinates of V̂ s
ab are:

V s
ab =

[
vs

ab

ωs
ab

]
=

[
−ṘabRT

ab pab + ṗab

(ṘabRT
ab)
∨

]
(A.77)

APPENDIX A. RIGID BODY KINEMATICS 139

where ∨ is a vee operator defined in Equation A.11.

Equation A.74 can be rewritten in a new form:

v̄qa = V̂ s
abq̄a =

[
ω̂s

ab vs
ab

0 0

][
qa

1

]
= ω

s
ab×qa + vs

ab (A.78)

While ω̂s
ab is an ordinary instantaneous angular velocity as seen in inertial frame A (see

Section A.4.1), from Equation A.75 follows that vs
ab is not the linear velocity of the origin of body

frame B as seen in inertial frame A (i.e ṗab). Instead, vs
ab should be interpreted as a velocity of a

point rigidly attached to the body frame that is currently travelling through the origin of inertial

frame A (it can be decomposed into linear and angular component as in Equation A.90).

The velocity of point q seen in body frame B is a transformed velocity of the same point seen

in inertial frame A:

v̄qb = g−1
ab v̄qa = g−1

ab
˙̄qa = g−1

ab ġabq̄b (A.79)

Similar calculations as in Equation A.75 yields:

g−1
ab ġab =

[
RT

ab −RT
ab pab

0 1

][
Ṙab ṗab

0 0

]

=

[
RT

abṘab RT
ab ṗab

0 0

]

=

[
ω̂b

ab vb
ab

0 0

]
(A.80)

where ω̂b
ab ∈ so(3) is the instantaneous body angular velocity as defined in Equation A.68 and

vb
ab is a R3 vector. Consequently g−1

ab ġab is an element of se(3) and is called the body velocity

V̂ b
ab ∈ se(3):

V̂ b
ab = g−1

ab ġab =

[
ω̂b

ab vb
ab

0 0

]
(A.81)

The twist coordinates of V̂ b
ab are:

V b
ab =

[
vb

ab

ωb
ab

]
=

[
RT

ab ṗab

(ṘabRT
ab)
∨

]
(A.82)

Thus following Equation A.79, the velocity of point q attached to a rigid body with body frame B

as seen in the same frame B is:

v̄qb = V̂ b
abq̄b =

[
ω̂b

ab vb
ab

0 0

][
qb

1

]
= ω

b
ab×qb + vb

ab (A.83)

APPENDIX A. RIGID BODY KINEMATICS 140

The interpretation of components of V̂ b
ab is simpler than for V̂ s

ab: ω̂b
ab is an instantaneous body

velocity as seen in the current body frame B (see Section A.4.1). From Equation A.80 follows that

vb
ab is the linear velocity of the origin of body frame B but seen in body frame B.

The relationship between spatial velocity and body velocity can be found directly from

Equations A.76 and A.81:

V̂ s
ab = ġabg−1

ab = gabg−1
ab︸ ︷︷ ︸

I

ġabg−1
ab = gabV̂ b

abg−1
ab (A.84)

Alternatively, twist coordinates of V̂ s
ab and V̂ b

ab can be analysed. From Equation A.71 follows that

the angular component ωs
ab as defined in Equation A.77 equals:

ω
s
ab = Rabω

b
ab (A.85)

Furthermore, the linear component vs
ab as defined in Equation A.77 equals:

vs
ab =−ṘabRT

ab pab + ṗab =−ω
s
ab× pab + ṗab = p̂abω

s
ab + ṗab = p̂abRabω

b
ab +Rabvb

ab (A.86)

where in the last step Equations A.85 and A.82 have been used. The two above relations can be

conveniently denoted in a linear form:

V s
ab =

[
vs

ab

ωs
ab

]
=

[
Rab p̂abRab

0 Rab

][
vb

ab

ωb
ab

]
= AdgabV

b
ab (A.87)

where Adgab is a 6× 6 matrix called the adjoint transformation and gab ∈ SE(3). The explicit

references to inertial and body frames can be dropped, so:

Adg =

[
R p̂R

0 R

]
(A.88)

It was shown that the spatial velocity and the body velocity are twists, therefore the obtained

transformation rules for rigid body velocity (Equation A.84) and rigid body velocity coordinates

(Equation A.87) can be generalized for any twist and twist coordinates.

As a direct consequence of Equations A.84 and A.87: For twist ξ̂ ∈ se(3) with twist

coordinates ξ ∈ R6 and for any rigid body transformation g ∈ SE(3), gξ̂ g−1 is also a twist with

twist coordinates Adgξ ∈ R6.

A somewhat more natural way of representing rigid body velocity involves linear velocity

ṗab between origins of inertial frame A and body frame B, and instantaneous spatial angular

velocity ωs
ab - the angular velocity of an object with body frame B as seen in inertial frame A

(see Equation A.65). One can define velocity Vab ∈ R6 by stacking these two components:

Vab =

[
ṗab

ωs
ab

]
(A.89)

APPENDIX A. RIGID BODY KINEMATICS 141

Velocity Vab is related with spatial velocity V s
ab through adjoint transformation:

Vab =

[
ωs

ab× pab−ωs
ab× pab + ṗab

ωs
ab

]
=

[
I −p̂ab

0 I

][
−ωs

ab× pab + ṗab

ωs
ab

]
= AdgsV

s
ab (A.90)

with transformation gs defined as follows:

gs =

[
I −pab

0 1

]
(A.91)

Similarly for body velocity V b
ab - from Equations A.89 and A.71 follows that:

Vab =

[
RabRT

ab ṗab

Rabωb
ab

]
=

[
Rab 0

0 Rab

][
RT

ab ṗab

ωb
ab

]
= AdgbV

b
ab (A.92)

with transformation gb defined as follows:

gb =

[
Rab 0

0 1

]
(A.93)

Twist transformation gξ̂ g−1 also plays important role in the matrix exponential. In particular,

for any twist ξ̂ (see Equation A.50) the following relation holds:

egξ̂ g−1
= I +gξ̂ g−1 +

gξ̂ g−1gξ̂ g−1

2
+ . . . = g

I + ξ̂ +

(
ξ̂

)2

2
+ . . .

g−1

= geξ̂ g−1 (A.94)

Appendix B

Matrix algorithms

B.1 Preliminaries

Consider a m×n real matrix A ∈ Rm×n. The range of A is defined by

R(A) = {y ∈ Rm : y = Ax for some x ∈ Rn} (B.1)

which is a subspace of Rm of all vectors y ∈ Rm that can be generated by some choice of x ∈ Rn.

The null space of A is defined by

N(A) = {x ∈ Rn : Ax = 0} (B.2)

which is a subspace of Rn of all vectors x ∈ Rn that do not generate any non-zero vector y ∈ Rm.

The rank of matrix A is defined by

rank(A) = dim(R(A)) (B.3)

where dim is a number of dimensions of a vector space R(A), which is equal to the maximum

number of linearly independent column vectors of A if m≤ n, or row vectors of A if m > n. Matrix

A is full rank if rank(A) = min(m,n), and it is rank deficient if rank(A) < min(m,n).

For any matrix A ∈ Rm×n the following relation holds (rank plus nullity theorem [Meyer,

2000]):

dim(R(A))+dim(N(A)) = n (B.4)

B.2 Singular value decomposition

For each matrix A ∈ Rm×n with rank r and p = min(m,n), there exist orthogonal matrices

U ∈ Rm×m and V ∈ Rn×n, and a diagonal matrix D ∈ Rm×n = diag(σ1, . . . ,σp) such that [Meyer,

2000]:

142

APPENDIX B. MATRIX ALGORITHMS 143

A = UDV T (B.5)

where σ1 ≥ σ2 ≥ . . . ≥ σr > σr+1 = . . . = σp = 0. The σi are called singular values of A, and

the columns ui and vi of U and V are called left-hand and right-hand singular vectors of A. The

factorization B.5 of A is called singular value decomposition of A.

It can be shown [Meyer, 2000] that σ2
i are eigenvalues of AT A, while the columns ui of U are

orthonormal eigenvectors of AAT and the columns vi of V are orthonormal eigenvectors of AT A.

Since D is diagonal, A can be written in a convenient form:

A =
p

∑
i=1

σiuivT
i =

r

∑
i=1

σiuivT
i (B.6)

where p = min(m,n) and uivT
i is an outer product of column vectors ui and vi of matrices U and

V .

Appendix C

Global optimization over continuous
spaces

Global optimization over continuous spaces addresses a problem of finding a global minimum of

a function f : Rn→ R with respect to a vector x ∈ Rn:

min
x

f (x) (C.1)

where f is an objective function which represents properties of the optimized system, while vector

x represents tunable parameters of the system. Function f has a domain X specified by e.g. a

lower bounding vector xlower and an upper bounding vector xupper such that

X = {x ∈ Rn : xlower
i ≤ xi ≤ xupper

i for all i = 1, . . . ,n} (C.2)

In general the objective function f can be nonlinear and also non-differentiable. The function

f is usually decomposed into a combination of L single objective functions fl such that

f (x) =
L

∑
l=1

wl fl(x) (C.3)

or alternatively

f (x) = max
l=1,...,L

(wl fl(x)) (C.4)

with normalizing weights wl > 0, also such that w1 + . . .+wL = 1 if it is a convex combination.

C.1 Differential evolution

Differential evolution (DE) is an example of a simple but robust global optimization method [Storn

and Price, 1997]. It is a parallel search method which uses a population of P vectors xp,g ∈ Rn,

such that P is constant in each generation g. The initial population of vectors {x1,1, . . . ,xP,1} is

144

APPENDIX C. GLOBAL OPTIMIZATION OVER CONTINUOUS SPACES 145

uniformly distributed in the objective function domain X if no other prior information is provided

about the optimized system.

The basic (first) variant of DE [Storn and Price, 1997] works as follows: For each population

vector xp,g p = 1, . . . ,P (further referred to as a default vector) in the current generation g perform

the following steps:

x p , g

xr3 , g

xr2 , g

xr1 , g

c xr2 , g−xr3 , g

x trial=xr1 , gc xr2 , g− xr3 , g

Figure C.1: Process of generating a trial vector xtrial from the specified population vectors xr1,g,

xr2,g, xr3,g in generation g and for some 2-dimensional objective function represented by gray

contours.

1. Generate a trial vector xtrial ∈ Rn according to (see Figure C.1)

xtrial = xr1,g + c(xr2,g− xr3,g) (C.5)

where indices p,r1,r2,r3 are mutually different and r1,r2,r3 are randomly chosen from the

interval [1, . . . ,P]. c ∈ R is a constant multiplication factor which controls the amplification

of the differential variation xr2,g− xr3,g.

2. Generate a crossover vector xcross ∈Rn from components of a trial vector xtrial and a default

vector xp,g according to (see Figure C.2)

xcross
i =

xtrial

i for i = (j) mod1 n,(j +1) mod1 n, . . . ,(j + k) mod1 n

and j,k ∈ [1, . . . ,n]

xp,g
i for all other i ∈ [1, . . . ,n]

(C.6)

where operator a mod1 b is defined using standard modulo operator as 1 + (a mod b) to

account for non-zero vector indices. A crossover point j is chosen randomly from the

APPENDIX C. GLOBAL OPTIMIZATION OVER CONTINUOUS SPACES 146

x p , g

1
2
3
4
5
6
7

x trial

1
2
3
4
5
6
7

i=

j=

xcross

1
2
3
4
5
6
7

j+k=

Figure C.2: Process of generating a crossover vector xcross from components of a trial vector xtrial

and a default vector xp,g.

interval [1, . . . ,n], while k is determined iteratively using a crossover probability r ∈ [0,1)

such that Pr(k > s) = rs for integer s > 0. A pseudo code demonstrate this procedure:

k = 1;

while (k < n && rand() < r) {

k = k + 1;

}

where rand() is a function which generates a uniformly distributed number from the

interval [0,1).

3. A member of the new generation g + 1 becomes a vector with the smallest value of the

objective function: either a default vector xp,g or a crossover vector xcross.

After running the above procedure over G generations, a solution of the optimization problem

becomes a vector with the smallest value of the objective function.

C.2 Simulated annealing

Simulated annealing is a global probabilistic optimization method for finding an approximation of

a global minimum of a given function in a large continuous or discrete search space. The method

is known from [Kirkpatrick, 1984] and [Cerny, 1985] but it was originally invented by [Metropolis

et al., 1953].

Simulated annealing is based on an analogy with annealing of solids in metallurgy. The

annealing process starts from a high temperature, and a gradual cooling helps to form a regular

APPENDIX C. GLOBAL OPTIMIZATION OVER CONTINUOUS SPACES 147

crystalline lattice of low state energy effectively avoiding local energy minima which correspond to

formation of small crystals. At each temperature T a solid is allowed to be at thermal equilibrium

state of energy E with probability given by Boltzmann distribution:

Pr(E) =
1

Z(T)
∗ exp

(
− E

kBT

)
(C.7)

where Z(T) is a temperature dependent normalization constant called a partition function,

exp(−E/kBT) is a Boltzmann factor with Boltzmann constant kB. As temperature T decreases,

according to the Boltzmann distribution C.7, the solid begins to prefer lower energy states.

Eventually, at the lowest temperature only the minimum energy states have non-zero probability.

If the annealing process is too fast the solid may not be able to reach thermal equilibrium and

defects are then frozen into the lattice. Instantaneous freezing called quenching is used to form

amorphous structures [Laarhoven and Aarts, 1987].

[Metropolis et al., 1953] proposed a Monte Carlo method called the Metropolis algorithm

which simulates annealing of solids. For a given current state of the solid, Metropolis algorithm

iteratively perturbs the position of the randomly chosen solid particles by a small displacement.

If the energy difference between the new state and the previous state is negative, i.e. ∆E < 0, the

new state of lower energy is accepted and the procedure repeats. However if ∆E ≥ 0 the new state

can also be accepted with a probability given by exp(−∆E/kBT).

Simulated annealing is extended by various annealing schedules. A logarithmic annealing

schedule is consistent with the Boltzmann algorithm. Temperature at the k-th iteration is given by

[Laarhoven and Aarts, 1987]:

Tk = T0
lnk0

lnk
(C.8)

where k0 is some starting index. Other schedules are also used - for example an exponential

schedule is

Tk = T0α
k (C.9)

where α ∈ (0,1).

Appendix D

A* Graph search algorithm

A∗ is a best-first graph search algorithm that finds the least costly path from a given initial node

to a given goal node [Nilsson, 1998]. A∗ is a heuristic or informed graph search algorithm that

guarantees finding minimal cost paths using a problem-specific information encoded in a heuristic

function. A heuristic function is defined as f (n) = g(n)+h(n) for each node n of the graph where:

• g(n) is a minimal cost path from the root node to node n

• h(n) is a heuristic factor estimating the minimal cost path from node n to the goal node

The heuristic h must be an admissible heuristic i.e. it must not overestimate the distance to the

goal. For example h(n) can represent the straight-line distance between node n and the goal node

as the smallest possible distance between any two points.

If the heuristic h satisfies the triangle inequality h(n) ≤ d(n,m)+ h(m) for any nodes n and

m in the graph and for the edge length function d, A∗ algorithm becomes equivalent to Dijkstra’s

algorithm. In this case when A∗ expands a node n, it has already found an optimal path to n (a

proof of this fact can be found in [Nilsson, 1998]). This property allows for using hash maps (or

simply arrays) instead of lists (as in the original formulation of A∗) for the Open and Closed data

structures.

A modified A∗ algorithm in Java/C++ pseudo-code is presented below:

// all uninitialized indices equals zero

// index map (array) index->index, initialize all entries with zeros

Map Open, Close;

// cost map (array) index->cost

Map Cost;

// sorted cost red-black tree map cost->index

Map CostRank;

// n is the current node

int n = ROOT_NODE;

148

APPENDIX D. A* GRAPH SEARCH ALGORITHM 149

// r is the node, through which passes the best path to the current node n

int r = ROOT_NODE;

while (true) {

// the best path to n goes through r

Close(n) = r;

// break the loop if the current node n is the goal

if (n == GOAL_NODE)

break; // success

// then remove n from Open

Open(n) = 0;

// expand the current node n,

// iterate for all possible destination nodes j

for (int j = 1; j <= MAX_NODE; j++) {

// do not expand if the destination node j is:

// equal the expanded node n,

// or is already on Close (the assumption), or is not expandable

if (j != n && Close(j) == 0 && isExpandable(n, j)) {

// compute cost of path n->j

double c1 = getCost(n , j);

// extract a node, through which passes the best path to j

int k = Open(j);

// redirect the best path to j if there is no collisions and:

// there was no path to j before,

// or the path n->j is less costly than k->j

if (k == 0) {

if (collides(n, j))

continue;

}

else {

// retrieve cost of path k->j from the cost map

double c2 = Cost(j);

if (c1 > c2 || collides(n, j))

continue;

// remove from the cost rank

CostRank.remove(c2);

}

APPENDIX D. A* GRAPH SEARCH ALGORITHM 150

// the best path to j passes n

Open(j) = n;

// store cost c1 of the path n->j

Cost(j) = c1;

// add to the cost rank

CostRank.add(c1, j);

}

}

// return a node to process (with the lowest cost value)

n = CostRank.lowest();

// break the loop if Open is empty

if (n == 0)

break; // failure

// remove from the cost rank

CostRank.remove(n);

// extract r

r = Open(n);

}

Function isExpandable(n, j) tests if the current node n is expandable, i.e. if for example

a distance between nodes is below a predefined threshold dmax. Function getCost(n , j)

implements heuristic function f and estimates the cost of moving from node n to j for a given

goal. Function collides(n, j) checks if there is no collisions on the path between nodes n and

j.

The resulting path between the root and goal nodes is retrieved by traversing Closed data

structure starting from n = GOAL NODE until Closed(n) == ROOT NODE.

Bibliography

[Abrate, 1998] S. Abrate. Impact on composite structures. Cambridge University Press, 1998.

[Amato and Wu, 1996] N. M. Amato and Y. Wu. A randomized roadmap method for path and

manipulation planning. In 1996 IEEE International Conference on Robotics and Automation,

1996. Proceedings., volume 1, 1996.

[Amato et al., 1998] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo. Choosing

good distance metrics and local planners for probabilisticroadmap methods. In 1998 IEEE

International Conference on Robotics and Automation, 1998. Proceedings, volume 1, 1998.

[Arnold, 1989] V. I. Arnold. Mathematical methods of classical mechanics. Springer, 1989.

[Badler et al., 1993] N. I. Badler, C. B. Phillips, and B. L. Webber. Simulating humans: computer

graphics animation and control. Oxford University Press, USA, 1993.

[Balestrino et al., 1984] A. Balestrino, G. De Maria, and L. Sciavicco. Robust control of robotic

manipulators. In Proceedings of the 9th IFAC World Congress, volume 5, page 24352440,

1984.

[Barnes and Asselman, 1991] G. R. Barnes and P. T. Asselman. The mechanism of prediction in

human smooth pursuit eye movements. The Journal of Physiology, 439(1):439–461, 1991.

[Becker and Fuchs, 1985] W. Becker and A. F. Fuchs. Prediction in the oculomotor system:

smooth pursuit during transient disappearance of a visual target. Experimental Brain Research,

57(3):562–575, 1985.

[Berthoz, 1997] A. Berthoz. The brain’s sense of movement. Harvard University Press, 1997.

[Bishop, 2006] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information

Science and Statistics). Springer-Verlag New York, Inc., 2006.

[Boor et al., 1999] V. Boor, M. H. Overmars, and A. F. Van Der Stappen. The gaussian sampling

strategy for probabilistic roadmap planners. In 1999 IEEE International Conference on

Robotics and Automation, 1999. Proceedings, volume 2, 1999.

151

BIBLIOGRAPHY 152

[Brach, 2007] R. M. Brach. Mechanical impact dynamics: rigid body collisions. Brach

Engineering, LLC, 2007.

[Bridgeman et al., 1975] B. Bridgeman, D. Hendry, and L. Stark. Failure to detect displacement

of the visual world during saccadic eye movements. Vision Research, 15(6):719–722, 1975.

[Brost, 1988] R. C. Brost. Automatic grasp planning in the presence of uncertainty. The

International Journal of Robotics Research, 7(1):3, 1988.

[Burns and Brock, 2007] B. Burns and O. Brock. Single-query motion planning with utility-

guided random trees. In 2007 IEEE International Conference on Robotics and Automation,

pages 3307–3312, 2007.

[Buss, 2004] Samuel R Buss. Introduction to inverse kinematics with jacobian transpose,

pseudoinverse and damped least squares methods. IEEE Journal of Robotics and Automation,

3:681—685, 2004.

[Cappelleri et al., 2006] D. J. Cappelleri, J. Fink, B. Mukundakrishnan, V. Kumar, and J. C.

Trinkle. Designing open-loop plans for planar micro-manipulation. In Robotics and

Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, pages

637–642, 2006.

[Cerny, 1985] V. Cerny. Thermodynamical approach to the traveling salesman problem: an

efficient simulation algorithm. Journal of Optimization Theory and Applications, 45(1):41–

51, 1985.

[Cheng et al., 2007] P. Cheng, G. Pappas, and V. Kumar. Decidability of motion planning with

differential constraints. In 2007 IEEE International Conference on Robotics and Automation,

pages 1826–1831, 2007.

[Comaniciu and Meer, 2002] D. Comaniciu and P. Meer. Mean shift: A robust approach toward

feature space analysis. IEEE Transactions on pattern analysis and machine intelligence,

24(5):603–619, 2002.

[Denavit and Hartenberg, 1955] J. Denavit and R. S. Hartenberg. A kinematic notation for lower-

pair mechanisms based on matrices. Journal of Applied Mechanics, 22(2):215221, 1955.

[Diankov and Kuffner, 2007] R. Diankov and J. Kuffner. Randomized statistical path planning.

In IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007. IROS 2007,

pages 1–6, 2007.

[Doucet et al., 2000] A. Doucet, S. Godsill, and C. Andrieu. On sequential monte carlo sampling

methods for bayesian filtering. Statistics and computing, 10(3):197–208, 2000.

BIBLIOGRAPHY 153

[Duhamel et al., 1992] Duhamel, CL Colby, and ME Goldberg. The updating of the representa-

tion of visual space in parietal cortex by intended eye movements. Science, 255(5040):90–92,

1992.

[Fidler and Leonardis, 2007] S. Fidler and A. Leonardis. Towards Scalable Representations of

Object Categories: Learning a Hierarchy of Parts. IEEE CVPR, pages 1–8, 2007.

[Fitzpatrick et al., 2003] P. Fitzpatrick, G. Metta, L. Natale, S. Rao, and G. Sandini. Learning

about objects through action-initial steps towards artificial cognition. In IEEE International

Conference on Robotics and Automation, 2003. Proceedings. ICRA’03, volume 3, 2003.

[Geraerts and Overmars, 2004] R. Geraerts and M. H. Overmars. A comparative study of

probabilistic roadmap planners. Algorithmic Foundations of Robotics V, page 4357, 2004.

[Gilardi and Sharf, 2002] G. Gilardi and I. Sharf. Literature survey of contact dynamics

modelling. Mechanism and Machine Theory, 37(10):1213–1239, 2002.

[Gilmore, 1973] R. Gilmore. Lie groups, Lie algebras, and some of their applications. John

Wiley & Sons New York, 1973.

[Girard and Maciejewski, 1985] M. Girard and A. A. Maciejewski. Computational modeling for

the computer animation of legged figures. In Proceedings of the 12th annual conference on

Computer graphics and interactive techniques, pages 263–270. ACM New York, NY, USA,

1985.

[Goldsmith, 1960] W. Goldsmith. Impact: the theory and physical behaviour of colliding solids.

Edward Arnold Publishers Ltd, London, 1960.

[Goodbody and Husain, 1998] S. J. Goodbody and M. Husain. Maintaining internal representa-

tions: the role of the human superior parietal lobe. nature neuroscience, 1:529–533, 1998.

[Goodwin and Sin, 1984] G. C. Goodwin and K. S. Sin. Adaptive filtering, prediction and control.

Prentice-Hall information and system sciences series, March, 12:18061813, 1984.

[Haessig Jr and Friedland, 1991] D. A. Haessig Jr and B. Friedland. Modeling and simulation of

friction. In Proceedings of SPIE, volume 1482, page 383, 1991.

[Haruno et al., 2001] M. Haruno, D. M. Wolpert, and M. Kawato. Mosaic model for sensorimotor

learning and control. Neural Computation, 13(10):2201–2220, 2001.

[Helmholtz, 1867] H. Von Helmholtz. Handbuch der physiologischen Optik. Voss, 1867.

[Hertz, 1896] H. Hertz. Miscellaneous Papers, DE Jones, GH Schott. Macmillan, London, 1896.

[Horswill, 2008] I. Horswill. Lightweight procedural animation with believable physical

interactions. Proceedings of the Artificial Intelligence and Interactive Digital Entertainment,

2008.

BIBLIOGRAPHY 154

[Hunt and Crossley, 1975] K. H. Hunt and F. R. E. Crossley. Coefficient of restitution interpreted

as damping in vibroimpact. ASME Journal of Applied Mechanics, 42(2):440–445, 1975.

[Ijspeert et al., 2001] A. J. Ijspeert, J. Nakanishi, and S. Schaal. Trajectory formation for imitation

with nonlinear dynamical systems. In Proceedings of the IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS2001), page 752757, 2001.

[Jakobsen, 2003] T. Jakobsen. Advanced character physics. Gamasutra. com, gamasutra physics

resource guide, 2003.

[Jimenez et al., 2001] P. Jimenez, F. Thomas, and C. Torras. 3D collision detection: a survey.

Computers & Graphics, 25(2):269–285, 2001.

[Jordan and Rumelhart, 1992] M. I. Jordan and D. E. Rumelhart. Forward models: Supervised

learning with a distal teacher. Cognitive Science, 16(3):307–354, 1992.

[Jordan et al., 1999] Michael Jordan, Daniel Wolpert, and M Gazzaniga. Computational Motor

Control. MIT Press, 1999.

[Jordan, 1996] M. I. Jordan. Computational aspects of motor control and motor learning.

Handbook of perception and action, 2:71120, 1996.

[Kalman, 1960] R. E. Kalman. A new approach to linear filtering and prediction problems.

Journal of basic Engineering, 82(1):3545, 1960.

[Kavraki and Latombe, 1994] L. Kavraki and J. C. Latombe. Randomized preprocessing of

configuration space for path planning: Articulated robots. In Intelligent Robots and Systems’

94.’Advanced Robotic Systems and the Real World’, IROS’94. Proceedings of the IEEE/RSJ/GI

International Conference on, volume 3, 1994.

[Kavraki et al., 1996] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars. Probabilistic

roadmaps for path planning in high-dimensionalconfiguration spaces. IEEE transactions on

Robotics and Automation, 12(4):566–580, 1996.

[Kim, 1999] S. W. Kim. Contact dynamics and force control of flexible multi-body systems. PhD

thesis, Department of Mechanical Engineering, McGill University, Montreal, 1999.

[Kirkpatrick, 1984] S. Kirkpatrick. Optimization by simulated annealing: Quantitative studies.

Journal of Statistical Physics, 34(5):975–986, 1984.

[Klanke et al., 2008] S. Klanke, S. Vijayakumar, and S. Schaal. A library for locally weighted

projection regression. The Journal of Machine Learning Research, 9:623–626, 2008.

[Klein and Huang, 1983] C. A. Klein and C. H. Huang. Review of pseudoinverse control for

use with kinematically redundant manipulators. IEEE Transactions on Systems, Man, and

Cybernetics, 13:245–250, 1983.

BIBLIOGRAPHY 155

[Kuffner Jr and LaValle, 2000] J. J. Kuffner Jr and S. M. LaValle. RRT-connect: an efficient

approach to single-query path planning. In IEEE International Conference on Robotics and

Automation, 2000. Proceedings. ICRA’00, volume 2, 2000.

[Kuffner, 2004] J. J. Kuffner. Effective sampling and distance metrics for 3D rigid body

path planning. In 2004 IEEE International Conference on Robotics and Automation, 2004.

Proceedings. ICRA’04, volume 4, 2004.

[Laarhoven and Aarts, 1987] P. J. M. Van Laarhoven and E. H. L. Aarts. Simulated annealing:

theory and applications. Springer, 1987.

[Landau and Lifshitz, 1976] L. D. Landau and E. M. Lifshitz. Mechanics, volume 1 of Course of

Theoretical Physics. Elsevier, Moscow, third edition, 1976.

[Landau and Lifshitz, 1980] L. D. Landau and E. M. Lifshitz. Statistical Physics, Part 1, volume 5

of Course of Theoretical Physics. Elsevier Butterworth-Heinemann, third edition, 1980.

[LaValle, 2001] S. LaValle. Rapidly-exploring random trees: Progress and prospects. In

Algorithmic and computational robotics: new directions: the fourth Workshop on the

Algorithmic Foundations of Robotics, page 293. AK Peters, Ltd., 2001.

[LaValle, 2006] S. M. LaValle. Planning algorithms. Cambridge University Press, 2006.

[Liegeois, 1977] A. Liegeois. Automatic supervisory control of the configuration and behavior of

multibody mechanisms. Systems, Man and Cybernetics, IEEE Transactions on, 7(12):868–871,

1977.

[Lonini et al., 2009] L. Lonini, L. Dipietro, L. Zollo, E. Guglielmelli, and H. I. Krebs. An internal

model for acquisition and retention of motor learning during arm reaching. Neural computation,

21(7), 2009.

[Lynch, 1992] Kevin Lynch. The mechanics of fine manipulation by pushing. In IEEE

International Conference on Robotics and Automation, pages 2269–2276, 1992.

[Mani and Wilson, 1985] M. Mani and W. Wilson. A programmable orienting system for flat

parts. In North American Manufacturing Research Institute Conference XIII, 1985.

[Mason and Salisbury, 1985] M. T. Mason and J. K. Salisbury. Robot hands and the mechanics of

manipulation. MIT Press, Cambridge, 1985.

[Mason, 1982] M. T. Mason. Manipulator grasping and pushing operations. PhD thesis, MIT,

1982.

[Mason, 1986] M. T. Mason. Mechanics and planning of manipulator pushing operations. The

International Journal of Robotics Research, 5(3):53, 1986.

BIBLIOGRAPHY 156

[Mason, 2001] M. T. Mason. Mechanics of robotic manipulation. MIT press, 2001.

[Mehta and Schaal, 2002] B. Mehta and S. Schaal. Forward models in visuomotor control.

Journal of Neurophysiology, 88(2):942–953, 2002.

[Metropolis et al., 1953] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and

E. Teller. Equation of state calculations by fast computing machines. The journal of chemical

physics, 21(6):1087, 1953.

[Metta and Fitzpatrick, 2003] G. Metta and P. Fitzpatrick. Better vision through manipulation.

Adaptive Behavior, 11:2, 2003.

[Meyer, 2000] C. D. Meyer. Matrix analysis and applied linear algebra. Society for Industrial

Mathematics, 2000.

[Miall and Wolpert, 1996] R. C. Miall and D. M. Wolpert. Forward models for physiological

motor control. Neural Networks, 9(8):1265–1279, November 1996.

[Millington, 2007] I. Millington. Game physics engine development. Morgan Kaufmann, 2007.

[Mor, 1977] J. J. Mor. The Levenberg-Marquardt algorithm: implementation and theory. Lecture

notes in mathematics, 630:105116, 1977.

[Mörwald et al., 2009] T. Mörwald, M. Zillich, and M. Vincze. Edge tracking of textured objects

with a recursive particle filter. In Proceedings of the Graphicon 2009, Moscow, Russia, 2009.

[Murray et al., 1994] R. M. Murray, Z. Li, and S. S. Sastry. A mathematical introduction to

robotic manipulation. CRC press, 1994.

[Neuronics AG, 2004] Neuronics AG. Katana user manual and technical description.

http://www.neuronics.ch, 2004.

[Nilsson, 1998] N. J. Nilsson. Artificial intelligence: a new synthesis. Morgan Kaufmann, 1998.

[Oden and Pires, 1983] J. T. Oden and E. B. Pires. Nonlocal and nonlinear friction laws and

variational principles for contact problems in elasticity. Journal of Applied Mechanics, 50:67,

1983.

[Ortega and Spong, 1988] R. Ortega and M. W. Spong. Adaptive motion control of rigid robots:

A tutorial. In Decision and Control, 1988., Proceedings of the 27th IEEE Conference on, pages

1575–1584, 1988.

[Overmars, 1992] M. H. Overmars. A random approach to motion planning. Utrecht University,

Dept. of Computer Science, 1992.

BIBLIOGRAPHY 157

[Paletta et al., 2007] L. Paletta, G. Fritz, F. Kintzler, J. Irran, and G. Dorffner. Learning to perceive

affordances in a framework of developmental embodied cognition. In IEEE 6th International

Conference on Development and Learning, 2007. ICDL 2007, pages 110–115, 2007.

[Peshkin and Sanderson, 1985] M A. Peshkin and Arthur C. Sanderson. The motion of a pushed,

sliding object, part 1: Sliding friction. Technical Report CMU-RI-TR-85-18, Robotics Institute,

Pittsburgh, PA, September 1985.

[Peshkin and Sanderson, 1986] M A. Peshkin and Arthur C. Sanderson. The motion of a pushed,

sliding object, part 2: Contact friction. Technical Report CMU-RI-TR-86-07, Robotics

Institute, Pittsburgh, PA, April 1986.

[Peshkin and Sanderson, 1988] M. A. Peshkin and A. C. Sanderson. The motion of a pushed,

sliding workpiece. IEEE Journal on Robotics and Automation, 4:569–598, 1988.

[Peters et al., 2003] J. Peters, S. Vijayakumar, and S. Schaal. Reinforcement learning for

humanoid robotics. In Proceedings of the Third IEEE-RAS International Conference on

Humanoid Robots, pages 1–20, 2003.

[PhysX, 2009] NVIDIA PhysX. Physics simulation for developers.

http://developer.nvidia.com/object/physx.html, 2009.

[Piaget, 1937] J. Piaget. The construction of reality in the child. Routledge, 1937.

[Pieper, 1968] D. L. Pieper. The kinematics of manipulators under computer control. PhD thesis,

Stanford University, 1968.

[Plaku et al., 2005] E. Plaku, K. E. Bekris, B. Y. Chen, A. M. Ladd, and L. E. Kavraki.

Sampling-based roadmap of trees for parallel motion planning. IEEE Transactions on Robotics,

21(4):597–608, 2005.

[Reif, 1979] J. H. Reif. Complexity of the mover’s problem and generalizations. In Foundations

of Computer Science, 1979., 20th Annual Symposium on, pages 421–427, 1979.

[Ridge et al., 2008] B. Ridge, D. Skocaj, and A. Leonardis. Towards learning basic object

affordances from object properties. In Proceedings of the 2008 International Conference on

Cognitive Systems, Karlsruhe, Germany, 2008.

[Routh, 1905] E. J. Routh. The elementary part of a treatise on the dynamics of a system of rigid

bodies. MacMillan & Co, London, 1905.

[Schaal and Atkeson, 1998] S. Schaal and C. G. Atkeson. Constructive incremental learning from

only local information. Neural Computation, 10(8):2047–2084, 1998.

[Schaal et al., 2004] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert. Learning movement

primitives. In In- ternational Symposium on Robotics Research (ISRR2003), 2004.

BIBLIOGRAPHY 158

[Sciavicco and Siciliano, 2000] L. Sciavicco and B. Siciliano. Modelling and control of robot

manipulators. Springer, 2000.

[Scott and Sain, 2004] D. W. Scott and S. R. Sain. ”Multi-Dimensional Density Estimation”,

pages 229–263. Elsevier, 2004.

[Siciliano and Khatib, 2008] B. Siciliano and O. Khatib. Springer handbook of robotics. Springer,

2008.

[Spong, 1996] Mark W Spong. Motion control of robot manipulators. In W. Levine (Ed.),

Handbook of control (pp. 13391350). Boca, 1996.

[Steinbach and Held, 1968] Martin J. Steinbach and Richard Held. Eye tracking of Observer-

Generated target movements. Science, 161(3837):187–188, July 1968.

[Storn and Price, 1997] R. Storn and K. Price. Differential evolution - a simple and efficient

heuristic for global optimization over continuous spaces. Journal of Global Optimization,

11(4):341–359, 1997.

[Stronge, 1991] W. J. Stronge. Unraveling paradoxical theories for rigid body collisions. Journal

of Applied Mechanics, 58:1049, 1991.

[Stronge, 1992] W. J. Stronge. Energy dissipated in planar collision. Journal of Applied

Mechanics, 59:681, 1992.

[Stronge, 2004] W. J. Stronge. Impact mechanics. Cambridge University Press, 2004.

[Svestka, 1997] P. Svestka. Robot motion planning using probabilistic roadmaps. PhD thesis,

Universiteit Utrecht, 1997.

[Tolani et al., 2000] D. Tolani, A. Goswami, and N. I. Badler. Real-time inverse kinematics

techniques for anthropomorphic limbs. Graphical models, 62(5):353–388, 2000.

[Tsianos et al., 2007] K. I. Tsianos, I. A. Sucan, and L. E. Kavraki. Sampling-based robot motion

planning: Towards realistic applications. Computer Science Review, 1(1):2–11, 2007.

[Urmson and Simmons, 2003] C. Urmson and R. Simmons. Approaches for heuristically biasing

RRT growth. In 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems,

2003.(IROS 2003). Proceedings, volume 2, 2003.

[Verlet, 1967] L. Verlet. Computer Experiments on classical fluids. i. thermodynamical propertier

of Lennard-Jones fluid. Mol. Phys. Rev, 159:98, 1967.

[Vijayakumar and Schaal, 2000] Sethu Vijayakumar and Stefan Schaal. Locally weighted

projection regression : An o(n) algorithm for incremental real time learning in high dimensional

space. In Proceedings of the Seventeenth International Conference on Machine Learning

(ICML 2000), 2000:1079—1086, 2000.

BIBLIOGRAPHY 159

[Vijayakumar et al., 2005] S. Vijayakumar, A. D’souza, and S. Schaal. Incremental online

learning in high dimensions. Neural Computation, 17(12):2602–2634, 2005.

[Wampler, 1986] C. W. Wampler. Manipulator inverse kinematic solutions based on vector

formulations and damped least-squares methods. IEEE Transactions on Systems, Man and

Cybernetics, 16(1):93–101, 1986.

[Wexler and Klam, 2001] M. Wexler and F. Klam. Movement prediction and movement

production. Journal of Experimental Psychology: Human Perception and Performance,

27(1):48–64, 2001.

[Whittaker and McCrea, 1988] E. T. Whittaker and W. McCrea. A treatise on the analytical

dynamics of particles and rigid bodies: with an introduction to the problem of three bodies.

Cambridge University Press, 1988.

[Wilmarth et al., 1999] S. A. Wilmarth, N. M. Amato, and P. F. Stiller. MAPRM: a probabilistic

roadmap planner with sampling on the medialaxis of the free space. In 1999 IEEE International

Conference on Robotics and Automation, 1999. Proceedings, volume 2, 1999.

[Wolovich and Elliott, 1984] W. A. Wolovich and H. Elliott. A computational technique for

inverse kinematics. In Decision and Control, 1984. The 23rd IEEE Conference on, volume 23,

1984.

[Wolpert and Flanagan, 2001] D. M. Wolpert and J. R. Flanagan. Motor prediction. Current

Biology, 11(18):R729–R732, 2001.

[Wolpert and Ghahramani, 2000] D. M. Wolpert and Z. Ghahramani. Computational principles

of movement neuroscience. Nature Neuroscience, 3:1212–1217, 2000.

[Wolpert and Kawato, 1998] D. M. Wolpert and M. Kawato. Multiple paired forward and inverse

models for motor control. Neural Networks, 11(7-8):1317–1329, 1998.

[Wolpert et al., 1995] D. M. Wolpert, Z. Ghahramani, and M. I. Jordan. An internal model for

sensorimotor integration. Science, 269(5232):1880–1882, 1995.

[Wolpert et al., 1998] D. M. Wolpert, R. C. Miall, and M. Kawato. Internal models in the

cerebellum. Trends in Cognitive Sciences, 2(9):338–347, 1998.

[Wolpert, 2003] D. M. Wolpert. A unifying computational framework for motor control and

social interaction. Philosophical Transactions of the Royal Society B: Biological Sciences,

358(1431):593–602, 2003.

[Yoshikawa and Kurisu, 1991] T. Yoshikawa and M. Kurisu. Identification of the center of friction

from pushing an object by a mobile robot. In Proc. 1991 IEEE/RSJ Int. Conf. Intelligent Robots

and Systems, page 449454, 1991.

BIBLIOGRAPHY 160

[Zhao and Badler, 1994] J. Zhao and N. I. Badler. Inverse kinematics positioning using nonlinear

programming for highly articulated figures. ACM Transactions on Graphics (TOG), 13(4):313–

336, 1994.

	Table of contents
	List of figures
	Introduction
	Motivation
	Hypothesis and contributions
	Domain of testing
	Approach
	Roadmap

	Predicting and learning of body movements
	When action involves prediction
	Internal models
	Motor system variables
	Forward models
	Inverse models

	State estimation
	Motor control
	Basic control schemes
	Feedback controller
	Composite control system

	Motor learning
	Basic learning schemes
	Learning algorithms
	Learning movement primitives
	Modular motor learning

	Summary

	Predicting object motion during manipulation
	Introduction to prediction learning in pushing manipulation
	Physics-based prediction
	Physics engines
	Collisions
	Contact resolution methods

	Pushing manipulation in literature
	Pushing and planning
	Learning

	Summary

	Controlling a robotic manipulator
	Robot design
	Manipulator joints
	Manipulator configuration space
	Manipulator workspace

	Robot kinematics
	Forward kinematics
	Forward instantaneous kinematics
	Inverse kinematics problem
	Inverse instantaneous kinematics problem

	Robot control
	Joint space control
	Workspace control
	Golem controller

	Robot planning
	Path planning problem
	Sampling-based approaches to path planning
	Incorporating differential constraints
	Golem trajectory planner

	Summary

	Prediction learning in robotic pushing manipulation
	Representing interactions of rigid bodies
	A three body system
	Body frame representation

	Prediction learning as a regression problem
	Quasi-static assumption

	Predicting rigid body motions using multiple experts
	Combining local and global information with two experts
	Incorporating information from additional experts
	Incorporating additional information into the global conditional density function
	Learning as density estimation

	Results
	Introduction
	Generalization to predict motions from novel actions
	Generalization to objects with novel shapes
	Experiments with a real robot

	Summary

	A simplified physics approach to prediction
	Principle of minimum energy
	Implementation
	Finding a trajectory at equilibrium
	Probability density over trajectories

	Results
	Overview
	Performance of a simplified physics approach
	Shape generalization

	Summary

	Discussion
	Conclusions
	Summary
	Future work

	Rigid body kinematics
	Introduction
	Rotations
	Rotation matrices
	Exponential coordinates of rotation
	Euler angles

	Rigid body transformations
	Homogeneous representation
	Exponential coordinates of rigid body transformations

	Rigid body velocity
	Angular velocity
	Rigid body velocity

	Matrix algorithms
	Preliminaries
	Singular value decomposition

	Global optimization over continuous spaces
	Differential evolution
	Simulated annealing

	A* Graph search algorithm
	Bibliography
	in robotic manipulation

