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Abstract 

In this thesis I report three related studies that utilise state-of-the-art technologies to 

investigate germline and somatic chromosomal rearrangements in humans. Firstly, 16 patients 

with cytogenetically detectable deletions of 3p25-p26 were analysed with high density single 

nucleotide polymorphism (SNP) microarrays; Affymetrix 250K SNP microarrays (n=14) and 

Affymetrix SNP6.0 (n=2). Assuming complete penetrance, a critical region for congenital 

heart disease (CHD) susceptibility gene was refined to approximately 200 kb and a candidate 

critical region for mental retardation was mapped to ~1 Mb interval containing SRGAP3. 

Secondly, I used SNP microarray and molecular cytogenetic studies to characterise 

chromosome 11p15 in 8 patients with the imprinting disorder Beckwith-Wiedemann 

syndrome (BWS). In addition to characterising 11p duplications in three patients, the 

breakpoints in two patients with balanced rearrangements were mapped to two distinct 

regions. Thirdly, I used high resolution SNP arrays (Affymetrix 250K Sty1 and 6.0 arrays) to 

identify copy number changes in renal cell carcinoma (RCC) primary tumours (n=81) and cell 

lines (n=23). Copy number changes most frequently involved large segments (>10Mb) and 

loss of 3p and gain of 5q were the most common copy number changes. A comparison of 

copy number changes in RCC cell lines and inherited and sporadic primary tumours was 

made. 
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1 General introduction 

 

 1.1 The history of human cytogenetics 

The concept of chromosomes was first introduced in 1873 by a German zoologist, Anton 

Schneider who described the process of mitosis. Later, in 1882, a detailed description of 

mitosis in animals was published by Walther Flemming and he was the first to use the term 

mitosis. In 1888, an anatomy professor in Germany, Heinrich Waldeyer, introduced the 

term, chromosome which was derived from the Greek words for ‘coloured body’. 

Subsequently, Walter Sutton and Theodor Boveri, independently proposed that 

chromosomes carry the hereditary factors in accordance with Mendelian laws. The 

suggestions were put forward by the observation of the behaviour of chromosomes at cell 

division which they thought could provide an explanation of how genes could segregate. 

Sutton referred to the study of chromosomes as cytogenetics; a combination of the 

disciplines of cytology and genetics.  

 

Significant discoveries in tissue culture techniques eventually led to the important findings 

by Tjio and Levan in 1956. They worked on human embryonic lung fibroblasts cultures 

and optimized the colchicines/hypotonic method. They then determined for the first time 

the correct number of human chromosomes as 46.  

 

With the new technique, congenital anomalies associated with chromosomal number 

started to be identified for example Down syndrome associated with trisomy 21 (Lejeune 

et al., 1959), Turner syndrome in females with 45,X karyotype (Ford et al., 1959), 

Klinefelter syndrome in males with 47,XXY karyotype (Jacobs and Strong, 1959), triple X 
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(XXX) syndrome (Jacobs et al., 1959), Patau syndrome which also known as trisomy 13 

and Edward syndrome or trisomy 18  (Edwards et al., 1960; Patau et al., 1960; Smith et al., 

1960). Nowell and Hungerford reported the presence of the ‘Philadelphia chromosome’ in 

chronic myelogenous leukemia demonstrating, for the first time, an association between 

chromosomes and cancer (Nowell and Hungerford, 1960). Lejeune et al (1963 and 1964) 

identified partial deletion of the short arm of chromosome 5 in cri du chat (cat-cry) 

syndrome patients.   

 

Moorhead et al (1960) introduced the short-term culture technique using peripheral 

lymphocytes from blood samples. The effectiveness of the technique was based on the 

mitosis-inducing ability of phytohemagglutinin, a bean extract. The technique eliminated 

the need for bone marrow aspiration that had previously been the best way to obtain a 

sufficient number of spontaneously dividing cells.  

 

Identification of each of human chromosomes was made possible by Caspersson et al 

(1970). They discovered the nucleobase-specific fluorochrome quinacrin. When stained 

with quinacrin, each chromosome will show a specific pattern of bands, the Q-bands. 

These bands allowed for the first time the identification of all 22 human autosomal pairs 

and the two human sex chromosomes. Sumner, Schnedl, Seabright (1971) introduced 

additional stains and preparation methods, that brought forward new banding types: 

Giemsa banding (G-banding), Reverse banding (R-banding), Telomere banding (T-

banding), centromere banding (C-banding). Banding greatly improved the accuracy of 

chromosome analysis (Caspersson et al., 1970; Seabright, 1972) by permitting the analysis 

of many different tissues and diseases which led to the discovery of a large number of 
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different chromosome aberrations including terminal deletions, interstitial deletions and 

duplications.  

 

1.2 Chromosome rearrangements 

 

Chromosomal rearrangements encompass several different classes of events: deletions, 

duplications, inversions, insertions and translocations.  They result from chromosome 

breakage with subsequent reunion in a different configuration. Chromosomal 

rearrangements originating in the germ line, whether inherited from the parents or from a 

de novo mutation in the gametes, are referred to as constitutional. On the other hand, any 

changes in the chromosomes which arise during development or during the life of an 

organism are referred as acquired chromosomal rearrangements. In human live births, the 

presence of a chromosome aberration is ~0.5-0.6% and, of these, 0.1–0.3% corresponds to 

structural chromosome rearrangements such as translocations, inversions, insertions and 

deletions (De Braekeleer and Dao, 1991; Nielsen and Wohlert, 1991). 

 

Chromosome rearrangements can be categorised as a balanced or unbalanced.  It is 

estimated that 1 in 200 live births have an apparently balanced translocation and 1 in 500 

have an unbalanced translocation (Jacobs et al., 1992). In a balanced rearrangement the 

chromosome complement is complete with no gain or loss of genetic material. Although 

balanced reciprocal translocation carriers are usually phenotypically normal (with the 

exception of rare cases which involve breakpoint in an important functional gene), they are 

often at risk of having offspring with an unbalanced chromosomal complement or 

reproductive failure. On the other hand, unbalanced rearrangements involve gain or loss of 

genetic materials and very often resulted in phenotypic abnormalities.  
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Conventional cytogenetics enabled the identification of the chromosomes and the specific 

bands involved in the rearrangements (Caspersson et al., 1972; Yunis, 1976) while 

molecular cytogenetic methods ie. fluorescence in situ hybridisation (FISH) and 

comparative genomic hybridisation (CGH) are required to visualize microdeletions which 

cannot be detected by the conventional method.  Analysis of rearrangement breakpoints in 

relation to the banding pattern observed along Giemsa banded metaphase chromosomes 

showed that 84% of breakpoints occurred in Giemsa negative, gene rich regions of the 

genome (Warburton, 1991; Niimura and Gojobori, 2002).  

 

 1.2.1 Translocations 

Translocations involve a transfer of genetic material from one chromosome to another and 

consequently join two otherwise separated genes. The frequency of various chromosomal 

rearrangements in the general population varies from 1/625 to 1/5,000 (Bandyopadhyay et 

al., 2002). Translocations can be classified into two different types: reciprocal and 

Robertsonian. It was found that reciprocal translocations occur more frequently than 

Robertsonian (Bandyopadhyay et al., 2002).  The major impact of translocations is that 

they can generate significant chromosome imbalance during segregation at meiosis, 

predisposing the carrier to the birth of abnormal child, stillbirth, miscarriage or infertility.  

 

Many published translocation breakpoints have shown that direct disruption of a gene can 

lead to an associated phenotype (Bhalla et al., 2004; Bocciardi et al., 2005; Klar et al., 

2005) but studies also showed that translocation breakpoints can cause an effect on genes 

several kilobases away. Examples include a t(2;8)(q31;p21) which affects the HOXD gene 

60 Kb away from the chromosome 2 breakpoint in a patient with mesomelic dysplasia and 

vertebral defects (Spitz et al., 2002) and a t(6;11)(q14.2;q25) translocation affecting the 
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B3GAT1 gene which lies 299 Kb centromeric to the chromosome 11 breakpoint in a 

patient with psychosis (Jeffries et al., 2003). The position effect phenomenon arises from 

the disruption of cis-acting regulatory elements such as promoters, enhancers and silencers 

which can be directly altered, distanced from the gene they influence or brought into 

proximity of a gene not normally under their control when a chromosome undergoes a 

rearrangement. These elements have been observed as far away as 1.1 Mb from the gene 

they regulate as in the case of the SOX9cre1 element which was identified upstream of the 

SOX9 gene (Bien-Willner et al., 2007).  

 

 1.2.1.1 Reciprocal translocations 

These involve breakage of at least two non-homologous chromosomes and exchange of the 

fragments. The incidence of reciprocal translocations is ~1/625 in the general population 

(Van Dyke et al., 1983). The first reciprocal translocation to be associated with human 

cancer is t(9;22) which formed a shortened derivative chromosome 22, also known as 

Philadelphia chromosome (Ph) (Nowell and Hungerford,1960; Rowley,1973).  

 

Most reciprocal translocations are nonrecurring rearrangements except for the t(11;22) 

reported in more than 160 unrelated families (Fraccaro et al., 1980; Zackai et al., 1980;  

Iselius et al.,1983).  Breakpoint studies on both 11q and 22q have demonstrated a common 

site for rearrangement (Edelmann et al., 1999b; Shaikh et al., 1999). It was later suggested 

that a highly specific Alu-mediated recombination in the breakpoints could be the cause in 

the translocation (Hill et al., 2000).  

 

The breakpoint on chromosome 22 maps within a low-copy region-specific repeat 

(LCR22) that is also associated with the breakpoints seen in del(22)(q11.2) in 
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DiGeorge/VCF syndrome (Edelmann et al., 1999a). The breakpoint on the long arm of 

chromosome 11 is consistently found between two genetic markers, in a genomic region of 

about 185–190 kb (Edelmann et al., 1999b; Shaikh et al., 1999), and then narrowed to a 

190-bp region harbouring an AT-rich repeat (Edelmann et al., 1999b; Kurahashi et al., 

2000). The repetitive sequence found in the low-copy repeats on 22q also has multiple 

copies of an AT-rich sequence (Edelmann et al., 1999b). These findings suggest that AT-

rich regions may be prone to recombination events that lead to rearrangements.  

 

 1.2.1.2 Robertsonian translocations 

Robertsonian translocation (abbreviation rob) is named after the American insect 

geneticist, W.R.B. Robertson, who first described the translocation in grasshoppers in 

1916. They are found in ~1 in 1,000 individuals (Hamerton et al., 1975; Blouin et al., 

1994) making it the most common, recurrent structural rearrangements in human. These 

translocations involve exchanges of the whole arm of acrocentric chromosomes (13-15, 21 

and 22). The result is one long chromosome with a single centromere and the total number 

of chromosomes is reduced to 45. In the short arm, the p11 includes satellite DNAs I, II, 

III, IV and β; the p12 region contains multiple copies of the genes coding for the 18S and 

28S ribosomal RNA (nucleolar organizer region); and the p13 region terminates with β-

satellite DNA and telomeric sequences (Page et al., 1996; Bandyopadhyay et al., 2001). 

Thus, the short-arm regions of the five pairs of human acrocentric chromosomes have 

extensive sequence homology although some sequences are not common to all acrocentric 

chromosomes (Bandyopadhyay et al., 2001).   
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Although all acrocentric chromosomes are capable of participating in the translocation, the 

distribution of chromosomes was shown to be non-random (Therman et al., 1989). rob 

(13q;14q) and rob(14q21q) are the most common, constituting ~85% of all Robertsonian 

translocations (Therman et al., 1989). In ~50% of Robertsonian translocations, the 

rearrangements occur de novo (Shaffer et al., 1992) and in ~95% of the de novo cases, 

rob(13q14q) and rob(14q21q) originate during maternal meiosis (Page and Shaffer, 1997).   

 

 1.2.2 Deletions 

Deletion involves loss of part of a chromosome either terminal or interstitial, resulting in 

monosomy in that region of the chromosome. Deletion therefore is an unbalanced 

rearrangement. It can involve deletion of a single base to an entire piece of chromosome 

(Lewis, 2005). In most cases, large cytogenetically visible deletions cause embryopathy 

which presents after birth as mental retardation, growth failure and multiple 

malformations.  

 

In humans, cytogenetically visible autosomal deletions have a live birth incidence of about 

1 in 7,000 (Jacobs et al., 1992).  The first chromosomal deletions identified in humans 

were the deletion of distal 5p associated with the cri-du-chat syndrome (Lejeune et al., 

1963; Lejeune et al., 1964) and the distal deletion of 4p, subsequently named the Wolf-

Hirschhorn syndrome (Wolf et al., 1965). 

 

A principal method of producing deletions is by unequal crossing-over between region 

specific low copy-number repeat sequences that flank the deleted regions (figure 1.1) 

(Lupski et al., 1996; Chen et al., 1997; Lupski, 1998; Shaikh et al., 2000). 
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Figure 1.1: Unequal crossing over results in deletion and duplication rearrangements  

(Adapted from Nussbaum, McInnes and Willard, 2001).  

 

 

 

 

 1.2.2.1 Terminal deletions 

Even though terminal deletions have been identified for all human chromosomes, only a 

few have a significant incidence. Common terminal deletions include 1p-, 4p-, 5p-, 9p-, 

11q-, 17p-, 18q-, and 22q- (Shaffer and Lupski, 2000). Terminal deletions usually do not 

occur at a single site but involve breakpoints at various regions with variable sizes (Shaffer 

and Lupski, 2000). However, some cases of terminal deletion demonstrated clustering at a 

number of locations (Christ et al., 1999; Wu et al., 1999). In Jacobsen syndrome (deletion 

11q23) , molecular investigations have shown that the terminal 11q23 deletions cluster in a 

defined region in most patients (Jones et al., 1994; Tunnacliffe et al., 1999; Jones et al., 

2000).  
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Breakage of fragile site can cause terminal deletions in chromosomes (Jones et al., 1994; 

Jones et al., 1995). In Jacobsen syndrome, the 11q23 region contains the proto-oncogene 

CBL2, which also contains a CCG trinucleotide repeat (Jones et al., 1994; Jones et al., 

1995; Jones et al., 2000). Expansion of this repeat may result in the folate-sensitive fragile 

site FRA11B that is potentially the site of breakage for terminal deletions of 11q23. 

Analysis on five Jacobsen syndrome patients and their parents found two cases of deletion 

to be derived from a FRA11B-expressing chromosome (Jones et al., 1995; Jones et al., 

2000). However, for the remaining three families investigated, the site of breakage was 

proximal to FRA11B (Jones et al., 1995). 

 

Terminal deletion can also be due to double-strand DNA breaks of unknown cause 

followed by the addition of the telomeric sequence (TTAGGG)n as described in an α 

thalassemia mutation associated with terminal truncation of chromosome 16p13.3 (Wilkie 

et al., 1990; Lamb et al., 1993; Flint et al., 1994). Another characteristic of terminal 

deletions may be a preference for the maternal or paternal chromosome and it was found 

that in deletion 1p36,  78% of the cases involve a deletion on the maternally inherited 

chromosome (Wu et al., 1999).  

 

1.2.2.2 Interstitial deletions 

 

A number of genetic syndromes have been recognised to be caused by interstitial deletions 

and in majority of the patients, the deletion size is similar (Greenberg et al., 1991; 

Guzzetta et al., 1992; Mutirangura et al., 1993; Chen et al., 1995; Juyal et al., 1996; 

Carlson et al., 1997; Chen et al., 1997; Wu et al., 1999).                                                                                                                              

The common deletion in 7q11.23 found in Williams syndrome is about 1.6 Mb in size 

(Peoples et al., 2000) and is present in more than 99% of patients (Morris and Mervis, 
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2000). The deletion size in most patients with Prader-Willi syndrome or Angelman 

syndrome is about 4 Mb (Mutirangura et al., 1993).  However, two different proximal 

breakpoints have been identified in both the maternally derived deletions of Angelman 

syndrome and the paternally derived deletions of Prader-Willi syndrome (Christian et al., 

1995). The common Smith-Magenis syndrome deletion within 17p11.2 is approximately 5 

Mb (Trask et al., 1996; Chen et al., 1997) and is found in the vast majority of patients 

(Juyal et al., 1996; Chen et al., 1997). For most patients with DiGeorge syndrome/VCFS, 

the deletion in 22q11.2 is about 3Mb (Morrow et al., 1995; Carlson et al., 1997). Some 

patients have an alternate distal deletion breakpoint, resulting in a smaller, 1.5-Mb deletion 

(Carlson et al., 1997). Although altered sized deletions, or even rarer unique deletions, can 

be found in patients with these syndromes, the finding of the same-sized deletions in the 

majority of patients points to a specific mechanism giving rise to most of these structural 

rearrangements. 

 

 1.2.3 Duplications 

Crossing over between nonallelic, directly repeated, homologous segments between sister 

chromatids (intrachromosomal) or between homologous chromosomes (interchromosomal) 

would be expected to produce two reciprocal products: a tandem or direct duplication and 

a deletion (Figure 1.1). Duplication in 17p12 results Charcot-Marie tooth disease type 1A 

(CMT1A) while Smith Magenis syndrome is cause by the corresponding deletion. 

Homologous recombination between 24-kb flanking repeats, termed CMT1A−REPs, 

results in a 1.5-Mb deletion that is associated with hereditary neuropathy with liability to 

pressure palsy (HNPP) and the reciprocal duplication product is associated with CMT1A 

(Lupski, 1998). del(17)(11.2) causes Smith-Magenis syndrome (SMS) and this same 

region was identified to be duplicated in seven unrelated patients (Potocki et al., 2000). 
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Molecular analyses on dup(p11.2) or Potocki-Lupski syndrome (PTLS syndrome),  

suggest that the de novo17p11.2 duplication is preferentially paternal in origin, arises from 

unequal crossing over due to homologous recombination between flanking repeat gene 

clusters and probably represents the reciprocal recombination product of the SMS deletion 

(Potocki et al., 2000). Further study involving 35 patients has shown that 22 of them 

harbour the homologous recombination reciprocal product of the common SMS 

microdeletion (~3.7 Mb), 13 subjects (~37%) have nonrecurrent duplications ranging in 

size from 1.3 to 15.2 Mb.  

 

 1.2.4 Inversions and insertions  

An inversion involves two breaks in a chromosome and the segment is reversed or inverted 

in the position. If the inversion is outside the centromere, it is termed a paracentric 

inversion whereas inversion spanning the centromere, involving both the chromosome 

arms, is known as pericentric inversion.  Since it is a balanced rearrangement, it usually 

has no adverse effect on the carriers unless one of the breakpoint disrupts an important 

gene. Pericentric inversion of chromosome 9 is an example of a common structural variant 

or polymorphism and is not thought to be of any functional importance. A study of 

377,357 amniocentesis estimated the rate of inversions to be 1 in 10,000 with a 9.4% risk 

of an associated congenital abnormality (Warburton, 1991).  

 

An insertion occurs when a segment of a chromosome is inserted in another chromosome. 

If the inserted material has moved from another chromosome then the karyotype is 

balanced. Otherwise it causes an unbalanced chromosome complement. It can be 

hazardous if it involves the coding region of a gene.  
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 1.2.5   Copy number variations (CNVs) 

Recently, Redon et al (2006) has discovered copy number variations (CNVs) in 270 

normal individuals using microarray platforms.  They identified almost 1,500 regions of 

the genome which were variable in copy number, encompassing 360 Mb and thousands of 

genes. CNVs can be caused by genomic rearrangements such as deletions, duplications, 

inversions and translocations. Low copy repeats (LCRs), which are region-specific repeat 

sequences are susceptible to such genomic rearrangements resulting in CNVs. Although 

CNVs is a widespread and common phenomenon in humans, some of them have been 

associated with susceptibility or resistance to disease. For example, a higher copy number 

of CCL3L1 has been associated with lower susceptibility to human HIV infection 

(Gonzalez et al., 2005) and a low copy number of FCGR3B (the CD16 cell surface 

immunoglobulin receptor) can increase susceptibility to systemic lupus erythematosus and 

similar inflammatory autoimmune disorders (Aitman et al., 2006). CNV has also been 

associated with autism (Sebat, 2007; Cook and Scherer, 2008; Pinto et al., 2010) 

schizophrenia (Cook and Scherer, 2008; St Clair, 2008) and idiopathic learning disability 

(Knight, 1999).  

 

1.3 Analysis of chomosome rearrangements  

Different methods of chromosome analysis have been applied to the analysis of 

chromosome rearrangements. Conventional method is generally applied for the initial 

identification of rearrangements. Molecular methods such as fluorescence in situ 

hybridisation (FISH) can be used to identify precise breakpoints, but more recently 

microarray based techniques have been developed which allows genome wide analysis of 

the chromosomes.  
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 1.3.1 Metaphase chromosome banding  

This method is universally applied in cytogenetic laboratories to analyse the chromosome 

constitution of an individual. The method involved tissue culture from samples of 

peripheral blood, skin, bone marrow, chorionic villi or cells from amniotic fluid 

(amniocytes). The metaphase chromosomes obtained from the cells are treated with 

Trypsin and then stained for example with Giemsa. This creates unique banding patterns 

on the chromosomes that enable them to be analysed. Analysis of this pattern in relation to 

the human genome reference sequence showed that Giemsa positive bands (dark) were AT 

rich and gene poor and Giemsa negative bands (light) were GC rich and gene rich 

(Niimura and Gojobori, 2002). Analysis of chromosome banding patterns can identify 

chromosome rearrangements and localise the breakpoints to within approximately 3Mb 

depending on the quality and length of the prepared chromosomes (Lichter et al., 2000). 

Although conventional method examines the whole genome at once, chromosomal 

changes smaller than ~5 Mb cannot usually be detected by the method (Lupski, 2007). 

Subsequently, molecular genetics methods were introduced to address this problem. 

 

1.3.2 Flow cytometry 

 

Fluorescent dyes are used to bind specifically to GC (gene rich) or AT (gene poor) 

sequences in the chromosomes. Due to the differing size and DNA composition, 

chromosomes bind different amounts of the dye and allow it to be separated by the process 

of flow cytometry or fluorescent activated cell sorting (FACS). Rearrangements such as 

reciprocal translocations which alter the size and basepair constitution of chromosomes 

can be detected using flow cytometry.  
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1.3.3  Multiple ligation-duplex probes amplification (MLPA) 

Multiplex ligation-dependent probe amplification (MLPA) is a multiplex PCR method that 

detects abnormal copy numbers of up to 50 different genomic DNA or RNA sequences, 

and which is able to distinguish sequences differing in only one nucleotide (Schouten et 

al., 2002). This makes it suitable to be applied in both diagnostic laboratories and cancer 

studies for detection of deletions and duplications in a gene, gains and losses of 

chromosomal regions, trisomies, SNP and mutation detection (Schouten et al., 2002; Gille 

et al., 2002; Taylor et al., 2003; Kluwe et al., 2005; Gerdes et al., 2005; Aldred et al., 

2006; Aretz et al., 2007; Kanno, et al., 2007; Depienne et al., 2007; Redeker et al., 2008; 

Kozlowski et al., 2009).   

 

This technology is based on the identification of target sequences by hybridisation of pairs 

of MLPA probes. Each probe consists of a two oligonucleotides which recognise adjacent 

target sites on the DNA. One probe oligonucleotide contains the sequence recognised by 

the forward primer, the other the sequence recognised by the reverse primer. When both 

probe oligonucleotides are hybridised to their respective targets, they are then ligated into 

a complete probe.  Each complete probe has a unique length (130-472 bp) so that its 

resulting amplicons can be separated and identified on a capillary sequencer or on a gel, 

resulting in size separated chromatograms. Since the forward primer used for probe 

amplification is fluorescently labelled, each amplicon generates a fluorescent peak which 

can be detected by a capillary sequencer. Comparing the peak pattern obtained on a given 

sample with that obtained on various reference samples, the relative quantity of each 

amplicon can be determined (figure 1.2). This ratio is a measure for the ratio in which the 

target sequence is present in the sample DNA. 
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Figure1.2: Steps in multiplex ligation-dependent probe amplification (MLPA). Denatured 

genomic DNA is hybridised with a mixture of probes. Each MLPA probe consists of two 

oligonucleotides. The two parts of each probe hybridise to adjacent target sequences and are 

ligated by a thermostable ligase. All probe ligation products are amplified simultaneously by PCR 

using a single primer pair. The amplification product of each probe has a unique length (130–

472 bp). Amplification products are separated by capillary electrophoresis. Relative amounts of 

probe amplification products reflect the relative copy number of target sequences.  

 

 

 

Compared to conventional karyotyping and fluorescence in situ hybridisation (FISH), the 

MLPA method is technically uncomplicated, less expensive, less laborious, has shorter 

turnaround time and allows for relative quantification of up to 40 DNA target sequences in 

one PCR (Schouten et al., 2002). In addition, it does not require living cells or cell culture, 

but the input of 20 ng or more DNA. As the probe target sequences are small (50-70 nt), 
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MLPA can identify single gene aberrations and have proven to be useful for studies 

involving archival formalin fixed paraffin embedded tissue (van Dijk et al., 2005).  

 

1.3.4 Fluorescence in situ hybridisation (FISH) 

 

This method is based on the ability of a portion of single-stranded DNA (ie. a probe) to 

anneal with its complementary target sequence on a metaphase spread or interphase cells. 

In principle, the DNA probe is conjugated with modified nucleotides which after 

hybridisation with the patient sample allow the region where hybridisation has occurred to 

be visualised using a fluorescent microscope.  

 

FISH is routinely used to identify, confirm and characterise chromosomal abnormalities or 

confirm the clinical suspicion of known microdeletion syndromes (Speicher and Carter, 

2005). However, this method is targeted and can only screen individual DNA targets rather 

than the entire genome (Vermeesch et al., 2007). To overcome this problem, multicolour 

FISH-based karyotyping (SKY, MFISH and COBRA FISH) was developed, which enables 

simultaneous detection of all chromosomes (Speicher et al., 1996; Speicher and Carter, 

2005; Szuhai and Tanke, 2006). Another technology allowing genome wide detection of 

copy number aberrations was introduced in 1992 and termed comparative genomic 

hybridisation (Kallioniemi et al., 1992). 

 

1.3.5 Comparative genomic hybridisation (CGH) 

 

The method has been widely used for the analysis of tumour genomes and constitutional 

chromosomal aberrations since it was first reported by Kallioniemi and colleagues 

(Kallionemi et al., 1992). It involves competitive hybridisation of differentially labeled 

total genomic DNA from control tissue and tumour DNA to normal chromosome spreads. 
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Hybridisation of repetitive sequences is blocked by the addition of Cot-1 DNA. The ratio 

of the fluorescence intensities, generated by two different fluorochromes incorporated into 

test and control DNA is used to differentiate chromosomal regions between the normal and 

tumour DNA. The fluorescence ratio of the test and reference hybridisation signals is 

determined at different positions along the genome and provides information on the 

relative copy number of sequences in the test genome compared with a normal diploid 

genome. 

 

CGH is applied for identifying regions of chromosomes associated with amplification, loss 

and gain in specific tumours (Forozan et al., 1997; Knuutila et al., 1998), particularly for 

solid tumours where, it is often technically difficult to obtain sufficient G-banded 

metaphases of good quality for detailed analysis (Bejjani and Shaffer, 2006). However, 

one disadvantage of CGH is that it is unable to detect balanced rearrangements such as 

inversions or translocations (Pandita et al., 1999). Subsequently microarray-based formats 

for CGH (array CGH) were introduced and are beginning to be widely used in preference 

to chromosome-based CGH. The main advantages of array CGH are higher resolution and 

dynamic range, direct mapping of aberrations to the genome sequence and higher 

throughput (Pandita et al., 1999). 

 

1.3.6 Microarray-based comparative genomic hybridisation (array CGH) 

 

Array comparative genome hybridisation (array CGH) was developed based on DNA 

microarrays and dedicated to the investigation and mapping of changes in DNA copy 

number (Solinas-Toldo et al., 1997; Pinkel et al., 1998; Snijders et al., 2001; Ishkanian et 

al., 2004). The technique uses cDNAs (Pollack et al., 1999) or genomic fragments that are 

cloned in a variety of vectors such as plasmids, fosmids, cosmids (Pinkel and Albertson, 
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2005), bacterial artificial chromosomes (BAC) (Pinkel et al., 1998; Bejjani et al., 2005) or 

P1-derived artificial chromosomes (PAC) (Fiegler et al., 2003; Bejjani et al., 2005) arrayed 

onto a glass slides as the hybridisation targets. Following hybridisation of differentially 

labelled test and reference genomic DNAs to the target sequences on the microarray, the 

slide is scanned to measure the fluorescence intensities at each target on the array. The 

normalised fluorescent ratio for the test and reference DNAs is then plotted against the 

position of the sequence along the chromosomes. Gains or losses across the genome are 

identified by values increased or decreased from a 1:1 ratio (log2 value of 0) (figure 1.3).  

The resolution of the array is limited only by the size and the number of the cloned DNA 

targets and the natural distance between these sequences located on the chromosome 

(Bejjani and Shaffer, 2006; Vermeesch et al., 2007). 
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Figure 1.3: Schematic representation of CGH microarray technology. Whole genomic DNA from 

a control or reference (left) and genomic DNA from a test or patient (right) are differentially 

labeled with two different fluorophores. The two genomic DNA samples are competitively 

cohybridized with large-insert clone DNA targets. Computer imaging programs assess the relative 

fluorescence levels of each DNA for each target on the array (lower left). The ratio between 

control and test DNA for each clone can be linearly plotted using data analysis software to 

visualise dosage variations (lower right), indicated by a deviation from the normal log2 ratio of 

zero. (Adapted from Bejjani and Shaffer,2006). 

 

 

 

Recently, a high-density oligonucleotide-based single nucleotide polymorphism arrays 

(SNP arrays) have been introduced and applied particularly in cancer studies to identify 

copy number and LOH of chromosomal regions throughout the entire genome (Zhao et al., 

2004; Huang et al., 2004). One of the main advantages of a combined SNP-CGH approach 

is the identification of allele specific gain and loss by SNP array and the robust copy 

number detection by array CGH (Kloth et al., 2007). 
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1.3.7 Single nucleotide polymorphism (SNP) arrays 

 

Single nucleotide polymorphisms (SNPs) are a form of genome variation. Each 

polymorphism, or variant, occurs at a frequency of greater than 1% in the population 

(Brookes 1999). SNPs are common throughout the genome, have relatively high levels of 

heterozygosity and can be easily genotyped. SNPs were recognised as the most frequent 

type of variation in the human genome and therefore would provide a powerful tool for 

human genetic studies (Risch et al., 1996; Kruglyak, 1999). Due to their abundance, 

estimated to be 10 million in the human genome (Kruglyak and Nickerson, 2001), even 

spacing and stability across the genome, SNPs provide a significant diagnostic potential 

for human diseases and cancers compared to restriction fragment length polymorphisms 

and microsatellite markers (Zhao X et al., 2004). This feature also makes it easier for 

automation.  

 

SNP arrays were developed in 1998 for genotyping (Wang et al., 1998). With the 

improvement of the arrays in the subsequent years, their use has been successfully 

extended from investigation of genomic alterations in cancer and cell lines (Lindblad-Toh 

et al., 2000; Hodgson et al., 2001; Cai et al., 2002; Wilhelm et al., 2002; Fiegler et al., 

2003; Kraus et al., 2003; Paris et al., 2003; Albertson and Pinkel, 2003; Bignell et al., 

2004; Huang et al., 2004; Janne et al., 2004; Rauch et al., 2004; Zhou et al., 2004; Gibbs 

and Singleton, 2006; van Beers, 2006) to identification of unbalanced constitutional 

rearrangements (Vissers et al., 2003; Shaw-Smith et al., 2004), single copy gains and 

losses in specific chromosomal regions (Bruder et al., 2001; Yu et al., 2003; Veltman, 

2003), telomeres and subtelomeres (Veltman et al., 2002; Schoumans et al., 2005; de Vries 

et al., 2005) and an entire chromosome (Buckley et al., 2002). Importantly, this technique 
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can detect copy neutral loss of heterozygosity (LOH) events, which comprise 50–70% of 

the LOH detected in human tumours (Huang et al., 2004; Ishikawa et al., 2005; Beroukhim 

et al., 2006). 

Currently, Affymetrix and Illumina are among the main manufacturers of SNP arrays. 

Although the technology applied in producing the arrays is different, they both rely on the 

basic principle that nucleotides bases bind to their complementary partners, A-T and G-C. 

Both array protocols
 
call for the hybridisation of fragmented single-stranded DNA

 
to 

arrays containing hundreds of thousands of unique nucleotide
 
probe sequences. Each probe 

is designed to bind to a target
 
DNA subsequence. Following hybridisation, signal intensity 

associated with each
 
probe and its target is measured using specialized equipment and 

software (figure 1.4).  

 

The underlying principle
 
is that the signal intensity depends upon the amount of target

 

DNA in the sample, as well as the affinity between target and
 
probe. For example, the 

Affymetrix Mapping 500K Array Set includes more than 6.5 million features, each 

consisting of more than one million copies of a 25-bp oligonucleotide probe of a defined 

sequence, synthesized in parallel by proven photolithographic manufacturing. Each SNP is 

interrogated by 6- or 10-probe quartets where each probe quartet is comprised of a perfect 

match (PM; perfectly complementary to one of the target alleles), and a mismatch probe 

(MM; identical to a perfect match probe except
 
that the centre base is altered so as to be 

perfectly complementary
 
to neither allele) for each allele. In total, there are 24 or 40 

different 25-bp oligonucleotides per SNP (http://www.affymetrix.com/) (Zhao et al., 

2004). The scheme yields quartets comprised of four
 
types of probes: PMA, MMA, PMB and 
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MMB. The computational goal
 
is to convert these probe quartet intensity measures

 
from 

raw array data into a genotype inference AA, AB or
 
BB. 

 

 

Figure 1.4: Overview of SNP array technology. At the top is the fragment of DNA harbouring an 

A/C SNP to be interrogated by the probes shown. (a) In the Affymetrix assay, there are 25-mer 

probes for both alleles, and the location of the SNP locus varies from probe to probe. The DNA 

binds to both probes regardless of the allele it carries, but it does so more efficiently when it is 

complementary to all 25 bases (bright yellow) rather than mismatching the SNP site (dimmer 

yellow). This impeded binding manifests itself in a dimmer signal. (b) Attached to each Illumina 

bead is a 50-mer sequence complementary to the sequence adjacent to the SNP site. The single-

base extension (T or G) that is complementary to the allele carried by the DNA (A or C, 

respectively) then binds and results in the appropriately-colored signal (red or green, respectively). 

For both platforms, the computational algorithms convert the raw signals into inferences regarding 

the presence or absence of each of the two alleles. (Adapted from LaFramboise, 2009) 
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1.4 Genetic alterations and human cancers  

 

The idea that numerical alterations in the chromosome contribute to tumourigenesis was 

put forward by David von Hansemann in 1890 from his study on 13 different carcinoma 

samples. In each of the cases, he found examples of aberrant mitotic figures that showed 

asymmetric distribution of 'chromatin loops' or chromosomes. He postulated that these 

aberrant cell divisions were responsible for the decreased or increased chromatin content 

found in cancer cells. His idea was abandoned for many decades until Theodor Boveri 

(Boveri, 1914) pursued the concept by inducing multipolar mitoses on sea urchin eggs.  

From his observation of the abnormal cells bearing abnormal chromosomal number, he 

suggested that individual chromosomes were qualitatively dissimilar and transmitted 

different inheritance factors. He proposed that aberrant mitoses led to the unequal 

distribution of chromosomes, which, in most cases, would be detrimental. Yet, on 

occasion, a "particular, incorrect combination of chromosomes" would generate a 

malignant cell endowed with the ability of unlimited growth, which would pass the defect 

on to its progeny. This idea has laid a foundation for viewing cancer as a genetic disease.  

 

However, the hypotheses only became evident almost 40 years later when it was 

discovered that all tumour cell lines had chromosomal aberrations, frequently containing 

more than 100 chromosomes per cell including ring and dicentric chromosomes (Levan, 

1967; Rowley, 2001). The identification of Philadelphia chromosome (Ph) due to 

t(9;22)(q34;q11) in bone marrow patients with chronic myelogenous leukaemia (CML) 

(Nowell and Hungerford, 1960; Rowley, 1973) further supported the findings. It is also 

well established that abnormal chromosome segregation in cell division is one way by 

which tumour cells may accumulate the many genetic abnormalities required for tumour 

progression (Lengauer et al., 1998; Brinkley 2001; Saunders, 2005). Now, with the advent 
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of high throughput and high resolution technologies to identify genetic and epigenetic 

alterations in cancers, it has been reported that some 45,000 cytogenetic aberrations are 

associated with human neoplasms (Mitelman et al., 2004). It has also been observed that 

most recurrent aberrations and rearranged genes have been found in hematological 

disorders whereas numerous genomic imbalances have been identified in solid tumours 

(Look, 1997; Mertens et al., 1997; Rowley, 2001; Rabbits, 2003; Helman and Meltzer, 

2003; Albertson et al., 2003).  

In 1971, Alfred G. Knudson proposed a ‘two-hit’ hypothesis to explain the genetic 

mechanism underlying retinoblastoma (a childhood form of retinal cancer) which occurs in 

both hereditary and nonhereditary forms.  He performed statistical analysis on his data of 

48 patients with retinoblastoma combined with similar data from two previous 

publications (Vogel, 1957; Schappert-Kimmijser et al., 1966). He found that in the 

hereditary form, most children with an affected parent develop bilateral retinoblastoma, 

however some develop unilateral and others are not affected but have an affected child. 

These observations led to the theory that a single mutation is not sufficient for 

tumourigenesis. He hypothesized that in children with hereditary retinoblastoma, the first 

hit was inherited in the DNA and the second hit would rapidly cause cancer.  His findings 

also led to conclusions that patients who inherit the mutation would develop tumours 

earlier, and they would often develop more than one tumour. In contrast, individuals who 

did not inherit a mutation would almost always be affected by a single tumour. This 

statement, which called the two-mutation hypothesis is now known as the two-hit 

hypothesis (Knudson, 1971). Later, cloning of retinoblastoma gene confirmed the 

requirement for two mutations and that the gene, RB, occur on the two alleles on 

chromosome 13q14 (Benedict et al., 1983; Cavenee et al.,1983; Friend et al., 1986). 
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Disruption of the gene on both alleles causes loss of RB1 protein and subsequently leads to 

cancer formation. Following this seminal findings, more tumour suppressor genes (TSG) 

were later identified for example p53, BRCA1, BRCA2, APC, PTE�, VHL. 

A variety of genetic alterations leading to tumour suppressor gene inactivation, including 

point mutations, small insertions, deletions, structural changes of the chromosome, or 

chromosomal loss, can constitute the first hit. All of these events plus mitotic 

recombination can occur as the second hit (Nowak et al., 2004). However, usually large 

deletions or chromosome loss do not account both for the first and second step in one cell, 

because large homozygous deletions are often lethal for a cell (Nowak et al., 2004).  

 

Experiments in mice, however, have highlighted some exceptions to this rule such that 

deletion of a single tumour suppressor gene allele can lead to cancer. Such 

haploinsufficiency is observed in p53 and p27
Kip1

 (Venkatachalam et al., 1998; Fero et al., 

1998). In the p53 study, the penetrance of spontaneous tumours in p53+/- mice was 95%, 

with a median age of morbidity of 460 days and less than half of the tumours had lost the 

wild-type p53 allele. Thus approximately 50% of the tumours harvested before 550 days, 

and 85% of the late-arising tumours, retained one expressed allele (Venkatachalam et al., 

1998).  

 

The alleles retained in two of the p53+/- tumours were completely sequenced in the coding 

region, and found to be wild-type. Five tumours were examined in a wide range of tests of 

p53 function and all of the results were consistent with the presence of a functional p53 

protein, as were the Western blot data. The evidence suggests that fatally malignant 

tumours retaining the wild-type p53 allele appear slightly later than tumours which have 
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lost it, but significantly more frequently and earlier than tumours in the +/+ mice. This 

study is consistent with the earlier reports which implied that although p53 hemizygous 

cells respond to DNA damage signals, the efficiency of the response is lower, allowing 

some cells to escape and continue to proliferate, and thus become targets for further 

mutations in other genes (Clarke et al., 1993, 1994; Gottlieb et al., 1997). 

 

Similar findings were observed in mice hemizygous for p27
Kip1

 in which 32% of them 

were shown to develop tumours. Despite a relatively late onset (median 570 days), all 

arose before any appeared in the +/+ control mice. None of the tumours examined showed 

loss of the second allele, whose sequence was shown to be wild-type (complete coding 

regions sequenced from one spontaneous tumour and from 13 tumours induced by 

radiation or ethyl nitrosourea). The gene product was expressed at levels comparable to 

those of normal tissues, and was appropriately localised to the nucleus. And so it was 

concluded that for both p53 and p27
Kip1

, loss of two alleles was more tumourigenic than 

loss of one and tumours arose more quickly in homozygous than hemizygous deficient 

mice (Venkatachalam et al., 1998; Fero et al., 1998). Several other examples of 

haploinsufficiency for tumour suppression have been demonstrated, for example p16
Ink4a

 

(Krimpenfort et al., 2001) and PTE� (Sulis and Parsons, 2003; Trotman et al., 2003).  

 

In contrast to the usual function of a tumour suppressor gene, somatic mutation on one 

allele or ‘one hit’ is believe to be sufficient for oncogene to confer a selective growth 

advantage on the cell  (Vogelstein and Kinzler, 2004). Oncogenes were first identified in 

oncogenic retroviruses that had picked up a cellular oncogene (c-onc) and incorporated it 

into the viral genome to produce a viral oncogene (v-onc) (Stehelin et al., 1976a; Stehelin 
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et al., 1976b; Stehelin et al., 1977). An oncogene can be the result of several DNA 

alterations; mutation, structural rearrangement or gene copy number gains (Albertson et 

al., 2003; Vogelstein and Kinzler, 2004). K-ras point mutation has been shown to be 

associated with poor prognosis of lung adenocarcinoma (Slebos et al., 1990), mutation of 

BRAF in human cancers changes a valine to a glutamate at codon 599 which is a residue 

within the activation loop of the kinase domain
 
(Davies et al., 2002), translocation 

t(8;14)(q24;q32) found in about 85% of cases of Burkitt lymphoma places the c-myc gene 

located at chromosome 8q24 under control of regulatory elements from the 

immunoglobulin heavy chain locus located at 14q32 resulting in transcriptional activation 

of c-myc, which encodes a nuclear protein involved in the regulation of cell proliferation 

(Siebert et al., 1998; Mann et al., 2002).  

 

Peter Nowell in 1976 has proposed a model for the evolution of tumour cell populations in 

terms of stepwise genetic variation based from his observation that (1) in many primary 

tumours, all cells show the same abnormal karyotype, and even when several chromosome 

patterns are present within a single tumour, marker chromosomes in each cell often 

indicate that the different subpopulations derive from a common stemline (Sandberg, 

1970) (2) the isoenzymes of glucose-6-phosphate dehydrogenase in a variety of neoplasms 

in heterozygous women have indicated that typically the same member of the X 

chromosome pair is functional in all cells of a given tumour (Linder and Gartler, 1965). 

(iii) the immunoglobulin produced by plasma cell tumours (and perhaps other 

lymphoproliferative neoplasms as well) has in almost every case the homogeneity 

characteristic of a single clone (Linder and Gartler, 1965; Milstein et al., 1967). Nowell 

suggested that, following an initiating event that converts a normal cell to a neoplastic cell, 

cancer progression results from the acquisition of genetic instability, leading to the 
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accumulation of genetic alterations and the continual selective outgrowth of variant 

subpopulations of tumour cells with a proliferative advantage.  

 

In 1997, Kinzler and Vogelstein proposed a division of TSG genes to ‘gatekeepers’ and 

‘caretakers’. Gatekeeper genes function by directly controlling cell growth, thus inhibiting 

proliferation, leading to apoptosis and/or promoting terminal differentiation (Russo et al., 

2003). These genes are frequently mutated in both sporadic and hereditary tumours and 

their functional loss is rate limiting for tumour growth of a specific tissue type. Alteration 

of a particular gatekeeper gene can lead to the development of a particular form of 

predisposition to cancer (Kinzler and Vogelstein, 1997). Caretaker genes are involved in 

the maintenance of genomic stability by reducing the mutation rates in gatekeepers and 

oncogenes. Mutations in these genes are frequently found in hereditary tumours (Kinzler 

and Vogelstein, 1997). Consequently, an altered gatekeeper gene could affect mainly 

tumour initiation, while a caretaker gene could accelerate the tumour progression, even if 

in certain cases their functions may partly overlap; as such the same gene may act either as 

a gatekeeper or as a caretaker. 
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1.5 Aims of this thesis 

The principal aim of my thesis is to apply molecular cytogenetic technique and high 

resolution SNP array to characterise constitutional and acquired cytogenetic abnormalities 

in specific human disease situations i.e. developmental disorders (3p- syndrome and 

Beckwith-Wiedemann syndrome) and human renal cancers. 

 1.5.1 Array CGH analysis of 3p25-p26 deletion (3p- syndrome) 

The two main aims of this study are to investigate phenotype-genotype 

correlations and to accurately map the deletion breakpoints on the 

chromosome 3p using 250K SNP array (in 14 patients) and SNP 6.0 (in 2 

patients). 

 

 1.5.2  Cytogenetics and molecular genetic analysis of Beckwith Wiedemann 

syndrome (BWS) 

 

To define and characterise the region of chromosome 11p15 involved in 

Beckwith-Wiedemann syndrome (BWS), I have carried out a high resolution 

250K SNP array analysis on seven patients and SNP6.0 on one patient with 

features of BWS. Conventional and molecular cytogenetic techniques were 

also applied in two of the cases with chromosome rearrangements.  

 

 1.5.3  Analysis of copy number changes in primary tumours of clear cell renal cell 

carcinoma (cRCC) and renal cell carcinoma (RCC) cell lines using 250K 

SNP Array 

 
 

This study is aim to identify copy number changes and characterise 

chromosomal changes in primary tumours of clear cell renal cell carcinoma 
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from sporadic, VHL disease and renal cell carcinoma cell lines using 250K 

SNP Array.  

 

 1.5.4 Identification of copy number changes in sporadic clear cell renal cell 

carcinoma (cRCC) using high resolution array SNP6.0 

 
The main aim of this study is to precisely characterise and identify copy 

number changes associated with sporadic clear cell renal cell carcinoma 

(cRCC). Therefore, I took advantage of the latest microarray technology, 

Affymetrix array SNP6.0, to study copy number changes of 37 samples of 

sporadic cRCC. The data was then compared with the results of sporadic 

cRCC obtained using the 250K SNP array.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



31 

 

2 General methods 

2.1  250K S
P array (Sty1) 

The experiment was carried out following the manufacturer’s protocol (Affymetrix, USA) 

(summarized in Figure 2.1) to minimize possible sources of contamination that would 

reduce genotyping accuracy, call rate and consequently genetic power.  

 

 Genomic DNA samples from: 

• 3p25-p26 deletion syndrome                                    

• Beckwith-Wiedemann syndrome (BWS) 

• Clear cell renal cell carcinoma (cRCC) primary  

tumours and RCC cell lines 

 

Digestion 

 

Ligation 

 

Polymerase chain reaction (PCR) 

 

Fragmentation 

 

Hybridisation 

 

Washing, staining and scanning 

 

Data analysis 

 

Figure 2.1: Steps involved in 250K SNP array 
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All the samples used for this study follows the guidelines and requirements specified by 

the manufacturer (Affymetrix, USA). Please refer appendix A1. 

 

2.1.1  Sample preparation  

 

Location: Pre-PCR clean area  

 

The samples were thoroughly mixed by vortexing at high speed for 3 seconds and spun 

down at 2000 rpm for 30 seconds. The concentration of each sample was determined using 

Nanodrop 1000 spectrophotometer (Thermo Scientific, USA). Based on OD 

measurements, the samples were diluted to 50ng/ul using DNase/RNase free molecular 

grade water. The diluted DNA was then thoroughly mixed by vortexing at maximum speed 

for 3 seconds. 5 ul DNA was aliquoted to the corresponding 96-well reaction plate which 

was placed in a double cooling chamber on ice. If the next step was not proceeded to 

directly, the samples were stored in -20°C.  

 

2.1.2 Restriction enzyme digestion  

Location: Pre-PCR clean area 

Before starting this step, the reagents, equipment and consumables required were prepared 

as follows:  

• Genomic DNA was thawed on ice if frozen. When thawed, the centre of the plate 

was vortexed at high speed for 3 seconds, spun down at 2000 rpm for 30 seconds 

and placed back on ice.  

• BSA (Bovine Serum Albumin) and NE Buffer 3 (New England Biolab, UK) were 

thawed on ice. When thawed, they were vortexed at high speed for 3 seconds, then 

spun for 3 seconds and placed on ice.  
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• 2 mL of AccuGENE® water was placed on ice. 

• The thermocycler was on to preheat the lid at room temperature.  

• A 2.0 mL Eppendorf tube was labeled Dig MM and placed on ice. 

 

2.1.2.1 Preparation of the digestion master mix 

 

All the reagents required were kept on ice. For 1 sample, 11.55 ul AccuGENE water, 2 ul 

NE Buffer 3 and 0.2 ul BSA (10X;1 mg/ml) were added to the 2.0 mL eppendorf tube. Sty1 

enzyme (10 U/ul) was removed from the freezer, immediately placed on ice and then spun 

for 3 seconds.  1 ul of the enzyme was then added to the master mix. The master mix was 

then vortexed at high speed for 3 seconds, spun for 3 seconds and then placed on ice. Any 

remaining enzyme was then returned to the freezer. When preparing multiple samples, 5% 

extra of each component were added. 

 

2.1.2.2 Addition of digestion master mix to samples 

This step was handled on ice. 14.75 µL of Digestion Master Mix was added to each DNA 

sample making the total volume in each well 19.75 µL. The plate was sealed tightly using 

96-well Clear Adhesive Films (Applied Biosystems, USA) and vortexed at the centre at 

high speed for 3 seconds. It was then spun down at 2,000 rpm for 30 seconds and loaded 

onto the preheated thermal cycler and the 500K Digest program was run as follows: 

120 minutes 37°C 

20 minutes 65°C  

Hold 4°C 

 

The plate was then removed and spun down at 2000 rpm for 30 seconds and the samples 

were stored in -20°C if not proceeding directly to the next step. 
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2.1.3 Ligation  

Location: Pre-PCR clean area 

Before starting, the reagents, equipment and consumables required for this step were 

prepared as follows: 

Adaptor Sty (50 µM; 1 vial) (Affymetrix, USA) and T4 DNA Ligase Buffer (10X; 1 vial) 

(Affymetrix, USA) were thawed on ice. They were then vortexed at high speed for 3 

seconds then pulse spun for 3 seconds and placed back on ice. 

If frozen, the Digestion Stage plate was thawed on ice. It was then vortexed at the centre at 

high speed for 3 seconds, spun down at 2000 rpm for 30 seconds and placed back on ice. 

The thermal cycler was powered on to preheat the lid. 

A 2.0 mL eppendorf tube was labeled Lig MM and placed on ice. 

 

2.1.3.1 Preparation of ligation master mix 

Keeping all reagents and tubes on ice, 0.75 ul Adaptor Sty1 (50 uM) and 2.5 ul T4 DNA 

Ligase Buffer (10X) were added to the 2.0 mL eppendorf tube labeled Lig MM.  T4 DNA 

Ligase (400 U/ul) was removed from the freezer and immediately placed on ice. It was then 

pulse spun for 3 seconds and immediately 2 ul of the enzyme was added to the master mix. 

The master mix was then vortexed at high speed for 3 seconds, pulse spun for 3 seconds 

and placed in the cooling chamber. Any remaining enzyme was placed back in the -20C 

freezer. 

2.1.3.2 Addition of ligation master mix to samples 

The addition was done on ice. The seal of the Digestion Stage plate was carefully removed 

and 5.25 µL of Ligation Master Mix was aliquoted to each reaction. The plate was then 

tightly sealed again using 96-well Clear Adhesive Films (Applied Biosystems, USA), 

vortexed at the centre at high speed for 3 seconds then spun down at 2000 rpm for 30 
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seconds. The plate was loaded onto the preheated thermal cycler and the 500K Ligate 

program was run as follows: 

180 minutes 16°C 

20 minutes 70°C 

Hold 4°C 

 

2.1.3.3 Dilution of the samples 

10 mL of the AccuGENE® water was placed on ice for 20 minutes prior to use. When the 

program was finished, the ligation plate was removed from the thermal cycler, spun down 

at 2000 rpm for 30 seconds and placed on ice. The seal of the plate was carefully removed 

and 75 µL of water was added to each reaction. The plate was then tightly sealed again 

using 96-well Clear Adhesive Films (Applied Biosystems, USA), vortexed at the centre at 

high speed for 3 seconds and then spun down at 2000 rpm for 30 seconds. If not 

proceeding directly, the samples were stored in -20°C. 

 

2.1.4 Polymerase Chain Reaction (PCR)  

Location: Pre-PCR clean area 

The following reagents, equipment and consumables were prepared before starting this 

step: 

10X TITANIUM™ Taq PCR Buffer (Clontech, USA), dNTPs (Takara, USA), PCR 

Primer 002 (Affymetrix, USA), G-C Melt (5M) (Clontech, USA) were thawed on ice. 

Once thawed, they were vortexed at high speed for 3 seconds, pulse spun for 3 seconds 

and placed back on ice.  

15 mL of AccuGENE water was placed on ice. 
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The Ligation Stage plate was thawed on ice if frozen. It was then labelled Lig, vortexed at 

the centre at high speed for 3 seconds, spun down at 2000 rpm for 30 seconds and placed 

back on ice. 

The thermal cycler was powered on and preheated. 

Three 96-well reaction plates were labeled P1, P2, and P3 

A 50 mL Falcon tube was labeled PCR MM 

 

2.1.4.1 Addition of D�A to the reaction plates  

Location: Pre-PCR clean area 

10 µL of sample from each well of the Ligation Stage plate was transferred to the 

corresponding row and well of each reaction plate (as shown in figure 2.2). The transfer 

was done on ice. Each plate were tightly sealed and left on ice. 

 

 

Figure 2.2: Transfer of ligation stage plate to the corresponding row and well of reactions plates 1, 

2 and 3.  
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2.1.4.2 Preparation of PCR master mix  

Location: Pre-PCR clean area 

Keeping the 50 mL Falcon tube on ice, all of the reagents (except for Taq DNA 

polymerase) were added in the order shown in table 2.1. The TITANIUM Taq DNA 

Polymerase was then removed from the freezer and immediately placed on ice. It was then 

pulse spun for 3 seconds and immediately added to the master mix. The master mix was 

vortexed at high speed for 3 seconds. For multiple samples, 5% excess of each reagent was 

added. Any remaining of Taq DNA polymerase was returned to the -20C freezer. 

 
 Table 2.1: PCR master mix 

Reagent 1 PCR 3 PCR Final conc. in sample 

AccuGENE water 39.5 ul 118.5 µL  

TITANIUM Taq PCR Buffer (10X) 10 ul 30 µL 1X 

GC-melt (5M) 20 ul 60 µL 5M 

dNTPs (2.5 mM) 14 ul 42 µL 350 uM 

PCR primer 002 (100 uM) 4.5 ul 13.5 µL 4.5 uM 

TITANIUM Taq DNA polymerase (50X) 2 ul 6 µL 1X 

Total 90 ul 270 µL  
Abbreviation: conc., concentration 

 

2.1.4.3 Addition of PCR master mix to samples  

Location: PCR staging area 

The reaction plates P1, P2 and P3 and PCR Master Mix were transferred to PCR staging 

area on ice. 90 µL of PCR Master Mix was added to each sample making the total volume 

in each well 100 µL. Each reaction plate was sealed tightly, vortexed at medium speed for 

2 seconds and spun at 2,000 rpm for 1 minute. 
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2.1.4.4 PCR reaction 

Location: Main lab 

Reaction plates P1, P2 and P3 were transferred to the Main Lab. Each plate was loaded 

onto a preheated thermal cycler MJ Tetrad PTC-225 and the program was run as follows:   

3 minutes 94°C 1 cycle 

30 minutes94°C 

30 minutes60°C        30 cycles 

15 seconds68°C 

7 minutes68°C 1 cycle 

Hold 4°C 

 

 

Each reaction plate was then removed from the thermal cycler and spun down at 2000 rpm 

for 30 seconds then placed on ice. Three fresh 96-well reaction plates were labelled P1Gel, 

P2Gel and P3Gel. 3 µL of 2X Gel Loading Dye was added to each well of the three plates. 

3 µL of each PCR product from plates P1, P2 and P3 was transferred to the corresponding 

plate, row and wells of plates P1Gel, P2Gel and P3Gel. Plates P1Gel, P2Gel and P3Gel 

were sealed and vortexed at medium speed for 3 seconds then spun down at 2000 rpm for 

30 seconds. 6 µL from each well of plates P1Gel, P2Gel and P3Gel was loaded onto 2% 

TBE gels and run at 120V for 40 minutes to 1 hour. The gels were examined to verify that 

the PCR product distribution is between 250 bp to 1100 bp (figure 2.3). If not proceeding 

directly to the next stage within 60 minutes, the plates were sealed and stored at −20 °C. 
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Figure 2.3: Typical example of PCR products run on 2% TBE agarose gel at 120V for 1 hour, with 

average size between 200 and 1,100 bp 

 

 

 2.1.5  PCR purification and elution  

Location: main lab 

Before starting this step, the following were done:  

The PCR product was thawed at room temperature if frozen. Once thawed, it was vortexed 

at the centre at medium speed for 3 seconds and spun down at 2000 rpm for 30 seconds. 

The manifold-QIAvac multiwell unit (Qiagen, USA) was set up as follows: 

a. the manifold was connected to a vacuum source QIAGEN Vacuum Regulator  (Qiagen, 

USA) able to maintain 600 mbar. 

b. a waste tray was placed inside the base of the manifold. 

 

8 µL of diluted EDTA (0.1M) was aliquoted into each well on each PCR product plate. 

They were then tightly sealed and vortexed at medium speed for 2 seconds and spun at 

2000 rpm for 1 minute. 
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Next, the samples from the same row and well of each PCR product plate were transferred 

and pooled to the corresponding row and well of the Clontech Clean-Up Plate (figure 2.4). 

 

 

Figure 2.4: Pooling of PCR products 

 

The vacuum was then turned on and maintained at 600 mbar until all of the wells were dry 

(approximately 1.5 to 2 hours). The PCR products were washed by adding 50 µL 

molecular biology grade water and the wells completely dry in approximately 20 minutes. 

This step was repeated 2 additional times for a total of 3 water washes. After the third 

wash, the manifold was tapped firmly on the bench to force any drops on the sides of the 

wells to move to the bottom and be pulled through the plate. The samples were allowed to 

dry completely which took 45 to 75 minutes in the third wash.  The vacuum was then 

turned off and was carefully removed from the manifold. The bottom of the plate was 

immediately blotted on a stack of clean, absorbent paper to remove any remaining liquid. 

Next, 45 µL RB Buffer (Clontech, USA) was added to each well of the plate. It was then 

tightly sealed and then loaded onto a plate shaker, e.g., Jitterbug (Boekel Scientific, model 

130000), for 10 minutes at room temperature. Approximately 45 µL of each eluted sample 

was then transferred from the Clontech Clean-Up Plate to the corresponding well of a fresh 
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96-well plate. If not proceeding immediately to the next stage the plate was sealed and 

stored at −20 °C.  

 

2.1.6  Quantification of purified PCR product and normalization 

2 µL of the purified PCR product was added to 198 µL molecular biology grade water 

(100-fold dilution) and mixed well. Nanodrop 1000 spectrophotometer (Thermo, USA) 

was utilized to determine the purified PCR product yield. Water was used as blank. The 

absorbance at 260 nm was read for each sample. The convention that 1 absorbance unit at 

260 nm equals 50 µg/mL (equivalent to 0.05 µg/µL) was applied for double-stranded PCR 

products. For accurate concentration measurement, three independent dilutions of each 

sample were made and Average Sample OD was obtained by average the 3 readings.  

Average Sample OD: 

Sample Concentration in µg/µL = Average Sample OD X (0.05 µg/µL) X 100 

A typical average sample OD is 0.5 to 0.7. This OD range is equivalent to a final PCR 

product concentration of 2.5 to 3.5 µg/µL. 

 

Next, the samples were normalized by adding appropriate volume of RB Buffer (Clontech, 

USA) by using the formula as shown below: 

X µL RB Buffer = 45 µL – (Y µL purified PCR product) 

Where: 

Y = The volume of purified PCR product that contains 90 µg 

The value of Y is calculated as: 

Y µL purified PCR product = (90 µg) ÷ (Z µg/µL) 

Z = the concentration of purified PCR product in µg/µL 
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Calculated volume of RB Buffer (the value of X) was added to each well of the reaction 

plate in the cooling chamber on ice.  The calculated volume of purified PCR product (the 

value of Y) was added to the corresponding well with RB Buffer. The total volume of each 

well was 45 µL. After normalization, each well contains 90 µg of purified PCR product in 

a volume of 45 µL (or 2 µg/µL).  The plate was then sealed with a clear adhesive film, 

vortexed at medium speed for 2 seconds and spun down at 2000 rpm for 1 minute. If not 

proceeding immediately to the next step, the plate was sealed and stored at –20 °C. 

 

2.1.7  Fragmentation  

Location:  main lab 

Before starting, reagents, equipments and consumables were prepared as follows: 

The thermal cycler block was preheated to 37 °C for 10 minutes prior to loading reactions. 

The Fragmentation Buffer (10X) (Affymetrix, USA) was thawed on ice. Once thawed, it 

was vortexed at medium speed for 3 seconds, pulse spun for 3 seconds and placed on ice. 

2 mL of the AccuGENE water was placed on ice. 

One 1.5 mL Eppendorf tube labeled Frag MM 

Plate of purified, normalized PCR product from the previous stage. 

Two strips of 12 tubes labeled Buffer and FR.   

 

5 µL of Fragmentation Buffer was added to each sample on ice. The label of the 

Fragmentation Reagent (Affymetrix, USA) tube was examined to define the concentration 

(U/ul). Based on the concentration, the Fragmentation Reagent was diluted to 0.05 U/µL 

by adding water and fragmentation buffer in a 1.5 ml tube labelled Frag MM placed on 

ice. The mix was then vortexed at medium speed for 2 seconds and placed back on ice. 
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Example of the dilution for two different concentrations of fragmentation reagent is shown 

in table 2.2.  

 

Table 2.2: Dilution of fragmentation reagent 

Reagent Fragmentation Reagent Concentration 

 2 U/ul 3 U/ul 

Water, molecular grade 525 ul 530 ul 

10X Fragmentation buffer 60 ul 60 ul 

Fragmentation Reagent 15 ul 10 ul 

Total (enough for 96 samples) 600 ul 600 ul 

 

The Fragmentation Reagent was removed from the freezer and immediately placed on ice. 

It was pulse spun for 3 seconds and immediately added to the mix, vortexed at high speed 

for 3 seconds then pulse spun for 3 seconds and immediately placed on ice. On ice, 5 µL of 

diluted Fragmentation Reagent was added to each sample and pipetted up and down 

several times to mix. The plate was tightly sealed, vortexed at medium speed for 2 seconds 

and spun briefly at 2000 rpm at 4°C. The plate was immediately loaded onto the preheated 

block of the thermal cycler (37 °C) and the 500K Fragment program was run as follows:  

35 minutes 37°C 

15 minutes 95°C 

Hold 4°C 

 

The plate was then removed from the thermal cycler, spun down at 2000 rpm for 30 

seconds and placed back on ice. 4 µL of each fragmented PCR product was diluted with 4 

µL gel loading dye. It was then loaded and run on a 4% TBE gel with the BioNexus All 

Purpose Hi-Lo Ladder at 120V for 30 minutes to 1 hour. If the gel matches the example 

shown in figure 2.5, the process was continued immediately to the next step.  
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Figure 2.5: Typical example of fragmented PCR products run on 4% TBE agarose gel at 120V for 

30 minutes to 1 hour. Average fragment size is < 180 bp. 

 

 

2.1.8  Labeling  

Location: Post-PCR clean area 

The following were done before starting this stage: 

The 5X TdT Buffer (Affymetrix, USA) and the GeneChip® DNA Labeling Reagent (30 

mM) (Affymetrix, USA) were thawed on ice. Once thawed, they were vortexed at medium 

speed for 3 seconds, pulse spun for 3 seconds and placed on ice. 

The thermal cycler was turned on and the block preheated to 37°C for at least 10 minutes 

before samples are loaded. 

One 1.5 mL centrifuge tube marked Label MM 

 

For 1 sample, 14 ul 5X TdT Buffer and 2 ul Labeling Reagent (30 mM) were added to the 

1.5 mL centrifuge tube on ice. The TdT enzyme (30 U/µL) was removed from the freezer 

and immediately spun for 3 seconds.  Immediately 3.5 ul of the enzyme was added to the 

master mix, vortexed at medium speed for 3 seconds and then pulse spun for 3 seconds. 

Next, 19.5 µL of Labeling Master Mix was aliquoted to each fragmented DNA samples 

from the previous step. The mixture was pipetted up and down one time.  The plate was 
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sealed tightly, vortexed at medium speed for 3 seconds and spun down at 2000 rpm for 30 

seconds. The plate was placed onto the preheated thermal cycler block, and the 500K 

Label program was run as follows:  

4 hours 37°C 

15 minutes 95°C 

Hold 4°C 

 

 

The plate was then removed from the thermal cycler and spun down at 2000 rpm for 30 

seconds. If not proceeding directly to the next stage, the samples were freeze at −20 °C. 

 

2.1.9  Hybridisation 

The following reagents, equipments and consumables were prepared prior hybridisation:  

The hybridisation oven was turned on and allowed to preheat for 1 hour. The temperature 

was set to 49 °C, the rpm was set to 60 and the rotation was turned on. 

Two heat blocks were turned on; one was preheated to 99 °C and the other to 49 °C. 

If the labelled samples from the previous stage were frozen, they were thawed on the 

bench top, then vortexed at high speed for 3 seconds, spun down at 2000 rpm for 30 

seconds and placed back on ice. 

The arrays were unwrapped and placed on the bench top, septa side up, to warm to room 

temperature for 10–15 minutes. 

Each array was marked with a meaningful designation (e.g., a number) to know which 

sample is loaded onto each array.  

 A 200 µL pipet tip was inserted into the upper right septum of each array. 
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1000 ml 12X MES stock solution was prepared by adding 70.4 g MES hydrate (Sigma-

Aldrich, USA) and 193.3 g MES Sodium Salt (Sigma-Aldrich, USA) to 800 mL molecular 

biology grade water. The reagents and the water were mixed together and volume was 

adjusted to 1,000 mL. The pH should be between 6.5 and 6.7. The solution was filtered 

through a 0.2 µm filter, stored in 2-8ºC and shield from light.  

 

Preparation of hybridisation master mix 

The reagents were added to a 50 mL centrifuge tube in the order as shown in table 2.3 and 

mixed well. For multiple samples, 5% excess was made.  

 

Table 2.3: Hybridisation cocktail master mix 

Reagent 1 array Final concentration in sample 

MES (12X;1.22M) 12 ul 0.056 M 

Denhardt’s solution (50X) 

(Sigma-Aldrich, USA) 

13 ul 2.50X 

EDTA (0.5M) 

(Ambion, USA) 

3 ul 5.77 mM 

HSDNA (10 mg/ml) 

(Promega, USA) 

3 ul 0.115 

Oligo Control Reagent, 0100 

(Affymetrix, USA) 

2 ul 1X 

Human Cot-1 DNA (1 mg/ml) 

(Invitrogen, USA) 

3 ul 11.55 ug/ml 

Tween-20 (3%) 

(Surfact-Amp, USA) 

1 ul 0.0115% 

DMSO (100%) 

(Sigma-Aldrich), USA) 

13 ul 5.0% 

TMACL (5 M) 

(Sigma-Aldrich, USA) 

140 ul 2.69M 

Total 190 ul  

 

Each of the labelled samples was transferred from the plate to a 1.5 mL eppendorf tube. 

190 µL of the Hybridisation Cocktail Master Mix was aliquoted into the labelled DNA 

samples. The hybridisation mix and labeled DNA were heated at 99°C for exactly 10 

minutes to denature. It was then cooled on crushed ice for 10 seconds, spun briefly at 2000 
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rpm in a microfuge to collect any condensate. The tubes were then placed in a heat block 

at 49°C for 1 minute. 200 µL denatured hybridisation cocktail was injected into the array 

and each septa was then covered with a Tough-Spot (figure 2.6). The arrays were then 

hybridised at 49°C for 16 to 18 hours at 60 rpm. 

 

 

 

 

 

 

 

 

 

Figure 2.6: Loading samples onto arrays 

 

2.1.10  Washing, staining and scanning arrays 

The automated fluidics station used for washing and staining the arrays was the 

GeneChip® Fluidics Station 450 (Affymetrix, USA). The arrays were scanned using 

GeneChip® Scanner 3000 7G (Affymetrix, USA). The scanned data were collected and 

extracted by the Affymetrix GeneChip Operating Software (GCOS) v 1.4. 

 

 

 

 

 

Septa covered 

with tough-spots 
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2.1.10.1  Preparation of reagents required for washing and staining 

Wash A: Non-stringent wash buffer (6X SSPE, 0.01% Tween 20) 

For 1000 mL, 300 mL of 20X SSPE (BioWhittaker Molecular Applications/Cambrex, 

USA), 1.0 mL of 10% Tween-20 and 699 mL of water were added together. The solution 

was filtered through a 0.2 µm filter and stored at room temperature. 

 

Wash B: Stringent Wash Buffer (0.6X SSPE, 0.01% Tween 20) 

For 1000 mL, 30 mL of 20X SSPE, 1.0 mL of 10% Tween-20 and 969 mL of water were 

added together. The solution was filtered through a 0.2 µm filter and stored at room 

temperature.  

 

0.5 mg/mL Anti-Streptavidin Antibody 

0.5 mg of Anti-Streptavidin Antibody was resuspend in 1 mL of water and stored at 4°C. 

 

12X MES solution 

The solution was prepared following the method mentioned previously in section 2.1.9. 

 

Stain Buffer 

Stain buffer was prepared by adding 800.04 ul H2O, 360 ul SSPE (20X), 3.96 ul Tween 20 

(3%) and 24 ul Denhardt’s. The solution was mixed. 

 

Streptavidin Phycoerythrin (SAPE) (Sigma-Aldrich, USA) Stain Solution 

6.0 ul Streptavidin Phycoerythrin (SAPE) was added to 594 ul Stain buffer and stored in the 

dark at 4°C. The solution was always prepared immediately before use. A vial containing 

SAPE Stain Solution must be placed in sample holder 1 for each module used. 
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0.5 mg/mL biotinylated antibody solution mix  

6 µL of 5 µg/mL biotinylated antibody (Vector Laboratories, USA) was added to 594 µL 

Stain buffer.  A vial containing Antibody Stain Solution must be placed in sample holder 

2 for each module used. 

 

1X Array Holding Buffer: 

The solution was prepared by adding together 8.3 ml MES stock buffer (12X), 18.5 ml 5 

M NaCl, 0.1 ml Tween-20 (10%) and 73.1 ml water. It was mixed and stored at 2°C to 

8°C, shield from light. A vial containing 820 ul of Array Holding Buffer must be placed in 

sample holder 3 for each module used. 

 

2.1.10.2  Experiment and fluidics station setup 

The following instructions were followed for GeneChip® Operating Software (GCOS) 1.4 

client (1.3 server). 

 

STEP 1: REGISTERING A NEW EXPERIMENT IN GCOS 

 From the File menu click New Experiment. 

The New Experiment window appears in the display pane (figure 2.7). 

• The top half of the display pane refers to the sample and then bottom half refers to the 

experiment. 
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Figure 2.7: GCOS sample entry pane 

 

Enter information into the appropriate boxes. 

• Fields that are highlighted in bold require an entry. 

• Drop-down menus are available for Sample/Project information (default information can 

be used or new information can be entered). 

• The Experiment Name must be unique. 

• Appropriate library files must be installed for a probe array to appear in the drop-down 

menu. 

 

From the File menu click Save As, or click the Save icon on the tool bar to register the 

experiment into the database. 
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STEP 2: PREPARING THE FLUIDICS STATION 

1. Turn on the Fluidics Station using the toggle switch on the lower left side of the 

machine. 

2. Select Run → Fluidics from the menu bar in GCOS. 

The Fluidics Station dialog box appears with a drop-down list for selecting the experiment 

name for each of the fluidics station modules. A second drop-down list is accessed for 

choosing the Protocol for each of the fluidics station modules. Use the radio buttons to 

access each module. 

 

Priming the Fluidics Station 

Priming ensures the lines of the fluidics station are filled with the appropriate buffers and 

the fluidics station is ready to run fluidics station protocols. 

Priming should be done: 

• when the fluidics station is first started. 

• when wash solutions are changed. 

• before washing, if a shutdown has been performed. 

• if the LCD window instructs the user to prime. 

1. To prime the fluidics station, select Protocol in the Fluidics Station dialog box. 

2. Choose Prime_450 for the respective modules in the Protocol drop-down list. 

3. Change the intake buffer reservoir A to Non-Stringent Wash Buffer, and intake buffer 

reservoir B to Stringent Wash Buffer. 

4. Click Run for each module to begin priming. 

5. Follow LCD instructions. 

Probe Array Wash and Stain 
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After 16 to 18 hours of hybridisation, the hybridisation cocktail was removed from the 

probe array and set aside in a microcentrifuge vial. It was stored on ice during the 

procedure or at –80°C for long-term storage. The probe array was filled completely with 

270 µL of Array Holding Buffer. The following instructions were followed for washing 

and staining the arrays using the Fluidics Station 450.  

 

Using the Fluidics Station 450 

1. In the Fluidics Station dialog box on the workstation, select the correct experiment name 

from the drop-down Experiment list. The Probe Array Type appears automatically. 

2. In the Protocol drop-down list, select Mapping500Kv1_450, to control the washing and 

staining of the probe array. 

3. Choose Run in the Fluidics Station dialog box to begin the washing and staining. Follow 

the instructions in the LCD window on the fluidics station. 

4. Insert the appropriate probe array into the designated module of the fluidics station 

while the cartridge lever is in the Down or Eject position. When finished, verify that the 

cartridge lever is returned to the Up or Engaged position. 

5. Remove any microcentrifuge vials remaining in the sample holders of the fluidics 

station module(s) being used. 

6. When prompted to “Load Vials 1-2-3,” place the three vials into the sample holders 1, 2 

and 3 on the fluidics station. 

• Place one vial containing 600 µL Streptavidin Phycoerythrin (SAPE) stain solution mix 

in sample holder 1. 

• Place one vial containing 600 µL anti-streptavidin biotinylated antibody stain solution in 

sample holder 2. 

• Place one vial containing 820 µL Array Holding Buffer in sample holder 3. 
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• Press down on the needle lever to snap needles into position and to start the run. 

Once these steps are complete, the fluidics protocols begin. The Fluidics Station dialog 

box at the workstation terminal and the LCD window displays the status of the washing 

and staining steps. 

7. When staining is finished, remove the microcentrifuge vials containing stain and replace 

with three empty microcentrifuge vials as prompted. 

8. Remove the probe arrays from the fluidics station modules by first pressing down the 

cartridge lever to the eject position. 

9. Check the probe array window for large bubbles or air pockets.  

• If bubbles are present, the probe array should be filled with Array Holding Buffer 

manually, using a pipette. Take out one half of the solution and then manually fill the 

probe array with Array Holding Buffer. 

• If the probe array has no large bubbles, it is ready to scan on the GeneChip® Scanner 

3000 7G. Pull up on the cartridge lever to engage wash block and proceed to Probe Array 

Scan. 

If the arrays cannot be scanned promptly, keep the probe arrays at 4°C and in the dark until 

ready for scanning. Scan must be preformed within 24 hours. 

The fluidics station was shut down after the washing and staining of the probe arrays 

completed (appendix A2). 

 

2.1.10.3  Probe array scan 

Before the probe array was scanned, the following were done: 

The GeneChip Scanner 3000 7G laser was turned on to warmed up the laser at least 10 

minutes prior to scanning. 
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Tough-Spots®, label spots was applied to each of the two septa on the probe array 

cartridge to prevent leaking of fluids from the cartridge during scanning. Excess fluid was 

cleaned from around the septa. 

If necessary, the glass surface of the probe array was clean with a non-abrasive towel or 

tissue before scanning. 

If the probe array was stored at 4°C, it was allowed to warm to room temperature before 

scanning. 

 

Scanning the probe array 

1. Select Run → Scanner from the menu bar. Alternatively, click the Start Scan icon in the 

tool bar. The Scanner dialog box appears with a drop-down list of all unscanned 

experiments. 

2. Select the experiment name that corresponds to the probe array being scanned. A 

previously run experiment can also be selected by using the Include Scanned Experiments 

option box. After selecting this option, previously scanned experiments appear in the drop-

down list. 

3. Click the Load/Eject button and place the array in the scanner. Only one scan is required 

for the GeneChip Scanner 3000 7G. 

4. Once the experiment has been selected, click the Start button. A dialog box prompts to 

load the array into the scanner. 

5. Pixel resolution and wavelength for the GeneChip Scanner 3000 7G are preset and 

cannot be changed. 

6. Open the sample door of the scanner and insert the probe array into the holder. The door 

of the GeneChip Scanner 3000 7G closes automatically. 
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7. Click OK in the Start Scanner dialog box. The scanner begins scanning the probe array. 

When Scan in Progress is selected from the View menu, the probe array image appears on 

the screen as the scan progresses. 

 

2.1.11: Data analysis 

Data analysis was done using Genotyping Console (GTC) 3.0.2 
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2.2  S
P Array 6.0  

The genomic DNA general requirement for SNP array 6.0 is the same as in 250K SNP 

array (refer to Appendix A1). The experiment was carried out following the 

manufacturer’s protocol (Affymetrix, USA) (as summarized in section 2, figure 2.1).  

 

2.2.1  Sample preparation 

The genomic DNA and Ref 103 were thawed on the bench top at room temperature. Once 

thawed, they were placed in the cooling chamber on ice. OD measurement of each sample 

was taken using Nanodrop spectrophotometer.  The convention that 1 absorbance unit at 

260 nm equals 50 µg/mL for double-stranded DNA.was applied.  This convention assumes 

a path length of 1 cm. Based on OD measurements, each sample was diluted in a separate 

well of the 96-well plate to 50 ng/µL using reduced EDTA TE buffer (10 mM Tris, 0.1 

mM EDTA, pH 8.0). The plate was sealed, vortexed at high speed for 3 seconds then spun 

down for 30 seconds. It was then placed back on the top half of the cooling chamber. 

 

2.2.2:  Aliquoting the prepared genomic DNA (gDNA) and controls 

A 96-well plate was marked as shown in Figure 2.8 (a blue marker was used for Nsp (N) 

and a red marker for Sty (S) and placed on the bottom half of the cooling chamber.  
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Figure 2.8: Setup for aliquoting diluted gDNA and controls to a 96-well plate labeled for Nsp and 

Sty digest and ligation 

 

 

Two 5 µL aliquots of the first sample were transferred to wells A1 and A12 of the 

digest/ligate plate (figure 2.8). The remaining samples were transferred in the same 

manner into the appropriate wells. The Ref 103 (positive control) was vortexed for 3 

seconds then spun down for 30 seconds. 5 ul of the control sample was transferred to wells 

G1 and G12. 5 ul of water which served as negative control was transferred into wells H1 

and H12. The plate was tightly sealed. If the next step was not continued immediately, it 

was stored in -20°C.   
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2.2.3  Nsp and Sty restriction enzyme digest 

Before starting this step, the following reagents, equipment and consumables were 

prepared: 

NE Buffer 2, NE Buffer 3 and BSA were thawed on ice. They were then vortexed 3 times, 

1 second each time, pulse spun for 3 seconds and placed in the cooling chamber on ice. 

If the plate of genomic DNA and controls were frozen, it was thawed in a cooling chamber 

on ice. Once thawed, they were vortexed at high speed for 3 seconds and spun down at 

2000 rpm for 30 seconds. 

The thermal cycler was powered on to preheat the lid. The block was left at room 

temperature. 

A 1.5 mL Eppendorf tubes was labeled �SP and another one labelled STY. 

 

Preparation of the Nsp Digest Master Mix: 

Usually 8 samples were processed at one time. Therefore, the preparation of the master 

mix was made for 8 samples+15% extra. All the reagents and tubes were placed on ice 

while preparing the master mix. 106.3 ul AccuGene water, 18.4 ul NE Buffer (10X), 1.8 ul 

BSA (100X;10 mg/ml) were added together. The NspI enzyme (10U/ul) was removed 

from the freezer and pulse spun for 3 seconds.  9.2 ul of the enzyme was immediately 

added to the master mix and vortexed at high speed 3 times, 1 second each time. It was 

pulse spun for 3 seconds and placed in the cooling chamber. The tube was labeled �SP. 

14.75 µL of Nsp Digest Master Mix was then added to each sample and control for Nsp 

digest.  
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Preparation of the Sty Digest Master Mix: 

The volumes and the reagents used for the preparation of the master mix was the same as 

Nsp Digest Master Mix, except for the enzyme.  The StyI (10U/ul) was added to the 

solution and the tube was labeled STY.  14.75 µL of Sty Digest Master Mix was added to 

each sample and control for Sty1. The total volume in each well is now 19.75 µL. The 

plate was then sealed tightly. Next, the plate was vortexed at high speed for 3 seconds then 

spun down at 2000 rpm for 30 seconds. It was then loaded onto the thermal cycler and the 

Cyto Digest program was run as follows: 

120 minutes 37°C 

20 minutes 65°C 

Hold 4°C 

 

Then, the plate was removed and spun down at 2000 rpm for 30 seconds. The plate was 

stored at –20°C if not proceeding directly to the next step, 

 

2.2.4 Nsp and Sty Ligation  

Location: Pre-PCR clean area:  

The following were prepared before starting this step:  

Adaptor Nsp, Adaptor Sty and T4 DNA Ligase Buffer were thawed on ice, then vortexed 

at high speed 3 times, 1 second each time and pulse spun for 3 seconds. 

The digested samples were thawed on ice. They were then vortexed at high speed for 3 

seconds and spun down at 2000 rpm for 30 seconds. 

One 1.5 mL Eppendorf tube was labeled �SP and another was labelled STY. 

The thermal cycler was powered on to preheat the lid and the block was left at room 

temperature. 
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Preparation of the Nsp Ligation Master Mix: 

The preparation of the master mix was done on ice. For 8 samples+15% extra, 23.0 ul T4 

DNA Ligase Buffer (10X) and 6.90 ul Adaptor Nsp were added together in the 1.5 mL 

eppendorf tube labeled �SP. T4 DNA Ligase (400 U/ul) was removed from the freezer and 

immediately pulse spun for 3 seconds.  18.4 ul of the enzyme was immediately added to 

the master mix. The solution was vortexed at high speed 3 times, 1 second each time, pulse 

spun for 3 seconds and placed on ice. 5.25 µL of Nsp Ligation Master Mix was then added 

to each Nsp digested sample and control. 

 

Preparation of the Sty Ligation Master Mix: 

The preparation of the master mix was done on ice. For 8 samples+15% extra, 23.0 ul T4 

DNA Ligase Buffer (10X) and 6.90 ul Adaptor Sty (50 uM) were added together in the 1.5 

mL eppendorf tube labeled STY. T4 DNA Ligase (400 U/ul) was removed from the freezer 

and immediately pulse spun for 3 seconds.  18.4 ul of the enzyme was immediately added 

to the master mix. The solution was vortexed at high speed 3 times, 1 second each time, 

pulse spun for 3 seconds and placed on ice. 5.25 µL of Sty Ligation Master Mix was then 

added to each Sty digested sample and control.  

 

The plate was then sealed tightly. It was then vortexed at high speed for 3 seconds, spun 

down at 2000 rpm for 30 seconds and loaded onto the pre-heated thermal cycler and the 

Cyto Ligate program was run as follows: 

180 minutes 16°C 

20 minutes 70°C 

Hold 4°C 
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Dilution of the Ligated Samples: 

Before the dilution was done, the water was placed on ice 20 minutes prior to use. When 

the Cyto Ligate program is finished, the plate was removed and spun down at 2000 rpm for 

30 seconds and placed in a cooling chamber on ice. 75 µL of water was added to each 

reaction. The plate was then sealed tightly, vortexed at high speed for 3 seconds then spun 

at 2000 rpm for 30 seconds. If not proceeding directly to the next step, the plate was stored 

at –20 °C. 

 

2.2.5  Nsp and Sty PCR  

Location: Pre-PCR clean area 

The following were done before starting this step:  

 A double cooling chamber was placed on ice. 

 A 50 mL centrifuge tubes was labelled PCR. 

The thermal cycler in the Post-PCR Area was power on to preheat the lid. The blocks were 

left at room temperature. 

Water (AccuGENE) and GC-Melt were placed on ice. 

TITANIUM Taq, PCR Buffer, dNTPs and PCR Primer 002 (Affymetrix, USA) were 

thawed on ice. They were then vortexed at high speed 3 times, 1 second each time, pulse 

spun for 3 seconds and placed on ice or in the cooling chamber. 

If the diluted ligated samples were frozen, they were thawed in a cooling chamber on ice, 

vortexed at high speed for 3 seconds then spun down at 2000 rpm for 30 seconds. It was 

placed in the top half of the cooling chamber.  

A fresh 96-well plate was labelled as shown in figure 2.9 (blue for Nsp; red for Sty). The 

plate was placed in the lower half of the cooling chamber. 
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Figure 2.9: Labeling the 96-well plate for PCR. 

 

10 µL of each Nsp ligated sample was transferred to the corresponding four wells of the 

PCR plate. 10 µL of each Sty ligated sample was transferred to the corresponding three 

wells of the PCR plate. The remaining ligated Nsp and Sty samples in the plate were 

sealed, labeled and stored at –20 °C.  

 

Keeping the 50 mL centrifuge tube in the cooling chamber, PCR master mix was prepared 

for 8 samples+15% extra by adding 2544 ul AccuGene water, 644 ul TITANIUM Taq 

PCR Buffer (10X), 1288 ul GC-Melt (5M), 902 ul dNTP (2.5 mM each), 290 ul PCR 

primer 002 (100 uM). The TITANIUM Taq DNA polymerase (50X) was removed from 

the freezer and immediately pulse spun for 3 seconds. Immediately 129 ul of the enzyme 

was added to the master mix. The mix was then vortexed at high speed 3 times, 1 second 

each time. 90 µL PCR Master Mix was added to each sample and control on the PCR 

plate.  
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The plate was then sealed tightly, vortexed at high speed for 3 seconds then spun down at 

2000 rpm for 30 seconds. It was then loaded onto the thermal cycler with preheated lid and 

the Cyto PCR program was run as follows:  

3 minutes 94°C 1 cycle 

30 seconds 94°C 

30 seconds 60°C       30 cycles 

15 seconds 68°C 

7 minutes 68°C 1 cycle 

Hold 4°C 

 

 

The plate was then removed from the thermal cycler and spun down at 2000 rpm for 30 

seconds and placed in a cooling chamber on ice.  

 

A fresh 96-well plate was labeled as gel plate. 3 µL of 2X Gel Loading Dye was aliquot to 

each well to be used. 10 µL BioNexus Hi-Lo Ladder was loaded to the first lane of the gel. 

3 µL of Nsp PCR product was transferred from each well in one column only to the 

corresponding wells of the gel plate. The step was repeated for Sty PCR product. The plate 

was sealed, vortexed and then spun down at 2000 rpm for 30 seconds. The total volume 

from each well of the gel plate was loaded onto a 2% TBE gel. The gel was run at 120V 

for 40 minutes to 1 hour. The PCR product distribution was verified between ~250 bp to 

1100 bp (figure 2.10). If not proceeding directly to the next stage, the plate was sealed with 

PCR product and stored at –20 °C. 
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Figure 2.10: Example of PCR products run on 2% TBE agarose gel at 120V for 1 hour. Average 

product distribution is between ~200 to 1100 bp. 

 

 

 

2.2.6  PCR product purification  

Location: Post PCR Area 

If frozen, the PCR products were thawed in a plate holder on the bench top to room 

temperature. The plate was then vortexed at high speed for 3 seconds then spun down at 

2000 rpm for 30 seconds. Seven aliquots of each sample were transferred to the 

appropriately marked 2.0 mL microcentrifuge tube (figure2.11). The PCR plate was then 

examined to ensure that the total volume in each well has been transferred and pooled. 
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Figure 2.11: Pooling PCR products 

 

The magnetic bead (Agencourt Bioscience, Beverly, Massachusetts, USA) stock was 

thoroughly mix by shaking the bottle vigorously. The bottom of the bottle was examined 

to ensure that the solution appears homogenous. Magnetic beads were poured into a 50 mL 

conical tube. 1 mL of magnetic beads was aliquot to each pooled sample. Each tube was 

securely capped and mixed well by inverting 10 times. It was then incubated at room 

temperature for 10 minutes to allow the DNA binds to the magnetic beads. The tubes were 

then loaded with cap hinge facing out onto the microcentrifuge and spun for 3 minutes at 

maximum speed (16,100 rcf). They were then placed on the magnetic stand (Invitrogen 

Corporation, Carlsbad, CA, USA). Leaving the tubes in the rack, the supernatant was 

pipetted off without disturbing the bead pellet and discard. 

 

Next, 1.5 mL of 75% EtOH was added to each tube. The tubes were capped and loaded 

into the foam tube adaptor, fully inserted into the foam to ensure they are secured and 

spaced adequately to balance. The tubes were vortexed at 75% power for 2 minutes, then 

centrifuge for 3 minutes at maximum speed (hinges facing out; 16,100 rcf). They were 
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then placed on the magnetic stand and the supernatant was pipetted off without disturbing 

the bead pellet and discard. The tubes were then spun for 30 seconds at maximum speed 

(hinges facing out; 16,100 rcf) and placed back on the magnetic stand. Remaining drops of 

ethanol was removed from the bottom of each tube. The tubes were left uncapped at room 

temperature for 15 minutes to allow the remaining ethanol to evaporate. 

 

55 µL of Buffer EB (Qiagen, USA) was added to each tube and they were then capped and 

loaded into the foam tube adaptor. The tubes were then vortexed at 75% power for 10 

minutes to resuspend the magnetic beads. Each tube was examined to ensure that the beads 

were resuspended in homogeneous slurry. If the beads were not fully resuspended, the tube 

was flicked to dislodge the pellet and vortexed an additional 2 minutes. It was then re-

examined. The tubes were centrifuged for 5 minutes at maximum speed (hinges facing out; 

16,100 rcf) and placed on the magnetic stand for 5 minutes. When all the beads had been 

pulled to the side in each tube, 47 µL of eluted sample was transferred to the appropriate 

well on a fresh 96-well plate. The plate was sealed tightly. 

 

2.2.7  Quantitation 

18 µL of water was added to the corresponding wells of a 96-well plate. 2 µL of each 

purified sample was transferred to the corresponding well of the 96-well plate and pipette 

up and down a few times. The result was a 10-fold dilution. The NanoDrop 1000 

spectrophotometer (Thermo, USA) was blanked with water. 2 µL of the diluted sample 

was taken and the OD of each sample at 260, 280 and 320 nm was measured. OD280 and 

OD320 were used as controls. The undiluted concentration for each sample was calculated 

as follows: 

Undiluted sample concentration in µg/µL = OD X 10 
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An acceptable OD should fall within 0.9 to 1.4. 

DNA yield equivalent = 4.5 to 7.0 µg/µL 

This OD range is based on the use of a conventional UV spectrophotometer plate reader 

and assumes a path length of 1 cm. 

• The OD260/OD280 ratio should be between 1.8 and 2.0. 

• The OD320 measurement should be very close to zero (≤ 0.1). 

If not proceeding immediately to the next step, the plate was sealed and stored at –20 °C. 

 

2.2.8  Fragmentation  

Location: post-PCR area 

Equipment, reagents and consumables required in this step were prepared as follows: 

A cooling chamber and the water were placed on ice. 

The Fragmentation Buffer (10X) (Affymetrix, USA) was thawed on ice. It was then 

vortexed 3 times, 1 second each time, pulse spun for 3 seconds and placed in the cooling 

chamber. 

The plate of purified, quantitated samples was placed in the cooling chamber. 

A 1.5 mL eppendorf tube was labelled Frag and placed in the cooling chamber. 

The thermal cycler block was powered on and the block preheated to 37 °C. 

5 µL of Fragmentation Buffer was added to each sample on ice. 

 

Preparation of the fragmentation master mix: 

The concentration of the Fragmentation Reagent written on the tube label was identified 

and recorded. For 8 to 16 samples, the volume of reagents used is as shown in table 2.4. 
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Table 2.4: Fragmentation master mix 

 

 

The appropriate volume of water and fragmentation buffer were added to the Frag tube on 

ice. It was allowed to cool on ice for 5 minutes. The fragmentation reagent (enzyme) was 

removed from the freezer and immediately pulse spun for 3 seconds. Immediately the 

appropriate volume of fragmentation reagent was then added (refer to table 2.4). The 

master mix was vortexed at high speed 3 times, 1 second each time, pulse spun for 3 

seconds and immediately placed on ice. 5 µL of fragmentation master mix were transferred 

to each sample - mixing was not allowed at this stage. The plate was then sealed tightly, 

vortexed at high speed for 3 seconds then spun down for 30 seconds. The samples were 

immediately loaded onto the pre-heated block of the thermal cycler (37°C) and the Cyto 

Fragment program was run as follows:   

35 minutes 37°C 

15 minutes 95°C 

Hold 4°C 

 

 

The samples were then removed from the thermal cycler, spun down for 30 seconds and 

placed in a cooling chamber on ice. 2.0 µL of each sample was removed and placed in a 

96-well plate. 4 µL gel loading dye was added to each sample. 10 µL BioNexus All 

Purpose Hi-Lo Ladder was loaded to the first and last lanes. The samples were loaded and 

run on a 4% TBE gel at 120V for 30 minutes to 1 hour. The gel was inspected and 

compared against the example shown in figure 2.12. 
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 Figure 2.12: Typical example of fragmented PCR products run on 4% TBE agarose gel at 120V 

for 30 minutes to 1 hour. Average fragment size is < 180 bp. 

 

 

2.2.9  Labeling  

Location: Post-PCR area 

The equipment, reagents and consumables required for this step were prepared as follows:  

5X TdT Buffer (Affymetrix, USA) and DNA Labeling Reagent (Affymetrix, USA) were 

thawed on ice. When thawed, each reagent was vortexed at high speed 3 times, 1 second 

each time, pulse spun for 3 seconds then place in the cooling chamber. 

The thermal cycler block was heated to 37 °C before samples were loaded. 

A cooling chamber was placed on ice. 

A 1.5 mL centrifuge tube was labeled LBL and placed in the cooling chamber. 

 

All reagents and tubes were kept on ice while preparing the Labeling Master Mix. For 8 

samples+15% extra, 128.8 ul 5X TdT Buffer and 18.4 ul DNA Labeling Reagent were 

added to the 1.5 mL centrifuge tube on ice. The TdT enzyme (30 U/ul) was removed from 

the freezer and immediately pulse spun for 3 seconds then immediately placed back in the 

cooler. 32.2 ul TdT enzyme was added to the master mix, vortexed at high speed 3 times, 1 
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second each time, pulse spun for 3 seconds. 20 µL of Labeling Master Mix was aliquot to 

each sample and pipetted up and down one time to ensure that all of the mix were added to 

the samples. The plate was sealed tightly, vortexed at high speed for 3 seconds then spun 

down for 30 seconds. It was then placed on the pre-heated thermal cycler block and the 

Cyto Label program (table 28) was run as follows:  

4 hour 37°C 

15 minutes 95°C 

Hold 4°C 

 

The plate was then removed from the thermal cycler and spun down for 30 seconds. If not 

proceeding directly to the next stage, the samples were stored at –20°C. 

 

2.2.10  Target hybridisation 

The equipment, reagents and consumables required for this step were prepared as follows:  

 The labeled samples from the previous stage were allowed to thaw on the bench top at 

room temperature if frozen. It was then vortexed at high speed for 3 seconds then spun 

down for 30 seconds and placed in a cooling chamber on ice. 

The oven was turned on and the temperature set to 50°C. The rpm was set to 60. The 

rotation was turned on and allowed to preheat for 1 hour before loading arrays. 

 The thermal cycler was powered on to preheat the lid. The block was left at room 

temperature. 

The arrays were unwrapped and placed on the bench top, septa-side up. 

The front or back of each array was marked with a designation that will identify which 

sample was loaded onto each array. 

The arrays were allowed to warm to room temperature on the bench top 10 to 15 minutes. 

A 200 µL pipet tip was inserted into the upper right septum of each array. 
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500 mL 12X MES stock solution (1.25 M MES, 0.89 M [Na+] ) was prepared. The recipe 

is the same as in the section 2.1.9. 

Preparation of hybridisation master mix for 8 samples+15% extra was done by adding 

110.4 ul MES (12X;1.25 M), 119.6 ul Denhardt’s solution (50X), 27.6 ul EDTA (0.5 M), 

27.6 ul Herring Sperm DNA (10 mg/ml), 18.4 ul Oligo Control Reagent 0100, 27.6 ul 

Human Cot-1 DNA (1 mg/ml), 9.2 ul Tween-20, 119.6 ul Dimethyl sulfoxide (DMSO) 

(100%), 1288.0 ul 5 M Tetramethylammonium Chloride (TMACL). The solution was 

mixed and placed on ice. 

 

190 µL of Hybridisation Master Mix was added to each sample. The plate was then sealed 

tightly, vortexed for 30 seconds then spun down for 30 seconds and placed onto the 

thermal cycler. The Cyto Hyb program was run as follows:  

10 minutes 95°C 

Hold 49°C 

 

  

The lid of the thermal cycler was opened when the temperature reached 49°C. 200 µL of 

the first sample were removed and immediately injected into an array. The septa on the 

array were covered with a Tough-Spot. It was pressed firmly to ensure a tight seal to 

prevent evaporation and leakage. When 4 arrays were loaded and the septa were covered, 

the arrays were loaded into an oven tray evenly spaced. The tray was then immediately 

placed into the hybridisation oven. It was not allowed to sit at room temperature for more 

than approximately 1 minute. The oven was ensured balanced and the trays were rotating 

at 60 rpm. This process was repeated until all samples were loaded onto arrays and were 

placed in a hybridisation oven. The arrays were allowed to rotate at 50 °C, 60 rpm for 16 

to 18 hours. 
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2.2.11 Washing, staining and scanning arrays 

The Fluidics Station 450 was used to wash and stain the arrays. It is operated using either 

GCOS or Affymetrix GeneChip® Command Console (AGCC) software. 

Detail information on these applications can be found in Affymetrix GeneChip® 

Command Console™ User’s Guide  

(http://www.affymetrix.com/support/technical/byproduct.affx?product=commandconsole) 

Before washing and staining were performed, the fluidics station was primed using AGCC 

software.  

 

Prime the Fluidics Station 

The Fluidics Station 450 was used to wash and stain the arrays. 

To prime the Fluidics Station: 

1. The Fluidics Station turned on. 

2. The Fluidics Station was primed by: 

• Select protocol Prime_450 for each module 

• Intake buffer reservoir: use 
on-Stringent Wash Buffer 

• Intake buffer reservoir B: use Stringent Wash Buffer 

 

After 16 to 18 hours of hybridisation, the arrays were removed from the oven. The 

hybridisation cocktail from each array was extracted and transferred to the corresponding 

well of a 96-well plate. It can be stored on ice during the procedure or at –80 °C for long-

term storage. Each array was filled completely with 270 µL of 1X Array Holding Buffer. 

The arrays were allowed to equilibrate to room temperature before washing and staining. 
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Buffers and solutions required for washing and staining are the same as used in 250K array 

in section 2.1.10.  

 

To wash and stain the array using fluidics station 450 for AGCC: 

1. Sample name was selected in AGCC. 

2. The protocol GenomeWideS
P6_450 was selected. 

3. The protocol was then started and the instructions in the LCD were followed on the 

fluidics station. 

Details on how to handle the arrays on the fluidics station can be found in the appropriate 

Fluidics Station User’s Guide, or Quick Reference Card (P/N 08-0093 for the Fluidics 

Station450) 

(https://www.affymetrix.com/support/downloads/quick_reference_cards/fs450_agcc_qrc.p

df). 

4. An array was inserted into the designated module of the fluidics station while the 

cartridge lever was in the Down or Eject position. 

5. When finished, the cartridge lever was returned to the Up or Engaged position. 

6. Any vials remaining in the positions of the fluidics station module(s) being used were 

removed.  

7. When prompted to “Load Vials 1-2-3,” the three vials were placed into positions 1, 2 

and 3 on the fluidics station. 

a. One vial containing 600 µL Streptavidin Phycoerythrin (SAPE) stain solution mix was 

placed in position 1. 

b. One vial containing 600 µL anti-streptavidin biotinylated antibody stain solution was 

placed in position 2. 

c. One vial containing 1 mL Array Holding Buffer was placed in position 3. 
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d. the needle lever was pressed down to snap needles into position and to start the run. 

 

Once these steps are complete, the fluidics protocol begins. The Fluidics Station dialog 

box at the workstation terminal and the LCD window displays the status of the washing 

and staining steps. 

 

8. When staining was finished, the microcentrifuge vials containing stain were removed 

and replace with three empty vials as prompted. 

9. The arrays were removed from the fluidics station by first pressing down the cartridge 

lever to the eject position. 

10. Presence of large bubbles or air pockets was checked by looking at the array window. 

If there were bubbles, these steps were taken: 

1) One-half of the solution was manually removed, then  

2) The array was manually filled with Array Holding Buffer. 

11. If there were no bubbles, the array is ready for scanning.  

If the arrays cannot be scanned promptly, they were store at 4°C in the dark until ready for 

scanning. Scan must be performed within 24 hours. 

12. When finished washing and staining, the fluidics station was shut down following the 

procedure in appendix A2. 

 

Scanning Arrays 

The GeneChip Scanner 3000 7G was used in this experiment. It is controlled by GCOS or 

AGCC software. The scanner has to be turned on at least 10 minutes before use. If the 

arrays were stored at 4°C, they were allowed to warm to room temperature before 

scanning. The glass surface of the array was cleaned with a non-abrasive towel or tissue 
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before scanning. Any excess fluid from around the septa on the back of the array cartridge 

was cleaned. Both septa were carefully covered with Tough Spots. The spots were pressed 

firmly to ensure they remain flat. An array was inserted into the scanner and tests the 

autofocus to ensure the spots do not interfere with the focus. If a focus error message was 

observed, the spot was removed and a new spot was applied. The arrays were scan by 

following these steps: 

1. The sample name that corresponds to the array being scanned was selected from AGCC. 

2. Following the AGCC instructions as appropriate, the array was loaded into the scanner 

and the scan begin. 

 

2.2.12 Data analysis 

Data analysis was done using Genotyping Console (GTC) 3.0.2 
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2.3  Multiplex ligation-dependent probe amplification (MLPA) 

This protocol is based by the procedure recommended by MRC-Holland. It has five parts: 

-DNA denaturation and hybridisation of SALSA probes to DNA 

-ligation reaction 

-PCR of ligation products 

-separation by capillary electrophoresis 

-data analysis 

 

2.3.1   DNA denaturation and hybridisation of the SALSA probes 

A set of 0.2 ml thin-walled PCR tubes were labeled with patient’s initials or lab          

number on the lid or on the side of the tube. Each DNA sample (50-250 ng) was diluted 

with TE to 2.5 ul in a 0.2 ml labelled tube (for example, 0.5 ul of a 500 ng/ul DNA sample 

and 2 ul TE). A drop of mineral oil was added to each tube. The tubes were then loaded 

onto a PCR machine with a heated lid and the MLPA program was started as follows: 

5 minutes 98°C 

25°C pause 

1 minute 95°C 

60°C pause 

 

SALSA probe mix and MLPA buffer tubes were taken out of the freezer to thaw. For one 

sample, 0.75 ul SALSA probe mix and 0.75 ul MLPA buffer was added together.  The 

solution was pipetted up and down to mix. 1.5 ul of the mix was added to PCR tube whilst 

still at 25ºC on the PCR block and pipetted up and down gently to mix. Lids were closed 

firmly and proceed to next step of the program – incubation for 1 minute at 95ºC then 16 

hours at 60ºC. 
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2.3.2   Ligation reaction 

A master mix for the ligase reaction was prepared less than 1 hour before use. For 1 

reaction, 1.5 ul ligase-65 buffer A was added with  1.5 ul ligase 65 buffer, 0.5 ligase 65 

and 12.5 ul water. Temperature of the PCR machine was reduced to 54ºC by proceeding to 

the next step of the PCR program. The ligation reaction program was started as follows: 

15 minutes 54ºC 

5 minutes 98ºC 

4ºC pause 

 

Whilst at 54ºC, 15 ul of the ligase 65 mix was added to each sample whilst still on the 

block and mixed by repeated pipetting. This was done as quickly as possible. The tubes 

were close firmly. It was then incubated for 10-15 minutes at 54ºC then heated for 5 

minute at 98ºC to deactivate the ligase enzyme. Following 98ºC ligase inactivation 

treatment, samples can be stored at 4ºC for up to 1 week or for longer at –20ºC. 

 

2.3.3   Polymerase chain reaction (PCR) 

A second set of 0.2 ml thin walled PCR tubes were labeled as previously. PCR Buffer 

master mix was prepared by adding 2 ul 10X SALSA PCR Buffer and 13 ul water. 15 ul of 

the master mix was transferred into the labeled 0.2 ml thin walled PCR tubes. 5 ul of each 

of the MLPA ligation reaction was transferred to the correctly labeled tube.The tubes were 

then loaded onto the PCR machine with heated lid and heat to 60ºC by proceeding to the 

next step of the MLPA program. The PCR program applied was as follows:  
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60ºC pause 

30 seconds 95ºC 

30 seconds 60ºC      33 cycles 

60 seconds 72ºC 

20 minutes 72ºC 

4ºC pause 

 

Next, Polymerase master mix was prepared by adding 1 ul SALSA PCR primers, 1 ul 

SALSA enzyme dilution buffer, 0.25 ul SALSA polymerase and 2.75 ul water. While at 

60ºC 5 ul polymerase mix was added to each tube and mix by pipetting up and down. The 

lids were then closed firmly. The PCR cycles was run by proceeding to the next step of the 

MLPA program. The PCR products may be stored for 1 week at 40ºC or indefinitely at –

20ºC. 

 

2.3.4   Separation of amplification products by capillary electrophoresis 

0.2 ml tubes were labelled with sample/lab name. 90 ul of water was added into each tube. 

10 ul of the PCR product was then transferred into the tube to make a dilution of 1:10. Hi-

Di (Applied Biosystem, USA) master mix was prepared by adding 500 ul Hi-Di formamide 

and 4 ul LIZ-500 (Applied Biosystem, USA). 1 ul of the diluted PCR products were then 

pipette out into the well of the plate. Only the uneven rows of the plate were used. 10 ul of 

Hi-Di mix was added into the PCR products in the well. The plate was then sealed and 

pulse spin for 30 seconds. It was then loaded into a thermal cycler to denature the DNA. 

The program used was 96ºC for 5 minutes with no heated lid.  

 

The plate was then immediately snap-chilled and ready to be loaded on capillary 

electrophoresis for fragment analysis. The amplified products were separated by capillary 

electrophoresis equipped with fragment analysis software. Relative amounts of probe 
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amplification products as compared to a control DNA sample reflect the relative copy 

number of target sequences. Intensity peaks or electropherograms were produced and 

analysed to determine genomic deletion or amplification.  

 

 

2.3.5    Data analysis 

 

SoftGenetics GeneMarker v1.85 (ABI) software was used to analyse MLPA worksheets 

ran on the capillary electrophoresis system. The analysis was done according to the steps 

described in the website http://www.softgenetics.com/GeneMarkerMLPA.html 
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3 Array CGH analysis of 3p25-p26 deletion (3p- syndrome) 

 

3.1 Introduction 

 

Distal 3p25-p26 deletion (3p- syndrome) is a rare contiguous gene disorder and less than 

30 cases have been reported since it was first described by Verjaal and de Nef  (Verjaal 

and De Nef, 1978; Merrild et al., 1981; Schwyzer et al., 1987; Narahara et al., 1990; 

Nienhaus et al., 1992; Mowrey et al., 1993; Phipps et al., 1994; Knight et al., 1995; 

Drumheller et al., 1996; McClure et al., 1996; Angeloni et al., 1999; Benini et al., 1999; 

Green et al., 2000; Kariya et al., 2000; Cargile et al., 2002; Endris et al., 2002; Fernandez 

et al., 2004; Higgins et al., 2004; Malmgren et al., 2007). Characteristic feature of distal 

3p- syndrome include low birth weight, microcephaly, trigonocephaly, hypotonia, 

psychomotor and growth retardation, ptosis, telecanthus, downslanting palpebral fissures 

and microagnathia. In addition, postaxial polydactyly, renal anomalies, cleft palate, 

congenital heart defects especially atrioventricular septal defects (AVSDs), preauricular 

pits, sacral dimple and gastrointestinal anomalies occur variably. Although intellectual 

deficits are almost invariably associated with cytogenetically visible 3p deletions, rare 

patients with a 3p25-p26 deletion and normal intelligence or only mild abnormalities have 

been described (Knight et al., 1995; Jervis et al., 2002; Sklower-Brooks et al., 2002; 

Takagishi et al., 2006).  

 

The two main aims of my studies were to investigate phenotype-genotype correlations and 

to accurately map the deletion breakpoints on the chromosome 3p.  Previous studies had 

used microsatellite markers and molecular cytogenetic methods to accomplish this. Thus in 

a study of five patients, it was found that congenital heart defects were present only in the 
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three patients with the most centromeric deletions (Phipps et al., 1993). Further mapping 

studies suggested that the 3p25 congenital heart disease (CHD) susceptibility locus 

mapped between D3S1263 and D3S3594, a distance of 3.7 cM (Green et al., 2000). 

Subsequently Malmgren et al., (2007) further refined the CHD gene localization interval to 

a 450 kb region and following a report that three of  50 subjects with sporadic AVSD had a 

CRELD1 missense substitution, CRELD1 was proposed as a candidate 3p25 CHD gene 

(Robinson et al., 2003). However, CRELD1 maps outside the 3p- CHD target intervals 

identified by both Green et al., (2000) and Malmgren et al., (2007) and in a previous study 

from Birmingham there was no evidence of pathogenic CRELD1 mutations in 49 sporadic 

AVSD cases (Zatyka et al., 2005). A number of genes have been implicated in the 

pathogenesis of mental retardation associated with 3p- syndrome including: CHL1(CALL) 

(at 213 kb from p-telomere), ITPR1 (4,700 kb), and SRGAP3 (9,000 kb) (Angeloni et al., 

1999; Endris et al., 2002; Higgins et al., 2004). In addition, Fernandez et al., (2004) 

reported a balanced t(3;10)(p26;q26) translocation associated developmental delay (full 

scale IQ of 73) and some features of 3p deletion syndrome (short stature, downslanting 

palpebral fissures and ptosis) that disrupted C�T�4.  

 

3.2    Materials and methods 

3.2.1 Patients 

Sixteen cases of 3p25-p26 deletion were studied. The clinical details of 10 patients were 

reported previously (Green et al., 2000; Zatyka et al., 2005). Four of these cases (P1, P2 

and P4, P5) had a congenital heart defect and all had mental retardation. Three of the four 

new cases (P13, P14, and P15) showed characteristic features of 3p- syndrome 

(microcephaly, developmental delay, mental retardation, ptosis, micrognathia) and in 

addition P15 also had congenital heart disease (AVSD). One patient, P16, was ascertained 
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incidentally via recurrent miscarriages and did not show any features of 3p- syndrome (in 

particular there was no evidence of mental retardation). Following the publication of Shuib 

et al (2009), two further cases were ascertained (P17 and P18). P17 had an unbalanced 3,7 

translocation (karyotype 46,XX,der(3)t(3;7)(p25.3;p21.3)). P18 was presented with a 

tetralogy of fallot and has abnormal karyotype 47,XXY add(3)p25.3.ish 

add(3)(D3S4559)mat. 

 

Information on clinical phenotype was obtained from the referring clinicians and hospital 

records. The studies were approved by the South Birmingham Research Ethics Committee 

and informed consent was obtained (from parents except for the one case without mental 

retardation).  

 

3.2.2  Array analysis 

250K Sty1 SNP mapping arrays were applied in 14 (P1-P16) cases and SNP 6.0 arrays in 

two cases, P17 and P18.  The methods applied are described in detail in sections 2.1 and 

2.2.  

For 250K SNP arrays, genotypes were generated using the BRLMM algorithm using 

default settings. Copy number analysis was performed with Affymetrix Genotyping 

Console 2.0 (GTC v2.0) using the CNAT v4.0 algorithm. Deletion intervals were 

automatically called by Hidden Markov Model (HMM) generated Copy Number (CN) 

state intervals with genomic smoothing set at 100 kb. In addition to this automated calling 

estimate I also derived an estimate of the breakpoint by analyzing the unsmoothed 

Affymetrix genotyping console log2 ratios with the Nexus 3.1 copy number analysis 

software (Biodiscovery, El Segundo, CA). This utilizes a rank segmentation algorithm. 
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The deletion breakpoint estimates (approximated to the nearest 50 kb) from both analyses 

are presented but the discussion is based on the Nexus estimates. 

 

The SNP Array 6.0 platform offers the genotype calling algorithm "Birdseed" to determine 

the genotypes of 909,622 SNPs (Affymetrix, Inc. http://www.affymetrix.com/index.affx). 

The Birdseed algorithm performs a multiple-chip analysis to estimate signal intensity for 

each allele of each SNP, fitting probe-specific effects to increase precision, and then makes 

genotype calls by fitting a Gaussian mixture model in the two-dimensional A-signal vs. B-

signal space, using SNP-specific models to improve accuracy. In addition, this array also 

contains 945,826 copy number probes designed to interrogate CNVs in the genome; 

115,000 of these probes interrogate previously identified CNVs while the remaining 

831,000 are distributed across the genome for improved CNV detection (Affymetrix, Inc. 

http://www.affymetrix.com/index.affx). Copy number analysis was performed with 

Affymetrix Genotyping Console v3.0.2 (GTC v3.0.2)  

 

3.2.3  MLPA analysis 

MLPA was applied using a SALSA P016B VHL kits (MRCHolland, Amsterdam, The 

Netherlands) that contains specific probes to detect deletions of four genes: FA�CD2 (at 

10043.1 kb from pter), VHL (10158.3 kb), IRAK2 (10181.6 kb), and GHRL (10302.4 kb) 

on chromosome 3p25. The analysis was performed according to the manufacturer’s 

instructions (for full details see section 2.3). The ligation products were amplified on a 

Tetrad thermal cycler (Peltier 225 from MJR). PCR products were then separated by 

capillary electrophoresis on a Beckman Coulter CEQ 8000 genetic analyser. 

Electropherograms were analysed using Beckman Coulter Fragment Analysis software all 

from Beckman Coulter. DNA dosage was estimated using an in house developed Excel 
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dosage calculator using peak heights. All results which fell outside of a predetermined 

dosage range were highlighted. Deletions were indicated by a relative dosage value of 0.5 

and duplications by 1.5. 

 

3.3    Results 

3.3.1 Array analysis results and correlation with MLPA copy number analysis 

 

The reference set for 250K Sty1 mapping arrays was 48 samples from the HapMap project 

(www.hapmap.org/downloads/raw_data/affy500k/) and 270 HapMap individuals of 

various populations for SNP 6.0 (Goldstein and Cavalleri, 2005). Six normal controls were 

used for MLPA. The average genotype call rate for the 14 samples of 250K Sty was 

97.70±1.95% and 96.11±1.82 for the two samples of SNP6.0 (P17 and P18). Analysis of 

3p copy number status on the 14 samples was performed with Affymetrix Genotyping 

Console v2.0 and Nexus 3.1 copy number analysis software (Table 3.1, figure 3.1 and 

figure 3.2) while  Affymetrix Genotyping Console v3.0.2 was used for the two samples of 

SNP6.0 (figure 3.3). Microarray and the MLPA copy number analysis results were 

concordant (see table 3.1). 
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Table 3.1: Clinical and molecular cytogenetics features of 3p- syndrome patients studied 

 

                 Clinical features 

 

 

 

 

 

 

Chrom.  

region  

affected 

 

Deletion 

size by 

Affymetrix 

Genotyping 

Console 

v2.0 or 

v3.0.2 

(Mb)* 

Deletion 

breakpoints 

by 
exus 

3.1 copy 

number 

analysis 

software  

(El 

Segundo, 

CA)* 

 

 

 

 

 

 

 

 

MLPA probes 

deleted 

 

 

 

 

 

 

 

Deletion 

type 

 

 

       Congenital  

          heart  

           disease 

 

 

 

 

 

Mental 

 retardation 

P1 Yes Yes 3p25.2-pter 12.65 0-12.55 FANCD2,VHL,

IRAK2,GHRL 

terminal 

P2 Yes Yes 3p25.2-pter 12.25 0-12.20 FANCD2,VHL,

IRAK2,GHRL 

terminal 

P4 Yes Yes 3p25.2-pter 12.05 0-12.05 FANCD2,VHL,

IRAK2,GHRL 

terminal 

P5 Yes Yes 3p25.3-pter 11.35 0-11.30 FANCD2,VHL,

IRAK2,GHRL 

terminal 

P6 No Yes 3p25.3-pter 11.15 0-11.10 FANCD2,VHL,

IRAK2,GHRL 

terminal 

P7 No Yes 3p25.3-pter 11.10 0-11.05 FANCD2,VHL,

IRAK2,GHRL 

terminal 

P8 No Yes 3p25.3-pter 10.20 0-10.31 FANCD2,VHL,

IRAK2,GHRL 

terminal 

P9 No Yes 3p25.3-pter 9.95 0-10.01  terminal 

P10 No Yes 3p25.3-pter 9.55 0-9.50  terminal 

P11 No Yes 3p25.3-pter 9.60 0-9.55  terminal 

P13 No Yes 3p25.3-pter 10.90 0-10.90 FANCD2,VHL,

IRAK2,GHRL 

terminal 

P14 No Yes 3p25.3-p26.1 6.30 4.40-10.65 FANCD2,VHL,

IRAK2,GHRL 

interstitial 

P15 Yes Yes 3p25.3-pter 11.50 0-11.55 FANCD2,VHL,

IRAK2,GHRL 

terminal 

P16 No No 3p26.1-pter 8.60 0-8.55  terminal 

P17 Yes NA 3p26.1-pter 7.67 ND  terminal 

P18 NA NA 3p26.1-pter 8.53 ND  terminal 

 
The size of the deleted region was estimated by Affymetrix Genotyping Console 2.0 (GTC v2.0) or 

GTCv3.0.2 using the CNAT v4.0 algorithm and Birdseed v1 algorithm respectively. In addition to 

this automated calling estimate, primary unsmoothed log 2 ratios of 250K Sty data were imported 

into Nexus 3.1 and analysed using the Rank Segmentation algorithm and estimates of the deletion 

breakpoints obtained. 

 

Abreviations: pter, p terminal; Mb, megabase; ND, not done; NA, not available 

 

*both the deletion size and Nexus deletion breakpoints were approximated to the nearest 50kb. 

MLPA results reported for probes at FANCD2 (at 10043.1 kb from pter), VHL (10158.3 kb), 

IRAK2 (10181.6 kb) and GHRL (10302.4 kb)  

 

 

 



86 

 

 

 

Figure 3.1: Mapping of the extent of deletions at chr 3p25-p26 in the 14 patients studied. Relative 

genomic locations of 3p deletions is shown using Nexus 3.1 software (El Segundo, CA), calculated 

from unsmoothed log2 ratios generated in Genotyping Console v2.0 using the Rank Segmentation 

algorithm with default settings. The consensus region of overlap is a 4.2 Mb region (shown as an 

aggregate bar at 100%) containing 7 HGNC mapped genes. The percentage penetrance for all cases 

within the area of analysis is illustrated by the solid red area. The open boxes and solid bars below 

the percentage penetrance represent genes within the area of analysis. The horizontal pink lines 

represent copy number variants within the area of analysis. The horizontal red lines at the bottom 

of the figure represent the extent of deletion within the area of analysis for each individual case. 

Please refer to table 3.1 for the genomic coordinates and deletion size for each individual case. 
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Figure 3.2: Sample P11 chromosome 3 unsmoothed log2 ratios imported into Nexus 3.1 and 

analysed using the Rank Segmentation algorithm. The horizontal red line at the bottom of the 

ideogram represents the extent of deletion within the area of analysis. Probe-level view of the 

focused chromosome 3p25.3-pter array indicating the boundaries of the breakpoint in the 3p25.3-

pter is shown in the lower panel. Blue dots depict single SNP signal intensity while horizontal 

black segmentation bar present an average value of SNP signal intensity. The deletion 3p25.3-pter 

is observed as a reduction in copy number (-0.5=heterozygous deletion, 0= diploid DNA copy 

number) as denoted by the black segmentation bar.  The proximal breakpoint denoted by the black 

segmentation bar is called at 9.56 Mb.  
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Figure 3.3: Sample P17 (upper panel) and P18 (lower panel) chromosome 3 log2 ratio analysed 

using the Birdseed v1 algorithm for SNP 6.0 arrays. Blue and green dots depict single SNP signal 

intensity in P17 and P18 respectively.  The horizontal red bars represent the extent of deletion 

within the area of analysis for each individual case. The proximal breakpoint in P17 and P18 is 

called at 7.67 Mb and 8.53 Mb respectively. Ideogram of chromosome and genes within the area of 

analysis are displayed at the bottom of the figure.    

 

 

3.3.2 Array-based 3p25-p26 deletion analysis and genotype–phenotype correlations 

Deletions ranged from ~6.3 Mb (P14) to 12.65 Mb (P1) (see Table 3.1). Fifteen of 16 

deletions were terminal and the only interstitial deletion (P14) was also the smallest. No 

clear breakpoint hotspots were detected. Ten patients (P1–P8 and P13–P15) were 

hemizygous for VHL, however to date none of these children have yet been reported to 

have features of von Hippel–Lindau disease. Array based analysis refined the 3p deletion 

breakpoints in the four previously reported patients with CHD to between 11.3 and 12.55 

Mb. In addition, a new 3p- syndrome patient (P15) with CHD was investigated and found 

to have a terminal deletion with a breakpoint at 11.55 Mb. The most centromeric 

breakpoint in the nine patients without CHD (P6–P14) was ~11.1 Mb and thus there was 

P17 

P18 
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an ~200 kb interval in the breakpoints between P5 and P6 (with and without CHD 

respectively). All but one of the 16 patients with cytogenetically visible distal 3p deletions 

for whom detailed psychomotor status was available had psychomotor retardation. 

 

The exception (P16) had the smallest terminal deletion with a breakpoint at ~8.6 Mb from 

pter. The smallest terminal deletion associated with psychomotor delay was detected in 

P10 and this suggested that the critical interval for mental retardation associated with distal 

3p deletions was ~950 kb interval between the breakpoints in P16 and P10. This interval 

was deleted in the one patient with an interstitial deletion (P14) who also had 

developmental delay. 
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3.4    Discussion 

This is the first report of high resolution (~238,000 probes, mean inter-probe distance 

within ~12.0 kb for 14 patients and more than 1.8 million markers, mean inter-probe 

distance within 680 bases for 2 patients) array-based analysis of a cohort of distal 3p 

deletion syndrome patients. The results of 14 patients have been published (Shuib et al., 

2009). Previously Affymetrix 250K oligonucleotide arrays have been used successfully to 

map constitutional deletions (Ballif et al., 2007; Kirov et al., 2008) and the results of 

MLPA and array analyses were concordant in this study. The SNP6.0 arrays have been 

applied for studies of common diseases such as diabetes and heart disease (McPherson et 

al., 2007; Saxena et al., 2007; Zeggini et al., 2007), detection of UPD and characterisation 

of chromosome breakpoint in chronic lymphocytic leukemia (Hagenkord et al., 2010) and 

identification of copy number alterations and LOH in tumours (Gorringe et al., 2009; 

Greenman et al., 2010). The arrays were also successfully applied on fresh frozen tissue 

(Tuefferd et al., 2008) as well as archived samples (Tuefferd et al., 2008; Bucasas et al., 

2009). 

 

The majority of distal 3p deletions are terminal deletions and only one interstitial deletion 

was detected. Although a patient analysed by Dijkhuizen et al., (2006) had a complex 3p 

abnormality in which an ~4 Mb distal deletion was accompanied by a more proximal 

duplication, all of the patients in my study appeared to have ‘‘pure’’ deletions. In contrast 

to disorders such as Jacobsen syndrome (Tunnacliffe et al., 1999; Jones et al., 2000), there 

was no close clustering of terminal deletion breakpoints (although the breakpoints in P6 

and P7 mapped within an ~50 kb interval) in my study.  
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I found that the candidate interval for a 3p25 CHD susceptibility locus mapped to an ~200 

kb interval. Two known genes contained in the region are HRH1 and ATG7. The histamine 

receptor H1 (HRH1) gene encodes a G protein-coupled receptor that mediates diverse 

neuronal and peripheral actions of histamine. The H1 receptor is expressed by various 

peripheral tissues, such as smooth muscle, and by neurons in the brain, where histamine 

may be involved in the control of wakefulness, mood, and hormone secretion. 

ATG7/APG7L is the human homolog of yeast Apg7, an ubiquitin-activating enzyme E1-

like protein essential for the Apg12 conjugation system that mediates membrane fusion in 

autophagy (Tanida et al., 2001). To date neither of these genes has been linked to 

cardiovascular development and several known genes such as ATP2B2, FBL�2, TIMP4, 

and SEC13R, which are expressed in the heart, were shown to map outside the target 

interval. Potential complicating factors in the mapping of a 3p25 CHD locus using 3p 

deletions include (a) that some patients with more telomeric deletions might be non-

penetrant and (b) that genes that are outside of the CHD critical interval might have altered 

expression as a result of deleted regulatory regions. The latter possibility is difficult to 

exclude since regulatory regions may exert long-range influences over gene expression 

(Crolla and Van Heyningen, 2002; Velagaleti et al., 2005). Although CRELD1 has been 

suggested as a 3p25 AVSD susceptibility locus (Robinson et al., 2003), it maps ~1Mb 

distal to the ~200kb target interval that I found and CRELD1 was deleted in four patients 

without CHD (Zatyka et al., 2005). Although such cases might be non-penetrant, to date 

all 3p- patients with CHD have had the most centromeric breakpoints and so there is no 

direct evidence for non-penetrance (although this possibility cannot be exclude formally) 

(Malmgren et al., 2007). Analysis of further 3p- patients with and without CHD would be 

helpful in confirming this interpretation.  
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Another potential strategy for identifying the precise 3p25 AVSD gene would be to 

undertake mutation analysis of candidate genes in sporadic AVSD cases. Similar studies of 

CRELD1 identified missense substitutions (not present in >200 control chromosomes) in 

~4% of sporadic AVSD patients (Robinson et al., 2003; Zatyka et al., 2005). However the 

relevance of these rare substitutions to AVSD pathogenesis is unclear. One intriguing 

possibility is that CHD in 3p- cases might result from deletion of two genes (e.g. CRELD1 

and a gene within the more centromeric target interval). Such a model, although consistent 

with the 3p deletion mapping data would imply that a single mutation in either gene would 

not be sufficient to cause AVSD and so analysis of sporadic AVSD cases would not 

unequivocally identify a single 3p25 AVSD susceptibility gene.  

 

Previously a number of genes (e.g., CHL1 (CALL), C�T�4, LRR�1, SRGAP3/MEGAP, 

and ITPR1) have been suggested to be responsible for psychomotor retardation in 3p- 

syndrome. In addition, a locus for non-syndromic autosomal recessive mental retardation 

(MRTA-OMIM 607417) was mapped to 4.2 Mb in 3p26.3-p26.1 between loci D3S3630 

and D3S1304 containing nine known genes (Higgins et al., 2004). Although most patients 

with a cytogenetically visible 3p deletion have psychomotor retardation, a few rare 

individuals with normal intelligence have been described (Knight et al., 1995; Endris et al., 

2002; Takagishi et al., 2006).  

 

P16 is a phenotypically normal patient with a terminal deletion of ~8.6 Mb. The deleted 

region contains 16 known genes which included ITPR1, C�T�4, CHL1, LRR�1, 

SETMAR, IL5RA, and TR�T1. Takagishi et al (2006) reported a mother and daughter with 

a cytogenetically visible deletion of 3pter. The mother showed only a mild phenotype 

(simple-formed ears, a high arched palate, fourth and fifth toe clinodactyly, and a history 
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of moderate scoliosis) while, at age 15 months, the daughter had mild hypotonia and joint 

laxity, fourth and fifth toe clinodactyly but no developmental delay. A terminal deletion 

with a breakpoint between ~8.65 and 10.16 Mb was detected. Patients P1-P15 had marked 

intellectual disability and so, assuming the most parsimonious explanation of complete 

penetrance for deletion of a psychomotor retardation gene, candidate genes for terminal 

3p- associated mental retardation should map centromeric to the P16 deletion breakpoint 

(~8.6 Mb) and telomeric to the breakpoint in P10. SRGAP3(MEGAP) (a GTPase-activating 

protein that acts towards Rac1 and Cdc42 in vitro and in vivo and regulates cell migration 

by affecting actin and microtubule cytoskeleton dynamics (Yang et al., 2006), maps ~9Mb 

from the telomere and so is retained in P16 and is possibly retained in the family reported 

by Takagishi et al (2006). Endris et al (2002) reported that SRGAP3 was disrupted in a 

patient with a constitutional translocation associated with hypotonia and severe mental 

retardation and SRGAP3 was deleted in all our patients with mental retardation and the 

three patients reported by Malmgren et al (2007). Two patients further with a relatively 

mild phenotype have also been reported. Thus Shrimpton et al (2006) described an 

unbalanced der(3)t(3;8)(p26;q24.3) translocation associated with a terminal 3p deletion 

and 8q duplication in a boy with a mild cognitive deficit (IQ score of 97). The 3p deletion 

breakpoint mapped distal to SRGAP3 (between 6.89 and 8.16 Mb). Rivera et al., (2006) 

reported a 3p26 to 3pter deletion in a 14-year old boy with a full scale IQ of 95 but an 

unusual cognitive and behavioral profile. However the deletion has not been characterized 

in detail.  

 

The findings of my study are consistent with the hypothesis that SRGAP3 (MEGAP) is a 

prime candidate for 3p- syndrome psychomotor retardation. A number of genes previously 

implicated in  3p- associated mental retardation are deleted in P16 and the family of 
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Takagishi et al (2006) (CHL1/CALL at 2.14 Mb, C�T�4 at 3.06 Mb, LRR�1 at 3.86 Mb, 

and ITPR1 at 4.51Mb). Of these candidate genes the most convincing case has been made 

for C�T�4 (contactin 4) that encodes a GPI-anchored neuronal membrane protein that 

functions as a cell adhesion molecule. Dijkhuizen et al (2006) reported a patient with 

severe mental retardation (IQ score 30), upslanted palpebral fissures, a small nose with a 

short philtrum, macrostomia with prominent everted lips, small cup-shaped ears and small 

hands (metacarpal and phalanges lengths were particularly small). Array-CGH 

demonstrated a complex rearrangement with a 4.0-Mb deletion (3p26.2-3pter), 1.3-Mb 

amplification (3p26.1-3p26.2) and 6.0-Mb duplication (3p25.3-3p26.1) (all on the same 

chromosome 3 homologue), C�T�4 and CRB� were deleted and duplicated in this patient 

and it is difficult to evaluate detailed genotype–phenotype correlations in this case. 

Although Cargile et al (2002) reported on a child with features of 3p- syndrome (ptosis, 

microcephaly, growth retardation, and developmental delay) and an interstitial deletion 

mapping somewhere betweenD3S3630 (at 2.67Mb) and D3S1304Mb (at 6.89Mb) the 

deletion was characterized by FISH studies and it is possible that a high resolution 

microarray analysis might have discovered additional abnormalities. Fernandez et al 

(2004) reported a balanced t(3;10)(p26;q26) translocation associated with borderline 

intellectual disability (full scaleIQ of 73) and some features of 3p- syndrome (short stature, 

downslanting palpebral fissures and ptosis) that mapped within the first intron of C�T�4 

and was predicted to disrupt the 5’ UTR of the mature mRNA of one of three of C�T�4 

isoforms that is highly expressed in human brain leading to the suggestion that deletion of 

C�T�4 was causally associated with the pathogenesis of the 3p- syndrome phenotype. 

However this conclusion is at odds with our results and those of Takagishi et al (2006). In 

addition, Roohi et al (2009) reported on two patients with autistic spectrum disorder with 

germline deletions involving C�T�4. Neither demonstrated phenotypic features of a 3p- 
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syndrome and the copy number variant was inherited from a normal phenotype father. This 

could suggest that loss of C�T�4 is not sufficient to cause a 3p- syndrome phenotype but, 

in combination with other autistic susceptibility alleles, could contribute to autistic 

spectrum disorder. If this hypothesis is correct, then the translocation reported by 

Fernandez et al (2004) may have been associated with a 3p- phenotype because of position 

effects of the translocation on other genes, unmasking of recessive alleles or through an 

oligogenic effect whereby the phenotypic effects of loss of C�T�4 depended on loci 

outside of 3p25-p26.  

 

In summary, currently most evidence is in favour of SRGAP3 being the major determinant 

of mental retardation in 3p- syndrome. However, the interpretation of genotype–phenotype 

studies for distal 3p deletions is complex (Barber, 2008), and analysis of such cases on 

genome-wide high density arrays will provide better characterisation of the deletions in 

individual cases and exclude the possibility of coexistent unrecognised copy number 

abnormalities.  
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4  Cytogenetics and molecular genetic analysis of Beckwith-Wiedemann 

syndrome (BWS) 
 

4.1  Introduction 

Most genes are expressed equally from the paternal and maternal alleles ie. biallelic gene 

expression is the usual physiological state. However, a minority of genes, probably 

numbering about 100 in humans and in mice are imprinted genes and show differences in 

expression according to the parental origin of the allele. This parent-of-origin genomic 

imprinting phenomenon is heritable at a cellular level and, when complete, only one of the 

alleles is expressed ie. monoallelic gene expression. Imprinted genes often have a critical 

role in prenatal growth and development (Charalambous et al., 2007). The process of 

genomic imprinting is initiated during the formation of germ cells. Thus imprints are 

erased and re-established based on the sex of the transmitting parent (Barlow, 1994). The 

establishment and maintenance of genomic imprinting involves a number of epigenetic 

mechanisms including differential DNA methylation, allele-specific RNA transcription, 

antisense transcripts, histone modifications as well as differences in replication timing 

(Weksberg et al., 2003).  

 

The first evidence for genomic imprinting was provided by classical mouse experiments 

using the technique of pronuclear transplantation (McGrath and Solter, 1984). Mouse 

embryos that were diploid but with the nuclear material derived solely from the maternal 

(gynogenetic) or paternal (androgenetic) genomes were created but failed to develop post-

implantation. In gynogenotes, development of the extraembryonic tissues was poor 

although the embryo was present. In contrast, embryonic development in androgenotes 

was considerably retarded but substantial growth of the trophoblast and yolk sac was 
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evident (McGrath and Solter, 1984; Barton et al., 1984). These experiments demonstrated 

that diploidy alone is not sufficient for normal embryonic development and the presence of 

both of maternal and paternal genomes is required. In addition, they also showed that the 

maternal genome appears to be biased towards fetal development whereas the paternal 

genome contributes more towards the development of extra embryonic structures 

(McGrath and Solter, 1984). Evidence for the differential contribution of maternal and 

paternal genomes is also clearly demonstrated by the reciprocal phenotypes observed in 

ovarian teratomas and complete hydatidiform moles in humans. These occurred from 

parthenogenotes and androgenotes, respectively. Ovarian teratomas are composed of a 

disorganised mass of differentiated embryonic tissues but do not contain any placental 

tissue (Linder et al., 1975). Complete hydatidiform moles are characterised by extensive 

growth of the trophoblast in the absence of an embryo (Kajii and Ohama, 1977).  

 

Imprinted genes are members of several gene families and encode gene products involved 

in a diversity of physiological processes, many of which are involved in growth control 

and development (Tycko and Morison, 2002). In mammals, they tend to occur in clusters 

in distinct regions on chromosomes which are referred as imprinted domains (Weksberg et 

al., 2005). These domains are characterized by regulatory systems known as imprinting 

centre which control expression of closely linked imprinted genes (Nicholls, 2000).  

Imprinting centres in these domains are characterized by the presence of differential 

methylation on the paternal and maternal chromosomes which result in differential cis-

regulation and transcription of imprinted genes. This results in different epigenotypes on 

the maternal and paternal alleles. To date, >50 imprinted genes have been identified in the 

human genome (Morison et al., 1998; Morison et al., 2005; Glaser et al., 2006).  
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Imprinting is a normal mechanism of gene regulation. However, deregulation of imprinting 

is associated with genetic diseases, for example abnormalities in the imprinted domain on 

chromosome 15q11-q13 are associated with Prader-Willi and Angelman syndromes 

(Nicholls, 2000) and with the imprinted domains on chromosome 11p15 with the 

imprinting disorder Beckwith-Wiedemann syndrome (BWS), a variety of human cancers 

including Wilm’s tumour and Silver-Russell syndrome (Reik and Maher, 1997; Tycko, 

2000). A number of mechanisms may cause an imprinting disorder including a failure to 

establish a normal genomic imprinting epigenotype, uniparental disomy (UPD), gene 

mutations and chromosome rearrangements such as inversion, duplication, deletion and 

translocation can also give rise to the syndromes. Chromosomes 7 and 14 also contain 

imprinted genes and imprinting defects associated with UPD of the chromosomes have 

been confirmed to cause certain diseases in humans (table 4.1).  

 

Table 4.1: Genetic diseases caused by imprinting effects in humans 

 

Imprinted region Disease References 

mUPD7 Silver-Russel syndrome Kotzot et al, 1995;Eggermann et 

al,1997;Preece et al,1997 

 

Segmental pUPD11p15.5 Beckwith-Wiedemann 

syndrome 

 

Henry et al,1993;Henry et 

al,1991;Slatter et al,1994 

mUPD14 MatUPD14 syndrome Healey et al,1994;Sanlaville et 

al,2000 

 

pUPD14 PatUPD14 syndrome Cotter et al, 1997 

mUPD15;chromosomal region 

15q11-q13 

Angelman syndrome Malcolm et al,1991;Nicholls et 

al,1992 

 

pUPD15; chromosomal region 

15q11-q13 

Prader-Willi syndrome Nicholls et al,1989; Robinson et 

al,1991 
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The list of imprinted genes is regularly being updated and can be found at the University 

of Otago’s Imprinted Gene Catalogue (http://igc.otago.ac.nz/home.html). 

 

4.1.1  Clinical genetics of Beckwith-Wiedemann syndrome (BWS) 

 

Beckwith-Wiedemann syndrome (BWS; MIM 130650) is a paediatric overgrowth disorder 

involving a predisposition to tumour development with an estimated incidence of 1 in 

13,700 livebirths (Junien, 1992).  It was first described by Beckwith in 1963 and 

Wiedemann in 1964 on children with features of exomphalos, macroglossia and gigantism. 

BWS is a prototypic imprinting disorder resulting from mutations or epimutations in genes 

from the imprinted cluster at chromosome 11p15.5 (Reik and Maher, 1997). Chromosome 

11p15.5 was first implicated by the finding of paternally derived duplications of 11p15.5 

in BWS patients (Turleau et al., 1984; Brown et al., 1992; Nystrom et al., 1992; Slavotinek 

et al., 1997). Subsequently, maternally inherited balanced rearrangements of 11p15 were 

also demonstrated to be associated with BWS (Norman et al., 1992; Tommerup et al., 

1993). The finding of chromosome 11 paternal uniparental disomy in a subset of sporadic 

BWS patients provided further evidence that BWS is an imprinting disorder (Henry et al., 

1991; Slatter et al., 1994).  

 

The penetrance and clinical presentation of BWS is highly variable but most frequently it 

is characterized by pre- and postnatal overgrowth, macroglossia and anterior abdominal 

wall defects (omphalocoele, umbilical hernia and diastasis recti). Additional features 

include visceromegaly (particularly kidneys, liver and pancreas), hypoglycaemia, 

hemihyperplasia, genitourinary abnormalities and embryonal tumours which occur in 5% 

of patients (most frequently, Wilm’s tumour) (Engel et al., 2000).  Other embryonal 

tumours include rhabdomyosarcoma, adrenocorticol carcinoma and neuroblastoma 
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(Sotelo-Avila et al., 1980; Pettenati et al., 1986; DeBaun et al., 1998; Lapunzina, 2005; 

Tan and Amor, 2006). Most of the tumours associated with BWS appear in the first 8-10 

years of life with very few reported beyond this age (DeBaun et al., 1998; Tan and Amor, 

2006). Clinical findings associated with higher risks of tumour development include 

hemihyperplasia, nephromegaly and nephrogenic rests (DeBaun et al., 1998; Coppes et al., 

1999).  

 

Three major groups of BWS are distinguished: sporadic (about 85%), familial (about 15%) 

and those with chromosome abnormalities (about 2%) (Slatter et al., 1994; Reik and 

Maher, 1997; Maher and Reik, 2000). The majority of BWS cases are sporadic with ~20% 

of these having paternal isodisomy which always includes the 11p15.5 imprinted gene 

cluster (Henry, 1991; Slatter, 1994; Catchpoole et al., 1997). Segmental UPD arises from 

post-zygotic somatic recombination event and therefore has a mosaic distribution (Cooper 

et al., 2007).   

 

The majority of familial and sporadic cases show no cytogenetic abnormality but about 2% 

of cases involve duplications, inversions, and translocations affecting distal 11p. 

Duplications are invariably derived from paternal whereas inversions and translocations 

always involve the maternal homologue (Maher and Reik, 2000). Based on the maternally 

inherited rearrangements in BWS, three distinct breakpoint cluster regions (BWSCRs) have 

been identified (figure 4.1).  
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Figure 4.1:  The imprinting cluster on human chromosome 11p15.5. The distal breakpoint cluster 

region (BWSCR1) is indicated. Breakpoints within BWSCR1 disrupt KvLQT1. Solid red symbols 

indicate allelic silencing; green/white symbols indicate allelic transcription. (Adapted from: Maher 

and Reik, 2000) 

 

 

 

The most frequent of these is BWSCR1 which map at 200-300 kb proximal to IGF2 

(Hoovers et al., 1995). BWSCR1 is in the centre of a region that contains multiple 

imprinted genes including IGF2, H19, CDK�1C (also known as p57
kip2

), ASCL2 (also 

known as HASH2), and KC�Q1 (also known as KVLQT1). All breakpoints in BWSCR1 

disrupt the imprinted KC�Q1 gene which is maternally expressed (Lee et al., 1997b). 

However, in at least two patients, loss of imprinting (LOI) of IGF2 has also been shown to 

associated with a BWSCR1 breakpoint (Brown et al., 1996; Smilinich et al., 1999). The 

less frequent breakpoint cluster regions, BWSCR2 and BWSCR3 map respectively, 5 Mb 

and 7 Mb centromeric to BWSCR1 (Redeker et al., 1995). BWSCR2 is defined by two 

breakpoints and maybe associated with a distinct phenoytype (Alders et al., 2000).  In a 
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study of two BWS patients, Alders et al (2000) have isolated cDNAs encoding 2 zinc 

finger genes, Z�F214 and Z�F215 in the BWSCR2. Z�F215 gene is imprinted in a tissue-

specific manner whereas Z�F214 is not imprinted. Two of the five alternatively spliced 

Z�F215 transcripts are disrupted by both BWSCR2 breakpoints. Parts of the 3-prime end 

of these splice forms are transcribed from the antisense strands of Z�F214. These data 

supported a role for Z�F215 and possibly Z�F214 in the aetiology of BWS.  

 

4.1.2  BWS candidate genes in chromosome 11p15.5 

Sex bias in the transmission of BWS in families whereby the clinical features are passed 

on from mother to offspring two to three times more frequently than from father to 

offspring, the finding of UPD in BWS patients, and the sex bias in the chromosome 

anomalies associated with BWS (the duplications of 11p are always paternal and the 

balanced translocations and inversions are maternal) led to the hypothesis that the 

responsible gene(s) is imprinted (Niikawa et al., 1986; Elliott et al., 1994). 

 

A number of imprinted genes in 11p15.5 have been implicated in the aetiology of BWS 

including the paternally expressed (maternally imprinted) IGF2, KC�Q1OT1 (LIT1) genes 

and the maternally expressed (paternally imprinted) H19 and CDK�1C (p57
kip2

) genes 

(Engel et al., 2000).  

 

The association of IGF2 with BWS was demonstrated by Weksberg et al (1993). Control 

skin fibroblasts were shown to maintain monoallelic expression of paternal IGF2 but skin 

fibroblasts from 3 out of 5 patients of BWS demonstrated biallelic IGF2 expression. Their 

study has led to a conclusion that biallelic expression reflects disruption of IGF2 

imprinting and BWS can result from the loss of normal suppression of the maternally 
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inherited IGF2 gene. Biallelic expression of the gene was also detected in tumours 

including Wilm’s tumour (Ogawa et al., 1993; Rainier et al., 1993). IGF2 encodes a fetal 

growth factor and overgrowth in BWS is restricted to tissues in which IGF2 is expressed.  

H19 is a gene encoding a biologically active non-translated RNA that may function as 

tumour suppressor (Hao et al, 1993). The imprinted region at 11p15.5 includes regions that 

are differentially methylated between the parental genomes. The H19 differentially 

methylated region (DMR; located at 1.98 Mb) is paternally methylated and in the 

methylated state is proposed to promote the expression of IGF2 (Cui et al., 2001).  

 

KC�Q1OT1 is a non-coding RNA with antisense transcription to KC�Q1. The promoter 

for KC�Q1OT1 is located in intron 10 of KC�Q1. The 5’ end of this imprinted transcript 

overlaps with the differentially methylated imprinting centre for Domain 2 (IC2) or 

KvDMR (as it was originally called for ‘KvLQT1 DMR’) (Lee et al., 1999; Smilinch et al., 

1999). Normally the maternal allele of ICR2 is methylated and KC�Q1OT1 is silenced and 

the paternal allele is unmethylated allowing transcription of the KC�Q1OT1 transcript 

(Lee et al., 1999b; Smilinich et al., 1999). Maternal methylation at the KvDMR1 is thought 

to prevent transcription of the KC�Q1OT1 gene and enable expression of KC�Q1 and 

CDK�1C (Smilinich et al., 1999; Lee et al., 1999; Horike et al., 2000; Fitzpatrick et al., 

2002; Diaz-Meyer et al., 2003).  

 

CDK�1C is a member of the cyclin dependent kinase inhibitor and encodes a protein 

known as p57
kip2

 (Bhuiyan et al., 1999). The protein is involved in the negative regulation 

of the cell cycle (Lee et al., 1995; Matsuoka et al., 1995) and is critical during mouse 

embryogenesis (Zhang et al., 1997; Yan et al., 1997). In human, CDK�1C is imprinted and 

primarily expressed from the maternal allele, though some expression (5–30%) is observed 
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from the paternal chromosome (Chung et al., 1996; Hatada et al., 1996). Other imprinted 

genes including TSSC3 and IMPT1 were both hypothesized to have negative growth 

regulatory functions and are thought to be regulated by ICR2 (Fitzpatrick et al., 2002).  

 

4.1.3  Epigenetics, genetics and cytogenetic basis of BWS 

4.1.3.1 Genomic imprinting of 11p15 

The genetics of BWS are complex, but all causes to date are associated with alterations in 

the expression or function of one or more imprinted genes in the 11p15.5 imprinted gene 

cluster (Maher and Reik, 2000). Up to 60% of sporadic cases are due to epigenetic 

mutations involving two imprinting centres (ICs), IC1 and IC2. Both of the ICs regulate 

the expression of the imprinted genes on 11p15 over a long distance (Weksberg et al., 

2003; Murrell et al., 2004).   

 

IC1 controls the imprinting of the H19 and IGF2 genes (Bell and Felsenfeld, 2000; Hark et 

al., 2000) while IC2 controls the imprinting of KC�Q1, CDK�1C, ASCL2, PHLDA2, 

TSSC4 and SLC22A1L (figure 4.2) (Smilinich et al., 1999; Lee et al., 1999; Maher and 

Reik, 2000). 
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Figure 4.2:  The cluster of imprinted genes on human chromosome 11p15.5. The maternal (Mat) 

and paternal (Pat) chromosomes are shown. The silenced allele is shown as a black box and the 

expressed alleles are shown as vertically striped boxes or white or grey boxes. The horizontal 

arrows indicate the direction of transcription. The diagonally striped box indicates the location of 

the CpG island that is studied here and is differentially maternally methylated (KvDMR1 or ICR2). 

The H19 DMR (ICR1) along with the 3’ enhancers (circles) are indicated. Some genes (e.g., 

TSSC4, TAPA1, ASCL2, NAP1L4, and OSBPL5) are imprinted in mouse but not human. MTR1 

is imprinted in human but not mouse. The dashed lines between NAP1L4 and OSBPL5 indicate the 

presence of intervening non-imprinted genes. Domains 1 and 2, indicated by the horizontal arrows 

at the top of the figure, are controlled by ICR1 and ICR2, respectively. The dashed arrow indicates 

that Domain 2 in mouse extends further to the right. (Adapted from: Minjie Du et al., 2003) 
 

 

 

IC1 (or ICR1) consists of a differentially methylated region (DMR1) positioned upstream 

of H19 and containing target sites for the insulator protein CTCF, which regulates access 

to the same enhancers of the two reciprocally imprinted genes H19 and IGF2 (Bell and 

Felsenfeld, 2000).  Methylation on the paternal allele prevents CTCF from binding DMR1, 

permitting expression of IGF2 and silencing of H19. On the unmethylated maternal allele, 

insulator protein binding prevents IGF2 promoters interacting with the enhancers 

downstream of H19 (Bell and Felsenfeld 2000; Lewis and Murrell, 2004), thus IGF2 is 

silenced and H19 is expressed. This region is known as domain 1 (figure 4.2).  
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Gain of methylation at the maternal H19 and IC1 is associated with loss of H19 expression 

and biallelic IGF2 expression (Joyce et al., 1997). This alteration is called H19-dependent 

IGF2 biallelic expression and is seen in approximately 5–10% of sporadic BWS cases 

(Catchpoole et al., 1997; Weksberg et al., 2001). Gain of methylation is almost always 

seen in sporadic cases without family history. However, three families with clinical 

features of BWS have also been reported to carry heritable DNA sequence abnormalities in 

IC1 that can disrupt imprint regulation in domain 1 (Sparago et al., 2004; Prawitt et al., 

2005). Another alteration is referred to as H19-independent biallelic expression and can be 

found in many cases of BWS as well as in isolated Wilm’s tumour. This alteration, first 

observed by Brown et al (1996) involved biallelic IGF2 expression accompanied by 

monoallelic H19 expression. BWS cases with this alteration show normal methylation and 

expression of H19 from the maternal allele with biallelic IGF2 expression (Weksberg et 

al., 2001).  

 

IC2 (or ICR2) is associated with a maternally methylated differentially methylated region 

(KvDMR1) and a paternally expressed untranslated RNA (KC�Q1OT1 (LIT1)) (Smilinich 

et al., 1999). Loss of maternal methylation of IC2 is seen in 50%-60% of patients with 

sporadic BWS (Lee et al., 1999; Engel et al., 2000) and in these cases there is KC�Q1OT1 

loss of imprinting (biallelic KC�Q1OT1 expression) reduced CDK�1C expression (Diaz-

Meyer et al., 2003) and variable loss of imprinting (LOI) of IGF2 (Lee et al., 1999). 

Deletion of the orthologous sequence in mice results in loss of imprint for several genes 

neighbouring KC�Q1 suggesting that IC2 is critical for maintaining imprinted gene 

expression in domain 2 (Fitzpatrick et al., 2002).  
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4.1.3.2 Mutations in CDK�1C 

There are however, cases of BWS which arise from germline mutations in CDK�1C which 

include missense and frameshift mutations (Hatada et al., 1996). It has been reported in 

5%-10% of sporadic BWS (Hatada et al., 1996) and approximately 40% of BWS cases 

with positive family history (Lam et al., 1999). These cases provide evidence that, 

mutation in a single gene is sufficient to implicate the disease in some individuals with 

BWS.  

 

4.1.3.3 11p15 segmental uniparental disomy (UPD) 

Approximately 20-28% of patients with BWS have paternal UPD ie. two paternally 

derived copies of 11p15 and no maternal contribution for that region (Henry et al., 1991; 

Slatter and Elliott, 1994). The region of paternal UPD invariably includes the imprinted 

gene cluster at 11p15.5; however, the extent of isodisomy along chromosome 11 is 

variable (Catchpoole et al., 1997; Dutly et al., 1998). In a cohort of 52 children with BWS 

and UPD, it was found that all cases demonstrated mosaic paternal isodisomy, and IGF2 

and H19 were included in the segment of UPD in all cases. While the extent of segmental 

disomy was variable, there was no evidence of clustering of the proximal UPD breakpoint. 

In most cases (92% of those informative) UPD did not involve 11q, but 4 patients 

demonstrated UPD for the whole of chromosome 11 (Cooper et al., 2007). The findings 

that all cases demonstrated mosaic paternal disomy implies that UPD arises post-

zygotically as a result of a somatic recombination in early embryogenesis. A comparison 

of patients with BWS and UPD for chromosome 11 with BWS patients without UPD 

showed an increased incidence of hemihypertrophy (6/9 v 1/23) and a decreased incidence 

of exomphalos (0/9 v 13/23) (Elliott and Maher, 1994). Other studies have reported an 



108 

 

increased incidence of tumours in BWS patients with UPD (Henry et al., 1993; Schneid et 

al., 1993).  

 

4.1.3.4 11p15 chromosome rearrangements 

Cytogenetic abnormalities have been found in 2-3% of individuals with BWS (Elliott and 

Maher, 1994). Translocations and inversions are usually maternally inherited and are 

always balanced (Sait et al., 1994). Duplication of chromosomal region 11p13–p15 

responsible for BWS most frequently results from unbalanced segregation of a paternal 

translocation (Slavotinek et al., 1997) but de novo duplications of the paternally derived 

11p15 were also found (Slavotinek et al., 1997).  The most common aberration is 

duplications involving chromosome 11p15.5 due to unbalanced segregation of a paternal 

translocation (most frequent) or paternal inversion or de novo (table 4.2).  The clinical 

features in these patients are thought to be due to increased IGF2 expression from the extra 

paternal copy (Mannens et al., 1994). Additional types of chromosome rearrangements in 

BWS are translocations, inversions and deletions. Balanced chromosome translocations or 

inversions in 11p can be transmitted from a phenotypically normal parent to their offspring 

who then develop BWS. The breakpoints of these translocations and inversions have been 

found to cluster in two regions, BWSCR1, a 450 kb 200-400 kb centromeric to the IGF2 at 

11p15.5 and BWSCR2, a 2000 kb region proximal to BWSCR1 at 11p15.3-p15.4 which is 

subdivided into at least two regions (Weksberg et al., 1993; Mannens et al., 1994; Lee et 

al., 1997). With the advent of more sensitive and high resolution molecular methods, for 

example array CGH, microdeletions (Niemitz et al., 2004; Sparago et al., 2004; Prawitt et 

al., 2005) and microduplication (Algar et al., 2007) of 11p15 in BWS patients have been 

identified. 
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Table 4.2: Summary of published chromosome rearrangements in BWS 

 

Reference 
Chromosome 

rearrangement 
Karyotype of proband 

Cytogenetic 

anomaly 

Falk et al., 1973 Pat translocation 46,XY,t(2q +pat) Dup 11p 

Bajolle et al., 1978 Pat translocation 46,XY,der(5),t(5;11) (pl5;pl4)pat Dup 11pl5-pter 

Turleau et al., 1984 Pat translocation 46,XY,-4,+der(4) t(4;11)(q33;pl4)pat Dup 11pl4-pter 

Journel et al., 1985 Pat translocation 46,XY,-18,+der(11;18), 

t(11;18)(p15.4;p11. 1)pat 

Dup 11p15.4-pter 

Wales et al., 1986 Pat translocation 46,XY,-5, +der(5), 

t(5;11)(p15;p15.1)pat 
Dup 11p15.1 -

pter 
Okano et al., 1986 Pat translocation 46,XX,-4,+der(4), t(4;1 1)(q35;p13)pat Dup 11p13-pter 

Tonoki et al., 1991 Pat translocation 46,XX,-

14,+der(l4)t(11;14)(p15.3;q32.3) 

Dup 11p15.3-pter 

Brown et al., 1992 Pat translocation 46,XY,der(5)t(5;11) (p15.2;p14)pat Dup 11p14-pter 

Drut et al., 1996 Pat translocation 46,XY,-10,+der(10) t(10;11)(q26;p15) Dup 11p15-pter 

Krajewska-

Walasek et al., 

1996 

Pat translocation 46,XY,-

21,+der(21)t(11;21)(p15.2;q22.3)pat 

Dup 11p15.2 -

pter 

Slavotinek et al., 

1997 

Pat translocation 46,XY,der(5)t(5;11)(p15.3;p15.3)pat Dup 11p15.3-pter 

Fert-Ferrer et al, 

2000 

Pat translocation  Dup 11p15.5 

Russo et al., 2006 Pat translocation  Dup 11p11.5 

Delicado et al., 

2005 

Pat translocation 47,XX, inv (Y) (p11.2 q11.23), 

der(18)t (11;18) (p15.5;q23) pat. ish 

der(18) (D11S2071+, D18S1390-) 

Dup 11p15.5-pter 

Bliek et al., 2009 Pat translocation  Dup 11p15.5 

Kubota et al., 1994 De novo 

translocation 

46,X,-X,+der(X) t(X;11)(p22.l;p13) Dup 11p13-pter 

Waziri et al., 1983 pat inversion 46,XY,rec(11), dup(pl3-pl5),del(q23-

q25) 

Dup 11p13-p15.5 

Rethore et al., 1980 De novo 

duplication 

Trisomy l1p (excluding 11p13) Dup 11p 

(excluding 

11p13) 

Waziri et al., 1983 De novo 

duplication 

 Dup 11p15 

Turleau et al., 1984 De novo 

duplication 

 Dup 11p15 

Estabrooks et al., 

1989 

Mat duplication 46,XX,dup(15)(q11.2-ql3)mat Dup 15q11.2-q13 

Han et al., 2006 Pat duplication  Dup 11p13-p15.5 

Russo et al., 2006 Pat duplication  Dup 11p15.5 

Algar et al., 2007 Pat micro 

duplication 

 Dup 11p15.5 

Pueschel and Mat 46,XX,t(11p;22q) Breakpoint 11p 
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Padre-Mendoza, 

1984 

translocation 

Tommerup et al., 

1993 

Mat 

translocation 

46,XX,t(9;11) (p11.2;p15.5) Breakpoint 

11p15.5  

Weksberg et al., 

1993 

Mat 

translocation 

46,XX,t(11;16)(p15.5;q12) Breakpoint 

11p15.5 

Mannens et al., 

1994 

Mat 

translocation 

46,XX,t(4;l1)(p15.2;p15.4) Breakpoint 

11p15.4 

Hoovers et al., 

1995 

Mat 

translocation 

46,XX,t(11;12) (pl5.5;q13.1) Breakpoint 

11p15.5 

Hoovers et al., 

1995 

Mat 

translocation 

46,XX,t(l0;11)(p13;p15.5) Breakpoint 

11p15.5 

Newsham et al., 

1995 

Mat 

translocation 

46,XX,t(11;16)(p15;q13) Breakpoint 11p15 

Norman et al., 

1992 

Mat inversion 46,XX,inv(11)(p11.2p15.5) Breakpoint 

11p15.5 

Mannens et al., 

1994 

Mat inversion 46,XX,inv(l l)(p15.4;q22.3) Breakpoint 

11p15.4 

Grundy et al., 1998 Pat translocation  Breakpoint 11p14 

Alders et al., 2000 Mat 

translocation 

 Breakpoint 

11p15.5 

Alders et al., 2000 Mat 

translocation 

 Breakpoint 

11p15.4 

Squire et al., 2000 Mat 

translocation 

 Breakpoint 11p15 

Haas et al., 1986 De novo 

deletion 

46,XY,del(11)(p11.1p11.2) Del 11p11.1-11.2 

Schmutz, 1986 De novo 

deletion 

46,XX,del(11)(p11p13) Del 11p11-p13 

Zollino et al., 2009 De novo 

deletion 

 Del 11p15 

Niemitz et al., 

2004 

Mat 

microdeletion 

 Del 11p15.5 

Niemitz et al., 

2004 

Pat 

microdeletion 

 Del 11p15.5 

Sparago et al., 

2004 

Mat 

microdeletion 

 Del 11p15.5 

Prawitt et al., 2005 Mat 

microdeletion 

 Del 11p15.5 

Abbreviations: mat, maternal; pat, paternal; inv, inversion; del, deletion; der, derivative; dup, duplication; t, 

translocation. 
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4.1.4  Phenotype – genotype/epigenotype correlations 

The clinical expression of BWS may differ between patients with different molecular 

mechanisms and also between patients similar molecular abnormalities (e.g. from different 

levels of mosaicism in patients with UPD) (Itoh et al., 2000). Hemihyperplasia is highly 

positively correlated with UPD 11p15 (Engel et al., 2000; DeBaun et al., 2002; Cooper et 

al., 2005). This most likely reflects the somatic mosaicism associated with the 

chromosome alteration. Alterations in IC2 and mutations in CDK�1C are positively 

correlated with exomphalos (omphalocoele) and, possibly, cleft palate (Lam et al., 1999; 

Bliek et al., 2001; Gaston et al., 2001; Li et al., 2001; Weksberg et al., 2001, Bliek et al., 

2004). However, there was no association between germline CDK�1C mutations and risk 

of embryonal tumours (Lam et al., 1999). Patients with UPD 11p15 and those with H19 

hypermethylation have the highest tumour risks especially for Wilm’s tumour. In contrast, 

patients with loss of methylation at KvDMR1 (IC2) have a lower tumour risk, are 

apparently not at risk for Wilms tumour but are susceptible to non-Wilm’s tumours 

including hepatoblastoma, rhabdomyosarcoma and gonadoblastoma (Weksberg et al., 

2001, Bliek et al., 2004, Cooper et al., 2005).  The only tumour reported in patients with 

mutation of CDK�1C is neuroblastoma (Lee et al., 1997; Gaston et al., 2001). 

 

To define and characterise the region of chromosome 11p15 involved in Beckwith-

Wiedemann syndrome (BWS), I have carried out a high resolution 250K SNP array 

analysis on seven patients and SNP6.0 array on one patient with features of BWS. 

Conventional and molecular cytogenetic techniques were also applied in two of the cases 

with chromosome rearrangements. 
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4.2  Materials and Methods 

4.2.1  Patients  

A total of eight BWS cases were studied which include two lymphoblast cell lines from 

patients BWSCA1 and BWSCA2 carrying the der(11)t(3;11)(q22;p15.4) and 

inv(11)(p15.4;q23.3) respectively and six genomic DNA samples from BWS patients. The 

DNA was extracted using standard methods and stored at -80
o
C. The two cell lines were 

cultured following standard protocol as described below. The DNA from the two cell lines 

were extracted following manufacturer’s (Qiagen, Germany) recommended procedure. 

The parents give consent for all diagnostic procedures.  

 

4.2.2  Cell culture 

500 ml RPMI 1640 medium (Gibco BRL, Grand Island,
 
NY, USA) was added with 50 ml 

fetal bovine serum, 5 ml 200 mM L-Glutamine and 5 ml penicillin/streptomycin. The 

medium was warmed in 37°C water bath and the class II cabinet was switched on at least 

15 minutes before starting.  The inside of the cabinet was swab with 70% ethanol as well 

as all bottles that have been in the water bath before placing them in the cabinet. The 

frozen cell lines (BWSCA1 and BWSCA2) were thawed at 37°C as quickly as possible 

and placed in the cabinet. The cells (~1 ml) were then pipetted into a 25 cm
2
 cell culture 

flasks. 9 ml of the warmed medium was slowly pipetted into the flasks and placed upright 

in the 37°C CO2 incubator. The cells survival rate was checked the next day and the 

medium was replaced with fresh 10 ml medium and placed back in the incubator. The cells 

were checked every 3-4 days, healthy cultures should appear orange to yellow in colour. 

When the cells were already confluence, they were transferred to 50 ml sterile tubes and 

centrifuge at 2000 rpm for 10 minutes at room temperature. The excess medium was 
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siphoned out with serological pipette attached to the vacuum system.  The cells were then 

harvested following standard procedure. 

 

 

4.2.3  Chromosome analysis 

 

Chromosome were stained with Giemsa and karyotyped. Twenty five metaphases were 

completely analysed. Karyotypes were described according to ISCN (1995).  

 

4.2.4  Fluorescence in situ hybridisation (FISH) 

Fluorescence in situ hybridisation (FISH) analysis was applied on both of the two cell lines 

to locate the breakpoints in chromosome 11p15. Bacterial artificial chromosome (BAC) 

clones spanning the region of breakpoint in chromosome 11p15.4-p15.5 were selected 

according to Ensemble Genome Browser (February 2007 release) (figure 4.3). The clones 

were obtained from Roswell Park Cancer Institute (RPCI, Buffalo NY, USA) and 

Bluegnome Limited (Cambridge, UK). For BWSCA1 cell line, eight BAC clones were 

used: RP11-295K3, RP11-847E17, RP4-608B4, RP11-38L8, RP11-774H09, RP11-

699D10, RP11-211E17 and RP11-89D4. Ten BAC clones were applied on BWSCA2 cell 

lines which include RP11-295K3, RP5-1075F20, RP11-847E17, RP11-304P12, RP11-

211E17, RP11-560B16, RP11-413N10, RP11-715M10, RP11-324J3 and RP11-89D4. The 

BAC probes purchased from Bluegnome include RP4-608B4, RP11-38L8, RP11-774H09, 

RP11-699D10, RP5-1075F20 were prelabelled with spectrum orange. The remaining of 

the RPCI BAC clones were labelled with Cy3-dUTP (Amersham Biosciences, USA) and 

the method is explained in detail in the next section. Telomeric probe for chromosome 11p 

(chr11:145,611-345,808) and centromeric probe for chromosome 11 (CEP11) (Vysis, 

USA) in spectrum green were used as controls.  Chromosomes were then counterstained 

with 4'-6-Diamidino-2-phenylindole (DAPI) (Abbott Molecular, Illinois, USA). 
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Hybridized metaphase spreads were analysed using a fluorescence microscope (Olympus, 

USA) coupled to a CCD camera and FISHView EXPO 2.0 software (Applied Imaging, 

USA). Fifteen metaphase spreads were evaluated.  

 

 

 

 

 

 

 

 

 

Figure 4.3: Imprinted gene map of chromosome 11p15.4-p15.5 and the localisation of the BAC 

clones applied in patients BWSCA1 and BWSCA2. The breakpoint in patient BWSCA1 and 

BWSCA2 is indicated by dashed blue line and dashed green line respectively. 

 

 

 

4.2.4.1 Labeling of RPCI BAC probes with Cy3 

Bioprime Labelling Kit (Invitrogen, USA) contains Klenow polymerase, 2.5X random 

primers and stop buffer (EDTA) and Cy3-dUTP (1mM) (Amersham Biosciences, USA) 

were used for BACs labelling. The DNA of the BAC clones was quantified using the 

NanoDrop 1000 spectrophotometer (Thermo Scientific, USA). The DNA was diluted to 

1000ng/ul using molecular grade water. Dilution was made depending on the 

concentration of the stock BAC DNA. For BACs with a concentration of >2000ng/ul, 20 

ul of 1000ng/ul DNA was made. For BACs with concentration <2000ng/ul, 10 ul of 

1000ng/ul was prepared. The 1000ng/ul BAC DNA was then pre-denatured by incubating 
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at 98°C for 5 minutes.  It was then left in ice until ready to use. The labelling master mix 

was prepared by adding these reagents in an eppendorf tube:  

For 1 sample,   20 ul 2.5 X random primers 

   18.5 ul sterile water 

   1 ul Cy3 

  5 ul low-C dNTPs (refer appendix A3 for preparation) 

 

The denatured BAC DNA was pulse spin and transferred 4 ul into the prepared master 

mix. The solution was then denatured in a hot block at 98°C for 5 minutes. It was then 

transferred immediately to ice and incubated for at least 5 minutes and then pulse spun. 

Klenow was taken out from the freezer, vortexed, spun and added 1ul to the solution. The 

solution was then vortexed, spun and incubated at 37°C overnight (16-18 hours) in a hot 

block covered with aluminium foil. The next day, the reaction was stopped by adding 5 ul 

of stop buffer, and then vortexed and pulse spun.  

 

Autoseq G50 (GE Healthcare, USA) was vortexed with the column inverted. The bottom 

closure was snapped and the lid unscrewed and refits to the column ¼ turn. The column 

was placed in a collection tube, spun at room temperature (~22°C) at 2000g for 1 minute. 

The gel column was then transferred to a new 1.5 ml eppendorf tube. The screw lid and 

recovery tube was discard. The labelling reaction master mix was carefully loaded onto the 

centre of the gel bed. Then, it was loaded into the Beckman 22R centrifuge, orientating the 

column so that the gel face is away from the centre. It was spun at room temperature at 

2000g for 1 minute. The used column was then discarded and the eppendorf tube 

containing the flow through was sealed. The measurement of dye incorporation was then 

made using the NanoDrop 1000 spectrophotometer (Thermo Scientific, USA). Ideally the 
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DNA BAC concentration is ≥100ng/ul and dye incorporation is ≥3 pmol/ul. The reaction 

can be stored in the -20°C freezer if not proceeding to the next step which is precipitation. 

Precipitation process was done in a low light to prevent fading of the fluorescent dye. The 

volume equivalent to 200ng of BAC was required in a precipitation. The volume was 

determined by using the formula: 

Precipitation volume (200ng) = 200/labelled BAC concentration (ng/ul) 

 

The reagents required per BAC were 5 ug of Cot-1 DNA (5 ul of 1 ug/ul stock), 1 ug of 

herring sperm DNA (1 ul of a 1/10 dilution of 10 ug/ul stock), appropriate amount of the 

BAC and the total volume of the precipitation should be topped up to 100 ul with sterile 

water (BAC volume + Cot-1 DNA + HS DNA + sterile water = 100 ul). The specified 

amounts of water, Cot-1 DNA, 1/10 HS dilution followed by BAC were pipetted in an 

eppendorf tube. 10 ul of 3M sodium acetate (retrieved from the fridge) followed by 200 ul 

100% cold ethanol (retrieved from the freezer) was then added to the reaction and mixed 

gently by inverting the tube several times. The tube was then placed in a polystyrene box 

with elastic band on the lid and stored in the -80°C freezer for at least 30 minutes. 

Alternatively, it can be precipitated at -20°C for at least 2 hours or on dry ice for 15 

minutes. The tube was then loaded in the centrifuge, hinge face outwards and centrifuged 

at 4°C for 30 minutes at full speed. The supernatant was discard and replaced with 200 ul 

of 70% ethanol to wash the pellet. The tube was inverted a few times and centrifuge again 

at full speed for another 10 minutes. The supernatant was discard. The tube was pulse spun 

and the excess ethanol was removed with a fine tip pipette. The pellet was air dried for 5 

minutes.  
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Next, the BAC pellet was resuspended in 5 ul hybridisation buffer (Vysis Inc., USA). The 

type of the hybridisation buffer used depends on the type of control probe applied: Vysis 

LSI buffer with site specific control probe and Vysis CEP buffer if centromeric was used. 

The resuspended pellet was then incubated in the 73°C/75°C water bath for 1 minute, then 

vortexed and pulse spun. The step was repeated if the pellet was not completely dissolved. 

The dissolved BAC can be stored in -20°C freezer if not proceeding to the next step.  

 

Before starting the hybridisation, the slide was incubated in the oven overnight at 60°C. If 

using centromeric or site specific probe, 0.5 ul of the probe was added to the BAC and 1 ul 

if using telomeric probe. The probe mix (approximately 6 ul per slide) was then transferred 

onto the slide and covered with a 22 X 22 mm coverslip. Any air bubbles were removed 

and the edges of the coverslip were sealed with rubber glue. The slide was then incubated 

overnight on Hybrite (Vysis Inc., USA), program1. The following day, the rubber glue and 

cover slip were removed. The slide was washed in 0.4XSSC/0.3% NP-40 (refer appendix 

A4 for preparation) for 2 minutes at 73°C, then 2XSSC/0.1% NP-40 (refer appendix A4 

for preparation) for 30 seconds at room temperature. The reverse of the slide was wiped 

and allowed to dry slightly in the dark. 7.5 ul of DAPI was pipette onto the slide and 

covered with 22 X 32 mm coverslip. Any air bubbles were removed and the slide was 

ready for analysis.  

 

4.2.5  Array analysis 

250K Sty1 SNP mapping arrays were applied in seven cases (BWSCA1, BWSCA2, 

BWSCA3, BWSCA4, BWSCA5, BWSCA7 and BWSCA8) and SNP 6.0 arrays in one 

case (BWSCA6). The methods applied were according to the manufacturer’s 

recommendations (Affymetrix, Inc., Santa Clara, CA) and described in detail in sections 
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2.1 and 2.2. The reference set for 250K Sty1 mapping arrays was 48 samples from the 

HapMap project (www.hapmap.org/downloads/raw_data/affy500k/) and 270 HapMap 

individuals of various populations for SNP 6.0 (Goldstein and Cavalleri, 2005). Copy 

number analysis was done using the Affymetrix Chromosome Copy Number Analysis 

Tool 4.0 (CNAT 4.0). 

 

4.3  Results 

4.3.1  Chromosome analysis 

BWSCA1 has a reciprocal translocation involving the long arm of chromosome 3 and the 

short arm of chromosome 11 (figure 4.4). The karyotype of BWSCA1 was described as 

46,XY,der(11)t(3;11)(q22;p15.4). BWSCA2 has a pericentric inversion in chromosome 11 

(figure 4.5) and the karyotype was described as 46,XX,inv(11)(p15.4;q23.3).   

 

 

Figure 4.4: Karyotype of BWSCA1 46,XY,der(11)t(3;11)(q22;p15.4) showing translocation of the 

long arm of chromosome 3 and the short arm of chromosome 11 (arrows).  
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Figure 4.5: Karyotype of BWSCA2 46,XX,inv(11)(p15.4;q23.3) with a pericentric inversion of 

chromosome 11 (arrow) 

 

 

 

4.3.2  FISH analysis 

 

4.3.2.1 Patient BWSCA1 

 

 

Eight BAC probes labelled with spectrum orange were used for FISH analysis to localise 

the breakpoint in chromosome 11p15.5 or 11p15.4 of patient BWSCA1. Centromeric 11 or 

telomeric 11p in spectrum green (Vysis, USA) were applied as controls. The hybridisation 

signals observed for each of the BAC probe used are shown in table 4.3.  
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Table 4.3: Patterns of the hybridisation signals of the BAC clone probes applied on the metaphase 

spreads of patient BWSCA1 

 

BAC probe Start position End position Length (bps) Pattern of BAC probe 

hybridisation signals   

RP11-295K3 
1672662 1785148 112487  

Translocated to the 

aberrant chromosome 3 

RP11-847E17 
2426546 2542863 116318 

Translocated to the 

aberrant chromosome 3 

RP4-608B4 2542864 2676679 133816 Split signal 

RP11-38L8 

 

2624666 2805691 181026 Split signal 

RP11-774H09 2627884 2812495 184611 Retained in der(11) 

RP11-699D10 2849462 2999871 150409 Retained in der(11) 

RP11-211E17 6433969 6580309 146341 Retained in der(11) 

RP11-89D4 7249883 7402046 152164 Retained in der(11) 

Abbreviation: bps, base pairs 

 

Examples of the pattern of FISH signal on the metaphase spreads of some of the BAC 

probes are shown in figure 4.6. Based on the results of FISH analysis of the BAC probes, 

the breakpoint in chromosome 11p15.5 was identified within RP4-608B4 and RP11-38L8, 

~2.62-2.67 Mb (or ~400 kb centromeric to IGF2) which is in the KC�Q1 gene (figure 

4.3).  
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Figure 4.6: FISH analysis with BAC clone probes in spectrum orange and control probes in 

spectrum green on BWSCA1 metaphase spreads 

(CEN11) as control probe.  The normal chromosome 11 has both of the green and orange signals. 

Split signals of the BAC probe are seen on the der(11) and the aberrant chromosome 3 (arrow) 

indicating a breakpoint in the pro

699D10 and control centromic 11. Both of the signals are seen on the normal chromosome 11 and 

der(11 (C) Hybridisation of RP11

both of the signals while RP11

3(arrow).  

 

 

  
                                                             B                                      

       

 
   C    

 

: FISH analysis with BAC clone probes in spectrum orange and control probes in 

spectrum green on BWSCA1 metaphase spreads (A) BAC probe RP4-608B4 and centromeric 11 

(CEN11) as control probe.  The normal chromosome 11 has both of the green and orange signals. 

Split signals of the BAC probe are seen on the der(11) and the aberrant chromosome 3 (arrow) 

indicating a breakpoint in the probe locus of chromosome 11p15.5. (B) Hybridisation of RP11

699D10 and control centromic 11. Both of the signals are seen on the normal chromosome 11 and 

RP11-847E17 and control (CEN11). Normal chromosome 11 exhibits 

ignals while RP11-847E17 is seen translocated onto the aberrant chromosome 
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B                                       

: FISH analysis with BAC clone probes in spectrum orange and control probes in 

608B4 and centromeric 11 

(CEN11) as control probe.  The normal chromosome 11 has both of the green and orange signals. 

Split signals of the BAC probe are seen on the der(11) and the aberrant chromosome 3 (arrow) 

Hybridisation of RP11-

699D10 and control centromic 11. Both of the signals are seen on the normal chromosome 11 and 

847E17 and control (CEN11). Normal chromosome 11 exhibits 

847E17 is seen translocated onto the aberrant chromosome 
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4.3.2.2 Patient BWSCA2 

Ten BAC probes (spectrum orange) and control telomeric 11p (spectrum green) (Vysis, 

USA) were used to map the breakpoint. The hybridisation signals observed for each of the 

BAC probe used are shown in table 4.4.  

 

Table 4.4: FISH results using BAC probes in patient BWSCA2 

 

BAC probe Start position End position Length (bps) Pattern of FISH  signals 

on the inv(11) 

RP11-295K3 
1672662 1785148 112487 

Fusion (green and 

orange) on chromosome 

inv(11) 

RP5-1075F20 
2266878 2406238 139361 

Fusion (green and 

orange) on chromosome 

inv(11) 

RP11-847E17 
2426546 2542863 116318 

Fusion (green and 

orange) on chromosome 

inv(11) 

RP11-304P12 3060165 3236511 176347 
Fusion (green and 

orange) on chromosome 

inv(11) 

RP11-211E17 6433969 6580309 146341 
Fusion (green and 

orange) on chromosome 

inv(11) 

RP11-560B16 6790739 6934157 143419 
Fusion (green and 

orange) on chromosome 

inv(11) 

RP11-413N10 6934158 6984344 50187 Break apart 

RP11-715M10 6984345 7179441 195097 Break apart 

RP11-324J3 7179442 7293306 113865 Break apart 

RP11-89D4 7249883 7402046 152164 Break apart 

Abbreviations: inv, inversion; bps, base pairs 

 

 

 

 



 

Probe configurations for detection of breakpoint on the inver

fluorescence in situ hybridisation (FISH) are shown in the diagrams below. 

 

                                                                

 

                                  

 

Figure 4.7: Probe configurations for detection of breakpoint by fluorescence 

(FISH).  The green oval represents control probe 11p and the red oval represents BAC probe. 

Diagrams in the top section s

the BAC probe (spectrum orange). On the inv(11), the orange signal will be seen apart from the 

green signal (control 11p). If the break occurs proximal to the BAC probe, the signals wi

or fused together (orange and green) on the inv(11) as shown in the diagrams in the bottom section. 
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Probe configurations for detection of breakpoint on the inverted chromosome 11 by 

hybridisation (FISH) are shown in the diagrams below. 

                                                          

                                                         

Probe configurations for detection of breakpoint by fluorescence 

(FISH).  The green oval represents control probe 11p and the red oval represents BAC probe. 

Diagrams in the top section show the configuration of the signals if the breakpoint occurs distal to 

the BAC probe (spectrum orange). On the inv(11), the orange signal will be seen apart from the 

green signal (control 11p). If the break occurs proximal to the BAC probe, the signals wi

or fused together (orange and green) on the inv(11) as shown in the diagrams in the bottom section. 
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ted chromosome 11 by 

hybridisation (FISH) are shown in the diagrams below.  

 

 

Probe configurations for detection of breakpoint by fluorescence in situ hybridisation 

(FISH).  The green oval represents control probe 11p and the red oval represents BAC probe. 

how the configuration of the signals if the breakpoint occurs distal to 

the BAC probe (spectrum orange). On the inv(11), the orange signal will be seen apart from the 

green signal (control 11p). If the break occurs proximal to the BAC probe, the signals will be seen 

or fused together (orange and green) on the inv(11) as shown in the diagrams in the bottom section.  
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Based on the pattern of FISH signals exhibited by each of the BAC probes and control 11p 

probe on the metaphase spreads of BWSCA2, the breakpoint on chromosome 11p15 of the 

patient was determined (figures 4.8, 4.9 and table 4.4).  

 

         
     A      B 

 

         
      C      D 
 

Figure 4.8: FISH analysis with telomeric probe for chromosome 11p (spectrum green) and BAC 

probes (spectrum orange) on BWSCA2 metaphase spreads. (A, B, C and D) RP11-295K3, RP11-

847E17, RP11-211E17 and RP11-560B16 respectively, hybridised together with control probe 

telomeric 11p on the metaphase spreads. Both of the signals are seen together with the control 

telomeric 11 probe on the inv(11) indicating that the breakpoint is proximal to the BAC probes. 



 

        
      A 

 

       
      C 

 
Figure 4.9: FISH analysis using

(A, B, C and D) Hybridisation of RP11

respectively and the control telomeric 11p probe (spectrum green)

orange in the inv(11) indicating a breakpoint in between the BAC probes and

The breakpoint was determined to localise from RP11

observed from there onwards. 

 

 

 

All the BAC probes telomeric to 

indicating the region telomer

4.8A-D). Green and orange 

      B 

  
      D 

using BAC probes (spectrum orange) on BWSCA2 metaphase spreads

Hybridisation of RP11-413N10, RP11-715M10, RP11

the control telomeric 11p probe (spectrum green) show split signals of green and 

orange in the inv(11) indicating a breakpoint in between the BAC probes and

The breakpoint was determined to localise from RP11-413N10 as the split signal starts to be 

observed from there onwards.  

All the BAC probes telomeric to RP11-413N10 showed fusion (red and green) signals 

indicating the region telomeric to RP11-413N10 are intact and not rearranged (figure

Green and orange signals were seen apart and on both ends of the inv(11) 
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BAC probes (spectrum orange) on BWSCA2 metaphase spreads. 

715M10, RP11-324J3, RP11-89D4 

show split signals of green and 

orange in the inv(11) indicating a breakpoint in between the BAC probes and the control probe. 

413N10 as the split signal starts to be 

showed fusion (red and green) signals 

are intact and not rearranged (figures 

seen apart and on both ends of the inv(11) starting 



 

from RP11-413N10. Thus the 

(figures 4.9A-D) which maps 

 

 

4.3.3  Array analysis

The reference set for 250K Sty1 mapping arrays 

(www.hapmap.org/downloads/raw_data/affy500k/

various populations for SNP 6.0

the seven samples (BWSCA1, BWSCA2, BWSCA3, BWSCA4, BWSCA5, BWSCA7

BWSCA8) was 96.46±2.88. Two cases, 

the 11p region. The duplication in 

telomeric 11p with the size of ~

 

 

 

Figure 4.10: Copy number analysis using Affymetrix CNAT v4.0 on patient BWSCA4. 

horizontal line represents copy number state

The duplicated region of 11p15.4

state= 3). Size of the duplicated region is called at 10.3 Mb. 

green horizontal lines represent region of 

genes within the area of analysis are displayed at the bottom of the figure.

 

 

 

. Thus the breakpoint was localised in ~6.93-6.98 Mb of 11p15.4 

which maps to the Z�F215 gene (figure 4.3).  

Array analysis 

for 250K Sty1 mapping arrays was 48 samples from the HapMap project 

www.hapmap.org/downloads/raw_data/affy500k/) and 270 HapMap individuals of 

for SNP 6.0 (Goldstein and Cavalleri, 2005). The average call rate for 

BWSCA1, BWSCA2, BWSCA3, BWSCA4, BWSCA5, BWSCA7

was 96.46±2.88. Two cases, BWSCA4 and BWSCA3, showed dupli

uplication in BWSCA4 was observed in chromosome 11p15.4 to 

with the size of ~10.3 Mb (figure 4.10).  

Copy number analysis using Affymetrix CNAT v4.0 on patient BWSCA4. 

epresents copy number state (2= diploid copy number, 1= haploid copy number). 

The duplicated region of 11p15.4-pter is observed as an increase in copy number (copy number 

Size of the duplicated region is called at 10.3 Mb. Blue and red vertical

represent region of gain and loss respectively. Ideogram of chromosome and 

genes within the area of analysis are displayed at the bottom of the figure.    
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6.98 Mb of 11p15.4 

was 48 samples from the HapMap project 

270 HapMap individuals of 

The average call rate for 

BWSCA1, BWSCA2, BWSCA3, BWSCA4, BWSCA5, BWSCA7 and 

, showed duplication in 

was observed in chromosome 11p15.4 to 

 

Copy number analysis using Affymetrix CNAT v4.0 on patient BWSCA4. Green 

1= haploid copy number).  

pter is observed as an increase in copy number (copy number 

vertical bars below the 

Ideogram of chromosome and 



 

BWSCA3 had a smaller size of duplication, about 7.0 Mb in 11

(figure 4.11). The duplicated region in both of the cases involved the imprinted genes in 

two imprinting domains regulated by IC1and IC2. 

 

 

 
Figure 4.11: Copy number analysis using Affymetrix CNAT v4.0 on patient BWSCA3. 

horizontal line represents copy number state (2= diploid 

The duplicated region of 11p15.4

state= 3). Size of the duplicated region is called at 7.0 Mb.

green horizontal lines represent region of gain and loss respectively. Ideogram of chromosome and 

genes within the area of analysis are displayed at the bottom of the figure.

 

 

 

Although patient BWSCA5

loss of heterozygosity (LOH) detected involving almost the whole short arm of the 

chromosome (figure 4.12). This is caused by uniparental disomy (UPD) most probably 

inherited from the father.  

 

 

BWSCA3 had a smaller size of duplication, about 7.0 Mb in 11p15.4 to the telomere 

(figure 4.11). The duplicated region in both of the cases involved the imprinted genes in 

two imprinting domains regulated by IC1and IC2.  

Copy number analysis using Affymetrix CNAT v4.0 on patient BWSCA3. 

izontal line represents copy number state (2= diploid copy number, 1= haploid copy number).  

The duplicated region of 11p15.4-pter is observed as an increase in copy number (copy number 

Size of the duplicated region is called at 7.0 Mb. Blue and red vertical bars below the 

green horizontal lines represent region of gain and loss respectively. Ideogram of chromosome and 

genes within the area of analysis are displayed at the bottom of the figure.    

BWSCA5 has a normal copy number of chromosome 11 but there was 

loss of heterozygosity (LOH) detected involving almost the whole short arm of the 

). This is caused by uniparental disomy (UPD) most probably 
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p15.4 to the telomere 

(figure 4.11). The duplicated region in both of the cases involved the imprinted genes in 

 

Copy number analysis using Affymetrix CNAT v4.0 on patient BWSCA3. Green 

, 1= haploid copy number).  

pter is observed as an increase in copy number (copy number 

red vertical bars below the 

green horizontal lines represent region of gain and loss respectively. Ideogram of chromosome and 

er of chromosome 11 but there was 

loss of heterozygosity (LOH) detected involving almost the whole short arm of the 

). This is caused by uniparental disomy (UPD) most probably 



 

 

Figure 4.12: Region of LOH (represented by a continuous blue bars in the top panel) 

BWSCA5 identified using Affymetrix CNAT v4.0. 

normal copy number (copy number state= 2) 

chromosome and genes within the area of analysis are displayed at the bottom of the figure.

 

 

 

 

No copy number changes or 

and BWSCA7. This could be due to e

loss of imprinting in the BWS imprinting centre 

were also no copy number alterations identified in patients 

suggesting of a balanced rearrangement. 

 

 

 

 

 

OH (represented by a continuous blue bars in the top panel) 

BWSCA5 identified using Affymetrix CNAT v4.0. The region spanning from 11p11.2

(copy number state= 2) represented by the horizontal green line

chromosome and genes within the area of analysis are displayed at the bottom of the figure.

No copy number changes or LOH were detected in chromosome 11 of 

This could be due to epigenetic mechanisms such as loss of met

loss of imprinting in the BWS imprinting centre or unidentified genetic mechanisms. 

were also no copy number alterations identified in patients BWSCA1

a balanced rearrangement.  
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OH (represented by a continuous blue bars in the top panel) in patient 

spanning from 11p11.2-pter with a 

represented by the horizontal green line.  Ideogram of 

chromosome and genes within the area of analysis are displayed at the bottom of the figure.    

chromosome 11 of patients BWSCA8 

pigenetic mechanisms such as loss of methylation or 

genetic mechanisms. There 

BWSCA1 and BWSCA2, 



 

SNP6.0 arrays were applied on

in chromosome 11p15.4-pter (figure 

the size of 3.8 Mb were observed (figure 4.14

 

 

 

Figure 4.13: Chromosome 11 log2

arrays for patient BWSCA6. The 

(copy number state= 3) represented by the horizontal green line

region of gain in the chromosome

Mb. Ideogram of chromosome and genes within the area of analysis are displayed at the bottom of 

the figure.    
 

 

 

 

 

SNP6.0 arrays were applied on one patient, BWSCA6. Duplication with the size of 3.4 Mb 

pter (figure 4.13) and a deletion in chromosome 4p16.2

the size of 3.8 Mb were observed (figure 4.14).  

: Chromosome 11 log2 ratio analysed using the Birdseed v1 algorithm for SNP 6.0 

arrays for patient BWSCA6. The duplicated region is shown as an increase in copy number state 

(copy number state= 3) represented by the horizontal green line. Blue horizontal bar represents 

region of gain in the chromosome. Size of the duplicated region in 11p15.4

Ideogram of chromosome and genes within the area of analysis are displayed at the bottom of 
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with the size of 3.4 Mb 

deletion in chromosome 4p16.2-pter with 

 

Birdseed v1 algorithm for SNP 6.0 

duplicated region is shown as an increase in copy number state 

. Blue horizontal bar represents 

of the duplicated region in 11p15.4-pter is called at 3.4 

Ideogram of chromosome and genes within the area of analysis are displayed at the bottom of 



 

Figure 4.14: Chromosome 4 log2 ratio analysed using the Birdseed v1 al

arrays for patient BWSCA6. The deleted region is shown as a decrease in copy number state (copy 

number state= 1) represented by the horizontal green line. 

loss in the chromosome. The size of the d

of chromosome and genes within the area of analysis are displayed at the bottom of the figure.

 

 

Copy number analysis on the eight patients of BWS 

table 4.5. 

 
Table 4.5: Array analysis in the eight BWS patients studied.

Patient Chromosome aberration

BWSCA1 46,XY,t(3;11)(q22;p15.4)

BWSCA2 46,XX,inv(11)( p15.4;q23.3)

BWSCA3 Dup(11)(p15.4p15.5)

BWSCA4 Dup(11)(p15.4p15.5)

BWSCA5 No

BWSCA6 
Dup(11)( p15.4p15.5)

Del(4)(p16.2

BWSCA7 
No

BWSCA8 No

Abbreviations: Mb, megabase; t, translocation; dup, d

long arm 

Chromosome 4 log2 ratio analysed using the Birdseed v1 algorithm for SNP 6.0 

The deleted region is shown as a decrease in copy number state (copy 

) represented by the horizontal green line. Red horizontal bar represents region of 

The size of the deleted region in 4p16.2-pter is called at 3.8 Mb.

of chromosome and genes within the area of analysis are displayed at the bottom of the figure.

Copy number analysis on the eight patients of BWS described above 

analysis in the eight BWS patients studied. 

Chromosome aberration LOH 

Start 

position 

(Mb) 

End position 

(Mb)

46,XY,t(3;11)(q22;p15.4) No - 

46,XX,inv(11)( p15.4;q23.3) No - 

Dup(11)(p15.4p15.5) No 0 7.057

Dup(11)(p15.4p15.5) No 0 10.307

No Yes 0 48.0

Dup(11)( p15.4p15.5) 

Del(4)(p16.2-p16.3) 
No 0 

3.435

3.845

No 
No - 

No No - 

Abbreviations: Mb, megabase; t, translocation; dup, duplication; del, deletion; inv, inversion; p, short arm; q, 
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gorithm for SNP 6.0 

The deleted region is shown as a decrease in copy number state (copy 

horizontal bar represents region of 

pter is called at 3.8 Mb. Ideogram 

of chromosome and genes within the area of analysis are displayed at the bottom of the figure.    

described above is summarized in 

End position 

(Mb) 

Size  

(Mb) 

- - 

- - 

7.057 7.0 

10.307 10.3 

48.0 48.0 

3.435 

3.845 

3.4 

3.8 

- - 

- - 

uplication; del, deletion; inv, inversion; p, short arm; q, 
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4.4  Discussion 

BWS due to chromosome translocations, duplications or inversions is rare, encountered in 

approximately 2% of the cases (Elliott and Maher, 1994). In this study, chromosomal 

rearrangements involving chromosome 11p15.4-p15.5 were observed in five out of the 

eight cases (these were highly selected cases derived from a large cohort (~400) of BWS 

patients). One of the advantages of using 250K SNP array is that the method allows 

simultaneous identification of LOH and copy number alterations in a single experiment. In 

the present study, region of LOH with normal copy number was detected in chromosome 

11p of patient BWSCA5. This indicates that both of the copies were derived from the same 

parent, also known as uniparental disomy (UPD). No copy number gain or loss observed in 

the two cell lines (BWSCA1 and BWSCA2) indicating the rearrangements are balanced 

(or the imbalance is very small). 

 

It cannot be ascertained whether the rearrangements in BWSCA1 and BWSCA2 are 

inherited or de novo, as the parents samples were not available for testing. However, it has 

been reported that patients with BWS who have cytogenetic abnormalities involving 

chromosome 11p15.5 duplications, inversions in distal 11p or balanced translocations that 

break in this region - genomic imprinting effects are evident in the parental origin of the 

affected chromosomes. Duplications in this group of patients are invariably derived from 

the patient’s father, whereas inversions and translocations always involve the maternal 

homologue (Maher and Reik, 2000).  

 

Evidence from the FISH mapping shows that the breakpoint in chromosome 11p15.5 of 

patient BWSCA1 occurs in BWSCR1 and disrupts the maternally expressed KC�Q1 gene 

which spans >400 kb. This is consistent with the report that BWSCR1 contains multiple 
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balanced
 

chromosomal translocation breakpoints associated with BWS, which
 

were 

proposed to affect an imprinting control element (Lee et al., 1997). Several studies (Sait et 

al., 1994; Brown et al., 1996; Joyce et al., 1997; Li et al., 1998) have described 

chromosomal rearrangements including translocation and inversion involving chromosome 

11p15.5 in patients with BWS. Among the alteration observed were biallelic expression of 

IGF2 and normal imprinting of H19 in an affected BWS patients with maternally inherited 

inv(11)(p11.2;p15.5) (Brown et al., 1996). Data from a large series of sporadic BWS cases 

analysed by Engel et al (2000) suggested that loss of methylation of KvDMR1 on maternal 

allele results in epigenetic silencing of CDK�1C and variable loss of imprinting of IGF2. 

In another study, loss of methylation of KvDMR1 in maternal allele is associated with 

expression of the antisense transcript, KC�Q1OT1 from the maternal copy (Maher and 

Reik, 2000). Loss of maternal allele methylation at KvDMR1 and biallelic KC�Q1OT1 

expression occurs in 50–60% of BWS patients (Lee et al., 1999; Engel et al., 2000). 

Relating these findings with BWSCA1, the BWS phenotype of the patient could be caused 

by loss of methylation of KvDMR1 on the maternal allele which altered the normal 

expression of KC�Q1 or CDK�1C or KC�Q1OT1 or IGF2. Further investigation such as 

methylation status of the genes can provide the information of the exact cause of BWS in 

this patient.   

 

Breakpoint in BWSCA2 was localised in Z�F215 in BWSCR2 by FISH mapping. It is very 

rare to find breakpoint in this region correlated with BWS and to date, only one report 

demonstrated association of Z�F215 in BWS (Alders et al., 2000). They analysed the 

breakpoints in two patients – one with inv(11p15.4) and the other with 

t(10,11)(p13;p15.4), both presented with hemihyperplasia together with other minor BWS 

features which  is not seen in patients with chromosomal breakpoint in BWSCR1 and 
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BWSCR3. In both of the patients, the chromosomal rearrangements disrupt Z�F215.  

Z�F215 is imprinted and expressed preferentially from the maternal allele. The gene is 

expressed in a tissue specific manner and contains 4 zinc fingers, a KRABA domain, 

sequences similar to a KRABB domain, an N-terminal SCAN box and a nuclear 

localisation signal. The breakpoint in BWSCR2 disrupts alternative spliced Z�F215 

transcripts which encode a truncated protein lacking the zinc fingers but retaining the 

KRAB and SCAN box functional domains (Alders et al., 2000). They suggested that there 

is a gene(s) at BWSCR2 and BWSCR3 that interacts with some components of the 

IGF2/BWSCR1 systems and influences the BWS phenotype through this mechanism. 

Although FISH results of this study agrees with the findings of Alders et al (2000), more 

tests have to be done to verify the results.  

Approximately 20% of sporadic BWS cases have segmental paternal uniparental disomy 

involving the imprinted gene cluster at 11p15.5 (Henry et al., 1991; Slatter et al., 1994). 

Previous reports (Slatter et al., 1994; Catchpoole et al., 1997; Dutly et al., 1998; Cooper et 

al., 2007) have also shown that all cases of BWS UPD are mosaic isodisomy. Thus, the 

process of UPD occurs postzygotically due to mitotic recombination in early 

embryogenesis and lack of one or more chromosome 11 maternally expressed genes may 

lead to embryonic lethality. The region of paternal UPD invariably includes the imprinted 

gene cluster at 11p15.5, however, the extent of isodisomy along chromosome 11 is 

variable (Catchpoole et al., 1997; Dutly et al., 1998; Cooper et al., 2007). Cases of BWS 

UPD involving the whole chromosome 11 has also been reported and to date there are only 

five such cases; 4 identified by Cooper et al (2007) and 1 by Dutly et al (1998). These 

suggest that BWS UPD due to mitotic recombination is more common than mitotic 

nondisjunction in early embryo. In the present study, the patient (BWSCA5) has UPD 
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spanning from the telomeric region 11p to p11.2 (48.0 Mb) identified by high resolution 

SNP array. Genotyping analysis on chromosome 11 shows homozygous region in the 

chromosome (data not shown). Although high resolution SNP array is useful in giving a 

precise region of LOH in this case, it is unable to give information whether the segment 

was derived from paternal or maternal. However, based from the previous reports (Maher 

and Reik, 2000; Cooper et al., 2007), it is presumed that the LOH segment of chromosome 

11p in BWSCA5 was paternal in origin.  BWS UPD cases are predicted to have increased 

IGF2, reduced H19 and reduced CDK�1C expression (Cooper et al., 2005).   

Hemihyperplasia is highly positively correlated with UPD 11p15 in BWS (Engel et al., 

2000; DeBaun et al., 2002; Cooper et al., 2005) and in some cases, isodisomy can be 

detected in only a small subset of tissue in the patient (Weksberg et al., 2001). There is no 

known instance of recurrence of segmental UPD 11 and as a postzygotic event, it is 

assume no increased risk would apply. 

Paternally inherited cases of overgrowth have been described
 
previously; in these cases, 

unbalanced translocations
 
leading to trisomy for 11p with paternal duplication have been

 

responsible (Slavotinek et al., 1997), however de novo duplications of the paternally 

derived 11p15 region were also found. Using microsatellite analysis, Russo et al. (2006) 

have identified a small duplication at 11p15.5 involving IC1 and excluding IC2, spanning 

1.8 Mb in a patient with features of BWS who had a de novo paternal tandem duplication. 

This was proposed to result from an unequal recombination at
 
paternal meiosis 1. In the 

present study, patient BWSCA6 has an unbalanced translocation t(4;11)(p16.2;p15.4) 

leading to paternal duplication of 11p15.4-pter (3.4 Mb) and deletion of 4p16.2-pter (3.8 

Mb).  In addition to BWS, deletion of 4p16.3 contributes to the Wolf-Hirschhorn 

syndrome features in BWSCA6. Wolf-Hirschhorn syndrome is characterised by severe 
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growth and mental defect, microcephaly, 'Greek helmet' facies, and closure defects (cleft 

lip or palate), coloboma of the eye and cardiac septal defects (Hirschhorn et al., 1965; 

Wolf et al., 1965). Two other reports (Russo et al., 2006; Mikhail et al., 2007) have also 

described overlapping phenotype of Wolf-Hirschhorn and BWS in their patients.   The 

duplication 11p15.4-pter identified in BWSCA3 and BWSCA4 involved large segments, 

7.0 Mb and 10.3 Mb respectively, spanning from 11p15.4 to the telomere 11p. No copy 

number changes were detected in the other chromosomes, indicating that the duplication 

was not due to unbalanced translocation. Although the extent of the duplicated region in 

these patients is variable, the phenotypic expression of BWS is presumably due to the 

presence of a common duplicated region. 

 

The duplicated region 11p15.4-pter identified in BWSCA3, BWSCA4 and BWSCA6 

involved both of the ICs, therefore, all of the genes implicated with BWS in 11p15.4-p15.5 

were duplicated. The duplication is predicted to disrupt the dosage
 
and expression of 

normally paternally and maternally expressed genes as well as non-imprinted
 
genes.  The 

paternally expressed gene, IGF2 is thought to be overexpressed while effective dosage of 

maternally expressed genes including H19, KC�Q1 and CDK�1C are predicted to remain 

unchanged. The IGF2 gene encodes a fetal growth factor and overgrowth in BWS is 

restricted to those tissues in which IGF2 is expressed. In mice, over-expression of IGF2 

results in most of the symptoms of BWS, including prenatal overgrowth, polyhydramnios, 

fetal and neonatal lethality, disproportionate organ overgrowth and macroglossia (Sun et 

al., 1997). Cases  with maternal duplication 11p15 were also been reported but none of the 

patients showed features of BWS; three patients had growth retardation, in contrast to the 

overgrowth characteristic of BWS (Fisher et al., 2002) and two patients represented with 

Silver-Russel syndrome (Eggermann et al., 2006). These observations support the 
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hypothesis that paternally expressed genes promote growth and maternally expressed 

genes have the opposite effects. There were no copy number changes or LOH observed in 

BWSCA8 and BWSCA7, thus the BWS phenotype in the patients could be due to 

epimutations which alter the methylation or expression of the imprinted gene(s) in 11p15.  

 

The findings of this study is consistent with the previous reports; the breaks identified in 

11p15.4 due to inversion and translocation disrupts the imprinted genes in that region and 

alterations in the normal doses of genes caused by duplications of paternal allele or 

paternal UPD can also contribute to the BWS phenotype. To the best of my knowledge, 

patient BWSCA2 is the third BWS found with breakpoint in Z�F215.  Thus, further 

studies should be taken to elucidate the role of Z�F215 in BWS.    
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5 Analysis of copy number changes in primary tumours of clear cell renal 

cell carcinoma (cRCC) and renal cell carcinoma (RCC) cell lines using 

250K S
P array  
 

5.1    Introduction 

Kidney cancer constitutes about 2% of all malignant tumours in adults (Clifford et al., 

1998). It is the seventh most common cancer in men and ninth most common in women,  a 

male-predominant (2:1) disease with a typical presentation in the sixth and seventh 

decades of life (median age about 60 years) (Maher et al., 1990a). Incidence rates for the 

cancer have been rising steadily each year in Europe and the United States (Mathew et al., 

2002) and it is estimated to account for about 209,000 new cases per year and 102,000 

deaths per year (Gupta et al., 2008). Incidence is generally highest in Western and Eastern 

European countries, Scandinavia, parts of Italy, North America and in Australia/New 

Zealand. The lowest incidence is reported in Asia and Africa (Ferlay et al., 2004).  

 

Several environmental factors have been reported to be associated with an increased risk of 

renal cell carcinoma (RCC). Active and passive cigarette smoking is an established risk 

factor for RCC (Yuan et al., 1998; Hunt et al., 2005). Obesity, specifically body mass 

index, also has a positive association with risk of RCC (Bjorge et al., 2004; van Dijk et al., 

2004). Another known risk factor is hypertension (Lipworth et al., 2006) with data 

showing hypertensive medication such as diuretic medications are not independently 

associated with the risk of the development of the cancer (McLaughlin et al., 1995; 

Grossman et al., 1999; Grossman et al., 2002). Patients with end stage renal failure, 

acquired renal cystic disease and various hereditary kidney cancer syndromes have a 

higher risk of developing RCC than in the general population (Ishikawa et al., 2003; 

Rakowski et al., 2006). Exposure to asbestos or trichloroethylene has not been 
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convincingly associated with RCC (McCredie et al., 1995). Other factors such as alcohol 

consumption, vegetable and fruit consumption, intake of micronutrients and vitamins 

showed less consistent association with the risk of RCC (Wolk et al., 1996; Mellemgaard 

et al., 1999; Dhote et al., 2000; Lindblad et al., 2004).  

 

Renal parenchyma (renal cell) cancer accounts for about 85% of kidney cancers diagnosed 

in the United states from 1992 to 2002 The remainder was composed mainly of renal 

pelvis cancer (approximately 12%) and other rare malignancies (approximately 2%). All 

renal cell cancers are adenocarcinomas and the majority of the renal pelvis cancers are 

transitional cell carcinomas (Lipworth et al., 2006). Renal cell carcinomas (RCC) are 

adenocarcinomas derived from tubular epithelium. Most cases of RCC occur sporadically, 

only about 2%-3% of cases are inherited (Maher, 1996a) RCC is divided into 5 subtypes 

based on histological pattern: clear cell (conventional) is the most common type (70%-

80%), papillary occurs in 10%-15% and chromophobe renal carcinoma occurs in 3%-5%, 

with the remaining being made up of collecting duct (1%) and unclassified (1%). Papillary 

is further divided into type 1 (5% of the cases) and type 2 (10% of the cases) (Kovacs et 

al., 1997).  These different types of RCC have different histological patterns, different 

clinical courses and each have a distinct genetic basis (Linehan et al., 2003).  

 

5.1.1   Classification of renal cell carcinoma (RCC) 

Renal cell carcinoma (RCC) originates from the tubular epithelial cells of the renal cortex 

and accounts for 80-85% of primary malignancies in kidney (Motzer et al., 1996). RCC 

comprises of different types of tumours, each derived from different parts of the nephron.  

The nephron consists of the renal corpuscle and renal tubule which is divided into four histo-
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physiological zones: proximal convoluted tubule, loop of Henle, distal convoluted tubule and 

collecting duct (figure 5.1). 

 

           

 
Figure 5.1: Anatomy of the kidney. The kidney is divided into two major structures: superficial is 

the renal cortex and deep is the renal medulla. Nephrons consist of the renal corpuscle and renal 

tubules and span the cortex and medulla.  

 

 

 

In 1996, the Heidelberg classification of RCC was proposed with the aim of integrating 

histological criteria and an understanding of genetic alterations (Kovacs et al., 1997). 

According to the classification, RCC can be classified into three major subtypes: clear cell 

RCC (also known as conventional RCC), papillary RCC and chromophobe RCC. Other 

less frequent subtypes include multilocular cRCC, collecting duct carcinoma, medullary 

carcinoma and unclassified type. The WHO classification of 2002 is more comprehensive 

and in addition to the previous subtypes also includes renal carcinoma associated with 
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neuroblastoma, Xp11 translocation carcinoma and mucinous tubular and spindle cell 

carcinoma (figure 5.2).  

 
           A 

 
         Clear cell                          Papillary type 1                      Papillary type 2 

            B         

                                                                                                                                       
                          Chromophobe                       Collecting duct                    Mucinous tubular 

                                                                             carcinoma 

                                      

Figure 5.2: The different RCC subtypes. (A) Clear cell RCC and papillary RCC from the proximal 

convoluted tubule (B) chromophobe RCC, collecting duct carcinoma and mucinous tubular and 

spindle cell carcinoma from the collecting tubule.  

 

The most common (~80%) forms of RCC are clear cell carcinoma (cRCC) and among the 

nonclear cell type, papillary (chromophilic) and chromophobic tumours are the most 

frequent (Thoenes et al., 1986). Most cases of cRCC are sporadic and the tumours are 

unilateral and unifocal. Papillary RCC are often bilateral and multifocal.  The 

chromophobe variant of RCC accounts for 5% of all cases of RCC and is thought to 

originate from type B intercalated cells of renal collecting ducts (Crotty et al., 1995; 

Storkel et al., 1997). Papillary RCC is further divided into type 1 and type 2. Type 1 

tumours are usually of lower-grade and stage than type 2 tumours (Amin et al., 1997; 

Delahunt et al., 2001). Collecting duct (Bellini duct) carcinomas are thought to originate 



141 

 

from the collecting ducts within the renal medulla (Rumpelt et al., 1991; Storkel et al., 

1997). Collecting duct RCC are very aggressive and tend to occur in younger patients. 

Medullary carcinoma is a variant of collecting duct carcinoma (Swartz et al., 2002) which 

preferentially appear in younger patients with sickle trait and regarded as a more 

aggressive variant of collecting duct carcinoma with a mean survival time after surgery of 

15 weeks (Srigley and Eble, 1998). The unclassified RCCs which accounts for 4-5% of all 

cases (Storkel et al., 1997; Kovacs et al., 1997) are a diagnostic category of renal tumours 

which do not fit into one of the other subtypes.  

 

Mucinous tubular and spindle cell carcinoma are thought to originate from the distal 

nephron (Argani et al., 2001) and are reported to be a low-grade renal epithelial neoplasm 

characterized by an indolent course and female predominance. RCC associated with 

neuroblastoma occurs in long term survivors of childhood neuroblastoma, is 

morphologically heterogeneous and prognosis correlates with tumour grade and stage 

(Koyle et al., 2001).  

 

 5.1.2   Genetics of clear cell renal cell carcinoma (cRCC) 

Zbar et al (1987) examined tumours from 18 patients with non-hereditary renal cell 

carcinoma and found loss of alleles at loci on the short arm of chromosome 3 in eleven of 

the patients. By studying loss of alleles at different chromosomal loci on normal and 

tumour tissue from 60 patients with various stages of renal cell carcinoma, Anglard et al 

(1991) suggested that the disease genes for sporadic renal cell carcinoma and for familial 

renal cell carcinoma associated with von Hippel-Lindau disease are in the same location. 

More importantly, they had refined the specific region in 3p21-p26.  Subsequently, genetic 

linkage studies in families with von Hippel-Lindau disease followed by physical mapping 
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analyses resulted in the identification of the von Hippel-Lindau (VHL) tumour suppressor 

gene in the 3p25-p26 region (Latif et al., 1993).  

 

Clear cell renal cell carcinoma is genetically characterized by deletions of the short arm of 

chromosome 3 and this was reported to be as the only karyotypic changes in about 10% of 

cases (Bodmer et al., 2002). Complete or partial loss of chromosome 3p is the most 

frequent alteration in cRCC suggesting the presence of one or more tumour suppressor 

gene(s) in this chromosome responsible for tumour development (Presti et al., 1998; 

Huebner, 2001; Sukosd et al., 2003). Deletions of 3p occur commonly in renal cell 

carcinoma associated with VHL disease and although von Hippel-Lindau disease is a rare 

cause of RCC, somatic inactivation of the VHL gene occurs in a high percentage of clear 

cell RCC tumours and cell lines from patients with sporadic (nonhereditary) clear cell 

renal carcinoma (Foster et al., 1994; Gnarra et al., 1994; Clifford et al., 1998; Zbar et al., 

2003; Kim et al., 2004; van Houwelingen et al., 2005; Weiss and Lin, 2006; Banks et al., 

2006). Inactivation of VHL can be due to somatic mutations, deletions, LOH or epigenetic 

inactivation such as promoter DNA methylation.  

 

Chromosome 3p deletions in cRCC are large and are not limited to the VHL gene region 

(3p25-p26). Loss of heterozygosity (LOH) study on sporadic cRCC identified three 

regions on chromosome 3p that are recurrently affected: 3p12-p14, 3p21-p22 and 3p25-

p26 (Van den Berg and Buys, 1997). It was suggested that an allelic loss in either 3p25 or 

3p12-p14 is associated with adenomas whereas in carcinoma also involved losses in 3p21 

together with 3p25 or 3p12-p14. In another studies to evaluate whether VHL gene 

inactivation is essential for tumour formation, the patterns and extent of allelic losses on 3p 

were compared in a set of cRCCs both with and without VHL mutations. This study 
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revealed that although the frequency of 3p12-p22 LOH was similar in both tumour types, 

LOH at 3p25-p26 was significantly less than LOH at 3p12-p22 in tumours without VHL 

mutation, whereas LOH at 3p25-p26 and 3p12-p22 was similar in tumours with VHL 

mutation (Teh et al., 1997; Martinez et al., 2000; Woodward et al., 2000a). These results 

supported the presence of both VHL-dependent and VHL-independent tumourigenic 

pathways and suggested that inactivation of a tumour suppressor gene at 3p12-p22 may 

play an important role in both these pathways. Subsequently the RASSF1A tumour 

suppressor gene that maps to 3p21 was found to be methylated in many RCC (Morrissey et 

al., 2001).  

 

Predisposition to clear cell carcinoma may be associated with constitutional cytogenetic 

rearrangements involving chromosome 3p. The first report was of an Italian-American 

family who was affected with renal carcinoma in multiple family members (Cohen et al., 

1979). Upon investigation of the affected family members, it was found that they had a 

germline balanced translocation involving chromosome 3p, t(3;8)(p14;q24). In another 

family, several siblings carried a constitutional t(3;6)(p13;q25) and one of them developed 

multiple bilateral RCCs (Kovacs et al., 1989). Positional cloning of the constitutional 3;8 

translocation breakpoints revealed that the FHIT gene spanned the chromosome 3 

breakpoint (Ohta et al., 1996). The gene co-localises with FRA3B, which is the most 

common inducible fragile site within the human genome (Ong et al., 1997). Hemi- or 

homozygous deletion of FHIT and reduced expression of the gene had been reported in 

several neoplasms including kidney, lung, cervix, esophagus, colon, stomach and pancreas 

tumours, implicating a role in tumour development (Sozzi et al., 1996; Virgilio et al., 

1996; Druck et al., 1997; Hadaczek et al., 1999; Eyzaguirre et al., 1999). The chromosome 
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8 breakpoint disrupted the TRC8 gene (Gemmill et al., 1998) and this gene may also 

function as a tumour suppressor gene (Teh et al., 1999).  

 

Two Dutch families were also reported to display an association between constitutional 

chromosome 3 translocations and RCC. The first one involved five members over three 

generations carrying a constitutional t(2;3)(q35;q21) who developed RCC (Koolen, et al., 

1998; Bodmer et al., 1998). In the second family, a t(3;6)(q12;q15) was transmitted and 

four members were diagnosed with cRCC (Eleveld et al., 2001). Other families have also 

been reported with different translocations e.g. t(3;4)(p13;p16), t(2;3)(q33;q21) and 

t(1;3)(q32;q13.3) (van Kessel et al., 1999; Kanayama et al., 2001; Podolski et al., 2001). 

Positional cloning of the familial t(2;3)(q35;q21) breakpoint revealed disruption of DIRC2 

which resides on chromosome 3 (Bodmer et al., 2002) while in the t(2;3)(q33;q21) family, 

DIRC1 on chromosome 2 was found to be disrupted (Druck et al., 2001). 

 

Although in some of the cases of familial cRCC associated with constitutional 

chromosome 3 translocations characterisation of the translocation breakpoint has revealed  

presence of a putative tumour suppressor gene for example (e.g. FHIT, TRC8, DIRC1, 

DIRC2, �ORE1 and LSAMP) (Ohta et al., 1996; Gemmill et al., 1998; Druck et al., 2001; 

Bodmer et al., 2002; Chen et al., 2003; Poland et al., 2007) or fusion transcript, in some 

cases no gene is disrupted or the disrupted gene does not appear a likely candidate tumour 

suppressor gene (Gemmill et al., 1998; Bodmer et al., 2002; Bugert et al., 2007).
 
Hence in 

some cases it has been suggested that RCC susceptibility results not from direct disruption 

of a gene but from instability of the derivative chromosome 3 such that loss of the 

derivative chromosome 3 (that contains a VHL allele) through nondisjunction and 

subsequent somatic VHL gene mutation on the non-translocated chromosome 3 
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homologue. This process would result in homozygous loss of VHL function and has been 

termed a three-step
 
model of tumourigenesis (Schmidt et al., 1995; Bodmer et al., 1998; 

Bodmer et al., 2002). Thus the first
 

hit would be the occurrence of a germ line 

chromosome 3 translocation.
 
Non-disjunctional loss of the derivative chromosome that 

carries
 
the 3p segment would represent the second step. Finally, the

 
third step would 

involve a somatic mutation in the remaining
 
3p allele of an RCC-related tumour suppressor 

gene (TSG) such
 
as VHL. 

 

Recently developed high resolution methods for genomic copy number analysis such as 

array based comparative genomic hybridisation (aCGH) can offer a high resolution 

information on copy number changes in cancer on a genome-wide level. Genomic DNA 

copy number alterations (CNA) have been shown to be a contributing factor in the 

development and progression of cancer. In cRCC, common somatic chromosomal changes 

in sporadic cases include loss of 3p, 4q, 6q, 8p, 9q and 14 and gain of 5q and 7 have been 

reported (Sanjmyatav et al., 2005).  

 

5.1.3   Inherited renal cell carcinoma  

A number of inherited disorders may predispose to RCC.  Inherited RCC is characterised 

by an earlier age at diagnosis than in sporadic and inherited tumours are often multicentric 

and/or bilateral. Von Hippel-Lindau disease, hereditary type 1 papillary renal carcinoma 

(HPRC1), hereditary leiomyomatosis and renal cell carcinoma (HLRCC), Birt-Hogg-Dubé 

syndrome are examples of inherited disorders predisposing to renal cell carcinoma. 
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5.1.3.1 Hereditary papillary renal carcinoma (HPRC) 

HPRC is very rare with an approximate incidence 1 per 10 million persons. It is an 

autosomal dominant hereditary cancer syndrome, a highly penetrant disease in which 

patients have a high risk of developing bilateral and multifocal type 1 papillary RCC 

(pRCC) (Zbar et al., 1994).  The tumours are most often well differentiated, malignant and 

can metastasize. Genetic studies in kindreds with familial pRCC led to the identification of 

MET proto-oncogene located on the long arm of chromosome 7 (Schmidt et al., 1997). 

MET mutations are rare in sporadic pRCC, only about 5% of the cases (Schmidt et al., 

1997; Schmidt et al., 1999). Furthermore, about 75% of sporadic pRCC cases have trisomy 

of chromosome 7 (Cohen and McGovern, 2005).  

 

5.1.3.2 Hereditary leiomyomatosis renal cell carcinoma (HLRCC) 

HLRCC is rare and dominantly inherited disorder caused by germline mutations in the 

fumarate hydratase gene (FH) (Tomlinson et al., 2002). Fumarate hydratase is a key 

component of the tricarboxylic acid cycle (Krebs cycle) and catalyses the conversion of 

fumarate to malate. HLRCC was first described in a Finnish family in which eleven 

members had uterine leiomyomas, two had uterine leiomyosarcoma and seven individuals 

had a history of cutaneous nodules (two of which were confirmed to be cutaneous 

leiomyomatosis). In addition, four kidney cancer cases occurred in young (33-48 years 

old) females and the tumours are different from those that appear in patients with VHL, 

HPRC and BHD. Kidney cancers in HLRCC displayed a distinct papillary histology (type 

2 pRCC) and presented as unilateral solitary lesions that had metastasized at the time of 

diagnosis (Launonen et al., 2001).  
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5.1.3.3 Birt-Hogg-Dubé (BHD) syndrome 

BHD is a hereditary cancer syndrome with an autosomal dominant inheritance pattern. It is 

characterised by a cutaneous tumours (typically fibrofolliculomas), multiple lung cysts, 

spontaneous pneumothorax and renal tumours (Menko et al., 2009). Approximately a 

quarter of patients with BHD have RCC (mean age at diagnosis 50 years) with the 

youngest affected individual at 20 years (Menko et al., 2002; Toro et al., 2008). 

Chromophobe RCC and mixed chromophobe/oncocytic tumours are typical for BHD but 

the histopathology is variable and other histological subtypes including clear cell have 

been reported (Pavlovich et al., 2002). The BHD gene maps to 17p11.2 (Schmidt et al., 

2001; Khoo et al., 2001) and germline mutations in a novel gene, FLC�, that encodes for 

folliculin was identified (Nickerson et al., 2002).  

 

5.1.3.4  Von Hippel-Lindau (VHL) disease 

Von Hippel-Lindau (VHL) disease (MIM number 193300) is a dominantly inherited 

familial cancer syndrome that affects approximately 1 in 36,000 individuals and ~20% of
 

cases arise as de novo mutations without a family history (Maher et al., 1991a; Richards et 

al., 1995). It was first reported in the medical literature more than 100 years ago by 

Treacher Collins who described bilateral vascular growths in the retinas of two siblings 

(Collins E, 1894). Ten years later, a similar observation was described in another family by 

a German ophthalmologist, Eugene von Hippel (Hippel Ev, 1904). Arvid Lindau, a 

Swedish pathologist, had noted that these retinal lesions were associated with an increased 

risk of developing hemangioblastoma of the brain and spinal cord (Lindau A, 1927). The 

disease was then referred as ‘Lindau’s disease’ until 1936 when Charles Davison first used 

the eponym ‘von Hippel-Lindau disease’ (Davison et al., 1936).  
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Individuals with VHL disease carry one wild-type VHL allele
 
and one inactivated VHL 

allele i.e. VHL patients
 
are VHL heterozygotes. Tumour or cyst development in VHL 

disease
 
is linked to somatic inactivation or loss of the remaining wild-type

 
VHL allele. 

Patients affected by VHL are at a high risk of developing clear cell RCC (>70% lifetime 

risk), retinal and cerebellar haemangioblastomas, phaeochromocytomas and renal, 

pancreatic and epididymal cysts (Maher, 2004).  VHL-associated renal tumours are 

uniformly of clear cell renal carcinoma and is often multifocal and bilateral (Mandriota et 

al., 2002).  The age at which clinical symptoms or signs develop is highly variable and the 

most common causes of death are unresectable hemangioblastoma or late diagnosed cRCC 

(Maher and Kaelin, 1997). It has been estimated that the risk of renal cell carcinoma in 

VHL disease is >70% by the age of 60 years (Maher et al., 1990b). 

 

Clinically, VHL families can be subdivided into type 1 or type 2 based on the absence or 

presence of pheochromocytoma. Type 1 is characterized by a low risk of 

pheochromocytoma. It is associated with large deletions and truncating mutations typically 

predispose to hemangioblastomas and RCC but not pheochromocytoma (Crossey et al., 

1994; Maher et al., 1996b; Zbar et al., 1996). Type 2 is usually caused by surface missense 

mutations and is associated with high risk of pheochromocytoma. An explanation for these 

findings would be that pheochromocytoma development is due to a mutant pVHL ‘gain-

of-function’ or complete loss of pVHL functions is incompatible with pheochromocytoma 

development (Kondo and Kaelin, 2001). Type 2 can be further divided into type 2A, type 

2B and type 2C. Type 2A has a low risk of RCC while type 2B has a high risk of RCC. 

Type 2C is associated with familial pheochromocytoma without the other stigmata of VHL 

disease (Crossey et al., 1995; Eng et al., 1995; Ritter et al., 1996; Woodward et al., 1997; 

Neumann et al., 1998; van der Harst et al., 1998).  
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Essentially, all VHL patients have a mutation in the VHL gene which resides in 3p25. VHL 

gene mutations have been reported in >500 VHL kindreds (Latif et al., 1993; Crossey et 

al., 1994; Chen et al., 1995; Zbar et al., 1996; Maher et al., 1996b; 

http://www.umd.necker.fr). Among patients with VHL
 
disease, ~40% of mutations are 

genomic deletions and the rest
 
are protein truncating mutations (nonsense, frameshift 

insertions and deletions, splice site mutations) or intragenic missense mutations. Recurrent 

missense mutations were also noted in some families which occur at a CpG mutation 

hotspot at codon 167, for example p.R167W and p.R167Q (Richards et al., 1995). 

Although a wide variety of mutations have been described, no mutations have been 

reported in the first 53 amino acids of pVHL30 (Woodward and Maher, 2006).  

 

5.1.4   Von Hippel-Lindau (VHL) gene  

Linkage analysis of VHL kindreds mapped the VHL locus to chromosome 3p25 (Seizinger 

et al., 1988). The gene, VHL, was isolated in 1993 using a positional cloning strategy 

through an international collaboration led by Eamonn Maher (University of Cambridge, 

England),  Michael Lerman, Marston Linehan and Berton Zbar (National Cancer
 
Institute, 

United States)(Latif et al., 1993). The VHL gene contains three exons and encodes an 

mRNA of approximately 4.5 kb with a long 3’-untranslated region (Latif et al., 1993; 

Renbaum, 1996). The VHL mRNA encodes a protein (pVHL) that contains 213 amino acid 

residues and migrates with apparent molecular weight of about 24 to 30 kDa (VHL30) 

(Iliopoulos et al., 1995). The primary sequence of pVHL does not closely resemble any of 

other known proteins. A second pVHL isoform of approximately 19kDa (VHL19) is 

produced as a result of internal translational initiation at an in-frame start codon (ATG) at 

codon 54 (Schoenfeld et al., 1998; Iliopoulos et al., 1998; Blankenship et al., 1999). pVHL 
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shuttles between the nucleus and cytoplasm (Duan et al., 1995; Lee et al., 1996; Ye et al., 

1998; Lee et al., 1999).  

 

Knowledge of the function of the VHL tumour suppressor gene product (pVHL) was 

derived from a number of strategies including observing the effects of reintroducing the 

wild-type VHL gene into cultures of cells which lack functional pVHL. Thus in sporadic 

clear cell RCC cell lines with pVHL inactivation, the reintroduction of wild-type pVHL 

into the VHL null RCC cell lines restored normal oxygen-dependent regulation of vascular 

endothelial growth
 
factor (VEGF) and other hypoxia-inducible RNAs (Siemeister et al., 

1996; Gnarra et al., 1996; Levy et al., 1996). Iliopoulos et al (1995) demonstrated that 

VHL was a tumour suppressor gene as, when introduced to VHL deficient cells, it 

suppressed tumour growth in nude mice. pVHL is regarded as a ‘gatekeeper’ tumour 

suppressor gene product rather than a ‘caretaker’ due to its ability to suppress growth of 

fully transformed cells.  

 

Both VHL gene products, pVHL30 and pVHL19 can inhibit the production of the hypoxia-

inducible proteins when reintroduced into renal carcinoma cells that lack the wild-type 

VHL allele. The relationship between VHL disease and HIF-α in RCC was first described 

by Maxwell et al (1999). They reported that cells lacking pVHL are unable to degrade 

HIF-α under both normoxic and hypoxic conditions, thus cells deficient in pVHL behave 

as being hypoxic (pseudohypoxic) even in normoxic conditions due to continuous HIF-α 

activation (Maxwell et al., 1999; Cohen and McGovern, 2005; Weiss and Lin, 2006). The 

fact that only a subgroup of VHL mutation carriers develop RCC and about 25%-30% of 

sporadic cRCC do not involved alterations in the VHL gene suggests involvement of other 

genes responsible for tumourigenesis of cRCC that might affect the same signalling 
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pathway as VHL or other mechanisms to inactivate VHL for example biallelic VHL 

inactivation due to loss of heterozygosity or methylation (Young et al., 2009).  

 

5.1.5   Function of the VHL protein (pVHL) 

The VHL protein (pVHL) has been implicated in several processes but the most well-

defined is its role in regulating proteolytic degradation of the α subunits of the hypoxia 

inducible factor (HIF), HIF-1 and HIF-2 transcription factors. pVHL has two distinct 

protein binding domains: an α domain interacts with the elongin C protein, which in turn 

interacts with elongin B and Cullin-2 to form a tetrameric VCBC complex, and a β domain 

surface binding site which binds HIF-1α and HIF-2α subunits (Pause et al., 1997; 

Lonergan et al., 1998; Maxwell et al., 1999). Moreover, the
 
Rbx-1 protein was then shown

 

to associate with the VCBC complex (Kamura et al., 1999).  

Hemangioblastoma and other VHL-related tumours are highly vascular and demonstrate 

over-production
 
of hypoxia-inducible mRNAs such as vascular endothelial growth

 
factor 

(VEGF) (Wizigmann-Voos et al., 1995). Many hypoxia-inducible
 
mRNAs are under the 

control of heterodimeric transcription factors
 
(HIF-1 and HIF-2), which consist of a 

degradable α subunit
 
and a stable constitutively expressed beta subunit (Schofield and 

Ratcliffe, 2004).
 
Under normoxic conditions, HIF-1α and HIF-2α are bound by VHL and 

VCBC complex induces polyubiquitylation and proteosomal degradation (Maxwell et al., 

1999; Cockman et al., 2000; Kamura et al., 2000) but under hypoxic conditions
 
the α 

subunits are stabilised and HIF-1 and HIF-2 activate
 
transcription of a wide repertoire of 

hypoxia-inducible mRNAs
 
(Schofield and Ratcliffe, 2004).

 
In the absence of functioning 

pVHL (mutant pVHL), HIF-1 and HIF-2 expression is upregulated, leading to 

upregulation in expression of hypoxia-inducible mRNAs (Maxwell et al., 1999; Cockman 
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et al., 2000) (Figure 5.3). The oxygen-dependent interaction of pVHL
 
with HIF-α is 

provided by the hydroxylation status of key HIF-α
 
proline residues (Pro-402 and Pro-564) 

(Ivan et al., 2001; Jaakkola et al., 2001;
 
Masson et al., 2001; Yu et al., 2001). Thus, in the 

presence of
 
oxygen, HIF-α subunits are hydroxylated at the conserved prolyl

 
residues by 

members of the egg laying defective nine (EGLN)
 
family (also known as the PHD family) 

(Bruick and McKnight 2001;
 
Epstein et al., 2001). Molecular oxygen and 2-oxoglutarate 

are
 
essential cosubstrates and iron is an essential cofactor (Epstein et al., 2001;

 
Schofield 

and Ratcliffe, 2004) and, in the absence of these,
 
hydroxylation does not occur and pVHL 

is unable to bind the
 
alpha subunits. In humans, three EGLN homologues have been 

implicated
 

in HIF-α modification (PHD1/EglN2/HIFPH1, PHD2/EglN1/HIFPH2 and
 

PHD3/EglN3/HIFPH3) (Bruick and McKnight 2001; Epstein et al., 2001).
  

 



 

Figure 5.3: Relationship between VHL protein (pVHL) and regulation of hypoxia

α subunits. (A) Under normoxic conditions, pVHL binds to HI

ubiquitylation and proteosomal degradation. The ability of pVHL to bind an HIF

dependent on hydroxylation of two proline residues (POH). 

inactivation, the lack of wild

heterodimeric transcription factors activate expression of a wide repertoire of hypoxia

genes. (C) In hypoxia, the two critical proline residues in the α subunit are not hydroxylated (P) 

and pVHL is unable to bind HIF

(Adapted from: Woodward and Maher, 2006
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(Knudson, 1971). In sporadic form of cRCC, biallelic VHL inactivation (due to 

hypermeyhylation or mutation) is also common whereby both the first hit and second hit 

occur somatically ie. after conception rather than in the germline.  

 

Mutations in VHL are extremely heterogenous: 20-37% of VHL patients have large or 

partial germline deletion, 30-38% have missense mutations and 23-27% have nonsense or 

frameshift mutations (Maher and Kaelin, 1997; Stolle et al., 1998). The mutations are 

distributed throughout the coding sequence except that intragenic missense mutations are 

rarely observed in the first 50 codons (Zbar et al., 1996). Furthermore, type 2 VHL patients 

almost invariably harbour VHL missense mutations while patients with type 1 frequently 

harbour VHL deletions or truncation mutations (Crossey et al., 1994; Chen et al., 1995; 

Maher et al., 1996b; Zbar et al., 1996).  

 

Kidneys removed from VHL patients typically contain a multitude of smaller lesions or 

preneoplastic
 
renal cysts of varying sizes and renal cell carcinomas.  Immunohistochemical 

and
 
genetic evaluation of the epithelial cells lining these renal

 
cysts show early loss of VHL 

and overexpression of HIF and HIF
 
target genes such as VEGF (Zhuang et al., 1994; 

Zhuang et al., 1996; Lubensky et al., 1996; Wiesener et al., 2001; Mandriota et al., 2002).  

Overexpression of HIF-responsive
 
growth factors, as well as their receptors, is also a 

feature
 
of renal carcinomas (Mydlo

 
et al., 1989; Lubensky

 
et al., 1996). Thus, VHL likely 

serves as an early "gatekeeper" tumour suppressor
 
gene for renal cell carcinoma and it is 

presumed that further genetic alterations are
 
needed for progression of preneoplastic renal 

cysts to renal
 
carcinomas (figure 5.4). 
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Figure 5.4: Pathogenesis of von Hippel-Lindau (VHL) disease-associated renal cell carcinoma. 

Biallelic VHL inactivation in a renal tubular epithelial cell stabilizes HIF, correlating with the 

formation a premalignant renal cyst. Alterations at other loci are probably required for carcinoma 

development. In VHL disease, the first VHL mutation (hit) is present in the germline. 

(Adapted from Kim and Kaelin, 2004) 

 

 

This study is aim to identify copy number changes and characterise chromosomal changes 

in primary tumours of clear cell renal cell carcinoma from sporadic, VHL disease and renal 

cell carcinoma cell lines using 250K SNP Array.  
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5.2    Materials and methods 

5.2.1 DNA samples 

Genomic DNA was extracted from primary renal cancers (sporadic and VHL) and cell 

lines by standard methods and stored at -80
o
C. Three groups of renal cancers were 

investigated: (a) 21 clear cell RCC from 21 patients with von Hippel-Lindau disease, (b) 

13 sporadic clear cell RCC without evidence of somatic VHL mutations or promoter 

methylation (details of mutation and methylation analyses have been reported previously 

(McRonald et al., 2009) (c) 23 RCC cell lines which include 786O, 769P, A498, A704, 

ACHN, Caki1, Caki2, CAL54, KTCL26, KTCL140, RCC1, RCC4, RCC6, RCC11, 

RCC12, RCC48, SKRC18, SKRC39, SKRC45, SKRC47, SKRC54, UMRC2 and 

UMRC3. Ethical approval for collection of clinical material was obtained from the South 

Birmingham Ethics Committee and relevant local ethics committees. DNA concentrations 

were measured with Nanodrop model ND-1000 spectrophotometer (NanoDrop 

Technologies, Wilmington, DE).  

 

5.2.2  Affymetrix GeneChip 250K mapping arrays  

Experiments were performed according to standard protocols for Affymetrix GeneChip 

Mapping 250K sty1 arrays (Gene Chip Mapping 500K Assay Manual (P/N 701930 Rev2., 

Affymetrix Santa Clara, CA). Quality control, genotype calling, and probe level 

normalization were made in the Affymetrix GeneChip Genotyping Analysis Software 

(GTYPE) 4.1. The Dynamic Model (DM) algorithm was used to perform quality control, a 

call rate >93% was required. Genotype calls were made using the BRLMM algorithm 

(Rabbee and Speed, 2006). Subsequent analysis, including copy number normalization to 

produce log2 ratios was performed using the genotyping console (GTC) v2.0. The 
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reference set was 48 samples from the HapMap project 

(www.hapmap.org/downloads/raw_data/affy500k/). 

 

5.2.3 MLPA analysis 

MLPA was applied to confirm some of the deletions and duplications identified from SNP 

microarray. The MLPA Kit used was SALSA P007-A1 Human Chromosome Kit (MRC 

Holland, Amsterdam, The Netherlands) that contains probes for 40 different target 

sequences (refer appendix A5). Among these are many genes that are often deleted or 

amplified in various tumours. The analysis was performed according to the manufacturer’s 

instructions. The ligation products were amplified on a Tetrad thermal cycler (Peltier 225 

from MJR). PCR products were then separated by capillary electrophoresis on a Beckman 

Coulter CEQ 8000 genetic analyser. Electropherograms were analysed using GeneMarker 

MLPA Analysis (SoftGenetics, LLC, USA). Deletions were indicated by a value of <0.785 

and duplications by >1.33. 

 

5.3  Results of copy number changes of sporadic clear cell renal cell 

carcinoma (cRCC) using 250K S
P array 

  

Clear cell renal cell carcinoma (cRCC) is genetically complex involving a large number of 

chromosome aberrations throughout the whole genome. Of the 13 cases of sporadic cRCC 

without VHL inactivation analysed using Affymetrix 250K SNP array, only one showed no 

copy number changes. Another one sample was not included because of excess 

background signal. The reference set for 250K Sty1 mapping arrays was 48 samples from 

the HapMap project (www.hapmap.org/downloads/raw_data/affy500k/) and six normal 

controls were used for MLPA, The average call rate of the 12 samples was 95.7±2.18. 
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Most of the changes involved large segments (> 10.5 Mb) of chromosome arm or the 

whole chromosome arm or even the whole chromosome (table 5.1 and figure 5.5). Whole 

arm/large fragment (≥10 Mb) deletions were seen slightly less frequent compared to 

duplications/amplifications with a total number of 62 and 70 respectively, making an 

average of deletions 5.2 and duplications/amplifications 5.8 per tumour. Similar findings 

were also observed with small (<10 Mb) changes; 7 deletions and 13 gains. The most 

common chromosome deletion was at 3p (6 cases, 50.0%). Among the 3 cases with whole 

3p deletion, 1(LS16) also had whole 3q loss (table 5.1 and table 5.2). Complete loss of 

chromosome arm was also found in 1p, 1q, 6p, 6q, 8p, 14q (table 5.1). Loss of 1p and 14q 

were the second most common deletion (5 cases, 41.7%) involving only large 

fragments/whole chromosome arm (table 5.1 and figure 5.5). Of the 5 cases of 1p deletion, 

2 cases (LS7 and LS21) were found to have complete loss of the chromosome while in 

chromosome 14, 3 cases were identified to have a total loss of the long arm of the 

chromosome (table 5.1 and table 5.2). Deletions were the sole event seen in 6q as well as 

in 10q and 17p, although at a lower frequencies, ~8.3%-25%. However, deletions were not 

detected in chromosomes 5, 7, 12, 15q, 19q and 20. Small deletions were identified in 

chromosomes 3q, 6p, 9p, 11p, 12p, 16p, 22q in only a handful of cases and at a very low 

frequency.  
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Table 5.1: Chromosome gains and losses in primary tumours of sporadic cRCC  

Chrom. 

arm 

Losses Gains 

Whole 

arm 

Fragment 

≥10 Mb 

Frequency Fragment 

<10 Mb 

Whole 

arm 

Fragment 

≥10 Mb 

Frequency Fragment 

<10 Mb 

1p 2 3 5 0 0 1 1 0 

1q 2 1 3 0 0 1 1 0 

2p 1 0 1 0 1 1 2 0 

2q 1 2 3 0 1 1 2 0 

3p 3 3 6 0 1 0 1 0 

3q 1 1 2 1 1 3 4 0 

4p 1 0 1 0 2 0 2 0 

4q 1 1 2 0 2 0 2 0 

5p 0 0 0 0 2 1 3 0 

5q 0 0 0 0 2 4* 6 2 

6p 2 1* 3 1 0 1 1 0 

6q 2 1 3 0 0 0 0 0 

7p 0 0 0 0 2 0 2 0 

7q 0 0 0 0 2 0 2 0 

8p 3 0 3 0 0 1 1 1 

8q 1 2 3 0 0 5 5 0 

9p 1 1 2 1 1 0 1 0 

9q 1 2 3 0 1 1 2 2* 

10p 1 0 1 0 1 0 1 0 

10q 1 0 1 0 0 0 0 0 

11p 0 1 1 1 1 0 1 0 

11q 0 2 2 1 1 0 1 0 

12p 0 0 0 0 3 0 3 0 

12q 0 0 0 0 3 0 3 0 

13q 0 3 3 0 0 1 1 0 

14q 3 2 5 0 1 0 1 0 

15q 0 0 0 0 2 0 2 0 

16p 0 1 1 1 1 1 2 1 

16q 0 1 1 0 1 2 3 0 

17p 1 0 1 0 0 0 0 0 

17q 1 0 1 0 0 0 0 1 

18p 1 0 1 0 0 1 1 0 

18q 1 1 2 0 0 2 2 1 

19p 0 1 1 0 0 0 0 3* 

19q 0 0 0 0 0 1 1 0 

20p 0 0 0 0 2 1 3 0 

20q 0 0 0 0 2 2 4 2 

21q 1 0 1 0 1 1 2 0 

22q 0 0 0 0 1 0 1 0 

*contain region ≥4 copies 

Abbreviations: p, short arm; q, long arm; Mb, megabase; Chrom, chromosome 



 

Legend:  

 
               Gain <10 Mb    

                Loss <10 Mb 

                Loss of whole arm/fragment 

               Gain of whole arm/fragment 

 

Figure 5.5: Frequency of gains and losses in sporadic cRCC.
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Frequency of gains and losses in sporadic cRCC. 

Overall, large gains involved all autosomes except 6q, 10q, 17 and 19p

. In addition, chromosome gains involving large and small fragments were 

observed as the only event in chromosomes 5, 7, 12, 15q, 19q and 20. The most 

chromosome gain encountered in 5q consisting of 6 large fragments/whole arm and 2 

small fragments. Of the six cases, 2 had whole gain of 5p with 1 (LS7) showed gain of the 

whole chromosome. Region of amplification (≥4 copies) was detected in 5q31.3

. The two small gains were identified in 5q21.1-q21.3 (5.2 Mb) and 5q35.3 (2.9 

All the regions of gain in 8q (5 cases, 41.7%) involved large fragments ranging from 

Among the 4 cases which showed gain in 3q, 1 (LS7) had gain of the 
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except 6q, 10q, 17 and 19p (table 5.1 and 

. In addition, chromosome gains involving large and small fragments were 

observed as the only event in chromosomes 5, 7, 12, 15q, 19q and 20. The most 

of 6 large fragments/whole arm and 2 

with 1 (LS7) showed gain of the 

was detected in 5q31.3-q35.1 

q21.3 (5.2 Mb) and 5q35.3 (2.9 

All the regions of gain in 8q (5 cases, 41.7%) involved large fragments ranging from 

s which showed gain in 3q, 1 (LS7) had gain of the 

18q 19q 20q 22q
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whole chromosome 3 (table 5.1 and table 5.2). Of the 4 cases with gain 20q, two (LS8 and 

LS16) showed gain of the whole chromosome 20 (table 5.2). Gain of whole chromosome 

12 was detected in cases LS3, LS7 and LS8. Gain in chromosome 7 involved the whole 

chromosome which was found in two cases (LS7 and LS8). Other gains of whole 

chromosome arms included 5p, 16q, and 20p in ~25% of the csases.  

 

Table 5.2: Whole chromosome loss and gain in sporadic cRCC 

 

Amplification in small regions was found in 9q33.2-q34.11 (8.1 Mb) and 19p12 (1.7 Mb).  

All except one of the cases with deletion 3p involved large fragments involving deletion of 

VHL gene. Among the 6 cases, 3 showed complete 3p loss, 2 with almost complete loss 3p 

(spanning 3p12.1-p26.3) and 1 with interstitial deletion in 3p11.2-p13 (not including VHL 

gene in 3p25). In addition to large duplications in 5q, 2 small duplications were identified 

Cases 

 JS259 LS3 LS7 LS8 LS9 LS10 LS16 LS17 LS18 LS20 LS21 

CHR1   loss        loss 

CHR2   loss    gain     

CHR3   gain    loss     

CHR4   gain  loss  gain     

CHR5   gain         

CHR6   loss    loss     

CHR7   gain gain        

CHR8          loss  

CHR9   gain  loss       

CHR10   loss         

CHR11   gain         

CHR12  Gain gain gain        

CHR13            

CHR14   gain  loss  loss    loss 

CHR15   gain gain        

CHR16   gain         

CHR17   loss loss        

CHR18            

CHR19            

CHR20    gain   gain     

CHR21    gain       loss 

CHR22   gain         
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in 5q21.1-q21.3 and 5q35.3 with a size of ~5.2 Mb and ~2.9 Mb respectively. There was a 

region of amplification spanning 5q31.3-q35.1 (39.1 Mb).  Details of the overlapping 

regions in chromosomes 3 and 5 as well as other chromosomes together with MLPA 

analysis for confirmation in some of the regions are shown in table 5.3. Microarray and the 

MLPA copy number analysis results were concordant.  

 

Table 5.3: Overlap regions of gains and losses in ≥33% of sporadic cRCC cases 

Chrom. Region Start End Size 

(Mb) 

MLPA 

probes 

Gain      

3q 3q24-q29 146,340,000 196,600,000 49.7  

5q 5q31.3-q35.1 141,500,000 180,625,000 39.1* IL12B (5q33.1) 

5q 5q35.3 178,000,000 

 

180,857,866 2.9  

8q 8q11.21-q13.2 49,000,000 70,000,000 21.0  

8q 8q21.3-q24.3 90,800,000 146,264,000 55.5  

16p 16p11.2 28,450,000 31,325,000 2.9 MVP (16p11.2) 

20q 20q11.22-q11.23 32,170,000 35,980,000 3.8  

20q 20q13.2-q13.33 50,270,000 62,435,964 12.2  

Loss      

1p 1p13.3-p31.1 83,500,000 110,650,000 27.2  

1p 1p34.2-p36.33 0 43,200,000 43.2 CTPS (1p34.2) 

3p 3p12.1-p13 73,000,000 84,000,000 11.0  

3p 3p13-p26.3 0 73,000,000 73.0  

6p 6p21.2-p21.33 30,000,000 38,460,000 8.5 LTA (6p21.3), 

CDKN1A (6p21.2) 

14q 14q12-q31.2 25,380,000 82,685,000 57.3 NFKBIA (14q13) 

*≥4 copies (amplification) 

Abbreviations: p, short arm; q, long arm; Mb, megabase; Chrom, chromosome 

 

 

 

Some of the overlapping regions of deletion harboured known tumour suppressor genes, 

for example TP73 at 1p36.32 or oncogene such as myc at 8q24.21.  
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5.4   Discussion 

Previous reported cytogenetic and copy number analyses of sporadic RCC (Klatte et al., 

2009, Dalgliesh et al., 2010) will have comprised mainly clear cell RCC with VHL 

inactivation. For example, in an analysis of 282 tumours of unselected RCC,  Klatte et al 

(2009) had identified the most frequent cytogenetic changes were loss of 3p (60%), 14q 

(28%), 8p (20%), 6q (17%), loss of 9p (16%) and 4p (13%), gain of 5q (33%) and trisomy 

7 (26%).  Similarly, copy number analysis of sporadic RCC using high resolution SNP 

arrays abnormalities demonstrated recurrent losses on 3p, 4, 6q, 8p, 9p and 14q and 

recurrent gains on 1q, 2, 5q, 7 and 12 (Dalgleish et al 2010). In the present study, twelve 

cases of cRCC without evidence of VHL mutations or methylation were analysed for copy 

number changes using high resolution 250K SNP microarray. Large gains and losses were 

frequent and often involved the whole chromosome arm or the whole chromosome. 

Deletion 3p was found in 50% of the cases (5/6 tumours with 3p25 loss and 1/6 with 

3p11.2-p13 loss).  The fact that one of the VHL was deleted and the other was retained 

(without evidence of mutations or methylation) in these tumours is interesting and suggests 

several possible explanations. Firstly a VHL mutation might be present but not detectable 

by standard analysis (e.g. if located in an intron). Alternatively, other 3p TSGs may be 

implicated in these cases. Thus Bodmer et al (2002) suggested that region 3p12-p14 might 

contain gene(s) involved in tumour development and allele loss at 3p21/methylation of 

RASSF1A has also been implicated in RCC (Clifford et al., 1998, Morrissey et al., 2001). 

However, my findings suggest that there could be another group of cRCC which does not 

involved mutations, methylation or deletions of VHL as shown in the VHL wild type cRCC 

cases which do not have deletion 3p. Thus, suggesting alternative non-VHL independent 

pathway(s) as the mechanism in promoting tumourigenesis in this group of cRCC.  
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Large gain 5q was encountered in 6/12 (50%) of the cases with 5q35.3 as the smallest 

overlapping region. Among the genes that reside in the region is MAPK9 which are 

involved in a wide variety of cellular processes such as proliferation, differentiation, 

transcription regulation and development, thus might be a candidate gene for cRCC. 

Similar finding was observed by Chen et al (2009) using Ilumina’s 317K high resolution 

SNP arrays in a study of 80 patients with cRCC. Another common region in 5q was 

identified in 5q31.3-q35.1 (table 5.3). Gain in 5q31-qter had been associated with 

favourable prognosis in cRCC (Gunawan et al., 2001). Another interesting study had 

revealed TGFBI which resides in 5q31.1 may be a putative oncogene for cRCC (Matsuda 

et al., 2008). However, the region identified in the present study does not support the 

finding. 

  

The second most common gain was observed in chromosome 8q. All the five cases 

involved gain of large fragments (≥10 Mb). Minimal common gain was identified in two 

regions; 8q11.21-q13.2 and 8q21.3-q24.3 (table 5.3). One of the known proto-oncogene in 

8q24.21 is MYC and the gene was shown to be consistently overexpressed in tumours with 

8q24 amplification (Beroukhim et al., 2009).  

 

Deletion in chromosome 1p was also common in this study, 5/12 (41.7%) of the cases. 

Two cases showed deletion of the whole chromosome, one case with interstitial deletion 

spanning 1p12-p31.1 and the other two were terminal deletions. Two regions of common 

deletions in all of the five cases were shown to be in 1p13.3-p31.1 and 1p34.2-p36.33. 

Beroukhim et al (2009) carried out copy number and gene expression analysis on 90 cRCC 

tumours of both sporadic and VHL disease and identified gene RU�X3 (in 1p36.11) as a 

candidate gene for cRCC. This gene encodes a member of the runt domain-containing 
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family of transcription factors. It functions as a tumour suppressor and is frequently 

deleted or transcriptionally silenced in cancer.  

 

With the same frequency as in deletion 1p, deletion 14q was another common finding in 

this study.  Of the five cases, three had deletion in the whole 14q and two with almost all 

of chromosome 14q deleted. Beroukhim et al (2009) had identified region 14q31.1 to be 

deleted in 42% of the cases and Toma et al (2008) found deletion 14q in 36% of cRCC 

cases. A positive correlation between allelic loss and chromosome 14q especially 14q24-

q31 and 14q31-q32 and poor prognosis were described (Mitsumori et al., 2002; Kaku et 

al., 2004; Alimov et al., 2004).  

 

Gain of chromosome 20q was found in four cases (33.3%). Two cases had duplication of 

the whole chromosome, two cases with interstitial and terminal duplications. Minimal 

overlap region of the four cases was identified in 20q11.22-q11.23 (~3.8 Mb) and 20q13.2-

q13.33 (~12.2 Mb). In another study, gain in 20q13.33 was identified in 20% of cRCC 

cases (Beroukhim et al., 2009). However, gain of chromosome 20q was shown to be more 

frequently detected in papillary RCC (Sanders et al., 2002; Brunelli et al., 2003).  Deletion 

in other chromosomes were also found at a lower frequency (~25%) which includes 1q, 

2q, 6p, 6q, 8p, 8q and 9q and gain of 5p, 12p, 12q and 16q. 

 

High resolution methods such as microarrays have facilitated the investigation of copy 

number changes in this study. At present the most widely detected copy number changes 

are large with deletion 3p, 1p and 14q and gain 5q and 8q as the most frequent changes. 

This study also suggests that there is a subset of cRCC without biallelic inactivation of 

VHL, similar to the findings made by Beroukhim et al (2009). Based on the expression 
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profiles and copy number changes, they separate the cRCC without biallelic inactivation 

into two groups: one with expression profiles including HIF-responsive genes, different 

from the majority of cRCC and the other with similar copy number and expression profiles 

to tumours with such inactivation.  The observation in the latter group raises the possibility 

that the former group has unobserved genetic alterations of the VHL pathway and may 

respond to treatment targeting this pathway.  

 

Interestingly, present study also suggests another group of cRCC with non-VHL 

inactivation i.e. VHL
+
/
+
.
 
Further investigations including expression study or application of 

higher resolution arrays and massive parallel sequencing techniques will give information 

as to whether this group really represent another group of cRCC or has unidentified VHL 

inactivation.  
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5.5  Results of copy number changes of clear cell renal cell carcinoma 

(cRCC) in VHL using 250K S
P array 

 

 

The reference set for 250K Sty1 mapping arrays was 48 samples from the HapMap project 

(www.hapmap.org/downloads/raw_data/affy500k/). A total of 21 samples of cRCC from 

VHL patients were analysed. The average call rate of the samples was 97.19±1.47. In 

general, copy number changes in VHL cRCC were not complex. The majority of the cases 

had large deletion in 3p (15 cases, 71%) and duplication in 5q (13 cases, 62%) (table 5.4). 

Changes in the other chromosomes were also observed but not as frequent (<23%). 

Deletions of whole arm/fragment ≥10 Mb were encountered more than duplications, 62 

and 59 respectively. These tumours have on average 2.9 deletions and 2.8 duplications. 

Data in table 5.4 is summarized in figure 5.6.  

 

Table 5.4: Chromosome gains and losses identified in cRCC of the VHL tumours 

Chrom. 

arm 

Losses Gains 

Whole 

arm 

Fragment 

≥10 Mb 

Frequency Fragment 

<10 Mb 

Whole 

arm 

Fragment 

≥10 Mb 

Frequency Fragment 

<10 Mb 

1p 0 3 3 0 0 0 0 0 

1q 0 0 0 0 0 3 3 1 

2p 0 0 0 0 3 0 3 0 

2q 0 0 0 0 3 1 4 0 

3p 7 10 17 0 0 1 1 0 

3q 0 4 4 0 0 2 2 2 

4p 2 1 3 0 0 1 1 0 

4q 2 1 3 0 0 0 0 0 

5p 1 0 1 0 2 0 2 0 

5q 0 1 1 0 0 13 13 0 

6p 0 1 1 0 1 0 1 0 

6q 0 0 0 0 1 0 1 0 

7p 0 0 0 0 5 0 5 0 

7q 0 1 1 0 3 1 4 0 

8p 1 3 4 0 0 0 0 1* 

8q 0 1 1 0 0 3 3 0 

9p 1 0 1 0 1 0 1 0 

9q 1 0 1 2 1 0 1 0 
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10p 0 0 0 0 0 1 1 0 

10q 0 3 3 0 0 0 0 0 

11p 0 0 0 0 2 0 2 0 

11q 0 0 0 0 2 0 2 0 

12p 0 0 0 0 0 0 0 0 

12q 0 1 1 0 0 0 0 0 

13q 1 1 2 0 0 3 3 0 

14q 3 0 3 0 1 0 1 0 

15q 1 0 1 3 0 0 0 0 

16p 0 1 1 0 0 0 0 1 

16q 0 2 2 0 0 1 1 0 

17p 0 0 0 1 0 0 0 2 

17q 0 0 0 0 0 1 1 0 

18p 1 0 1 0 0 0 0 0 

18q 1 0 1 0 0 0 0 0 

19p 1 0 1 1 0 1 1 0 

19q 1 1 2 0 0 0 0 0 

20p 0 0 0 0 1 0 1 0 

20q 0 0 0 0 1 0 1 0 

21q 0 1 1 0 1 0 1 0 

22q 1 1 2 1 0 0 0 0 

* Contain ≥ 4 copies 
Abbreviations: p, short arm; q, long arm; Mb, megabase; Chrom, chromosome 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Legend: 
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  Loss <10 Mb 
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  Gain of whole arm/fragment 

 

Figure 5.6: Frequency of gains and losses of cRCC in VHL
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large deletions on the chromosome arm (making it a total of 17, see table 5.4) and 7 

showed complete loss of 3p. Two recurrent duplications on 5q were identified in 5q32

q35.3 (~37.7 Mb) and 5q21.1

and involved the whole chromosome arm. Deletion 3q, 8p and gain 2q, 7q were not as 

common as shown in only about 19% of the tumours.  Details of overlapping regions were 

shown in table 5.5. MLPA analysis was don

Microarray and the MLPA copy number analysis results were concordant
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Deletions in 3p involved whole arm/large fragment and among the 15 cases, 2 had two 

large deletions on the chromosome arm (making it a total of 17, see table 5.4) and 7 

showed complete loss of 3p. Two recurrent duplications on 5q were identified in 5q32

q35.3 (~37.7 Mb) and 5q21.1-q35.3 (~78.6 Mb). Gain of 7p was observed in 5/21 (23.8%) 

and involved the whole chromosome arm. Deletion 3q, 8p and gain 2q, 7q were not as 

common as shown in only about 19% of the tumours.  Details of overlapping regions were 

MLPA analysis was done to verify the changes in some of the regions. 

nd the MLPA copy number analysis results were concordant
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e fragment and among the 15 cases, 2 had two 

large deletions on the chromosome arm (making it a total of 17, see table 5.4) and 7 

showed complete loss of 3p. Two recurrent duplications on 5q were identified in 5q32-

Mb). Gain of 7p was observed in 5/21 (23.8%) 

and involved the whole chromosome arm. Deletion 3q, 8p and gain 2q, 7q were not as 

common as shown in only about 19% of the tumours.  Details of overlapping regions were 

e to verify the changes in some of the regions. 

nd the MLPA copy number analysis results were concordant. 

17q 18q 19q 20q 22q
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Table 5.5: Overlapping regions of gains and losses in ≥19% of cRCC in the VHL tumours studied 

Chrom. Region Start End Size (Mb) MLPA 

probes 

Gain      

2q 2q23.3-q37.3 153,000,000 242,951,149 89.9  

5q 5q32-q35.3 143,200,000 180,857,866 37.7 IL12B 

(5q33.1) 

7p 7p11.2-p22.3 

 

0 57,500,000 

 

57.5  

7q 7q11.21-q22.1 64,000,000 99,370,000 35.3  

7q 7q32.1-q36.3 127,600,000 158,821,424 31.2 CASP2 

(7q35) 

Loss      

3p 3p14.2-p21.1 52,000,000 61,820,000 9.8  

3p 3p21.31-p26.3 0 44,750,000 44.7  

3q 

3q 

3q13.11-q13.31 

3q11.2-q13.11 

 

104,880,000 

95,350,000 

 

116,409,600 

104,880,000 

 

11.5 

9.5 

 

8p 8p12-p23.3 0 34,880,000 34.9  

Abbreviations: p, short arm; q, long arm; Mb, megabase; Chrom, chromosome 

 

 

5.6    Discussion 

This is the second array-based genome wide analysis of copy number abnormalities in 

VHL disease associated cRCC. Beroukhim et al (2009) had analysed 36 metachronous 

primary tumours from 12 patients with VHL disease (in addition to 54 sporadic cRCC) 

using the same platform. The most frequent copy number change (86% of VHL RCC) was 

3p loss including the VHL tumour suppressor gene. 5q gain was the second most common 

with the smallest overlapping region identified in 5q32-q35.3. Similarly, the present study 

also observed deletion 3p as the most frequent (76.2%) and gain 5q (61.9%) as the second 

most common. Also common is gain 7p which was observed in 5 cases (23.8%) and all of 

them involved the whole short arm of the chromosome. Gain in chromosomes 1q, 2p, 2q, 

7q, 8q, 13q and deletion in 1p, 3q, 4p, 4q, 8p, 10q and 14q were encountered at a lower 

frequency ~14%-19% of the cases. Genome wide analysis of the previous studies were of 
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unselected cRCC (i.e. unspecified whether the tumours were from VHLs or sporadics). 

Comparing the findings of the present study with the previous reports (Cifola et al., 2007; 

Toma et al., 2008; Matsuda et al., 2008; Beroukhim et al., 2009) all of the changes 

observed were similar except gain 2p and 13q and loss 3q and 4p were identified only in 

the present study (table 5.6).  

 

Table 5.6: Previous studies of copy number changes in cRCC  

Author (year) Sample Method Chrom. Gain Chrom. Loss LOH 

Cifola et al (2007) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

27 cRCC tumour 

tissue 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Affymetrix 100K 

SNP array 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4p15.1-q13.1 1p36.32-p36.31 1p36.22-36.21 

4q26-q28.3 1p36.11 2q36.3 

5p15.1-p14.1 3p26.3-p26.2 3p26.3 

5q11.2-q12.3 3p25.3-p25.1 3p26.2-p25.3 

5q14.3-q21.3 9q33.3-q34.11 3p24.3 

5q23.1-q34 22q13.1-q13.2 3p14.3 

7p21.3-p21.2   3q22.1 

7q21.11   6q16.1 

7q31.31-q31.32   6q22.1-q22.31 

11p15.1-q12.1   6q22.31 

11q14.2-q22.3   6q22.33-q23.2 

12q12-q15   6q25.2-q25.3 

12q21.31-q23.1   6q26 

14q21.1-q21.3   9q31.1-q31.2 

16p11.2-q11.1   13q33.2 

19p12-p11     

22p13-p11.2     

Toma et al (2008) 

 

 

 

22 primary cRCC 

and matched 

normal  kidney 

tissue 

 

 

 

Affymetrix 10K 

SNP array 

 

 

 

5q23.3-5qter 3pter-3p21.31 3p 

7q11.21-7qter 

14q23.3-

14q.32.31 
9 

  9pter-9qter 14 

  6q23.2-6q26  

Matsuda et al 

(2008) 

 

 

 

 

 

 

 

35 cRCC tissue and 

7 normal controls 

 

 

 

 

 

 

 

Affymetrix 100K 

SNP array 

 

 

 

 

 

 

 

3 1p   

5q22-qter 3p   

5q23.2-q34 10q   

7q31-q34 19p   

7p 6q   

8q 9p   

12q 11p   

16 13q   
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17 14q   

 
18   

  22q   

Beroukhim et al 

(2009) 

 

 

 

 

 

 

90 cRCC tumours 

(sporadics and 

VHLs) 

 

 

 

 

 

 

Affymetrix 250K 

SNP array 

 

 

 

 

1q 1p   

2q 3p   

5q 4q   

7q 6q   

8q 8p   

12p 9p   

20q 14q   

 

The VHL tumours without 3p deletion showed no LOH in the region (data not shown). In 

these cases, it is possible that the wild type VHL allele is inactivated by somatic mutation 

or exon deletion or promoter methylation that would not be detected by LOH analysis. 

Other 3p tumour suppressor genes (e.g. RASSF1A) might also be inactivated in a similar 

manner (though RASSF1A is usually inactivated by methylation rather than mutation 

(Morrissey et al., 2001).  

 

5.7     Results of copy number changes of RCC cell lines using 250K S
P Array  

The average call rate (%) for the 23 samples was 96.2±2.15. All of the 23 RCC cell lines 

exhibited copy number changes with majority involving large/whole arm deletions and/or 

duplications (table 5.7, figure 5.7). Deletions of whole arm/large fragments were observed 

less than duplications/amplifications of whole arm/large fragments, 301 and 331 

respectively, making an average of 13.1 deletions and 14.4 duplications/amplifications per 

cell line. Deletion 14q was seen in all of the lines and most (21/23, 91.3%) involved almost 

the whole long arm. All of the cell lines except one (SKRC47) showed deletions in 3p. Of 

these, 19 (86.3%) showed VHL deletion and the remaining 3 cell lines had deletion in 

3p12.3-p21.31, 3p13-p22.2 and 3p14.2 respectively. Evidence of homozygous deletion in 

3p14.2 which harboured FHIT gene was found in RCC48.  
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Frequent loss of large fragment/whole arm was also detected in other chromosomes which 

includes 4q (18/23, 78.3%), 18q (18/23, 78.3%), 13q (16/23, 69.6%), 1p (16/23, 69.6%), 

4p (12/23, 52.2%), 8p (12/23, 52.2%), 9p (12/23, 52.2%), 9q (11/23, 47.8%), 15q (11/23, 

47.8%). Among the 12 cell lines with deletion 4p, 11 showed complete loss of 

chromosome 4.  The 9 cell lines which showed a complete loss of 18p also had a complete 

loss of 18q. Similar finding was observed in chromosome 9 where 5 of the cell lines 

showed a complete loss of the chromosome. In addition, homozygous deletion at 9p21.3 

was identified in 8 cell lines (ACHN, Caki1, CAL54, RCC1, RCC11, RCC4, RCC6 and 

SKRC54) and at 9p23-p24.1 in 3 cell lines (Caki1, RCC1 and RCC6). The former region 

with the size of an ~0.4 Mb contains 3 genes (MTAP, CDK�2A, CDK�2B) and the latter 

~1.0 Mb contains only 1 gene (PTPRD).  

 

The most common chromosomal gain were seen in chromosomes 7p (21/23, 91.3%), 7q 

(20/23, 86.9%),  12q (18/23, 78.3%), 8q (17/23, 73.9%), 5q (17/23, 73.9%), 2q (15/23, 

65.2%), 20q (15/23, 65.2%), 16p (14/23, 60.9%), 5p (13/23, 56.5%), 17q (13/23, 56.5%), 

16q (13/23, 56.5%), 1q (13/23, 56.5%), 3q (12/23, 52.2%), 20p (12/23, 52.2%), 2p (11/23, 

47.8%). Some of them also involved whole gain of the chromosome, for example in 

chromosomes 7 (14/23), 12 (8/23), 16 (9/23), 20 (11/23) (table 5.7).  
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Table 5.7: Chromosome gains and losses identified in the RCC cell lines 

Chr. 

arm 

Losses Gains 

Whole 

arm 

Fragment 

≥10 Mb 

Frequency Fragment 

<10 Mb 

Whole 

arm 

Fragment 

≥10 Mb 

Frequency Fragment 

<10 Mb 

1p 2 14 16 0 0 9 9 0 

1q 2 5 7 0 0 13* 13 0 

2p 0 6 6 0 5 6 11 0 

2q 0 3 3 3 5 10 15 0 

3p 4 18 22 1** 0 5 5 1 

3q 4 4 8 1 0 10* 10 1 

4p 11 1 12 0 0 4 4 0 

4q 11 7 18 0 0 3 3 1 

5p 2 2 4 0 5 8* 13 1* 

5q 2 5 7 1 5 12 17 1 

6p 5 0 5 0 3 3 6 2 

6q 5 4 9 0 3 6 9 0 

7p 0 1 1 0 14* 7 21 1* 

7q 0 1 1 0 14 6* 20 2* 

8p 0 12 12 0 2 1 3 0 

8q 0 3 3 1 2 15 17 1 

9p 5 7 12 11** 1 1* 2 0 

9q 5 6 11 0 1 5 6 0 

10p 3 6 9 0 2 1 3 2* 

10q 3 0 3 1 2 6 8 0 

11p 3 4 7 0 1 4 5 0 

11q 3 7 10 0 1 2 3 0 

12p 0 1 1 0 8 2 10 2 

12q 0 1 1 1 8 10* 18 0 

13q 0 16 16 1 0 3 3 1 

14q 0 23 23 0 0 0 0 0 

15q 0 11 11 0 0 3 3 2 

16p 1 2 3 0 9 5 14 0 

16q 1 2 3 2** 9 4 13 0 

17p 0 7 7 0 5 4 9 2* 

17q 0 1 1 2 5 8* 13 6 

18p 9 1 10 0 0 2 2 1 

18q 9 9 18 0 0 0 0 0 

19p 0 2 2 4 1 2 3 2 

19q 0 2 2 0 1 4 5 4 

20p 1 3 4 3 11 1 12 1 

20q 1 0 1 0 11 4 15 1 

21q 0 7 7 0 0 3 3 0 

22q 0 4 4 0 0 3 3 0 

*contain ≥4 copies (amplification)          ** contain homozygous deletion 

Abbreviations: p, short arm; q, long arm; Mb, megabase; Chr, chromosome 



 

Legend:  
 
  Gain <10 Mb 

  Loss <10 Mb 

  Loss of whole arm/fragment 

  Gain of whole arm/fragment 

 

 

Figure 5.7: Frequency of gains and losses in RCC cell lines

 

Minimal overlapping region of the most common (>43%) copy number changes which 

include gain 2q, 5q, 7, 8q, 12q, 20q 

table 5.8.  
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Frequency of gains and losses in RCC cell lines 

Minimal overlapping region of the most common (>43%) copy number changes which 

gain 2q, 5q, 7, 8q, 12q, 20q and loss 1p, 3p, 4q, 9p, 13q, 14q and 18q is shown in 
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Minimal overlapping region of the most common (>43%) copy number changes which 

and loss 1p, 3p, 4q, 9p, 13q, 14q and 18q is shown in 

17q 18q 19q 20q 22q
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Table 5.8: Minimal overlapping region of gains and losses in the RCC cell lines  

Chr. Location Start position End position Size 

(Mb) 

Frequency       

(%) 

Gain      

2 2q35-q36.3 216,000,000 228,800,000 12.8 11 (47.8) 

  2q24.3-q33.3 164,000,000 206,271,500 42.3 12 (52.2) 

  2q11.2-q14.3 95,000,000 122,660,000 27.7 12 (52.2) 

3 3q22.1-q29 133,228,000 

 

199,501,827 

 

66.2 10 (43.5) 

5 5q34-q35.3 164,700,000 180,857,866 16.2 17 (73.9) 

7 7p11.2-p12.1
a 

53,000,000 57,500,000 4.5 18 (78.3) 

  7p21.2-p22.3
b
 0 15,000,000 15.0 18 (78.3) 

  7q34-q36.3 138,434,000 158,821,424 20.4 18 (78.3) 

  7q11.21-11.22 
c
 61,500,000 68,635,000 7.1 18 (78.3) 

8 8q24.12-q24.3 120,000,000 146,274,826 26.2 16 (69.6) 

12 12q24.22-q24.33 116,500,000 132,349,534 15.8 12 (52.2) 

 12q12-q13.2 37,200,000 54,900,000 17.7 14 (60.9) 

16 16p11.2-p13.3 0 31,500,000 

 

31.5 14(60.9) 

20 20q11.21-q11.23 29,340,000 34,349,000 5.0 16 (69.6) 

      

Loss      

1 1p35.3-p36.33 0 28,800,000 28.8 13 (56.5) 

3 3p14.2 
d
 59,500,000 60,100,000 0.6 20 (87.0) 

 3p21.2-p26.3 0 51,680,000 51.6 19 (82.6) 

 3p11.2-p13 73,000,000 89,400,000 16.4 20 (87.0) 

4 4q12-q13.1 56,330,000 65,000,000 8.6 15 (65.2) 

  4q31.22-q35.2 146,000,000 191,273,063 45.2 16 (69.6) 

8 8p21.3-p23.3 

 

0 23,300,000 

 

23.3 12 (52.2) 

9 9p21.3 
e
 21,800,000 

 

22,200,000 

 

0.4 17 (73.9) 

 9p23-p24.1
f
 9,000,000 10,000,000 

 

1.0 14 (60.9) 

13 q12.1-q13.1 18,000,000 32,000,000 14.0 15 (65.2) 

14 q11.2-q13.1 20,000,000 32,000,000 12.0 23 (100) 

  q23.1-q32.33 56,000,000 106,368,585 50.4 22 (95.7) 

18 q22.3-q23 67,400,000 76,117,153 8.7 17 (73.9) 

Abbreviations: p, short arm; q, long arm; Mb, megabase; Chr, chromosome 
a
 contain  ≥4 copies (amplification) in 2/18 cases 

b
 contain  ≥4 copies (amplification) in 1/18 cases 

c 
contain  ≥4 copies (amplification) in 3/18 cases 

d
 homozygous deletion in 1/20 cases 

e 
homozygous deletion in 7/17 cases 

f 
homozygous deletion in 2/14 cases 
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The most copy number changes were found in Caki2 (24 gains and 22 losses) and the least 

in KTCL140 (4 gains and 5 losses) (figure 5.8, table 5.9). Other cell lines which showed a 

high number of gains and losses (total gains and losses of 33- 40) include UMRC2, 

UMRC3, SKRC39, SKRC45, RCC 48 and Caki1. Total changes between 21 and 28 were 

seen in SKRC47, SKRC 54, SKRC18, RCC6, RCC1, RCC11, RCC12, CAL54 and A498. 

Cell lines 769P, A704, RCC4, 786O, ACHN and KTCL 26 had 15 to 20 chromosomal 

changes (figure 5.8, table 5.9).  
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Table 5.9: Details of chromosome regions of gains and losses of the RCC cell lines 

 

Cell line Gains Total 

gain 

Losses Total 

loss 

769P 

 

1q23.1-q44, 2, 5q31.2-q35.3, 7, 

8q11.22-q24.3, 12, 17 

8 1p35.3-p36.33, 3, 6, 9p21.3-

p22.3, 9q12-q21.11, 

11q14.1-q25, 14q11.2-

q32.33 

7 

786O 

 

2p11.2-p24.3, 2q11-q37.3, 5p12-

p15.33, 5p12, 7, 8q11.21-q24.3, 

9q21.13-q34.3, 20q11.21-q13.33,  

 

9 3p11.2-p13, 3p21.2-p26.3, 

4q31.22-q35.2, 5q11.2-

q21.1, 8p11.21-p23.3, 

13q12.11-q34, 

14q11.2-q32.33, 18q12.2-

q23, 19q13.11-q13.42 

 

9 

A498 1q21.2-q44, 2p11.2-p25.3, 

2q11.2-q34, 5p12-p15.33, 7, 

8q11.21-q24.3, 9, 11p11.2-p15.5, 

16, 17, 19p12, 19q12, 19q13.11-

q13.12, 19q13.33-q13.43, 20p12.2-

p11.21, 20q11.21-q13.33, 21q11.2-

22.3  

 

18 1p35.1-p36.33, 2q22.1, 

3p21.2-p26.3, 6, 11q11.2-

q25, 14q11.2-q32.33, 

18q11.32-q23, 20p12.2-p13 

8 

A704 

 

3p12.1, 5q15-q35.3, 7, 12, 16p11.2-

p13.3 

 

6 1p35.1-p36.13, 3p12.3-

p26.3, 4, 6q21-q27, 9, 

14q11.2-q32.33, 16q12.1-

q24.3, 20p21 

 

8 

ACH
 

 

1q21.1-q44, 2, 7, 10q11.21-q26.3,  

12, 16, 17 

 

 

7 1p35.1-p36.33, 3, 4, 5, 6, 

8p11.21-p23.3, 8q11.21-

q21.11, 9p21.3, 13q12.11-

q32.3, 15q11.2-q26.3, 

14q11.2-q32.33, 18q12.2-

q23, 20 

 

13 

Caki1 

 

1q21.1-q44, 3q12.1-q29, 4p12-

p16.3, 4q12-q13.3, 5p14.3-p15.33, 

5p12-p13.1, 5q15-q35.3, 7q22.3-

q36.3, 8q11.21-q24.3, 12q12-

q24.33,16q12.1-q24.3, 17q11.2-

q22, 17q22-q25.3, 18p11.21-

p11.32, 19p13.3, 20q11.21-q11.23 

16 1p21.3-p31.1, 3p12.3-p26.3, 

6q22.32-q27, 9p23-p24.1, 

9p21.3, 9q12-q21.11, 

11q14.1-q25, 12p11.21-

p13.33, 13q12.1-q13.1, 

15q11.2-q22.2, 14q11.2-

q32.33, 17p11.2-p13.3, 

18q11.2-q23, 19p13.3, 

20p11.21-p13, 21q11.2-

q22.3, 22q11.21-q13.33 

 

17 

Caki2 

 

1q21.1-q44, 2p11.2-p25.3, 2q11.2-

q14.3, 2q24.3-q33.3, 2q37.1-q37.3, 

3q22.1-q29, 4q12, 5q33.2-q35.3, 

6p11.2-p12.1, 6q12-q13, 6q16.1-

q21, 6q22.31-q24.1, 7, 12p11.21-

p11.22, 12q12-q14.2, 12q14.2-

q21.32, 12q24.22-q24.33, 15q26.1-

24 

 

1p12-p31.3, 2q37.1-q37.3, 

3p11.2-p26.3, 3q11.2-q21.3, 

4q12-q13.1, 6q25.1-q27, 

8p11.21-p23.3, 8q11.21-

q12.1, 9p11.2-p24.3, 9q12-

q21.33, 11p11.12-p14.1, 

11q12.1-q25, 12q21.32-

22 
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q26.3, 16p11.2-p13.3, 17q11.2-

q25.33, 19p12-p13.2, 19q12-

q13.43, 20, 22q11.21-q13.33 

q24.22, 13q12.11-q34, 

14q11.2-q13.1, 14q23.1-

q32.33, 16q11.2-q21, 16q21, 

17p11.2-p13.3, 18q11.2-q23, 

19p13.3, 19p13.2-p13.3 

 

CAL54 

 

 

2, 3p11.2-p12.3, 3q11.2-q29, 

7p15.2-p22.3, 7p11.2-p14.3, 

7q11.21-q34, 7q34-q36.3, 8, 

9q22.31-q34.3, 12, 16, 17, 20  

14 1, 3p12.3-p26.3, 4, 5, 6, 

9p11.2-p24.3, 9q12-q22.31, 

10, 11, 13q12.11-q34, 

15q11.2-q26.3, 14q11.2-

q32.33, 18, 21q11.2-q22.3 

 

14 

KTCL140 

 

 

5q21.3-q35.3, 15q11.2, 17q24.3-

q25.3 

 

4 1p35.2-p36.33, 3p14.1-

p26.3, 4, 5q11.2-q21.3, 

14q11.2-q32.33 

 

5 

KTCL26 

 

 

1p21.3-p31.3, 1q25.2-q44, 5, 6, 7, 

8q11.23-q24.23, 9q21.13-q34.3, 

11p11.2-p15.5, 16q12.1-q24.3, 20,  

10 2p11.2-p25.3, 3, 4, 9p11.2-

p24.3, 10p11.22-p15.3, 

11q22.3-q25, 13q12.11-

q14.3, 14q21.3-q32.33 

 

8 

RCC1 

 

1p11.2-p31.1, 3q22.1, 3q22.1-q29, 

5, 6p21.1, 6q14.1-q27, 7, 8q11.23-

q24.23, 10, 19p12-p13.3, 19q13.12-

q13.43, 20q11.21-q13.33, 

22q11.21-q13.33 

 

13 1q21.1-31.1, 3p11.2-p26.3, 

3q11.2-q21.3, 4, 8p11.21-

p23.3, 9, 15q25.3-q26.3, 

14q11.2-q32.33, 16, 18, 

21q11.2-q22.3 

 

11 

RCC11 

 

 

1p12-p33, 1q21.1-q44, 2, 5q21.3-

q35.3, 6, 7, 8q11.23-q24.23, 

12p11.21-p13.33, 15q11.2-q26.3, 

16, 17, 20, 21q11.2-q22.3, 

22q11.21-q13.33 

 

14 1p35.1-p36.33, 3, 4, 5p12-

p15.33, 5q11.2-q21.1, 

8p11.21-p23.3, 9, 10, 11, 

13q12.11-q34, 14q11.2-

q32.33, 18 

 

12 

RCC12 

 

 

2, 4p14-p16.3, 5q21.1-q35.3, 

6p12.1-p25.3, 6q12-q22.33, 7, 

8q11.21-q24.3, 9q21.13-q31.2, 11, 

12, 13q14.12-q21.33, 16p11.2-

p13.3,16q21-q23.1 

 

14 3p12.2-p26.3, 4q12-q35.2, 

8p11.21-p23.3, 9p13.1-

p24.3, 14q11.2-q32.33, 

15q11.2-q26.3, 14q11.2-

q32.33, 17p11.2-p13.2 

 

8 

RCC4 

 

1p32.2-p35.1, 5q23.3-q35.3, 6, 16, 

20 

 

 

6 1p35.1-p36.33, 3p12.3-p29, 

4,9p13.1-p22.3, 9q12-q34.3, 

13q12.11-q21.1, 15q11.2-

q26.3, 14q11.2-q32.33, 

21q11.2-q22.3 

 

9 

RCC48 

 

 

1p11.2-p35.3, 1q32.2-q44, 

2q11-q37.3, 3q11.2-q29, 5p12-

p15.33, 5q34-q35.3, 6p12.1-p25.3, 

6q12-q25.2, 7, 8q11.21-q24.3, 

11p11.22-p15.5, 12p11.21-p13.33, 

12q12-q13.2, 12q21.1-q21.32, 

15q11.2-q26.3, 17q21.31-q25.1, 

17q25.3, 20 

19 1p35.3-p36.33, 1q21.1-

q32.1, 2p11.2-p25.3, 2q22.3, 

3p12.3-p26.3, 4, 9, 10, 

12q14.2-q21.1, 13q12.11-

q34, 14q11.2-q32.33, 

16q24.1-q24.3, 17p11.2-

p13.1, 18, 19p12-p13.3, 

19q12-q13.32 

16 
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RCC6 

 

2p11.2-p25.3, 2q11.2-q24.1, 

2q35-q36.3, 3q21.1-q29, 5, 

6p12.1-p25.3, 7, 8q11.21-q24.3, 

12p13.33-q24.33, 16, 20 

10 1, 2q24.2-q34, 2q36.3-q37.3, 

3p12.3-p26.3, 3q11.2-q21.1, 

4, 8p12-p23.3, 9, 13q12.11-

q34, 14q11.2-q32.33, 

17p11.2-p13.3, 18, 

22q11.22-q12.3 

 

13 

SKRC18 

 

 

3q11.2-q29, 5, 7, 8q11.21-q24.3, 

10q11.21-q26.3, 12p11.21, 12q12-

q24.33, 16p11.2-p13.3, 17p11.2-

p13.3, 19q13.42-q13.43, 20 

11 1p32.3-p36.33, 1q23.3-

q25.2, 3p12.3-p21.31, 

11q13.2-q25, 13q12.11-q34, 

15q11.2-q22.31, 14q11.2-

q23.1, 17q25.3, 18q11.2-q23, 

22q11.22-q13.33 

 

10 

SKRC39 

 

 

1p31.3-p13.1, 1q25.2-q44, 

2q11-q37.3, 3p22.3-p26.3, 3p11.2-

p12.3, 5p12-p15.33, 5q15-q35.3, 

7p11.2-p22.3, 7q11.21-q34, 

8q11.23-q21.11, 8q24.12-q24.3, 

10p11.21-p11.22, 12q12-q23.3, 16, 

17p11.2, 17p13.2-p13.3, 17p13.1, 

17q21.32, 17q21.32-q21.33, 

17q24.2, 17q25.2-q25.3, 20,  

 

23 3p13-p22.2, 4q12-q35.2, 

6q26-q27, 7q35-q36.3, 8p12-

p23.3, 8q11.21-q11.23, 

9p13.1-p24.3, 10p11.22-

p15.3, 11p11.12-p15.5, 

13q12.11-q21.31, 13q33.3-

q34, 15q11.2-q21.1, 14q12-

q32.33, 18, 21q11.2-q21.1, 

21q22.2-q22.3, 

 

16 

SKRC45 

 

 

3p21.31-p26.3, 3p11.2-p14.1, 

3q21.1-q29, 3q11.2-q11.2, 4q26-

q31.23, 5q21.2-q21.3, 5q21.1-

q35.3, 7p11.2-p22.3, 7q11.21-

q11.22, 8q21.3-q24.3, 9p23-p24.3, 

10q11.21-q26.3, 11q12.1-q25, 12, 

13q31.2-q31.3, 16p11.2-p13.3, 

16q12.1-q23.2, 17q21.31-q25.3, 

18p11.21-p11.32, 21q11.2-q22.3 

 

20 3p14.2, 3q13.32-q21.1, 

3q26.1, 4p12-p16.3, 4q12-

q26, 5q11.2-q21.2, 5q21.3-

q22.1, 8p12-p23.3, 9p13.1-

p23, 10p11.21-p15.3, 11p13-

p15.1, 15q11.2-q26.3, 

14q11.2-q32.33, 18q12.1-

q22.1, 20p11.22-p13, 

22q11.22-q13.33 

 

16 

SKRC47 

 

 

5,7q34-q36.3, 10q11.21-q26.3, 

11p15.1-p15.5, 12q12-q23.1, 

13q12.11-q34, 17p11.2-p13.3, 

19q12-q13.2, 19q13.43, 20,  

11 1q24.2-q41, 2p24.1-p25.3, 4, 

8p11.21-p23.3, 9p21.3-

p24.3, 10p11.21-p15.3, 

15q11.2-q26.3, 14q11.2-

q32.33, 16p11.2-p13.3, 

17q11.2-q25.33, 18q21.33-

q23, 19p12-p13.3 

12 

SKRC54 

 

 

1q31.3-q44, 3q11.2-q29, 5p12-

p15.33, 7p11.2-p22.3, 7q11.21-

q11.22, 7q11.22-q36.3, 8q13.2-

q21.3, 10p12.31-p14, 10p11.1-

p11.22, 10q11.21-q26.3, 12, 16, 

17p11.2-p13.3, 19, 20 

 

16 3p12.3-p26.3, 8p11.21-

p23.3, 8q11.21-q13.1, 

9p21.3, 9q13-q31.1, 10p14-

p15.3, 13q12.11-q34, 

14q11.2-q32.33, 18 

9 

UMRC2 

 

1p31.3-p34.2, 1p11.2-p13.2, 

1q21.1-q44, 2q22.1-q37.3, 3q11.2-

q29, 4p12-p16.3, 4q12-q21.3, 

19 1p34.3-p36.33, 1p13.3-

p31.3, 2p11.2-p25.3, 2q11.2-

q22.1, 3p12.3-p26.3, 4q22.1-

21 
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5q14.3-q35.3, 7, 8, 9q32-q34.3, 10, 

11q13.1-q25, 12, 15q11.2-q25.3, 

16, 17q11.2, 17q12-q25.3, 

18p11.21 

q35.2, 5p12-p14.3, 5q11.2-

q14.1, 6, 11p11.12-p15.5, 

11q12.1-q13.1, 13q12.11-

q34, 15q25.3-q26.3, 

14q11.2-q32.33, 17p11.2-

p13.3, 17q11.2-q12, 

18p11.21-p11.32, 18q11.2-

q23, 19p13.12-p13.3, 

21q11.2-q22.3, 22q11.22-

q13.33 

 

UMRC3 

 

1p22.3-p34.3, 1q31.2-q42.2, 

1q42.3-q44, 2p16.3-p24.1, 2p13.2-

p14, 2q11.2-q37.3, 3q11.2-q29, 

4p12-p16.3, 4q12-q24, 5p12-

p15.33, 8p11.21-p12, 8q24.21-

q24.3, 10q11.23-q24.2, 12q21.31-

q24.33, 13q31.1-q33.3, 17q12-

q25.3, 20p11.21-p11.23, 20q11.21-

q13.33 

 

19 1p12-p22.3, 1q12-q31.1, 

2p24.1-p25.3, 2p12-p13.2, 

3p12.3-p26.3, 4q25-q35.2, 

7p11.2-p22.3, 8p21.3-p23.3, 

9p13.1-p24.3, 10p11.21-

p15.3, 10q11.23-q11.21, 11, 

13q12.11-q22.2, 13q33.3-

q34, 14q11.2-q32.33, 

16q11.2-q24.3, 17p11.2-

p13.3, 18q22.3-q23, 

20p12.3-p13, 20p12.1 

20 

Abbreviations: p, short arm; q, long arm 
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5.8   Discussion 

Copy number changes in the 23 RCC cell lines detected in the present study appears 

complex, involving the whole genome (table 5.7, figure 5.7). The changes were also most 

frequently involved large fragments (>10 Mb) with gains detected more frequently than 

losses (average of 14.4 duplications/amplifications and 13.1 deletions per cell line). Earlier 

report by Pavlovich et al (2003) had identified deletion 3p, gain 5q and trisomy 7 as the 

most common findings in 10 RCC cell lines and 5 renal tumours using spectral 

karyotyping (SKY) and comparative genomic hybridisation (CGH) methods. Strefford et 

al (2005) applied CGH on 19 RCC cell lines (of which nine of them were also investigated 

in the present study). Many of the findings are in agreement with the present report for 

example gain 1q, 5q, 7 and loss 1p, 3p, 14q. However, the increased resolution of 250K 

SNP array applied in the present study has allowed the detection of more regions of gains 

and losses on the chromosomes (table 5.10 and 5.11). Thus the use of microarray has given 

more information about the chromosomal changes associated with RCC.  
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Table 5.10: Regions of gain in the RCC cell lines identified by Strefford et al (2005) compared 

with the present study  

 
Cell line Gains (Strefford et al., 2005) Gains (present study) 

SKRC45 5q21~qter,7q21.1~pter,8q23~q24.3, 

9q,11q,13 

3p21.31-p26.3, 3p11.2-p14.1, 

3q21.1-q29, 3q11.2-q11.2, 4q26-q31.23, 5q21.2-

q21.3, 5q21.1-q35.3, 7p11.2-p22.3, 7q11.21-q11.22, 

8q21.3-q24.3, 9p23-p24.3, 10q11.21-q26.3, 

11q12.1-q25, 12, 13q31.2-q31.3, 16p11.2-p13.3, 

16q12.1-q23.2, 17q21.31-q25.3, 18p11.21-p11.32, 

21q11.2-q22.3 

 

769P 1q25~qtel,4q28~qtel,5p15.1~ptel, 

5q31~qtel,8q21.3~qtel,12q14~ptel 

1q23.1-q44, 2, 5q31.2-q35.3, 7, 8q11.22-q24.3, 12, 

17 

786O 1q32~qter,4p15.1~q21,5p10~pter,7q10~qt

er,8q10~qter,12q21.1~pter 

2p11.2-p24.3, 2q11-q37.3, 5p12-p15.33, 5p12, 7, 

8q11.21-q24.3, 9q21.13-q34.3, 20q11.21-q13.33 

A498 1q32~qter,2p10~pter,4q28~qter,5p10~pter

,5q23.3~qter,7,8q21.3~qter,9q31~q34.1,1

7q21.3~qter,20q10~qter 

1q21.2-q44, 2p11.2-p25.3, 

2q11.2-q34, 5p12-p15.33, 7, 

8q11.21-q24.3, 9, 11p11.2-p15.5, 16, 17, 19p12, 

19q12, 19q13.11-q13.12, 19q13.33-q13.43, 

20p12.2-p11.21, 20q11.21-q13.33, 21q11.2-22.3 

A704 1q32~qter,5q14~qter,7,11q10~qter,12, 

20q10~qter 

3p12.1, 5q15-q35.3, 7, 12, 16p11.2-p13.3 

ACHN 1q32~qter,2p10~pter,5p10~pter,7,12,16, 

17p10~pter 

1q21.1-q44, 2, 7, 10q11.21-q26.3,  12, 16, 17 

 

Caki1 1q21.3~qter,5q13~pter,7q21.2~qter, 

8q13~qter,11p12~pter,17q21.3~qter 

1q21.1-q44, 3q12.1-q29, 4p12-p16.3, 4q12-q13.3, 

5p14.3-p15.33, 5p12-p13.1, 5q15-q35.3, 7q22.3-

q36.3, 8q11.21-q24.3, 12q12-q24.33,16q12.1-q24.3, 

17q11.2-q22, 17q22-q25.3, 18p11.21-p11.32, 

19p13.3, 20q11.21-q11.23 

Caki2 7p15~pter,8q22.3~qter,12q13.3~qter,20, 

21,22q13.1~qter 

1q21.1-q44, 2p11.2-p25.3, 2q11.2-q14.3, 2q24.3-

q33.3, 2q37.1-q37.3, 3q22.1-q29, 4q12, 5q33.2-

q35.3, 6p11.2-p12.1, 6q12-q13, 6q16.1-q21, 

6q22.31-q24.1, 7, 12p11.21-p11.22, 12q12-q14.2, 

12q14.2-q21.32, 12q24.22-q24.33, 15q26.1-q26.3, 

16p11.2-p13.3, 17q11.2-q25.33, 19p12-p13.2, 

19q12-q13.43, 20, 22q11.21-q13.33 

CAL54 7,12q13.3~qter,20 2, 3p11.2-p12.3, 3q11.2-q29, 7p15.2-p22.3, 7p11.2-

p14.3, 7q11.21-q34, 7q34-q36.3, 8, 9q22.31-q34.3, 

12, 16, 17, 20 

Abbreviations: p, short arm; q, long arm; chrom., chromosome; ter, terminal 
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Table 5.11: Regions of loss in the RCC cell lines identified by Strefford et al (2005) compared with 

the present study 

 
Cell line Losses (Strefford et al., 2005) Losses (present study) 

SKRC45 1p31.1~pter,3p14.1~p21.3,6,8q21.1~pter,9q,1

4,15,16q22~qter,18q12.3~qter,19,22 

3p14.2, 3q13.32-q21.1, 3q26.1, 4p12-p16.3, 

4q12-q26, 5q11.2-q21.2, 5q21.3-q22.1, 8p12-

p23.3, 9p13.1-p23, 10p11.21-p15.3, 11p13-

p15.1, 15q11.2-q26.3, 14q11.2-q32.33, 

18q12.1-q22.1, 20p11.22-p13, 22q11.22-q13.33 

 

769P 1p34.6~ptel,3p13~ptel,11q14.3~qtel, 

14q13~qtel,Y 

1p35.3-p36.33, 3, 6, 9p21.3-p22.3, 9q12-

q21.11, 11q14.1-q25, 14q11.2-q32.33 

786O 1p32~pter,3p14.1~p22,4q32~qter,8p10~pter, 

10p10~ptel,14q13~qter,18q21.3~pter 

3p11.2-p13, 3p21.2-p26.3, 4q31.22-q35.2, 

5q11.2-q21.1, 8p11.21-p23.3, 13q12.11-

q34,14q11.2-q32.33, 18q12.2-q23, 19q13.11-

q13.42 

 

A498 1p32~pter,3p12~q25,6q15~qter,11q14.3~qter,

18,19q10~qter,Xq24~qter 

1p35.1-p36.33, 2q22.1, 3p21.2-p26.3, 6, 

11q11.2-q25, 14q11.2-q32.33, 18q11.32-q23, 

20p12.2-p13 

A704 3p10~pter,6q10~qter,9,14,16q13~qter, 

22q13.1~qter 

1p35.1-p36.13, 3p12.3-p26.3, 4, 6q21-q27, 9, 

14q11.2-q32.33, 16q12.1-q24.3, 20p21 

 

ACHN 4q10~qter,9p10~pter,Y 1p35.1-p36.33, 3, 4, 5, 6, 8p11.21-p23.3, 

8q11.21-q21.11, 9p21.3, 13q12.11-q32.3, 

15q11.2-q26.3, 14q11.2-q32.33, 18q12.2-q23, 

20 

 

Caki1 3p14.2~p23,6,9p12~p21,14q11.2~qter,15, 

18q10~qter,22q11.2~qter,Y 

1p21.3-p31.1, 3p12.3-p26.3, 6q22.32-q27, 

9p23-p24.1, 9p21.3, 9q12-q21.11, 11q14.1-q25, 

12p11.21-p13.33, 13q12.1-q13.1, 15q11.2-

q22.2, 14q11.2-q32.33, 17p11.2-p13.3, 

18q11.2-q23, 19p13.3, 20p11.21-p13, 21q11.2-

q22.3, 22q11.21-q13.33 

 

Caki2 3p14.2~p23,9p10~pter,11q13.5~qter, 

13q23.3~qter,17p10~pter,18q10~qter 

1p12-p31.3, 2q37.1-q37.3, 3p11.2-p26.3, 

3q11.2-q21.3, 4q12-q13.1, 6q25.1-q27, 

8p11.21-p23.3, 8q11.21-q12.1, 9p11.2-p24.3, 

9q12-q21.33, 11p11.12-p14.1, 11q12.1-q25, 

12q21.32-q24.22, 13q12.11-q34, 14q11.2-

q13.1, 14q23.1-q32.33, 16q11.2-q21, 16q21, 

17p11.2-p13.3, 18q11.2-q23, 19p13.3, 19p13.2-

p13.3 

 

CAL54 3p12~p21.3,9p10~pter,10q21.2~qter, 

13q21.1~q1 

1, 3p12.3-p26.3, 4, 5, 6, 

9p11.2-p24.3, 9q12-q22.31, 10, 11, 13q12.11-

q34, 15q11.2-q26.3, 14q11.2-q32.33, 18, 

21q11.2-q22.3 

 

Abbreviations: p, short arm; q, long arm; chrom., chromosome; ter, terminal 
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Deletion 1p, 3p, 4q, 9p, 13q 14q and 18q and gain 1q, 2q, 5p, 5q, 7p, 7q, 8q, 12q, 16p, 

16q, 17q, 20p and 20q were the most common changes (>52%) observed in the present 

study. A previous analysis of a very large number of unselected RCC tumours reported 

that the most frequent cytogenetic changes were loss of 3p (60%), 14q (28%), 8p (20%), 

6q (17%), loss of 9p (16%) and 4p (13%), gain of 5q (33%) and trisomy 7 (26%) (Klatte et 

al., 2009). Similarly, copy number analysis of sporadic RCC tumours using high resolution 

SNP arrays abnormalities demonstrated recurrent losses on 3p, 4, 6q, 8p, 9p and 14q and 

recurrent gains on 1q, 2, 5q, 7 and 12 (Dalgliesh et al., 2010) and Beroukhim et al (2009) 

reported amplification 1q, 2q, 5q, 7q, 8q, 12p and 20q and deletion 1p, 3p, 4q, 6q, 8p, 9p 

and 14q as the most frequent copy number changes in cRCC tumours (sporadics and 

VHLs). All of the changes found in the present study were also found in the previous 

reports (Beroukhim et al., 2009; Klatte et al., 2009; Dalgliesh et al., 2010) except deletion 

13q, 18q and gain 16, 17q and 20p. These might reflect changes associated with the 

different subtype of RCC other than the clear cell. For example, large deletion 13q was 

associated with chromophobe subtype of RCC (Schwerdtle et al., 1996).  

 

Deletion 14q was seen in all of the cell lines studied with all having large deletions. A 

similar study by Strefford et al (2005) identified deletion 14qtel in more than 63% of the 

19 RCC cell lines. Although it had also been detected in cRCC tumours but the frequency 

was not as high, for example Beroukhim et al (2009) detected deletion in 14q31.1 in 42% 

of the 90 cRCC tumours from sporadic and VHL, Toma et al (2008) found deletion 

14q23.3-q32.31 in 36% of the 22 cRCC tumour samples. Deletion 14q had been related 

with a sarcomatoid component in RCC which is usually aggressive, potentially metastatic 

and associate with poor prognosis (Matsuda et al., 2008). LOH in 14q was shown to be 
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related with tumour aggressiveness and poor survival in RCC (Mitsumori et al., 2002; 

Alimov et al., 2004).  

 

All except one cell line (22/23, 95.7%) showed deletion in 3p. Most of the deletions 

involved large fragments and of the 22 cell lines, 19 (86.4%) showed deletion of the VHL 

gene which maps to 3p25.3. This study has identified three most frequently deleted regions 

on 3p; 3p14.2, 3p21.2-p26.3, 3p11.2-p13 (table 5.8). Many reports before have focused on 

three regions as rearrangements have been repeatedly observed in them: 3p12-p14, 3p21 

and 3p25-p26 (Lubinski et al., 1994; van den Berg and Buys, 1997). Deletion in either 

3p25 or 3p12-14 occurred in adenomas whereas carcinomas occurred in 3p21 together 

with losses in 3p25 or 3p12-14 or both. In the present study, most of the deletion involved 

long and terminal 3p thus supporting the previous observation (Chudek et al., 1997; 

Alimov et al., 2000; Sukosd et al., 2003). In addition, one of the cell lines, SKRC45, had a 

focal interstitial deletion in 3p14.2, without deletion in the other two regions (3p21.2-p26.3 

and 3p11.2-p13). The only gene which resides in the region is FHIT and this suggests that 

deletion of the gene alone can implicate cRCC. Another cell line, RCC48 had a 

homozygous deletion in the same region with the same size (~0.6 Mb), although deletions 

in the other two regions were also observed. The FHIT gene is a putative tumour 

suppressor factor that has been related to malignancies of the lungs, head and neck, breast 

carcinoma, Merkel cell carcinoma, colon tumours, cervical carcinomas and renal 

carcinomas (Virgilio et al., 1996; Sozzi et al., 1996; Ohta et al., 1996; Negrini et al., 1996; 

Hadaczek et al., 1998; Luceri et al., 2000).   

 

Previous reports had identified deletions or loss of heterozygosity in the 3p14.2 region and 

altered expression of the FHIT protein occurs in kidney cancers (Hadaczek et al., 1999; 
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Velickovic et al., 1999; Sukosd et al., 2003). The FHIT gene has been shown to suppress 

growth of cancer cells in vitro and in vivo (Roz et al., 2002) and restoration of FHIT gene 

expression in FHIT-deficient mice prevents tumour development (Dumon et al., 2001). 

Reports by Chudek et al (1997) and Sukosd et al (2003) described a terminal 3p deletion in 

most of the cases they studied and concluded that interstitial deletions did not exist in 

cRCC and that the interstitial 3p deletions identified by some of the studies could be due to 

technical artifacts.  The number of cell lines involved with interstitial 3p deletions in the 

present study were too low (3/22), therefore it cannot be concluded whether the 

observation reflect the true genetic mechanism or only an artifact.  

 

The next most common changes were gain of chromosome 7p and 7q with most of the cell 

lines showing whole chromosome gain (table 5.7). Minimal overlap region was found in 

7p11.2-p12.1, 7p21.2-p22.3, 7q11.21-11.22 and 7q34-7q36.3 with the first three regions 

showing amplification. One of the many genes in 7p11.2-p12.1 is EGFR, a cell surface 

protein that binds to epidermal growth factor which then induces receptor dimerization and 

tyrosine autophosphorylation and leads to cell proliferation. Mutations in this gene are 

associated with a number of cancers including lung cancer and anal cancer (Kobayashi et 

al., 2005; Walker et al., 2009). Furthermore, EGFR was previously described only in 

primary papillary RCC (Kovacs et al., 1991) but other study have also revealed high 

frequency of gain (Strefford et al., 2005) and increased levels of the gene in RCC (Moch et 

al., 1998). Gain on chromosome 7 were also related with high grade clear cell carcinoma 

(Matsuda et al., 2008) and duplication/amplification of MET at 7q31-q34 have been 

identified in cRCC (Pavlovich et al., 2003). There was also a positive correlation observed 

between MET expression and high nuclear grade (Choi et al., 2006).  
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Gain of 5q was found in 73.9% of the cell lines with the minimal overlap region identified 

in 5q34-q35.3 (table 5.8). Beroukhim et al (2009) have analysed 90 cRCC tumours (both 

sporadic and VHL-disease associated tumours) using the same platform and found gain 5q 

as the second most common changes after deletion 3p. They used GISTIC-based analysis 

to point the peak region and the region identified on 5q was in 5q35.3. However, no 

oncogene or TSG detected in that region. Gain of 5q after the initial loss of 3p may 

contribute to tumour progression in cRCC (Brauch et al., 1994; Meloni et al., 2002; Nagao 

et al., 2005). Nagao et al (2005) also concluded that allelic loss of 3p25 including the VHL 

gene is thought to be an immediate event in the development of cRCC and copy number 

gains or losses of 5q21 approximately q23 are thought to be events that lead to tumour 

progression although the clinical significance of either gains or losses is not well known. 

Other regions identified were in 5q33-q35 (Strefford et al., 2005; Toma et al., 2008) and 

5q22.1-q23.2 (Toma et al., 2008). Gain of 5q is associated with t(3;5) which is common in 

cRCC and patients with deletion 3p and gain 5q22.3-q23.3 have been associated with 

better disease-free survival compared to those who had the deletion without the gain 

(Nagao et al., 2005).  

 

In addition to duplication 5q34-q35.3, an interstitial gain in 5q21.2-q21.3 with the size 

~4.3 Mb was detected in 1 case, SKRC45. Other cell lines which overlap the region were 

identified in 10 cases. The region contains three genes; RAB9P1, EF�A5 and FBXL17. 

RAB9P1 is a member of RAS oncogene family, FBXL17 is a member of the F-box protein 

family and interact with SKP1 through the F box, and they interact with ubiquitination 

targets through other protein interaction domains (Jin et al., 2004) and EF�A5 is a member 

of the ephrin gene family, prevents axon bundling in cocultures of cortical neurons with 
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astrocytes, a model of late stage nervous system development and differentiation. Further 

investigation of the genes is important to elucidate its function in relation to RCC.  

 

Other copy number alterations ocurred in ~65%-78% of the cell lines were loss of 1p, 4q, 

18q and gain of 2q, 8q, 12q and 20q. Deletion 4q is associated with sarcomatoid 

transformation in RCCs and one of the most frequently encountered chromosomal changes 

in papillary renal cell carcinoma (Jiang et al., 1998). The region of deletion on 18q found 

in this study (18q22.3-q23) is not in the same region identified by the previous reports. 

Both Hirata et al (2005) and Strefford et al (2005) identified LOH and deletion in 18q21.1-

q21.3. The putative TSGs identified in the region include SMAD4, BCL2 and DCC.  

Possible reasons that might contribute to the discrepancies seen are the differences in the 

methods applied, the sample size and the differences in the samples used, for example 

Strefford et al (2005) applied comparative genomic hybridisation (CGH) in their study.  

 

1p35.3-p36.33 was identified as one of the most common region loss in the present study. 

Cifola et al (2008) and Beroukhim et al (2009) had each identified deletion in 1p36.11-

p36.32 and 1p36.11 in cRCC tumours and RCC cell lines respectively. Among the many 

genes in the region is RU�X3 which resides in 1p36.11 and has been shown to suffer gene 

silencing, homozygous deletion,  hypermethylated or protein mislocalization to the 

cytoplasm in a variety of cancers (Li et al.,  2002; Ito et al., 2005; Imamura et al., 2005; 

Vogiatzi et al., 2006; Tsunematsu et al., 2009). Gain of chromosomes 2, 12 and 20 were 

shown to be associated with papillary RCC (Brunelli et al., 2003; Matsuda et al., 2008). 

Complete gain of chromosome 20 (found in 11/23, 47.8% of the cell lines) and 12 (found 

in 8/23, 34.8% of the cell lines) were frequently encountered in this study (table 5.7).  
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The minimal common gain region in the 16/23 (69.6%) of the cases with gain of 

chromosome 8q was identified in 8q24.12-q24.3 where MYC resides. The gene participates 

in most aspects of cellular function, including replication, growth, metabolism, 

differentiation and apoptosis (Packham and Cleveland 1995; Hoffman and Liebermann 

1998; Dang 1999; Elend and Eilers 1999; Prendergast, 1999). It has been shown to be 

amplified and/or overexpressed in numerous human cancers such as breast cancer, 

urothelial carcinoma, metastatic prostatic carcinoma, small cell lung cancer (Johnson et al., 

1992; Jenkins et al., 1997; Christoph et al., 1999; Liao and Dickson, 2000; Naidu et al., 

2002). Regions of homozygous deletion were seen in 9p21.3 and 9p23-p24.1 in 7/17 and 

2/14 of the cases respectively. Three genes reside in the 9p21.3 are MTAP, CDK�2A, 

CDK�2B which were reported to be deficient in many cancers. PTPRD is the only gene in 

9p22-p23 and the protein encoded by this gene regulates a variety of processes including 

cell growth, differentiation, mitotic cycle and oncogenic transformation. A study carried 

out by Grady et al (2001) on renal cell carcinoma has revealed a high incidence of LOH on 

chromosome 9 particularly 9p21 and 9p22-p23 suggesting several putative TSGs in the 

regions.  It has also been shown that LOH on chromosome 9 have a higher risk of 

recurrence, poor prognosis and shorter tumour-specific survival (Schraml et al., 2001; 

Presti et al., 2002; Toma et al., 2008).  

 

At present, copy number changes observed in RCC cell lines usually are large with 

frequent loss detected in 1p, 3p, 4q, 9p, 13q, 14q and 18q and gain 1q, 2q, 5p, 5q, 7p, 7q, 

8q, 12q, 16p, 16q, 17q, 20p and 20q. These changes were also found in primary RCC 

tumours, therefore RCC cell lines represent a useful model for studying renal cancer. 

Although the aberrations identified in the cell lines could also be associated with in vitro 

karyotype evolution, it retains much of the genetic information of the primary tumour as 
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shown in the present study and the previous report (Pavlovich et al., 2003).  High 

resolution 250K SNP microarrays is a useful method which allows detail characterisation 

of RCC to be carried out as shown in the results of this study.  

 

5.9   Comparison of copy number changes identified in primary tumours and 

RCC cell lines  

 

 Overall, the RCC cell lines have more copy number changes than the primary tumours 

and more changes were seen in the cRCC sporadic tumours than in the VHLs (table 5.12). 

Overlapping changes that were common to the two sets of tumours and the cell lines are 

loss of 3p and gain of 5q. Gain of 2q, 7 and loss of 3q, 8p were more common in VHL 

(≥19%) than in sporadic tumours. On the other hand, gain 3q, 8q, 16p, 20q and loss 1p, 6p 

and 14q were observed more frequently (≥33%) in the sporadic than in the VHL tumours. 

However, the findings observed were not statistically significant except for gain 20q.  

 

Table 5.12: Most common regions of gains and losses identified in cRCC primary tumours 

(sporadics and VHLs) and RCC cell lines using 250K SNP array 

 
  cRCC  

RCC cell line sporadic VHL 

gain  2q23.3-q37.3 2q35-q36.3 

    2q24.3-q33.3 

    2q11.2-q14.3 

  3q24-q29  3q22.1-q29 

  5q31.3-q35.1 5q32-q35.3 5q34-q35.3 

 5q35.3   

   7p11.2-p22.3 7p11.2-p12.1 

   7q11.21-q22.1 7p21.2-p22.3 

   7q32.1-q36.3 7q34-q36.3 

    7q11.21-11.22 

  8q11.21-q13.2  8q24.12-q24.3 

 8q21.3-q24.3   

    12q24.22-q24.33 

    12q12-q13.2 

  16p11.2  16p11.2-p13.3 
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  20q11.22-q11.23  20q11.21-q11.23 

  20q13.2-q13.33   

loss 1p13.3-p31.1  1p35.3-p36.33 

 1p34.2-p36.33   

 3p12.1-p13 3p14.2-p21.1 3p14.2 

 3p13-p26.3 3p21.31-p26.3 3p21.2-p26.3 

  3q13.11-q13.31 

3q11.2-q13.11 

 

3p11.2-p13 

   4q12-q13.1 

   4q31.22-q35.2 

 6p21.2-p21.33   

  8p12-p23.3 8p21.3-p23.3 

   9p21.3 

   9p23-p24.1 

   13q12.1-q13.1 

 14q12-q31.2  14q11.2-q13.1 

   14q23.1-q32.33 

   18q22.3-q23 

     Abbreviations: p, short arm; q, long arm 

 

Most VHL associated RCC are detected presymptomatically and removed when the 

tumour reaches ~3 cm. In contrast, only a minority of sporadic RCC is detected 

presymptomatically and so, on average, sporadic tumours are larger. Hence genetic 

differences between VHL cRCC and sporadic VHL wild type cRCC might reflect (a) 

differences in stage of tumourigenesis (i.e. later in sporadic cases), (b) differences in 

mechanisms of tumourigenesis according to the presence or absence of VHL mutations.  

Deletion 3p including the VHL gene, was detected in 71% of the VHL tumours, 50% of the 

sporadic tumours and 95.7% of the cell lines.  

 

Gain of 5q35.3 was common both in the primary tumours and the cell lines.  Among the 

genes that reside in the region is MAPK9 which are involved in a wide variety of cellular 

processes such as proliferation, differentiation, transcription regulation and development, 

thus might be a candidate gene for RCC.  



193 

 

High resolution SNP array has allowed detailed analysis of copy number changes in the 

cRCC primary tumours (sporadic and VHLs) and RCC cell lines as demonstrated in the 

present study. Most often the changes identified are large and in some cases involve the 

whole arm or the whole chromosome. Although there is overlap between the copy number 

changes detected in VHL cRCC and sporadic cRCC, some changes (e.g. 1p, 14q loss and 

8q, 20q gain) are preferentially associated with the latter. Further studies are required to 

determine the potential role of individual gene within these regions with the use of more 

advanced methods such as higher resolution arrays and massive parallel sequencing 

techniques.  
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6 Identification of copy number changes in sporadic clear cell renal cell 

carcinoma (cRCC) using high resolution array S
P6.0 
 

6.1  Introduction 

Human cancers are partly due to irreversible structural mutations which can produce DNA 

copy number alterations at distinct locations in the genome (Albertson et al., 2003). In 

most solid tumours, copy number alterations are shown to be a common feature (Weir et 

al., 2004; Kops et al., 2005; Albertson, 2006). Chromosome segments that are deleted or 

duplicated/amplified harbour tumour suppressor genes (TSG) or oncogenes respectively. 

For example, small single nucleotide mutation can inactivate TSG on an allele and 

hemizygous deletion can remove the other allele to achieve functional inactivation. This 

results in loss of heterozygosity (LOH) across the loci. LOH can also be due to 

homozygous deletion (deletion on both alleles), uniparental disomy (UPD), mitotic 

recombination or gene conversions. Conversely, genomic amplification of oncogenes 

contributes to uncontrolled positive growth signaling. These alterations contribute to 

tumourigenesis and progression by enabling the aberrant function of genes that positively 

and negatively regulate aspects of cell proliferation, apoptosis, genome stability, 

angiogenesis, invasion and metastasis (Hanahan and Weinberg, 2000). Measuring gene 

dosage at high resolution and with accuracy is very important for dissecting the 

mechanism of cancer development (Garraway et al., 2005). Thus identifying these changes 

offer a basis for a better understanding of cancer development and subsequently improved 

tools for clinical management such as new diagnostics and therapeutic targets. 

Comparative genomic hybridisation (CGH) was the first developed technique for genome 

wide characterisation of copy number changes especially in cancer (Kallionemi et al., 

1992). Subsequently, higher resolution array-based CGH methods were introduced 



 

replacing target metaphase spreads used in CGH with a large number of discrete genomic

or cDNA clones (Albertson et al

example, arrays consisting

spanning the entire human genome, with a resolution of less than 100 kb allowing 

comprehensive analyses of cancer genomes (Ishkanian et al

technology using synthetic high

2003; Bignell et al., 2004; Huang et al

et al., 2004; Zhao et al., 2004; Zhou et al

changes to be identified 

methods. These high throughput 

genotype thousands of single nucleotide polymorphisms (SNP

Among the different proposed platforms, Affymetrix

genome wide studies using 25 nucleotides long probes and developed different types of 

SNP microarrays; 10K array 

10K), 100K array - a pair of arrays covering 116,

50K Xba array and Hind Array) and 500K array 

(GeneChip Human Mapping

arrays were designed so that each SNP is interrogated by 24 to 40 unique probes. Of these, 

half are perfectly complementary to the sequence harbo

probes), while half mismatch the sequence at the probe's middle nucleotide (mismatch 

probes). The mismatch probes were intended to capture background effects such as cross

hybridization. For the Affymetrix GeneChip 500

However, the probes are not uniformly distributed across the genome and are particularly 

sparse in regions of segmental duplication and complex CNV

the design of robust genotyping SNP assays in these regions. As a result, the resolution of 

replacing target metaphase spreads used in CGH with a large number of discrete genomic

or cDNA clones (Albertson et al., 2000; Hodgson et al., 2001; Pollack et al

arrays consisting
 
of 32,433 bacterial artificial chromosomes (

spanning the entire human genome, with a resolution of less than 100 kb allowing 

comprehensive analyses of cancer genomes (Ishkanian et al., 2004).  More recent 

technology using synthetic high-density oligonucleotide
 
microarrays (

, 2004; Huang et al., 2004; Janne et al., 2004; Rauch et al

, 2004; Zhou et al., 2004) has enabled LOH and copy number 

 simultaneously at even higher resolution than the previou

high throughput microarrays are commercially available and designed to 

genotype thousands of single nucleotide polymorphisms (SNPs) in human genomic DNA. 

Among the different proposed platforms, Affymetrix
 

Human Mapping Array

wide studies using 25 nucleotides long probes and developed different types of 

10K array - an
 
array covering 10,204 SNPs (GeneChip Human Mapping
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covering 
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For the Affymetrix GeneChip 500K, SNPs have a median spacing of 2.5 kb. 

However, the probes are not uniformly distributed across the genome and are particularly 
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design of robust genotyping SNP assays in these regions. As a result, the resolution of 
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, 2001; Pollack et al., 2002). For 

bacterial artificial chromosomes (BAC) clones 
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microarrays (Lieberfarb et al., 
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SNPs (GeneChip Human Mapping
 

204  SNPs (GeneChip
 
Human Mapping 

covering 504,152 SNPs 

se Affymetrix SNP 

designed so that each SNP is interrogated by 24 to 40 unique probes. Of these, 

ring the SNP site (perfect match 

probes), while half mismatch the sequence at the probe's middle nucleotide (mismatch 

probes). The mismatch probes were intended to capture background effects such as cross-

, SNPs have a median spacing of 2.5 kb. 

However, the probes are not uniformly distributed across the genome and are particularly 

. These create problems for 

design of robust genotyping SNP assays in these regions. As a result, the resolution of 
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the array is variable across the genome and CNV detection has a lower limit of 10–40 kb 

(Carter, 2007). Therefore, Affymetrix has included additional nonpolymorphic probes on 

their latest SNP Array 6.0 to overcome the problem.  

The SNP Array 6.0, which interrogates nearly one million SNPs and differs fundamentally 

from previous versions. First, each SNP on the 6.0 array is interrogated only by six or 

eight perfect match probes - three or four replicates of the same probe sequence for each of 

the two alleles. Therefore, intensity data for each SNP consist of three or four repeated 

pairs of measurements. Second, the SNP probe sets are augmented with nearly one million 

CNV probes, which are meant to interrogate regions of the genome that do not harbour 

SNPs, but that may be polymorphic with regard to copy number. Each such CNV site is 

interrogated by only one probe. The Affymetrix SNP array 6.0 (Genome-Wide Human 

SNP Array 6.0) (McCarroll et al, 2008) contains more than 1.8 million markers; 906,600 

single nucleotide polymorphisms (SNPs) and more than 946,000 probes for the detection 

of copy number variation, thus providing the highest physical coverage of the genome with 

median marker spacing of 680 bases (GenomeWide Human SNP Array 6.0 (Affymetrix) 

http://www.affymetrix.com/products_services/arrays/specific/genome_wide_snp6/genome

_wide_snp_6.affx). Details of the SNPs selection and its description for array SNP6.0 are 

available from http://www.affymetrix.com/support/support_result.affx. The SNP6.0 arrays 

have been applied for studies of common diseases such as diabetes and heart disease 

(McPherson et al., 2007; Saxena et al., 2007; Zeggini et al., 2007), detection of UPD and 

characterisation of chromosome breakpoint in chronic lymphocytic leukemia (Hagenkord 

et al., 2010) and identification of copy number alterations and LOH in tumours (Greenman 

et al., 2010; Gorringe et al., 2009). The arrays were also successfully applied on fresh 

frozen tissue (Tuefferd et al, 2008) as well as archived samples (Tuefferd et al., 2008; 
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Bucasas et al, 2009). The Birdseed algorithm (Korn et al, 2008) is specifically designed for 

the Genome-Wide Human SNP Array 6.0 to process data from the arrays.   

 

The main aim of this study is to precisely characterise and identify copy number changes 

associated with sporadic clear cell renal cell carcinoma (cRCC). Therefore, I took 

advantage of the latest microarray technology, Affymetrix array SNP6.0, to study copy 

number changes of 37 samples of sporadic cRCC. The data was then compared with the 

results of sporadic cRCC obtained using the 250K SNP array.  

 

6.2  Materials and methods 

6.2.1  DNA sample 

A total of 37 genomic DNA from sporadic primary clear cell renal cell carcinoma tumours 

were studied. Genomic DNA was extracted following standard methods and stored at -

80
o
C. 

 

6.2.2 SNP Array 6.0 analysis 

The methods were described in detail in sections 2.1 and 2.2. The SNP Array 6.0 platform 

offers the genotype calling algorithm "Birdseed" to determine the genotypes of 909,622 

SNPs (Affymetrix, Inc. http://www.affymetrix.com/index.affx). The Birdseed algorithm 

performs a multiple-chip analysis to estimate signal intensity for each allele of each SNP, 

fitting probe-specific effects to increase precision, and then makes genotype calls by fitting 

a Gaussian mixture model in the two-dimensional A-signal vs. B-signal space, using SNP-

specific models to improve accuracy. In addition, this array also contains 945,826 copy 

number probes designed to interrogate CNVs in the genome; 115,000 of these probes 

interrogate previously identified CNVs while the remaining 831,000 are distributed across 
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the genome for improved CNV detection (Affymetrix, Inc. 

http://www.affymetrix.com/index.affx). Copy number analysis was performed with 

Affymetrix Genotyping Console v3.0.2 (GTC v3.0.2). 

 

6.2.3  MLPA analysis 

MLPA was applied on 20 samples to confirm some of the deletions and duplications 

identified from the array SNP6.0 microarray. The MLPA Kit used was SALSA P007-A1 

Human Chromosome Kit (MRC Holland, Amsterdam, The Netherlands) that contains 

probes for 40 different target sequences (appendix A5). Among these are many genes that 

are often deleted or amplified in various tumours. The analysis was performed according 

to the manufacturer’s instructions. The ligation products were amplified on a Tetrad 

thermal cycler (Peltier 225 from MJR). PCR products were then separated by capillary 

electrophoresis on a Beckman Coulter CEQ 8000 genetic analyzer. Electropherograms 

were analyzed using GeneMarker MLPA Analysis (SoftGenetics, LLC, USA). Deletions 

were indicated by a value of <0.785 and duplications by >1.33. 

 

6.3  Results 

 

6.3.1  SNP Array 6.0 analysis 

 

The reference set for 250K Sty1 mapping arrays was 48 samples from the HapMap project 

(www.hapmap.org/downloads/raw_data/affy500k/) and 270 HapMap individuals of 

various populations for SNP 6.0 (Goldstein and Cavalleri, 2005). Six normal controls were 

used for MLPA. The average call rate of the 37 samples was 95.13±1.78. Overall, 325 

gains (mean per tumour was 8.78) and 269 losses (mean per tumour was 7.27) were 

detected with majority of them involved the whole chromosome arm or segments ≥10 Mb 

(table 6.1 and figure 6.1). Small deletions and duplications were not a common feature and 



199 

 

all of the small regions (<10 Mb) identified were not recurrent. Deletion 3p was the most 

frequently encountered aberrations, seen in 28(75.7%) of the cases and all of them 

involved deletion of the whole 3p or segments ≥10 Mb. Gain of 5q was encountered in 

16(43.2%) of the cases and among these, 8 cases showed deletion in 3p. Loss of 

chromosome 1, 3, 6, 9, 14 and gain of chromosome 5, 7, 11, 12, 17 were observed in 

~19%-32% of the cases. Loss of whole 8p and 14q were seen in 13(35.1%) and 12(32.4%) 

respectively. In addition, small deleted regions (<10 Mb) were identified in 14q11.2 (7.6 

Mb), 8p21.2 containing 7 genes, 8p12 containing 15 genes and 1p36.11-p36.12 containing 

43 genes.  

 

Gain of 16q were found as frequently as gain 5q and the small gain segments identified in 

16q came from the same sample at different regions on the chromosome. Gain of 

chromosome 7, 11, 12 and 17q were also fairly common, encountered in 29.7%-37.8% of 

the cases (table 6.1).  
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Table 6.1: Chromosome gains and losses in the 37 samples of sporadic cRCC analysed with array 

SNP6.0 

Chrom. 

 

Loss 

 

Gain 

 

Whole 

chrom. 

arm 

 

≥10 Mb 

 

<10 Mb 

 

Total  

 

Whole 

chrom. 

arm 

≥10 Mb 

 

<10 Mb 

 

Total 

 

1p 13 3 1 17  2 2 0 4 

1q 12 0 0 12 5 0 0 5 

2p 5 0 0 5 3 0 0 3 

2q 5 1 0 6 3 1 0 4 

3p 13 15 0 28 6 4 1 11 

3q 10 0 0 10 7 1 0 8 

4p 3 2 0 5 6 1 0 7 

4q 3 1 0 4 7 0 0 7 

5p 3 0 1 4 9 2 0 11 

5q 4 0 0 4 9 7 0 16 

6p 10 1 0 11 6 2 0 8 

6q 10 2 0 12 6 0 0 6 

7p 0 2 0 2 14 0 0 14 

7q 0 3 0 3 14 0 0 14 

8p 13 0 2 15 5 0 1 6 

8q 6 2 1 9 7 3 0 10 

9p 7 0 0 7 5 0 1 6 

9q 7 0 0 7 5 0 2 7 

10p 6 0 0 6 5 0 0 5 

10q 7 0 0 7 5 1 0 6 

11p 2 0 0 2 11 0 0 11 

11q 2 1 0 3 10 0 0 10 

12p 0 3 0 3 10 0 1 11 

12q 0 1 0 1 10 1 0 11 

13q 6 1 0 7 11 0 0 11 

14q 12 2 1 15 4 0 1 5 

15q 3 1 0 4 5 1 0 6 

16p 0 0 0 0 6 0 0 6 

16q 0 2 2 4 8 2 6 16 

17p 5 1 1 7 8 0 0 8 

17q 5 0 0 5 8 3 0 11 

18p 3 0 0 3 6 0 0 6 

18q 3 4 0 7 6 0 0 6 

19p 5 1 1 7 3 1 1 5 

19q 5 0 0 5 3 1 1 5 

20p 0 0 0 0 3 2 0 5 

20q 0 0 0 0 3 1 1 5 

21q 5 0 1 6 4 0 2 6 

22q 4 0 0 4 5 0 0 5 

Abbreviations: p, short arm; q, long arm; chrom., chromosome; Mb, megabase 
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      Legends:                                

 Loss whole arm 

 Loss ≥10 Mb 

 Loss <10 Mb 

 Gain whole arm 

 Gain ≥10 Mb 

 Gain <10 Mb 

 

 

 
Figure 6.1: Frequency of chromosome gains and losses identified in the 37 samples of sporadic 

cRCC studied. 

 

 

 

Minimal overlapping regions of the most common (>27%) copy number changes is shown 

in table 6.2. MLPA analysis was done to verify the changes in some of the regions. 

Microarray and the MLPA copy number analysis results was concordant (table 6.2). 

 

 

 

0

5

10

15

20

25

30

35

40

45

1p 2p 3p 4p 5p 6p 7p 8p 9p 10p 11p 12p 13q 15q 16q 17q 18q 19q 20q 22q

F
re

q
u

e
n

cy
 o

f 
g

a
in

s 
a

n
d

 l
o

ss
e

s

Chromosome



202 

 

Table 6.2: Minimal overlapping regions of gains and losses of the most common copy number 

changes in the sporadic cRCC studied.  

 

  Affected region Start pos. End pos. Size (Mb) MLPA probes 

Loss 1p22.3-p31.3 65,000,000 87,285,000 22.28  

  3p14.3-p26.3 0 55,280,000 55  

  6q16.3-q27 103,700,000 170,899,992 67.19  

  6p21.1-p25.3 0 40,000,000 40 

CDKN1A (6p21.2), 

LTA (6p21.3) 

  8p12 36,000,000 38,000,000 2  

  8p21.2 23,680,000 25,060,000 13.8  

   14q11.2  18,000,000 25,626,000  7.62  

 14q23.2-q32.33 63,212,700 106,368,585 43.15  

Gain 3p11.2 87,450,000 90,400,000 29.5  

  3p22.2-p24.1 28,400,000 38,680,000 10.28  

  5p15.1-p15.33 0 18,000,000 18  

  5q31.1-q35.3 131,000,000 180,857,866 49.85 IL12B (5q33.1) 

  8q11.21-q21.1 47,000,000 76,200,000 29.2  

  8q21.11-q22.3 76,200,000 106,000,000 29.8  

  

8q23.1-q24.3 106,100,000 145,200,000 39.1 

MYC(8q24.12), 

PTK2 (8q24),  

SLA (8q24.2) 

  11p11.12-p15.5 0 51,400,000 51  

  12p13.32-p13.33 0 4,400,000 4  

  12q12-q21.32 37,636,000 86,175,000 48.54  

  16q12.1 45,000,000 46,200,000 1.2  

  16q12.1 49,200,000 49,885,000 0.68  

  16q12.1-q12.2 50,000,000 53,700,000 3.7  

  16q12.2-q21 53,700,000 59,000,000 6.7  

  16q21-q22.3 59,200,000 70,000,000 10.8  

  16q22.3 70,180,000 71,000,000 1.18  

  17q24.1-q25.3 60,900,000 78,774,742 17.87  

  17q21.2-q24.2 35,075,000 61,863,600 26.78 TOP2A (17q21.2) 

Abbreviations: p, short arm; q, long arm; pos, position; Mb, megabase 

 

 

In the present study, there were 18 small gain regions (<10Mb) and 11 small loss regions 

identified.  Four regions of amplification (≥4 copies) were identified on chromosome 16q 

(table 6.3).  
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Table 6.3: Small regions (<10 Mb) of gains and losses in the 37 samples sporadic cRCC studied 

with array SNP6.0 

 
Gain (<10 Mb) Loss (<10 Mb) 

Chrom. band 
Start 

pos. 

End 

pos. 

Size 

(Mb) 
Chrom. band 

Start 

pos. 

End 

pos. 

Size 

(Mb) 

3p11.2 87.45 

 

90.40 

 

2.95 1p36.11-p36.12 

 

21.89 

 

24.25 

 

2.36 

8p21.1-p21.2 

 

26.80 

 

29.06 

 

2.26 5p14.1 26.75 29.14 2.39 

9p11.2 40.50 

 

47.20 

 

6.70 8p12 

 

36.00 

 

38.00 

 

2.0 

9q12 65.34 

 

69.26 

 

3.92 8p21.2 

 

23.68 25.06 

 

1.38 

9q34.2-q34.3 

 

136.40 

 

140.27 

 

3.87 8q11.21-q11.22 

 

48.00 

 

50.80 2.80 

12p13.32-p13.33 

 

0 7.24 

 

7.24 14q11.2 

 

18.00 25.63 

 

7.63 

14q32.33 

 

105.00 

 

106.37 

 

1.37 16q12.1 

 

46.55 

 

48.95 

 

2.40 

16q12.1* 

 

45.00 

 

46.20 

 

1.20 16q23.2-q24.3 

 

79.20 

 

88.83 

 

9.63 

16q12.1* 

 

49.20 

 

49.89 

 

0.69 17p12 

 

14.00 

 

15.43 

 

1.43 

16q12.1-q12.2 

 

50.00 

 

53.70 

 

3.70 19p12 

 

22.00 

 

24.26 

 

2.26 

16q22.3* 

 

70.18 

 

71.00 

 

0.82 21q11.2 

 

13.30 

 

14.18 

 

0.88 

16q23.1* 

 

75.25 

 

76.09 

 

0.84     

16q23.1-q23.2 

 

77.35 

 

78.97 

 

1.62     

19p13.3 

 

0 3.00 

 

3.00     

19q13.31-q13.32 

 

48.93 

 

51.60 

 

2.67     

20q13.33 

 

59.80 

 

62.44 

 

2.64     

21q21.2-q21.3 

 

24.25 

 

26.00 

 

1.75     

21q22.11-q22.12 

 

33.50 

 

35.37 

 

1.87     

*contain ≥4 copies 
Abbreviations: p, short arm; q, long arm; chrom., chromosome; pos., position; Mb, megabase 
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6.3.2 Comparison of copy number changes identified in sporadic cRCC using array 

SNP6.0 and 250K SNP array 

 

 

Both methods have shown that gains involving large segments (>10 Mb) were more 

common than deletions. Deletion 3p, 1p, 14q and gain 5q were the most frequently 

encountered alterations, found in >40% of the cases. Both methods also agree that deletion 

20 was not associated with RCC and gain in chromosome 7 usually involved the whole 

chromosome. Gain of whole chromosome 7 and 16q and deletion 8p were shown as a 

common event (~37%-43% of the cases) in sporadic cRCC by SNP6.0, however, results 

from 250K array identified the aberrations not as common (<26% of the cases). Other 

fairly common aberrations, encountered in ~27%-32% of the cases with SNP6.0 were loss 

of 1q, 3q, 6 and gain of 3p, 5p, 8q, 11, 12, 13q and 17q.  These aberrations were seen in 

~8%-25% of the cases identified by 250K SNP array except gain 8q which was 

encountered in 41.6% of the cases. In general more copy number abnormalities were 

observed in sporadic group than VHLs.  This could reflect the use of SNP 6.0 arrays or the 

fact that in general, sporadic tumours will be at a more advanced stage at operation. Some 

of the differences (e.g. gain 16q, loss 1p, loss 1q and loss 6q were statistically significant) 

after allowance for multiple testing (Bonferroni corrected P value ~0.0024).  

 

Small regions of deletion and gain were identified using both arrays; Array SNP6.0 has 

identified 11 small deletions and 18 small gains while 250K SNP array has detected 7 

small deletions and 13 small gains (table 6.4). Mean size of the smallest region identified 

with SNP6.0 was 2.90 and 4.65 for 250K array.  Almost all of the small regions identified 

with 250K arrays were not in the same regions detected using SNP6.0 except for gain in 

the regions 9q and 19p (table 6.4). These might reflect the heterogenous characteristic of 

these tumours or it could be due to the smaller sample size analysed by 250K compared to 
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array SNP6.0. Therefore, copy number changes in sporadic RCC for this study are 

combined results obtained using 250K and SNP6.0 arrays.  

 

Table 6.4: Small regions (<10 Mb) of gains and losses detected in sporadic cRCC using 250K SNP 

array and array SNP6.0  

 

  250K S
P array S
P6.0 array 

Loss 

Chrom. band Size (Mb) Chrom. band Size (Mb) 

3q11.2 2.7 1p36.11-p36.12 2.36 

6p21.2-p21.33 8.46 5p14.1 2.39 

9p13.1-p21.1 6 8p12 2 

11p11.12-p11.2 4.71 8p21.2 1.38 

11q14.1-q14.3 7.1 8q11.21-q11.22 2.8 

11q12.1-q12.2 3.3 14q11.2 7.63 

16p13.2-p13.3 1 16q12.1 2.4 

   16q23.2-q24.3 9.63 

   17p12 1.43 

   19p12 2.26 

   21q11.2 0.88 

Gain 

5q21.1-q21.3 5.16 3p11.2 2.95 

5q35.3 2.86 8p21.1-p21.2 2.26 

8p11.21-p12 9.97 9p11.2 6.7 

6p12.3-p21.2* 8.2 9q12 3.92 

9q33.2-q34.11* 8.14 9q34.2-q34.3 3.87 

9q34.3 1.87 12p13.32-p13.33 7.24 

16p11.2 2.88 14q32.33 1.37 

17q21.33-q22 1.67 16q12.1* 1.2 

18q11.2-q12.1 8.45 16q12.1* 0.69 

19p13.13-p13.2 2.13 16q12.1-q12.2 3.7 

19p12-p13.11 3.8 16q22.3* 0.82 

19p12* 1.73 16q23.1* 0.84 

20q11.21-q11.23 6.45 16q23.1-q23.2 1.62 

    19p13.3 3 

    19q13.31-q13.32 2.67 

    20q13.33 2.64 

    21q21.2-q21.3 1.75 

    21q22.11-q22.12 1.87 

*contain ≥4 copies 

Abbreviations: chrom., chromosome; Mb, megabase 
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6.4  Discussion 

It is evidence from both of the 250K SNP array and SNP6.0 arrays data that copy number 

changes in sporadic cRCC tumours most frequently involved large segments of the 

chromosomes and with preference to chromosome gains. This suggests that cRCC 

tumourigenesis requires elimination and gain of multiple genes on many chromosomes 

which also involved many ‘passenger’ and ‘driver’ events.  

 

Recent findings have shown that known cancer genes that are frequently mutated in other 

adult epithelial cancers, for example the RAS genes, BRAF, TP53, RB (also known as 

RB1), CDK�2A, PIK3CA, PTE�, EGFR and ERBB2, make only a small contribution to 

cRCC (http://www.sanger.ac.uk/genetics/CGP/cosmic/). Deletion 3p which is a hallmark 

of cRCC was detected in 50% and 75.5% of the sporadic cRCC cases using 250K SNP 

array and SNP6.0 array, respectively, making it the most common findings, thus 

supporting previous reports (Banks et al., 2006; Monzon et al, 2009; Beroukhim et al., 

2009; Klatte et al., 2009). The deletion contributed to the loss of function of the VHL gene 

(maps to 3p25.3), a step known to be an important event in the pathogenesis of cRCC 

(Zbar et al., 2003). However, it has been shown that VHL inactivation alone induces 

senescence, therefore a requirement for further mutations to further promote ccRCC 

development is required (Young et al., 2008).   

 

The present study shows that almost all of the chromosomes were involved in the copy 

number alterations, with some more common than the other (table 6.1). Large deletion 1p, 

14q and gain 5q were also found to be strongly related with cRCC as demonstrated by 

~40%-50% of the cases having these alterations from the results of both arrays. In 

addition, gain of chromosome 7 and 16q and deletion 8p identified using array SNP6.0 and 
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gain 8q identified by 250K SNP array were also a common alteration in cRCC, seen in 

~37%-42% of the cases. Other fairly common alterations (~32%-33% of the cases) include 

deletion 1q and 6q detected by array SNP6.0 and gain 20q detected by 250K SNP array.  

These results are in agreement with the previous report (Beroukhim et al, 2009), except for 

chromosome 1q which was found to be frequently deleted in this study was shown to be 

among the most commonly amplified chromosomes in the report. The frequently found 

alterations indicate that the genes in that particular chromosome are highly implicated in 

cRCC. Only one alteration, deletion 20p, does not seem to play a role in cRCC as 

demonstrated by both arrays.  

 

Since most of the deletion on 3p involved large segments, it is thought that additional 

TSGs on the chromosome must have contributed to the cRCC tumourigenesis. Our data 

supports this idea as majority of the cases from both arrays with 3p deletion involved the 

whole arm or large segments. Mapping studies have shown the presence of additional 

TSGs in more centromeric regions of 3p particularly 3p12-p14 and 3p21 (van den Berg 

and Buys, 1997). A number of other genes have been identified as a candidate of TSGs on 

3p, including FHIT, ROBO and RASSF1A. RASSF1A maps to 3p21.3 and was reported 

inactivated by promoter methylation and epigenetic silencing in 40%-50% of cRCC. The 

gene product appears to have multiple functions and modulates apoptosis, cell motility, 

cell cycle and microtubule stability (Agathanggelou et al, 2005). FHIT located in 3p14.2 is 

altered by deletion or translocation in many types of cancer including lung, cervix, 

esophagus, bladder and kidney carcinoma (Ohta et al, 1996; Virgilio et al, 1996; Sozzi et 

al, 1996; Druck et al, 1997; Mori et al, 2000; Baffa et al, 2000). Most recently, a new 

report identified SETD2 as a novel 3p TSG in cRCC (Duns et al., 2010).  
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Identification of small regions may lead to important discovery of TSGs or oncogenes 

implicated with the cancer. Array SNP6.0 has identified copy number changes in more 

chromosome regions compared to 250K SNP array due to its higher resolution and the 

larger number of samples analysed compared to 250K SNP array. This was demonstrated 

by the higher number of small regions detected by the array (table 6.3). However, the 

majority of the small regions were not recurrent and all of them occurred together with 

large deletions or gains. Therefore, it was difficult to unequivocally assess the significance 

of these findings and associate the small regions with candidate TSGs or oncogene. A 

possible explanation to the observation is that the various regions of small gains and losses 

may represent random changes from genomic instability or it could be that some changes 

reflect rare CNVs and ideally constitutional DNA should be investigated at the same time 

(however large (≥690 kb) constitutional CNVs are rare and none of the copy number gains 

or losses identified in my studies corresponded to those identified in a recent publication of 

constitutional DNAs analysed with the Affymetrix 6.0 array platform (Närvä et al, 2010)). 

 

In conclusion, copy number changes in sporadic cRCC usually involved large segments 

and chromosome gains were more common than chromosome loss. Eleven copy number 

changes were identified including 6 regions of deletion on chromosome 3p, 1q, 14q, 8p, 

1q, 6q and 5 regions of gain including chromosome 5q, 7, 16q, 8q, 20q. More 

chromosomal changes were revealed in this study as the application of high resolution 

array SNP6.0 as well as the use of a larger number of samples has assists in the 

identification of the changes associated with cRCC.   
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7  Future works and recent developments 

One of the important factors in determining accurate results in cancer studies is the purity 

of the DNA used. An alternative to the method applied in this study for obtaining the DNA 

from cancer samples with minimal contamination of normal cells is the use of laser 

microdissection to isolate specific cells of interest from microscopic regions of tissue or 

cell or organisms (Emmert-Buck et al., 1996; Espina et al., 2007). The tool has been 

applied in various cancer studies and on a variety of tissue samples such as solid tissues, 

cell cultures, cytologic preparations, frozen and paraffin embedded tissue (Wild et al., 

2000; Orba et al., 2003; Dahl et al., 2006; Korekane et al., 2007; Kawamura et al., 2010). 

Due to the high degree of purity (95%) in the cell populations obtained using the tool, 

Nakamura et al (2004) have detected a large proportion of genes that were upregulated or 

downregulated in pancreatic cancers that were different from those reported in previous 

studies. They suggests laser microdissection  is useful  in providing  important information 

for finding candidate genes whose products might serve as specific tumour markers and/or 

as molecular targets for treatment of patients with pancreatic cancer.  

 

Genetic aberrations associated with cRCC are complex as demonstrated by the present 

study as well as previous reports. Identifying copy number changes is one genetic aspect of 

the cancer but to understand the precise genetic basis and the mechanisms involved 

requires a comprehensive knowledge of mutational, transcriptional, epigenetic and copy 

number status of individual genes. Further advances in the evaluation of gene copy number 

analysis for example higher resolution arrays and massive parallel sequencing techniques 

(also referred to as next-generation or second-generation sequencing) will facilitate the 

investigation on copy number status of individual genes. The next-generation sequencing 
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technology available commercially are for example 454 sequencing (used in the 454 

Genome Sequencers, Roche Applied Science, Basel), Solexa technology (used in the 

Illumina (San Diego, Genome Analyzer), the SOLiD platform (Applied Biosystems, 

Foster City, CA, USA), the Polonator (Dover/Harvard) and the HeliScope Single Molecule 

Sequencer technology (Helicos, Cambridge, MA, USA). These platforms rely on 

sequencing by synthesis (i.e. serial extension of primed templates) using either polymerase 

(Mitra et al., 2003; Turcatti et al., 2008) or a ligase (Brenner, et al., 2000; Shendure et al., 

2005) as the enzyme. This new technology has been applied in various aspects of cancer 

studies such as targeted gene re-sequencing, mutation detection, copy number variation 

(CNV), single nucleotide polymorphism (SNP), changes in chromatin architecture, and 

epigenetic changes such as methylation pattern alteration (Thomas et al., 2006; Chen et al., 

2008; Jones et al., 2008; Parsons et al., 2008; Sugarbaker et al., 2008; Chiang et al., 2009; 

Maher et al., 2009; Stephens et al., 2009). With the ability to analyse entire genomes, these 

technologies hold promise to global mapping of normal variation and mutations of all 

types for correlation with disease propensity, diagnosis, treatment, prognosis as well as 

identification of new targets for interventional therapy discovery and development 

(Mullighan et al., 2007; Jones et al., 2008; Sugarbaker et al., 2008).  
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8  Conclusions 

The application of high resolution and high throughput SNP microarray has significantly 

contributed to the knowledge of constitutional disorders such as 3p deletion syndrome and 

Beckwith-Wiedemann syndrome (BWS) as well as cancer studies of cRCC (in VHL and 

sporadic) as  demonstrated in the present study. Current evidence suggests SRGAP3 as the 

major determinant of psychomotor retardation in 3p deletion syndrome. A region for 

congenital heart disease (CHD) was identified in an interval ~200 Kb (between 11.15 Mb 

and 11.35 Mb), however the two genes (HRH1 and ATG7) contained in the region are not 

associated with cardiovascular development. Thus, further investigations on a larger 

number of samples using a more comprehensive approach that includes mutational, 

transcriptional, epigenetic and copy number analysis of individual genes may help to 

understand the genetic basis of CHD and 3p deletion syndrome. Combination of FISH and 

microarray methods has successfully characterised chromosome aberrations on 11p15.4-

p15.5 in six BWS patients. Breakpoint in Z�F215 is very rare and to date, this is the 

second to report such findings. Therefore, further investigation of the gene is important to 

know its relation with BWS.  

 

Within the limitations of the analysis, imposed by both the unknown ploidy of the cancer 

samples and the variable degree of contamination by normal cells, the overall pattern of 

copy number changes in the primary tumours involved large regions, most often the whole 

chromosome arm or the whole chromosome. Copy number changes pattern in VHL were 

more homogenous in contrast to sporadic cRCC. In addition to deletion 3p and gain 5q as 

the most common findings in both sets of the tumours, gain of 2q, 7 and loss of 3q, 8p 

were more common in VHL cRCC. Sporadic tumours appeared to have more changes (for 
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example loss of 1p, 14q, 6p and gain of 8q, 16p, 20q). As the changes observed in the 

primary tumours overlap with the cell lines, therefore RCC cell lines can be used as a 

model for studying cRCC.  
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Appendix A1 

GE
OMIC D
A GE
ERAL REQUIREME
TS FOR 250K S
P ARRAY A
D 

S
P 6.0 ARRAY 

 

• DNA must be double-stranded (not single-stranded). 

This requirement relates to the restriction enzyme digestion step in the protocol. 

• DNA must be free of PCR inhibitors. 

Examples of inhibitors include high concentrations of heme (from blood) and high 

concentrations of chelating agents (i.e., EDTA). The genomic DNA extraction/purification 

method should render DNA that is generally salt-free because high concentrations of 

certain salts can also inhibit PCR and other enzyme reactions.  

• DNA must not be contaminated with other human genomic DNA sources, or with 

genomic DNA from other organisms. PCR amplification of the ligated genomic DNA is 

not human specific, so sufficient quantities of nonhuman DNA may also be amplified and 

could potentially result in compromised genotype calls. Contaminated or mixed DNA may 

manifest as high detection rates and low call rates. 

• DNA must not be highly degraded. For any particular SNP, the genomic DNA fragment 

containing the SNP must have Nsp I (or Sty I) restriction sites intact so that ligation can 

occur on both ends of the fragment and PCR can be successful. The approximate average 

size of genomic DNA may be assessed on a 1% or 2% agarose gel using an appropriate 

size standard control. Ref 103 can be run on the same gel for side-by-side comparison. 

High quality genomic DNA will run as a major band at approximately 10-20 kb on the gel. 

Pre-amplification methods or pre-digestion with restriction enzymes other than Nsp I or 

Sty I have not been tested by Affymetrix. If other methods are desired, it is recommended 

conducting experiments to evaluate their performance with this assay. 
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Sources of Human Genomic D�A 

The following sources of human genomic DNA have been successfully tested in the 

laboratories at Affymetrix for DNA that meets the requirements described in the section  

• blood 

• cell line 

 

Success with other types of samples such as saliva will depend on quality (degree of 

degradation, degree of inhibitors present, etc.), quantity of genomic DNA extracted, and 

purity of these types of samples 

 

Genomic D�A Extraction/Purification Methods 

Genomic DNA extraction and purification methods that meet the general requirements 

outlined above should yield successful results. Methods that include boiling or strong 

denaturants are not acceptable, because the DNA would be rendered single-stranded. 

Genomic DNA extracted using the following methods have been tested at Affymetrix: 

SDS/ProK digestion, phenol-chloroform extraction, Microcon® or Centricon® 

(Millipore) ultrapurification and concentration. 

QIAGEN; QIAamp® DNA Blood Maxi Kit 

 

D�A Cleanup 

If a genomic DNA preparation is suspected to contain inhibitors, the following cleanup 

procedure can be used: 

1. Add 0.5 volumes of 7.5 M NH4OAc, 2.5 volumes of absolute ethanol (stored at –20°C), 

and 0.5 µL of glycogen (5 mg/mL) to 250 ng genomic DNA. 

2. Vortex and incubate at –20°C for 1 hr. 
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3. Centrifuge at 12,000x g in a microcentrifuge at room temperature for 20 min. 

4. Remove supernatant and wash pellet with 0.5 mL of 80% ethanol. 

5. Centrifuge at 12,000x g at room temperature for 5 min. 

6. Remove the 80% ethanol and repeat the 80% ethanol wash one more time. 

7. Resuspend the pellet in reduced EDTA TE buffer (10 mM Tris, pH 8.0, 0.1 mM EDTA, 

pH 8.0). 
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Appendix A2 

 

Shutting Down the Fluidics Station 

1. After removing a probe array from the probe array holder, the LCD window displays the 

message ENGAGE WASHBLOCK. 

2. For the FS-450, gently lift up the cartridge lever to engage or close, the washblock. 

The fluidics station automatically performs a Cleanout procedure. The LCD window 

indicates the progress of the Cleanout procedure. 

3. When the fluidics station LCD window indicates REMOVE VIALS, the Cleanout 

procedure is complete. 

4. Remove the sample microcentrifuge vial(s) from the sample holder(s). 

5. If no other processing is to be performed, place wash lines into a bottle filled with 

deionized water. 

6. Choose Shutdown_450 for all modules from the drop-down Protocol list in the Fluidics 

Station dialog box. Click the Run button for all modules. The Shutdown protocol is critical 

to instrument reliability.  

7. After Shutdown protocol is complete, flip the ON/OFF switch of the fluidics station to 

the OFF position. 

8. Place buffer lines in a different bottle of deionized water than the one used for the 

shutdown protocol. 
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Appendix A3 

Preparation of low-C d�TPs 

The reagents required are: 10 mM dCTP 

          10 mM dTTP 

          10mM dATP 

          10 mM dGTP  

           Sterile water for injections 

 

The 10 mM dNTPs (Sigma-Aldrich Inc., USA) were retrieved from the -20°C freezer and 

thawed at room temperature.  They were then briefly vortexed, spun and placed in a tube 

rack. 150 ul of sterile water, 100 ul of dTTP, 100 ul of dATP, 100 ul of dGTP and 50 ul of 

dCTP were pippetted into a 1.5 ml eppendorf tube. The solution was vortexed and 

aliquoted 50 ul into 0.5 ml eppendorf tubes. The tubes were stored in -20°C freezer until 

required.  
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Appendix A4 

 

Preparation of washing solution  

0.4XSSC/0.3% NP-40 

20 ml 20XSSC and 950 ml distilled water were mixed together in a sterile glass bottle. 3 

ml of NP-40 (Roche Ltd., Basel, Switzerland) was added and mixed thoroughly. The 

solution was adjusted to pH 7.0-7.5 with NaOH. Distilled water was added to make 1 litre 

final volume. The solution was kept at room temperature and discarded after 6 months.  

 

2XSSC/0.1% NP-40 

100 ml 20XSSC and 850 ml distilled water was mixed together in a sterile glass bottle. 1 

ml of NP-40 (Roche Ltd., Basel, Switzerland) was added to the solution and mixed 

thoroughly. The pH was adjusted to 7.0-7.5 with NaOH. Distilled water was added to 

make 1 litre final volume. The solution was kept at room temperature and discarded after 6 

months.   
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Appendix A5 

SALSA MLPA kit P007 Human Chromosomal Abberation-3 probe mix 

Length 

(nt) SALSA MLPA probe 

  

Chromosomal position 

 

    

64-70-76-82 Q-fragments: DNA quantity; only visible with less than 100 ng sample DNA   

88-92-96 

D-fragments: Low signal of 88 or 96 nt fragment indicates incomplete 

denaturation  

136 LTA00662-L00158 06p21.3 

142 CFLAR00663-L00074 02q33.1 

148‡ PTE
00522-L00387 10q23.3 

154 MYC00580-L00145 08q24.12 

160 BCL2L100843-L00105 20q11.21 

166 T
FRSF1B00553-L00122 01p36.22 

175 T
FRSF1A00554-L00123 12p13.31 

184 CASP100559-L00128 11q22.3 

194 B2M00349-L00175 15q21.1 

202 MME00487-L00069 03q25.1 

211 IF
G00472-L00088 12q14 

220 SLA00488-L00080 08q24.2 

229* LHX110813-L12283 17q12 

238 TI
F200974-L00561 14q12 

247 MSH200911-L00499 02p21 

256 TOP2A01055-L00628 17q21.2 

265 THBD00474-L00388 20p11.2 

274 BCL201019-L00365 18q21.33 

283 FMR200493-L00369 Xq28 

292‡ TFF100509-L02263 21q22.3 

301 BCL600494-L00072 03q27 

310 IL1800471-L00054 11q23.1 

319 CTPS10812-L00143 1p34.2 

328 CDK
1A00543-L00370 06p21.2 

337 Hs.57051800497-L00071 03q26 

346 MVP00550-L00372 16p11.2 

355 BIRC200547-L00116 11q22 

364 MDM200337-L00163 12q14.3 

373 IL200655-L00183 04q26 

382 IL12B00470-L00053 05q33.1 

391 
FKBIA00478-L00061 14q13 

400 PRKDC00545-L00114 08q11 

409 CD4400669-L00373 11p12 

418 HLAF00656-L00393 06p21.3 

427 CASP200680-L00121 07q35 
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435 
COA301015-L00595 20q13.12 

445 I
G100802-L00320 13q34 

454 IGF1R00605-L00018 15q26 

461 TP5300844-L00302 17p13.1 

470 PTK201021-L00188 08q24 

* New in lot 0108; replaces the 17q12 probe for SCYA3 present in previous lots. 

‡ Small change in length or peak height, no change in sequence detected as compared to previous lots. 

 

 




