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ABSTRACT

This paper presents a neural network based technique for t
solution of a water system state estimation problem.The techniq
combines a neural linear equations solver with a Newton-Raphsayy/ATER SYSTEM MODEL AND ESTIMATION
iterations to obtain a solution to an overdetermined set ‘METHOD
nonlinear equations.

The algorithm has been applied to a realistic 34-node wat¢ The process of state estimation requires a mathematical model
network. By changing the values of neural network parameteiof a water distribution network. The nonlinear head-flow
both the least squares (LS) and least absolute values (LAMunctions describing network elements are used to express mass-
estimates have been obtained and assessed with respect to tbalances in each node of the physical system, and to represent the
sensitivity to measurement errors. specific measurements that are being taken. This can be expressed

as follows:
INTRODUCTION

z=g(x)+w
Efficient control of a complex water distribution system

requires accurate information about its current operating state.
present in the water industry, modern telemetry hardware syster
a_1re bglng |nstall_ed t(_) _meet thesg needs. Unfortunatel_y, due - vector of measurement inconsistency
financial constraints, it is not practical to measure all variables ¢ . .
. . ) - The state estimation can be expressed as a problem of
interest. Therefore, the information supplied by the telemetr

system must be supplemented by the less accurate prediCtionc'minimizaltion of discrepancies between the actual measurements

problem (assuming the match of the network and the problem
size) and the final solution will be found within the time of order
of a hundred nanoseconds.

)
where:

Z - measurement vector

g(X) - nonlinear functions describing system

consumptions at the nodes in the network. These predictions ¢
frequently referred to as pseudomeasurements. Measurements i
pseudomeasurements are used to calculate flows and pressure
the distribution network through the use of a state estimatol
which provide a means of reconciling the discrepancies betwec
the mathematical model of the system and the input data (Sterlir

and the values calculated from the mathematical model.

Using the least squares criterion the state estimation problem

can be expressed as:

min E,(0) = 3@-000) W(z-900) @

Similarly, using the least absolute values criterion the state

and Bargiela 1984; Hainsworth 1988). Over the last decade stégstimation is expressed as:
estimators gradually became the key utility for the
implementation of monitoring and control of large scale public
utility systems such as water, gas or electric power distributio
systems.

With the increasing complexity of modern water distribution
systems there is a need for efficient state estimators which wi
form a basis for the implementation of real time control of thes:
systems. Among the potential algorithms and techniques for sta matrix

estimation neural network based estimators are of great intere \yhile the least squares method (Cichocki and Unbehauen

because of their massively parallel nature and consequejggra. Golub 1986; Gill at al. 1981) is optimal for a Gaussian
computational efficiency. While the full potential of neural gisyinytion of the noise, the assumption that the set of
networks for mathematical optimization can only be realised with e 45 rements or observations has a Gaussian error distribution is
appropriate computing hardware, their performance has be¢requently unrealistic due to various sources of errors such as

assessed through the simulation studies. _ instrument errors, modelling errors, sampling errors and human
Neuron-like architectures were simulated using MATLAB andgor5 |n order to reduce the influence of large errors, the least

SIMULINK' programs.The networks have been configured toapq0te values criterion (3) can usefully be adopted (Sterling and
produce state estimates of the water system according to the 'eBargieIa 1984; Cichocki and Unbehauen 1992b).

squares_ aqd the least absol_ute values op_timality criterias. TI The proposed solution of the state estimation problem (2) or (3)
results indicate that when implemented in VLSI technologyq pased on the Newton method. Expandig) by an initial
(Cichocki and Unbehauen 1992a, 1992b), the computation time « fo)

state estimation task will not be influenced by the size of thguess of the state vecto

min E; (x) = w'jz—g(x)|

(3)
where:

wOR" - measurement weight vector

W = diag[w;, w,, ..., W ] - measurement weight

, using a first-order Taylor series and
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defining z(o) = g%((O)H,weobtain
zZ= z(o) +Az 4
000 = gox ¥ g+ 3x ¥ (5)
After thislinearisation we obtain the following set of equations:
Jm(k)gﬂx =z- g[P<(k)D (6)
where:
J[p<(k) UD R™" - Jacobian matrix evaluated at x(k)
k=0,1,... - step of the estimation process

Equations (2) and (3) can be therefore expressed as

O
minEz(Ax)— DAZ J[p((k)[AxD W[;Az J|jx(k)[AxD @
AX

and

min E, (AX) = w ‘AZ J[%(k) DAX‘ ®)
AX

These overdetermined sets of linear equationsform the basisfor
the construction of a neural network which is presented in the
following section.

Since the measurement equations (1) are nonlinear, the solution
to (2) or (3) is an iterative process with the consecutive state
estimates calculated by under-relaxation of the linear solution

x D = 5 0 yax @ k=0,1,... 9)

If al elements of Ax in k-th iteration are lower or equal to a
predefined convergence accuracy, the iteration procedure stops.
Otherwise, a new correction vector is calculated using equation

(6) with x(k+ 2 instead of x(k) and suitable neural network.

NEURAL NETWORKS SOLVING SETSOF
LINEAR EQUATIONS

The minimisation problems described by (7) and (8) can be
generalised asfollows:

m
min E(Ax) = Zcri[ri (Ax)] (10)
Ax i=1

where:
E isageneral cost (energy) function
ky U k) L

A=Y b= z-gx "5
ri(Ax) = aiTAx—bi isthe vector of residuals

o;[r;] representsasuitably chosen convex functions.

Inaspecial casewhen o, (r;,) = ri2/2 we obtain the standard

least-squares criterion (7) and for g, (r;) = ‘ri‘ we have the

least absolute values criterion (8).

The minimization of the energy function described by (10) by
standard gradient descent methods leads to the following system

of nonlinear differential equations:

dAX;

m n oo
=y aij%figkz a2~ b 10 (11)
L= -1

or in compact matrix form

%Atx = uATH (1 (A%)) (12)

where:

K, >0 isthelearning parameter;
ag; (r;) - ,

f.(r;(Ax)) = % - activation function

a) for g, (r;) = ri2/2 we have f, (r, (Ax)) = r,(Ax) - linear

activation function

b) for o, (r,) = ‘ri‘ we have f, (r, (Ax)) = sign[r, (Ax)] -

signum activation function

To cater for both least squares and | east absolute values criteria
the logistic function can be defined as follows:

o (r) = gln(cosh(ari)) (13)

where o >0, 3 >0 arethe problem dependant parameters and

0, (1) aggm (cosh (ar;))
o, .

f.(r,)=

=Btanh (ar;)  (14)

isthe sigmoid activation function.

Choosing B large with a = 1/ the sigmoid activation
function approximates f; (r; (Ax)) = r; (Ax) over awiderange,
so the network solves the system of linear equations in the least
squares sense. On the other hand, taking B = 1 and a large we
obtain an approximation of f; (r, (Ax)) = sign[r;(Ax)], so
the network solves the least absolute values problem.

The system of differential equations (12) has been implemented
using SIMULINK, by the artificial neural network (ANN) shown
in Figure 1.

first (input) layer _second , _ third (output) layer
T 9Ax
() dt —
K= gl gAY
.f\fﬁtr:xﬁggn Malr\xJT(X) iyl Integrator Output AX
Resituals Siop soopeAX

Figure 1. ANN for solving a system of linear equations (6)
based on the system of differential equations (12) with
optional activation functions f(r) (implementation in
MATLAB and SSIMULINK)



COMPUTER SIMULATION RESULTS

The performance of the proposed methods for water-syste .
state estimation was tested on the realistic 34-node network (- L2601
state variables) depicted at the Figure 2.

column 3 and 4 of Table 1 and Table 2 respectively. State
estimates calculated for data including gross errors are presented
in columns 5, 6, 7 and 8.
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Figure 3: Estimates of the head in the node 1 (x1) using: a)
LSestimator for example 1, b) LSestimator for example 2, ¢)
LAV estimator for example 1, d) LAV estimator for example 2

a)42. ] b) 44 J——
= ol
Figure 2: 34-node water distribution network é g *é:“
. . . - LS (ex.1) g.u LS (ex.2)
A complete definition of network parameters are contained it g, : e
(Sterling and Bargiela 1984). In order to achieve sufficient £.. E=rf
measurements redundancy (defined as a ratio of the number S w
measurements and pseudomeasurements to the number of s “*% number of teraton 42 T rber ot tetation o
variables), the set of the mass balance equations was augmenc) d)
by a number of several flow and pressure measurements. a3 o B
Two sets of measurements were processed having redundar § ///// § . e -
ratios 1.74 and 1.4. g, yd g /7
The effect of ‘bad data’ measurements was simulated b = / D LAV (ex.2)
introduction of systematic gross errors in head and flon £, LAV (ex1) £
measurements. Gl / iy
The specification of these errors are given in the following 424/ . | . wal
eXampleS. 1 * Number of_itefation : 6 .1 * Number of itération
Example 1: Figure 4: Estimates of the head in the node 8 (x8): a) LS

Introduced gross errors

head in node 22 = 42.59 [m Aq] (exact value = 46.59 [m Aq])
load in node 8 = -0.02514% s] (exact value = -0.075m %/ s])

Example 2:
Introduced gross errors:

head in node 22 = 42.59 [m Aq] (exact value = 46.59 [m Aq])
head in node 29 = 35.70 [m Aq] (exact value = 31.70 [m Aq])
head in node 30 = 48.58 [m Aq] (exact value = 43.58 [m Aq])

load in node 8 = -0.025¥ s] (exact value = -0.075M ¥/ s])

estimator for example 1, b) LSestimator for example 2, ) LAV
estimator for example 1, d) LAV estimator for example 2

LAV (Least Absolute Values) method.

Table 1 (columns 6 and 8) shows the results of examples in
which higher measurement redundancy has been used. Table 2
(columns 6 and 8) shows the corresponding results for lower
measurement redundancy. Comparison of these results indicates
that a smaller number of equations (measurements) was sufficient
for accurate estimation with a specific pattern of measurements
considered. However, an increased number of measurements
contributes mainly to an improved reliability of the estimation and

Table 1 and Table 2 show the state estimates calculated fensures the rejection of a larger spectrum of errors. In conclusion,
redundancy ratios 1.74 and 1.4 respectively. The neural netwothe LAV problem solution is median solution and passes through
(Figure 1) has been implemented in SIMULINK. The state vectoat least n (n - number of state variables) of the m data points
shown in column 2 of Table 1 and Table 2 is the state vect(measurements). The feature of producing interpolatory fits that
obtained by exact network simulation and is referred to as a vectapproximate closely most of the data while neglecting gross errors
of reference values. State estimates of LS and LAV methocis an extremely useful property of the LAV criterion. Provided
calculated for data not including gross errors are presented sufficient basic measurements are available, the LAV estimator



can then act as filter for incoming data Sterling, M.J.H and A.Bargiela. 1984. “Minimum norm state
estimation for computer control of water distribution
LS(Lea;t Squares) method. o . . . systems’|EE Proceedings, vol.131 (March), no.2.
The ordinary LS problem solution is the mean solution since i

tries to satisfy all the equations in the set, but usually this solutic

will not solve exactly any of these equations. The results shown
jumns 5 and 7 of Table 1 and Table 2 d | varan| 2| s | Lay | LS | LAV | LS | LAY
columns 5 and 7 of Table 1 and Table 2 are very good example o value (Ex.1)| (Ex.1)| (Ex.2)| (Ex.2)
the influence of gross errors on a LS state estimation.
measurement containing gross error has the biggest effect T [32.638 |32.6580|32.6607|32.6618|32.6607 | 33.6298 | 32.6661
estimation of the state variables in the node where the err{ 2 [43.749 [43.7556(43.758643.4601(43.7571[43.5068(43.7574
occurred and nodes of the closest vicinity. An increased numb| 3 [46.041 [46.0580|46.0421(45.5469 |46.0419 [45.6997 |46.0418
of measurements, in this case, helps to reduce an influence| 4 |46.618 |46.6451(46.6222|46.132946.6221(46.341946.6220
gross errors (averaging process) but the main cause of using| 5 [43.265 [43.2670(43.271343.1604 |43.2692 43.3690 | 43.2701
state estimation methods is insufficient number of measuremen| 6 [43.024 [42.9796(42.971 [43.1289(42.987643.6542[42.9901
Figures 3 and 4 illustrate the convergence of the estimatiq 7 |42.402 |42.3845|42.3708|42.8600 | 42.4004 |43.2596|42.4013
process (Variables x1 and X8 respectively) for the LS and LA 8 42.130 |42.1085|42.0966(42.8714(42.1397 (43.361L |(42.1418
estimators. 9 [43.798 [43.7891(43.7830(43.6041(43.7805[44.1570(43.7812
All simulations have been carried out on Sun Workstation usin|__10_|47-950 |47.9429]47.9476|47.8793|47.9474 47.9314 | 47.9477
SIMULINK (Dynamic System Simulation Software) and | 1L [44664 |44.6766]44.6705]44.3286]44.6695]44.7447]44.6702
MATLAB (High-Performance Numeric Computation and | 12 [44:004 |440203]44.0145]437625]44.0006(44.288344.0029
Visualization Software) programs. Various integration algorithmg__13 _|49.274 |49.297949.300049.2063 | 49.3001 | 49.4836 | 49.3008
- 14 [49.099 [49.0951[49.0977]49.0858[49.0980(49.1191 |49.0980
have been used for many different values of the parameteus,
_ _ 15 [49.057 [49.0520(49.0536]49.0467[49.0539(49.0665 | 49.0536
B andp . The results presented in Tables have been obtained 6 T40 298 (49319549 321249 217 [49.3210 49,5452 |49 3224
18 |49.338 [49.3412(49.3423]49.2183[49.3419(49.598749.3436
have been set as follows:=0.1, § =10 for LS anda =500, 3 =1
for LAV esfi B B 19 [49.029 [49.0402[49.0379]48.8177[49.0370(49.1068|49.0381
or estimators. 20 |46,618 |46.6451(46.622146.1350|46.6219(46.351846.6218
21 |45.623 |45.6450]45.6313(45.2495[45.6292[45.5800 | 45.6300
CONCLUSIONS 22 |46.588 |46.6137(46.5920(46.1309(46.5890 [46.3555 | 46.5891
It has been found, through the simulation study, that a neur| 23 |48-379 |48.3864]48.3798)|48.0869 48,3784 48.3482) 48.3792
network based state estimator provides an efficient means of wa|__24 |43:249 |43.2313]43.2244)43.1863 43,2334 43.7602  43.2362
system state estimation. While the LS estimates have shown to| 25 [42:532 |42.4993)42.4885|42.9640|425194|43.4724 | 42.5217
strongly affected by any change in the measurement vector, t| 20 _|32:086 |32.0980/32.1013]32.0906]32.101333.1495] 32.1066
LAV estimates prOVed to be resistant to |arge Changes inthe d 27 -15.233 |-15.1963-15.1962 -15.1728 -15.1962 -15.201( -15.1962
This is a very useful property when the known data in thq 28 |33521|-33.4999-33.499§-33.4871]-33.499§-33 481§ -33.4998
measurement vector are contaminated with occasional gro| 22 |31:692 |31.6989]31701931.6699)31.7019)32.6797)31.7066
errors 30 [43.582 |43.6075|43.600843.435843.599943.9799(43.6026
. . . . 31 |44.188 |44.1992|44.1977|43.7535|44.1971|43.7826 | 44.1971
The main restriction of a VLSI implementation of neural
. . .|~ 32 [-45.710 |-45.7500 -45.7209 -45.8773 -45.7209 -45.9124 -45.7209
networks is the number of connections between the processi
. . ) . . 33 |-36.572 |-36.5825 -36.580 -36.5657|-36.5807]-36.2987 -36.5803
units on a chip. It is envisaged that the future use of optical cro
. 5 - . : 34 [-12.184 [-12.1969-12.197((-12.1622]-12.1969 -11.6651| -12.1916
connecting will enable the implementation of arbitrary larg
N . 35 [0.0723 [0.0722 [0.0723 [0.0722 [0.0723 [0.0714 [0.0723
ANN. Consequently the state estimation process, as discusse
. : . . . 36 [0.0927 [0.0925 |0.0926 [0.0897 [0.0926 |0.0886 |0.0926
this paper, will be accomplished in a time of order of hundre
microseconds 37 |-0.0229 [-0.0229 |-0.0229 [-0.0225 |-0.0229 [-0.0168 |-0.0229
' 38 |-0.0519 [-0.0523 |-0.0522 [-0.0554 |-0.0523 |-0.0514 |-0.0522
39 [-0.0391 [-0.0392 |-0.0390 [-0.0393 |-0.0390 [-0.0411 [-0.0390
REFERENCES 40 [0.02538| 0.0261 [0.0254 [0.0252 [0.0254 [0.0243 |0.0254
Cichocki, A. and R.Unbehauen. 1992 “Neural networks foj 4! |0.0614 0.0614 ]0.0614 |0.0616 0.0614 |0.0635 |0.0614
solving systems of linear equations and related problems| 42 [0.1061 [0.1063 [0.1063 [0.1067 [0.1063 [0.1039 [0.1063

IEEE Trans. Circuits Syst., vol.39 (Feb.), pp.124-138. Table 1- 34-node-system siate estimates (73 tions:
Cichocki, A. and R.Unbehauen. 1992. “Neural networks for e1: 34-node-system state estimates (73 equations,

solving systems of linear equations - Part II: Minimax and redundancy ratio=1.74)
absolute value problemEEE Trans. Circuits Syst., vol. 39 1-34: nodal heads (m Aqg) at nodes 1-34;

(September), pp.619-633. 35-42: fixed-head nodes in/out fIOV\m:Z/s) at nodes 27-34

Gill, P.E.; W.Murray; and M.H.Wright. 1981.Practical .
Optimization. New York: Academic. LS - least squares method; VA least absolute values method

Golub, G.H. and C.F.Van Loan. 198Blatrix Computations,
Oxford: North Oxford Academic.

Hainsworth, G.D. 1988. “Measurement uncertainty in watel
distribution telemetry systems”, PhD Thesis, Trent
Polytechnic, Nottingham, U.K.



State

e Eyact Ls |Lav | Ls | LAV

Varah vaiue| WS | MAY | (Ex.1)| (Ex1)| (Ex2)| (Ex.2)
1 32.638 [32.6617]32.6612|32.6066[32.6627|33.6971|32.6729
2 43.749 |43.7502|43.7556|43.3259|43.7558|43.8230|43.7582
3 46.041 |46.0686|46.0521)45.2732146.0523]45.8108|46.0727
4 46.618 |46.6560|46.6375|45.8594 (46.6348|46.4677 |46.6616
5 43.265 |43.2504|43.2630]43.0960(43.2631|43.8204|43.2691
6 43.024 |42.971 |42.9758|43.0681(42.9776|44.1504|43.0001
7 42.402 |42.3626|42.3805|42.8532142.3911 |43.8289|42.3930
8 42.130 |42.0945|42.1063|42.853642.1301|43.9074|42.1309
9 43.798 |43.7888|43.7864|43.4703|43.7799|44.6383|43.8150
10 47.950 |47.9426|47.9439|47.7249(47.9465|48.0481|47.9471
11 44.664 |44.6815|44.6720|44.1652(44.6703|45.0104 |44.6708
12 44.004 |44.0217|44.0158]43.6192(44.0067 | 44.6583 |44.0395
13 49.274 149.3056|49.3031/49.015849.3063|49.703249.3149
14 49.099 |49.0981]49.0952|48.9325149.0959|49.2708|49.0975
15 49.057 |49.0548|49.0519|48.897349.0505|49.2145|49.0505
16 49.298 |49.3271|49.3242149.0225(49.3272|49.7337|49.3366
17 47.970 |47.9675|47.9673|47.7192(47.9694 |148.1478|47.9702
18 49.338 |49.3488|49.3456149.0293 (49.3485|49.7666 | 49.3585
19 49.029 |49.0489|49.0437)|48.5915|49.0457|49.2476|49.0582
20 46,618 |46.6559|46.6375)|45.8634|46.6348|46.4839|46.6615
21 45.623 |45.6517|45.6397|45.0280|45.6367 | 45.8039 |45.6635
22 46.588 |46.6238|46.6075|45.8632(46.6059|46.4995|46.6316
23 48.379 |48.3959|48.3877|47.8428(48.3893|48.4878|48.4053
24 43.249 |43.2248|43.2267 |43.1154 (43.2230|44.2447 |43.2529
25 42.532 |42.4872|42.4966|42.9333|42.5095|44.0054 |142.5202
26 32.086 |32.1026]32.1014)32.0160)32.1046|33.2302|32.1154
27 -15.233 |-15.1972-15.1969-15.1454-15.197(Q -15.2306 -15.1979
28 -33.521 |-33.4996 -33.4993 -33.4792-33.4998 -33.4738 -33.4999
29 31.692 (31.7042]31.7025(31.5704|31.7061(32.7783|31.7168
30 43.582 |43.6064|43.6031]43.3150(43.5904 |44.3922|43.6294
31 44,188 |44.2061]44.1981|43.5266|44.2015]|43.9097 | 44.201L
32 -45.710 |-45.7475 -45.7246 -45.9293 -45.7209 -45.9514) -45.7209
33 -36.572 |-36.5821 -36.5807-36.5597]-36.5807] -36.2977 -36.5801)
34 -12.184 |-12.1963-12.1927-12.1452(-12.1983 -11.6589|-12.1909
35 0.0723 |0.0722 |0.0723 |0.0719 |0.0723 |0.0716 |0.0723
36 0.0927 |0.0925 |0.0925 |0.0886 |0.0926 |0.0874 |0.0927
37 -0.0229 |-0.0229 |-0.0229 |-0.0223 |-0.0229 |-0.0170 |-0.0229
38 -0.0519 |-0.0523 |-0.0523 |-0.0554 |-0.0524 |-0.0510 |-0.0522
39 -0.0391 |-0.0392 |-0.0391 |-0.0394 |-0.0391 |-0.0427 |-0.0393
40 0.0254 |0.0261 |0.0257 |0.0249 |0.0254 |0.0235 |0.0254
41 0.0614 |0.0614 |0.0614 |0.0619 |0.0614 |0.0633 |0.0614
42 0.1061 |0.1063 |0.1063 |0.1073 |0.1063 |0.1033 |0.1062

Table 2: 34-node-system state estimates (59 equations;
redundancy ratio 1.4)
1-34: nodal heads (m Aq) at nodes 1-34;

35-42: fixed-head nodes in/out rovm”z/ S) at nodes 27-34
LS - least squares method; VA least absolute values method



