
ABSTRACT

This paper presents a neural network based technique for the
solution of a water system state estimation problem.The technique
combines a neural linear equations solver with a Newton-Raphson
iterations to obtain a solution to an overdetermined set of
nonlinear equations.

The algorithm has been applied to a realistic 34-node water
network. By changing the values of neural network parameters
both the least squares (LS) and least absolute values (LAV)
estimates have been obtained and assessed with respect to their
sensitivity to measurement errors.

INTRODUCTION

Efficient control of a complex water distribution system
requires accurate information about its current operating state. At
present in the water industry, modern telemetry hardware systems
are being installed to meet these needs. Unfortunately, due to
financial constraints, it is not practical to measure all variables of
interest. Therefore, the information supplied by the telemetry
system must be supplemented by the less accurate predictions of
consumptions at the nodes in the network. These predictions are
frequently referred to as pseudomeasurements. Measurements and
pseudomeasurements are used to calculate flows and pressures in
the distribution network through the use of a state estimators
which provide a means of reconciling the discrepancies between
the mathematical model of the system and the input data (Sterling
and Bargiela 1984; Hainsworth 1988). Over the last decade state
estimators gradually became the key utility for the
implementation of monitoring and control of large scale public
utility systems such as water, gas or electric power distribution
systems.

With the increasing complexity of modern water distribution
systems there is a need for efficient state estimators which will
form a basis for the implementation of real time control of these
systems. Among the potential algorithms and techniques for state
estimation neural network based estimators are of great interest
because of their massively parallel nature and consequent
computational efficiency. While the full potential of neural
networks for mathematical optimization can only be realised with
appropriate computing hardware, their performance has been
assessed through the simulation studies.

Neuron-like architectures were simulated using MATLAB and
SIMULINK programs.The networks have been configured to
produce state estimates of the water system according to the least
squares and the least absolute values optimality criterias. The
results indicate that when implemented in VLSI technology
(Cichocki and Unbehauen 1992a, 1992b), the computation time of
state estimation task will not be influenced by the size of the

problem (assuming the match of the network and the problem
size) and the final solution will be found within the time of order
of a hundred nanoseconds.

WATER SYSTEM MODEL AND ESTIMATION
METHOD

The process of state estimation requires a mathematical model
of a water distribution network. The nonlinear head-flow
functions describing network elements are used to express mass-
balances in each node of the physical system, and to represent the
specific measurements that are being taken. This can be expressed
as follows:

z=g(x)+ω (1)

where:
z - measurement vector

g(x) - nonlinear functions describing system

ω - vector of measurement inconsistency

The state estimation can be expressed as a problem of
minimization of discrepancies between the actual measurements
and the values calculated from the mathematical model.

Using the least squares criterion the state estimation problem
can be expressed as:

(2)

Similarly, using the least absolute values criterion the state
estimation is expressed as:

(3)

where:

 - measurement weight vector

 - measurement weight

matrix

While the least squares method (Cichocki and Unbehauen
1992a; Golub 1986; Gill at al. 1981) is optimal for a Gaussian
distribution of the noise, the assumption that the set of
measurements or observations has a Gaussian error distribution is
frequently unrealistic due to various sources of errors such as
instrument errors, modelling errors, sampling errors and human
errors. In order to reduce the influence of large errors, the least
absolute values criterion (3) can usefully be adopted (Sterling and
Bargiela 1984; Cichocki and Unbehauen 1992b).

The proposed solution of the state estimation problem (2) or (3)
is based on the Newton method. Expandingg(x) by an initial

guess of the state vector , using a first-order Taylor series and

E2 x( ) 1
2
--- z g x( )–( ) T

W z g x( )–( )=min
x

E1 x( ) w
T

z g x( )–=min
x

w R
m∈

W diag w1 w2 … wm, , ,[ ]=

x
0( )

NEURAL SIMULATION OF WATER SYSTEMS FOR EFFICIENT
STATE ESTIMATION

B. Gabrys and A. Bargiela
Real Time Telemetry Group

Department of Computing, The Nottingham Trent University
Burton Street, Nottingham NG1 4BU

Tel: +44 (0) 115 9418418 ext 2162, Fax: +44 (0) 115 9486518
E-mail: andre@doc.ntu.ac.uk, bcz@doc.ntu.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Bournemouth University Research Online

https://core.ac.uk/display/75587?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


defining , we obtain

(4)

(5)

After this linearisation we obtain the following set of equations:

(6)

where:

 - Jacobian matrix evaluated at

k=0,1,... - step of the estimation process

Equations (2) and (3) can be therefore expressed as

(7)

and

(8)

These overdetermined sets of linear equations form the basis for
the construction of a neural network which is presented in the
following section.

Since the measurement equations (1) are nonlinear, the solution
to (2) or (3) is an iterative process with the consecutive state
estimates calculated by under-relaxation of the linear solution

, k=0,1,... (9)

If all elements of  in k-th iteration are lower or equal to a
predefined convergence accuracy, the iteration procedure stops.
Otherwise, a new correction vector is calculated using equation

(6) with  instead of  and suitable neural network.

NEURAL NETWORKS SOLVING SETS OF
LINEAR EQUATIONS

The minimisation problems described by (7) and (8) can be
generalised as follows:

(10)

where:

E is a general cost (energy) function

,

 is the vector of residuals

 represents a suitably chosen convex functions.

 In a special case when  we obtain the standard

least-squares criterion (7) and for  we have the

least absolute values criterion (8).
The minimization of the energy function described by (10) by

standard gradient descent methods leads to the following system
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of nonlinear differential equations:

(11)

or in compact matrix form

(12)

where:

 is the learning parameter;

 - activation function

a) for  we have  - linear

activation function

b) for  we have  -

signum activation function

 To cater for both least squares and least absolute values criteria
the logistic function can be defined as follows:

(13)

where  are the problem dependant parameters and

(14)

is the sigmoid activation function.

Choosing  large with  the sigmoid activation

function approximates  over a wide range,

so the network solves the system of linear equations in the least

squares sense. On the other hand, taking  and  large we

obtain an approximation of , so

the network solves the least absolute values problem.

The system of differential equations (12) has been implemented
using SIMULINK, by the artificial neural network (ANN) shown
in Figure 1.
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Figure 1: ANN for solving a system of linear equations (6)
based on the system of differential equations (12) with
optional activation functions f(r) (implementation in

MATLAB and SIMULINK)
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COMPUTER SIMULATION RESULTS

The performance of the proposed methods for water-system
state estimation was tested on the realistic 34-node network (42
state variables) depicted at the Figure 2.

A complete definition of network parameters are contained in
(Sterling and Bargiela 1984). In order to achieve sufficient
measurements redundancy (defined as a ratio of the number of
measurements and pseudomeasurements to the number of state
variables), the set of the mass balance equations was augmented
by a number of several flow and pressure measurements.

Two sets of measurements were processed having redundancy
ratios 1.74 and 1.4.

The effect of ‘bad data’ measurements was simulated by
introduction of systematic gross errors in head and flow
measurements.

 The specification of these errors are given in the following
examples.

Example 1:
Introduced gross errors

head in node 22 = 42.59 [m Aq] (exact value = 46.59 [m Aq])

load in node 8 = -0.025 [ ] (exact value = -0.075 [ ])

Example 2:
Introduced gross errors:

head in node 22 = 42.59 [m Aq] (exact value = 46.59 [m Aq])

head in node 29 = 35.70 [m Aq] (exact value = 31.70 [m Aq])

head in node 30 = 48.58 [m Aq] (exact value = 43.58 [m Aq])

load in node 8 = -0.025 [ ] (exact value = -0.075 [ ])

Table 1 and Table 2 show the state estimates calculated for
redundancy ratios 1.74 and 1.4 respectively. The neural network
(Figure 1) has been implemented in SIMULINK. The state vector
shown in column 2 of Table 1 and Table 2 is the state vector
obtained by exact network simulation and is referred to as a vector
of reference values. State estimates of LS and LAV methods
calculated for data not including gross errors are presented in

Figure 2: 34-node water distribution network

- load node

- fixed-head node

- load or inflow
- parabolic pump
- valve

m 3 s⁄ m 3 s⁄

m 3 s⁄ m 3 s⁄

column 3 and 4 of Table 1 and Table 2 respectively. State
estimates calculated for data including gross errors are presented
in columns 5, 6, 7 and 8.

LAV (Least Absolute Values) method.
Table 1 (columns 6 and 8) shows the results of examples in

which higher measurement redundancy has been used. Table 2
(columns 6 and 8) shows the corresponding results for lower
measurement redundancy. Comparison of these results indicates
that a smaller number of equations (measurements) was sufficient
for accurate estimation with a specific pattern of measurements
considered. However, an increased number of measurements
contributes mainly to an improved reliability of the estimation and
ensures the rejection of a larger spectrum of errors. In conclusion,
the LAV problem solution is median solution and passes through
at least n (n - number of state variables) of the m data points
(measurements). The feature of producing interpolatory fits that
approximate closely most of the data while neglecting gross errors
is an extremely useful property of the LAV criterion. Provided
sufficient basic measurements are available, the LAV estimator

LS (ex.2)LS (ex.1)

Figure 3:  Estimates of the head in the node 1 (x1) using: a)
LS estimator for example 1, b) LS estimator for example 2, c)
LAV estimator for example 1, d) LAV estimator for example 2
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Figure 4:  Estimates of the head in the node 8 (x8): a) LS
estimator for example 1, b) LS estimator for example 2, c) LAV

estimator for example 1, d) LAV estimator for example 2
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can then act as filter for incoming data
LS (Least Squares) method.
The ordinary LS problem solution is the mean solution since it

tries to satisfy all the equations in the set, but usually this solution
will not solve exactly any of these equations. The results shown in
columns 5 and 7 of Table 1 and Table 2 are very good example of
the influence of gross errors on a LS state estimation. A
measurement containing gross error has the biggest effect on
estimation of the state variables in the node where the error
occurred and nodes of the closest vicinity. An increased number
of measurements, in this case, helps to reduce an influence of
gross errors (averaging process) but the main cause of using of
state estimation methods is insufficient number of measurements.

Figures 3 and 4 illustrate the convergence of the estimation
process (variables x1 and x8 respectively) for the LS and LAV
estimators.

All simulations have been carried out on Sun Workstation using
SIMULINK (Dynamic System Simulation Software) and
MATLAB (High-Performance Numeric Computation and
Visualization Software) programs. Various integration algorithms

have been used for many different values of the parameters, ,

 and . The results presented in Tables have been obtained for

=0.6, , Gear integration algorithm. Parameters and

have been set as follows:=0.1, =10 for LS and =500, =1
for LAV estimators.

CONCLUSIONS

It has been found, through the simulation study, that a neural
network based state estimator provides an efficient means of water
system state estimation. While the LS estimates have shown to be
strongly affected by any change in the measurement vector, the
LAV estimates proved to be resistant to large changes in the data.
This is a very useful property when the known data in the
measurement vector are contaminated with occasional gross
errors.

The main restriction of a VLSI implementation of neural
networks is the number of connections between the processing
units on a chip. It is envisaged that the future use of optical cross-
connecting will enable the implementation of arbitrary large
ANN. Consequently the state estimation process, as discussed in
this paper, will be accomplished in a time of order of hundred
microseconds.
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 State
variab

le

Exact
value LS LAV LS

(Ex.1)
LAV

(Ex.1)
LS

(Ex.2)
LAV

(Ex.2)

1 32.638 32.6580 32.6607 32.6618 32.6607 33.6298 32.6661

2 43.749 43.7556 43.7586 43.4601 43.7571 43.5068 43.7574

3 46.041 46.0580 46.0421 45.5469 46.0419 45.6997 46.0418

4 46.618 46.6451 46.6222 46.1329 46.6221 46.3419 46.6220

5 43.265 43.2670 43.2713 43.1604 43.2692 43.3690 43.2701

6 43.024 42.9796 42.9711 43.1289 42.9876 43.6542 42.9901

7 42.402 42.3845 42.3708 42.8600 42.4004 43.2596 42.4013

8 42.130 42.1085 42.0966 42.8714 42.1397 43.3611 42.1418

9 43.798 43.7891 43.7830 43.6041 43.7805 44.1570 43.7812

10 47.950 47.9429 47.9476 47.8793 47.9474 47.9314 47.9477

11 44.664 44.6766 44.6705 44.3286 44.6695 44.7447 44.6702

12 44.004 44.0203 44.0145 43.7625 44.0006 44.2883 44.0029

13 49.274 49.2979 49.3000 49.2063 49.3001 49.4836 49.3008

14 49.099 49.0951 49.0977 49.0858 49.0980 49.1191 49.0980

15 49.057 49.0520 49.0536 49.0467 49.0539 49.0665 49.0536

16 49.298 49.3195 49.3212 49.2117 49.3210 49.5452 49.3224

17 47.970 47.9651 47.9684 47.8777 47.9679 48.0098 47.9686

18 49.338 49.3412 49.3423 49.2183 49.3419 49.5987 49.3436

19 49.029 49.0402 49.0379 48.8177 49.0370 49.1068 49.0381

20 46,618 46.6451 46.6221 46.1350 46.6219 46.3518 46.6218

21 45.623 45.6450 45.6313 45.2495 45.6292 45.5800 45.6300

22 46.588 46.6137 46.5920 46.1309 46.5890 46.3555 46.5891

23 48.379 48.3864 48.3798 48.0869 48.3784 48.3482 48.3792

24 43.249 43.2313 43.2244 43.1863 43.2334 43.7602 43.2362

25 42.532 42.4993 42.4885 42.9640 42.5194 43.4724 42.5217

26 32.086 32.0980 32.1013 32.0906 32.1013 33.1495 32.1066

27 -15.233 -15.1963 -15.1962 -15.1728 -15.1962 -15.2010 -15.1962

28 -33.521 -33.4993 -33.4998 -33.4871 -33.4998 -33.4816 -33.4998

29 31.692 31.6989 31.7019 31.6699 31.7019 32.6797 31.7066

30 43.582 43.6075 43.6008 43.4358 43.5999 43.9799 43.6026

31 44.188 44.1992 44.1977 43.7535 44.1971 43.7826 44.1971

32 -45.710 -45.7500 -45.7209 -45.8773 -45.7209 -45.9124 -45.7209

33 -36.572 -36.5825 -36.5808 -36.5657 -36.5807 -36.2987 -36.5803

34 -12.184 -12.1969 -12.1970 -12.1622 -12.1969 -11.6651 -12.1916

35 0.0723 0.0722 0.0723 0.0722 0.0723 0.0714 0.0723

36 0.0927 0.0925 0.0926 0.0897 0.0926 0.0886 0.0926

37 -0.0229 -0.0229 -0.0229 -0.0225 -0.0229 -0.0168 -0.0229

38 -0.0519 -0.0523 -0.0522 -0.0554 -0.0523 -0.0514 -0.0522

39 -0.0391 -0.0392 -0.0390 -0.0393 -0.0390 -0.0411 -0.0390

40 0.02538  0.0261 0.0254 0.0252 0.0254 0.0243 0.0254

41 0.0614 0.0614 0.0614 0.0616 0.0614 0.0635 0.0614

42 0.1061 0.1063 0.1063 0.1067 0.1063 0.1039 0.1063

Table 1: 34-node-system state estimates (73 equations;
redundancy ratio=1.74)

 1-34: nodal heads (m Aq) at nodes 1-34;

35-42: fixed-head nodes in/out flows ( ) at nodes 27-34

LS - least squares method; LAV - least absolute values method

m
3

s⁄



State
Variab

le

Exact
value LS LAV LS

(Ex.1)
LAV

(Ex.1)
LS

(Ex.2)
LAV

(Ex.2)

1 32.638 32.6617 32.6612 32.6066 32.6627 33.6971 32.6729

2 43.749 43.7502 43.7556 43.3259 43.7558 43.8230 43.7582

3 46.041 46.0686 46.0521 45.2732 46.0523 45.8108 46.0727

4 46.618 46.6560 46.6375 45.8594 46.6348 46.4677 46.6616

5 43.265 43.2504 43.2630 43.0960 43.2631 43.8204 43.2691

6 43.024 42.9711 42.9758 43.0681 42.9776 44.1504 43.0001

7 42.402 42.3626 42.3805 42.8532 42.3911 43.8289 42.3930

8 42.130 42.0945 42.1063 42.8536 42.1301 43.9074 42.1309

9 43.798 43.7888 43.7864 43.4703 43.7799 44.6383 43.8150

10 47.950 47.9426 47.9439 47.7249 47.9465 48.0481 47.9471

11 44.664 44.6815 44.6720 44.1652 44.6703 45.0104 44.6708

12 44.004 44.0217 44.0158 43.6192 44.0067 44.6583 44.0395

13 49.274 49.3056 49.3031 49.0158 49.3063 49.7032 49.3149

14 49.099 49.0981 49.0952 48.9325 49.0959 49.2708 49.0975

15 49.057 49.0548 49.0519 48.8973 49.0505 49.2145 49.0505

16 49.298 49.3271 49.3242 49.0225 49.3272 49.7337 49.3366

17 47.970 47.9675 47.9673 47.7192 47.9694 48.1478 47.9702

18 49.338 49.3488 49.3456 49.0293 49.3485 49.7666 49.3585

19 49.029 49.0489 49.0437 48.5915 49.0457 49.2476 49.0582

20 46,618 46.6559 46.6375 45.8634 46.6348 46.4839 46.6615

21 45.623 45.6517 45.6397 45.0280 45.6367 45.8039 45.6635

22 46.588 46.6238 46.6075 45.8632 46.6059 46.4995 46.6316

23 48.379 48.3959 48.3877 47.8428 48.3893 48.4878 48.4053

24 43.249 43.2248 43.2267 43.1154 43.2230 44.2447 43.2529

25 42.532 42.4872 42.4966 42.9333 42.5095 44.0054 42.5202

26 32.086 32.1026 32.1014 32.0160 32.1046 33.2302 32.1154

27 -15.233 -15.1972 -15.1969 -15.1454 -15.1970 -15.2306 -15.1979

28 -33.521 -33.4996 -33.4993 -33.4792 -33.4998 -33.4738 -33.4999

29 31.692 31.7042 31.7025 31.5704 31.7061 32.7783 31.7168

30 43.582 43.6064 43.6031 43.3150 43.5904 44.3922 43.6294

31 44.188 44.2061 44.1981 43.5266 44.2015 43.9097 44.2011

32 -45.710 -45.7475 -45.7246 -45.9293 -45.7209 -45.9514 -45.7209

33 -36.572 -36.5821 -36.5807 -36.5597 -36.5807 -36.2977 -36.5801

34 -12.184 -12.1963 -12.1927 -12.1452 -12.1983 -11.6589 -12.1909

35 0.0723 0.0722 0.0723 0.0719 0.0723 0.0716 0.0723

36 0.0927 0.0925 0.0925 0.0886 0.0926 0.0874 0.0927

37 -0.0229 -0.0229 -0.0229 -0.0223 -0.0229 -0.0170 -0.0229

38 -0.0519 -0.0523 -0.0523 -0.0554 -0.0524 -0.0510 -0.0522

39 -0.0391 -0.0392 -0.0391 -0.0394 -0.0391 -0.0427 -0.0393

40 0.0254 0.0261 0.0257 0.0249 0.0254 0.0235 0.0254

41 0.0614 0.0614 0.0614 0.0619 0.0614 0.0633 0.0614

42 0.1061 0.1063 0.1063 0.1073 0.1063 0.1033 0.1062

Table 2: 34-node-system state estimates (59 equations;
redundancy ratio 1.4)

1-34: nodal heads (m Aq) at nodes 1-34;

35-42: fixed-head nodes in/out flows ( ) at nodes 27-34
LS - least squares method; LAV - least absolute values method

m
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