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Abstract 

Nanotechnology, a new science discipline, which studies design, 

characterization, production and applications of materials with sizes 1-100 nm, has 

marked a new breakthrough in technological development. It promises to revolutionise 

many aspects of modern life. However, with increasing markets and industrial scale of 

production, nanomaterials (NMs) became a potential, but largely unknown, risk to 

human health and the environment. Carbon based NMs including carbon nanotubes 

(CNTs) and fullerenes are an important class of NMs and are further studied in this 

thesis. 

 

Potential fate and behaviour of single-walled CNTs (SWCNTs) was investigated 

in natural waters using transmission electron microscopy (TEM) and atomic force 

microscopy (AFM). There was a focus on CNT interactions with natural aquatic 

colloids along with the impacts of other solution conditions at environmentally relevant 

levels. Similar research on fullerenes C60 was also undertaken, as a part of a wider 

study investigating fish ecotoxicology of fullerenes. Nanoscale atmospheric particles 

were imaged and analysed with AFM. Additionally, a pilot study on metal speciation in 

SWCNTaq was conducted to determine partitioning of Ni, Y, Cd, Cu and Cr between 

particle-bound, labile and dissolved fractions with a view to better understand the role 

of SWCNTs in trace metals binding (and thus influencing their transport, chemistry and 

bioavailability). 

 

The results indicate that SWCNTs in aquatic systems are likely to interact with 

natural nanoscale material. The experiments showed that SWCNTs in aqueous 

suspensions are stabilised with humic acid (probably by surface coating formation) and 

precipitated by divalent cations, while monovalent cations did not exhibit such 

destabilising effects. 95-100 % of yttrium (catalyst residue) was retained by the 

ultrafiltration membrane at all studied conditions indicating its particulate or particle-

bound speciation. On the other hand, the majority of chromium was dissolved. In 

general, the presence of humic acid decreased dissolved and labile metal species 

whereas Ca
2+

 had the opposite effect. Comparison of TEM and AFM results showed 

that both techniques are suitable to study suspended SWCNTs and produced consistent 

and complementary quantitative and qualitative results. An improved protocol 

(involving ultracentrifugation) for TEM specimen preparation was tested with aqueous 

suspensions of SWCNTs and nC60. It shortened the analysis time and improved 

reproducibility. 

 

The results show that fullerenes form very stable aqueous suspensions. 

However, the majority of the dispersed C60 occurs in microscale, rather than nanoscale 

aggregates, with only ca. 2% of material by mass between 1 and 100 nm. Visualisation 

of C60 in the presence of natural aquatic colloids did not show such strong interactions 

as in case of SWCNTs. 

 

Two analysed size fractions of atmospheric nanoparticles collected with an 

inertial impactor proved to be significantly contaminated with particles in the size 

range of 1-10 nm, which was attributed mainly to the diffusive mechanism of impaction 

for the imaged material.  
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1 INTRODUCTION 

 

1.1 Introductory remarks 

 

Nanoparticles (NPs), defined as entities with more than one dimension in the 

range 1-100 nm [ASTM, 2006], have been present in the environment for millions of 

years [Christian et al., 2008]. They are produced in large numbers in commonplace 

natural processes such as weathering of rocks, volcanic eruptions, biodegradation of 

organic matter in soils and water [Nowack and Bucheli, 2007]. For the last few decades, 

substantial quantities of fine particles have been released into the atmosphere as by-

products of fossil fuel burning and other industrial processes [SCENIHR, 2006]. 

Recently NPs have become scientifically and technologically very topical and 

have been regarded as a foundation of the ‗Third Industrial Revolution‘ [Yih and 

Talpasanu, 2008]. The reason for this is that only recently science has matured enough 

to study and, most importantly, manipulate matter at the nanoscale [SCENIHR, 2006]. 

Engineered NPs emerged as a new type of materials with a multitude of fascinating and 

desired properties. Novel properties of nanomaterials (NMs), such as high reactivity and 

large specific surface area, are a result of their nanoscale dimensions. These unique 

characteristics can be (and in some cases already are) utilised in countless applications 

in cutting-edge technology and medicine. Potential benefits of nanotechnology are 

impressive and widely recognised [EPA, 2007]. Moreover, some NMs and their 

applications promise new significant advances in environmental sustainability of 

technological development [Council for Science and Technology, 2007]. 

 However, concern has been raised that release of NPs in the environment will 

pose significant risks to human health and ecosystems [Roco, 2005]. This risk is hugely 
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unknown and poorly characterised. Very little is known about toxicity, ecotoxicity and 

fate and behaviour of NPs in the atmosphere, water and soil [National Nanotechnology 

Initiative, 2006]. Nevertheless, the apprehension towards potential negative effects of 

nanotechnology is additionally fuelled by what is already known about natural and 

incidental anthropogenic fine particles. Although extremely small, they play a vital role 

in natural waters, by controlling nutrients, pollutants and pathogens [Lead et al., 1999; 

Buffle, 2006; Lead and Wilkinson, 2006A]. Through epidemiological studies 

atmospheric particulate matter has been correlated with respiratory and cardiovascular 

mortality [Samet et al., 2000; Brook et al., 2004]. 

 Consequently, research and development on applications of NPs has to be 

coupled with toxicological, environmental and exposure studies. Human and 

environmental health implications of nanotechnology are among the most important 

research priorities of the scientific community, governments and industry in order to 

protect health and to underpin a sustainable nanotechnology industry [EPA, 2007]. 

 Properties of NPs depend on many parameters (chemical composition, size, 

shape, synthesis protocol, surface coating, etc.). Even materials sold under the same 

product name can significantly differ among various batches. For this reason, there is a 

general consensus that particles used in toxicological and environmental experiments 

have to be carefully characterised [EPA, 2007; SCENIHR, 2009]. Solid and reliable 

information on particle characteristics is also crucial to explain and underpin the 

mechanisms of observed effects and behaviour. Careful characterisation of a studied 

material allows comparison between (eco)toxicological data among various types of 

NPs, which is expected to aid future research and legislation by NPs categorisation 

[Stone et al., 2010]. 
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Characterisation of NMs that could properly serve the aforementioned purposes 

is a challenging analytical task. Examination of nanoscale particles requires sensitive 

techniques with powerful resolution or very low limits of detection. NPs tested in 

toxicological and environmental studies are usually bound in complex matrices (such as 

exposure media or body tissues), which strongly depend on sample physicochemistry 

and which behaviour may be dynamic (e.g. govern by aggregation/disaggregation 

processes) [Domingos et al., 2009C]. The majority of existing techniques for NP 

characterisation and quantification have been adapted from studies on aquatic colloids 

or atmospheric fine particles. However, most of these techniques still require further 

development, optimisation and verification to overcome their limitations, e.g. sample 

modification by the analytical protocol [Lead and Wilkinson, 2006]. In general, to 

advance the risk assessment of emerging NMs, there is an urgent need for a 

standardised characterisation methodology including the list of properties to be 

examined, choice of analytical methods and their protocols as well as data processing 

and interpretation. 

In this work various characterisation techniques (such as TEM, AFM, ICP-MS, 

etc.) were successfully employed to characterise natural and engineered NPs. Single-

walled carbon nanotubes (SWCNTs) and fullerene C60 were extensively imaged in 

aqueous suspensions to study their morphologies qualitatively and quantitatively. To the 

best of my knowledge, this thesis is the first to present detailed morphological 

characterisation of different size fractions of water-stirred fullerenes. Additionally, the 

imaging techniques have been applied in an extensive study of engineered – natural 

aquatic NPs interactions in natural aquatic systems to advance the knowledge on the 

fate and behaviour of engineered NPs in the environment. Moreover, an improved 
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protocol for TEM specimen preparation for these samples has been proposed and 

successfully tested to provide more accurate analysis, better reproducibility of the 

results and additional quantitative information. Furthermore, one of the chapters 

addresses the issue of metal contamination in aquatic environment as influenced by the 

presence of carbon nanotubes. A protocol has been proposed and tested to determine 

how SWCNTs may impact the amounts of dissolved and bioavailable trace metals. 
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1.2 Aims and objectives 

 

The overall aim of this project is to examine the interactions of engineered and natural 

NPs to better understand the fate and behaviour of engineered NPs in the environment 

and thus advance the knowledge on possible risks of nanotechnologies to human health 

and ecosystems. This goal is to be achieved by application of existing techniques to 

characterise engineered NPs and study them in environmentally relevant matrices. 

These techniques should be tested for their suitability to study engineered NPs in 

environmental studies and optimised to provide best possible quality of the data. 

 

The specific objectives of this study include: 

1) 

Visualisation and quantification of engineered NPs (SWCNTs, fullerene C60), natural 

aquatic NPs (such as humic substances, polysaccharides, natural water) and atmospheric 

incidental
*
 NPs at environmentally relevant conditions (including a range of pH values, 

presence of ubiquitous cations) 

2) 

Examination of engineered NPs (SWCNTs, fullerene C60) in aqueous suspensions in the 

presence and absence of natural aquatic colloids (such as humic substances, 

polysaccharides, natural water) and under environmentally relevant conditions 

(including a range of pH values, presence of ubiquitous cations) to better understand the 

impacts of ubiquitous natural water components on engineered NPs behaviour (e.g. 

stability) 

                                                 
*
 Incidental (adventitious) atmospheric NPs are released as by-products of human activities such as 

combustion of fossil fuels (in vehicles and energy generation) and industrial processes. More information 

on natural and incidental atmospheric NPs is provided in sections 2.2.1 and 2.2.1.2.  
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3) 

Testing and optimisation of existing microscopy protocols to assist characterisation of 

engineered NPs in natural waters with a view to providing possibly most reliable and 

reproducible quantitative and qualitative data 

4) 

Analysis of metal speciation in aqueous suspensions of NPs (SWCNTs) to better 

understand the role of NPs in trace metal chemistry (bioavailability, toxicity and 

transport) in natural waters 
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1.3 Thesis synopsis 

 

Chapter 2 contains an introduction to the issue of NPs and nanoscience. The 

most popular types or NMs, such as carbonaceous, metal, metal oxides NPs and 

quantum dots, are presented with an emphasis on their most important properties as well 

as present and proposed future applications. A separate section (2.1.3) is devoted to 

currently known toxic and ecotoxic effects of NPs, mainly carbon nanotubes, fullerenes 

and silver NPs. Later engineered NPs are put in the context of natural and incidental 

particulate matter. A summary of the current knowledge on environmental fate and 

behaviour of NPs follows. 

The details of materials used throughout the experimental work are gathered in 

chapter 3. This chapter also explains the protocol used to obtain the stock suspensions 

and solutions. Further dealing with these stock materials depended on the laboratory 

work so remaining protocol details are distributed among the chapters with the results 

accordingly to their relevance. Also in chapter 3 all used analytical techniques are 

presented and discussed in detail. 

The subsequent six chapters present the experimental results with their 

interpretation. Chapter 4 presents the results of AFM characterisation of atmospheric 

NPs collected with a cascade inertial impactor. AFM height measurements were used to 

obtain size distribution histograms. 

Chapter 5 contains a study on the interactions between single-walled carbon 

nanotubes (SWCNT) and natural aquatic colloids (NAC) including Suwannee River 

humic acid, Pahokee peat humic acid, succinoglycan and natural lake water at different 

values of pH as well as the presence/absence of sodium and calcium cations. Samples 
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were analysed with TEM and average bundle thicknesses for all samples were 

calculated. The formation of nanoscale films is discussed. 

TEM specimen preparation protocol was expanded by adding an 

ultracentrifugation step and tested on aqueous suspensions of SCWNTs and fullerenes 

C60 in the presence/absence of NAC. The results are presented in chapter 6. 

TEM analysis of SWCNTs in natural waters from chapter 5 was complemented 

with AFM imaging. The results are discussed in chapter 7. To quantify the comparison 

between the two techniques, average bungle heights were measured and weighed 

against TEM bundle thicknesses. Additionally, comparison between AFM tapping and 

non-contact modes is presented. 

Chapter 8 is devoted to a pilot study into metal speciation in aqueous 

suspensions of SWCNTs. Five metals (Ni, Y, Cu, Cd, and Cr) were measured in 3 

different size fractions: in the original samples, in 1.2 µm filtrates and in 1 kDa 

ultrafiltrates. To measure the labile metal fraction, the diffusive gradients in thin films 

(DGT) technique was employed. 

Chapter 9 presents the particle characterisation which was conducted for the 

water-stirred C60. This characterisation underpinned a toxicogenomics study after 

exposure to fish. Concentrations of 4 different size fractions were estimated with UV-

Vis absorption spectra. TEM imaging was used to study morphologies and size 

distribution of five size fractions and number concentrations were estimated where 

feasible. 

Chapter 10 contains final conclusions and recommendations for future work. 

Appendix (companion CD) contains all TEM and AFM images used throughout 

the experimental work. 
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2 BACKGROUND 

 

2.1 Applications and implications of engineered nanomaterials 

 

2.1.1 Introduction to nanotechnology and nanomaterials 

 

Being just a few decades old, nanoscience has already revolutionised almost all 

traditional science disciplines, including chemistry, engineering, physics, materials 

science, biology, medicine and environmental sciences [Yih and Moudgil, 2007]. It is 

also referred to as a key scientific discipline, which will help to launch the Third 

Industrial Revolution [Yih and Talpasanu, 2008]. 

Nanoscience studies matter at the nanoscale, i.e. when at least one dimension is 

in the range 1-100 nm [PAS, 2005; ASTM, 2006; ISO, 2008]. Nanoscience has led to 

the emergence of nanotechnology, which is claimed to be the basis of the most 

important technological innovations of the 21st century [Roco, 2006]. This promising 

prognosis derives from the fact that already well known materials show completely 

different and often fascinating properties when studied at the nanoscale.  

To illustrate such changes, gold NPs will be used as an example here. The way 

of preparation of ‗two-phase aqueous gold‘ (and other metals) colloids was introduced 

by the pioneering studies of Faraday as early as in 1857, when he studied optical 

properties of gold [Faraday, 1857]. The subject of colloidal gold received substantial 

scientific attention, especially in the last 10-20 years [Dykman et al., 1996; Hernández-

Santos et al., 2000; Dobrovolskaia et al., 2009]. Gold NPs proved to be an effective 

catalyst, although in bulk gold is one of the most inert elements in the periodical table. 

For instance, when immobilised on a surface of TiO2, nanosize gold particles can serve 

as a very active and selective catalyst for carbon monoxide oxidation at room 
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temperature, as long as the size of gold NPs does not exceed 8 nm in diameter 

[Campbell, 2004]. The chemical reactivity of gold is strongly size dependent and for 

this reaction the best performance is seen for particles 2-3 nm in size [Lopez et al., 

2004]. Not only does the reactivity of gold change considerably when entering the 

nanoregime but its colour turns from yellow to pink, red or blue indicating major 

changes in optical properties [Cortie, 2004]. What is more, non-toxic bulk gold can 

become potentially harmful when the particle size reaches 2 nm because such small NPs 

have been proved to bind to the DNA groove potentially affecting its structure and 

function (Fig. 2.1) [Tsoli et al., 2005]. 

Such drastic changes in properties can be explained by an extremely large 

specific surface area per unit mass, e.g. 1000 m
2
g

-1
 for nanoporous crystalline MgO 

[Dohnálek et al., 2002], 866 m
2
g

-1
 for aerogel silica NPs [Wang et al., 2005A]. 

Secondly, at the nanoscale, quantum phenomena govern the behaviour of materials, 

resulting in different chemical, mechanical, electrical, optical, thermal and magnetic 

properties. Quantum effects are characteristic for matter at atomic and subatomic scale 

and cannot be explained by the laws of Newtonian mechanics and classical 

electromagnetism. They include: 

Figure 2.1. Molecular model of B-DNA combined with Au55 clusters irreversibly 

attached to the major grooves [Tsoli et al., 2005]. 
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• discretization of certain physical quantities, e.g. energy of electrons on atomic 

orbitals; 

• detectable wave-particle duality, i.e. particles can behave like waves and waves 

can behave like particles; 

• Heisenberg uncertainty principle, i.e. a position and momentum of an electron 

cannot be calculated precisely but only with certain probability, the more 

accurate calculation of momentum, the less accurate calculation of the position 

and vice versa; 

• quantum entanglement, i.e. quantum states of two or more objects have to be 

described with reference to each other, even though the individual objects may 

be spatially separated. 

 

Due to novel properties, so far NMs have found numerous industrial and 

commercial applications including production of sunscreens and cosmetics, home care 

products, food packaging, paints and textiles, computers and electronic devices, 

composites, clays, coatings and surfaces, tougher and harder cutting tools and others. 

The number of nanotechnology consumer products already on the market worldwide 

rocketed in the last 5 years and in 2009 exceeded a thousand [Rejeski, 2009 A; Project 

on Emerging Nanotechnologies, 2009]. Future applications of NMs are expected to be 

in a broad range of industries such as electronics and communications, chemicals and 

materials (especially as catalysts improving energy and combustion efficiency), 

pharmaceuticals, healthcare, precision engineering, energy technologies (batteries, solar 

cells), space exploration, remediation and water purification [Allianz & OEDC, 2005; 

Council for Science and Technology, 2007].  
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Nano-related products sold worldwide in 2009 were worth an estimated $224 

billion [PCAST, 2010]. It is undoubtedly one of the most rapidly expanding markets 

predicted to reach $ 1 trillion/year worldwide by 2015 [Aitken et al., 2006] and $3 

trillion/year by 2018 [Global Industry Analysts, Inc., 2008]. Global consumption 

already in millions of tonnes per annum (over 9 million metric tonnes in 2005) is 

expected to rise dramatically in the coming years [BCC Research, 2005; Powell et al., 

2008; Delgado, 2010]. 

 

2.1.2 Types of manufactured nanomaterials 

Manmade NMs come in a variety of shapes and forms: 

 with one dimension in the range 1-100 nm (e.g. Fig. 2.2 g): nanostructured 

films, coatings and nanosheets e.g.  titanium nitride coating used for cutting 

tools to improve their performance and durability [Nanofilm Technologies 

International Pte Ltd.], polymer reactive self-assembling nanofilms used as 

protective coatings for ophthalmic lenses [Nanofilm Company]. 

 with two dimensions in the range 1-100 nm (e.g. Fig. 2.2 a-d): nanowires 

(metallic, semiconducting or insulating) and nanotubes (single-, double- or 

multi-walled) made of carbon or inorganic materials such as oxides, nitrides, 

carbides, chalcogenides, phosphides and others [Rao et al., 2004]. 

 with three dimensions in the range 1-100 nm (e.g. Fig. 2.2 e, f and h): spheres, 

cubes, rods, capsules, pyramids and many others [Nagarajan and Hatton, 2008]. 
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However, most commonly manmade NPs are categorised according to the core 

material they are made of. Nevertheless, diversity of NPs and their physico-chemical 

properties within the same material group can be astonishing. Differences usually 

encompass different size ranges and their homogeneity/heterogeneity, varied shapes and 

crystal or amorphous structure. Additionally, properties of the same NPs can be 

significantly altered by means of surface coating (e.g. polymer-coated magnetic NPs for 

f) d) e) 

c) b) a) 

h) g) 

Figure 2.2. Examples of engineered NMs: a) TEM image of a tungsten sulphide multi-

walled nanotube [Rosentsveig et al., 2002]; b) SEM image of CNT grown on Si pillars 

[Homma et al., 2002]; c) SEM image of porous gold nanowires [Ji and Searson, 2002]; d) 

TEM image of a helical SiO2 nanospring [Zhang et al., 2003]; e) SEM image of silver 

nanocubes [Sun and Xia, 2002]; f) STM image of fullerene C60 molecules on Si surface 

[Hou et al., 1999]; g) SEM image of ZnO nanosheet [Park and Park, 2006]; h) SEM 

image of SiO2 NPs [Maury et al., 2008]. 
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biomedical applications [Figuerola et al., 2010]), surface functionalization (e.g. surface 

carboxylation of CNTs to improve solubility in polar solvents [Foldvari and Bagonluri, 

2008]), and chained capping agents (e.g. long-chain acids used in the synthesis of cobalt 

NPs [Lu et al., 2008A]). 

Depending on the material they are made from, there are two main groups of 

NMs: 

• carbon-based NPs: carbonaceous NPs (e.g. fullerenes, carbon nanotubes) and 

nano-polymers. 

• inorganic NPs: metal (e.g. silver, gold , iron) and metal oxides (e.g. iron oxide, 

titanium dioxide, zinc oxide, cerium oxide) as well as quantum dots (e.g. cadmium 

sulphide or selenide) [Ju-Nam and Lead, 2008]. 

Some of the most common and well-studied NPs will be discussed in more 

detail below. 

 

Carbon-based nanoparticles 

 The discovery of a new carbon allotrope (in addition to diamond and graphite), a 

buckminster fullerene molecule (C60) in 1985 was awarded the Nobel Prize in 

Chemistry in 1996 (the prize went to H. Kroto, R. Curl and R. Smalley). Also known as 

a buckyball or fullerene C60, it is built of exactly sixty atoms of carbon organised in 

interlocking hexagons and pentagons arranged in a symmetrical spherical shape (Fig. 

2.3 a). From the very beginning the molecule of C60 attracted substantial scientific 

attention and subsequently fullerenes with different numbers of carbon atoms were 

synthesised. Among different ring sizes ranging from C20 (buckyball clusters) to C120 

[Cozzi et al., 2005] the most common include C60, C70 (Fig. 2.3 b), C76, C78 and C84.  
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 Many promising practical applications of fullerenes have been suggested in the 

scientific literature, including formulation of superlubricants, drug delivery systems, 

new fuels, superconductors, new classes of rechargeable batteries [Wilson et al., 1992; 

Hughes, 2005]. Most of these proposals are still in the early stages of development. 

Current commercial fullerene products include mainly cosmetics where fullerenes act as 

antioxidants [Project on Emerging Nanotechnologies, 2009]. 

 CNTs are another very important and well-studied group of carbonaceous NPs. 

Due to their distinctive properties such as fluorescence [O'Connell, 2002], extremely 

high tensile strength (even over 60 GPa) [Yu et al., 2000] elastic modulus in the range 

of 1 TPa [ Esaw and Farag, 2006], electric conductivity many times higher than copper 

or, depending on structure, comparable with silicon (i.e. semi-conductive) [Hamada et 

al., 2002] CNTs have found numerous potential industrial and commercial applications 

as well as biomedical applications in diagnostics and therapeutics [Paradise and 

Goswami, 2006; Tran et al., 2009]. 

 CNTs (also called fullerene nanotubes) are long thin cylinders made of one-atom 

thick graphene sheets consisting of carbon atoms laid in hexagons. The graphene sheets 

can be rolled in 3 different directions: along the two symmetry axes or along non-

a) b) 

Figure 2.3. a) fullerene C60 b) fullerene C70 [by Michael Ströck] 
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symmetrical axis. In the two former cases either an armchair or zigzag nanotube will be 

formed (Fig. 2.4 a and b), in the latter case a chiral nanotube will be obtained (Fig. 2.4 

c). According to their structure carbon nanotubes can be also classified into two groups: 

single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs). The former are 

composed of a single graphene cylinder (Fig. 2.4 d) while multi-walled contain two or 

more concentric graphene layers (Fig. 2.4 e). Additionally, nanotubes can be closed or 

opened at the ends. Diameters usually range from 1-2 nm for SWCNTs to 8-50 nm for 

multi-walled ones. Diameter-to-length ratio can be as high as over 100 million [Wang et 

al., 2009]. 

Currently CNTs are used in composite materials to increase their strength while 

maintaining low mass at the same time. The most popular applications include bicycle 

parts, sports equipment, aircraft components and electronics for computers [Project on 

Emerging Nanotechnologies, 2009]. 

a) b) c) d) e) 

Figure 2.4. Carbon nanotubes. a) armchair b) zigzag c) chiral d) single-walled e) multi-

walled (sources: http://www.nano-enhanced-wholesale-technologies.com and 

http://www-ibmc.u-strasbg.fr). 
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Other forms of carbonaceous NPs include nano-diamond [Grichko and 

Shenderova, 2006], nano-onions [Bing-she, 2008], capsules [Sun and Li, 2005], C60 

rings [Li et al., 2001], C60 dimers [Hingston et al., 2006]. 

 

Metal nanoparticles 

Being presently used in over 300 consumer products, silver NPs are the most 

commonly exploited NM at the moment [Rejeski, 2009 B; product inventory of the 

Project on Emerging Nanotechnologies, 2010]. The primary function of silver NPs in 

these applications is antimicrobial activity of colloidal Ag. Possible future utilization of 

silver NPs in medicine is very promising, especially in the light of the rising number of 

pathogens that have developed resistance to antibiotics, which in case of silver NPs 

seems unlikely thanks to their broad range of targets attacked in microbes [Rai et al., 

2009]. On the other hand, high volumes of produced silver NPs and low concentrations 

in antimicrobial applications may promote resistance against Ag NPs [Percival et al., 

2005; Chopra, 2007]. Most often the proposed applications in the healthcare sector 

embrace coating of tools, devices and implants, dental alloy and wound dressings [Chen 

and Schluesener, 2008]. 

Although the disinfectant properties of silver and its ions have been known for 

centuries and silver NPs have been extensively studied by numerous researchers in the 

last two decades, their exact mechanism of action is still a subject of scientific debate 

[Rai et al., 2008]. Very limited information on human toxicity is available, which raises 

concerns on the safety of the still growing number of commercial products already on 

the market [Chen and Schluesener, 2008]. 
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Apart from bactericidal action, there are also other proposed applications, which 

make use of the unique properties of silver NPs such as conductivity, catalytic activity, 

chemical stability and non-linear optical behaviour [Capek, 2004].  

 

Zero-valent iron (ZVI) NPs have earned a reputation of a useful agent in 

bioremediation. Because of their large surface area they are very reactive. In the 

presence of water and oxygen they are easily oxidised (i.e. a thin iron oxide coating is 

formed) and act as reducing agents (mainly towards organic pollutants) and adsorbing 

agents (towards metals and other pollutants) [Zhang, 2003; Noubactep, 2009; Cundy et 

al., 2008; Dickinson and Scott, 2010]. The list of harmful chemicals that could be 

removed from soil and groundwater with the help of iron NPs includes polychlorinated 

biphenyls, chlorinated and brominated organic solvents, organochlorine pesticides and 

dyes [Zhang, 2003; Cundy et al., 2008; Huang et al., 2008]. These technologies offer in-

situ treatment at relatively low costs [EPA, 1998]. 

 

Earlier in this chapter (section 2.1.1) colloidal gold was used as an example of 

how entering the nanoregime changes properties of materials. Size-dependent properties 

of nanogold are of interest in many scientific disciplines, such as electronics, 

magnetism, optics, medicine, biology and material science [Daniel and Astruc, 2004]. 

Gold NPs are the most stable among metal NPs. Possible future applications, which 

have attracted most attention and publicity, include cancer diagnosis and therapy 

[Service, 2005; Peng et al., 2009]. Oncological uses for gold NPs encompass 

photothermal therapy of malignant tumours, bioimaging and nuclear targeting [Huang 

and El-Sayed, 2010; Kang et al., 2010]. Bio-conjugated gold NPs can be used for highly 
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sensitive and selective DNA detection, which could revolutionise biodiagnostics of 

hundreds of pathogens such as anthrax, small pox and HIV [Panyala et al., 2009]. 

 

Metal oxide nanoparticles 

There are a number of types of iron oxide NPs: magnetite Fe3O4, hematite α-

Fe2O3, maghemite γ-Fe2O3, ε-Fe2O3, β-Fe2O3, ferrous oxide (wüstite) FeO, etc. [Wu et 

al., 2008]. Although they occur in nature in high concentrations [Ju-Nam and Lead, 

2008], many efficient ways to synthesise shape specific, monodisperse and stable iron 

oxide NPs have been proposed [Cushing et al., 2004; Park et al., 2004; Wang et al., 

2005B]. Superparamagnetic, ferromagnetic and magneto-resistive properties of iron 

oxide NPs attracted extensive scientific interest [Xiong et al., 2008]. Magnetic 

properties combined with generally low toxicity makes them ideal for biomedical 

applications as contrast agents in magnetic resonance imaging, cell delivery systems 

and gene therapy [Mornet et al., 2006; Barnett et al., 2007; Medarova et al., 2007]. 

 

Titanium dioxide occurs in nature in three main polymorphs: anatase, rutile and 

brookite. Due to its excellent opacifying and light refraction properties it is most widely 

used as a white pigment in food, cosmetics, paints, paper and plastic industries. 

Nanosize anatase TiO2 received much attention for its potential applications in 

photocatalysis, gas sensors, solar cells and electronic devices, while the rutile form, 

thanks to its high dielectric constant and high electrical resistivity, can be the material of 

choice for capacitors, filters, power circuits and temperature compensating condensers 

[Huang et al., 2006; Qiu and Kalita, 2006]. One of the most common use of titanium 

dioxide NPs in commercial products already on the market results from their excellent 
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ultraviolet radiation filtering properties, which are utilized in sun-blocking cosmetics 

[Project on Emerging Nanotechnologies, 2010]. The introduction of TiO2 (and ZnO) 

NPs instead of their bulk counterparts was an important breakthrough in the sunscreen 

industry [Nohynek et al., 2008]. Retaining high UV protection but at the same time 

offering high visible light transparency, NPs solved the problem of unsightly white 

smudges left by traditional lotions as well as improved their viscosity and blending into 

the skin [Newman et al., 2009].  

 

As has been mentioned above, along with TiO2, zinc oxide NPs are widely used 

in cosmetics as sun blocking agents [Mitchnick et al., 1999; Nohynek et al., 2008]. 

Semiconducting properties of nanosize ZnO, with a band gap that can be tuned with 

particle size, aggregation behaviour, shape and surface modifications, could find many 

useful applications in design and manufacturing of optoelectronic devices [Carnes and 

Klabunde, 2000; Andelman et al., 2005; Moleski et al., 2006]. Antibacterial action of 

ZnO NPs is used in creams, lotions and ointments [Li et al., 2008C] and is more 

effective in case of smaller diameters [Padmavathy and Vijayaraghavan, 2008]. ZnO 

NPs have also been proposed as a catalyst in the remediation process of water 

contaminated with petrol additives [Eslami et al., 2008] 

 

 Cerium oxide (ceria) NPs are known for their catalytic properties. Cu-CeO2 

nano-composites are used in air pollution control (CO oxidation) with better efficiency 

than platinum and Cu/Au/Ni-ceria catalyst systems are employed in hydrogen 

production processes [Liu, 2005]. Similarly to titanium and zinc oxides, CeO2 NPs 

show excellent UV radiation absorption activity and UV-Vis transparency and were 
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proposed to be used in sunscreens (doped with different metals) [Yabe and Sato, 2003; 

Song et al., 2006]. There are also numerous reports that nanosize CeO2 protects cells 

against oxidative stress [Schubert et al., 2006; Das et al., 2007, Niu et al., 2007].Very 

exciting findings were published for possible protection and treatment of photoreceptor 

cells (in retina), whose light-induced degeneration causes vision loss [Chen et al., 

2006]. 

 

Quantum dots 

 With sizes below 10 nm (usually 1-2 nm), quantum dots (QDs) are among the 

smallest NPs and are sometimes called artificial atoms. They are made of 

semiconductor materials, usually chalcogenides (selenides or sulphides) of metals like 

cadmium or zinc. QD are expected to be used in the future in quantum computing, 

which could be applied to some calculations unfeasible for the traditional computer 

[Dong and Cao, 2009]. Another potential useful application is proposed in photovoltaic 

cells technology, where QDs may improve their efficiency and lower the costs 

[Conibeer et al., 2008]. In biomedical disciplines QDs could be exploited in diagnostic, 

imaging and drug delivery [Azzazy et al., 2007]. However, applicability of QDs in life 

sciences at the moment is limited by the toxicity of the metals they contain and poor 

solubility in water [Jamieson et al., 2007]. 

 

2.1.3 Toxicity and ecotoxicity of engineered nanoparticles 

Recent advances in nanoscience and nanotechnology have aroused hopes for 

revolutionary technological developments and attracted massive investments from both 

governmental and private sectors. Consequently, NMs, already produced on an 
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industrial scale, are likely to enter the environment. In its report from March 2007, the 

UK Council for Science and Technology emphasises that many NMs do not pose new 

risks for human health and the environment. Nevertheless, there have been numerous 

studies giving evidence that some NPs may be toxic to humans or to environmental 

biota. 

 

Carbon nanotubes 

No more than 10 years after their discovery, CNTs were first compared to 

carcinogenic asbestos because of their similar fibrillar shape [Service, 1998; Sealy, 

2008; Poland et al., 2008]. Indeed, there are numerous studies showing adverse 

respiratory health effects of CNTs. Lam et al. (2003) found that when they reach the 

lungs, SWCNTs can be significantly more toxic to mice than carbon black and quartz 

particles. Three different types (in terms of production process and contamination with 

residues of metallic catalysts) of nanotubes in two doses (0.1 and 0.5 mg per animal) 

were administered by a single intratracheal instillation and lung tissue was 

histopathologically examined 7 or 90 days after the exposure. All studied CNT products 

caused dose-dependent epithelioid granulomas and in some cases they also induced an 

inflammatory reaction, which was even more profound after 90 days. In another study 

SWCNTs have been found toxic to rats when intratracheally instilled [Warheit, 2004]. 

Mortality of 15 % within 24 hours after 5 mg/kg dose exposure was observed and was 

explained by the mechanical blockage of the upper airways rather than inherent 

pulmonary toxicity of the nanotubes themselves. However, there were concerns that the 

intratracheal instillation (and high dose) as an exposure method is physiologically 

irrelevant and can produce artifactual results due to high aggregation of nanotubes being 
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delivered to the respiratory tract [Donaldson et al., 2006]. Nevertheless, inhalation 

studies in rodents confirmed the previous results. In fact, aerosolized SWCNTs used in 

exposure studies in mice proved to be even more effective in causing inflammatory 

response, oxidative stress, collagen deposition, fibrosis and gene mutations than the 

same dose of SWCNTs administered by aspiration [Shvedova et al., 2008]. Pathogenic, 

length-dependent behaviour (inflammation and granulomatous lesion) towards 

mesothelial lining of the body cavity of mice (used to mimic human chest tissue, where 

malignant mesothelioma, cancer caused by asbestos, occurs) was also reported for long 

(> 20 µm) MWCNTs [Poland et al., 2008]. No effect was observed in case of short 

MWCNTs (< 5 µm). Nevertheless, although long MWCNTs caused inflammation and 

asbestos-like behaviour, the study does not answer the question if CNT exposure could 

result in lung cancer. This question was addressed by another research group in a 24-

month bioassay study in rats, whose peritoneal cavity was injected with a single dose of 

two kinds of MWCNTs and blue asbestos [Muller et al., 2009]. After two years, only 

the group exposed to asbestos developed tumours and both groups treated with 

nanotubes did not show a clear carcinogenic response, which may possibly be attributed 

to the fact that both kinds of nanotubes used in the study were relatively short (< 1 µm 

on average). In conclusion, the hypothesis of CNTs being the next asbestos is still under 

investigation and it is still unclear what is their exact respiratory toxicity and 

carcinogenic status. 

A number of studies have shown dermal toxicity of CNTs and this toxicity was 

caused by accelerated oxidative stress. Cultured human skin cells were treated with 

SWCNTs, which resulted in ultrastructural and morphological changes and reduced cell 

viability [Shvedova et al., 2003]. Water-soluble purified functionalised SWCNTs at 
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concentrations of 0.05-50 mg L
-1

 caused inflammatory response in human epidermal 

keratinocytes and penetrated intracytoplasmic vacuoles at the higher dose [Zhang et al., 

2007]. More recently, in-vitro (engineered skin, murine epidermal cells) and in-vivo 

(mice) dermal toxicity of purified and unpurified (containing 30% of iron) SWCNT has 

been investigated [Murray et al., 2009]. Inflammation and oxidative stress were reported 

for both purified and unpurified products but the presence of metal impurities elevated 

the observed toxicity. 

Functionalising CNTs to improve their solubility in water makes them more 

biocompatible and may significantly lower their toxicity. SWCNT treated by dipolar 

cycloaddition and oxidation/amidation, although up taken by the immune cells, did not 

affect their viability (even though the oxidised CNTs induced proinflammatory response 

in macrophages, which was connected with the presence of CNTs aggregates, i.e. lower 

solubility than in the case of CNTs modified with dipolar cycloaddition) [Dumortier et 

al., 2006]. Harmful effects can also be a function of the degree of functionalization 

(functionalization density), e.g. the more the surface is modified, the less cytotoxicity is 

induced [Sayes et al., 2006]. Nevertheless, with the abundance of possible functional 

groups and chemistries it is not possible to generalise and it should be noted that some 

functionalised nanotubes could be more toxic than pristine ones [Firme and Bandaru, 

2010]. 

There is also some evidence that CNTs are a source of adverse effects in natural 

aquatic environments. SWCNTs were shown to cause a range of deleterious effects 

including respiratory toxicity, subtle neurotoxicity, cardiovascular problems and organ 

pathologies (including gill, brain and liver) in chronic exposure assay to rainbow trout 

[Smith et al., 2007]. Unlike carbon black, SWCNTs at concentrations >120 mg L
-1

 and 
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MWCNTs at concentrations >240 mg L
-1

 were reported to cause a significant hatching 

delay in zebrafish embryos [Cheng et al., 2007]. Microscopic results showed that 

nanotubes aggregates were too big to penetrate the chorion (no individual nanotubes 

were reported for the experimental conditions) and the hatching delay was attributed to 

metal (Co and Ni) impurities in nanotubes. Larvae of African clawed frog exposed to 

aqueous suspensions of double-walled CNTs in concentrations of 10-500 mg L
-1

, 

experienced acute toxicity expressed by physical blockage of the gills and/or digestive 

tract after 12-day exposure [Mouchet et al., 2008]. At the same time no genotoxicity 

was found in erythrocytes of the larvae. Ecotoxicity of SWCNTs to estuarine 

meiobenthic crustaceans was tested on copepod Amphiascus tenuiremis during its entire 

life cycle [Templeton et al., 2006]. The highest analysed dose of laboratory synthesised 

impurified SWCNTs (10 mg L
-1

) significantly increased life-cycle mortality, reduced 

fertilization rates and worsened moulting success. Since the purified SWCNTs did not 

cause the same effect, the authors suggested that the observed toxicity was induced by 

the smallest fraction of by-products. 

 

C60 fullerene 

Toxicity of fullerenes, the next most common example of carbonaceous NMs, 

has been examined in a number of studies on cells, bacteria, crustaceans, invertebrates, 

fish and rodents [Lyon et al., 2005; Oberdorster et al., 2006; Markovic et al., 2007; 

Sayes et al., 2007]. Generally speaking, there is no consensus in the literature whether 

fullerenes are toxic or not. Poor water solubility of fullerenes (estimated at 1.3 × 10
−11

 

μg L
-1

 [Heymann, 1996]) hampers toxicological tests since, similarly to CNTs, different 

protocols for preparation of fullerene water suspensions result in different C60 
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conformations in aquatic environment. The first proposed method of dispersing C60 in 

water utilised tetrahydrofuran (THF) as an intermediate solvent [Deguchi et al., 2001]. 

Such a preparation method was used in a study by Oberdorster (2004), which showed 

that fullerenes induce oxidative stress in brain of juvenile largemouth bass. Lack of 

growth and decreased aerobic respiration rates were reported for two bacteria species 

exposed to low concentrations (up to 4 ppm) of C60 in water prepared in the same way 

[Fortner et al., 2005]. Antibacterial properties of fullerenes (using THF as an 

intermediate solvent) were demonstrated in low-saline water with Escherichia coli and 

Bacillus subtilis as indicator species at concentrations of 0.5 to 1 mg L
-1

 and 1.5 to 3.0 

mg L
-1

 respectively [Lyon et al., 2005]. It has been proposed that bactericidal action of 

such fullerene suspensions towards Gram-negative and Gram-positive bacteria can be 

explained by photocatalytic generation of reactive oxygen species (ROS), which result 

in abnormalities in cell wall morphology (lipid composition and phase behaviour) [Fang 

et al., 2007]. A later study, which looked into ROS production and ROS-mediated 

damage in bacteria did not find evidence for such mechanism in case of fullerenes and 

the authors proposed that aqueous C60 exerts ROS-independent oxidative stress (acts as 

an oxidant itself) [Lyon et al., 2008]. Toxicity studies with Daphnia magna produced 

LC50 values for THF water fullerenes at a range of 460 – 800 ppb [Lovern and Klaper, 

2006; Zhu et al., 2006]. 100 % mortality in fathead minnow was reported 6-18 hours 

after exposure to THF-solubilised C60 at 0.5 ppm [Zhu et al., 2006] as well as delayed 

and impaired embryo and larval development of zebrafish [Zhu et al., 2007]. Aqueous 

fullerenes suspended according to the THF protocol were also shown to be toxic to 

human cells (dermal, neuronal and liver) [Sayes et al., 2005].  
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Nevertheless, the results raised concerns that the observed toxicity was 

attributable to the residual THF as opposed to the fullerenes themselves [Andrievsky et 

al., 2005]. The authors argue that pristine hydrated C60 (also called C60HyFn, nC60 or 

nano-C60) which form very stable aqueous suspensions, are completely non-toxic and 

that previously reported toxicity resulted both directly from the presence of THF (at 

least one molecule of THF accounts for one molecule of C60) and products of its 

catalytic degradation and from the way in which organic solvents may change 

interaction between C60 and water (interference in the formation of ordered water shells 

around a C60 molecule). In fact, non-modified pristine C60 in water medium have been 

shown to protect against oxidative damage and ionizing radiation (towards DNA in an 

in-vitro study and in-vivo in mice) [Andrievsky et al., 2009]. C60HyFn in drinking water 

administered to rats at concentration of ~20 mg mL
-1

 protected their central nervous 

system from oxidative stress during chronic ethanol exposure [Tykhomyrov et al., 

2008]. Pristine nC60 were also found a powerful liver protection agent against free-

radical damage in mice exposed to tetrachloride [Gharbi et al., 2005]. 

To better understand the toxicology of nC60, other methods of suspending 

fullerenes in water have been tested: using alternative solvents to THF (toluene, hexane, 

ethanol) or solubilising agents, through milling, (ultra)sonification and extended mixing 

[Fortner et al., 2005; Lyon et al., 2006; Markovic et al., 2007; Endoh et al., 2009; Yang 

et al., 2009]. Indeed, there are a number of reports supporting the hypothesis that it is 

the solvents used to disperse fullerenes in water rather than C60 themselves that cause 

the observed adverse effects. THF and water-stirred nC60 were used in-vitro (with 

human epithelial cells) and in-vivo (with Daphnia magna) to provide more insight into 

the influence of the NP sample preparation protocol [Spohn et al., 2009]. Acute toxicity 
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was found only in the case of THF aqueous fullerenes, no effects were observed in 

water-stirred samples and in THF sample after careful purification (removal of THF 

residue and THF hydroperoxide). Additionally, adding water-stirred fullerenes to the 

THF-dissolved ones, resulted in reduction of the oxidative stress and prevention of ROS 

formation, which confirms previous reports that pristine C60 act as radical scavengers. 

THF-C60 and water-stirred solutions of fullerenes were also tested by other authors for 

ecotoxicity towards Daphnia magna and fathead minnow [Zhu et al., 2006]. The former 

led to 100 % mortality within 18 h whereas the latter produced no observable effects 

after 48 h.  

Nonetheless, there are also quite a few publications concerning the toxicity of 

water-stirred nC60. Different fullerenes suspensions (including THF-C60, C60 sonicated 

in toluene, water-stirred C60 and C60 dispersed in water with the aid of a solubilising 

agent) were used to examine their antibacterial properties [Lyon et al., 2006]. The study 

showed relatively strong antibacterial activity towards Bacillus subtilis for all four 

studied suspensions, especially for THF-C60 (minimal inhibitory concentration one 

order of magnitude smaller than in case of all the other preparation methods). Another 

study used several aquatic species (crustaceans Daphnia magna and Hyalella azteca, 

marine harpacticoid copepod, fathead minnow and Japanese medaka) to investigate 

acute ecotoxicity of water-stirred nC60 [Oberdorster et al., 2006]. The authors reported a 

significant delay in moulting and reduced offspring production in Daphnia at 

concentrations of 2.5 and 5 ppm. Nonetheless, no characterisation analyses were 

undertaken to address possible toxicity mechanisms. Mortality of 24 % among Daphnia 

magna was recorded for 0.45 ppm sonicated nC60 and LC50 value was estimated at 7.9 

ppm [Lovern and Klaper, 2006]. 
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 Generally, toxicity testing for carbonaceous NPs is hampered by problematic 

experiment design. Pristine fullerenes and nanotubes are poorly dispersed in aqueous 

media. Different protocols either modify the NPs themselves (e.g. by means of 

functionalization) or introduce additional substances into the system (e.g. solvents, 

surfactants), which raises questions if observed effects are caused by the product or by 

other components added to or formed in the solution matrix. Additionally, commercial 

products are often contaminated with impurities (e.g. metal catalyst residues), which 

may be toxic themselves. On the other hand, additional purification might not reflect 

realistic environmental exposure scenarios. Moreover, depending on the type of 

product, dispersion method and exposure conditions, NPs show different aggregation 

behaviour, which may significantly influence toxicity (e.g. ability to penetrate cell 

organelles). 

 

Silver nanoparticles 

 Many applications of silver utilize its effective antimicrobial action. Indeed, 

silver ions are among the most toxic species of heavy metals [Cornfield, 1977], 

especially towards bacteria but also towards small aquatic invertebrates [Ratte, 1999]. 

The mechanism of Ag
+
 toxicity, although only partially understood, includes inhibition 

and deactivation of cellular enzymes, electrostatic sorption to the negatively charged 

cell walls and disruption of membrane permeability, which lead to cell lysis and death 

[Ratte, 1999; Sambhy et al., 2006]. Current and expected commercialisation of silver 

NPs has raised concerns that uncontrollable release of tonnes of nano-silver into the 

environment may cause undesirable effects on human health as well as in ecosystems. 
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 Some studies indicated that toxicity exerted by Ag NPs is mainly (if not entirely) 

caused by dissolution of silver ions, which is facilitated by large surface area, increasing 

with smaller particle sizes [Lok et al., 2007]. Ag
+
 mediated toxicity of silver NPs was 

also used to explain their inhibitory effects towards photosynthesis in single cell green 

algae [Navarro et al., 2008]. 

 Nevertheless, most researchers agree that antimicrobial properties of nano-silver 

cannot be attributed exclusively to Ag
+
 formation but also to a range of mechanisms 

characteristic to silver NPs in aqueous media. Thanks to their minute size, nano-Ag was 

shown to penetrate the E. coli cell membrane reducing its permeability [Sondi and 

Salopek-Sondi, 2004]. Damaged cell walls impair transport through the plasma 

membrane and ultimately lead to cell death. Four types of Gram-negative pathogenic 

bacteria (E. coli, V cholera, P. aeruginosa and S. typhus) were treated with faceted 

silver NPs and showed size-dependent response [Morones et al., 2005]. Apart from 

membrane damage and Ag
+
 formation, antimicrobial action also included the 

penetration inside the cell, which possibly results in nanoparticle-DNA interaction. 

Nanosilver toxicity was also linked to photocatalytic ROS generation and their 

intracellular accumulation in a study with nitrifying bacteria with particle sizes < 5 nm 

[Choi and Hu, 2008]. Cell membrane damage was explained by free radicals formation, 

which can destroy membrane lipids [Kim et al., 2007]. 

 Most of microbial toxicity test with silver NPs concentrate on pathogenic 

bacteria in view of their future applications in medicine and germ control. Very few 

studies deal with potential implications of nano-silver to natural communities of 

microorganisms. To the best of my knowledge, only a few publications have 

investigated harmful effects of silver NPs to environmentally relevant single-cell 
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organisms including advantageous bacteria - autotrophic nitrifying species used in water 

treatment plants [Choi and Hu, 2008; Choi et al., 2008], Chlamydomonas reinhardtii, 

green algae species [Navarro et al., 2008], Paramecium caudatum [Kvitek et al., 2009], 

planktonic Pseudomonas fluorescens and Pseudomonas putida biofilms [Fabrega et al., 

2009A, Fabrega et al., 2009B]. There are some data on nano-Ag effects in invertebrates 

and vertebrates. The bioassay with freshwater zebra fish discriminated the effect of 

silver ions from particulate silver – significantly more metal was found in the gill and in 

the whole body in the latter case [Griffitt et al., 2009]. NPs were attached to the gill but 

did not cause morphological changes even though soluble silver did. Gene profiling 

showed little similarity between nano and dissolved silver indicating that they interact 

with the gill in different manners. 

 Silver has been considered harmless to people (especially via dermal application 

or oral consumption) [ATSDR, 1990; Soto et al., 2006]. Only high doses (at least a 

couple of grams) usually administered over extended periods of time (months or years) 

may cause argyria – general or localised permanent blue discoloration of the skin 

[ATSDR, 1990; Brandt et al., 2005]. Argyria is regarded as merely a cosmetic problem 

since no other health effects are observed. Nevertheless, uncontrolled availability of 

colloidal silver advertised as a universal cure to a range of illnesses (including cancer 

and AIDS) may result in the increase of argyria cases [Brandt et al., 2005]. 

 Even though human toxicity of silver is low there are new reports describing 

adverse effects of nano-silver in mammals. For instance, livers of mice fed with Ag NPs 

showed lymphocyte infiltration, inflammatory response and genotoxic effects (inducers 

of apoptosis and inflammation) [Cha et al., 2008]. Inhalation toxicity of nano-silver was 

studied in rats, which were exposed to up to 1.32 x 10
6
 particles per cm

3
 and did not 
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experience significant changes in body weight, haematology and blood biochemical 

values after 28 days of exposure [Ji et al., 2007]. However, prolonged exposure (90 

days) to 2.9 x 10
6
 particles per cm

3
 affected lung function and caused inflammatory 

response [Sung et al., 2008]. 

 

Titanium dioxide and zinc oxide nanoparticles 

Widely produced titanium dioxide NPs used in sunscreens have been recently 

linked to an increased risk of cancer due to DNA strand breakage and chromosomal 

damage [Trouiller et al., 2009]. This new finding will surely add to an already heated 

debate whether nano-TiO2 is safe. Generally speaking, TiO2 is regarded as a harmless 

pigment with no adverse health effects (not dangerous or hazardous in sense of the EEC 

Directive 67/548). In 2006 the Australian Government published a literature review on 

the safety of nanosize TiO2 and ZnO as UV filters in skincare products, in which it 

stated that, although there is some evidence of toxicity from isolated studies (reporting 

free radical formation and genotoxicity), TiO2 and ZnO NPs do not penetrate beyond 

the outer layer of skin, do not reach viable cells and thus are safe to be used in 

sunscreens [TGA, 2006]. This report was up-dated in May 2009 without changing its 

recommendations. 

 

Quantum dots and other nanoparticles 

 QDs are made of a metalloid core and shell (e.g. CdSe/ZnS) and for biomedical 

applications are coated with a layer of bioactive ―cap‖ (e.g. protein, peptide) to enhance 

their bioavailability [Hardman, 2006]. QDs are a very diverse group of NPs and their 

toxicity depends on many factors including their inherent chemical and physical 
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properties as well as test conditions (material, size, concentration, charge, coating, 

oxidative, photolytic, and mechanical stability) [Hardman, 2006]. Most common QDs 

contain cadmium and selenium, both of which are known to cause acute and chronic 

toxicity and are listed as hazardous substances [EU Dangerous Substances Directive 

67/548/EEC]. Release of Cd
2+

 in uncoated CdSe QDs was found responsible for acute 

cytotoxicity towards liver cells but adding a protective shell (ZnS) to prevent core 

metalloid from leaching rendered QDs non-toxic [Derfus et al., 2004]. However, other 

studies reported toxicity despite the presence of the coating. Carboxyl and amine 

surface shell did not protect mice injected with CdSe/ZnS QDs from harmful effects 

(vascular thrombosis in the lung) [Geys et al., 2008]. Freshwater mussels exposed to 

CdTe QDs experienced oxidative stress and DNA damage in gills [Gagne et al., 2008]. 

CdTe QDs also showed effective bactericidal action towards Escherichia coli by 

causing oxidative damage in biomolecules such as protein and lipid [Lu et al., 2008B]. 

 

 Toxicological status of ceria NPs is also a controversial issue, especially with 

regard to their oxidant/antioxidant effects. Independently of size (6 and 12 nm diameter) 

CeO NPs showed neuroprotective properties by reducing the amount of reactive oxygen 

species [Schubert et al., 2006]. Another study reports similar neuroprotective action of 

CeO NPs towards rat spinal cord neurons [Das et al., 2007] and cardioprotective effects 

in mice [Niu et al., 2007]. At the same time there are a number of reports that CeO NPs 

induce oxidative stress and cell death in Escherichia coli and human lung cells [Lin et 

al., 2006; Thill et al., 2006; Park et al., 2008]. 

 Fig. 2.1 showed gold NPs interacting with DNA molecules. Au NPs have also 

been found to penetrate cytoplasm and nucleus [Patra et al., 2007; Li et al., 2008A]. 
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Due to potential applications of Au NPs to cancer diagnosis, some studies concentrate 

on cytotoxicity in human carcinoma cells [Patra et al., 2007]. However, most 

researchers report lack of toxic effects of gold NPs [Shukla et al., 2005; Patra et al., 

2007]. 

Overall, the same fascinating properties of NMs that promise revolutionary 

technological advances may cause undesired consequences for human health and the 

environment when released uncontrollably. For instance, large surface area, which 

drastically enhances reactivity of the material, may, on the other hand, generate harmful 

oxyradicals and show high affinity for heavy metals and poisonous organic compounds. 

Secondly, the ability of NPs to cross cell membranes and interact with organelles, which 

was welcomed with great enthusiasm for new drug delivery systems, can possibly turn 

out fatal if unintended exposure occurs.  

Although much attention has been paid in the past few years to better understand 

the health and environmental implications of nanotechnology, available data is still 

fragmentary, often inconclusive, and in some cases contradictory. Some issues, like 

toxicity of NPs to plants, have hardly been addressed. Possible toxic properties of NMs, 

potential entry points and likely pathways in the human body may be largely predicted 

on the basis of already available extensive knowledge in the field of pharmaceutical 

research and particle toxicology. Much discussion is based on extrapolation from fairly 

well examined nanosize substances like quartz, asbestos and ultrafine atmospheric 

particles. All these theories need to be verified experimentally before safe ways of 

production, handling, use and disposal of NMs are established. It may also be necessary 

to develop completely new toxicity testing protocols to address unique properties of 

NPs. 
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At the moment, in view of remaining knowledge gaps precautionary approach is 

advised, i.e. individual risk assessment for new NMs on a case-by-case basis 

[SCENIHR, 2006]. Currently no reliable and comprehensive risk assessment of NMs is 

possible. All important risk assessment stages suffer from limited, inconclusive or 

questionable data, in some areas there is no data at all [Savolainen et al., 2010]. With 

search terms ―nanomaterials‖ and ―toxicity‖ Science Direct database produces over 

1900 documents published since 2000. Many efforts have been made to advance hazard 

identification, hazard characterization, exposure assessment and risk characterization in 

nano-science. (Eco)toxicological implications of NMs are subjected to scrutiny and 

have become priority for governments, manufacturers and the general public [Roco, 

2005; Helland, 2006; Siegrist, 2007]. Still, the majority of questions about toxic effects, 

their mechanism, conditions under which they take place and realistic exposure 

concentrations to humans and ecosystems, remain unanswered. 

With extensive lack of knowledge and extremely wide range of products to be 

tested, the scientific community and regulatory bodies are challenged to level nano-

products commercialisation and rapid increase in production output with providing 

toxicological database for NMs and legal regulations concerning placing NMs on the 

market. As a consequence a priority list of recommendations for research has been 

proposed [Alvarez et al., 2009]: 

 development of structure-activity relationships to predict toxicity, bioavailability 

and bioaccumulation of NPs on the basis of their key properties; 

 development of standardised toxicity test protocols; 

 development of multiphase models for predicting fate and behaviour of NPs in 

the environment to estimate forms and concentrations for exposure studies. 
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2.2 Nanoparticles in the environment 

 

2.2.1 Natural and anthropogenic nanoparticles 

Although in the centre of recent research efforts, nanosize particles as such are 

nothing new to the environment and science. There is a group of nano- and microscale 

naturally occurring materials in aquatic systems known as natural aquatic colloids 

(NAC). They include a range of organic and inorganic solid-phase material with at least 

one dimension between 1-1000 nm [Buffle, 2006]. Colloids are distinguished from the 

dissolved and particulate matter. Particles have sizes > 1 µm, whereas the dissolved 

fraction is often defined operationally as compounds that pass through a filter, usually 

with a pore size of 0.45 µm, 0.1 µm or an ultrafilter ~ 1nm [Lead and Wilkinson, 

2006A; Nowack and Bucheli, 2007]. 

 Natural nanosize particles occur also in the atmosphere. Weathering processes, 

volcanic eruptions, dust storms, forest fires or sea spray are all sources of natural fine 

particles in the air [Nowack and Bucheli, 2007; Murr and Garza, 2009]. However, an 

estimated 15 % of atmospheric particulate matter (PM) and its gaseous precursors are 

produced inadvertently as by products of human activities [Anastasio and Martin, 

2001]. Incidental (adventitious) sources of anthropogenic atmospheric PM encompass 

mainly combustion of fossil fuels (in vehicles and energy generation) and industrial 

processes. Typical size fractions of atmospheric particles are classified as PM10 (with 

sizes < 10 µm), PM2.5 (with sizes < 2.5 µm) and ultrafine particles UFP (with sizes < 

100 nm, i.e. PM0.1). 

Types of NPs, their source and examples are summarised in table 2.1.  
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Table 2.1. Classification of micro- and nanoparticles [modified from 

Christian et al., 2008]. 

 

Figure 2.5. Size classes of natural and anthropogenic (incidental and engineered) 

nanoparticles [modified from Nowack and Bucheli, 2007]. 
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With dimensions between 1-100 nm, the size fraction of engineered NPs overlaps with 

natural aquatic colloids and atmospheric particulate matter, especially UFP (Fig. 2.5). 

Aquatic colloids and atmospheric particulate matter have been intensively 

studied for the last years. Experience and knowledge gathered through these 

investigations is of great value in current efforts to advance applications and 

implications of nanotechnologies. Many analytical methods, approaches and protocols 

can be directly transferred or modified or provide a good starting point in nanoscience 

research [Oberdorster et al., 2005; Lead and Wilkinson, 2006A]. 

 

2.2.1.1 Natural aquatic colloids 

 

Defined in the previous section as particles in the size range 1-1000 nm, NAC 

encompass humic substances, polysaccharides, proteins, cellular debris, viruses, metal 

oxides and sulphides, etc., naturally occurring in aquatic environments (Fig. 2.6). 

Important fraction of NAC is constituted by natural organic matter (NOM), e.g. humic 

and fulvic substances: macromolecular, polymeric, polyfunctional and polydisperse 

materials [Guo and Santschi, 1997]. 

In the past few decades NAC received substantial amount of scientific attention 

and much has been done to better understand their properties, fate and behaviour. NAC 

have been broadly recognised to play multiple key roles in the environment because 

they interact with pollutants, nutrients and pathogens influencing their chemistry 

transport and bioavailability in natural waters [Lead et al., 1999; Buffle, 2006; Lead and 

Wilkinson, 2006A]. There is much evidence that natural colloids play an important role 

in trace metal speciation [Martin and Dai, 1995; Lead et al., 1999; Tipping et al., 2002; 

Koukal et al., 2003]. Metal complexation by chemically heterogeneous colloids is based 
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on a large charge density of humic substances and inorganic colloids and on a high 

number of binding site types [Buffle, 2006]. 

 

Although techniques for fractionation and characterisation of the structure and 

morphology of NAC have been developed and established to a certain extent, there is 

still much to be done to understand and quantitatively describe their environmental role 

[Lead and Wilkinson, 2006A]. 

 

2.2.1.2 Atmospheric nanoparticles 

Natural particulate matter is found in abundance in the atmosphere. Number 

concentrations significantly differ between remote and polluted regions. For instance, in 

remote areas there are usually under 100 ultrafine particles per cm
3
 [Weber et al., 1995; 

Figure 2.6. Types and sizes of natural aquatic colloids [Lead and Wilkinson, 2006]. 
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Covert et al., 1996; Weber et al., 1997], whereas in urban areas number concentrations 

are in order of magnitude of 10
4
 particles per cm

3
 [Shi et al., 1999, McMurry et al., 

2000] and between 10
4
 and 10

6
 particles per cm

3
 in a roadside background [Kittelson et 

al., 2001]. As has been mentioned in the previous section, these particles are usually 

addressed as PM10 and PM2.5. The smallest fraction of PM2.5 – ultrafine particles, 

usually defined as < 100 nm, has come under particular scrutiny because of its high 

toxicity per unit mass. Fractions and sizes of atmospheric particulate matter are shown 

in Fig. 2.7. Since atmospheric particles can have different shapes, this classification is 

based on aerodynamic diameter, which accounts for different morphologies and 

densities. Aerodynamic diameter is defined as a diameter of an ideal sphere with unit 

density having the same aerodynamic properties (such as sedimentation velocity) as the 

particle in question. This way the same aerodynamic diameter defines particles having 

the same inertial properties. Such a definition is especially valid in case of ultrafine 

particles, which tend to show fractal or irregular morphologies [Barone and Zhu, 2008]. 

Nevertheless, it should be noted that there is no consistent definition of ultrafine 

atmospheric particles and their upper cut-off diameter cited in literature can 

significantly differ from 10 nm [McMurry et al., 2000], 50 nm [Donaldson et al., 1998], 

180 nm [Eiguren-Fernandez et al., 2003] to 560 nm [Yao et al., 2005]. 

Aerosol size distribution, as its most important physical parameter, is a crucial 

issue in airborne pollution and atmospheric science. Depending on their sizes, micro- 

and NPs behave differently and are governed by different phenomena [Willeke and 

Baron, 1993]. Understanding size distributions of atmospheric aerosols is vital for 

understanding the radiation budget as well as air quality and its influence on human 

health [IPCC, 2001]. 
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Ultrafine particles are believed to be mainly anthropogenic in source. They are 

generated during combustion of fuels, when particles are formed by condensation of 

gases [The Royal Society & the Royal Academy of Engineering, 2004]. There is 

evidence that in urban areas the smallest UFPs (< 10 nm) originate from road traffic and 

stationary combustion sources [Shi et al., 2001]. 

PM10 has been linked to cardiac and respiratory morbidity and mortality through 

worldwide epidemiological studies [Samet et al., 2000; Brook et al., 2004; Dockery and 

Stone, 2007]. Since 1980s numerous studies have provided evidence for toxic properties 

of atmospheric particles causing heart and lung diseases despite the fact that they are 

strongly diluted even in urban environments (tens of μg m
-3

) [Brook et al., 2004; Seaton 

et al., 1995]. However, low mass concentration of tens of μg m
-3

 translates into high 

number concentrations, for instance 10
4
-10

6
 particles per cm

3
 of air [Kittelson et al., 

Figure 2.7. Fractions and sizes of atmospheric particulate matter [Brook et al., 2004]. 
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2001]. Toxicity of such small amounts of inhaled pollutants, which mainly contain 

regarded as non-toxic carbon and simple ammonium salts, has been thus associated with 

the extremely small sizes of particles resulting in high surface area and enhanced 

reactivity. Similarly, engineered nanoscale particles of titanium dioxide and carbon 

black are more toxic than their larger counterparts [Oberdorster, 1996]. It can be 

explained by larger surface for binding toxic air pollutants (organic compounds, 

transition metals) [Sioutas et al., 2005], which may lead to enhanced ability to cause 

oxidative stress [Donaldson et al., 2001]. Additionally, due to their extremely small 

size, UFPs are especially effective at entering tissues by evading and impairing 

macrophage phagocytosis, the body‘s main defence against constant exposure to 

airborne particles [Renwick et al., 2000]. This phenomenon determines pulmonary 

toxicity of UFPs in the first place because deposited particles cannot be removed from 

airways by normal pathways. Foreign particles remaining and accumulating in the 

pulmonary interstitial sites cause chronic toxicity to the cells. Moreover, from the lung 

tissue PM can enter cardiovascular system causing further damage.  

In-vivo studies carried out to date used very high concentrations of UFPs and 

with the exact mechanism of their toxicity still unknown, it is impossible to extrapolate 

the results to relevant environmental concentrations. Additionally, observations of 

respiratory and cardiovascular effects were made in susceptible patients and it appears 

that healthy subjects are not likely to develop the symptoms if the concentrations of 

UFPs are not artificially elevated [Oberdorster et al., 2005]. 

Although there has been enough evidence to believe that the ultrafine fraction is 

the most responsible for morbidity and mortality linked to atmospheric PM, it is still 

unclear which particular size fractions (concentrations and components) cause which 
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deleterious health effects and what are the mechanisms of PM toxicity. Given the fact 

that air pollution is a heterogeneous and extremely complex mixture of gases, liquids 

and solid particles, there is still much to be done to address remaining scientific 

questions in the field. 

 

2.2.2 Fate & behaviour of engineered nanoparticles 

As discussed in one of the previous sections (2.1.3), some of the 

(eco)toxicological properties of certain NMs have been quantified in laboratory 

conditions. Whether and how these findings will translate into actual adverse effects for 

humans and the environment hugely depends on environmental exposure, as affected by 

fate and behaviour of manmade NPs after they are released into soil, water or 

atmosphere. However, the fate and behaviour of engineered NPs is largely unknown. 

Key issues that need better understanding include mobility, reactivity, ecotoxicity and 

persistence of NMs in the natural and anthropogenic environment. Dependable data on 

probable production, usage and disposal scenarios for manmade NMs is essential for 

hazard characterisation, exposure assessment and risk characterisation. 

A number of NMs are already produced on an industrial scale but very little data 

on current or predicted occurrence of engineered NPs in the environment is available. 

Monitoring and tracing of NMs in the environment requires reliable and accurate 

detection methods. Unfortunately, to this day detection of NMs is one of the most 

underdeveloped domains in nanoscience [NPCA, 2008]. The main reasons why 

detecting and quantifying NPs in complex environmental matrices is such a challenge 

include: 
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 extremely low expected concentrations (Table 2.2) [Boxall et al., 2007; 

Mueller and Nowack, 2008; Tiede et al., 2009] 

 interference with background material, e.g. relatively high concentrations 

of natural NPs, which cannot be distinguished from engineered NPs with 

available laboratory techniques (background levels of organic compounds for 

carbonaceous NPs and background levels of trace metals for metal and metal 

oxide NPs) [Handy et al., 2008]. 

With no data on current measured concentrations of NPs in the environment, 

efforts have been made to estimate them using information on production output and 

most probable usage and disposal scenarios. Life-cycle modelling has been used to 

predict expected concentrations in water, air and soil for a range of NMs, including 

Table 2.2. Predicted concentrations of engineered NPs in the environment [Boxall et 

al., 2007; Mueller and Nowack, 2008; Perez et al., 2009]. 
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fullerenes, CNTs, silver, zinc oxide, titanium dioxide and other NPs (Table 2.2) [Boxall 

et al., 2007; Mueller and Nowack, 2008]. Life-cycle inventory for products containing 

NPs is built as a mass-balanced material flow spanning over manufacturing, usage and 

disposal stages. An example of such modelling for CNTs in Switzerland is presented in 

Fig. 2.8. Most CNTs from commercial products are expected to end up in waste 

incineration plants, 75% of which is then transferred to landfills (as slag). Based on 

calculations presented in Fig 2.8, risk quotients, RQ, (ratio between predicted 

environmental concentration and predicted no effect concentration, PEC/PNEC) for 

carbon nanotubes were in order of magnitude 10
-3

 – 10
-5

 for water and air indicating that 

CNTs pose no or very low risk to the environment (soil was excluded from calculations 

due to lack of data). However, the relatively large release was allocated to air, where 

CNTs raise most toxicological concerns (as discussed in chapter 2.1.3). Similar models 

were used for silver and titanium dioxide NPs and only in case of nano-TiO2 in water 

systems was significant exposure recorded (RQ of 0.73 – 16) [Mueller and Nowack, 

2008]. 

Such estimates are of great value since they provide a basis for more detailed 

and accurate analysis, a reference point for further investigations and most of all they 

support decision making process for policy makers. However, with so many knowledge 

gaps and high uncertainty of the data, life-cycle modelling of NMs has to hugely rely on 

assumptions, simplifications and extrapolations such as: 

 environment compartments (air, water and soil) are treated as 

homogenous and well mixed (which neglects local effects); 

 rough estimates on global and regional production of NMs including a 

list of products containing NPs; 
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 percentage of particles that become airborne during waste incineration 

has to be assumed; 

 efficiency of particle removal in sewage treatment plants has to be 

assumed; 

 many material flows have to be neglected (e.g. degradation, 

bioaccumulation, NPs in groundwater, etc.). 

 

Interactions with NAC, pollutants and aquatic biota 

Engineered NPs entering the aquatic systems are a new challenge in the field as 

they are likely to interact with natural colloids [Lead and Wilkinson, 2006A]. A 

schematic model of these interactions is presented in Fig. 2.9. Depending on a range of 

environmentally relevant parameters (pH, ionic strength, concentration of cations and 

Figure 2.8. Carbon nanotubes from commercial products circulation in the environment 

in Switzerland according to high risk scenario. Figures are in tonnes/year. STP – sewage 

treatment plant, WIP – waste incineration plant. Thickness of lines corresponds with 

volume they represent; dashed line is used for the smallest flows [Mueller and Nowack, 

2008]. 
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pollutants, etc.) the fate and behaviour of NPs in aquatic environment will be controlled 

by aggregation and disaggregation, surface coating with NOM and interaction with 

pollutants [Christian et al., 2008]. Contaminants can be adsorbed on the surface of NPs 

or trapped inside NPs aggregates (absorbed). There is evidence that humic substances 

(HS) form a few nanometre thick films on microsurfaces and particles [Lead et al., 

2005]. Such coating on NPs may significantly change surface properties and thus 

influence their behaviour and interaction with pollutants.  

There has already been a small body of work supporting the hypothesis that the 

fate and behaviour of engineered NPs in natural waters will be hugely dependent on 

interactions with NAC. Coating with humic acid has been reported for iron containing 

NPs, ZVI [Giasuddin et al., 2007] and iron oxide [Baalousha, 2009]. Previous 

reassurance about lowered mobility of fullerenes in water suspensions caused by 

Figure 2.9. Model of interactions between engineered nanoparticles, pollutants and 

aquatic colloids in natural waters [Christian et al., 2008]. 
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sedimentation (and hence removal from bulk water) [Brant et al., 2005] has been 

recently weakened by evidence of fullerene stabilisation in the presence of Suwannee 

River humic acid at certain concentrations of NaCl and MgCl2 [Chen and Elimelech, 

2007]. This effect was explained by steric repulsion of humic acid particles adsorbed on 

C60. The environmental implication is that soft waters, rich in NOM will probably suffer 

from C60 persistence. Similar behaviour has been observed in case of CNTs. NAC were 

found to stabilise MWCNTs even better than sodium dodecyl sulphate, synthetic 

surfactant commonly used to stabilise water suspensions of nanotubes [Hyung et al., 

2007]. Analysed samples remained stable for over a month implying that dispersal of 

CNTs in natural waters may happen to an unexpected extent.  

Interaction of NPs with pollutants in the environment may alleviate negative 

effects. CNTs in aqueous media can act as powerful adsorbents for a range of organic 

pollutants: dioxin [Long and Yang, 2001], polycyclic aromatic hydrocarbons [Yang et 

al., 2006B], DDT and its metabolites [Zhou et al., 2006] and many others. 

Functionalised CNTs (hydroxylated and oxidised) efficiently adsorb metals from 

aqueous solutions including Cd, Mn, Ni, Cu and Pb [Li et al., 2002; Liang et al., 2004; 

Liang et al., 2005]. On the other hand, in some instances pollutant-nanoparticle 

interaction may amplify toxicity. The presence of TiO2 NPs has been shown to increase 

bioavailability of arsenic to carp by means of adsorption and facilitated transport [Sun et 

al., 2007]. 

Aquatic organisms were also found to be able to modify suspended nanotubes. 

Daphnia magna digested lipid coating on SWCNT, which resulted in aggregation and 

precipitation of NPs [Roberts et al., 2007]. 
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Ionic strength and specific counterions 

Surface charge is a very important parameter influencing the stability of NPs in 

aqueous suspensions. Electrostatic stabilisation of suspended particles depends on the 

balance between two kinds of forces: repulsive forces exerted by ionic groups on the 

particle surface, which form electric double layer (EDL) and attractive Van der Waals 

forces. The DVLO theory quantitatively describes the balance of these repulsive and 

attractive forces for particles interacting in a liquid medium as a function of interparticle 

distance [Derjaguin, and Landau, 1941; Verwey, and Overbeek, 1948]. If the repulsive 

force produced by the EDL is sufficient, mutual repulsion between same charged 

particles keeps them apart and provides stabilising mechanism. If, however, the EDL is 

compressed (e.g. by accumulation of salt ions) the electrostatic repulsion becomes too 

weak to counterbalance Van der Waals attraction and precipitation occurs. This 

phenomenon governs the stability of charged particles at higher ionic strengths. A 

number of NPs have been found to destabilise and sediment out of the suspension when 

moving from freshwaters to seawater. Relatively weak NaCl solutions (0.001 M) were 

reported to destabilise and precipitate nC60 clusters in suspensions and in porous media 

[Brant et al., 2005]. Divalent cations (such as Ca
2+

 and Mg
2+

) are more efficient in 

surface charge neutralisation on nC60 aggregates and thus act as stronger coagulation 

agents [Chen and Elimelech, 2007]. These results suggest that in hard waters C60 are 

likely to be removed and transferred to sediment. Similarly to fullerenes, positively 

charged cations (especially divalent, e.g. Ca
2+

) cause CNTs to rapidly aggregate and 

precipitate [Sano et al., 2001]. Similar observations have been made for TiO2 

[Domingos et al., 2009B; French et al., 2009; Jiang et al., 2009] and silica [Singh and 
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Song, 2007]. Particles which exhibit such behaviour stay stable in freshwaters but 

sediment out in the marine environment [Stolpe and Hassellov, 2007]. 

 

pH 

Another important parameter in the stability of NP suspensions in aqueous 

media is often pH value. A number of NPs are negatively charged over a large range of 

pH values, e.g. hydroxylated SWCNTs [Hu et al., 2005], nC60 [Chang and Vikesland, 

2009]. Oxides, carbonates and other NPs tend to show positive surface charge at low 

and neutral pH values (polysaccharide NPs [Jallouli et al., 2007], ZVI NPs [Sun et al., 

2006], iron oxide NPs [Baalousha, 2009], ceria NPs [Patil et al., 2007]). Generally, at 

pH far from point of zero charge (i.e. when the electrical charge density on the surface 

is relatively high), NPs form stable suspensions [Guzman et al., 2006; Baalousha, 

2009]. 

 

Nanoparticles in soil 

Transport of NPs in porous media such as soil has been hardly addressed by 

researchers yet. Initial studies examining possible uses of iron NPs in remediation show 

that nanoscale iron was transported with underground water for a distance of 20 m and 

remained reactive towards chlorinated organic solvents for periods even longer than 4-8 

weeks [Zhang, 2003]. Lecoanet et al. (2004) carried out experiments on a porous filter 

medium (comparable to groundwater aquifer and water treatment plant filters) to study 

the mobility of 8 types of NPs including: hydroxylated C60 (fullerol), nC60, SWCNTs, 

silica NPs with 2 different diameters, alumoxane, ferroxane and anatase. Transport 

behaviour for studied NPs turned out to be different in all cases and the authors 
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concluded that environmental risk of NMs cannot be treated in a uniform fashion. 

Functionalised fullerenes and SWCNTs have been found to be the most mobile with 

theoretical migration distance in unfractured sand aquifers of 10 m. On the other hand, 

unmodified nC60 showed the lowest mobility probably due to its relatively high 

hydrophobicity. It is conceivable that fullerenes may be functionalised in natural 

environments through photolytic and bioprocesses leading to increase in their mobility. 

 

2.2.3 Characterisation of nanoparticles 

The properties of NPs depend on many parameters: core material, production 

technique, dimensions, shapes, presence of coating and surface functionalization, 

concentration, solution matrix, etc. Chemical, physical and biological properties within 

the same group of NMs can be drastically different. For instance, pristine SWCNTs are 

virtually insoluble but after surface functionalization can be easily suspended in water 

[Zhang et al., 2009]. Moreover, 5 nm gold NPs strongly inhibit DNA hybridisation, 

whereas 17 nm ones do not show any effect [Yang, 2006A], and the toxicity of 

fullerenes has been regarded to be dependent on the dispersion protocol used [Spohn et 

al., 2009]. Consequently, any experiments in environmental nanoscience have to be 

accompanied by precise and accurate characterisation of the material under study. It is 

widely accepted that physicochemical characterisation is essential to understand the 

implications of NPs and that much work is still needed to advance existing knowledge 

and techniques [The Royal Society & the Royal Academy of Engineering, 2004; 

SCENIHR, 2009; Stone et al., 2010]. 
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 Although there is no agreement on what exactly a standard characterisation of 

NMs should involve to ensure reliable risk assessment, these are the main parameters of 

interest [SCENIHR, 2009]: 

 physical properties: size, shape, specific surface area, aspect ratio, 

agglomeration/aggregation state, size distribution, surface 

morphology/topography, structure including crystallinity and defect structure 

and solubility. 

 chemical properties: structural formula/molecular structure, composition of 

nanomaterial (including degree of purity, known impurities or additives), phase 

identity, surface chemistry (composition, charge, tension, reactive sites, physical 

structure, photocatalytic properties, zeta potential) and 

hydrophilicity/lipophilicity. 

Additionally, characterisation should ideally comprise analysis of NPs in their original 

form and in the experimental media [Stone et al., 2010].  

A broad range of techniques have been used to characterise NPs (Table 2.3). 

Heterogeneous samples usually require size fractionation to determine size distribution 

and properties of individual fractions. Centrifugation, flow field fractionation, filtration 

and chromatography are most popular techniques to perform this task. Visualisation 

with microscopy techniques is used in most studies to describe sizes, shapes and 

morphological characteristics of NPs. Some newer advances in microscopy allow 

examination of wet samples (environmental scanning electron microscopy and atomic 

force microscopy). The surface of NPs can be analysed with nitrogen adsorption (to  
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technique property 
sample 

requirements 

LOD/spatial 
resolution/separation 

range 
limitations 

atomic force 
microscopy 

(AFM) 

morphology, size, 
aggregation state, 
surface properties 

fixing particles 
on a surface 

~ 0.5 nm to several 
µm 

time consuming 
especially to get 

representative and 
robust statistics 

electron 
microscopy (EM) 

morphology, size, 
aggregation state, 
surface properties, 
elemental analysis 

dry sample, 
preferably high 
electron density 
of the sample 

~ 0.3 nm to several 
µm 

not suitable for wet 
samples, time 

consuming 

environmental 
scanning electron 

microscopy 
(ESEM) 

morphology, size, 
aggregation state 

wet samples 40 nm to several µm low resolution 

N2 adsorption, 
BET 

specific surface 
area, porosity 

solid sample ~ 1 nm to several µm 

not suitable for 
aggregated 

materials, complex 
microporous 
structures or 

materials reacting 
with nitrogen 

electrophoretic 
mobility 

zeta potential 
(surface charge) 

liquid sample   
limited information on 
charge heterogeneity 

X-ray 
spectroscopy, 

scattering 

surface chemical 
and structure 

analysis 
powder samples µg to mg 

poor spatial 
resolution 

centrifugation size distribution 
liquid sample, 
whole sample 

  low size resolution 

dynamic light 
scattering (DLS) 

size distribution 
liquid 

monodisperse 
samples 

3 nm to several µm 
not suitable for 
polydisperse 

samples 

flow field 
fractionation 

(FFF) 
size distribution 

liquid 
polydisperse 

samples, 
complex media 

1 nm to several µm 

errors may arise due 
to particle shape or 

density, for low 
concentrations a pre-

concentration step 
may be required 

filtration size distribution 
liquid sample, 
whole sample 

down to 1 kDa 
charging, clogging, 

etc. 

hydrodynamic 
chromatography 

size distribution 

liquid 
polydisperse 

samples, 
complex media 

5-1200 nm 
low separation 

efficiency 

size exclusion 
chromatography 

size distribution 
liquid 

polydisperse 
samples 

dependent on pore 
size 

risk of sample loss in 
the column, non-size 

interactions in the 
column, and molar 

mass 
calibration can be 

problematic 

voltammetry 
free metal ions, 
concentration, 

metal speciation 
liquid samples ng range preferably metals 

diffusive 
gradients in thin 

films (DGT) 

free metal ions, 
concentration, 

metal speciation 
liquid samples down to ppb 

metals, phosphate, 
sulphide and 
radionuclides. 

 

Table 2.3. Requirements and application range of most common analytical techniques 

for environmental testing of nanoparticles [Handy et al., 2008; Hassellov et al., 2008; 

Tiede et al., 2009]. 
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technique property 
sample 

requirements 

LOD/spatial 
resolution/separation 

range 
limitations 

gravimetry 
bulk particle 

concentration 
liquid samples 

depending on the 
filtration membrane 

large sample 
volumes, particles 

smaller than the cut-
off are lost 

turbidimetry 
bulk particle 

concentration 
liquid samples mg/L 

interference from 
dissolved organic 

carbon 

nephelometry 
bulk particle 

concentration 
liquid samples ppb-ppm 

signal dependent 
also on particle size, 
refractive index and 

shape 

total organic 
carbon (TOC) 

analysis 

bulk particle 
concentration 

liquid samples   
background carbon 
levels in the sample 

laser induced 
breakdown 

detection (LIBD) 

bulk particle 
concentration, 
particle size 

dilute liquid 
samples 

below 1 mg/L 
careful calibration 

critical to particle size 
measurement 

UV-Vis 
spectrometry 

bulk particle 
concentration 

liquid samples   
interference from 

turbidity generated 
by particles 

measure surface area and porosity), electrophoretic mobility (surface charge) or 

spectroscopy (chemical and structural analysis). Metal speciation can be studied with 

techniques such as voltammetry, diffusive gradients in thin films, spectroscopy and 

spectrometry. 

 Due to the complexity of nanoparticle behaviour and properties (in as-produced 

state as well as in exposure media) and a requirement for state-of-the-art methodology 

in characterisation and (eco)toxicological testing, a need for interdisciplinary 

collaboration has been widely recognised [Defra, 2007]. As outlined in Table 2.3, there 

are many instruments and analytical methods available for NPs characterisation. Most 

of these methods are very sensitive and provide sufficient resolution to study materials 

at the nanoscale. Many techniques are well developed and validated and have been 

routinely used for fine particle examination (in atmospheric and aquatic studies and in 

material science) [Hassellov et al., 2008]. However, all analytical tools have their 

Table 2.3. continued. 
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limitations and may produce artifactual results [Handy et al., 2008; Hassellov et al., 

2008; Tiede et al., 2009]. There is an international consensus that development of 

improved standardised methods for nanoparticle characterisation is among the research 

priorities required to address knowledge gaps in risk assessment of nanotechnologies 

[SCENIHR, 2006; Defra 2007; EPA, 2007]. 

 It is pertinent to stress that, detection techniques to identify and measure NPs in 

the environment are currently in their infancy and require substantial development. Such 

techniques are urgently needed to monitor NPs in the environment, to characterise their 

nature in complex media and to help understand fate and behaviour and toxicity 

mechanisms. This is a crucial issue to understand the fate and behaviour of NPs. For 

instance, realistic environmental concentrations of NPs are essential to correctly design 

toxicity protocols and advance risk assessment of NPs by providing data on expected 

exposure to NMs. Moreover, efficient detection techniques in biological matrices, such 

as body tissues, would help to underpin the mechanisms of observed toxic effects 

[Handy et al., 2008; NPCA, 2008]. 

Another major analytical challenge in NP analysis for environmental studies is 

development of standardised rapid and statistically reliable methods to measure particle 

size and size distribution. Existing techniques such as microscopy are expensive and 

time consuming and methods measuring mean dimensions in bulk samples (such as 

dynamic light scattering) neglect particle shapes and aggregation behaviour [National 

Nanotechnology Initiative, 2006]. Additionally, available microscopy techniques and 

specimen preparation protocols inherently introduce artefacts caused by dehydration of 

the sample (such as shrinkage, aggregation or evaporation of volatile components). In 

case of microscopy techniques, which can analyse only extremely small fractions of a 
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sample, unrepresentative nature of images is a problematic issue. Similarly, analytical 

methods and protocols need to be established to address the issues of surface properties 

and modifications, assessing the purity of the studied material, their shape, structure, 

surface area, stability and aggregation behaviour [National Nanotechnology Initiative, 

2006; EPA, 2007]. The development of improved sample handling, preparation and 

metrology is crucial to the development of understanding of NP environmental 

behaviour. 
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3 MATERIALS AND METHODS 

 

3.1 Materials 

This chapter gives information on the protocols used to prepare materials and stock 

samples throughout the experimental work. These stock suspensions were used to 

prepare all the test samples, details of which are given in subsequent chapters in 

accordance with experimental procedures used in these chapters. 

3.1.1 Natural aquatic colloids 

Suwannee River Humic Acid 

Suwannee River humic acid standard (SRHA) was purchased from the International 

Humic Substances Society (IHSS). Stock solutions of either 20 or 100 ppm were 

prepared by diluting the appropriate amount of powdered SRHA in ultrapure water. 

Solutions were stored refrigerated at 4
o
 C and used within two days. 

 

Peat Humic Acid 

Pahokee peat humic acid standard (PHA) was purchased from the International Humic 

Substances Society (IHSS). Stock solutions of either 20 or 100 ppm were prepared by 

diluting the appropriate amount of powdered PHA in ultrapure water after adjusting pH 

with 1M NaOH to ~10 to facilitate dissolution. Rapid stirring prevented any localised 

effects and the pH was reduced quickly mitigating any oxidation. Solutions were stored 

refrigerated at 4
o
 C and used within two days. 

 

Succinoglycan 

Succinoglycan (SG), a polysaccharide relevant to natural waters, was purchased from 

CarboMer Inc. Stock solutions of either 20 or 100 ppm were prepared by adding 
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succinoglycan to ultrapure water followed by gentle stirring for 12 h at room 

temperature. The resulting solution was filtered through a 0.2 μm Isopore membrane 

filter (Millipore) and stored refrigerated at 4
o
 C for two days. 

 

Natural lake water 

Water samples were collected from the Vale Lake, Birmingham University campus, 

Birmingham, UK. The volume of 1L was collected in a polyethylene bottle washed with 

ultrapure water and with the sample prior to sampling. Sampling was performed at ~0.5 

m from the bank and a few cm below the surface of the water. Samples were returned to 

the laboratory immediately and filtered through a 0.1 μm pore size membrane filter to 

remove the biggest size fraction. Transport and storage time prior to experiments was 

always less than 24 hours and samples were stored refrigerated at 4
o
 C. 

 

3.1.2 Engineered nanoparticles 

Single walled carbon nanotubes 

Carboxylic acid functionalized SWCNTs, produced by the electric arc discharge 

technique [Journet et al., 1997] were purchased from Sigma Aldrich. Manufacturer‘s 

specifications are as follows: 

 average diameter of individual SWCNT 1.4 nm ± 0.1 nm; 

 bundle dimensions: diam. × length at 4-5 nm × 500-1500 nm; 

 purity: 80 - 90%; 

 total impurities: 5-10 % metals (Ni and Y) 

 solubility in H2O: 0.1 mg mL
-1
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Stock solutions of either 20 or 100 ppm were prepared at room temperature by 

sonication for 90 minutes to disperse nanotubes in ultrapure water. The short sonication 

period prevented excessive breakage of nanotubes at the same time [Yang et al., 2005; 

Hennrich et al., 2007; Smith et al., 2009]. Stock suspensions were stored refrigerated at 

4° C and used within one week. 

 

Fullerenes C60 

Sublimed fullerenes C60 were purchased from Materials and Electrochemical Research 

(MER) Corporation and used without any further purification. Manufacturer‘s 

specifications are as follows: 

 purity: 99.9 % 

 production method: chromatography 

 visual properties: black crystalline powder with powder density of about 

0.8 g cm
-3

 

 impurities: traces of C70 and C60 oxide. 

 

Water-stirred fullerene aggregates (nC60) were prepared by magnetic mixing of 

250 mg of the powder at room temperature for 65 days in 500 mL of ultrapure water 

giving a nominal concentration of 500 ppm. To avoid microbiological contamination 

during the long stirring, ultrapure water was filtered over 0.2 µm (cellulose nitrate 

membrane, Whatman) and sterilized in an autoclave prior to stirring. Stirred solutions 

were exposed to natural light (but not to direct sunlight). The stock solution was then 

stored refrigerated at 4° C and diluted accordingly for the experiments. 
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The water-stirring technique was previously used and reported in the literature 

[Cheng et al., 2004; Lyon et al., 2006; Oberdorster et al., 2006; Baun et al., 2008; Spohn 

et al., 2009; Hyung and Kim, 2009]. This approach allows the preparation of well 

dispersed suspensions while avoiding the introduction of organic solvents. In such 

methods, tetrahydrofuran (THF) is most commonly used for solubilisation [Deguchi et 

al., 2001; Sayes et al., 2005; Spohn et al., 2009]. However, other solvents such as 

toluene, acetone and ethanol have been used [Brant et al., 2006; Dhawan et al., 2006; 

Hyung and Kim, 2009]. An extended mixing protocol was chosen for this study due to 

its simplicity and environmental relevance. 

 

3.1.3 Ancillary solutions and substances 

HCl 

Hydrochloric acid solution 2M bench reagent was purchased from Fisher Scientific. 

0.1M HCl solution used for pH adjustment was prepared by dissolving the appropriate 

amount of concentrated HCL in ultrapure water. 

 

NaOH 

Analytical reagent grade sodium hydroxide pellets (99.35 % pure) were purchased from 

Fisher Scientific. 0.1 M NaOH solution used for pH adjustment was prepared by 

dissolving the appropriate amount of NaOH pellets in ultrapure water. 

 

HNO3 

Trace SELECT
®

 65% nitric acid for trace analysis was purchased from Sigma Aldrich 

and diluted as required (to obtain 1 or 0.1 M solution). 
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Sodium chloride solution 

Analytical reagent grade sodium chloride was purchased from Fisher Scientific. Stock 

solutions of either 26 or 1300 ppm Na
+
 were prepared by dissolving the appropriate 

amount of NaCl solid in ultrapure water. These concentrations were chosen to easily 

obtain the final sample concentration of 13 ppm, which is the same as in the natural lake 

water used in the experiments. The solution was stored refrigerated at 4° C and used 

within a week. 

 

Calcium chloride solution 

Analytical reagent grade calcium chloride dehydrate was purchased from Fisher 

Scientific. Stock solutions of either 90 or 4500 ppm Ca
2+

 was prepared by dissolving the 

appropriate amount of CaCl2·2 H2O solid in ultrapure water. These concentrations were 

chosen to easily obtain the final sample concentration of 45 ppm, which is the same as 

in the natural lake water used in the experiments. The solution was stored refrigerated at 

4° C and used within a week. 

 

Sodium nitrate solution 

Analytical reagent grade sodium nitrate was purchased from Fisher Scientific. 1M 

solution was prepared by dissolving the appropriate amount of NaNO3 solid in ultrapure 

water. The solution was stored refrigerated at 4° C and used within a week. 

 

Metal standard solutions 

1000 ppm copper, cadmium and chromium standard solutions were purchased from 

Fisher Scientific. 
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Chelex
®

 100 sodium form 

50-100 dry mesh Chelex
®
 100 sodium form with 0.6 meq g

-1
 binding capacity towards 

heavy metal ions was purchased from Sigma Aldrich. It was used to bind traces of 

metals in sodium nitrate solutions (in DGT experiments). 

 

Ultrapure water 

Ultra High Purity (UHP) water with a maximum resistivity of 18 MΩ cm
-1

 was used 

throughout the experiments. Since the experiments were conducted in 2 different 

laboratories different ultrapure water systems were used: Barnstead Reverse Osmosis 

System and Diamond TM. 

 

This chapter details the sample preparation protocols common for all parts of the 

laboratory experiments. Chapter specific information (i.e. further sample handling and 

protocol) is detailed in later chapters according to its relevance. 
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3.2 Methods 

 

3.2.1 Atomic force microscopy 

With resolution over 1000 times better than the optical diffraction limit 

(determined by apical probe geometry and sample geometry), AFM enables 3-

dimensional imaging of nanostructures up to a fraction of nanometre in size (ca. 0.1 nm) 

[Giessibl, 2005]. Invented in 1986, AFM belongs to the scanning probe microscopy 

family [Binnig et al., 1987; Morita et al., 2002; Sugimoto et al., 2007]. The term 

‗microscopy‘ is often seen as a misnomer, since it suggests seeing sample features, 

whereas in reality the sample is examined by ‗feeling‘ its surface with a specially 

constructed probe. 

AFM has been successfully and broadly used in academic and industrial 

research as a tool for imaging, measuring, characterisation and manipulation of matter at 

the nanoscale. Its applications encompass physics and physical chemistry [Cui et al., 

1999; Jandt et al., 2000], polymer science [Godehardt et al., 2004; Chen et al., 2008], 

biological science [Wu et al., 2002; Fotiadis et al., 2002; Lyubchenko and 

Shlyakhtenko, 2009], environmental sciences [Balnois et al., 1999; Ramirez-Aguilar et 

al., 1999] and nanoscience [Deng et al., 2007; Checco et al., 2006]. 

The scanning probe is equipped with an atomically sharp tip. Most commonly it is 

made of antimony or phosphorus doped silicone or silicon nitride with heights of the 

order of a few μm [Veeco Catalogue, 2008]. More important, however, is the sharpness 

of the tip measured as a radius of curvature of the tip‘s apex, usually within the range of 

5-20 nm. This parameter determines the lateral resolution of the microscope by 

determining so-called tip convolution (Fig. 3.1) [Wang and Chen, 2007]. Only an 

infinitely sharp tip can project the surface with no distortions. Any realistic tip geometry 
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will result in artifactual topography, the ―blunter‖ the tip, the more distortions are 

experienced. 

 

 

3-D image of the studied specimen is built by scanning its surface line by line 

and measuring the repulsive and attractive atomic forces between the sample and the tip 

Figure 3.1. Tip sharpness v AFM resolution a) tip angle of 70 b) tip angle of 30 

[source: http://wwwex.physik.uni-ulm.de] 

a) b) 

Figure 3.2. a) XE-100 AFM by Park Systems b) schematic principle of operation of an 

atomic force microscope (Balnois et al., 2007). 
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(Figure 3.2 b). Since the tip is attached to a flexible cantilever these forces can be 

measured as the deflection of the cantilever according to the Hooke‘s low of elasticity: 

F = -k x   (3.1) 

where F is the force, k is the spring constant of the cantilever and x is distance that the 

cantilever has been stretched or compressed away from the equilibrium position. The 

interaction mechanism between the tip and the scanned surface can be provided by 

different kinds of forces including Van der Waals forces, mechanical contact force, 

capillary forces, chemical bonding, electrostatic and magnetic forces, etc. Figure 3.3 

shows a typical force-distance curve (Van de Waals curve). According to Pauli 

principle, at small distances repulsive forces dominate since the atoms are close enough 

for their electronic clouds to overlap and repel each other with quantum mechanical 

forces. At larger distances the atoms of the tip and the surface of the sample attract each 

other due to Van der Waals dispersion forces [Balnois et al., 2007]. 

Although the interaction force between the tip and the surface of the sample is very 

small (usually ranging from 10
-6

 to 10
-11

 N [Rugar and Hansma, 1990]) it can be 

Figure 3.3. Inter-atomic total (repulsive and attractive) force v distance in AFM. 

(source: http://www.nanoscience.com) 
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indirectly but precisely measured by the deflection of the laser beam reflected on the 

cantilever. The laser beam deflection is expressed as a light intensity on an array of 

position-sensitive detector (Fig. 3.4) and translated into voltage. The detector consists of 

2 adjacent photodiodes. A correctly aligned laser beam hits the exact centre of the 

detector. When the tip touches the sample surface cantilever deflects resulting in the 

laser beam illuminating one photodiode more than the other [Butt et al., 2005].  

 

The output signal is produced as a difference between the signals received by the 

photodiodes normalized by their sum and is collected by a differential amplifier. The 

signal proportional to the deflection of the cantilever can detect its movements smaller 

than 10 Å [Alonso and Goldmann, 2003]. This data is used in a feedback mechanism to 

maintain the same distance between the sample and the tip (constant height mode) or the 

same force between the sample and the tip (constant force mode), which is crucial to 

avoid damage to the fragile scanning probe (Fig. 3.2 b) [Gan, 2009]. The core of this 

mechanism is usually a sample stage or a scanner made of piezoelectric ceramics 

(which is a class of materials that expand or contract as a function of the applied 

Figure 3.4. Deflection of the cantilever translated into the laser beam deflection detected 

on a position-sensitive photodiode and converted into voltage [Butt et al., 2005]. 
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voltage) that facilitates small but extremely precise three-dimensional positioning (with 

a sub-nanometre resolution) [Kwon et al., 2005]. 

 

Imaging modes 

AFM imaging can be operated in two main scanning modes: static (contact) and 

dynamic (tapping and non-contact), principles of which are shown in Fig. 3.5. 

 In the contact mode the tip is in perpetual contact with the sample surface 

[Quate, 1994]. It is also known as a repulsive mode since in this mode the 

repulsive forces dominate the tip-surface interactions (Fig. 3.3). In other words 

pushing the cantilever against the sample results in the cantilever deflection and 

the z-dimension feedback loop is used to maintain a constant cantilever 

deflection. For this mode stiff cantilevers with low spring constant are used. 

Apart from the repulsive Van der Waals force described above, two other forces 

are usually present in the contact mode: capillary forces (due to thin water layer 

often present in the ambient environment, if dry) and the force exerted by the 

cantilever itself. The dragging motion of the tip results in significant lateral 

forces. This is the main limitation of the contact mode since soft fragile samples 

can be easily damaged, deformed or poorly attached particles displaced or 

removed. 

Figure 3.5. Different tip scanning modes of AFM (adapted from Park Systems). 
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 In the tapping mode (also called intermittent-contact, dynamic contact or 

dynamic force mode) the cantilever is oscillating at its resonant frequency with a 

certain amplitude (typically in the range of 10-100 nm) as shown in Fig. 3.5 [El 

Feninat et al., 2001]. The tip strikes against the surface on each oscillation cycle 

and detaches from the sample surface by using a large vibration amplitude. The 

tip remains in contact with the sample for a very short time (in the repulsive 

regime of the force curve) and the amplitude of oscillation changes. Thanks to 

this brief interaction between the sample and the tip, problems associated with 

lateral forces, friction, adhesion, electrostatic forces, etc. are overcome. This 

allows studying topographies of soft, deformable and weakly immobilised 

materials. 

 In a non-contact mode the tip is kept oscillating at a constant distance from the 

sample surface (usually a few nm) and does not come into contact with the 

sample surface (i.e. operates in the attractive regime of the intermolecular force 

curve, Fig. 3.3) [Martin et al., 1987; Morita et al., 2002]. Since the attractive 

forces are much weaker then the repulsive ones, the amplitude of oscillation has 

to be lower than in the tapping mode to keep the tip within the range of the 

sample-tip interaction. This mode is non-invasive making it most suitable for 

fragile and soft samples. However, the relatively large distance between the tip 

and the sample may lead to poorer resolution than obtained with contact and 

tapping modes. Additionally, weaker attractive signal makes it more difficult to 

operate in the non-contact mode. 
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Tapping v non-contact mode 

In general, dynamic modes (tapping and non-contact) are believed to be less perturbing 

and their use for studying aquatic colloids has been well documented [Balnois et al., 

1999; Hannah et al., 2003; Lead et al., 2005]. In both modes the tip is kept vibrating in 

free-space by a piezoelectric modulator in the vicinity of the resonant frequency f0 

(Fig. 3.6). The tapping mode uses a frequency ftapping  lower than f0 whereas non-contact 

mode uses frequency fnon-contact  higher than resonant frequency (Fig. 3.6). As the tip gets 

closer to the sample the attractive van der Waals force appears between the probe and 

the sample and the spring constant of the cantilever is reduced by this interaction. 

Lower spring constant causes a shift in the resonance frequency (ftapping is now very 

Figure 3.6. Shift of resonant frequency in tapping and non-contact AFM modes. 
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close to it, fnon-contact is further from it). In the tapping mode the amplitude of oscillation 

at the changed frequency is increased by ΔAtapping (it reaches about 100 nm) and the tip 

comes into a short intermittent contact with the sample. When the amplitude increases 

the feedback loop decreases the distance between the tip and the sample surface, when 

the amplitude is smaller the distance is increased so that the probe is in the ―tapping‖ 

contact with the sample. In case of the non-contact mode, the shift in the resonant 

frequency occurring when the interaction is applied causes the change in the amplitude 

ΔAnon-contact. The scanning amplitude for the non-contact mode is low (a few nm) so that 

the tip is constantly kept within the distance of the weak attractive force but does not 

physically touch the sample. Due to this weak interaction forces, non-contact mode 

requires extremely sensitive feedback loop mechanism and thus was developed later. 

Tapping mode has been widely used for aquatic colloids characterisation in the 

past [Balnois et al., 1999; Plaschke et al. 1999; Wilkinson et al., 1999; Lead et al., 

2005]. Being less perturbing than the contact mode, it is regarded as particularly 

suitable for imaging soft and fragile samples such as natural aquatic micro- and 

nanoparticles. In the tapping mode, frictional and lateral forces present in the contact 

mode are eliminated. Nevertheless, the striking force, with which the probe ―taps‖ the 

sample is still relatively high and can results in damage to the tip or soft samples. True 

non-contact mode is expected to be even less perturbing and thus possibly even more 

suitable to study environmental samples [Jalili and Laxminarayana, 2004]. 

 

Phase imaging 

The primary use of AFM is to provide 3-dimentional information about 

topography of the sample. In the dynamic modes, atomic tip-to-sample forces influence 
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the oscillation amplitude, phase and resonant frequency. Measuring these changes 

provides information about the sample‘s characteristics beyond topographical mapping. 

Phase imaging can produce information about variations in composition, hardness, 

adhesion, friction, viscoelasticity, electrical and magnetic properties of the studied 

sample [Schmitz et al., 1997]. Phase imaging builds a picture of the sample surface by 

mapping the phase lag between the periodic signal that drives the cantilever (and at 

which the cantilever oscillates when there is no interaction, i.e. cantilever oscillating in 

the free space) and the cantilever oscillation output signal (i.e. when there is tip-sample 

interaction) as shown in Fig. 3.7. This technique is very useful for contaminant 

identification, studying components distribution in composite materials, differentiating 

regions of high/low hardness or adhesion, etc. 

 

Advantages and disadvantages of AFM 

Atomic force microscopy is a powerful imaging technique for the study of 

materials at the micro- and nanoscale in great detail. Additionally, it provides a three-

Figure 3.7. The principle of phase imaging – the phase lag varies depending on sample 

properties (Park Systems). 
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dimensional surface profile as well as other than morphological sample characteristics 

such as surface hardness. AFM is suitable for non-conductive surfaces and does not 

require special sample preparation (like metal coating), which is especially important in 

natural and biological sciences. Unlike electron microscopy, AFM operates well in 

ambient air so there is no need for expensive vacuum conditions, which may be 

damaging for fragile and wet samples. Equipped with a specially designed liquid cell, 

AFM can scan surfaces in aqueous environments, too.  

Nevertheless, since no AFM tip can be ideally sharp, there is a range of possible 

artefacts. To account for the radius of curvature of the tip resulting in overestimation of 

lateral dimensions, AFM heights (rather than widths) are used as estimates of particles 

diameters. Another disadvantage of AFM is relatively small image size and slow rate of 

scanning, which make the technique very time consuming and unsuitable for samples 

unevenly distributed on microscopy specimen. Sample preparation involves fixing on a 

surface, which brings issues in particle shape deformation. 

  



Ch.3. Materials and methods 

73 

 

3.2.2 Transmission electron microscopy 

 

If a focused beam of light (produced through a condenser lens) is transmitted 

through a very thin specimen and then focused and magnified with objective and ocular 

lenses, it can produce an image magnified by up to 1000 times [Slayter and Slayter, 

1992]. Instruments used for this purpose, usually in biosciences, belong to the optical 

microscope family and are called light transmission microscopes [Shmaevsky, 2006]. 

The TEM operates on the same basic principle but uses a beam of electrons instead of 

light. The much lower wavelength of electrons (sub nanometre) in comparison to light 

(ca. 500 nm) enables the TEM to achieve very high (angstrom) resolution using the 

most advanced systems [Bendersky and Gayle, 2001; Williams and Carter, 2009]. Due 

to this powerful magnifying ability, TEM has been widely used in the broadly defined 

nanosciences and is now the key characterization technique to study structure, 

morphology and properties of all types of NMs [Spence, 2002; Murr 2009; Kumar et al., 

2009; Suh et al., 2009]. TEM is also commonly utilised to study individual entities and 

aggregate structures of natural micro- and nanoparticles, such as atmospheric ultrafine 

particles and natural aquatic colloids [Perret, 1991; Sobanska, 2000; Casuccio 2004]. 

Throughout the experimental work in this thesis the Philips Tecnai F20 TEM operating 

Figure 3.8. Tecnai TEM microscope (source: http://www.fei.com). 
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at 200 kV was used (Fig 3.8). A schematic view of a typical TEM microscope column is 

shown in Fig. 3.9. The source of electrons (which in case of the Tecnai microscope is a 

field emission gun) produces a beam of monochromatic electrons. 

 

Two electromagnetic condenser lenses are used to concentrate and focus the electrons 

into a very thin beam to uniformly illuminate the sample. By modification of the 

strength of the condenser lenses the required size of the spot striking the specimen is 

achieved. Before hitting the sample, the beam is finally ‗filtered‘ through the condenser 

aperture to remove high angle electrons and optimise the intensity of illumination. Such 

optimally formed electron beam travels through an ultra thin (~ 0.1 μm) specimen 

Figure 3.9. Schematic view of a TEM column (source: 

http://bsatpati.googlepages.com/tem). 
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[Williams and Carter, 2009]. Interactions between the studied sample and the electrons 

are the source of information about the morphology and properties of the studied 

material (Fig. 3.10). Various electron microscopy techniques (and their modes of 

operation) use different electron signals [Williams and Carter, 2009]. Backscattered and 

secondary electrons are a source of topographical data in scanning electron microscopy 

(SEM) [Egerton, 2005]. In TEM imaging unscattered electrons that go through the 

sample are utilised. 

Unscattered electrons go through an objective lens, which together with the sample 

stage is the heart of the microscope (Fig. 3.9). The objective lens forms an inverted 

enlarged initial image, which is then further magnified by intermediate and projector 

lenses. Objective aperture is placed after the objective lens to remove elastically and 

inelastically scattered electrons from the transmitted beam to improve contrast of the 

final image. Magnification (from hundreds to a million times) is achieved by varying 

the strength of intermediate and projector lenses (strength of electromagnetic lenses is 

   solid material 

incident beam 

transmitted 

electrons 

secondary electrons 

backscattered electrons 

cathodaluminescence 

inelastically 

scattered electrons elastically scattered 

electrons 

Auger electrons 

X-rays 

unscattered electrons 

Figure 3.10. Possible interactions between high energy electrons and a solid sample 

(adapted from http://www.unl.edu/CMRAcfem/temoptic.htm). 
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tuned by changing the current in the coil) [Shmaefsky, 2006]. Finally, the processed 

beam of unscattered electrons produces a 2-D image on the fluorescent screen at the 

bottom of the microscope. Electron dense areas of the specimen let through few or no 

unscattered electrons and thus they appear as dark or completely black spots on the 

screen. Morphology of the specimen is shown as areas of varied darkness. TEM images 

can be compared to a photo slide or transparency image obtained when light is used 

instead of electrons. A CCD camera can be used to take digital images and then analyse 

them with appropriate software. 

 As has been mentioned before, the significant resolution of the TEM microscope 

results from the small wavelength of the electron beam. This in turn depends on the 

acceleration voltage of the microscope (usually in the range of 80-400 kV) [Reyes-

Gasga and Garcia-Garcia, 2002; Freitag et al., 2008]. Thus higher magnifications can be 

obtained with microscopes operating at higher acceleration voltages. However, the 

achievable resolution of the TEM microscope is limited by aberration (especially 

spherical) of the objective lens, i.e. its failure to project the exact correspondence 

between an object and its image [Haider et al., 1998; Batson et al., 2002]. Images 

distorted by aberration appear smeared and blurred. Modern microscopes are equipped 

with a range of aberration correctors to compensate defocus caused by aberration and 

with such improved performances they can achieve resolution of 0.1 nm [Hetherington, 

2004]. 

 Since negatively charged electrons would strongly interact with charged 

molecules of air (they would be absorbed or deflected), high vacuum (10
-3

 - 10
-7

 Torr) 

conditions must be strictly kept in the microscope column to ensure uninterrupted 

passage of the beam through its desired path [Williams and Carter, 2009]. Vacuum is 
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also essential to avoid generating an arc (discharging) between the cathode and the 

anode, i.e. destroying the field emission gun. 

 The primary use of a TEM microscope is visualisation of material morphologies 

at a nanoscale by utilising the beam of unscattered electrons. Recent advances in TEM 

allow real-time observations to be made of sample changing under certain conditions, 

i.e. dynamic TEM [Stach, 2008]. ETEM (environmental transmission electron 

microscopy) technique has been used to visualise catalyst behaviour during a chemical 

reaction [Giorgio et al., 2006]. However, alternate modes of operation together with 

electron spectrometers, energy filters, and X-ray fluorescence systems allow the 

observation of other, non-morphological properties of the sample. These techniques can 

be grouped together as analytical TEM [Schneider, 2002]. Valuable information on the 

molecular arrangements of crystalline materials can be produced in the diffraction mode 

[Williams and Carter, 2009]. With the use of additional detectors elemental composition 

of the sample can be studied. In this case the X-ray spectrum of electrons is analysed by 

the Energy Dispersive X-ray Spectrometer (EDX) or inelastically scattered electrons are 

analysed by the Electron Energy Loss Spectroscopy (EELS) (Fig. 3.10) [Chen et al., 

2004A]. 

  

Advantages and disadvantages of TEM 

The primary advantage of TEM is its exceptional resolving power down to a 

sub-nanometre scale. Samples can be studied in great detail to analyse their 

morphology, internal structure and chemical composition. Nevertheless, there are 

certain limitations to the TEM technique. The main disadvantage of the TEM is that a 

specimen suitable for analysis has to meet a list of criteria. The primary criterion is that 
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the sample lacks volatile components, especially water, due to high vacuum conditions 

in the microscope column, which makes it impossible to study aquatic or biological 

materials in their unperturbed state. Samples should remain unchanged under high 

vacuum as well as resist thermal and physical stress (specifically exposure to high 

energy electron bombardment). Additionally, the thickness of the sample is crucial since 

the specimen has to be transparent to the beam. All these factors make the TEM analysis 

expensive, time consuming and involving skilled, experienced staff. 

 

3.2.2.1 Overview of TEM specimen preparation methods for natural aquatic 

colloids 

 

Natural aquatic systems contain living entities such as bacteria, algae, fungi, etc. 

and non-living particles such as cellular debris, viruses, polysaccharides, proteins, 

humics, metal oxides and sulphides, clays, etc. in numbers of 10
8
 – 10

13
 L

-1
, with size 

range of 1 – 10
5
 nm and varied morphotypes such as fibrillar, compact, amorphous, 

crystalline, etc. [Wilkinson and Lead, 2007]. To ensure good representation of 

suspended colloidal matter for TEM investigation, appropriate specimen preparation 

protocol has to be applied. The aim is to image nano- and micro-particles with a 

minimum of artefacts introduced by either sample preparation or by the imaging itself, 

possibly unperturbed and representative to their aqueous colloidal form. At the same 

time TEM specimen is exposed to a high energy electron beam and operation under 

ultra high vacuum, i.e. in the absence of water, which is essential in TEM analysis. 

Thus, quality and accuracy of TEM investigation critically depend on how this 

challenge is overcome and taken into account when interpreting the TEM data. 
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TEM specimens are prepared by dispersing a small volume of the studied 

suspension on a supporting grid of ca. 3 mm in diameter. These grids are covered with 

electron-transparent supporting film usually made of carbon, pioloform or formvar laid 

on a metal (copper, nickel, gilded, etc.) square or hexagonal mesh [Agar Scientific, 

Pacific Grid-Tech product catalogues]. 

There are a number of TEM specimen preparation techniques depending on how 

the aquatic suspension is dispersed on the grid: 

 Whole mounts technique – direct deposition followed by air drying (Fig. 3.11) 

[Baalousha et al., 2005 B; Diegoli et al., 2008; Park et al., 2009]. Approximately 

10 μL of the sample is pipetted onto the grid, the excess liquid is removed with 

filter paper and the grid is left to evaporate in ambient conditions sheltered from 

vertical atmospheric deposition. This approach is the most rapid and 

straightforward. Nevertheless, there are a few possible artefacts induced by this 

method [Wilkinson and Lead, 2007]: 

- major aggregation during drying is usually unavoidable. Flexible 

aggregated organic materials might shrink and smaller particles might 

coagulate; 

- within the droplet of the water particles are held by surface tension and 

deposit unevenly on the grid, usually the sample covers a small area on 

the supporting film; 

- crystallisation of undesired electrolytes, especially in case of marine 

samples or samples whose pH or ionic strength was changed with 

electrolyte solutions during experiments. This effect can be minimised 

by washing the specimen in ultra pure water. 
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 Ultramicrotomy – cutting the specimen into transparent thin sections 

[Wilkinson and Lead, 2007]. Firstly, the suspension is embedded in a 

hydrophobic or hydrophilic resin to preserve the structure of colloidal entities. 

For abiotic NAC usually hydrophobic resins are used together with sequential 

dehydration in organic solvents [He et al., 1996; Robert et al., 2004]. For 

bacteria, algae, polymers, organic flocs, etc. hydrophilic resin (Nanoplast) can 

be used [Perret et al., 1991; Swartz et al., 1997; Lienemann et al., 1998]. 

Hydrophilic resins are more suitable since dehydration in organic solvents 

(required in case of hydrophobic ones) introduces additional artefacts such as 

dissolution of organic components [Leppart et al., 1990]. The resin protects 

colloids from changes during drying and beam exposure and serves as a matrix 

fixing colloids in the dehydrated sample. The resin embedded sample is then cut 

into thin slices (about 50-100 nm) with a diamond knife, which has sufficient 

hardness for mineral particles. 

An additional step of staining prior to resin embedding might be required to 

improve contrast of the TEM images. Staining chemicals used for microbiota 

usually contain salts of osmium, uranium and/or lead [Wilkinson et al., 1995; 

Lienemann et al., 1998; Koukal et al., 2007]. However, this technique is well 

Figure 3.11. A droplet of the sample drying on the TEM grid as a way of TEM 

specimen preparation (whole mounts technique). 
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developed for hydrophobic rather than hydrophilic resins [Wilkinson and Lead, 

2007]. 

Ultramicrotomy is an advanced technique allowing a good representation of 

minimally perturbed aquatic colloids and their interactions. Nevertheless, taking 

thin sections is demanding and time consuming; it requires practice and skill. In 

the case of hydrophobic resins possible artefacts may result from dehydration of 

the sample in organic solvents. The cutting process itself is precise and 

painstaking and may produce sectioning–induced artefacts such as knife marks, 

curling, rumpling, pullout, etc [Wilkinson and Lead, 2007]. 

 

 Ultracentrifugation (quantitative mounts) – direct centrifugation of the 

suspension onto the TEM grid at high speeds [Perret et al., 1991; Lienemann et 

al., 1997; Benedetti et al., 2003; Koukal et al., 2008; Chanudet and Filella, 

2008]. By varying the volume and/or particle concentration in the sample the 

optimum film coverage can be obtained: longer time and higher cost of analysis 

result from too dilute samples whereas a too concentrated sample may lead to 

erroneous conclusions about particle aggregation or a sample too thick for the 

electron beam [Lienemann et al., 1998]. Swing-out buckets are usually used 

allowing even deposition of particles. As the deposition of particles can be 

controlled (with rotor speed, run time, sample volume, etc) ultracentrifugation is 

suitable for quantitative analysis (e.g. particle size distribution). Stoke‘s law is 

used to calculate the time t required for a hard, spherical particle with a diameter 

d to settle from the surface of the sample rmin to the grid rmax (measured as a 

distance from the rotor‘s axis of revolution) [Wilkinson and Lead, 2007]: 
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(3.2) 

 

where η is viscosity of the suspension, ρ density of the colloid, ρ0 density of the 

suspension and ω angular rotation speed. 

 

A thin layer of Nanoplast resin may be spun onto the surface of the grid after 

centrifugation to protect fragile colloids (e.g. flexible fibrils) from shrinkage or 

damage during dehydration prior to TEM analysis [Perret et al., 1991; 

Lienemann et al., 1997; Swartz et al., 1997; Benedetti et al., 2003]. 

 

 Cryotechniques – preserving the three-dimensional colloidal relationships by 

fixing them in a frozen form. Vitrification is an ultra-fast freezing method 

usually used for aqueous samples since is allows freezing water without forming 

ice crystals i.e. damaging labile biological entities [Dubochet and Lepault, 1984; 

Ruiz et al., 1994]. In freeze-etching, which is another cryotechnique for TEM 

specimen preparation, vitrified sample is fractured along a natural plane of 

weakness to make a metallic replica of the surface revealing the internal 

structure of the sample [Mondain-Monval, 2005]. It should be noted, however, 

that significant differences of thermal conductivity between particles and 

surrounding water lead to ice formation, especially in case of colloids larger than 

several nanometres. 

Cryotechniques in general are thought to faithfully preserve the original three-

dimensional structures. However, although these techniques have been used in 

t =  
d

2
 (ρ – ρ0) ω

2
 

18 η ln(rmax/rmin) 



Ch.3. Materials and methods 

83 

 

biological sciences and have potential for aqueous samples, they have not been 

utilised for aquatic colloids due to their technical complexity and high costs 

[Wilkinson and Lead, 2007]. 

 

 Focused ion beam milling – a relatively new technique for cutting thin sections 

by using a finely focused beam of charged ions [Obst et al., 2005]. The 

sectioning takes place in a scanning electron microscope where the operator 

examines the sample in real-time and precisely selects the area of the sample 

which is to be sectioned and subsequently analysed with TEM. Depending on 

the type of ions in the cutting beam irradiation damage to the sample can occur, 

usually about 20 nm deep [Labar & Egerton, 1999; Giannuzzi & Stevie, 1999]. 

Newer low-energy ion beams (Si/0.25 keV, GaAs/0.25 keV, Si/0.12 keV) 

combined with controlled angle of incidence can reduce this effect to below 1 

nm [Barna et al., 1998]. 
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3.2.3 Diffusive Gradients in Thin films technique 

According to IUPAC recommendations, chemical speciation defines which 

types of different chemical forms (species) containing an element are present and what 

is the distribution of the element between these forms [Templeton et al., 2000]. Metal 

speciation is crucial to determine metal bioavailability and thus toxicity in aquatic 

systems. It has been accepted that free ionic activity of metal rather than total metal 

concentration represents much more accurately the amount of metal that can be taken up 

by aquatic biota [Campbell, 1995]. Natural waters rarely stay in equilibrium [Worms et 

al., 2006]. Processes of metal complexation and complex dissociation bind or release 

metal ions continuously (Fig. 3.12). Consequently, potentially bioavailable metal 

fraction contains free metal ions produced by kinetically unstable (i.e. labile) metal 

species [Van Leeuwen et al., 2005]. 

Diffusive Gradients in Thin-films (DGT) is a technique for in-situ determination 

of labile metal concentrations in water and soil samples [Zhang et al., 1995]. 

Figure 3.12. Schematic model of binding free metal ions from the bulk solution in the 

DGT binding phase [Li et al., 2005]. 



Ch.3. Materials and methods 

85 

 

Consequently, DGT measured concentrations of metal can be treated as surrogates for 

bioavailable metal. Fig. 3.12 schematically explains metal speciation in a solution and 

metal species available for the DGT binding phase (i.e. metal species detected by the 

technique). DGT available metal forms include free metal ions (M), metal ions 

produced by the dissociation of complexes ML1 which dissociate within the time 

required to pass through the diffusive gel layer, and metal ions exchanged between 

complexes ML2 and the binding phase functional groups (Fig. 3.12). The amount of 

metal bound in inert complexes ML3, which do not dissociate and in complexes ML4, 

which are too big to pass through the diffusive gel pores (colloidal and particulate 

matter) are not accumulated by the binding phase and thus are not measured by DGT 

[Li et al., 2005]. 

Labile metal species from the analysed solution are bound on a resin-

impregnated layer after they diffusively pass the hydrogel layer (Fig. 3.13).Shortly after 

deployment into water, a steady-state linear concentration gradient between bulk water 

and the resin layer is established. Then the flux of ions through the gel, J, can be 

described by the Fick‘s first law of diffusion: 

    
  

  
   (3.3) 

where D is the diffusion coefficient and dC/dx is the concentration gradient. 

If the following conditions are met: 

 D is the same in the diffusive layer as in the diffusive boundary layer (DBL), 

where transport of ions is solely governed by molecular diffusion; 

 free metal ions are in rapid equilibrium with the binding agent of a large 

binding constant (concentration of metal ions effectively equals 0 on the 

resin layer); 
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 bulk solution is well-stirred (δ is negligibly small) 

concentration gradient can be expressed as: 

  

  
  

 

  
  (3.4) 

where C is the concentration of metal in the bulk solution and Δg the thickness of the 

diffusive gel. And thus combining equations 3.3 and 3.4: 

 

   
    

  
  (3.5) 

 

Flux of ions, J, can be calculated from the mass of metal accumulated on the binding gel 

layer (measured with AAS, ICP-MS or other techniques). The diffusion coefficient is a 

known parameter for each gel layer depending on target ion and temperature. 

Consequently, the concentration of an analysed metal species in bulk water can be 

calculated as: 

 

Figure 3.13. Schematic view of steady-state concentration gradient in a cross-section 

of a DGT device [Zhang et al., 1995]. 



Ch.3. Materials and methods 

87 

 

   
      

 
   (3.6) 

 

To minimise the volume of sample needed for the measurement to 500 ml, µ-

DGT devices were used [Alexa et al., 2009]. µ-DGT device and its design are shown in 

Fig. 3.14. 

  

a) 

b) 
d) 

c) 

Figure 3.14. Schematic design representation of µ-DGT device (a) including 

exploded view (b) [Alexa et al., 2009]. Photos of assembled (c) and unassembled (d) 

µ-DGT device. 
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3.2.4 Inductively coupled plasma mass spectrometry 

ICP-MS is an analytical technique for trace metal (and several non-metals) 

detection and concentration measurements with a detection limit in the range of parts 

per trillion (ng L
-1

 for aqueous solutions). Mass spectrometry detects and measures 

concentration of elements using charge to mass ratio. Ionised (positively charged) atoms 

are accelerated into a finely focused beam and travel in vacuum through a mass 

separation device where external magnetic field bends their trajectory: the lighter the 

ions, the most deflected they are (Fig. 3.15 a). The ions are sorted and separated 

according to their mass and charge, which ratio is characteristic for every element (or to 

be more precise for every isotope). The electronic detector device tallies the type of ions 

and their relative abundance. 

a) 

b) 

Figure 3.15. a) Schematic of a mass spectrometer (source: www.cem.msu.edu); b) 

schematic of an ICP torch (source www.chemistry.adelaide.edu.au). 
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In case of ICP-MS technique, the sample is ionised by an inductively coupled 

plasma torch (Fig. 3.15 b). The liquid sample is introduced through a nebuliser in high 

velocity argon to spray chamber where the smallest droplets are selected. Argon plasma 

flame is produced by heating the gas to ca. 6000 °C and exciting it in an oscillating 

magnetic field. As the atoms travel through the plasma they release electrons and 

become positively charged. 

ICP-MS measurements were performed on the Agilent 7500ce instrument by Steve 

Baker, School of Geography, Earth and Environmental Sciences (University of 

Birmingham). 
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4 RESULTS: CHARACTERISATION OF ATMOSPHERIC NANOPARTICLES 

WITH ATOMIC FORCE MICROSCOPY 

 

4.1 Summary 

 

In this chapter the application of AFM for characterisation of atmospheric 

particles is discussed. 

 In the next section (4.2) sampling and microscopy specimen preparation 

protocols are presented. The mechanism of inertial impaction utilised by MOUDI 

cascade impactor used in this study is explained. This section contains also sampling 

parameters and sample handling procedures prior to analysis. 

 Section 4.3 begins with a short summary of visualisation of atmospheric NPs 

with AFM available in the literature. It is followed by a selection of representative AFM 

micrographs obtained in this study for the two examined stages of the impactor, which 

are designed to collect particles at the nanoscale. Sizes and morphologies of imaged 

particles are discussed. An additional section is focused on phase imaging and how it 

can be used to examine particle properties beyond topography. 

 Collected images were used to calculate size distribution histograms for both 

stages, which are presented in section 4.4. The results are compared to expected 

theoretical aerodynamic diameters and possible causes for significant discrepancies are 

discussed. 
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4.2 Sampling and specimen preparation 

 

Atmospheric samples in this study were collected with a 10-stage MOUDI
TM

 

(Micro-Orifice Uniform Deposit Impactor) cascade impactor (Fig. 4.1 a). As all inertial 

impactors, MOUDI fractionates atmospheric particulate matter on the basis of its 

inertial properties, which depend on the shape, size and density of the particles [Marple 

et al., 1991]. Particles with the same inertia can be represented by the same 

aerodynamic diameter, dae, which is the diameter of an ideal sphere with unit density (1 

g cm
-3

) and the same aerodynamic properties (such as sedimentation velocity, terminal 

velocity, drag coefficient, etc.) as the particle in question. 

In an inertial cascade impactor particle laden air is directed through a number of 

impaction stages with multiple nozzles above them (Fig. 4.1 b) [Hering and Marple, 

1986; Marple et al., 1992; Papastefanou, 2007; MSP Corporation, MOUDI Product 

Brochure]. As the sampled air flows through the impactor, particles follow air 

streamlines perpendicularly directed onto the impaction stages (Fig. 4.2). An impaction 

stage deflects the air flow to form a 90 degree bend in the streamlines. Only the 

particles with certain inertia (lower than the cut-off value for the stage) are able to 

follow the streamlines to the next impaction stage. Particles with enough inertia hit the 

stage and are deposited onto the impaction plate. With each subsequent stage, air 

nozzles are smaller and thus particle velocity increases so smaller and smaller particles 

are deposited on consequent impaction stages. To ensure more even plate coverage, the 

impactor is equipped with a rotator so the particles are collected in circular pattern 

rather than in spots corresponding to the nozzles.  
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Microscopic specimens for AFM was prepared by attaching thin, freshly-

cleaved mica sheets to the impaction stages so that particles carried by air could deposit 

directly onto mica. 

Figure 4.2. Principle of operation of a typical inertial cascade impactor (source: 

www.scientificfilters.com). 

a) 

b) 

Figure 4.1. a) MOUDI
TM

 b) a schematic view of a typical stage in MOUDI
TM

 (source: 

www.appliedphysicsusa.com). 
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Samples were collected in a suburban background. Mica sheets were placed on the two 

last stages of the impactor (9
th

 and 10
th

) to collect particles within the nanoscale size 

range. Nominal aerodynamic diameters on these stages are as follows: 

- stage 9: 100 - 180 nm 

- stage 10: 56 - 100 nm. 

Sampling parameters: 

- sampling time: 36 min 

- air flow rate: 20 L min
-1

. 

Collected samples were kept refrigerated for 5 days prior to the AFM analysis. A blank 

mica sheet was prepared by exactly the same protocol apart from mounting the mica on 

an impaction stage. This blank sample was analysed with AFM to exclude 

contamination from specimen preparation and transport. 

A XE-100 atomic force microscope by Park Systems was used in all the 

experimental work. The image of the device and its principle of operation are shown in 

Fig. 3.2. 
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4.3 AFM imaging of atmospheric nanoparticles 

 

Electron microscopy was the first technique to visualise airborne particles too 

small to see with an optical microscope [Friess and Muller, 1939]. However, high 

vacuum conditions and high-energy probe inherent in these techniques might result in 

altering the particles morphologically and chemically [Posfai et al., 1998]. Therefore, 

AFM as a less perturbing technique provides a more suitable alternative for 

environmental particles. The use of AFM for imaging of atmospheric particles has been 

well documented in the literature. Rural aerosol with mean particle aerodynamic 

diameter of 21 nm and 170 nm collected on polyester and aluminium substrates was 

scanned with contact mode AFM (Fig. 4.3 a) [Friedbacher et al., 1995]. The same study 

analysed some of these particles, probably ammonium sulphate, with an atomic 

resolution (Fig. 4.3 b). Bigger particles were imaged with light and scanning electron 

microscopy to compare observed morphologies, which proved to be in a good 

agreement. AFM imaging of micro-scale fly-ash particles was performed in contact 

mode and their surfaces scanned with much higher resolution in tapping modes 

revealing smaller particles attached and crater-like features [Demanet, 1995]. Airborne 

ammonium sulphate particles analysed in ambient conditions by AFM were found to be 

about 4 times bigger than when analysed by TEM, which was attributed to the volatile 

species (presumably water) - an example is shown in Fig. 4.3 c [Posfai et al., 1998]. 

Ramirez-Aguilar et al. (1999) found AFM an excellent technique for environmental 

particles characterisation with a promising potential for not only topographical mapping 

but also chemical analysis of particles (by phase imaging or use of reactive gas) (an 

example of AFM image shown in Fig 4.3 d). More recently, atmospheric aerosols form 
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Amazonian ecosystem collected with an inertial impactor were analysed with AFM and 

TEM (Fig. 4.3 e and f) [Gwaze et al., 2007].  

 

In this study atmospheric particles collected on the mica sheets from the last two 

stages of the impactor were scanned with AFM in ambient conditions. Commercially 

a) 

b) 

c) d) 

f) e) 

Figure 4.3. Atmospheric PM studied with AFM a) crystalline particle with diam. 150 

nm and height 17 nm and b) its crystalline structure [Friedbacher et al., 1995]; c) 

ammonium sulphate particles with diam. ~1.6 µm and heights ~320 nm [Posfai et al., 

1998]; d) atmospheric particles collected during a bush fire [Ramirez-Aguilar et al., 

1999]; e) aerosol particles, a colour depth scale of 280 nm d) 3D shaded relief version 

of the image e [Gwaze et al., 2007]. 
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available aluminium coated tips made of doped silicone with a radius of curvature < 10 

nm were used in the tapping (dynamic contact) mode. X-Y scan sizes were varied up to 

10 x 10 μm with resolution of 256 pixels per line. Scanning rates were optimised to 

acquire a stable and clear image without damaging the tip or detaching particles during 

scanning, usually 0.5, 1 or 2 Hz. Both samples were scanned at random to obtain 20-30 

images. It is also important to note that the scanning areas were selected with the high 

resolution digital CCD camera to avoid the most densely covered regions, i.e. those 

where the most impaction takes place. This procedure was necessary to avoid damaging 

the tip by relatively huge and loosely packed particle ‗heaps‘. Consequently, the AFM 

analysis was focused on the low mass fraction. 

Representative images are shown in Fig. 4.4 (for stage 10) and 4.5 (for stage 9). 

In both samples numerous roughly spherical NPs were found with the average height of 

10 nm or less. Bigger particles tend to have more irregular shapes possibly due to 

aggregation. The morphology of the big aggregates in Fig. 4.4 suggests that they are 

probably soot particles [Mavrocordatos et al., 2002]. Since no additional analysis was 

performed it is impossible to establish the chemical classification or moisture content of 

observed particles. 
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 30.2 

2.5 

 32.6 

 5.5 

 82.8 
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 32.3 

 4.0 
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 178.1 

Figure 4.4. AFM images for the 10th stage of MOUDI (theoretical aerodynamic 

diameter range 56-100 nm). Numbers in black font show maximum height in nm of 

indicated particles. 
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   4.8  1.1 

 4.2 

1.6 

 145.1 

 74.0 

 16.5 

 86.1 

 4.8 
 6.8 

 105.3 

3.3 

Figure 4.5. AFM images for the 9th stage of MOUDI (theoretical aerodynamic diameter range 

100-180 nm). Numbers in black font show maximum height in nm of indicated particles. 
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As mentioned in the previous chapter (3.2.1), AFM can be used to obtain 

information beyond morphology. In this study phase imaging was used along with 

topographical mapping. Phase lag is a source of data on the properties of the scanned 

surface, i.e. hardness, moisture content, elasticity, hygroscopy, etc. Fig. 4.6 shows 

topography and phase images of the same particles found on stage 9 of the impactor. 

Particles A and B have similar topographies suggesting that they were formed by 

aggregation of smaller particles, particle A being about twice as high as B. The surface 

of particle A is more uneven and ‗bumpy‘. However, phase imaging of the same area 

a) 

c) 

b) 

A 

B 

A 

B 

A 

B 

Figure 4.6. Topographic (a & b) and phase (c) image of atmospheric particles from stage 

9. Max. height of particle A – 115.5 nm, max. height of particle B – 55.0 nm. 
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(Fig. 4.6 c) gives a very different phase contrast of these aggregates. Particle A shows 

strong (dark) phase contrast indicating stronger interaction between the tip and the 

particle (i.e. higher phase lag) and thus higher local adhesive forces. Such observation 

can be explained by either particle A being softer than B or containing more moisture. 

By absorbing vibrational energy of the tip, soft surfaces tend to hinder the oscillation 

resulting in higher phase lags [Schmitz et al., 1997]. Wet surfaces cause considerable 

capillary forces, which lead to the delay in the oscillating tip escaping out of water layer 

[Schmitz et al., 1997]. The dark frames of particles in the phase image are a result of 

sudden change in tip-sample interactions when the tip encounters a relatively big 

particle. Such areas are characterised by a different contact angle and larger contact area 

probably leading to increased capillary condensation [Köllensperger et al., 1999]. Phase 

imaging is a useful tool for differentiating between regions of varied hardness or water 

content. It should be noted, however, that phase lag is also a function of operating 

parameters (such as scan speed) as well as ambient atmosphere conditions (temperature, 

humidity) so accurate quantitative analysis is difficult or impossible. Nevertheless, 

comparative analysis can be a source of valuable information on the surface 

characteristics. 
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4.4 Size distribution of collected particulate matter 

 

There are a number of publications which report having used inertial impactors 

effectively to separate atmospheric particles in the sub-100nm range and analyse them 

with AFM of EM. A study on rural aerosol did not find particles smaller than 10 nm, 

which was with a good agreement with the impactor working parameters, i.e. cut-off 

point of dae = 15 nm [Friedbacher et al., 1995]. In another study urban aerosol was 

collected on polyester foil on four last stages of the 11-stage low pressure impactor with 

dae ranging 21-170 nm and analysed with AFM [Kollensperger et al., 1999]. The authors 

used a computational algorithm for particle detection and volume calculations to 

estimate particles aerodynamic diameter equivalents from AFM-measured heights. The 

presented size distributions for the last three impactor stages were in good agreement 

with the predicted performance of the impactor, with maximum number of particles 

roughly in the region of the mean dae for the analysed impactor stage. For the stage with 

the biggest particles (dae=170 nm), however, considerable number of small particles 

were found with a peak of about 20-30 nm, which was explained by unstable conditions 

of scanning, considerable water content and destroying liquid droplets during scanning. 

In this study, size distribution histograms were calculated for both analysed 

stages of the impactor. Heights of about 150 randomly picked particles were used for 

calculations. The results for stage 10 and 9 are shown in Fig. 4.7 and 4.8 respectively. 

Although clearly bigger particles were found on stage 9 than on stage 10, in both 

samples most measured particles have maximum AFM heights of 10 nm or less (78% 

for stage 10 and 62 % for stage 9), much below the theoretical cut-off aerodynamic 

diameter of the stage.  
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According to the impactor specifications, particles with aerodynamic diameters < 56 nm 

are too small to be deposited even on the last stage. Median height on stage 9 is 4.15 

nm, whereas on stage 10 it is 4.4 nm. Measured AFM heights are within the theoretical 

nominal diameter: 56-100 nm 
n=151 

Figure 4.8. AFM size distribution histogram for the 10
th

 stage of MOUDI (n- number 

of particles measured). 

nominal diameter: 100-180 nm 
n=154 

Figure 4.7. AFM size distribution histogram for the 9
th

 stage of MOUDI (n- number 

of particles measured). 
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range only for 2% (in case of stage 10) and 4 % (in case of stage 9) of the analysed 

particles. However, keeping in mind that the AFM analysis concentrated on substrate 

areas away from the dark deposits, one can expect significant contribution of diffusive 

mechanism of deposition, for which theoretical cut-off dimensions do not apply. It has 

been proven that inter-stage diffusive mass losses attributed to particles smaller than 

100 nm can account for 5-10 % [Marple et al., 1991]. In a recent study [Gwaze et al., 

2007] volume equivalent diameters of particles measured with AFM were compared to 

equivalent Stokes diameters for the 10-stage MOUDI impactor they were collected 

with. The AFM measurements did not accurately reproduce expected theoretical size 

distributions. AFM-derived volume diameters were smaller than predicted Stoke 

diameters for the analysed stages by factors of up to 3.6. This poor concurrence between 

physical sizes observed by AFM and theoretical aerodynamic diameters were explained 

by mass losses, presumably water adsorbed on particles.  

As has been said before, the biggest influence on the discrepancy of the results 

and impactor specifications is probably connected with the selection of the areas for 

scanning, i.e. avoidance of the ‗dirtiest‘ regions, which possibly had the majority of 

particles on them (by mass). No further investigation was undertaken to support this 

hypothesis and it is unknown what was the particle mass and number partitioning 

between ‗clean‘ and ‗dirty‘ areas. However, there are also a number of other factors that 

could mitigate the disagreement of expected and obtained particle size distribution 

presented in Fig. 4.7 and 4.8. To some extent, such results can be explained by the 

difference between physical sizes of particles measured by AFM and nominal 

aerodynamic diameter used by the impactor. Maximum particle height does not account 

for aerodynamic properties of particles, nor their shapes or densities. Secondly, there is 
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no information on the humidity of collected and analysed particles so smaller particles 

found on mica might possibly be a result of mass losses caused by drying. 

Obtained results would generally suggest that there is contamination of the 

expected size range by smaller particles. A similar phenomenon was reported for the 

fractionation of aquatic colloids [De Momi and Lead, 2008]. Split-flow thin-cell 

fractionation technique was employed to separate two size fractions in the lake water: < 

1 µm and > 1µm and to assess contamination of the bigger fraction with nanocolloids 

(particles with dimensions < 100 nm). Although significantly more smaller particles 

were found in the < 1µm fraction (6-9 times), the > 1 µm fraction was heavily 

contaminated with NPs: about 90% of the particles were smaller than 10 nm. This 

contamination was attributed to the diffusive transport of NPs in the cell. 

In this study the AFM analysis concentrated on substrate areas with visibly 

smaller particle density further away from the streamlines directly hitting mica surface. 

Consequently, it is possible that the particles observed with AFM are mainly 

contaminants deposited diffusively. Further analysis is required to validate this 

hypothesis. Contamination of size fractionated water or atmospheric particles with 

nanosize particles, even if not substantial in terms of mass distribution, may be 

significant when studying trace components. With considerably higher specific surface 

area, small particles bind more pollutants per unit mass than larger particles [Lyven et 

al., 2003]. 
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5 RESULTS: CHARACTERISATION OF SINGLE-WALLED CARBON 

NANOTUBES WITH TRANSMISSION ELECTRON MICROSCOPY 

 

5.1 Summary 

 

This chapter discusses the application of transmission electron microscopy (TEM) 

to characterise certain engineered NMs, specifically carboxylate functionalised 

SWCNTs, in aquatic systems. 

 Section 5.2 gives a list of samples used in the experiments, their composition 

and concentrations. Section 5.3 contains a discussion of visual observation of the 

samples with a view to describe and explain possible interactions between engineered 

and natural NPs in the suspensions. 

 Next, section 5.4 presents numerous TEM micrographs of SWCNTs in the 

absence/presence of natural aquatic colloids and cations (SRHA, PHA, succinoglycan, 

natural lake water, Ca
2+

 and Na
+
) at three different pH values: 3, 6.5 and 10. Observed 

morphologies are shown and discussed with the emphasis on the interactions between 

engineered and natural NPs in natural waters. 

 In addition to qualitative comparison of the observed interactions, samples are 

compared quantitatively on the basis of the average nanotube bundle thicknesses to 

better understand the interaction mechanism (section 5.5). 
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5.2 Sample preparation and analysis 

Test samples were prepared by mixing the appropriate amounts of stock solutions (as 

discussed in chapter 3.1) to obtain the following suspensions: 

1. SWCNT (10 mg L
-1

) 

2. SWCNT (10 mg L
-1

) & SRHA (10 mg L
-1

) 

3. SWCNT (10 mg L
-1

) & PHA (10 mg L
-1

) 

4. SWCNT (10 mg L
-1

) & SG (10 mg L
-1

, nominal concentration before filtration) 

5. SWCNT (10 mg L
-1

) & natural lake water (NW) (twice diluted after filtration) 

6. SWCNT (10 mg L
-1

) & Ca
2+

 (45 mg L
-1

, the same as in NW used) 

7. SWCNT (10 mg L
-1

) & Na
+
 (13 mg L

-1
, the same as in NW used) 

8. SWCNT (10 mg L
-1

) & SRHA (10 mg L
-1

) & Ca
2+

 (45 mg L
-1

) 

9. SWCNT (10 mg L
-1

) & SRHA (10 mg L
-1

) & Na
+
 (13 mg L

-1
) 

All samples were prepared at 3 different pH values: 3, 6.5 and 10. PH of each sample 

was adjusted with 0.1 M HCl or 0.1 M NaOH. Before preparing microscopic specimens 

all the samples were gently shaken for about 15 hours and their pH measured and 

readjusted if needed. 

SWCNT concentration at 10 mg L
-1

 was chosen to ensure good quality of TEM 

specimen (grids with sufficient amount of NPs on them but not overloaded). This 

concentration is highly unlikely to be seen in environmentally relevant conditions. 

Predicted environmental concentration for CNTs was estimated in the range of 0.005 – 

0.008 µg L
-1

 [Mueller and Nowack, 2008]. This estimation was calculated for current 

production output of nanotubes in Switzerland without accounting for localised effects. 

However, an elevated concentration in laboratory conditions enabled visual examination 

of observed behaviour. Concentrations of humic acids are environmentally relevant and 
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comparable for reported concentrations in natural water samples [Buffle et al., 1998; 

Michalowski et al., 2001]. Na
+
 and Ca

2+
 concentrations are the same as measured in the 

lake water (NW). 

 The selected pH range encompasses acidic, neutral and alkaline conditions. Very 

low and very high pH values (3 and 10) are rare in natural waters but were chosen to 

intensify any possible effects. Such a selection was supposed to depict the change in 

behaviour and at the same time minimise the number of samples keeping in mind the 

availability of the TEM and the costs of using the instrument. 

 

TEM specimens were prepared on a holey carbon film supported on a 300 mesh 

copper grids (purchased from Agar Scientific, UK). Microscopic specimens were 

prepared by slow evaporation of one drop of the nanoparticle suspension directly placed 

onto the carbon film (whole mounts technique). Excess liquid was removed with filter 

paper before air drying to ensure more even grid coverage and minimise possible salt 

crystal formation while drying. All samples were imaged on a FEI Philips TECNAI F20 

TEM operating at 200 kV (Fig. 3.8). At least 10 different TEM images at different 

magnifications (from 2000x to 250kx) were taken for each suspension and analysed 

with Digital Micrograph software. 
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5.3 SWCNT suspensions by visual examination 

 

Methods for dispersing carbon nanotubes in water 

Although pristine carbon nanotubes are inherently insoluble in aqueous media 

(due to strong Van der Waals attraction along the tubes [Jiang et al., 2003]), many 

efforts have been made to disperse them in water to exploit their unique properties in 

biology, medicine and material science by polymer wrapping, sidewall functionalization 

and surface modification [Paloniemi et al., 2005; Hu et al., 2007; Xue et al., 2008]. 

MWCNTs have been found to form very stable water suspensions [Hyung et al., 2007; 

Schierz and Zaenker, 2009]. Carboxyl, carbonyl and hydroxyl group functionalization 

has been reported as a way of dissolving SWCNTs in water resulting in significant 

stability [Li et al., 2008B; Zhang et al., 2009]. Table 5.1 presents a short summary of 

available methods to prepare aqueous suspensions of CNTs reported in the literature. 

High stability of oxidised nanotubes in water can be explained by strong 

electrostatic repulsion between SWCNTs, since their surface is functionalised by 

carboxylic groups (i.e. negatively charged). This behaviour has been reported for 

MWCNTs treated by surface oxidation and Zeta potential of about -35 mV was 

measured for samples at pH 4-11 (Table 5.1) [Schierz, 2009]. The stronger oxidation, 

the higher the negative surface charge: at pH 7 a zeta potential of -34.8 mV was 

measured for nanotubes functionalised with carboxyl groups –COOH and an even 

stronger charge of -53.2 mV was recorded in case of carboxyl anion groups –COO
-
 [Lee 

et al., 2007]. 
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kind of CNT concentration method of solubilisation surface charge ref. 

structure not 
specified, purified 

with acid 
0.5 wt% 

dispersing agent (sodium dodecyl 
sulphate, 2.0 wt %) 

zeta potential: -10 - -40 mV 
at a pH range 3-11 

Jiang et al., 2003 

SWCNT not specified 
1) acid treatment 2) non-ionic surfactant 

and sonication 3) acid treatment and 
non-ionic surfactant 

not measured Chen et al., 2004B 

MWCNT not specified surface oxidation, sonication not measured Cho et al., 2008 

MWCNT 0.01 wt% surface oxidation (carboxylation) 
zeta potential at pH 7:  

-34.8 mV (-COOH groups),  
-53.2 mV (-COO- groups) 

Lee et al., 2007 

MWCNT 0.6 - 6.9 mg/L 
1) presence of NOM (up to 100 mg/L) 2) 

surfactant (sodium dodecyl sulphate, 1 %) 
not measured Hyung et al., 2007 

SWCNT 20 mg/mL 
surfactant (sodium dodecylbenzene 

sulfonate) 
not measured Islam et al., 2003 

SWCNT 50 µg/ml 
noncovalent functionalization with 

proteins and ultrasonication 
not measured 

Karajanagi et al., 
2006 

MWCNT ca. 3.2 mg/mL solubilising agent (alginic acid) not measured Liu et al., 2006 

SWCNT 3 g/L surface modification by starch wrapping not measured Star et al., 2002 

MWCNT 100 mg/L surface oxidation 
zeta potential: -10 - -35 mV 

at a pH range 2-11 
Schierz and 

Zaenker, 2009 

Table 5.1. Methods used to disperse carbon nanotubes in water. 
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NOM shows a strong stabilising effect towards aqueous CNTs. In fact it has 

been used as a dispersing agent at concentrations of 10-100 ppm with better results than 

commonly used 1 % sodium dodecyl sulphate [Hyung et al., 2007]. The stabilising 

mechanism was attributed to surface shielding, which leads to electrostatic and steric 

stabilisation. A more recent study confirms the surfactive properties of humic 

substances towards MWCNTs [Chappel et al. 2009]. 

 

Visual examination of SWCNT behaviour 

In this study sonicated carboxylic acid functionalised SWCNTs were used (more 

details are provided in chapter 3.1.2). The results obtained confirm that once suspended 

in water, surface functionalized SWCNT remain essentially unaltered for weeks. Fig. 

5.1 shows a sample at the start of the experiment and after 5 days of undisturbed 

sedimentation. Although after this time there is some material precipitated at the bottom 

of the vial, the reduction in concentration in the water column cannot be confirmed 

without additional measurements. Similarly, the presence of SRHA, PHA and SG does 

a) b) 

Figure 5.1. Visual stability of aqueous suspensions of SWCNTs (concentration of 10 

ppm) a) settling time of 0 b) settling time of 5 days. 
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not cause any significant change in SWCNTs stability that could be verified without 

further laboratory analysis (samples not shown). 

Distinctively different behaviour is observed in case of the presence of natural 

water (Fig. 5.2 a and b). Although immediately after mixing all of the samples look 

similar, in the presence of lake water SWCNTs flocculate and sediment within not more 

than an hour (even though NW itself remains stable over significant periods of time). To 

explain this observation, a hypothesis was formed that cations present in the lake water 

are responsible for the instant precipitation caused by surface charge neutralisation (also 

previously reported elsewhere [Liu et al., 2006]). Additional set of experiments was 

conducted with Na
+
 and Ca

2+
 cations at the same concentrations as in the lake water (13 

mg L
-1

 for sodium and 45 mg L
-1

 for calcium). Sodium and calcium were chosen as the 

most ubiquitous in natural waters. Visual observation confirms that the presence of 

divalent cations (Ca
2+

 in this experiment) in the solution may hugely contribute to the 

instantaneous destabilisation of SWCNTs in natural waters (Fig. 5.2 b and d). Na
+
 does 

a) b) c) d) e) f) 

Figure 5.2. The influence of cations present in natural water on SWCNT suspensions 

stability. Photos taken after 3-day settling time a) alone; b) with NW, c) with Na
+
, d) with 

Ca
2+

, e) with Na
+
 and SRHA, f) with Ca

2+
 and SRHA. 
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not cause visible aggregation of SWCNTs (Fig. 5.2 c and e). Divalent cation 

destabilisation of nanotube suspensions is consistent with the DLVO theory, which 

explains how electronegative colloids can be flocculated using cationic solutions 

[Derjaguin & Landau, 1941; Verwey & Overbeek, 1948].  

As far as humic acid is concerned, a slight stabilising effect can be observed. It 

is more profound in the case of simultaneous presence of Ca
2+

: the sample with SRHA 

has visibly higher concentration of suspended nanotubes than the sample without humic 

acid (Fig. 5.2 d and f). 
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5.4 TEM imaging of SWCNTs 

 

For theoretical background on the TEM technique please refer to chapter 3.2.2. 

TEM was used to analyse 27 samples in total which encompasses SWCNTs without and 

with natural aquatic colloids (SRHA, PHA, SG, NW, Ca
2+

, Na
+
, Ca

2+
 & SRHA and Na

+
 

& SRHA) at three pH values: 3, 6.5 and 10. TEM images for all samples revealed 

typical morphologies for SWCNTs: long randomly entangled nanotubes. Since the 

SWCNT powder used in the experiments is produced by the electric-arc technique 

(which leads to formation of self-organised filamentous crystallites consisting of up to 

about 20 single nanotubes cleaved to each other [Journet, 1997]), no single nanotubes 

were observed. Instead they were organised in bundles. These bundles are roughly 

circular in a cross-section with diameters ranging from 5-20 nm. Figure 5.3 shows a 

TEM image of a SWCNT bundle with individual nanotubes clearly visible.  

Figures 5.4, 5.5 and 5.6 show examples of SWCNTs alone at pH 3, 6.5 & 10. As 

samples were prepared by air drying, nanotubes are unevenly distributed on the carbon 

films but they tend to form randomly entangled networks. Irregularly or roughly 

spherically shaped dense particles present in the samples are carbonaceous and/or metal 

bundle 

thickness 

individual 

nanotubes 

 

Figure 5.3. Individual SWCNTs in bundles and bundle thickness. 
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impurities. In all 3 samples small amounts of thin film suspended between nanotube 

bundles can be observed on the holey area of the carbon film, especially at pH 6.5 (Fig. 

5.5 a). The cleanest sample (with little visible impurities) was observed at pH 10. 

 

 

 

a) b) 

c) 

Figure 5.4. TEM micrographs of aqueous SWCNTs alone at pH 3. 
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a) b) 

c) 

Figure 5.5. TEM micrographs of aqueous SWCNTs alone at 6.5. 
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a) b) 

c) 

Figure 5.6. TEM micrographs of aqueous SWCNTs alone at pH 10. 
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The presence of natural colloids significantly changes the morphology of the 

analysed samples. Images 5.7, 5.8 and 5.9 show CNTs in solution of SRHA at three 

different analysed pH values. Interaction between them is evident especially at pH 3 and 

6.5 (Fig. 5.7 and 5.8). At pH 3 nanotubes are homogenously coated with circular 

particles of humic acid. At pH 6.5 significant amounts of roughly homogenous material 

bridging between nanotubes can be seen. Some coating and bridging with humic 

material can be observed at pH 10 too. However, at pH 10 nanotubes look ‗clean‘ and 

do not show such a significant difference to those without humic acid. This effect can 

be explained by stronger repulsion between more negatively charged SWCNT and 

SRHA molecules in higher pH values. These observations go in line with TEM analysis 

of SRHA blank samples (i.e. without SWCNTs). Similar granular branch-network 

morphology was imaged for SRHA at pH 3 (Fig. 5.10). Less characteristic roughly 

spherical particles of humic acid were spotted at higher pH (not shown here). At pH 10, 

similarly to SWCNTs with SRHA, very few spherical particles of humic acid were 

found.  

Additionally, significant amounts of thin film suspended between nanotube 

bundles can be observed on the holey area of the carbon film, especially at pH 3 (Fig. 

5.7) and 6.5 (Fig. 5.8). In some images about 60 % of the total holey area in the image 

is covered by this webbing structure. Although these films were observed in the samples 

without humic acid, analysis of SRHA alone (Fig. 5.10) suggests that its presence may 

hugely contribute to this effect. These webbing structures were found in abundance and 

despite being difficult to quantify, they were clearly present. In some samples (Fig. 5.7 

b and c, Fig. 5.10 c) the film occurring in the holey areas was cracked and upturned 
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indicating shrinkage caused by drying. This suggests that the webbing effect could be 

more profound if imaged without UHV conditions. 

 

 

 

 

 

a) b) 

c) 

Figure 5.7. TEM micrographs of aqueous SWCNTs in the presence of SRHA at pH 3. 
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b) 

c) 

a) 

Figure 5.8. TEM micrographs of aqueous SWCNTs in the presence of SRHA at pH 6.5. 
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a) b) 

c) 

Figure 5.9. TEM micrographs of aqueous SWCNTs in the presence of SRHA at pH 10. 
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 Images of SRHA (Fig. 5.10) compare well with the literature data [Bufle et al., 

1998; Leppard et al., 1999; Wilkinson et al., 1999; Baalousha et al., 2005 A; Baalousha 

et al., 2006]. 

 

 Very similar pattern of interaction (although less profound) is observed for 

Pahokee peat humic acid (Fig. 5.11, 5.12 and 5.13). At low pH spherical particles of HA 

can be seen in abundance along the nanotubes and as bridging structures between 

nanotube bundles (Fig. 5.11). Significant amounts of filming structures were present at 

pH 6.5 (Fig. 5.12). At high pH, however, hardly any humic acid can be observed (Fig. 

5.13). TEM analysis of PHA alone showed very similar morphologies as in the case of 

SRHA, i.e. granular branched networks of humic acid at pH 3 and few particles in 

higher pH values (not shown).  

The observed interactions between SWCNTs and humic acids compare well to 

the literature data. The formation of humic surface films of natural organic nanoscale 

material has been well documented in the literature [Hunter and Liss, 1982]. More 

recently humic coating was directly observed and measured on macroscopic surfaces 

[Lead et al., 2005].  

a) b) c) 

Figure 5.10. TEM micrographs of SRHA at pH 3. 
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a) b) 

c) 

Figure 5.11. TEM micrographs of aqueous SWCNTs in the presence of PHA at pH 3. 
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a) b) 

c) 

Figure 5.12. TEM micrographs of aqueous SWCNTs in the presence of PHA at pH 6.5. 
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a) b) 

c) 

Figure 5.13. TEM micrographs of aqueous SWCNTs in the presence of PHA at pH 10. 
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Succinoglycan has also been proven to interact with SWCNTs in aqueous 

solutions. Figure 5.14 shows characteristic fine-grainy fibrillar patches of succinoglycan 

alone found at pH 3. The same structures evenly coating nanotube bundles were 

photographed for the sample at pH 10 (Fig. 5.17 a and c). In this sample succinoglycan 

occurred in irregularly shaped patches of about 100 nm in width filling the area in the 

nanotubes network. Apart from forming webbing structures between nanotubes in the 

holey area, it also stained the carbon film. For the lower two pH values (Fig. 5. 15 and 

Fig. 5. 16) morphology of samples did not show any immediate difference from 

SWCNTs alone. Such observation cannot be regarded as a proof of the lack of 

interaction between nanotubes and succinoglycan. Due to the microscopy specimen 

preparation method, analysed samples are highly heterogeneous, i.e. on the same 

support grid there are areas covered with nanotubes with different morphologies. 

Firstly, this can be caused by air-drying resulting in shrinking of the solid material. 

Secondly, a drop of the sample used for the TEM grid preparation might not be fully 

representative to the whole sample. 

 

 

Figure 5.14. TEM micrographs of succinoglycan at pH 3. 
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a) b) 

c) 

Figure 5.15. TEM micrographs of aqueous SWCNTs in the presence of SG at pH 3. 
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a) b) 

c) 

Figure 5.16. TEM micrographs of aqueous SWCNTs in the presence of SG at pH 6.5. 
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b) 

c) 

a) 

Figure 5.17. TEM micrographs of aqueous SWCNTs in the presence of SG at pH 10. 
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As expected the widest range of colloidal material, however, was found in 

samples with SWCNTs and natural water (Fig. 5.18, 5. 19 and 5.20). In these samples 

CNTs formed a diverse net of entangled nanotube bundles interlacing with natural 

colloids. In many places these structures filled holey areas of the film, especially at pH 

10 (Fig. 5.20 a and b). Owing to the great diversity of natural colloids and the fact that 

the information from the images is limited to morphology only, it is impossible to say 

a) b) 

c) 

Figure 5.18. TEM micrographs of aqueous SWCNTs in the presence of NW at pH 3. 
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exactly what these natural colloids are. Possibilities include humic and fulvic 

substances, polysaccharides, proteins, cellular debris, viruses, clay particles, metal 

oxides etc. 

 

 

 

 

 

a) b) 

c) 

Figure 5.19. TEM micrographs of aqueous SWCNTs in the presence of NW at pH 6.5. 
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a) b) 

c) 

Figure 5.20. TEM micrographs of aqueous SWCNTs in the presence of NW at pH 10. 
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In good correlation with macroscopic observations (please refer to chapter 5.3 

and Fig. 5.2), SWCNTs in the presence of Ca
2+

 cations form huge (in tens of µm across) 

and dense fluffy aggregates (Fig. 5.21). 

 

a) b) 

c) 

Figure 5.21. TEM micrographs of aqueous SWCNTs in the presence of  Ca
2+

 at pH 10. 
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5.5 Average bundle thickness measurements and statistical calculations 

 

From the TEM micrographs discussed previously (section 5.4), average bundle 

thickness (as shown in Fig. 5.3) was quantified for all samples. Table 5.2 summarises 

the results. At least 60 bundles (up to 164) per sample were measured with the Digital 

Micrograph software, depending on CNTs availability on the TEM grids. All results 

have been analysed with SPSS software with one sample Kolmogorov-Smirnov test 

(with α=0.05) to assess the normality of the data distributions. One out of 27 samples 

(SWCNTs in the presence of natural water at pH 6.5) did not show the normal 

distribution. The statistical analysis (Mann-Whitney U test at α=0.05 with SPSS 

software) was performed to check which samples were significantly different from the 

reference sample (i.e. SWCNTs alone at the same pH) and between samples at the same 

pH.  

Average bundle thickness for nanotubes alone is slightly higher but in good 

agreement with the manufacturer‘s specification. Relatively high standard deviations 

derive from the production process itself and the thickness of observed fibrils depends 

on the number of single nanotubes in a bundle. Consistent with other reports [Journet et 

al., 1997], the thickness of the SWCNT bundles is in the range from 4-20 nm. 

In the majority of samples, bundle thickness in the presence of natural colloids is 

statistically significantly different than in the absence of NAC (results in bold in Table 

5. 2). The only sample not showing any significant difference to the reference samples 

at two pH values (3 and 10), is the sample with succinoglycan. Most of other samples 

(with one exception for SWCNTs with NW at pH 10) have average bundle thickness 

significantly higher than nanotubes alone. This effect can be explained by surface 

coating with humic material or bundles clinging to each other in solutions with cations.  
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    pH 3 pH 6.5 pH 10 

SWCNT alone 

average thickness in nm 7.2 7.2 8.1 

standard deviation in nm 2.5 2.8 4.0 

count 80 107 131 

SWCNT + SRHA 

average thickness in nm 13.5 11.0 10.3 

standard deviation in nm 4.5 3.4 2.9 

count 108 75 64 

SWCNT + PHA 

average thickness in nm 7.9 12.5 10.5 

standard deviation in nm 2.4 2.8 4.7 

count 100 61 83 

SWCNT + succinoglycan 

average thickness in nm 7.0 6.0 8.1 

standard deviation in nm 2.1 2.1 2.5 

count 112 85 71 

SWCNT + NW 

average thickness in nm 10.5 9.0 8.2 

standard deviation in nm 3.5 3.5 3.3 

count 142 96 91 

SWCNT + Ca
2+

 

average thickness in nm 15.0 9.7 14.7 

standard deviation in nm 5.2 3.1 4.8 

count 124 152 130 

SWCNT + Na
+
 

average thickness in nm 15.6 9.9 16.7 

standard deviation in nm 4.1 4.6 4.5 

count 132.0 125.0 80.0 

SWCNT + Ca
2+

 & SRHA 

average thickness in nm 16.0 14.3 15.4 

standard deviation in nm 4.1 4.3 5.0 

count 153 101 113 

SWCNT + Na
+
 & SRHA 

average thickness in nm 16.1 13.1 21.1 

standard deviation in nm 4.7 5.7 6.0 

count 123 164 90 

 

Table 5.2. Average thicknesses of bundles of SWCNTs alone and in the presence of 

natural organic matter measured from TEM micrographs (results for samples 

statistically different from the reference sample, i.e. SWCNTs alone at the same pH, are 

in bold). 

 

Generally speaking, differences between morphologies of studied suspensions 

could not always be represented by a different average bundle thickness. This is 
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especially so in cases where the webbing effect was profound, which is difficult to 

quantify and compare. 

The influence of pH did not show any consistent pattern on SWCNTs bundle 

thickness. In the case of SWCNTs with SRHA, a maximum bundle thickness was 

observed at pH 3, whereas in cases of SWCNTs with PHA at pH 6.5 and at pH 10 for 

SWCNTs with SG. Only in the cases of SWCNTs with PHA, SWCNTs with 

succinoglycan and SWCNTs with SRHA and Na
+
 did all three pH values show 

statistically different bundle thicknesses. In the former case the highest thickness was 

found at pH 6.5, whereas in the latter case the maximum bundle thickness occurred at 

pH 10. 

 Understanding the interactions of CNTs with natural aquatic colloids is 

fundamental to defining their toxicity and fate & behaviour in natural waters. 

Aggregation behaviour is a key factor in the assessment of persistence and 

bioavailability of nanotubes. Significantly higher bundle thickness in the presence of 

humic acids (Table 5.2) is evidence of surfactant properties of natural organic matter 

towards SWCNTs. Coating nanotubes by forming a nanoscale layer of HA on the 

surface (also in the presence of major cations), decreases strong Van der Waals 

attraction between SWCNTs particles and maintains them in suspension. Thus in waters 

rich in humic substances (e.g. dystrophic lakes) exposure of aquatic biota to CNTs may 

occur to unexpected extent. 

 The stability of aqueous oxidised CNTs is a result of a strong negative surface 

charge (Table 5.1), which keeps the particles apart (i.e. counteracts aggregation). The 

presence of major cations may interfere with this stabilising mechanism by charge 

neutralisation. In this study the influence of Na
+
 and Ca

2+
 was examined. No effect of 
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Na
+
 was observed at the tested concentration (which matched the concentration in the 

lake water used in the experiments). However, the presence of Ca
2+

 (again, at the same 

concentration as in the natural lake water) showed a strong destabilising effect on 

aqueous SWCNTs. The water column was cleared of the majority of visibly suspended 

SWCNTs within 24 h. Consequently, in hard waters (with higher concentrations of 

divalent cations) or waters with high ionic strength (i.e. marine environments), 

SWCNTs could be efficiently removed from the bulk water and transferred to 

sediments. 
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6 RESULTS: ULTRACENTRIFUGATION ONTO SUPPORTING GRIDS AS A 

TRANSMISSION ELECTRON MICROSCOPY SPECIMEN PREPARATION 

METHOD FOR AQUATIC SUSPENSIONS OF CARBONACEOUS 

NANOPARTICLES 

 

6.1 Summary 

 

In the previous chapter TEM was employed to study CNTs in the aquatic 

environment. This chapter builds on this work and discusses optimisation of the TEM 

specimen preparation protocol. Ultracentrifugation has been used successfully as a way 

of preparing native colloidal material from natural waters for examination using TEM 

(which was discussed in section 3.2.2.1) [Lienemann et al., 1998; Wilkinson & Lead, 

2007]. This chapter addresses the application of a similar approach to water-suspended 

carbonaceous NPs: SWCNTs and fullerenes C60. 

 Section 6.2 describes the protocol applied to prepare SWCNTs and nC60 

aqueous suspensions with and without natural aquatic colloids (Suwannee River Humic 

Acid, Suwannee River Fulvic Acid, succinoglycan and natural lake water) as well as 

centrifugation parameters. 

 Sections 6.3 and 6.4 contain representative images for each sample and discuss 

observed morphologies. 

 The chapter concludes with a comparison of ultracentrifugation versus the 

―drop-drying‖ method for carbonaceous NPs (as used in chapter 5). 
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6.2 Sample preparation and ultracentrifugation parameters 

 

Single-walled carbon nanotubes 

Test samples were prepared by mixing the appropriate amounts of stock solutions (as 

discussed in chapter 3.1) to obtain the following suspensions: 

1. SWCNT (10 mg L
-1

), pH 5.7 

2. SWCNT (10 mg L
-1

) & SRHA (10 mg L
-1

), pH 4.1 

3. SWCNT (10 mg L
-1

) & SG (10 mg L
-1

, nominal conc. before filtration), pH 4.8 

4. SWCNT (10 mg L
-1

) & NW (twice diluted after filtration), pH 7.6 

To compare ultracentrifugation and whole mounts (used in a previous chapter) as a 

TEM specimen preparation method, test samples were prepared according to the same 

protocol. In this experiment, however, the pH of the samples was only measured (not 

adjusted). To ensure optimal grid coverage for centrifuged specimens the listed samples 

were diluted 10 times. The correct dilution was found via a process of trial and error. 

For more routine experiments it is advisable to prepare a calibration curve 

(concentration v optical properties of a sample e.g. UV-Vis absorbance) [Lienemann et 

al., 1998]. From this work a rule of thumb can be formulated; the optimal concentration 

corresponds quite well to a concentration at which the sample loses its visually 

detectable light absorbance (i.e. coloration). 

 

Fullerenes C60 

Test samples were prepared by mixing the appropriate amounts of stock solutions (as 

discussed in chapter 3.1) to obtain the following suspensions: 

1. nC60 (2 x diluted from the stock), pH 6.5 
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2. nC60 (2 x diluted from the stock) & SRFA (10 mg L
-1

), pH 4.8 

3. nC60 (2 x diluted from the stock) & SG (10 mg L
-1

, nominal conc. before 

filtration), pH 5.3 

4. nC60 (2 x diluted from the stock) & NW (twice diluted after filtration), pH 7.7 

To ensure the optimal grid coverage for centrifuged specimens the listed samples were 

diluted 10 times. Similarly to SWCNT samples, the optimal concentration was 

determined by a trial and error method. 

 

Centrifugation 

10 ml samples with an optimal dilution were ultracentrifuged onto holey carbon films (2 

per sample) on 400 copper mesh. Beckman L7-65 Ultracentrifuge with SW40 swinging 

bucket rotor (Fig. 6.1) was used in the experiments. To provide a flat support for grids 

Teflon caps were placed at the bottom of the tubes. A threaded slot to facilitate removal 

from centrifuge tubes was drilled. 

Ultracentrifugation parameters are as follows: 

- speed: 30.000 rpm 

- relative centrifugal field at rmax: 160.000 g, rav: 114.000 g and rmin: 67.200 g 

- temperature: 15° C 

- run time: 60 min. 

The ultracentrifugation parameters are similar to those reported by Lienemann et al. 

(1998). They were used as a starting point in the experiments presented here. 

Ultracentrifugation at these parameters proved satisfactory so no further modifications 

were tested. After centrifugation the tubes were carefully emptied, the bottom cups 

removed and TEM grids dried in ambient conditions prior to the microscopy analysis. 
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Transmission Electron Microscopy 

All samples were imaged on a FEI Philips TECNAI F20 TEM operating at 200 kV 

(shown in Fig. 3.8). At least 10 different TEM images at different magnifications (from 

2000x to 250kx) were taken for each suspension and analysed with Digital Micrograph 

software. 

  

Figure 6.1. Beckman SW40 swinging bucket rotor with a centrifugation tube and TEM 

grids. 
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6.3 TEM imaging of ultracentrifuged SWCNTs 

 

Representative images from ultracentrifuged specimen are shown in Fig. 6.2. The 

observed morphologies do not differ significantly from the samples prepared by the 

whole mounts (air drying) method (presented and discussed in chapter 5). The SWCNT 

bundle thickness ranges from 2-30 nm with most nanotube bundles about 5-10 nm 

thick.  

a) b) 

c) d) 

Figure 6.2. TEM micrographs of ultracentrifuged SWCNTs alone (a) and in the presence of 

SRHA (b), succinoglycan (c) and natural water (d). 



Ch.6. Ultracentrifugation for TEM 

142 

 

Nanotubes alone show different morphologies than when mixed with aquatic 

colloids: humic acid particles are trapped in entangled networks of nanotubes (Fig. 6.2 

b), thin filming structures are abundant in the presence of succinoglycan (Fig. 6.2 c), 

and various nano and microscale particles present in the lake water are incorporated in 

SWCNT networks. 

More TEM images (obtained with a different specimen preparation protocol, i.e. 

drop-drying), detailed discussion of observed morphologies and their environmental 

implications can be found in sections 5.3 – 5.5. 
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6.4 TEM imaging of ultracentrifuged nC60 

 

Fig. 6.3-6 show representative images of ultracentrifuged water-stirred fullerenes 

C60 alone and in the presence of aquatic colloids: Suwannee River fulvic acid, 

succinoglycan and natural lake water. 

 The extended-mixing method of preparing aqueous suspensions of fullerenes 

produces stable colloidal aggregates nC60 with reported sizes in the range of 50-2000 

nm with average dimensions of ca. 250 - 500 nm [Brant et al., 2006; Spohn, 2009]. In 

this study too, a broad range of aggregate sizes was found with average dimensions of a 

few hundred nm. The smallest clusters have dimensions ca. 30 nm whereas the biggest 

are up to 3 µm. Similar particles were found in abundance in all studied samples. Some 

aggregates show more compact morphologies (Fig. 6.3 c) and others are loosely 

grouped together (6.3 a). The biggest particles exhibit angular faceted shapes (Fig. 6.6 a, 

b and c). Particles with sizes below 1 µm are more oval with smoother edges (Fig. 6.3 

d). More information on nC50 characterisation with TEM and other techniques can be 

found in chapter 9. 

 Interactions of fullerenes with aquatic colloids are less apparent than in the case 

of CNTs. At low resolution, morphologies of collected particles show little difference 

from the sample with nC60 alone. 

In the presence of fulvic acid most particles exhibit the same morphologies as 

nC60 alone (Fig. 6.4 c and d). In some images humic acid and fullerenes are depicted 

together with little evidence of mutual interaction (Fig. 6.4 b). However, Fig. 6.4 a gives 

an example of fullerene-colloid interactions: nC60 cluster surrounded (possibly coated) 

by smaller particles of fulvic acid.  
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In the presence of succinoglycan, suspended thin film structures can be observed 

(Fig. 6.5 a) linking both C60 and SG. This thin layer of material provides a clearly 

visible coating for fullerene aggregates and smoothes their edges (Fig. 6.5 a and d). Fig. 

6.5 b illustrates a situation where both kind of particles are present (nC60 and SG) but no 

interaction takes place. Many aggregates do not exhibit any difference from fullerenes 

alone (Fig. 6 5.c). 

 

a) b) 

c) d) 

Figure 6.3. TEM micrographs of ultracentrifuged nC60. 
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In the presence of natural water (Fig. 6.6) more diverse material can be seen; 

large (over 1 μm) angular particles with even surfaces as well as smaller heterogeneous 

ones with ragged edges. In some cases, smaller material (morphologically similar to 

humics) fills in the spaces between nC60. Fig. 6.6 d presents an example of strong 

interaction; a fullerene cluster evenly coated with colloidal particles (presumably 

humics). 

 

 

Figure 6.4. TEM micrographs of ultracentrifuged nC60 in the presence of SRFA 

a) b) 

c) d) 
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a) b) 

d) c) 

Figure 6.5. TEM micrographs of ultracentrifuged nC60 in the presence of succinoglycan. 
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a) b) 

d) c) 

Figure 6.6. TEM micrographs of ultracentrifuged nC60 in the presence of natural water. 
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6.5 Ultracentrifugation v the whole mounts technique for carbonaceous 

nanoparticles 

 

Ultracentrifugation has been used successfully as a way of examining native 

colloidal material in natural waters with TEM [Perret et al., 1991; Lienemann et al., 

1997; Lienemann et al., 1998; Benedetti et al., 2003; Koukal et al., 2008; Chanudet and 

Filella, 2008]. In this study it was applied to examine SWCNTs and fullerenes C60 in 

aqueous suspensions in the absence and presence of natural aquatic colloids. The 

presented preparatory methodology proved to be superior to traditional ‗drop drying‘ 

technique due to optimal grid coverage and substantially higher homogeneity of the 

microscopy specimen. 

The previous chapter (5.4) presents an extensive body of work on SWCNTs in 

aqueous samples where all TEM specimens were prepared by the whole mounts 

technique. In this chapter the same samples were imaged from the ultracentrifuged 

samples. Although the observed morphologies do not show differences (and thus cannot 

be represented by TEM images), the time needed for the TEM analysis has been 

shortened considerably. In drop-dried specimens large parts of the grid have no sample 

at all - particles from the samples are often confined to a few (out of 300-400) squares 

on the grid. Locating such areas on the carbon film takes a considerable amount of time. 

In the case of C60 only two samples were prepared with the drop-drying method and 

both were empty on the majority of the grid with only 1-2 squares displaying densely 

packed nC60 clusters (about 6400 μm
2
, which constitutes about 0.25 % of the grid 

surface). 

Figure 6.7 illustrates the difference in grid coverage for both techniques. In case 

of the whole mounts technique, locating the studied NPs on the grid tends to be a time 
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consuming and tedious procedure. The homogeneous and optimal grid coverage which 

is easily obtainable with ultracentrifugation method, allows much easier and faster TEM 

analysis of the specimen. Aggregation caused by drying is minimised thus the sample is 

less perturbed by the preparatory procedure. Additionally, by controlling conditions of 

deposition during ultracentrifugation, valuable quantitative information about the 

sample can be obtained (such as particle size distribution, number concentration). 

For more information on TEM analysis of nC60 (also involving 

ultracentrifugation) please refer to chapter 9.5. 

 

 

 

 

whole mounts ultracentrifugation 

Figure 6.7. Schematic representation of the grid coverage for whole mounts v 

ultracentrifugation techniques (note: dots represent areas with the particles on them, not 

the particles themselves). 
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7 RESULTS: CHARACTERISATION OF SINGLE-WALLED CARBON 

NANOTUBES WITH ATOMIC FORCE MICROSCOPY 

 

7.1 Summary 

 

In this chapter the application of AFM to characterise engineered NPs 

(SWCNTs) in aquatic systems is discussed. 

 Seven representative samples are analysed in the presence/absence of humic 

acid, sodium and calcium cations and natural water at pH 3, 6.5 or 10. Sample 

concentrations are listed in chapter 7.2. The microscopy specimen preparation protocol 

is also included in this section. 

The results of AFM imaging of these samples are presented in chapter 7.3. 

Observed morphologies are discussed in detail and compared with TEM images 

obtained for the same samples (to which chapter 5 was devoted). 

For more quantitative analysis average nanotube bundle heights are calculated 

for each sample. The results with their statistical significance are presented and 

discussed in chapter 7.4. Average SWCNT bundle heights measured with AFM are 

compared to average SWCNT bundle thicknesses determined with TEM in section 7.5. 

The last section in this chapter (7.6) contains discussion on non-contact and 

tapping modes used during the study. Presented results suggest that the tapping mode 

exerts stronger forces on a sample, which results in sample surface modification (height 

reduction). 
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7.2 Sample and microscopy specimen preparation 

 

The aim of this chapter is to build on the work presented in sections 5.4 and 5.5, 

where 27 samples of SWCNTs with and without aquatic colloids at three pH values 

were analysed (see also Table 5.2). To minimise the workload a selection of seven 

aqueous suspensions of SWCNTs was made with a view to representing different 

conditions and compositions of samples analysed with TEM. Test samples were 

prepared by mixing the appropriate amounts of stock solutions (as discussed in chapter 

3.1) to obtain the following suspensions: 

1. SWCNT (10 mg L
-1

) & NW (twice diluted after filtration), pH 6.5 

2. SWCNT (10 mg L
-1

) & Ca
2+

 (45 mg L
-1

, the same as in NW used), pH 6.5 

3. SWCNT (10 mg L
-1

) & Na
+
 (13 mg L

-1
, the same as in NW used), pH 6.5 

4. SWCNT (10 mg L
-1

) & SRHA (10 mg L
-1

) & Ca
2+

 (45 mg L
-1

), pH 6.5 

5. SWCNT (10 mg L
-1

) & SRHA (10 mg L
-1

) & Na
+
 (13 mg L

-1
), pH 3 

6. SWCNT (10 mg L
-1

) & SRHA (10 mg L
-1

) & Na
+
 (13 mg L

-1
), pH 6.5 

7. SWCNT (10 mg L
-1

) & SRHA (10 mg L
-1

) & Na
+
 (13 mg L

-1
), pH 10 

pH of each sample was adjusted with 0.1 M HCl or 0.1 M NaOH. Before preparing 

microscopic specimens all the samples were gently shaken for about 15 hours and their 

pH measured and readjusted if needed. 

The standard AFM specimen preparation protocol widely used for aquatic 

colloids involves inserting a freshly cleaved and rinsed with ultra pure water sheet of 

mica to the solution and keeping it in the vertical position for 30 min (spontaneous 

adsorption of colloidal matter to the surface of mica takes place), after which time the 

mica is rinsed again and left to air-dry sheltered form atmospheric contamination 
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[Balnois et al., 1999; Lead et al., 2005; Guo and Ma, 2006]. This method was tested for 

the suspensions of SWCNTs but adsorption proved insufficient for NPs to be imaged 

with AFM. Mica surface remained clean and identical to the blank sample and no 

nanotubes were detected after imaging. This observation may be explained by 

electrostatic repulsion between negatively charged mica surface [Plaschke et al., 1999; 

Jiang et al., 2003; Lee et al., 2007; Schierz and Zaenker, 2009] and negatively charged 

SWCNTs (due to functionalization with carboxylic groups). It is also conceivable that 

nanotubes are too large to effectively adsorb. Their extremely long shapes (aspect ratio 

of 100-400) may additionally hinder vertical deposition, which would require 

approximately even adsorption along a nanotube. To ensure the presence of particles a 

different protocol was applied. Freshly cleaved mica placed horizontally was used as a 

substrate, onto which 10-15 µL of the test solution was pipetted and left to dry in 

ambient conditions. To remove the weakly attached fraction, which might interfere with 

the AFM scanning process, the mica surface was rinsed with ultra pure water and dried 

again. Apart from the different substrates used, specimen preparation protocol was 

essentially the same for AFM and TEM (chapter 5.2).  

All samples were imaged on a XE-100 AFM by Park Systems in non-contact 

and tapping modes (Fig. 3.2 a). Commercially available aluminium coated tips made of 

doped silicone with a radius of curvature < 10nm were used. X-Y scan sizes were varied 

up to 10 x 10 μm with resolution of 256 pixels per line. Scanning rates were optimised 

to acquire a stable and clear image without damaging the tip or detaching particles 

during scanning, usually 0.5, 1 or 2 Hz. 
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7.3 AFM imaging of SWCNTs. Comparison with TEM results 

 

The theoretical background to AFM is given in chapter 3.2.1, where its principle 

of operation is explained, advantages and disadvantages as well as the most popular 

scanning modes are discussed. 

 The morphologies of SWCNTs in the presence of natural aquatic colloids 

observed with AFM are similar to those imaged with TEM (chapter 5.4). Single 

nanotube bundles or their randomly entangled clumps were found in all studied 

samples. Fig. 7.1 b - e shows four selected AFM micrographs of SWCNTs in the 

presence of sodium cations (pH 6.5). Nanotube bundles in these images are 2-15 nm 

high and up to 2 µm long. Roughly spherical particles visible in the micrographs are 

a) b) c) 

d) e) 

Figure 7.1. SWCNTs in the presence of Na
+
 at pH 6.5 imaged with TEM (a) and AFM in 

non-contact mode (b, c, d, e). 
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carbonaceous and/or metal impurities from the nanotube powder, which were also 

present in the TEM images. Another structure found in AFM images of this sample is 

patchy films easily visible on the mica surface (indicated by red arrows). This coating is 

about 1-1.5 nm thick and corresponds well with thin film suspended in the holy areas of 

TEM grid (Fig. 7.1 a). Different, more angular shapes of the coating probably result 

from the damage caused by drying in the areas with no substrate (carbon film) and thus 

no support. Indeed, on the carbon film the patchy coating takes more oval shapes 

although it is less clearly visible with considerably reduced contrast, which suggests that 

the coating is very thin. 

Remarkably good agreement between the AFM and TEM images was found for 

the sample with calcium cations at pH 6.5 (Fig. 7.2). Both techniques showed thick and 

a) b) c) 

d) e) 

Figure 7.2. SWCNTs in the presence of Ca
2+

 at pH 6.5 imaged with TEM (a) and AFM in 

non-contact mode (b, c, d, e). 
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dense clumps of nanotube bundles, which is consistent with visual examination of the 

samples (Fig. 5.2). 

To examine pH effect on the suspensions, one set of samples, i.e. SWCNTs in 

the presence of SRHA and Na
+
 was imaged in all three pHs analysed with TEM: 3, 6.5 

and 10 (Fig. 7.3). It was hard to see any consistent difference in the morphologies of 

nanotubes between high and low pH. It should be noted, however, that at pH values if 

6.5 and 10 mica surface was significantly cleaner, and at the highest pH in particular, 

finding nanotubes on the substrate was troublesome ( Fig. 7.3 e & f and h & i). At low 

pH (lower than 4) oxidised nanotubes show less negative surface charge in aqueous 

suspensions [Schierz and Zaenker, 2009], which may facilitate adsorption onto the 

mica. 

For humic acid at different pH values, similar observations as in case of TEM 

were made: numerous particles at low pH (i.e. 3) and few in higher pH (i.e. 6.5 and 10). 

In the images obtained for the sample at pH 3 (Fig. 7.3. b & c) evenly spread 

homogenous aggregates of spherical SRHA particles can be identified with the coating 

thickness of about 3 nm, which is in good agreement with previous findings [Plaschke 

et al., 1999; Liu et al., 2000; Chen et al., 2007B]. Significantly less evident presence of 

humic acid at high pH has been reported elsewhere (at lower pH the surface coating 

formed by humic acid is considerably more profound) [Plaschke et al., 1999]. Similarly 

as in the case of nanotubes, this effect can be attributed to the less negative surface 

charge at lower pH values. 

 

 

 

a) 
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Considerably thicker (up to 15 nm) coating of humic acid was found in the 

presence of calcium cations (Fig. 7.4 b, c, d and e). Humic acid aggregates and nanotube 

bundles form dense and compact patches, which were observed with both microscopy 

techniques (Fig. 7.4). 

 

e) 

a) c) b) 

d) f) 

h) i) g) 

Figure 7.3. SWCNTs in the presence of SRHA and Na
+
 at pH 3 (a, b, c), pH 6.5 (d, e, f) 

and pH 10 (g, h, i) imaged with TEM (a, d, g) and AFM in tapping mode (b, c, e, f, h, i). 
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The morphology of the sample with lake water encompasses structures reported 

for the previous samples: nanotube bundles networks, mica coating, and larger spherical 

particles (Fig. 7.5). Due to the unknown composition of the natural water is it 

impossible to identify entities incorporated in the entangled nanotube clumps. 

 

 AFM proved to be a powerful tool for the examination of SWCNTs in aqueous 

solutions and their interactions with natural aquatic colloids. Observed morphologies 

are in a good agreement with the TEM results for all analysed samples. For both 

techniques, samples represented by microscopy specimens were very heterogeneous, 

with some areas tightly packed with particles as well as huge regions with no sample on 

the substrate. Additionally, within the same sample imaged morphologies varied. For 

c) b) a) 

d) e) 

Figure 7.4. SWCNTs in the presence of SRHA and Ca
2+

 at pH 6.5 imaged with TEM (a) 

and AFM in non-contact mode (b, c). 
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example, in the presence of humic acid some areas showed SRHA aggregates 

incorporated in the nanotube bundles networks and elsewhere SWCNTs with no 

distinguishable humic material (e.g. Fig. 7.3 e and f). Such inconsistency can be partly 

attributed to the specimen preparation method since air-drying causes major aggregation 

and uneven distribution of the sample on substrate. In the case of TEM, 

ultracentrifugation onto the grid proved to successfully reduce such undesired effects 

(which was discussed in chapter 6). It is thus recommended that the AFM specimen 

preparation protocol should follow a similar approach, i.e. ultracentrifugation of 

samples onto mica. 

 

 

  

c) b) a) 

d) e) 

Figure 7.5. SWCNTs in the presence of natural lake water at pH 6.5 imaged with TEM (a) 

and AFM in non-contact mode (b, c, d and e). 
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7.4 Average bundle height measurements 

 

The lateral resolution of AFM is limited by the radius of curvature of the 

scanning tip [Keller, 1991]. Due to nonideal shape (finite sharpness) lateral dimensions 

measured with AFM might be largely overestimated (see also Fig. 3.1). Secondly, 

during adsorption onto mica spherical natural aquatic colloid particles may undergo 

flattening, which might be further enhanced by drying (although not as severe as with 

TEM). Consequently, the lateral dimension of such particles can be more than an order 

of magnitude bigger than the diameter of the spherical particle in its native aqueous 

state [Balnois et al., 1999; Lead et al., 2005]. For these reasons, AFM uses height rather 

than width measurements for aquatic colloid characterisation [Doucet et al., 2004; 

Baalousha and Lead, 2007; Chen et al., 2007B; De Momi and Lead, 2008]. 

The same approach was applied in this study to quantify the morphology of 

SWCNTs in the presence of aquatic colloids with AFM. Figure 7.6 illustrates AFM 

height measurements with XEI software by Park Systems. The thicker bundle on the left 

is 5.5 nm high, the thin one on the right – 0.8 nm, the spherical particle is 47.2 nm high 

and the measured thickness of the surface coating is 1.2 nm. Depending on the 

availability of nanotubes on the mica, between 28-83 such bundle heights measurements 

were taken for each sample scanned with AFM in the non-contact mode to arrive at an 

average dimension representing bundle diameter. 
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The results including standard deviation and count number are presented in Table 7.1. 

 

Figure 7.6. AFM height measurements with XEI software for bundle height, particle 

height and thickness of surface coating. 
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average 
height 
in nm 

standard 
deviation 

in nm 
count 

1 SWCNT + Na
+
, pH 6.5 6.8 3.4 80.0 

2 SWCNT + Ca
2+

, pH 6.5 9.0 4.0 83.0 

3 SWCNT + SRHA + Na
+
, pH 3 6.2 2.7 83.0 

4 SWCNT + SRHA + Na
+
, pH 6.5 7.9 6.9 36.0 

5 SWCNT + SRHA + Na
+
, pH 10 5.6 2.6 28.0 

6 SWCNT + SRHA + Ca
2+

, pH 6.5 10.1 4.2 70.0 

7 SWCNT + NW, pH 6.5 6.9 3.6 81.0 

 

Table 7.1. Average nanotube bundle AFM heights (non-contact mode). 

 

Statistical calculations 

Results presented in table 7.1 were also further analysed with SPSS software with one 

sample Kolmogorov-Smirnov test (with α=0.05) to assess the normality of the data 

distributions. Two samples did not show a normal distribution (SWCNT + SRHA + Na
+
 

at pH 3 and 6.5). To determine which samples show statistical difference a Mann-

Whitney U test at α=0.05 has been performed with SPSS software (Table 7.2). 

column 
no 1 2 3 4 5 6 7 

1        

2        

3        

4        

5        

6        

7        

 

Table 7.2. Statistical calculations for average bundle AFM height (α=0.05):  - 

difference,  - no difference, column numbers correspond with Table 7.1. 

 

 

Additionally, since the availability of nanotubes on the mica was limited (especially for 

two samples: SWCNT + SRHA + Na
+
, pH 6.5 (36 measurements) and SWCNT + 

SRHA + Na
+
, pH 10 (28 measurements)), the minimum sample size, nmin, was 

determined with the equation [Zar, 1999]: 
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        (7.1) 

where: 

s
2
 – estimate of the population variance (calculated as a variance of the available height 

measurements) 

tα(2),(n-1) - two-tailed critical value of Student's t with n-1 degrees of freedom 

d± - half-width of the confidence interval i.e. the mean bundle thickness is to be 

estimated to within ± d (d± was assumed at 1 nm, i.e. the confidence interval of 2 nm). 

Results for a confidence level of 95 % are summarised in Table 7.3. 

 

sample nmin count 

SWCNT + Na
+
, pH 6.5 47 80 

SWCNT + Ca
2+

, pH 6.5 63 83 

SWCNT + SRHA + Na
+
, pH 3 29 83 

SWCNT + SRHA + Na
+
, pH 6.5 181 36 

SWCNT + SRHA + Na
+
, pH 10 29 28 

SWCNT + SRHA + Ca
2+

, pH 6.5 69 70 

SWCNT + NW, pH 6.5 53 81 

 

Table 7.3. Minimum sample size v number of AFM height measurements for nanotube 

bundle AFM heights (α = 0.05) 

 

 

For two samples, in the presence of Na
+
 and SRHA at pH 6.5 and 10, the calculated 

average bundle height is not statistically reliable due to the minimum sample size being 

larger than the number of measurements taken. Especially, the sample with Na
+
 and 

SRHA at pH 6.5 has a nmin five times higher than the obtained number of AFM heights 

(count), which is a result of a high variance for this sample (standard deviation is 87 % 

of the result; see Table 7.1). 

The lowest average bundle height of 5.6 nm was found in the sample with Na
+
 

and SRHA at pH 10, surprisingly even lower compared to the sample without humic 

nmin = 
s

2
 ·

 
t
2

α(2),(n-1) 

 d±
2 
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acid (6.8 nm). As has been mentioned above, however, finding nanotubes on mica for 

the latter sample was troublesome, which is shown by the lowest number of 

measurements taken and statistical calculations of nmin, which suggest that the average 

bundle height for this sample is not statistically representative. 

Consistent with visual observations (Fig. 5.2) the biggest bundle diameters were 

calculated for the sample with Ca
2+

 (9 nm), especially in the presence of SRHA (10.1 

nm), although there is no statistical difference between the average bundle heights for 

these two samples (Table 7.2). Similarly in case of the samples with Na
+
 at pH 6.5, the 

average bundle height in the presence of SRHA is higher (6.7 nm v 7.9 nm) but the 

difference cannot be confirmed with statistical calculations (Table 7.2). The average 

bundle height (and its standard deviation) in the presence of the lake water is very 

similar to the average bundle height in the presence of Na
+
 (6.9 nm v 6.8 nm) (Table 

7.1). 

The only sample not showing any statistical difference in the majority of cases 

(with the exception of when compared to SWCNT in the presence of Ca
2+

 at pH 6.5) is 

SWCNT with Na
+
 and SRHA at pH 6.5 (Table 7.2). It should be noted, however, that 

with a very high standard deviation (and sample variance) the measurements taken for 

this sample are not sufficient to represent it with a reasonable confidence level (Table 

7.3). Even if the nmin slightly higher than count for the sample with humic acid and Na
+
 

at pH 10 is neglected, the influence of pH with two extreme values (3 and 10) cannot be 

confirmed. Although at lower pH the average bundle height is higher, there is no 

statistical difference between low and high pH values. 

For all samples the standard deviation was high, even up to 87% of the average 

bundle height. Apart from different morphologies in different samples (e.g. coating with 
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humic acid), such a big range in measurements can be attributed to a different number 

of single nanotubes in a bundle, which results from the production method [Journet et 

al., 1997].  



Ch.7. SWCNTs with AFM 

165 

 

7.5 Comparison of TEM average bundle thickness and AFM average bundle 

height measurements 

 

As has been discussed in one of the previous sections (7.3), AFM and TEM are 

two complementary techniques to image SWCNTs in the aqueous suspensions. The 

observed morphologies were remarkably consistent although the imaging mechanisms 

for both microscopy techniques are essentially different. 

 For both techniques samples have been characterised quantitatively by bundle 

diameters represented by the average bundle thickness in the case of TEM (table 5.2) 

and average bundle height in the case of AFM (table 7.1). All the results are gathered in 

one table for convenience and can be compared in Table 7.4.  

    AFM TEM 

SWCNT + Na+, pH 6.5 

average height/thickness in nm 6.8 9.9 

standard deviation in nm 3.4 4.6 

count 80.0 125 

SWCNT + Ca2+, pH 6.5 

average height/thickness in nm 9.0 9.7 

standard deviation in nm 4.0 3.1 

count 83.0 152 

SWCNT + SRHA + Na+, pH 3 

average height/thickness in nm 6.2 16.1 

standard deviation in nm 2.7 4.7 

count 83.0 123 

SWCNT + SRHA + Na+, pH 6.5 

average height/thickness in nm 7.9 13.1 

standard deviation in nm 6.9 5.7 

count 36.0 164 

SWCNT + SRHA + Na+, pH 10 

average height/thickness in nm 5.6 21.1 

standard deviation in nm 2.6 6 

count 28.0 90 

SWCNT + SRHA + Ca2+, pH 6.5 

average height/thickness in nm 10.1 14.3 

standard deviation in nm 4.2 4.3 

count 70.0 101 

SWCNT + NW, pH 6.5 

average height/thickness in nm 6.9 9 

standard deviation in nm 3.6 3.5 

count 81.0 96 

 

Table 7.4. Comparison of the average SWCNT bundle thicknesses measured with TEM 

and average SWCNT bundle heights measured with AFM. 
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In general, there is good agreement (within a few nm) between TEM and AFM 

measurements. In all cases TEM thicknesses exceed AFM heights. The most remarkable 

discrepancy was found for the sample with Na
+
 and humic acid at pH 10 (by a factor of 

3.8). The best agreement between techniques was recorded for SWCNT in the presence 

of Ca
2+

 at pH 6.5. TEM thickness is a lateral dimension and can be overestimated due to 

flattening of particles, which takes place during adsorption to the TEM grid and air-

drying and was reported for humic acid aggregates [Balnois et al., 1999; Lead et al., 

2005]. This phenomenon was discussed at the beginning of the previous section (7.4). 

On the other hand, searching unevenly covered sample is much easier and 

quicker in case of TEM and consequently in all samples considerably more nanotubes 

were found in the TEM microscopy specimens. Fewer measurements in case of AFM 

produce results less reliable statistically, i.e. less credible and representative. 

Generally speaking, qualitative results obtained with TEM and AFM are in good 

agreement and complementary. Qualitative results, however, show remarkable 

discrepancies between different samples in average nanotube dimensions as well as 

general trends of them. 
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7.6 Tapping v non-contact mode 

 

In this study, all samples listed in chapter 7.2 were scanned in both tapping and 

non-contact modes. Theoretical differences between the two modes are discussed in 

section 3.2.1. The obtained morphologies showed no apparent differences. To quantify 

the comparison, heights of the same nanotubes were measured in both modes. Figure 

7.7 illustrates the comparison procedure. 

 

A selected nanotube was measured in the same place in the non-contact and the tapping 

modes. In the former case it was 9.2 nm high, in the latter 10.6 nm high – in the non-

contact mode the height was 8.2% smaller. The same procedure was repeated 100 times 

for different randomly selected nanotube bundles in different samples. It is conceivable 

tapping mode non-contact mode 

Figure 7.7. AFM height measurements in non-contact and tapping modes. 
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that the tapping contact between the sample and the tip in the dynamic force mode could 

modify the sample surface so 100 comparison measurements were taken under two 

scenarios: (a) when the sample was scanned in the tapping mode first and (b) when the 

sample was scanned in the non-contact mode first (Table 7.5). The statistical test did not 

show a difference between the measurements in both cases. (since one out of four 

datasets did not show a normal distribution as tested with the one sample Kolmogorov-

Smirnov method, Mann-Whitney U test at α=0.05 with SPSS software was used). 

 

  

tapping first (a)     non-contact first (b) 

non-contact 
(a) 

tapping 
(b)     

non-contact 
(a) 

tapping 
(b) 

number of comparisons 100     100 

average AFM height 8.8 9.6     10.6 10.3 

a v b statistically no difference     no difference 

a v b on average + 7.2 %     - 1.0 % 

 

Table 7.5. Comparison of non-contact v tapping mode measurements (when sample 

scanned in the tapping mode first or non-contact mode first). 

 

 

Nevertheless, when the sample was first analysed in the tapping mode, the tapping 

mode bundle height was on average 7.2 % bigger than in the non-contact mode (Table 

7.2). When the non-contact mode was applied first, the tapping bundle height was on 

average 1 % smaller than in the non-contact one. This result suggests that the tapping 

interaction between the tip and the sample modifies slightly the surface of studied NPs. 

A similar reduction in the particle size scanned in the tapping mode was reported for 

antibody molecules [San Paulo and Garcia, 2000]. Particles were measured in the 

attractive regime (non-contact mode), scanned in the repulsive regime (tapping mode) 

and then re-measured in the attractive regime. The average size reduction by a factor of 
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1.8 was calculated implying some sort of sample damage. It has been reported 

previously that the forces exerted on a sample in the tapping mode are comparable to 

those in the contact mode [Spatz et al., 1995] with the main advantage of the tapping 

mode being the elimination of shear forces. 
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8 RESULTS: METAL SPECIATION IN AQUEOUS SUSPENSIONS OF SINGLE-

WALLED CARBON NANOTUBES 

 

8.1 Summary 

 

This chapter presents metal speciation results for aqueous suspensions of 

SWCNTs. The experiments involved analysing three sets of SWCNTs samples at a pH 

range ~ 4-9: in the presence of Na
+
, in the presence of Na

+
 and SRHA and in the 

presence of Ca
2+

. 

Experimental techniques used in this chapter (DGT and ICP-MS) have been 

introduced previously (chapter 3.2.3 and 3.2.4). Chapter 8.2 explains the experimental 

design, which included total metal concentrations, metal concentrations in filtrates and 

ultrafiltrates and Diffusive Gradients in Thin-films (DGT) measurements. The aim of 

this work was to determine which fractions of the total amount of metal are bound to 

aggregates with sizes bigger and smaller than 1.2 µm as well as dissolved and labile 

metal fractions and how the presence of Na
+
, Ca

2+
 and SRHA influences this 

partitioning. 

 A selection of five metals was included in the experiments: Ni, Y, Cr, Cu and 

Cd. Of these, Y and Ni are inherently present in the SWCNT powder used in the 

experiments. Metallic catalysts are commonly used in production of commercially 

available carbon nanotubes, which is discussed in chapter 8.3. The remaining metals 

(Cr, Cu and Cd) were spiked into the suspension.  

 The next four sections (8.4 – 8.7) present and discuss the results. 
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8.2 Experimental design 

 

Metal speciation in aqueous suspensions of SWCNTs was determined by measuring 4 

different metal concentrations in the same sample (Fig. 8.1): 

1. Total metal concentration in the sample 

2. Metal concentration in the 1.2 µm filtrate (mixed cellulose esters membrane, 

Millipore, nominal pore size 1.2 µm) 

3. Metal concentration in 1 kDa ultrafiltrate (regenerated cellulose membrane, 

Millipore, nominal pore size 1 kDa NMWL) 

4. DGT metal concentration in the sample (i.e. labile metal concentration). 

 

 

Figure 8.1. Schematic representation of the experimental design for metal speciation in 

aqueous suspensions of SWCNTs. 

ICP-MS 

total 

1.2 µm 

1 kDa 

DGT 
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All laboratory glassware, utensils and instruments having any contact with samples 

were stored in an acid bath and thoroughly rinsed with ultrapure water prior to the 

experiments. 

Due to time constraints, a selection of 3 sets of samples (out of 9 from previously 

analysed with TEM, chapter 5.2) were made. 500 mL test samples including: 

1. SWCNT (10 ppm) with Na
+
 (13 ppm, the same as in NW used) 

2. SWCNT (10 ppm) with Na
+
 (13 ppm) and SRHA (10 ppm) 

3. SWCNT (10 ppm) with Ca
2+

 (45 ppm, the same as in NW used) 

were prepared from stock solutions, for which the preparation protocol is explained in 

chapter 3.1. All three sets of samples were analysed in a pH range of about 4-9 (5 

different pH values for each set of samples). The pH was adjusted with small amounts 

of 1M TraceSELECT® HNO3 and 1M NaOH (stored with chelex resin granules to 

remove any trace metals present in sodium hydroxide pellets). The pH was monitored 

and readjusted for 3-4 days until reasonable stability was achieved (± 0.3 over 24 h). 

Samples with stable pH were filtered and analysed according to the protocol explained 

in Fig. 8.1. Before ICP-MS measurements, samples were acidified with 

TraceSELECT® HNO3 to pH ca. 2. 

Binding (chelex impregnated) gel and open pore diffusive gel (to allow detection 

of organic and inorganic metal species) used for DGT measurements were supplied by 

DGT Research Ltd. As instructed by the supplier, the binding gel was refrigerated and 

stored in ultrapure water and diffusive gel with a thickness of 8 mm was stored at room 

temperature in 0.01M NaNO3. A filter paper 0.14 mm thick with nominal pore size of 

0.45 µm made of hydrophilic polyethersulfone (PALL, Gelman Laboratory) was cut to 

the right size with ceramic blade scissors (to minimise contact with metals), washed in 
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10% HNO3 for 24 h and then repeatedly rinsed in ultrapure water prior to use. All 

laboratory glassware and utensils used to assemble and deploy DGT devices (plastic 

tweezers, trays, vials and gel cutters) were stored in an acid bath and thoroughly rinsed 

with ultrapure water. Before deployment the assembled DGT devices (3 per sample) 

were soaked for 1h in 0.01M NaNO3 (the solution was purified from any trace metals 

present in sodium nitrate salt by adding chelex granules). The assembly of the DGT 

devices took place in a Class-100 laminar flow cabinet to avoid contamination. 

To ensure complete immersion, the µ-DGT devices were weighed down by 

adding a plastic screw and 5 nuts to each device. During the deployment time of 6 

hours, the samples were shaken at 140 rpm and maintained at a constant temperature of 

20 °C. At the end of the experiment, the binding gel was removed from the devices and 

eluted in high purity nitric acid solution. Metal content accumulated on the gel discs 

was determined with inductively coupled plasma mass spectrometry, ICP-MS (Thermo 

Elemental, X7). To compensate for the amount of metal that stays on the chelex layer, 

an elution factor of 0.8 was used for calculations.  
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8.3 Choice of metals to be analysed. Metal impurities in commercially available 

carbon nanotubes 

 

According to the manufacturer‘s specifications, SWCNTs used throughout the 

experimental work (acid functionalized, 80-90% pure purchased from Sigma Aldrich) 

are contaminated with catalyst residue of nickel and yttrium. To verify this, metal 

content in acid washed (in 1M HNO3) aqueous suspension was measured with ICP-MS. 

This confirmed that in 10 ppm solution of SWCNTs, Ni and Y are present in 

concentrations of ~20 ppb and 10 ppb respectively (i.e. SWCNT powder is 

contaminated with 0.2 % of Ni and 0.1 % of Y) (Table 8.1). These two metals 

inherently present in SWCNT powder were to be analysed in all samples outlined in 

chapter 8.2. The list of metals of interest was expanded to include copper, chromium 

and cadmium, which were spiked into aqueous suspensions in the form of 1000 ppm 

standard solution (purchased form Fisher Scientific) to obtain the concentration of 50 

ppb for each of added metals. 

To analyse and compare metal contamination in manufactured CNTs, six other 

types of commercially available products were analysed for the five chosen metals (Ni, 

Y, Cu, Cr and Cd). The complete list of CNT powders analysed with ICP-MS includes: 

A. SWCNT (Sigma Aldrich), carboxylic acid functionalized, bundle diam. × length 

at 4-5 nm × 0.5-1.5 µm (with the average diameter of individual nanotubes 1.4 ± 

0.1 nm) 

B. Short SWCNT (Sigma Aldrich), 90 % pure, diam. × length at 1-2 nm × 0.5-2 μm 

C. MWCNT (Sigma Aldrich), > 95 % pure, outer diam. × internal diam. × length at 

7-15 nm × 3-6 nm × 0.5-200 μm 

D. SWCNT (Elicarb), high purity 
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E. MWCNT (Elicarb), high purity 

F. SWCNT (Cheap Tubes), > 90% purity, outer diam. × length at 1-2 nm × 5-30 

μm 

G. MWCNT (Cheap Tubes), > 95% purity, outer diam. × length at < 8 nm × 10-30 

μm 

 

The results are summarised in table 8.1. Nickel is the most common contaminant 

and it was found in 4 products. Metals used for spiking the samples (Cr, Cu and Cd) 

were not found in any of the nanotube powders. 

 

type of 
NT 

CONCENTRATION (%) 

Cr Ni Cu Y Cd 

A < LOD 0.21 < LOD 0.10 < LOD 

B < LOD < LOD < LOD < LOD < LOD 

C < LOD 0.21 < LOD < LOD < LOD 

D < LOD < LOD < LOD < LOD < LOD 

E < LOD 0.20 < LOD < LOD < LOD 

F < LOD < LOD < LOD < LOD < LOD 

G < LOD 0.22 < LOD < LOD < LOD 

 

Table 8.1. Metal impurities in commercially available carbon nanotubes powders  

(LOD – limit of detection, i.e. 0.1 ppb for Y and Cd and 0.2 ppb for Cr, Ni and Cu). 
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8.4 SWCNT in the presence of Na
+ 

 

Fig. 8.2 presents absolute and relative (to the total concentration) nickel and 

yttrium concentrations in a pH range ~4-9 in 10 ppm SWCNT aqueous suspension in 

the presence of Na
+
 (conc. 13 ppm, the same as in the natural lake water used in 

experiments described in chapters 5, 6 & 7). 

The total concentration of Ni, ca. 20 ppb is reduced to 8-15 ppb (40-70%) after 

filtration through a 1.2 µm membrane. The largest loss occurs at pH 4.8, which means 

that the biggest fraction of nickel (59 %) was bound to aggregates with sizes over 1.2 

µm. The possible explanation is that Ni is more labile or present as smaller complexes 

Figure 8.2. Nickel and yttrium speciation in aqueous suspensions of SWCNTs in the 

presence of sodium cations in a pH range ~ 4-9 (in ppb and related to the total 

concentration) (dashed line used for contaminated samples). 



Ch.8. Metal speciation in SWCNTaq 

177 

 

(e.g. inorganic dissolved complexes). Ultrafiltration was used to remove all NPs and to 

represent the dissolved metal fraction by metal content in the ultrafiltrate. As expected, 

more nickel is dissolved in low pH, which can be explained by increased competition 

between Ni ions and H
+
 on nanotube carboxylate binding sites. At pH 3.8 the 

concentration of nickel in the ultrafiltrate reaches 61 % of the total. At pH 4.8 the 

amount of Ni that passes through the ultrafilter is considerably smaller (33 %) and for 

the rest of the pH range it is constant at around 20%. In other words, CNTs act as an 

effective sorbent towards Ni, especially at neutral and alkaline pH and this property has 

been previously reported [Lu and Liu, 2006; Duran et al., 2009]. DGT results for this set 

of samples cannot be interpreted since there is strong evidence for major contamination 

(i.e. concentrations bigger or close to total nickel concentration). DGT measured Ni is 

unrealistically high (84-174 % of the total) and in all cases significantly higher than 

dissolved metal in the 1 kDa filtrate. 

 The second catalytic contaminant in CNT powder, yttrium shows distinctively 

different behaviour (Fig. 8.2). Total concentration of yttrium is 8-10 ppb. Ultrafiltration 

and DGT results imply that no yttrium is dissolved or chemically labile (concentrations 

of Y in these samples are below the limit of detection for the ICP-MS, which is 0.1 

ppb). All yttrium mass is distributed between particles with sizes below and above 1.2 

µm. At lower pH values (3.8 and 4.8) 55-56% of yttrium is bound to the < 1.2 µm size 

fraction, presumably either strongly associated with the CNTs or present as oxides. This 

proportion increases to 85% at pH 6.1 and stabilises at around 77% for the remaining 

pH values (8 and 9.2). 

Chromium was mostly bound to the smaller size fraction, i.e. < 1.2 µm, which 

has higher specific surface area and thus more binding sites (Fig. 8.3). Only 0-8% is 
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retained by the 1.2 µm membrane. In fact, the ultrafiltration results suggest that little 

chromium is absorbed effectively to SWCNTs. The amount of metal that passes through 

the 1 kDa ultrafilter is also high with 75-99 % of the total chromium passing through 

the membrane. For both filters the highest concentration of chromium in the filtrate is 

found at pH 6.1 (no particle-bound chromium). In all analysed pH values, 32-34 % of 

the total amount of chromium in the samples is detected by DGT. It is considerably less 

than dissolved chromium in the ultrafiltrate. Possibly the deployment time of 6 h is too 

short for some of the dissolved metal (about 40-65 %) to diffuse through the DGT gel 

layer. 

More efficient metal sorption to SWCNTs was recorded in case of copper. A 

similar trend for 1.2 µm filtration as in case of Ni and Y can be observed. 58 and 55 % 

of the metal is found in the 1.2 µm filtrate at pH 3.8 and 4.8 respectively. For the 

remaining three samples (pH 6.1, 8 and 9.2) this amount stabilises at 79-83 %. The 

highest dissolved copper concentration (i.e. in the 1 kDa filtrate) occurs in the lowest 

pH of 3.8 and equals 19 ppb (36 % of the total). At pH 4.8, 1kDa filtrate contains 9 ppb 

(18 % of the total) and for the remaining pH values it is 6-7 ppb (11-13 % of the total). 

Less efficient sorption of Cu onto SWCNTs in acidic conditions can be explained by the 

presence of H
+
 ions, which compete with the metal ions for negatively charged sorptive 

sites on the surface of nanotubes. DGT measurements for this set of samples are 

contaminated and cannot be interpreted. Considerable amounts of seemingly DGT 

available Cu cannot be explained, especially since concentrations of dissolved Cu are 

low at the same time. 
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 Similar fractions of Cd are recorded for 1.2µm and 1 kDa filtrates at the lowest 

pH of 3.8 (68 and 65 % respectively). This result implies that very little Cd is bound to 

Figure 8.3. Chromium, copper and cadmium speciation in aqueous suspensions of 

SWCNTs in the presence of sodium cations in a pH range ~ 4-9 (in ppb and related to 

the total concentration) (dashed line used for contaminated samples). 
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the smaller SWCNTs fraction in acidic conditions. By calculating the mass balance, 

only 32 % of the total cadmium can be allocated to the particle-bound fraction, and the 

majority to largest CNTs aggregates. These results suggest that particle-bound cadmium 

is trapped inside nanotube aggregates, rather than adsorbed onto the surface of NPs. At 

pH 3.8 65 % of the total cadmium passes through the 1 kDa filter, which again can be 

explained by competition of H
+
 with metal ions. Similarly to copper and yttrium, the 

higher amounts of cadmium pass through the 1.2 µm filter at higher pH values (neutral 

and alkaline). For the dissolved cadmium concentration, there is a similar but more 

profound trend as for copper and nickel: the higher pH, the higher sorption efficiency of 

CNTs towards cadmium (up to 89 %), which can be explained by reduced competition 

from H
+
 and stronger electrostatic attraction between metal cations and a more 

negatively charged SWCNT surface. Considerable amounts of cadmium were measured 

with DGT in all analysed samples in the presence of Na
+
. There is a consistent, 

approximately linear dependency: the higher the pH, the more metal is bound on the 

chelex resin (56-82 % of the total concentration). Higher labile (DGT) than dissolved (1 

kDa filtrate) Cd concentrations suggest that some nanotubes with adsorbed cadmium 

diffused through the gel pores.  

  



Ch.8. Metal speciation in SWCNTaq 

181 

 

8.5 SWCNT in the presence of Na
+
 and SRHA 

 

Fig. 8.4 presents nickel and yttrium speciation in aqueous suspension of SWCNTs 

(10 ppm) in a set of samples at a pH range of ~ 4-9 in the presence of Na
+
 (13 ppm) and 

SRHA (10 ppm). 

 Nickel measurements for these samples are similar to those in the absence of 

humic acid (Fig. 8.2). At lower pH less nickel passes through a 1.2 µm filter (64 % at 

pH 3.8, 48% at pH 4.9 and 57% at pH 5.9). At higher pH values, 6.8 and 8.8, this 

Figure 8.4. Nickel and yttrium speciation in aqueous suspensions of SWCNTs in the 

presence of sodium cations and humic acid in a pH range ~ 4-9 (in ppb and related to 

the total concentration) (dashed line used for contaminated samples). 
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amounts to 74 % and 78 % respectively. Ultrafiltration results suggest that 45 – 100 % 

of nickel is bound to particulate matter. However, the presence of humic acid increased 

particle bound metal concentration. This can be explained by the sorptive properties of 

aquatic organic matter, which are well documented in the literature [Martin and Dai, 

1995; Lead et al., 1999; Tipping et al., 2002; Koukal et al., 2003]. The amount of nickel 

in the 1 kDa filtrate is inversely proportional to the pH value. With figures bigger than 

total nickel concentrations, DGT measurements for this set of samples are contaminated 

and cannot be interpreted. 

 In the presence of humic acid, yttrium concentrations in the 1.2 µm filtrate 

versus pH show a roughly linear relationship: the higher the pH, the more yttrium is 

found in the fraction with aggregates smaller than 1.2 µm (Fig. 8.4). The proportion of 

yttrium found in this size fraction amounts to 44 % at the lowest pH and decreases to 88 

% at the highest pH value. The presence of humic acid decreased the amount of Y 

bound to the < 1.2 µm fraction at low pH values and increased it in alkaline conditions. 

It can be explained by better sorption of metals by humic acid particles at higher pH 

values [Pourret et al., 2007]. Ultrafiltration and DGT results are the same as in the 

absence of humic acid: yttrium concentrations in all these samples are below the limit of 

detection, which suggests there is no dissolved or labile yttrium. 

 The presence of humic acid did not significantly change chromium speciation in 

aqueous suspensions of SWCNTs. Again, most of the metal occurs in the <1.2 µm size 

fraction: at lower pH less than at higher pH (79 % at pH 3.8, around 100 % in other 

samples). Ultrafiltration results imply that at more alkaline pH than ~ 6 almost all 

chromium is dissolved. In acidic conditions the 1 kDa filtrate contains considerably less 

chromium (51 % of the total Cr concentration at pH 4.9 and 15 % at pH 3.8). These 
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results are in line with the previously reported high efficiency of Cr sorption from 

aqueous solutions of CNTs at low pH values with no absorption taking place for pH 

values > 6 [Hu et al., 2009]. The sorption mechanism is metal complexation (rather than 

ion exchange). Dissolved chromium occurs in negatively charged ion groups (such as 

HCrO4
−
, Cr2O7

2−
 and as CrO4

2−
), which are easier adsorbed to SWCNTs surface –

COOH groups protonated to CxOH2
+
 at acidic pH [Hu et al., 2009]. This effect is 

additionally intensified by the presence of HA, which also absorbs Cr much more 

efficiently at low pH [Li et al., 2008D]. DGT chromium concentration peaks at neutral 

pH (30 and 33 % of the total chromium at pH 5.9 and 6.8 respectively). The lowest 

DGT chromium concentration was measured at the lowest pH (8% of the total). For 

neutral and alkaline pH values the DGT deployment time is insufficient for the majority 

of dissolved metal measured in the 1 kDa filtrate to dissociate during diffusion through 

the gel layer. 

In the presence of humic acid, more copper is found in the < 1.2 µm size fraction 

(Fig. 8.3 and 8.5), which can be attributed to the increase in sorption efficiency by 

added humic material. Similarly, in all analysed pH values, the amount of dissolved 

copper (which passes through a 1 kDa membrane) is lower than in the sample without 

humic acid. In other words, humic acid particles increase the amount of copper bound 

by particulate matter in the sample. The highest concentration of dissolved copper was 

found at the lowest pH (28 %). At all other pH values, only up to 5 % of the total copper 

is found in the ultrafiltrate. Very high figures for DGT measurements undermine their 

credibility suggesting sample contamination with external copper sources. 
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Concentrations of cadmium in the 1.2 µm filtrate are similar in the presence and 

absence of humic acid (Fig. 8.3 and 8.5). At the lowest pH, i.e. 3.8, 66 % of the total 

Figure 8.5. Chromium, copper and cadmium speciation in aqueous suspensions of 

SWCNTs in the presence of sodium cations and humic acid in a pH range ~ 4-9 (in ppb 

and related to the total concentration) (dashed line used for contaminated samples). 
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cadmium is found in the 1.2 µm filtrate in the sample with humic acid (68% without 

SRHA). Also in both sets of samples, the lowest fraction of Cd in the 1.2 µm filtrate 

was found at pH ~ 5 (40 % in the sample with humic acid, 46 % in the sample without 

HA). For the three remaining samples (pH 5.9, 6.8 and 8.8), the concentration of Cd 

passing through the 1.2 µm increases: 60 %, 72 % and 88 % respectively, which also 

compares well with the results in the absence of humic acid (around 80% for all three 

samples). However, in case of dissolved cadmium measured in the 1 kDa ultrafiltrate 

samples only at the lowest pH (~4) there is satisfactory agreement regardless of the 

presence or absence of humic acid (66% with SRHA, 65 % without SRHA). For all the 

remaining four pH values, the presence of humic acid considerably reduces the amount 

of dissolved cadmium (from 22-35 % in the samples with no HA to 0-8 % in the 

presence of SRHA). Samples analysed by the DGT technique cannot be interpreted due 

to unrealistic results (close to or over 100 % of the total cadmium concentration). 
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8.6 SWCNT in the presence of Ca
2+ 

 

It has been explained in previous chapters (5 and 7) that the presence of divalent 

cations (like Ca
2+

) causes significant aggregation and precipitation of SWCNTs in 

aquatic environments. No other isolated aquatic colloid or cation studied in this thesis 

(SRHA, PHA, succinoglycan or sodium cations) was found to alter the behaviour of 

SWCNTs suspended in aqueous media to the same degree. Also speciation of the five 

analysed metals (Ni, Y, Cr, Cu and Cd) appears significantly different from the two 

previously presented sets of samples (chapters 8.4 and 8.5). 

 

Figure 8.6. Nickel and yttrium speciation in aqueous suspensions of SWCNTs in the 

presence of calcium cations in a pH range ~ 4-9 (in ppb and related to the total 

concentration) (dashed line used for contaminated samples). 
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 Filtration through a 1.2 µm pore size membrane produced high concentrations of 

nickel in all analysed pH (Fig. 8.6). At the lowest pH (3.8) the sample was contaminated 

and produced an unrealistic recovery of over 200 %. It is also questionable whether the 

very high result for the sample at pH 4.8 (16 ppb, i.e. 87 %) is reliable or whether it is 

also contaminated. At pH 6.4, 60% of the total nickel was measured in the 1.2 µm 

filtrate; at pH 7.8 and 9, 51 % and 41 % respectively, i.e. at higher pH less nickel passes 

through the filter. It can be explained by higher SWCNT aggregates retention on the 

membrane resulting from considerable flocculation of NPs in the presence of Ca
2+

 and a 

competitive role of Ca
2+

 towards binding sites [Wang et al., 1997]. At the same time, 

ultrafiltration results would suggest that the amount of particles passing through the 1.2 

µm membrane is comparable (i.e. very small) with the amount of particles in the 

ultrafiltrate since nickel concentrations are very similar between filtrates and 

ultrafiltrates. The amount of dissolved Ni is significantly higher than in the previous 

two sets of samples, which suggest that in the presence of Ca
2+

, absorption of Ni onto 

the SWCNTs is considerably decreased (possibly due to decreased surface area of 

aggregated CNTs and competition with calcium cations). DGT measurements found 66-

72% of the total nickel in samples at pH 3.8, 4.8 and 6.4. The remaining two samples 

(pH 7.8 and 9) with DGT concentrations of about 100 % of the total Ni concentration 

seem to be contaminated, especially since all previous Ni samples analysed with DGT 

showed strong evidence of contamination (Fig. 8.2 and 8.4). However, the high 

percentage of dissolved Ni at pH < 7 can be confirmed by high labile (DGT) metal 

concentrations. 

 In case of yttrium samples filtered through a 1.2 µm membrane, results are 

similar to those in the presence of Na
+
 and Na

+
 & SRHA only at the lowest pH of 3.8 
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(56% of the total Y concentration was measured in this filtrate) (Fig. 8.6). At all the 

remaining analysed pH values, the amount of yttrium passing through a 1.2 µm filter is 

considerably smaller in the presence of Ca
2+

 (0 – 4 % of the total). Ultrafiltration results 

for all three sets of samples (with Na
+
, with Na

+
 and SRHA, with Ca

2+
) are similar and 

very little yttrium is found in the 1 kDa filtrate (up to 5% in the presence of Ca
2+

). 

However, the DGT results significantly differ in the presence of Ca
2+

 than in the two 

previous sets of samples, where no yttrium was detected. Here, consistently in all 

analysed pH values, 18 - 22 % of the total yttrium concentration is DGT available. 

 Chromium concentrations found in the 1.2 µm filtrates in the presence of Ca
2+

 

(Fig. 8.7) are similar to those in the presence of Na
+
 and SRHA (Fig. 8.5). At lower pH 

(3.8 and 4.8) more chromium is retained on the filter (21 % and 14 % respectively). For 

other pH values (6.4, 7.8 and 9) 95 – 100 % of the total chromium passes though the 

membrane. Very similar concentration versus pH dependence was plotted for 

ultrafiltrated samples: 71 % and 80 % of the total chromium was found in the 

ultrafiltrates at pH 3.8 and 4.8 respectively, and ~ 100% for the remaining pH values 

(6.4, 7.8 and 9). Filtration and ultrafiltration results suggest that there is little Cr 

effectively bound to CNTs (especially at higher pH values). DGT measurements 

revealed ~ 30 % of the total chromium at lower pH. At the highest analysed pH (i.e. 9), 

the biggest fraction of the total chromium amount was detected by the DGT technique 

(46 %). Similarly to the previous samples only a fraction of dissolved Cr dissociates in 

the DGT deployment time. 

 Filtration and ultrafiltration of the samples in the presence of Ca
2+

 produced very 

similar concentration versus pH curves for copper (Fig. 8.7). At acidic pH values (3.8 

and 4.8) significant amounts of copper pass through a 1.2 µm filter (75 % and 30 % of 
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the total Cu concentration respectively) and through a 1kDa membrane (69 % and 37 % 

of the total Cu concentration respectively). Very little copper was measured at pH above 

6 for the 1.2 µm filtrates (1 – 3 % of the total concentration). In the case of ultrafiltrates 

Figure 8.7. Chromium, copper and cadmium speciation in aqueous suspensions of 

SWCNTs in the presence of calcium cations in a pH range ~ 4-9 (in ppb and related to 

the total concentration) (dashed line used for contaminated samples). 
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at the same pH values (above 6) the copper fraction was found to be 12 – 13 % of the 

total concentration. The presence of Ca
2+ 

 significantly increased the amount of Cu 

retained on the 1.2 µm filter (due to higher aggregate dimensions). The DGT results, as 

for previous sets of samples, are implausibly high, which can be regarded as evidence 

for significant contamination of samples. 

 The presence of Ca
2+

 significantly alters Cd partitioning between size fractions 

<1.2 µm and > 1.2 µm (Fig. 8.7). In previous samples the amount of Cd in the 1.2 µm 

filtrate was higher at alkaline pH values (Fig. 8.3 and 8.5), in this sample, however, the 

trend is the opposite; at low pH more cadmium passes through the 1.2 µm membrane. 

Almost all cadmium passes through the 1.2 µm and 1 kDa membranes at pH lower than 

5 (Fig. 8.7). At higher pH these values decrease: for the 1.2 µm filtrates to 66 % at pH 

6.4, 56 % at pH 7.8, down to 49 % at pH 9 and for the ultrafiltrates to 82 % at pH 6.4, 

73 % at pH 7.8, down to 64 % at pH 9. Very similar DGT results were obtained in the 

presence of Ca
2+

 (Fig. 8.7) and Na
+
 (Fig. 8.3). 
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8.7 Summary of the results for the three analysed sets of samples 

 

In the previous three sections (8.4 – 8.6) metal speciation results were presented for 

three sets of samples: 

1) SWCNT (10 ppm) in the presence of Na
+
 (13 ppm) 

2) SWCNT (10 ppm) in the presence of Na
+
 (13 ppm) and SRHA (10 ppm) 

3)  SWCNT (10 ppm) in the presence of Ca
2+

 (45 ppm) 

at a pH range 4-9 for two metals, which are carbon nanotubes powder contaminants (Ni 

and Y) and three metals, which the suspensions were spiked with (Cr, Cu, Cd). Metal 

concentration was measured to determine the total metal content, the amounts of metals 

that are bound to particulate matter (< 1.2 µm size fraction), the amounts of dissolved 

metals (in the 1 kDa ultrafiltrates) and labile (DGT) metal concentrations. 

 Oxidised CNTs have been known for their excellent sorptive properties towards 

trace metals and their complexes and are proposed as sorbents in water treatment plants 

as well as in analytical methods for metal speciation [Lu and Liu, 2006; Rao et al., 

2007; Tuzen and Soylak, 2007; Chen et al., 2009; Duran et al., 2009; Pyrzynska, 2010]. 

The binding mechanisms include two main phenomena: electrostatic attraction between 

negatively charged oxidised CNT surface and metal cations and chemical complexation 

of metals by functional groups. In most cases the sorption onto CNTs strongly depends 

on pH. Where an electrostatic mechanism prevails, sorption efficiency increases with 

pH. This effect is caused by stronger negative charge on the CNT surface at higher pH 

and decreased competition between metal cations and H
+
 (e.g. Ni, Cu, Co, Pb [Lu and 

Liu, 2006; Chen et al., 2009; Duran et al., 2009]). In a situation when the sorption 
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mechanism depends on redox reactions (surface complexation), adsorption is 

significantly more efficient at low pH values (e.g. Ni [Hu et al., 2009]). 

 In this study, yttrium, which is a residue of the catalyst used to produce SWCNT 

by the electric-arc technique, shows distinctively different behaviour to that displayed 

by other analysed metals in all sets of samples, i.e. it is mostly strongly bound to 

SWCNTs in all studied conditions. It is also possible that yttrium occurs in an oxidised 

particulate form, which results in high retention on the filters. 46 – 88 % of the total 

yttrium passed through the 1.2 µm filter in the presence of SRHA and/or Na
+
. At the 

same time no yttrium was found to be dissolved or DGT available, which implies that 

almost all yttrium in these samples is strongly bound to CNTs. However, in the 

presence of calcium cations little yttrium was found in the filtrates and ultrafiltrates but 

a relatively significant proportion of ca. 20 % was detected by DGT. 

 Although nickel, similarly to yttrium, is the catalyst residue and contaminates 

the SWCNTs powder, this metal exhibits different and considerably less distinctive 

behaviour when compared with the metals added to the suspensions. In the sample with 

Na
+
 it produces similar results to copper, in the sample with Na

+
 & SRHA and Ca

2+
 

similar to cadmium. Relatively large fractions of nickel are dissolved and DGT 

available. Fraction of particle-bound nickel increases in the presence of humic acid and 

by acidic conditions. The presence of Ca
2+

 cations, which compete for binding sites, has 

the opposite effect (more Ni in the dissolved fraction). 

 At least 79 % of the total chromium passes through the 1.2 µm filter in all of the 

samples. In most of the samples well over 50% also passes through the 1 kDa 

membrane. DGT measurements for chromium are consistent in all samples (ca. 30 % 

chromium was detected by DGT). Chromium is the only metal analysed in this study, 
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which is more efficiently absorbed onto SWCNT at lower pH values. This effect is 

more profound in the presence of HA. 

 Copper was the only metal that did not produce any credible DGT results. In the 

presence of SRHA and/or Na
+
 and at lower pH in the presence of Ca

2+
, significant 

amounts of copper were measured in the 1.2 µm filtrates (at least 55 % of the total). The 

most dissolved copper was found in the presence of Ca
2+

 (especially at acidic pH) and 

the least at pH > 5 in the presence of Na
+
 and SRHA. 

 In most samples less than 50 % of the total cadmium is retained on the 1.2 µm 

filter. Very little cadmium was found in the ultrafiltrate at pH > 5 in the presence of 

humic acid. On the other hand, the presence of Ca
2+

 resulted in almost 100 % cadmium 

recovery in acidic conditions in case of both filtration and ultrafiltration. DGT results 

suggest that considerable amounts of cadmium are labile, especially at more alkaline 

conditions. 

 It should be noted, however, that these are preliminary results and should be 

confirmed by further experiments. Additionally, trace metal measurements require strict 

and meticulous protocols to ensure there is no contamination from external sources. 

There is strong evidence to suggest that many samples in this work were contaminated, 

especially in case of DGT and copper and nickel. At the time of the experiment the 

ultrapure water system was faulty and produced water contaminated with copper at 0.29 

ppb. 
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9 RESULTS: CHARACTERISATION OF WATER-STIRRED C60 FOR 

TOXICOGENOMICS FISH EXPOSURE STUDY 

 

9.1 Summary 

 

Water-stirred fullerene C60 in concentrations of 0.1 and 0.5 ppm was used in a 

three-spined stickleback exposure experiment. Liver, brain and gill tissues were 

analysed by gene expression profiling (chapter 9.7). This work was carried out by 

Takeshi Kitano, Tim D. Williams, Ioanna Katsiadaki, Matthew B. Sanders and James 

K. Chipman as part of a collaborative project between Birmingham University, 

Kumamoto University (Japan) and Cefas Weymouth Laboratory. 

 Stock suspension of nC60 with nominal concentration of 500 ppm was 

characterised by a number of suitable techniques. To determine size distribution, the 

solution was filtered through 3 membranes with different pore sizes: 1.2, 0.45 and 0.1 

µm. In section 9.3, UV-Vis spectra were used to further quantify and characterise the 

filtrates, supernatant and stock. Calibration curve was prepared with diluted stock 

samples. Light absorbance at 280 nm wavelength was measured for all the samples to 

determine estimated concentrations. After 4 days about 65% of the fullerene mass 

remains suspended (supernatant concentration was found to be 320 ppm) (chapter 9.4). 

 TEM imaging was applied to study morphologies of different aggregate size 

fractions and to calculate size distributions. The results are presented in section 9.5. 

Using TEM micrographs number concentrations for 0.1 and 0.45 µm filtrates were 

estimated (chapter 9.6). Quantification of fullerenes in exposure media was inconclusive 

because of low concentrations.  
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9.2 Filtration and visual inspection 

 

A protocol involving extended water-stirring was applied to suspend C60 in water 

and this is described in more detail in chapter 3.1.2. The apparently insoluble powder 

produces dark brown suspension after 65 days of non-stop stirring. Fig. 9.1 shows the 

suspension of C60 at the start (a) and at the end (b) of mixing. However, most of the 

suspended particles sediment relatively quickly, within hours/days. After about a week 

the suspension turns orange and becomes very stable (no visual change even after 12-18 

months). The stable final product, i.e. supernatant of unknown concentration, is shown 

in Fig. 9.1 c. Sedimented particles can be easily resuspended by vigorous shaking. 

 

To establish the size range of particles which remain suspended, and thus become 

available to fish, the stock solution was filtered through a number of different pore size 

membranes: 

- 0.1 μm cellulose nitrate membrane (Whatman) 

- 0.45 μm mixed cellulose membrane (Advantec) 

- 1.2 μm white RAWP membrane (Millipore). 

a) b) c) 

Figure 9.1. Suspension of C60 at the start (a) and at the end (b) of 65 day mixing. 

Stable final product after a week of quiescent settling (c). 
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Photographic images of the stock and filtered samples are shown in Table 9.1. As has 

been mentioned above, the dark brown, opaque stock solution, sediments within 

hours/days to produce stable brown-orange supernatant with intensive colouration. It is 

noticeably more concentrated than 1.2 µm filtrate, which suggests that particles with 

dimensions > 1.2 µm remain stably suspended. No visible changes can be observed for 

the opaque orange 1.2 µm filtrate. The bright orange 0.45 µm filtrate is noticeably more 

transparent. Very few particles pass through a 0.1 μm membrane and the filtrate from 

the smallest pore size is colourless and transparent. 

Dark brown suspensions of nC60 produced according to the water-stirred 

protocol have been previously reported in the literature [Spohn et al., 2009]. In most 

studies the mixing step is followed by decanting and/or filtration/centrifugation [Lyon et 

al., 2006; Oberdorster et al., 2006; Hyung and Kim, 2009]. To the best of my 

knowledge, no study has previously characterised different fractions of water-stirred 

fullerene C60. 
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stock 
1.2 μm 
filtrate 

0.45 μm 
filtrate 

0.1 μm 
filtrate 

 

 

T=0 

T=24h 

T=48h 

T=3 days 

T=1 week 

T=4 weeks 

Table 9.1. Stock solution and filtrates in time from 0 to 4 weeks. 
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9.3 UV-Vis measurements 

 

To compare the stock, supernatant and filtrates more qualitatively, UV-Vis 

measurements were performed on a WPA lightwave UV-VIS Spectrophotometer in the 

wavelength range of 200-825. The stock solution and the supernatant collected after 4 

days settling time had elapsed had to be diluted 5 fold to enable measurement due to 

their high opacity. The results are shown in Fig. 9.2. Consistent with previous reports 

[Markovic et al., 2007; Chang and Vikesland, 2009], there are four visible peaks in the 

spectra for all studied samples: at about 225, 280, 370 and 500 nm wavelength.  

 

 

  

Figure 9.2. UV-Vis absorbance spectra for the stock, its 4 days supernatant and 0.1, 0.45 

and 1.2 µm filtrates. 
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9.4 Concentration of filtrates and supernatant 

 

Although the nominal concentration of the suspension is known (500 ppm), it is 

important to determine the concentration of particles that remain suspended, i.e. the 

concentration of nC60 that fish are exposed to. To establish approximate concentrations 

of filtered samples and the supernatant a calibration curve was prepared from samples 

diluted from stock with the following dilutions based on the nominal concentration: 

- 100 x diluted, i.e. 5 ppm,  

- 20 x diluted i.e. 25 ppm, 

- 10 x diluted i.e. 50 ppm and 

- 5 x diluted i.e. 100 ppm 

with instrument response to the analyte taken as light absorbance values at the 

wavelength of 280 nm (the highest peak). Any losses due to sedimentation were 

minimised by vigorous shaking immediately before the measurement. From the 

calibration curve and measured absorbance at 280 nm, concentrations of filtered 

samples and the supernatant were calculated and presented in Table 9.2. 

Since the calibration curve was plotted using diluted stock suspension, the 

calculated concentrations should be treated as approximate. Diluted stock suspensions 

differ from the sedimented and stable supernatant (and filtrates). Although the total 

mass of the particles present might be similar, diluted stock have different properties. 

Visually diluted stock suspensions are always of brown colour with varied intensity 

depending on the dilution degree and supernatant similarly to filtrates is orange and this 

fact alone suggests different light absorbance properties. The difference can be 

explained by a different size distribution of the same C60 total mass: diluted stock 
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suspensions contain a fraction of extremely large (visible to the eye) aggregates, which 

settle down within minutes or hours; stable supernatant and filtrates contain much 

smaller particles, which stay suspended for long periods of time. 

 

Consistently with visual observation, only about 2 % of the total mass of 

suspended C60 constitutes the smallest size fraction with diameters of 1- 100 nm (i.e. the 

nano-fraction) and concentration of these particles is about 9 ppm. Particles with sizes < 

0.45 µm and < 1.2 µm are considerably more concentrated, ca. 48 ppm and 64 ppm 

respectively. Concentrations in the supernatant after a 4-day settling period are 

estimated from the measurement for the 5 times diluted sample (64.4 ppm, Table 9.2) at 

322 ppm, thus after 4 days about 65% of the total mass remains suspended. 

 

nom. Conc. 5 25 50 100

absorbance at 280 nm -0.001 0.162 0.416 0.773
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Figure 9.3. Calibration data and plot for concentration calculations. 



Ch.9. Characterisation of aqueous C60 

201 

 

 

  

 
Sample 

 

absorbance  
measured at 280 

nm 

Concentration read from 
the calibration curve in 

ppm 

0.1 μm filtrate 0.04 8.9 

0.45 μm filtrate 0.358 47.5 

1.2 μm filtrate 0.511 66.0 

supernatant (4 days) 5 x 
diluted 

0.497 64.4 

Table 9.2. UV-Vis absorbance at wavelength of 280 nm and concentration read from 

the calibration curve for the filtrates and the 4 days supernatant. 
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9.5 TEM imaging and analysis 

 

Samples were imaged on a FEI Philips TECNAI F20 TEM operating at 200 kV 

(Fig. 3.8). Microscopic specimens were prepared according to the ultracentrifugation 

protocol (described in detail in chapter 6.2). 10 mL samples with an optimal dilution (to 

obtain optimal film coverage) were ultracentrifuged onto a holey carbon film on 400 

copper mesh. Analysed samples were: 

- 0.1 μm filtrate – no dilution needed 

- 0.45 μm filtrate – 5 x diluted 

- 1.2 μm filtrate – 10 x diluted 

- supernatant (4 days) – 25 x diluted 

- stock – 100 x diluted. 

A Beckman L7-65 Ultracentrifuge with SW40 swinging bucket rotor was used at the 

following ultracentrifugation parameters: speed: 30.000 rpm, relative centrifugal field at 

rav: 114.000 x g, temperature: 15° C, time: 60 min. 

There are a few reports of water-stirred fullerenes C60 imaged with electron 

microscopy [Brant et al., 2006; Lyon et al., 2006; Labille et al., 2009; Spohn et al., 

2009]. They produced a wide size range with the majority of crystalline faceted 

aggregates with diameters of a few hundreds nm (Fig. 9.4). 
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 Figure 9.5 shows TEM micrographs of the stock suspension. Consistent with the 

filtration results (chapter 9.2) and with previous reports [Brant et al., 2006; Spohn, 

2009] a wide size range of roughly spherical or cubical nC60 aggregates can be 

observed. Smaller clusters with nanoscale dimension tend to have more oval, smooth 

edges (Fig. 9.5 c), whereas larger agglomerates show angular, rough-edged 

morphologies (Fig. 9.5 b). Some of the biggest aggregates occur in the absence of the 

smaller material (Fig. 9.5 b), some are surrounded with numerous nanoscale clusters 

(Fig. 9.5 a and d). TEM images where used to calculate particle size distribution based 

on 370 measurements (Fig. 9.6). The wide size range is confirmed by a high standard 

deviation, which is 1.6 times higher than the average particle size (369 nm v 605 nm). 

The smallest particle measured was 12 nm, the biggest over 5.2 µm. About half of the 

particles by number (50.3 %) have sizes within the nano-size range (i.e. less than 100 

C 

B 

D 

Figure 9.4. Previously reported electron microscopy imaging of water-stirred nC60 A. 

TEM micrograph by Lyon et al., 2006; B. TEM micrograph by Labille et al., 2009; C. 

TEM micrograph by Brant et al., 2006; D. SEM micrograph by Spohn et al., 2009. 
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nm). This corresponds with the estimated 2 % of the total fullerene mass in the 0.1 µm 

filtrate (chapter 9.4). 

 

 

 

 

As expected, smaller cluster sizes and narrower size distribution are reported for 

the supernatant sample (Fig 9.7 and 9.8). Similarly to the stock sample, there are two 

major types of morphologies: bigger angular microparticles and nanoscale clusters with 

smoother edges. Again, some of the big clusters are imaged with few nano-clusters 

around them (Fig. 9.6 a) and some are incorporated in dense aggregates of small 

particles (Fig. 9.6 b and c) or evenly coated with them (Fig. 9.6 d). A very important 

c) d) 

b) a) 

Figure 9.5. TEM micrographs of the nC60 stock suspension. 
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morphological characteristic consistent to all TEM images is a flaky (especially 

noticeable on the edges) and multilayer structure (e.g. Fig. 9.7 b and d). The largest 

dimensions measured for this sample are up to 1.55 µm. The number of particles 

increases steeply with decreasing particle sizes for fractions smaller than 250 nm (Fig. 

9.8). Particles with dimensions below 100 nm constitute 55.5 %. Average particle size is 

significantly smaller than in the stock suspension (231 nm v 369 nm). Standard 

deviation too is lower although still bigger than the average particle size (231 nm v 309 

nm). 

average (µm) 0.369

standard deviation (µm) 0.605

count 370

Figure 9.6. TEM size distribution histogram for nC60 stock suspension. 
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c) d) 

b) a) 

Figure 9.7. TEM micrographs of the 4 day nC60 supernatant suspension. 



Ch.9. Characterisation of aqueous C60 

207 

 

 

 

TEM micrographs collected for the 1.2 µm filtrate are shown in Fig. 9.9. 

Similarly to previous samples two main types of morphologies are present: angular 

microparticles and NPs with smoother edges. However, in this sample the small 

particles occur also as clearly separate entities (9.9 b), not only surrounding bigger nC60 

clusters (as in the stock and supernatant samples). Measurements from the TEM images 

confirm very good performance of the filter membrane: contamination with particles 

bigger than the nominal pore size constitutes only 0.5 % of the 375 particles measured.  

 

 

average (µm) 0.231

standard deviation (µm) 0.309

count 373

Figure 9.8. TEM size distribution histogram for 4 day nC60 supernatant suspension. 
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c) d) 

b) a) 

Figure 9.9. TEM micrographs of the nC60 1.2 µm filtrate. 
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Aggregates found in the 0.45 µm filtrate are shown in Fig. 9.11. Morphologies 

do not differ significantly from reported in the previous samples (stock, supernatant and 

1.2 µm filtrate). With higher magnification multilayer and flaky morphologies are more 

profound. 0.45 µm filtrate produced narrower size distribution histogram with all 

particles within the filter cut-off (Fig. 9.12). It is the first of the analysed samples, for 

which standard deviation (77.2 nm) is not higher than the average particle size (100.5 

nm). 59.7 % of 365 measured particles have sizes smaller than 100 nm. It should be 

noted, however, that no particles with sizes 1-10 were found. 4.4 % of particles are in 

the 10-20 nm fraction but the particle number peak occurs for sizes 20-60 nm (33. 7 % 

cumulatively). 

 

average (µm) 0.158

standard deviation (µm) 0.218

count 375

Figure 9.10. TEM size distribution histogram for nC60 1.2 µm filtrate. 
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c) d) 

b) a) 

Figure 9.11. TEM micrographs of the nC60 0.45 µm filtrate. 
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Fig. 9.13 presents representative images of the 0.1 µm filtrate. It is the only 

sample that did not require dilution prior to centrifugation (i.e. the concentration of nC60 

in the ultracentrifuged 0.1 µm filtrate is the same as in the stock solution). Observed 

morphologies were abundant on the whole studied grid surface. Only spherical particles 

with smooth edges can be found. Angular big nC60 aggregates (reported for all 

previously discussed suspensions) are absent in this sample. The roughly spherical or 

oval nC60 particles in the 0.1 µm filtrate form loose conglomerates (Fig. 9.13 red 

arrows). Such morphologies were also found in the previous samples(e.g. Fig. 9.5 c), 

where they are considerably less abundant, which can be explained by sample dilution, 

5-100 fold, needed in the case of all the other samples. Sizes of these conglomerate 

structures are well above the nominal pore size of the filter membrane (mostly 100-200 

nm), only 15.6 % of the conglomerates measured are smaller than 100 nm (Fig. 9.14 a). 

However, owing to the loose structure of the conglomerates it is conceivable that these 

average (nm) 100.5

standard deviation (nm) 77.2

count 365

Figure 9.12. TEM size distribution histogram for nC60 0.45 µm filtrate. 
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nC60 particles were squeezed through the pores and reformed in the time between 

filtration and ultracentrifugation. This hypothesis is supported by the size distribution of 

conglomerate constituents, i.e. nC60 single clusters (Fig. 9.13 green arrows). Average 

size of the clusters in the 0.1 µm filtrate is 33.6 nm with standard deviation of 17.8 and 

dimensions of all 215 measured particles are below the membrane pore size (Fig. 9.14 

b). 

 

Figure 9.13. TEM micrographs of the nC60 0.1 µm filtrate (red arrow – 

conglomerate dimension, green arrow – single cluster dimension). 

c) d) 

b) a) 
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average (nm) 175.0

standard deviation (nm) 78.7

count 275

average (nm) 33.6

standard deviation (nm) 17.8

count 215

b) 

a) 

Figure 9.14. TEM size distribution histogram for nC60 0.1 µm filtrate; a) 

conglomerates, b) nC60 clusters). 
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9.6 Number concentrations 

 

Fig. 9.15 explains how number concentrations were estimated from the 

centrifuged samples analysed with TEM. The number of particles counted on a TEM 

grid surface was related to the volume of the sample above it to arrive at the number of 

particles per unit of volume. This algorithm assumes that all particles in the given 

volume of sample are effectively deposited on the grid during the centrifugation, i.e. 

that the centrifugation time is sufficient for the smallest particles to travel from the top 

of the sample to the bottom. 

nC60 suspension 

TEM grid imaged grid area 
(where particles are 
count) 

sample height (8.71 cm) calculated 
volume 

0.1 µm filtrate 

0.45 µm filtrate 

Figure 9.15. Schematic explanation of number concentration calculations using 

centrifugation and TEM imaging. 
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With the assumption that centrifuged particles are ideally spherical, the centrifugation 

time, t, (in seconds) can be calculated according to the following formula: 

 

 

 

where: 

ŋ – solution viscosity assumed to be equal to the viscosity of water at 15 ° C (11. 39 10
-3

 

g s
-1

cm
-1

) 

d – particle diameter (cm) 

ƍ – particle density (1.65 g cm
-1

) [Yadav and Ritesh, 2008] 

ƍ0 – solution density assumed to be equal to the density of water at 10 ° C (0.99 g cm
-3

) 

ɷ – rotational speed (rad s
-1

) calculated as 2 π rpm/60 

rmax – distance from the centre of centrifuge rotor to the bottom of the suspension (14.88 

cm) 

rmin – distance from the centre of centrifuge rotor to the top of the suspension (6.17 cm) 

 

 

 

 

 

Using this equation, settling times for different nC60 particles have been calculated and 

presented in Table 9.3. The centrifugation time of 60 min, used in the experiments 

particle diameter (nm) settling time from top to bottom (min) 

10 462 

20 115 

27.5 60 

30 51 

50 18 

100 5 

200 1 

Table 9.3. Theoretical settling times for ultracentrifuged C60 particles with different 

diameters. 

t =  
d

2
 (ρ – ρ0) ω

2
 

18 η ln(rmax/rmin) 
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presented here, is sufficient to settle out all particles with diameters exceeding 27.5 nm. 

Consequently, it can be assumed that the majority of material even from the smallest 

fraction (0.1 µm filtrate) is deposited on the TEM grid. 

Particles were counted in available lower resolution TEM images, i.e. on 

surfaces big enough to exhibit roughly homogenous particle distribution (with surface 

area of either 40.96 µm
2
 or 1024 µm

2
). In case of 0.1 µm filtrate, 6 different images 

were analysed and a total number of 388 nC60 conglomerates (as discussed in chapter 

9.5) were counted. No calculation was feasible for single nC60 clusters because it is 

impossible to distinguish all separate components of the conglomerates in any grid area 

suitable for number concentration calculations. 

For the 0.45 µm filtrate, four images were suitable for the calculations and a 

total of 156 particles counted. The number of particles found on the given grid surface 

was related to the volume of liquid above this surface with known height of the sample 

and then related to 1 mL. The results are summarised in Table 9.4. 

 

 

 

This method was applied to 0.1 and 0.45 µm filtrates only since for the other samples it 

was impossible to distinguish separate aggregates of nC60 and thus unfeasible to count 

them. To calculate number concentrations for the other samples (stock, supernatant and 

1.2 µm filtrate) additional experiments were needed (further dilution before 

  x10
6
 aggregates ml

-1
 

0.1 µm filtrate 3.7 

0.45 µm filtrate 126.2 

Table 9.4. Estimated aggregate number concentrations for nC60 0.1µm and 0.45 µm 

filtrates. 



Ch.9. Characterisation of aqueous C60 

217 

 

ultracentrifugation to reduce grid coverage), which could not be undertaken due to lack 

of time. 

 It should be noted, however, that figures presented in Table 9.4 are rough 

estimates due to limited availability of TEM images suitable for the number 

concentration calculations, which might not accurately represent the whole grid surface 

and the bulk suspensions. Additionally, for deposition time calculations it was assumed 

that all particles are ideally spherical, which is not the case as can be seen in the TEM 

micrographs. 

 Comparing these results with mass concentration estimates (Table 9.2) it can be 

concluded that the smallest fraction (i.e. 0.1 µm filtrate), which constitutes ca. 2 % of 

the total mass (concentration of 8.9 ppm of the nominal total 500 ppm concentration) 

contains about 3.7 million particles (nC60 conglomerates) per ml. The 0.45 µm filtrate 

with estimated concentration of 47.5 ppm (9.5 %) contains considerably higher number 

of particles, ca. 126.2 million per ml. 
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9.7 Summary of the fish exposure experiment [Chipman et al., 2008] 

 

The data discussed in this section is included for completeness as the fullerene 

characterisation was performed in order to aid understanding the exposure to fish 

conducted by Takeshi Kitano, Tim D. Williams, Ioanna Katsiadaki, Matthew B. 

Sanders and James K. Chipman (Kumamoto University (Japan), University of 

Birmingham, and Cefas Weymouth Laboratories). 

The stock suspension of water-stirred fullerenes C60 was diluted accordingly to 

prepare fish exposure media with two nominal concentrations: 0.1 ppm and 0.5 ppm. 

Apart from water-stirred fullerenes, other types of carbonaceous particles were included 

in the exposure experiments: fullerol C60OH (hydroxyl-fullerene ) suspended directly in 

water and through an intermediate solvent (THF). A 48 h exposure experiment to 

female three-spined stickleback (Gasterosteus aculeatus) was performed by CEFAS 

Weymouth Laboratory (I. Katsiadaki, M. N. Sanders). Transcriptomic responses were 

assessed in the liver, gill and brain tissue of the fish in the School of Biosciences, 

University of Birmingham (J. K. Chipman, T. D. William). Gene expression profiling is 

used to underpin toxic effects and their possible mechanisms. 

Two different batches of aqueous nC60 were used in the experiments, both 

prepared according to the same protocol. The characterisation of fullerenes improved 

over time. Results presented in chapters 9.2 -9.6 were obtained for the second batch of 

water-stirred fullerenes C60. 

The fish exposure assay was repeated three times: twice with the first batch of 

fullerene suspension and once with the second batch. In case of the lower dose of water-

stirred C60, no response was found in any of the analysed tissues compared to the 
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untreated controls. However, the first exposure to the 0.5 ppm concentration resulted in 

gene expression changes in brain and gill in a variety of gene ontology classes. 

Obtained results suggested that toxicity mechanisms might include membrane effects 

and inflammatory response. The other two repeats of the fish exposure (one with the 

same batch of NP suspension and one with the newer batch) did not find any toxic 

response. No hypothesis was proposed to explain this inconsistency. 
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10 CONCLUSIONS AND FUTURE WORK 

 

Two different microscopy techniques (TEM and AFM) were used to image 

aqueous suspensions of SWCNTs and both proved suitable for the characterisation of 

engineered NPs in the aquatic environment at the test concentrations. Both techniques 

provide sufficient spatial resolution (sub-nanometre) to produce valuable information on 

morphologies and interactions of synthetic NPs with natural ones. Quantitative analysis 

of TEM (measurements of nanotube bundle thicknesses) and AFM (measurements of 

nanotube bundle heights) micrographs produced a good agreement within experimental 

uncertainty and polydispersity of the samples. Other morphological features, such as 

homogeneity of the surface coating or the presence of nano-scale surface films where 

clearly present in the samples with natural aquatic colloids although they were more 

difficult to quantify and compare statistically. 

Substantial evidence that carboxylic acid functionalised SWCNTs form very 

stable aqueous suspensions has been presented in this work. Dispersion in water is 

facilitated by carboxylic groups giving the nanotubes a negative surface charge (the 

stabilising mechanism is provided by the electrostatic repulsion). Visual observation 

and TEM analysis show a slightly stabilising effect of humic acid on suspended 

SWCNTs due to surface coating formation (i.e. the mechanism of the steric repulsion) 

whereas the presence of natural water caused instant and profound aggregation and 

sedimentation. Under most experimental conditions, both the SWCNTs and humic 

substances were negatively charged, indicating non-charge interactions, e.g. the 

hydrophobic effect was important and sufficient in magnitude to overcome repulsive 

electrostatic effects. Further experiments imply that such behaviour is at least partly 
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attributable to bridging between HS and SWCNTs by divalent cations such as Ca
2+

, 

although this evidence is inconclusive. The stability of aqueous SWCNTs depends on 

their negative surface charge, which if neutralised by divalent cations, results in 

efficient aggregation and rapid losses from the water column. It can be thus expected 

that SWCNTs may be persistent in soft waters rich in organic material and efficiently 

transferred to sediments in hard estuarine or marine waters. 

By ensuring even TEM grid coverage, ultracentrifugation used for TEM 

specimen preparation can significantly shorten the analysis time and improve the 

reproducibility of the results. It is recommended whenever characterisation of NPs 

requires a series of TEM analyses for a number of samples. Additionally, by controlling 

the parameters of NP deposition on the substrate, quantitative data, such as particle 

number concentrations, can be obtained. 

Prolonged stirring produces extremely stable suspensions of fullerene aggregates 

nC60. The results presented in chapter 9, are the first to address morphologies and 

dimensions of different size fractions of water-stirred fullerene, which is one of the most 

common protocol to disperse fullerene in water for toxicity testing. From the conducted 

experiments there is evidence that very little material (by mass) is dispersed below the 

diameter size of < 100 nm, i.e. in the nanoscale size range.  

TEM analysis of fullerene aqueous suspensions in the presence of natural 

aquatic colloids (SRFA, succinoglycan and the lake water) revealed some changes in 

the observed morphologies, i.e. coating of C60 aggregates with colloidal material. 

However, the interaction was clearly not as strong as in the case of SWCNTs with most 

morphologies undistinguishable from fullerenes in the absence of NAC. 
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A protocol for analysing metal speciation in aqueous suspensions of SWCNTs 

was tested in a pilot study and proved suitable for this purpose, although many samples 

were contaminated with external sources of metals. 

 

The objectives for this thesis listed in chapter 1.2 have largely been met. 

However, future work is needed to validate and confirm some of the results and further 

address the knowledge gaps in the field. Further validation of the results is especially 

relevant in the case of atmospheric NPs analysis with AFM. Size distribution 

histograms proved inconsistent with the technical specifications for the impactor they 

were collected with. Further investigation is needed to quantify smallest material by 

mass and number to assess the significance and implications of the contamination with 

NPs with diameters below 10 nm. 

AFM specimen preparation protocol for SWCNTs requires development (to 

overcome scarce and patchy particle distribution on mica). Poor nanotube adhesion to 

mica and significant sample heterogeneity resulted in too few nanotubes available for 

the height measurements and thus undermined statistical representativeness of the 

samples and sample comparison. It would be advisable to develop a new method for the 

AFM specimen preparation. Ultracentrifugation, which has proved successful in the 

case of TEM, would be a first choice optimisation approach to be tested. 

The protocol for metal speciation presented and tested in chapter 8 needs 

improvement to avoid sample contamination. Also reproducibility of the measurements 

should be verified. 

More generally, microscopy protocols for NP sizing need further optimisation to 

allow rapid and statistically reliable size characterisation (e.g. automated algorithms for 
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particle measurement). There is also an urgent need to develop analytical techniques to 

detect and measure NPs in water, air and soil to advance the knowledge beyond the 

laboratory conditions and address realistic exposure scenarios in order to conduct risk 

assessment of nanotechnologies to human health and ecosystems. 
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APPENDIX 

 In the results chapters which concerned microscopy analysis (4, 5, 6, 7 and 9) 

some images were selected to represent studied samples. These and remaining TEM and 

AFM images used throughout the experimental work have been gathered on a CD, 

which is attached to the back cover of the thesis. The images are presented in TIFF 

format suitable for viewing. The main folders are organised and named according to the 

chapters to which they are relevant: 

- Chapter 4 (Atmospheric NPs with AFM) 

- Chapter 5 (SWCNTs with TEM) 

- Chapter 6 (Ultracentrifugation for TEM) 

- Chapter 7 (SWCNTs with AFM) 

- Chapter 9 (Characterisation of aqueous C60) 

All subfolders are named after the samples whose images they contain (e.g. SWCNT 

+NW). Acronyms used in the subfolder titles are the same as used throughout the text 

(and as listed in the Nomenclature section). If an image (or images) of a sample were 

presented within the text, the subfolder titles also contain a relevant figure number in 

the brackets. AFM images are grouped into the three different output signals they are 

based on (amplitude, phase and topography). The topography images are saved as raw 

data (i. e. as collected), however, the selected images that were presented in the thesis 

had to be processed (flattened or filtered) to enhance their suitability for viewing 

without the XEI software. These are presented in the ―processed‖ folders. Additionally, 

in case of Chapter 7, AFM images are grouped according to the mode they were 

obtained with (i.e. non-contact and tapping). TEM images used for comparison in 
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Chapter 7 are placed in the folder with the images from Chapter 5 (SWCNTs with 

TEM), which they were primarily taken for. 
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