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Synopsis 
 
 
 
The present investigation has been focused on the design, deposition and characterisation of 

novel low-friction, wear-resistant multilayer nanocomposite CrAlTiCN coatings. Systematic 

materials characterisation and property evaluation were conducted on the as-deposited and 

oxidation-tested CrAlTiCN coatings, and the results are presented and discussed. 

 

It is possible to generate novel CrAlTiCN coatings with the carbon content up to 24.34 at% 

by closed-field unbalanced magnetron sputtering of graphite target. The microstructure of 

the CrAlTiCN coatings mainly depends on their carbon content. When the carbon content is 

low, carbon atoms are mainly dissolved in the fcc metastable phase (Cr, Al, Ti) (C, N); 

when the carbon content is high, the major carbon atoms will form amorphous carbon with 

a C-C bond state and in a sp2 dominated graphitic environment.  

  

Both the hardness and brittleness of CrAlTiCN coatings reduce with increasing the carbon 

content. When tested at room temperature under unidirectional sliding conditions, the 

friction coefficient and wear of the CrAlTiCN coatings decrease with the carbon content, 

and the thermal stability of CrAlTiCN coatings is similar to the CrAlTiN coating but better 

than graphite-like carbon coatings. 

 

The good performance of the new CrAlTiCN coatings can be attributed to the optimised 

design of the coating system: the Cr/Al for oxidation resistance, the amorphous C for low-

friction and the multi-layered nano-composite microstructure for high toughness. 
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Chapter 1: Introduction and Objectives 

1.1 Introduction 

Thin wear-resistant hard coatings are widely applied on cutting and forming tools to 

improve their lifetime and performance, increase productivity, and enable some new 

engineering applications as well. Hard coating deposition has now become a routine 

processing step in the tools industry [1]. Currently, a wide range of PVD hard coatings are 

available for a variety of applications. TiN is the first generation of PVD hard coating and is 

still being used as protective hard coatings for bearings, gears, and cutting and forming tools 

[2,3,4]. However, the fracture toughness and oxidation resistance (＜ 550 ℃) of the TiN 

coatings are not satisfactory for many advanced engineering applications [5,6]. As one of 

the major milestones in the advances of hard coating development, TiAlN has been 

successfully commercialised particularly for high-speed cutting because of its significantly 

improved oxidation resistance (around 700～900℃) and hardness over TiN [7,8,9,10,11]. 

 

However, the oxidation resistance at elevated temperatures of the Ti-based coatings is 

limited although it has been improved with aluminium incorporation. These drawbacks of 

the Ti-based coatings have strongly limited their practical applications [12], which has 

resulted in a critical challenge for the Ti-based hard coatings. Recently, the new formula of 

wear resistance coatings has been explored by various research groups worldwide 

[13,14,15,16,17]. CrN-based multi-component nitride is a typical example. Similar to TiN, 

chromium nitride (CrN) has been successfully applied to the metal forming and plastic 

moulding dies and wear components, which is known to be superior to TiN in wear 
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resistance, friction behaviour, and toughness [18,19,20]. Similar to the TiAlN coating 

system, the incorporation of Al into the cubic CrN crystalline structure greatly enhances the 

hardness (around 20 GPa) and oxidation resistance up to around 900 ℃ [21] of the CrAlN 

coating system. A better abrasive wear resistance, which is believed to be the major wear 

mechanism in machining and forming applications, of the CrAlN coatings (particularly with 

higher Al-content) was also reported. It has been showed that the tribological properties of 

CrAlN coatings are much better (with both lower wear rate and friction coefficient) than 

those of the TiAlN coatings under sliding wear conditions. Most recently, a CrN-based Cr-

Ti-Al-N coating system has been developed by Teer Coatings Ltd to improve the 

performance of twist drills and extrusion dies [22,23]. It has been revealed that quaternary 

Cr-Ti-Al-N coatings demonstrate an even higher hardness (25-30 GPa), higher wear 

resistance, and outstanding oxidation resistance (around 1000 ℃) as compared to that of the 

ternary CrAlN coatings [19,24,25]. However, the coefficient of friction of these so-called 

super-hard coatings is relatively high (around 0.7～0.9) [26,27] at room temperature and 

extra lubrication is needed in many applications, which present health and/or environmental 

concerns [28].  

 

On the other hand, the design and development of low-friction coatings are of continuously 

increasing importance. The first design concept utilises a matrix of amorphous diamond-like 

carbon (DLC) with low friction is obtained by the carbon sp3 to sp2 structural 

transformation, i.e. graphitisation [ 29 , 30 ]. Furthermore, graphite-like carbon (GLC) 

coatings were reported to have excellent tribological properties, very low friction and low 

wear rate at room temperature in dry and ambient environments. The low friction properties 

are attributed to the formation of easily sheared graphitic carbon [31,32,33]. However, all 
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these carbon-based coatings degraded under high-temperatures, and were found to be non-

functional beyond approximately 400 ℃ in air [34], which eliminates their use for dry and 

high-speed cutting tools.  

 

A complex interactive effect often determines the point at which a new synthetical coating 

is expected to fulfil the manufacture purpose. Adding solid carbon into quaternary Cr-Al-Ti-

N coatings with a nanocomposite structure may present more desirable combined properties. 

However, research work on the design, synthesis, and characterisation of carbon-doped 

CrAlTiN coating (i.e. CrAlTiCN) which possess both low frictional coefficients (high wear 

resistance and self-lubrication) and oxidation resistance has been relatively sparse and there 

is limited work reported on the influence of carbon concentrations on the structure, 

tribological and thermal properties.   
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1.2 Aims of the project 

The overall aim of this PhD project was to explore the feasibility of doping CrAlTiN 

coatings with carbon to form a novel nano-composite coating with a good combination of a 

high hardness, good wear resistance and a low friction coefficient, and to detailed 

investigate the effect of carbon content onto the morphology, microstructure, mechanical 

properties, tribological behaviour and oxidation resistance. Hence, the scientific and 

technological objectives of the present project are the following: 

 

• To design/develop and synthesise of novel nano-composite coatings by doping 

CrAlTiN coatings with different amount of carbon;  

 

• To fully characterise the microstructures of the novel CrAlTiCN coatings to 

understand the role of carbon in the novel CrAlTiCN nanostructure coatings; and 

 

• To assess the mechanical and tribological properties and the oxidation behaviour of 

the new CrAlTiCN coating materials.  
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1.3 The structure of the thesis 

In this thesis, the fundamentals of friction and wear of coatings materials, the current status 

of design and development of tribological coatings, the development of coating 

technologies, and the characterisation and evaluation of coatings materials are first reviewed 

(Chapter 2), which is followed by the experimental procedure and techniques employed 

(Chapter 3).  The experimental results obtained from the project are reported in Chapter 4 

according to the research subtopics, which are interpreted and discussed in Chapter 5 to 

understand the mechanisms involved. Finally, conclusions from the research and 

suggestions for future work are given in Chapter 6 and Chapter 7, respectively.    
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Chapter 2: Literature Review 

2.1 Introduction to tribology 

Tribology, derived from the Greek tribos—rubbing and first enunciated in the famous Jost 

Report [35], has been defined as ‘the science and technology of interacting surfaces in 

relative motion and of the practices related thereto [36]. Normally, the basic mechanisms 

are combined in a very complex way due to more complicated contact geometry, involving 

roughness and debris, due to inhomogeneous surface materials with changing properties and 

due to variations in loading and sliding conditions. Certainly, tribology is multidisciplined, 

drawing on mechanical engineering, physics, chemistry and metallurgy. The main 

parameters influencing the tribological process are illustrated in Figure 2.1-1. During the 

sliding contact some of the parameters will change, surface layers are formal, strain 

hardening takes place, local temperature rises causing softening, etc. and after one sliding 

event it may have a new set of parameters controlling the friction and wear [37].  

 

Now, tribology is recognized as a vital ingredient of our technological age and is among the 

most rapidly developing disciplines, largely because of its highly practical and economic 

importance. In view of the scope of the study, this section is mainly an overview of the 

mechanisms and affecting factors of friction and wear. There are a number of classifications 

of friction and wear mechanisms published [38,39,40], the classification of basic friction 

and wear mechanisms can be developed even further and suggest the classification shown in 

Figure 2.1-2. 
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2.1.1 Friction 

Friction is the resisting force tangential to the common boundary between two bodies when, 

under the action of an external force, one body moves or tends to move relative to the 

surface of the other [36]. Accordingly, there are two types of friction, static and dynamic. 

The static frictional force fs is defined as a minimal force needed to initiate sliding. The 

kinetic frictional force fk has to be considered as the mechanism to convert the energy of 

translational motion into heat. Essentially, both energy and material loss result from the 

interaction of surfaces due to relative motion. In order to minimize friction and wear, it is 

necessary to understand how surfaces interact when they are in contact.  

 

2.1.1.1 The laws of friction  

The main friction laws, which is the famous Amontons’ laws (see below section), belong to 

the oldest physical laws and have been known for more than three hundred years. However, 

a physical explanation of the empirical Amontons’ laws was given by Bowder and Tabor 

[41]. A new era in tribology began later on, when this science approached a microsopic and 

even atomic level in the study of the contacts themselves.  

 

First of all, the two famous Amontons’ tribological laws date back to 1699 [42]: 

 

The first Amontons law: The frictional force is directly proportional to the load.  

The second Amontons law: The frictional force is independent of the apparent area of 

contact. 
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It must be emphasised that these two laws of friction are based on empirical observations. 

While they are applicable in most cases, there are also many exceptions. What is more, 

these laws do not give any information about the origin of friction, i.e. friction mechanisms, 

which are essential to the control of friction. 

 

Friction is commonly represented by the friction coefficient, which is usually denoted by 

the symbol µ: 

N
F

=μ                       (2.1-1) 

where F is the friction force, and N the normal load. It should be pointed out that the friction 

coefficient is a function of the system, governed by some factors such as material properties, 

surface roughness of each solid, nature of the environment, load, speed, nature of contact, 

nature of relative motion (rolling or sliding) [43]. So there is no simple model to predict or 

to calculate friction for a given pair of materials. A qualitative explanation of these laws 

was given by Bowden and Tabor (see below section).  

 

2.1.1.2 Friction mechanisms  

Historically, there are two basic mechanisms: the molecular force model and the mechanical 

interaction model [37, 44 ]. However, most current theories of sliding stem from the 

important work of Bowden and Tabor between the 1930s and 1970s and much of our 

present understanding is due to their dedicated efforts. 

 

An explanation of the second Amontons law (that μ is a constant ≤1), was first given by 

Bowden and Tablor [3]. It is based on the assumption that the surfaces in contact are rough, 
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therefore the real (actual) contact area, Areal, is much smaller than the normal contact area, 

A, and proportional to the load, Areal∝N. The area Areal should grow until the external 

loading force will be balanced by the counteracting contact pressure integrated over Areal. 

Namely, let ( ) realsreal AA /⋅= σσ be the real pressure at the contact. Then at low loading 

pressure, sreal σσ <  when the substrates are in the elastic regime, the area of each contact is 

approximately constant, while the number of contacts increases with the load. At a high 

load, sreal σσ >  (i.e., in the plastic regime), the area of real contact should increase with the 

load until sreal σσ = , because of its plastic deformation.  

 

Therefore realsrealreal AAN ⋅=⋅= σσ        sσ --normal yield stress 

While reals AF ⋅= τ            sτ --shear yield stress 

According to Equation 2-1,  

s

s

reals

reals

A
A

N
F

σ
τ

σ
τ

μ =
⋅
⋅

==                         (2.1-2) 

 

2.1.1.3 The temperature of sliding surface 

When two surfaces slide together, most of the work done against friction is turned into 

frictional heat [45]. Since the frictional heat generated is at the tiny contact area, the 

resulting rise in temperature can be appreciable.  

 

There are two types of temperature describing the frictional heat during sliding. One is the 

average or bulk temperature on the friction surface; the other occurs at the tiny contact areas 

at which the energy is dissipated immediately, therefore this temperature is instantaneous 
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with short duration and are called local or flash temperature. Although the duration of the 

flash temperatures is only in the order of a few microseconds [45] and they occur only over 

small regions, the flash temperature can cause appreciable changes in the surface zone, such 

as metallurgical transformations [ 46 ], mechanical property degradation and surface 

oxidation [47], which can in turn greatly influence friction and wear. The direct observation 

of surface hot spot temperature was made by Quinn and Winer [48], who slide a 6 mm 

diameter tool steel pin on a sapphire disk with a load of 26 N and at a speed of about 2 m/s. 

Most of the hot spots, they found, were at 950 ˚C while maximum flash temperature was as 

high as 1200˚C.  

 

Based on theoretical analysis, some models [49, 50, 51] for the calculations of the sliding 

surface temperature have been put forward. According to the theory of Lim and Ashby [51], 

the theoretical average temperature Tb and flash temperature Tf on the friction surface can 

be calculated by Eqs.  

ν
πνβ
βμ FTTTb 2/1

*

0 )8/(2 +
+=                     (2.1-3) 

νβμ 2/1*

2
⎟
⎠
⎞

⎜
⎝
⎛+=
N
FTTT bf                           (2.1-4)                               

Tb-average temperature; Tf -flash temperature; T0-room temperature; T*-equivalent 

temperature, T*=aH/Km, a represents the thermal diffusion coefficient. H is surface hardness. 

Km represents the coefficient of thermal conductivity; β-equivalent distance, β=lb/r0 , lb is 

the thermal diffusion distance, r0 means the radius of the contact units; F-normal force; N-

total number of asperity; v- sliding velocity; The two equations show that average 

temperature and flash temperature depend strongly on both the load and the velocity.  

 



Chapter 2: Literature Review 

 11

2.1.2 Wear 

When considering the efficiency and/or operating lifetime of a product or component [52]--

friction within bearings will result in wasted power and generate heat, whereas any ensuing 

wear will lead to poor working tolerances, loss of efficiency and may ultimately lead to 

premature failure [53, 54, 55]. The wear process has been defined as “the progressive loss 

of substance from the operating surface of a body occurring as a result of relative motion at 

that surface [56]. Like friction, wear is not an intrinsic material property but rather a 

characteristic of the tribosystem, consisting generally of three elements: material properties, 

mechanical interaction and environmental atmosphere.  

 

2.1.2.1 Wear mechanisms 

Although wear has for long been a subject of practical interest, fundamental knowledge of 

wear is still being developed. The subject of wear is, to a large extent, complicated by 

inconsistent terminology and a persistent confusion of wear processes and wear mechanisms 

[ 57 , 58 ]. To understand the mechanisms termed “wear” there is an implicit need to 

understand the nature of contact between surfaces as they are brought together and then 

slide over one another. The nature of this contact involves five factors [59]: 

(1) The surface texture (finish); 

(2) The yield properties of the metal at or near the contact surface; 

(3) The strength of bonds formed at the regions of real contact; 

(4) The way in which these bonds are broken during sliding; 

(5) The nature of surface films that may be present, e.g. natural oxides, tailored finishes, 

grease etc. 
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Generally there are two broad approaches to the classification of wear: the first being 

descriptive of the results of wear, with the second being based upon the physical nature of 

the underlying process [55]. Whilst the issue of wear mechanisms in terms of types and 

relative importance remains a subject of debate, it is now widely accepted that major wear 

mechanisms can be categorized into four groups: abrasive, adhesive, tribochemical, and 

fatigue [60,61,62]. The relationship among the wear mechanisms, tribological interactions 

and types of surface damage has been summarized by Czichos et al. [63], as shown in 

Figure 2.1-3. It is generally recognized that there are three primary types of wear [64,65,66]: 

adhesive wear, abrasive wear and oxidation wear. 

 

2.1.2.2 Adhesive wear  

Adhesive wear—is the transfer of material from one surface to another during relative 

motion, which may be distinguished as the most fundamental of the several types of wear. 

So adhesive wear is most widely encountered over the full spectrum of engineering 

situations and represents the most persistent mode of wear [55]. 

 

Two important points from a forensic perspective: 

(1) When two identical (or similar) materials slide over each other, both surfaces will 

become roughened. The asperities on each surface gouge and score the other surface, 

so that both deteriorate—rapid wear will then occur. 

(2)  If two different metals slide over each other, junctions at asperities will have a 

strength intermediate between the two. Consequently, when sliding occurs, shear 

will tend to dominate, leaving small fragments of the softer material attached to the 

harder one. In this instant, damage will be largely confined to the softer surface, as 
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shown in Figure 2.1-4.  

 

An important conclusion derived from the above is that if adhesion is dominant in the 

friction process it is not recommended to slide identical metals together particularly if they 

are ductile—lumps will be torn out of both surfaces and wear will be rapid. 

 

2.1.2.3 Abrasive wear 

Abrasive wear—is the removal or displacement of material from a surface by the sliding of 

hard particles along the surface [67], which can be divided into two types: two-body and 

three-body abrasive wear.   

 

If one surface is harder than the other (and adhesion is not dominant) the asperities on the 

hard surface may remove material from the other in one or two ways:  

(1) If the asperities have an appropriate geometry they can act as minute cutting tools, 

removing material in the form of fine chips;  

(2) Hard sharp particles (such as dust or hard particles from another part of the 

machinery) get embedded in a softer of the sliding pair and thus abrade the harder 

counterface. 

 

A much slower form of abrasion will occur when ‘cutting’ does not happen. Instead, hard 

asperities may plastically deform grooves in the softer surface. Edges of the generated 

grooves will be raised above the general level, therefore easily subjected to further 

deformation. Continued sliding across the grooves will result in edges being swept away by 

plastic deformation or by a fatigue process. 
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2.1.2.4 Oxidational wear 

Oxidational wear—is a mechanism of mild wear in which protective oxide films are formed 

at the real areas of contact (during the time of a contact) at the contact temperature, Tc.  

 

When the oxide reaches a critical thickness, the oxide breaks up and eventually appears as 

wear particles. These oxides are preferentially formed on plateau, which alternately carry 

the load—as they reach their critical thickness—and are removed. Temperature is important 

in determining the structure of the oxide film present, which in turn affects the wear 

properties of the sliding interfaces [ 68 ]. Production of oxidized debris is one of the 

characteristics of mild wear. Leaving aside the often-posed question about whether the 

oxidation occurs after removal (in which case there would not have an oxidation wear 

mechanism). It is possible to make three alternative assumptions about the temperatures at 

which the surfaces oxides before removal as wear debris. These are: the oxides produced at 

the hot-spot temperature (θm) at the real areas of contact, the oxides are formed at the 

general surface temperature (Ts), or the oxides formed at some intermediate temperatures. 

 

Two possible mechanisms of wear particle formation were proposed:  

(1) The bulk of the oxidation occurs at the instant the virgin metal is exposed, followed 

by further contacts which merely cause the oxide to shear at the oxide metal 

interface;  

(2) Or an equal amount of oxidation reached, beyond which shearing occurs at the 

oxide-metal interface. The second alternative is currently favored. 
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2.1.2.5 Other wear mechanism [21] 

 Delamination—a different fatigue failure occurs if lubrication of a sliding surface is poor. 

Even though the adhesion may not be strong enough to tear out wear fragments it may 

produce very large surface forces. The surface layers become extremely heavily work 

hardened and generate subsurface cracks parallel to the surface and at some point these will 

emerge at the surface releasing a typical flake of metal.  

 

Chemical or corrosive wear—the process of wear associated with chemical effects. The 

most common example with most metals is the repeating cycle of formation, removal and 

reformation of oxides. The fragments are usually small and may appear as compacted flakes 

consisting of a mixture of fine oxide and metal particles. 

 

Erosive wear—is the loss of material due to relative motion between the material and solid 

particles in suspension in a fluid medium. When the relative motion is nearly parallel, the 

mechanism is termed erosion, whereas impingement describes the mechanism where the 

relative motion is nearly normal to the material. Erosive wear can have a detrimental effect 

on pipe joints and bends, valve components, centrifugal pumps, compressors and turbines. 

 

2.1.3 Factors affecting friction and wear 

Friction and wear share one common feature, that is, complexity. It is now widely accepted 

that the results from complex interactions between contacting bodies which include the 

effects of surface asperity deformation, plastic gross deformation of a weaker material by 

hard surface asperities or wear particles and molecular interaction leading to adhesion at the 

points of intimate contact. In almost every situation it is possible to identify the main factors, 
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which are usually determined by the mechanical properties and physical-chemical stability 

of the material, temperature within the contact zone, micro/nano contact geometry, and 

operating conditions [69]. 

 

2.1.3.1 Material properties 

Metallurgical compatibility 

Metallurgical compatibility is a measurement of the extent to which materials are mutually 

soluble in the solid state. Based on systematic work, Rabinowicz [70,71] produced a famous 

metallurgical compatibility chart and correlated the compatibility with adhesion, friction 

and wear.  Higher mutual solubility or ability to form intermetallic compounds may result in 

more material transfer and higher adhesive wear rate, however this is not a universal law 

[72]. According to the theory of Rabinowicz [70,71], surfaces of identical metals in sliding 

contact should be avoided and low mutual solubility is desirable in a dissimilar metallic 

counterface situation. It can be assumed that oxides and thin ceramic coatings on the sliding 

surfaces can effectively reduce the metallurgical compatibility and hence the adhesive wear. 

 

Nature of deformation 

The nature of deformation of contacting surfaces plays a very important role in adhesive 

wear. It has been pointed out that if the tribological contact between surfaces is, in the 

engineering sense, totally elastic, a significant reduction in wear rate can be anticipated 

[73,74]. The plasticity index ϕ  introduced by Greenwood and Williamson [75] is a useful 

parameter and can be used to predict the extent of plastic deformation.  

β
σϕ

H
E*

=            (2.1-5) 
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H is the hardness; E* is the composite elastic modulus of the two contacting surfaces; β is 

the typical radius for an asperity and σ is the standard deviation of the asperity height 

distribution. Therefore, the value of E*/H is a key factor in determining the nature of 

deformation of the surface with a given surface topography.  

 

Ductility of sliding surfaces     

Ductility is a mechanical property that describes the extent in which solid materials can be 

plastically deformed without fracture [76]. Ductility of sliding surfaces is one of the 

important properties determining the transition layer or interface between two different 

material surfaces, namely adhesion junctions. Ductility materials might exhibit the 

diffusions at certain junctions, resulting stronger adhesion. According to the strength-failure 

theory [77], failure can be classified into brittle/fracture failure and ductility/yield failure. 

Failure of brittle materials is caused by the normal stresses (perpendicular to the contact 

surface), while failure of ductile materials is determined by its shear strength (parallel to the 

contact surface). It has been reported that the maximum normal stresses are located at the 

surface in contact, whereas the maximum shear strength is at certain distance below the 

contacting surface [77]. Consequently adhesion junctions of ductile materials will rupture at 

a certain depth, forming coarse wear debris. Budiski concluded that galling tendencies, 

which were defined as the early stages of surface deformation and adhesive interaction in 

the wear, were the lowest with materials that have limited plasticity [77]. It could be 

concluded that the higher the ductility, the more severe the adhesive wear. 
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Hardness 

For hard coatings, due to the abrasive wear probably being more relevant than adhesive 

wear, high hardness is often beneficial. Because abrasive wear arises when two interacting 

surfaces are in direct physical contact and one of them is significantly harder than the other. 

Under the action of a normal load, the asperities on the harder surface penetrate the softer 

surface thus producing plastic deformation. When a tangential motion is introduced, the 

material is removed from the softer surface by the combined action of micro-ploughing and 

micro-cutting.  

 

In the situation of abrasive-wear, a hard conical asperity with slope, θ , under the action of a 

normal load, W, is traversing a softer surface. The amount of material removed in this 

process can be estimated from the expression [78] 

 

Simplified                                  WL
H

Vabr
θ

π
tan2

=                            (2.1-3) 

Refined                                      L
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c

abr
2

32
1

2
3

2 γ=                         (2.1-4) 

Where E is the elastic modulus, H is the hardness of softer material, L is the removed length, 

K1c is the fracture toughness, and n is the work-hardening factor and  γP  is the yield 

strength. The simplified model takes only hardness into account as a material property. Its 

more advanced version includes toughness as recognition of the fact that fracture mechanics 

principles play an important role in the abrasion process.  
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In summary the amount of adhesive wear depends on the strength of the adhesion, the area 

of the junctions and the position at which junctions are sheared. Therefore, high hardness, 

low metallurgical compatibility, low ductility and low E/H value are desirable mechanical 

properties for eliminating adhesive wear. The ability of the material to resist abrasive wear 

is influenced by the extent of work-hardening it can undergo, its ductility, strain distribution, 

crystal anisotropy and mechanical stability.   

 

2.1.3.2 Lubrication 

Lubrication is an essential feature of all modern machinery and has been so throughout the 

ages. A wide variety of materials, gases, liquids or solids, may be used as lubricants. It is 

convenient in discussing the subject to distinguish between various types of lubrication. In 

hydrodynamic lubrication the surfaces are separated by a fluid film, whose thickness is 

much larger than the asperity heights on the bearing surfaces. The hydrostatic pressure in 

the film causes only small elastic distortion of the surfaces which, to a first approximation, 

can be treated as rigid. The resistance to motion of a hydrodynamically lubricated system is 

determined by the shear forces which exist in a moving fluid. Elastonhydrodynamics 

describe the case where the local pressure are so high and the lubricant film so thin that 

elastic deformation of the surfaces must be taken into account. The friction resistance of an 

elastohydronamic system is due partly to the shearing of the lubricant film and partly to the 

asperity interactions. In boundary lubrication, the surfaces are separated by adsorbed 

molecular films, usually laid down from an oil or grease containing a suitable boundary 

lubricant; appreciable asperity contact and junction formation may nevertheless occur. The 

tribological properties are determined by surface interaction between thin layers of 

boundary lubricants and the solid surfaces [79,80,81,82]. 
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It is possible to separate completely the moving surfaces of a tribo-engineering system by 

solid lubricant films, whose shear strength then determines the friction. A comparison of the 

advantages and limitations between solid and liquid lubricants has been provided [83]. 

 

2.1.3.3 Surface engineering—its impact on tribology 

Unlike developments in bulk materials, many of the advances in surface engineering have 

been motivated by tribological goals, and it seems probable that developments in this area 

will continue to play a major role in the future. Surface modification and surface coating not 

only allow surfaces with good tribological properties to be produced, but also contribute to 

the conservation of scarce high-performance materials by localizing them where they are 

required.  

 

Surface engineering is a wide-ranging technology, covering traditional electroplating, weld 

surfacing, thermal spraying and thermochemical treatments, through to the modern 

techniques including physical vapor deposition (PVD), chemical vapor deposition (CVD), 

ion-implantation, energy beam surface modification and plasma thermochemical treatments, 

to recently developed hybrid technologies and duplex treatments [84,85]. The thickness and 

hardness of a surface engineered layer span wide ranges, as are summarized in Figure 2.1-5, 

respectively. 

 

In selecting a technique for a given application, not only must the resulting properties of the 

surface be considered, but also the thickness of modified layer in relation to the depth of 

penetration of the surface stress field, and in relation to the wear rate, design life and 
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tolerate change in dimensions of the part. Other factors must also be taken into account, 

such as the temperature to which the component is subjected during the procedure.  

 

The design sequence and fundamental principles of surface engineering and its impact on 

tribology has been reviewed by Bell [48]. Erdemir presented an up-to-date review on solid 

lubricants and self-lubricating films [ 86 ], including a classification of traditional and 

engineering solid lubricants.  

 

One of the most exciting developments in surface engineering solid lubricants in the past 

decade has been in the area of diamond coatings. Diamond possesses very attractive 

properties for tribological applications: low friction in air against many counterfaces, high 

thermal conductivity, chemical, inertness and of course extremely high hardness [87]. 

 

2.2 Tribological coatings 

2.2.1 Introduction 

In this section, major emphasis is placed on the various approaches that have been used to 

optimise tribological coatings. This historical description, though not exhaustive, will 

include the research of specific material compositions, the development of deposition 

processes and the structure and properties of tribological coatings. Figure 2.2-1[88] shows a 

portfolio of the tribological hard coatings developed over the past 25 years. The objective is 

to propose a guideline to identify the major milestones in the development of tribological 

coatings.  
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2.2.2 Compositions of tribological coatings 

2.2.2.1 Classification of tribological coatings 

Historically, the important developments in the formulation and use of tribological materials 

were first due to the natural ability of various materials to exhibit rather low friction and 

low wear under specific conditions. Tribological coatings are generally classified in two 

categories, (1) soft low-friction coatings and (2) hard wear-resistant coatings, depending on 

whether the hardness value is lower or higher than ≈10 GPa [89,90]. Hard wear-resistant 

coatings include oxides, carbides, nitrides, borides, and some carbon-based materials 

(diamond and sp3 dominated diamond-like carbon). Most of these coating materials have 

been extensively studied and some of them present properties that are attractive when the 

materials are used under specific conditions [91,92,93,94]. Soft low-friction coatings 

include PTEF [ 95 ], MoS2 and some carbon-based materials [ 96 ] (Graphite and sp2 

dominated graphite-like carbon).  

 

2.2.2.2 Coating compositions 

The combination of basic tribological materials to build various film structures 

(nanocomposites, superlattice, gradient, etc.) has been the subject of intense research for the 

past decade. However, these developments did not prevent the emergence of new structures 

or original concepts in tribological coatings.  

 

One direction is to develop low friction coatings; some recent reports [97,98] have shown 

that the sputtered carbon-based coatings have attractive tribological properties, low wear 

rates and low coefficients of friction. DLC materials are thin films of amorphous metastable 

carbon based solids, pure or alloyed with hydrogen having properties similar to that of 
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crystalline diamond [ 99 ]. DLC coatings have high hardness (from 20 to 40 GPa)  

[100,101,102], low friction coefficient (0.01-0.02 in vacuum and 0.15 in atmosphere) 

[103,104], low wear rate (10-16 m3mN-1), and chemical inertness and, therefore, are accepted 

as outstanding wear-resistant coatings. This resemblance to diamond is due to the DLC 

structure, which is characterized by a high fraction of highly cross-linked sp3-hybridised 

carbon atoms, as shown in Figure 2.2-2 [105]. 

 

Fairly detailed observations of tribological properties of DLC coatings at room and elevated 

temperatures have been made [106,107,108,109]. The values of the friction coefficients of 

DLC coatings and their wear resistance are known to depend substantially on the type of 

valence electron hybridization (sp3 or sp2), and the sp2:sp3 ratio in turn depends on the 

technique of synthesising these coatings and affects to a great extent the initial physical and 

mechanical properties of DLC coatings [110]. Figure 2.2-3 shows the typical Raman spectra 

of DLC films at different temperatures indicating sp2:sp3 ratio changes with temperature 

[107].  

 

In order to improve the properties of DLC films, addition of impurities such as silicon, 

nitrogen, boron, phosphorus, fluorine and some  metals has been deployed by several 

researchers. In brief, the addition of such impurities reduces the internal stress, electrical 

resistance and friction coefficient of DLC thin films [111]. Arora et al. [112] reported that 

nitrogen (N) incorporation into DLC films could lower the compressive stress. According to 

the results of some other studies [113,114,115,116] good tribological properties are noted 

for hydrogenated amorphous metal-containing carbon coatings (α-C: H). These coatings 

have a low friction coefficient (f=0.12-0.18) and high wear resistance under friction in 
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ambient air [117]. Ultralow friction coefficients (f<0.01) have been reported under vacuum 

conditions for DLC coatings if the hydrogen content was high enough (about 40 at %).  

 

Graphit-iC coatings, developed by Teer Coatings, are a new type of hard carbon coatings 

[31,32] and were shown to have excellent tribological properties, low friction (<0.1), low 

wear rate (10-17 m3 mN-1), and high load-bearing capacity (>2.1 GPa) [118,119]. As shown 

in Figure 2.2-4 [120], these were normally better than those conventional diamond-like 

carbon (DLC) or Me:C DLC coating, especially in humid air and in water. In this case, 

though, there are three targets and one chromium target. A thin chromium bond layer is 

deposited, followed by a pure carbon coating. Analysis by Raman spectroscopy has shown 

that Graphit-iC coatings exhibit predominantly sp2-type bonding, unlike DLC coatings, 

where the bonding is mainly sp3-type. Despite this, coating hardness values of between 15 

and 40 GPa have been recorded, depending on deposition conditions.  

 

Another direction is to improve wear resistance under severe conditions, rather than to 

decrease friction. Knotek et al. [121] focused on the optimisation of the composition of (Ti, 

Al, V) (C, N), which allowed significant improvements in the wear life of tools. This was 

probably the beginning of numerous attempts to deposit complex multicomponent coatings, 

as recently reviewed by Jehn [122]. From the initial binary hard materials, multi-component 

coatings based on TiN and CrN have been developed by alloying these binary structures 

with metal and/or metalloid components. The nature and amount of alloying elements 

strongly influence their friction and wear behavior. Such investigations were extended to a 

large number of elements, including Zr, Hf, V, Nb, Cr, Mo, W, Al and Si, with various 

chemical combinations.  
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2.2.3 Coating structure  

2.2.3.1 Single-component coatings 

Most commercial PVD and CVD coatings consist of a one single layer, often containing one 

single phase. Probably, in many cases, cost-effectiveness explains the persistence of this 

first generation of tribological coatings in many industrial operations. The commercially 

successful single layer coatings include TiC, TiN, CrN, CrC, Al2O3, DLC, W2C, WC/C, 

MoS2, diamond, soft metals and some polymers. To fulfill the functional demands, an 

adhesion interlayer may be necessary.  

 

Considerable works have been devoted to carbonaceous materials, including DLC films. 

These amorphous structures which contain both sp2 and sp3 hybridizations, have hydrogen 

content that ranges between <1 and ≈50 at%, from which most of the structure’s properties 

are derived [123]. Among solid lubricants, they probably exhibit the widest range of friction 

and wear behavior.  

 

Diamond films are extremely hard and offer several outstanding properties, such as high 

mechanical strength, chemical inertness and very attractive friction properties. At present, 

several CVD techniques are available to produce high-quality diamond films with micro- 

and nancrystalline structures on various substrates. The high-quality diamond coatings 

produced by CVD exhibit most of the desired mechanical and tribological properties of 

natural diamond [94]. However, the surfaces of diamond coatings are generally rough with 

sharp facets, which need to be polished using expensive methods.  
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2.2.3.2 Multi-component coatings  

Multi-component coatings are made up of two or more constituents in the form of grains, 

particles or fibers. Depending upon the size and distribution of secondary phases in the 

primary matrix, a coating can either be called multiphase or composite. The term 

“composite” is used when one phase is dispersed in a matrix which is continuous; the term 

“multiphase” is used when both are equally present and none of them is continuous [124].  

 

Initially mononitride and monocarbide were produced as coating materials on various 

substrates to improve tribological and corrosion behavior. Table 2.2-1 lists various borides, 

carbides, nitrides and oxides which can be employed in mitigating corrosion and wear [125]. 

Table 2.2-2 shows various compounds used as coatings. They are mainly based on 

transitional metals and elements. Like metals forming alloys, these mononitrides and 

monocarbides can form binary nitrides and binary carbides (ternary phase systems) by 

adding another suitable metallic element to them. For example, titanium aluminium nitride 

films deposited on various metallic and PM materials have been proved to be effective in 

many applications including machining [126 ,127 ,128], dry metal forming [129 ] and 

molding [130], oxidation, wear and corrosion resistant materials at high temperature [131], 

biocompatible surgical implants [132] and prosthesis and dental alloys [133]. The lattice of 

Ti can be partly or fully substituted by other suitable elements. It has been proven by many 

academic and industry research groups that the thermo-mechanical properties and 

machining performance of Ti1-xAlxN coated tools depend on many factors including mainly 

the stoichiometry (Al/Ti ratio) [134,135], process conditions like bias variation in the 

cathodic arc evaporation to control microhardness, residual stresses and texture [136,137], 
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incorportation of the third metal to fabricate quaternary TiAlMeN coatings (Me=metal, e.g. 

Si, Cr, V, Hf, Nb and B) [138,139]. 

 

However, it is clear from Tables 2.2-2 and 2.2-3 that not all the compounds listed in Table 

2.2-1 are used as coatings. These hard compounds can be classified based on the bonding 

type-metallic, covalent or ionic (Table 2.2-4). The properties of each group of materials are 

qualitatively compared in Table 2.2-5; it is obvious that no one group has all the properties 

to the highest level.  

 

One of the ways to improve/optimize properties of a hard material is to substitute the metal 

lattice of the compound phase with another compatible metal, e.g. the lattice of TiN is partly 

substituted by Al. Another method is to vary the relative concentrations of the non-metallic 

elements. As an example, Figure 2.2-5 shows microhardness values of certain carbides, 

mixed carbides and carbonitrides [140].  

 

Even in a simple nitride, depending on the concentration ratios of Ti/Al, friction and wear 

properties of TiAlN films vary. For instance, in ref [141], the Al content in Ti1-xAlxN has 

been varied as 0.16<x<0.84 by varying the sputter pulse times and the N2 pressure, and 

these variations revealed that the coating with low Al content are columnar, whereas the 

coatings with the highest Al contents (x>0.85) are XPS amorphous with a glass morphology. 

The higher the aluminium content, the better the resistance to oxidation and high-

temperature wear. The aluminium in the coating material reacts with the oxygen in the air 

and forms a passive Al2O3 layer, which prevents the film from further intensive oxidation. 

Moreover, many properties can be achieved in binary and ternary coatings by alloying with 
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Cr which has very high potential for developing multifunctional protective coatings. It is 

known that Cr has a positive effect on the oxidation resistance of titanium carbides, borides, 

and nitrides and improves their wear resistance, especially at elevated temperatures [142]. A 

CrN-based CrTiAlN coating system has been recently developed by Teer Coatings to 

improve the performance of twist drills and extrusion dies [22,23]. It has been revealed that 

CrTiAlN coatings demonstrate a wear resistance significantly higher than TiAlN coatings 

[143]. Furthermore, CrTiAlN coatings exhibit a high oxidation resistance and good thermal 

stability, which are important factors for their excellent dry cutting performance [25,144].  

 

2.2.3.3 Multi-layer coatings 

Multilayered coatings are composed of a periodically repeated structure of lamellae of two 

or more materials, with thickness up to a few tens of a micrometer (if the thickness of each 

lamellae is in the nanometer range, these films may become a superlattice). According to 

Yashar and Sproul [145], multilayer coatings can be classified in two categories: iso-

structural (individual layers have the same structure) and non-isostructural (individual 

layers have different structure).  

 

As a first example of hard coating multilayers, the magnetron-sputtered system TiB2/TiC 

shall be mentioned. The TiC films first grow epitactic layer structures in (111)-orientation 

on (001)-TiB2 and form their ‘own’ (200)-TiC only after a certain transition zone. In 

contrast, TiB2 first grows untextured on (200)-TiC and only later is the (001)-texture formed. 

This allows the composition of a multilayer-structure with a sequence of (001)-TiB2/(111)-

TiC. Very thin individual layers show only untextured TiC/TiB2 multilayers [146]. Also in 

the system TiB(N)/TiN variations in the texture sequence are found for peridicties between 
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2.8 and 17 nm depending on the deposition conditions. A maximum in hardness is found for 

a periodicity of 10 nm and less [147]. Another type of multilayer coating consists of 

transition metal compounds alternating with carbon-based films, e.g. TiC/DLC (on a Ti/TiC 

interlayer) [148] or TiN/CNx (Figure 2.2-6) [149].  

 

In addition, nano-multilayer corresponds to the multilayer concept extrapolated to a 

thickness of individual layers ≦ 100 nm range. The major function of these structures is to 

significantly enhance hardness, fracture toughness and adhesion of the coatings, and thus to 

improve their wear resistance. When the thickness of one layer is several nanometers, a 

periodic structure of layers of two (or more) materials is a so called superlattice. 

Superlattice reflections are those present because the material is ordered such that the actual 

realspace unit cell is layer and thus the reciprocalspace cell is smaller. Some superlattices 

are listed here with regard to their significant improvement of tribological properties, 

TiAlN/TiAlCrN [150], TiCN/ZrCN [151], CrAlYN/CrN [152], and TiHfN/CrN [153].  

 

The properties of multi-layer coatings depend on the material selection, the deposition 

processes and kinetics of growth, and on the special nanoscale thin film architecture. The 

advantage of combining several structures and compositions within one coating include 

achievement of various individual physical properties (i.e. diffusion barrier + low friction), 

reduction of the mismatch in mechanical and chemical properties between the substrate and 

the coating (mainly to enhance adhesion), control of the residual strain and therefore the 

stress within the coatings, the ability to stop cracks during operation under severe conditions, 

and enhancement of hardness and/or toughness by allowing layers or phases to slide over 

each other when they deflect under load. Mechanisms for toughening layered ceramic 
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coatings [154] are schematically represented in Figure 2.2-7. These mechanisms include: (1) 

crack splitting at the boundaries of small sized grains; (2) crack deflection at the interface 

between layers; (3) reduction or stress concentration by interface opening, and (4) plastic 

deformation at the interface for energy dissipation and stress relaxation, “nanoplasticity”. 

The versatility of vacuum technology and emergence of multiplex/hybrid processes has led 

to considerable developments of this generation of coatings, which has recently found as 

major industrial applications [124]. 

 

2.2.3.4 Gradient and nanostructured coatings 

In recent years, the literature and the theoretical understanding of this new generation of 

films have been grown, in particular with regard to nanocrystallized and nanocomposite 

[155] coatings. On the macroscopic scale, the concept associated with this generation of 

coatings is maximization of hardness (H) while ensuring an adequately low elastic modulus 

(E), to provide an appropriate ‘elastic stain to failure,’ as determined by the H/E ratio [156]. 

On the nanometer scale, the mechanism corresponds to higher resistance to dislocation 

movement by precluding the formation of stable ones. This is achieved by decreasing the 

grain size, in accordance with the well-known Hall-Petch relationship, or by controlling the 

presence of interfaces between nanocrystallized (nc) metal nitride/metal [157], or between 

amorphous and nanocrystallized phases as with nc-MnN/α-Si3N4 (where M is Ti, W, V or 

other transition metal) [129]. The most recent developments to extend the use of nanometer-

scale coatings are probably devoted to their stability at high temperature, to avoid phase 

transformation, grain growth and diffusion processes. This seems to be possible if the layer 

materials are thermodynamically stable with respect to each other and are stable to form 

low-energy coherent interfaces [158].  
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Control of the structure and composition of coatings at nanoscale is an exciting scientific 

subject combined with an industrial challenge. This control can be achieved mainly through 

three structural configurations. The first configuration is the functionally graded coatings, 

which are regarded as the logical progression from multilayered coatings. Grading the 

composition by a drastic control of the deposition process has been achieved to combine a 

relatively hard TiAlN phase with a softer MoS2 phase with an increase in the latter phase 

towards the top surface [159]. One other benefit of grading the composition is that it 

improves adhesion of DLC-based coatings that contain metal additions. Such improvements 

have been obtained by Ti and TiC(H) graded underlayers to increase the wear resistance of 

DLC films [160,161]. Second, nanostructured coatings include nanocrystallized films (with 

grain sizes in the nanometer range) and nanocomposite films. Nanocomposites include 

structures that combine amorphous phases with crystallized ones, as widely emphasized by 

Veprek [162].  

 

In summary, as shown in Figure 2.2-8 [163] on the basis of the ‘simple’ hard coatings, the 

following concepts were used for an improvement of coating properties and performances: 

 

(1) Multi-component coatings and graded coatings; 

(2) Multiple-film coatings and multi-layers on the base of hard /hard, hard/soft, and hard 

lubricating components; and  

(3) Nano-structured coatings; 

 

A rating of the properties of different coating systems is extremely difficult, because they 

depend not only on the materials and their chemical distribution but most often even more 
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on the deposition processes and parameters. The same holds for the tribological 

performance as the counter body material, the load and probably lubrication govern to a 

large part the wear and friction behaviour.  

  

2.2.4 Technology for the deposition of tribological coatings 

2.2.4.1 Traditional methods 

Surface coating of tribological applications is associated with deposition temperatures 

ranging from room temperature to over 1000℃. It can be seen from Figure 2.2-9 [164], the 

coating thickness range from microns to severval millimeters by different means. The oldest 

and simplest method is to sprinkle, rub, or burnish the fine powders of solid lubricant on 

surfaces to be lubricated. Fine powders of certain solid lubricants (such as graphite and 

MoS2) were also used to lubricate sliding bearing surfaces with great success [165]. Such 

solid lubricants have been blended in an aerosol carrier and sprayed directly onto the 

surface to be lubricated. Powders of solid lubricants can be strongly bonded to a surface by 

appropriate adhesives and epoxy resins to provide a large wear life [166]. However, in most 

modern applications, thin films of solid lubricants are preferred over powders or bonded 

forms. They are typically deposited on surfaces by advanced vacuum deposition processes. 

(see 2.2.4.2 and 2.2.4.3)  

 

2.2.4.2 PVD & CVD 

Surface engineering, where the surface properties of components and tools are changed in a 

favourable way by deposition of surface coatings, offers an efficient way of controlling 
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friction and wear. The development of vacuum deposition techniques, chemical vapour 

deposition (CVD) and physical vapour deposition (PVD), has been of major impact, since 

they make it possible to deposit a thin layer of only a few micrometers on the surfaces of 

most engineering materials. The geometrical change is minimal and the surface layer may 

have properties covering an extremely wide range, from hard diamond and ceramic coatings 

to very soft polymeric or lamella-structured films [167]. 

 

The deposition of tribological coatings and solid lubricants may require deposition 

temperatures ranging from room temperature to more than 1000 ℃. The heat resistance of 

the substrate materials may strongly limit the number of possible coating/substrate 

combinations. For some methods, including CVD, high deposition temperatures can cause 

undesired phase transitions, softening and distortion of the substrate. For Al, Cu and Mg 

alloys the deposition temperatures should be below 100 ℃, for most steels, the deposition 

temperatures range from 100 to 500 ℃, whereas for ceramic materials the deposition 

temperatures can reach typically up to 1000 ℃. Normally, CVD processes induce 

significant temperature increase during deposition, ranging from 600 to 1000℃ (CVD). 

Thus, CVD coatings can only be applied to ceramic materials and cemented carbides. Some 

heat-resistance steels, such as high-speed steel (HSS), can be treated by all types of PVD 

and some low-temperature CVD processes.  

 

2.2.4.3 Magnetron sputtering 

In physical vapor deposition (PVD) processes, the coating is deposited in vacuum by 

condensation from a flux of neutral or ionized atoms of metals. Several PVD techniques are 
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available for deposition of hard coatings. Among them, cathodic arc vapor (plasma or arc 

ion plating) deposition, magnetron sputtering, and combined magnetron and arc processes 

are the most widely used techniques (Figure 2.2-10) [168,169,170,171].  

 

Magnetron sputtering is a powerful process which is currently used in industry for the 

production of thin films and coatings, mainly because (1) magnetron technology is 

relatively simple and reliable; (2) the deposition rate of coatings is sufficient to meet 

economic and functional requirements in industrial production and is fully comparable to 

that achieved in evaporation of coatings; (3) the sputter deposition process operates under 

different physical conditions compared to the evaporation which makes it possible to form 

films with new physical and functional properties and even films not obtainable by 

evaporation, e.g. alloy films; and (4) the sputtering sources can be scaled up into large 

industrial coaters. 

 

The basic sputtering process has been known and, despite its limitations, used for many 

years. The introduction of what are now termed ‘conventional’, or ‘balanced’ magnetron in 

the early 1970s [172,173] was an important step forward in overcoming these limitations. 

However, it was the development of the unbalanced magnetron in the late 1980s 

[174,175,176] and its incorporation into multi-source ‘closed-field’ systems in the early 

1990s [177,178] that transformed the capabilities of this technique, and has subsequently 

been responsible for its rise in importance. Closed-field unbalanced magnetron sputtering 

(CFUBMS) is an exceptionally versatile technique, suitable for the deposition of high-

quality, well-adhered films of a wide range of materials at commercially useful rates.  
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In an unbalanced magnetron the outer ring of magnets is strengthened relative to the central 

pole. A comparison between the plasma confinements obtained in different magnetron 

modes is shown schematically in Figure 2.2-11 [178]. In this case, not all the field lines are 

closed between the central and outer poles in the magnetron, but some are directed towards 

the substrate, and some secondary electrons are able to follow these field lines. 

Consequently, the plasma is no longer strongly confined to the target region, but is able to 

flow out towards the substrate. Thus, high ion currents can be extracted from the plasma 

without the need to externally bias the substrate [179,180,181].  

 

Despite the benefits offered by unbalanced magnetrons, it is still difficult to uniformly coat 

complex components at acceptable rates from a single source. Therefore, in order to 

commercially exploit this technology, multiple magnetron systems have been introduced. 

 

In a multiple magnetron system, the magnetic arrays in adjacent magnetrons can be 

configured with either identical, or opposite magnetic polarities. In the former case the 

configuration is described as ‘mirrored’ and in the latter case ‘closed field’, and both 

configurations [182] are shown in Figure 2.2-12. In the closed field configuration, the field 

lines are linked between the magnetrons. Losses to the chamber walls are low and the 

substrate lies in a high density plasma region [182,183].   

 

In addition, sputtering technology is continuously being improved not only through the 

improvement of existing sputtering systems, but also mainly through the development of a 

new system. This makes it possible to form films with new properties and to develop new 

technological processes for their production, such as low-pressure sputtering, pulsed 
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sputtering, coating material ions-assisted sputtering, high-rate sputtering and self-sputtering 

[184,185,186,187]. 

 

2.3 Properties and characterisation of nano-structured coatings 

2.3.1 Introduction 

Deposition of thin films with a few microns in thickness is a common technology to 

improve the performance of tools, dies, and moulds for many different applications [188]. 

An important requirement for these coatings is to blend together hardness, low friction, and 

toughness in a coating such that low wear is realized in diverse environments (e.g., hot, cold, 

wet, and vacuum). Thin film deposition has undergone tremendous advances and it is now 

possible to grow multilayered, functionally gradient, and nanocomposite coatings that have 

impressive properties, such as high hardness and good resistance to wear, corrosion and 

oxidation.  

 

As discussed in Section 2.2.4.1, adding different elements to an existing coating is one 

possibility to adapt some of its properties to a value desired for specific applications. This 

allows modification of the basic physical properties such as lattice constant, thermal 

expansion coefficient, optical properties, electrical properties, chemical reactivity, diffusion 

coefficient, elasticity, oxidation behavior, internal stress, grain size, texture, defects, and 

impurities, etc. altering the final performance. Some basic correlations between the basic 

parameters and final performance of the coating are known [189]. In this section, the 

desired properties of coatings for tools and their characterization methods are discussed.   
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2.3.2 Desired characteristic of nano-structured coatings 

2.3.2.1 Hardness 

As discussed in 2.1.2.1, the hardness of a material is one of the most important mechanical 

properties in wear and has been widely employed as a criterion to determine the abrasive 

wear resistance [190,191].   

 

The dependence of the abrasive wear resistance of metals on hardness is illustrated 

schematically in Figure 2.3-1 [192]. Generally, the abrasion resistance is proportional to the 

specimen hardness. The resistance against three-body abrasion is normally much higher 

than against two-body abrasion.  

 

However it should be mentioned that wear models are also often presented [193] in which 

both the Young’s modulus E and fracture toughness K1c play an important role (both are 

inversely related to the wear rate). Although hard materials are usually, because of their low 

ductility, susceptible to brittle fracture, pressures in magnetic storage devices are relatively 

low [194], despite the fact that some localized areas of high pressures may exist. Hence, one 

should try to optimize the hardness. Sundgren and Hentzell [195] have described a number 

of relations between microstructure and hardness in hard coatings.  

 

Alloy strengthening can be obtained in two ways. First, the chemical bonding between the 

involved atoms can be changed by the element added. Second, the hardness of a material 

would also be increased by hindering the dislocation movement by the introduced defects 

(precipitations, grain boundaries, diffusions, dislocations). For instance, adding aluminum 

to TiN can effectively increase its hardness because of the incorporation of smaller 
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aluminum atoms into the lattice of TiN leading and enhancing a local tensile stress (lattice 

distortion) [196,197]. Additionally, the internal stress in the films also contributes to the 

hardness of the film, but on the other hand large internal stress causes or favours the 

delamination of the film. Further approaches towards the development of innovative high 

performance coatings address the design of ternary and quarternary (or even multi-

elemental) multilayer and superlattice structures. Superlattice structures with more or less 

pronounced hardness modification were reported for material combinations like TiAlN/ZrN 

[198], and TiAlN/CrN [199]. A systematic approach to improve the performance of PVD 

coatings for tool applications is described by Loffler [200]. 

 

2.3.2.2 High temperature oxidation 

Surface oxidation at high temperatures is a concern not only for applications in hot 

environments, but also in cutting and drilling operations, where locally temperatures of up 

to 800℃ can be reached at cutting edges, because of server friction. Efforts have therefore 

been made to improve the high temperature oxidation behaviour of coatings. TiN, for 

example, oxidises severely at temperatures above 500℃. The concept of adding oxidation-

resistant elements such as Al, Zr and Cr during the deposition process of TiN has led to the 

development of several new single-phased materials derived from TiN such as TiAlN [160], 

and CrZrN [201]. In TiAlN, which is commercially available since the first half of the 90s, 

the introduction of aluminum in TiN increased the oxidation resistance from approximately 

550℃ to 800℃ and additionally an increased hardness is observed [160]. The enhanced 

oxidation resistance is a consequence of the formation of an aluminum-rich protective 

Al2O3 passive layer at the surface [202,203]. 
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2.3.2.3 Friction and wear 

The tribological behaviour of a coating can be influenced by adding different elements to 

the coating; however, a prediction of the influence of the elements added is usually not 

possible. The real response of a coating in a specific application has to be determined by 

conducting field tests [204,205]. In a tribological system many properties and parameters 

(the different material properties of the friction counterparts, environments, test conditions) 

interact with each other in a nonlinear and locally different way which prevents a reliable 

theoretical prediction of the real triboligical behavior of a coating from its composition. 

However, as discussed in Section 2.1.3, the tribological behaviour of coating could be 

predicted to some extent by its hardness for abrasive wear and by E/H for adhesive wear. 

 

While the classical hard coatings such as TiN, TiAlN, TiC, TiCN have friction coefficients 

of 0.5-0.8 against steel [ 206 ,207 ], amorphous DLC exhibits low friction coefficients 

between 0.05 and 0.2 against most materials except some polymers. These properties are the 

main reasons for its application as a low friction coating. Amorphous DLC, modified by 

alloying with different elements has, due to its outstanding properties, been studied 

extensively as a tribological coating as described in the review articles by Grill, Donnet, and 

Gangopadhyay [ 208 ,209 , 210 ,211 ] and is also used in several industrial applications 

[212,213,214]. 
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2.3.3 Mechanical property characterisation 

Mechanical property characterization is one of the essential parts in the research, 

development and successful application of a surface-engineering system.  

 

Indentation tests have been widely used as an economical and routine method for measuring 

the strength and stiffness of engineering materials [215]. Moreover, micro and nano-

indentation techniques have become major tools for investigating the micromechanical 

properties of small scale volumes (e.g. thin films, nano-wires, nano-tubes, fibers, small 

particles, electronics) due to difficulty in conducting the conventional techniques and 

because of their fast, precise, and non-destructive merit.  

 

2.3.3.1 Microindentation technology 

Hardness measurements using microindentation is simple: a load P is applied to a flat 

surface with a rigid pyramidal tip, and the resulting imprint area A measured. Early 

researchers proposed that the hardness H=P/A has been widely used in the materials 

community for more than half a century [216,217]. It is inspiring and slightly humbling to 

mention that these and other contact mechanics analyses prior to the 1970s were performed 

without the aid of computers. However, one factor that has limited the applicability of 

hardness tests on a smaller scale is the need to accurately measure imprint dimensions 

(contact area) after unloading.  

In addition, to obtain an intrinsic hardness value of a surface layer, the indentation depth 

should be at least less than one tenth the thickness of the surface layer concerned. And for 

tests on the cross section of a layered structure, the layer thickness must be at least twice as 
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large as the diagonal of the indentation. However, the thickness of surface engineered layers 

is only, in many cases, a few microns, and therefore this has limited the application of the 

micro indentation test for thin coatings. 

 

2.3.3.2 Nanoindentation 

Recently, technological advances in instrumentation, and especially computational power, 

have led to significant expansion in indentation interpretation. Depth-sensing indentation 

can now be used to accurately extract not only hardness, but the entire compressive stress-

strain curve of bulk metals, including elastic modulus, plastic stress-strain behaviour and 

creep directly from the load (P) vs. penetration depth (h) curve, without the need of 

measuring residual contact impression [218,219,220]. 

 

Nanoindentation testing is a fairly mature technique which was developed in the late 1970s 

and uses the recorded depth of penetration of an indenter into the specimen along with the 

measured applied load to determine the area of contact and hence the hardness of the test 

specimen. Many other mechanical properties can also be obtained from the experimental 

load-displacement curve, the most straight-forward being the elastic modulus. Other 

properties such as the strain-hardening index, fracture toughness, yield strength and residual 

stress can also be measured.  

 

The nanoindentation technique provides a means for the determination of the mechanical 

properties, such as hardness, elastic modulus, stress of surface layers and bulk materials, etc. 

 

Basic principles 
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The method was developed to measure the hardness and elastic modulus of a material from 

indentation load-displacement data obtained during one cycle of loading and unloading. A 

schematic representation of a typical data set obtained with a Berkovich indenter is 

presented in Figure 2.3-2 [222], where the parameter P designates the load and h the 

displacement relative to the initial underformed surface. For modelling purposes, 

deformation during loading is assumed to be both elastic and plastic in nature as the 

permanent hardness impression forms. During unloading, it is assumed that only the elastic 

displacements are recovered; it is the elastic nature of the unloading curve that facilitates the 

analysis. The exact procedure used to measure H and E is based on the unloading processes 

shown schematically in Figure 2.3-3 [221]. 

 

There are three important quantities that must be measured  from the P-h curves: the 

maximum load, Pmax, the maximum displacement, hmax, and the elastic unloading stiffness, 

S= d P/ d h, defined as the slope of the upper portion of the unloading curve during the 

initial stages of unloading (also called the contact stiffness). Another important quantity is 

the final depth, hf, the permanent depth of penetration after the indenter is fully unloaded.  

 

Oliver-Pharr model 

Oliver and Pharr proposed "an improved technique for determining hardness and elastic 

modulus using load and displacement sensing indentation experiments" [226] Accounting 

for the curvature in the unloading curve, a physically justifiable data-processing procedure 

was established to determine the contact depth which should be used in conjunction with the 

indenter shape function in order to obtain the contact area at peak load. The Oliver-Pharr 

method is outlined as follows. 



Chapter 2: Literature Review 

 43

 

In a schematic indentation load-displacement curve (Figure 2.3-2), the three key 

experimental parameters needed to calculate hardness (H) and modulus (E) is the peak load 

(Pmax) the contact depth at the peak load (hc) and the initial unloading contact stiffness (S). 

Using the equation 

A
SEr 2

π
=                     (2.3-1) 

which relates the reduced modulus, Er, to the indent contact area, A, and the unloading 

stiffness, S, and the equation 

A
PH max=                             (2.3-2) 

hardness H and elastic modulus Er can thus be calculated. 

 

Measurement of Indent Size 

In the traditional microindentation hardness (i.e., "microhardness") tests, the residual 

indented impression size needs to be measured in order to calculate the required hardness 

number.  

 

In the nanoindentation test, the accurate determination of indent sizes is important for the 

calculation of hardness (H) and elastic modulus (E) values. In addition to the indirect 

determination of indent sizes using the models and methods discussed previously, indent 

sizes can be directly determined in the following two ways: direct imaging of the indent left 

on the specimen surface, and three dimensional (3-D) imaging of the diamond indenter tip. 
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2.3.3.3 Microscratch 

The scratch test has been used for many years to provide a measure of coating/substrate 

adhesion [222,223,224]. In the normal configuration of the test a diamond stylus is drawn 

across the coated surface under an increasing load until some well-defined failure occurs at 

a load which is often termed the critical load, Lc. Many different failures are observed 

which include deformation or cracking in the coating or substrate [225,226,227]. In fact, the 

critical load may or may not be related to coating adhesion, depending on the actual failure 

mechanism, but can be used to rank the practical ‘scratch-resistance’ or ‘durability’ of the 

coating. If the failure does depend on adhesion then the critical load can be used as a semi-

quantitative measure of experimental adhesion [228,229].  

 

2.3.3.4 Nanotribology 

Nanotribology or microtribology is of increasing interest in recent years for tribologists. It is 

necessary not only for the fundamental understanding of the friction and wear mechanism, 

but also for the understanding of the interfacial phenomena and wear process in some real 

applications. For example, many surface engineered systems consist of very thin films on 

bulk material. In such cases, it is very difficult to use traditional tribological methods and 

theories to study and explain the tribological behaviour of these thin films for special 

applications. As a result, nanotribology has emerged as an essential research area for 

modern science and technology. 

Many publications can be found in literature and several papers have reviewed the progress 

in nanotribology [ 230 , 231 , 232 , 233 ]. For most of the researchers, an atomic force 

microscope (AFM) was used, where the AFM tip simulates a sharp single asperity travelling 



Chapter 2: Literature Review 

 45

over a surface at a small contact load. Microscratching, microwear and nanowear of solid 

surfaces and thin films have been studied with this technique. 

 

More recently, nanoindentation testers have also been used to study microscratching, 

microwear and nanowear by a few investigators [234,235,236]. The principle involved is 

similar to that in AFM, before and after scratching, the surface was scanned to record 

surface and residual wear depth profiles, respectively. Scratch depth, wear depth and critical 

sliding number for debonding events were obtained. Compared with an AFM, a 

nanoindentation tester has the ability to accurately control the load and record the surface 

profiles for each scan, leading to a clear image of the evolution of coatings failure.  

 

2.3.3.5 Micro mar resistance 

Mar/scratch resistance is crucial for coatings/materials in many applications 

[237,238,239,240], which refer to the light surface damages encountered in the real field 

that are usually shallow and narrow while scratches/scratching refer to the medium to severe 

damages. The scraping tip made a fairly neat trough in the surface, which consisted of a 

ditch with a smooth bottom and two well-shaped shoulders on both sides of the ditch, i.e. 

Figure 2.3-4 [241]. Cross-sections of the ditches and of the shoulders (if any) of the mars 

can be closely approximated by triangles. Figure 2.3-5 is an illustration of how to calculate 

the micro mar resistance (MMR) and three different responses of coatings to marring stress, 

based on the dimensions of the mar [244]. The largest inverted triangle represents the cross-

section area of the tip that penetrated the surface during the marring, which was calculated 

based on the real-time penetration depth during the marring and the shape of the tip. The 

difference between it and the cross-section area of the residual ditch reflects the immediate 
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elastic recovery. To make the MMR more consistent with the visual, judgment and other 

optical evaluations, the cross-section area of the trough was used to replace the cross-

sectional area of the ditch in the calculation of MMR [242,243,244]: 

troughN AFMMR /=                           (2.3-3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4 Summary 

The application of hard coatings on cutting tools and mechanical components has become a 

common practice in the manufacturing industry in the last two decades [245,246,247,248].  
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TiN and CrN are common PVD hard coatings, but the fracture toughness and oxidation 

resistance are far from satisfactory [12,18]. Later on, the ternary Cr-X-N coatings were 

increasingly adopted due to the improved properties. The “X” can be pointed as Ti [5,249], 

Al [250], Si [251], B [252], C [253], and Ni [254], etc. Cr-Al-N coatings were remarkable 

because of the higher hardness (25-32 GPa) and the enhanced oxidation resistance up to 

900℃ [255]. Recently, the quaternary Cr-Ti-Al-N coatings are desirable for the higher 

hardness and wear resistance [25,206,256,257]. However, these hard coatings have relative 

high coefficient of friction (0.7-0.9) [26,27] at room temperature requiring extra lubrication, 

which was the main limitation for the use of CrAlTiN coating. Self-lubricated Graphite-like 

carbon (GLC) coatings were reported to be effective in reducing friction coefficient due to 

the sheared graphitic carbon [31,32]. However, GLC was reported to be functional only 

under 400 ℃ in air [34], the oxidised process was explained in terms of the generation of a 

porous structure in the coating due to the vaporization of carbon oxide. With the porous 

structure and micro-cracks inside the oxide layer, the oxidation diffusion mechanism for 

oxygen transport changed from atomic diffusion to mass transfer, namely it cannot be used 

for the dry and high-speed cutting tools. Adding solid graphitic carbon into hard coatings 

may present the desirable combination of properties in terms of high hardness, good 

oxidation resistance and low friction. It has already been indicated that TiC1-xNx coating can 

present low-friction behaviour and relative good thermal properties [258]. The improved 

tribological properties are attributed to the formed amorphous carbon phase, and the 

oxidation resistance is achieved by the thin titanium oxide film, which was formed on the 

coating surface and can act as an oxygen diffusion barrier to protect the coatings underneath 

from oxidation. However, it has not been examined that the microstructure evolution, 
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mechanical and tribological properties, and oxidation behaviour of novel CrAlTiCN coating 

with solid graphite carbon doped. 
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Chapter 3: Materials and Experiments 

3.1 Sample preparation 

3.1.1 Substrate materials 

The material used in this study was M2 high speed steel (HSS) with a hardness HRC≧62 

and Si wafer. The final dimensions of HSS samples were 27.2 mm in diameter and 3 mm in 

thickness with the composition given in Table.3.1-1. The thickness of the Si wafer is 500 

μm. One flat surface of the disc was wet ground using silicon carbide papers from 120 grit 

down to 2400 grit. Some samples were mirror polished with 6 μm and 1 μm diamond pastes 

and finally polished with 0.25 μm colloidal silica, on a Struers DAP-7 automatic polisher. 

Samples were then washed with soapy water and cotton, degreased with acetone in an 

ultrasonic bath for 10 minutes, and dried with hot air.   

 

3.1.2 Preparation of cross-sectional samples 

Cross sections were cut from the samples with diamond cutting discs on a Struers 

Accutoom-5 cutting machine, nickel plated when necessary, and mounted in conductive 

Bakelite using MetPrep PA30 or Opal 400 mounting presses. The grinding, polishing and 

cleaning procedures were equivalent to the ones described before.  
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3.1.3 Preparation of TEM samples 

Figure 3.1-1 shows a schematic of XTEM sample preparation and the steps (1) to (5) will be 

explained as follows [259]. (1) Two slabs were glued using G-1 epoxy with the treated 

surface facing each other; (2) The assembly was cut to a thickness of less than 1 mm with 

the interface of the two glued treated layers in the centre followed by fine grinding and 

polishing to 50 μm in thickness; (3) This thin assembly was then glued to a 3 mm (o.d) and 

0.5 mm (i.d) brass reinforcing disc and the exposed side was further polished to a thickness 

of approximately less than 20 μm; (4) The sample is then placed in an ion beam miller 

(Gatan 691 Precision Ion Polisher System, PIPS™), making sure that the milling is done in 

interface of the glued surface; The two Ar guns were set at angles between 6° and 10° to ion 

mill the sample. The ion current was between 8 μA and 14 μA at 4 KeV, and the sample 

was constantly rotated. (5) The milling is terminated once a desired thin area around the 

interface of the glued surfaces is created. 

 

FEI Quanta-3D FEG Dual Beam System was also used to prepare the cross-sectional TEM 

samples of oxidised 0#, 3# and pin-on-disc wear track of 5# coating. Cross sections of each 

sample were cut using a diamond plate, and manually pre-thinned to ～20 μm in thickness; 

the same process was explained in 3.1.3 from step (1) to (2). Sections of the coating 

approximately 1×2 mm2 were attached to a sectioned copper grid using G-1 epoxy. The 

samples were then transferred to FIB miller for final thinning. Prior to milling, tungsten 

coating was deposited along the edge of the region from which the sample was to be 

prepared in order to promote uniform milling and preserve the edge structure, as shown in 

Figure 3.1-2. Rough mills were performed with beam currents from 50 nA to 5 nA at 30 KV 

and final polish mills at 5 KV 48 PA after final thinning at 1 nA～0.1 nA, 30 KV. 
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3.2 Surface coating and oxidation 

3.2.1 Coating deposition process 

Cr-Al-Ti-C-N coatings with different compositions were prepared with a Teer Coatings 

UDP 450 closed-field unbalanced magnetron sputtering ion plating (CFUBMSIP) system, 

as shown in Figure 3.2-1. The equipment was equipped with four unbalanced magnetrons 

uniformly arranged at 90° intervals around the vertical stainless steel vacuum chamber, 

which was approximately 425 mm internal diameter. Figure 3.2-2 shows a cross-section 

schematic drawing of arrangement plan of magnetron and substrate holder. Each magnetron 

was fitted with a target, which was approximately 10 mm thick, and 134×330 mm in size. 

One target each of chromium, titanium, aluminium and graphite were employed. The 

magnetrons were configured in a closed-field arrangement and were magnetically 

unbalanced, their outer poles being stronger than their centre poles. The substrate fixture 

comprised a central, rotating, vertical rod, supporting a pair of horizontal spoked rings 

between which the substrates were clamped. After cleaning, the samples were fixed on 

vertical rod of sample holder and the system was pumped down into a high vacuum 

condition with a background pressure less than 3.0×10-3 Pa, as shown in Figure 3.2-3. 

 

Firstly argon and then a mixture of argon and nitrogen gases was introduced into the 

chamber during the process, and the nitrogen content was controlled by plasma optical 

emission monitor (OEM) with a feedback control. The deposition started with a 20 min of 

argon plasma cleaning, followed by deposition of a Cr adhesion layer. A Cr-N monolithic 

nitride layer was then deposited reactively, and then the Cr content gradually reduced and 

the fractions of Ti and Al increased to produce a constant CrAlTiN multilayer. Finally the 
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carbon content was gradually induced and a composited CrAlTiCN multilayer was formed. 

Figure 3.2-4 schematically illustrates the layer structure of CrAlTi(C)N coating systems. 

The period constant of the resulting multilayer was adjusted by controlling the sputtering 

power of the targets and the rotation speed of the substrate turnable. The relative 

concentration of the elements in the coating was controlled by the relative sputtering power 

on each target during the deposition. The treatment parameters-bias, target current, gas 

composition and pressure-were selected after a literature survey on similar work [271]. The 

study was concerned with the effects of carbon content, which were controlled by the 

carbon target current from 0 A～5 A. Typical deposition conditions for the carbon doped 

CrAlTiCN coatings by the CFUBMSIP system are summarised in Table 3.2-1.  

 

3.2.2 Thermal oxidation treatment 

In order to evaluate the thermal stability of the designed carbon doped CrAlTiCN coatings 

for cutting tools, oxidation tests were performed in an air circulating BSF 12/10-2416-2116 

Elite thermal furnace with a maximum temperature of 1150℃. All the specimens were 

carefully degreased using suitable solvents and were heated up to 300℃, 400℃, 500℃, 600

℃, 700℃, 800℃, 900℃, and 1000℃, held for 2 h at the temperatures, and were cooled 

down in the furnace. 
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3.3 Characterisation and evaluation 

3.3.1 Phase and microstructure identification 

3.3.1.1 X-ray diffraction (XRD) 

The phase constituents in the coated and oxidised surfaces were analysed with an X’Pert 

Philips X-Radiation diffractometer using Cu-Kα radiation (Table 3.3-1). The diffraction 

patterns obtained were analysed and indexed using X’Pert High Score analytical software 

for automated powder diffraction. A computer analysed the intensity of the diffracted beam, 

recorded any change in beam intensity and automatically calculated the d-spacing 

corresponding to the peak. Interpretation of the X-ray results was undertaken using the 

PCPD cards. 

 

3.3.1.2 Glancing-angle X-ray diffraction (GAXRD) 

GAXRD measurements were performed on a D8 advance diffractometer (from Bruker AXS) 

equipped with a sealed X-ray tube with copper anode (λ=0.15418 nm) and with a Goebel 

mirror in the primary beam. A soller collimator with a divergence of 0.4° and a flat LiF 

monochromator were inserted into the diffracted beam. The LiF monochromator changes 

the intensity ratio between the spectral line Cu Kα2 and Cu Kα1 to I(CuKα2)/I(CuKα1) = 0.07. 

For detailed phase identification, the GAXRD line profile analysis was applied. In this 

method, the individual diffraction lines are approximated by analytical functions, in our 

case, the Pearson VII function was used.  
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Crystallite size was calculated from the dependence of the integral broadening of the XRD 

lines measured in the GAXRD geometry on the sine of the diffraction angle by taking the 

partial coherent of crystallites for X-rays into account [ 260 ]. For partially coherent 

nanocrystallites, i.e. for nano-sized crystallites with a very small mutual disorientation, 

XRD recognizes not only their size but also their mutual disorientation and the size of 

clusters that are composed of these partially coherent nanocrystallites [261]. 

 

3.3.1.3 Glow discharge optical spectroscopy (GDOES) 

A Leco GDS-750 unit was used to obtain the composition-depth profiles of coated samples. 

The method and measurement programme were calibrated using standard blocks of known 

composition, according to the instructions of the manufacturer.  

 

3.3.1.4 X-ray photoelectron spectroscopy (XPS) 

To understand the chemical composition of carbon doped CrAlTiCN coatings, X-ray 

Photoelectron Spectroscopy (XPS) with AXISULTRAX unit was conducted. The 

spectrometer was equipped with a hemispherical energy analyzer. An X-ray tube with 

monochromatic Al Kα radiation (hv =1486.6 ev) was used as signal excitation source. The 

investigation was carried out under vacuum of the order of 10-8 Pa. Samples were subjected 

to etching by argon ions with Ar+ ion bombardment of energy 4 KeV and ion current of 1.0 

μA to remove the top contamination layer, which can reduce the occurrence of preferential 

sputtering in the etching process. 
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3.3.1.5 Scanning electron microscopy (SEM) 

As-deposited, wear tracks, and oxidised samples were examined using a field emission 

JEOL7000 scanning electron microscope (SEM) with EDX and WDX capability. The depth 

profile of chemical compositions of selected oxidised samples was analysed using Oxford 

Instruments Inca EDX line scanning on the cross sections. The analysis was carried out both 

qualitatively to determine the existence of certain elements and quantitatively to determine 

the amount of each element present.  

 

3.3.1.6 Atomic force microscopy (AFM) 

Digital Instruments Dimension 3100 nanoscope, using Veeco NanoScope V.5.12r3 software 

and Veeco NP gold coated silicon nitride probes (Table 3.3-2) was used to examine the 

morphology of the coated surfaces. The AFM worked in a contact mode by scanning a 

sharp probe attached to the end of a cantilever across the sample surface while monitoring 

the change in cantilever deflection with a split photodiode detector. The distance the 

scanner moved vertically at each (x,y) data point was stored by the computer to form the 

topgraphic image of the sample surface.  

 

3.3.1.7 Transmission electron microscopy (TEM) 

TEM observations of the microstructural variation through the depth of surface modified 

layers and the interface structure was carried out by FEI Tecnai F20-FEG (EDX). The 

micrographs and electron diffraction pattern (EDP) were obtained on Kadak SO-163 eletron 

image film (31/4 in ×4 in) developed. CrAlTiCN-1#, 3#, and 5# coated samples, 0# and 3# 
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oxidised samples, and pin-on-disc wear tracks of 5# sample were selected for the TEM 

analysis. 

 

The electron energy loss spectroscopy (EELS) measurement was performed with a Gatan 

Parellel Electron Energy-loss Spectrometer attached to an FEI Tecnai F20. The energy 

resolution at the zero loss peak was 0.75～0.8 eV with a beam voltage of 200 KeV. The 

spectra were analysed with Gatan ELP 3.0 PEELS software. 

  

3.3.2 Surface topography measurement 

A stylus profilometer, KozakaLab Surfcorder SE 1700, was used to profile the wear tracks 

and to measure the surface roughness of the testing samples. Standards BS EN ISO 4287 

and 1134-1 were taken as reference for these measurements. Different pick up settings were 

selected depending on the objective of the measurement (Table 3.3-3). To obtain the wear 

volume, the area of the wear scar was calculated and then multiplying by the circumferential 

length of the wear track. 
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3.4 Mechanical property measurement 

3.4.1 Nano-indentation 

A mechanical properties microprobe (MPM), Nano-Test 600 machine (Micromaterials, UK) 

as shown in Figure 3.4-1 was employed to evaluate the surface hardness (H) and elastic 

modulus (E) of the coated and oxidised samples. The indentation tests were carried out 

normal to the surface and 10 points with 50 mN load were selected in order to determine the 

values of H and E. As discussed in Section 2.3.3.2, a standard procedure developed by 

Oliver and Pharr [262 ] was used to process the load-depth data. Accounting for the 

curvature in the unloading curve, a physically justifiable data-processing procedure was 

established to determine the contact depth which should be used in conjunction with the 

indenter shape function in order to obtain the contact area at peak load. The detailed method 

is outlined as follows. 

 

Elastic modulus 

When the indenter penetrates a surface layer, both elastic and plastic deformation will take 

place. On withdrawal of the indenter, elastic recovery will occur. The slope of the unloading 

curve can be used to measure the elastic properties of the material. Accordingly, the reduced 

modulus ( rE ) is obtained from the equation 

A
SEr ×=

2
π                      (3.4-1) 

where S (S=dp/dh) is the stiffness of the upper portion of the unloading curve, rE is the 

reduced modulus of both the sample and the indenter 
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E and v are Young’s modulus and Poisson’s ratio for the sample and iE (1141 GPa) and 

iv (0.07) are the same parameters for the indenter. 

 

The contact area A is determined by the geometry of the indenter and plastic depth ch , 

which is defined as the plastic displacement of the indenter in contact with the sample under 

load and is obtained from linear fitting 20% of the unloading curve at maximum load and 

extrapolating to zero load, the intercept is then the plastic depth ( ch ). 

dhdp
Phhc /

max
max ×−= ε                  (3.4-3) 

The value of ε depends on the geometry of the indenter. 

Once ch is determined from above Equation 3.4-3, the contact area can be calculated from 

the area function 

)( chAA =                        (3.4-4) 

The function )( chA can be calculated as a deviation from the ideal 25.24)( cc hhA =  

 

 

Hardness 

Hardness is a measure of resistance to local plastic deformation and can be expressed by the 

ratio: 

A
PH max=                        (3.4-5) 
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where maxP is the peak load applied to a given type of indenter and A is the projected area of 

contact at peak load evaluated from Equation 3.4-4.  

 

3.4.2 Micro mar resistance (MMR) tests 

To measure the ability of the samples against light damages, MMR was selected, using a 

conical shaped diamond tip with a radius of 1μ at the apex to scrape the surface of the 

samples under a constant force of 50 mN. A modified scanning probe microscope (SPM) 

was used to measure mar resistance. The tip of the high modulus probe is pressed into the 

coating surface, and the feedback loop of the instrument is set to hold the normal force 

constant. Depth of penetration is measured. The damages of all the samples made with 50 

mN belong to the mar category.  The data for calculating the three responses are obtained by 

measuring the depth of penetration and the dimensions of each mar made by a single scrape 

as described in Section 2.2.3.4. Then, the cross sectional area of the trough was measured 

and MMR of each sample was calculated, using the formula,     

MMR= FN/Atrough                      (3.4-6) 

 

Mar resistance is a complicated issue, and it cannot be characterized with a single quantity. 

In performing the scratching, the tip first makes a pre-scan under a light load to measure the 

surface profile along the line to be tested. The surface profile is stored and used to 

automatically correct subsequent data. During the scratching procedure, lateral motion, 

applied load, real-time penetration depth, and the frictional force encountered by the tip are 

recorded. Following the scratching, the tip will make a post-scan to measure the residual 

depth of the scratch. Curves of applied load, real-time penetration depth, residual depth, and 



Chapter 3: Materials and Experiments 

 60

frictional force versus the lateral movement of the tip can be plotted. The plot of the profiles 

which was made by the software allows to measure the dimensions of the mars with great 

accuracy, thus calculating the micro mar resistance, MMR, quantitatively [263]. 

 

3.4.3 Pin-on-disc unidirectional sliding wear tests 

Figure 3.4-2 shows a schematic view of the pin-on-disc tribometer. Disc samples were made 

to rotate against a stationary WC-Co ball of 5 mm in diameter at a speed of 420 r/min for 1 

h under non-lubricated conditions at room temperature. The normal contact load acting on 

the ball was 20 N and a wear track of 11 mm in diameter was produced. The friction was 

recorded during the wear tests. WC-Co balls were used during this test because of their high 

hardness and high wear resistance.  

 

The profile of all wear tracks left on the tested samples was measured at not less than 20 

different positions, by means of a KozakaLab Surfcorder SE1700 stylus profilometer. The 

obtained profile was integrated for the whole wear track and the total worn area could be 

thus calculated.  

 

3.4.4 Reciprocating sliding wear tests 

Figure 3.4-3 shows a schematic view of the reciprocating wear tester. During tests, the 

sample was glued to blocks and made to move linearly against a stationary WC-Co ball 

(surface finish as supplied) of 8 mm in diameter at an average speed of 10mms-1 for 100 m. 

The normal contact load acting on the ball was of 50 N and a wear scar of 10 mm in length 

was produced. The test was repeated twice. WC-Co balls were used.  
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3.4.5 Fretting wear tests 

Fretting wear tests were carried out on a horizontal servo-hydraulic fretting test machine 

(DS20 PLINT, France). The coated coupons were cut into blocks 10 mm by 10 mm by 7 

mm, and then clamped to another block. During the test, a hardened SAE 52100 steel ball of 

40 mm in diameter fretting against the specimen surfaces at an average speed of 3 Hz with 

100 μm displacement amplitude for repeated 5000 times at room temperature and 350℃. 

The normal contact load acting on the ball was 100 N. The test was repeated 4～5 times per 

condition.   
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3.5 Load bearing capacity evaluation 

3.5.1 Indentation tests 

The indentation technique has been used to characterise the material properties and of 

coating materials because it is simple and can be performed on small specimens. The load 

bearing capacity of the surface coated HSS samples was assessed by static micro-

indentation using a Mitutoyo MVK-H1 micro-hardness tester with a Vickers indenter under 

1 Kgf. An Olympus LEXT ols 3100 confocal microscope was used to investigate the 3D 

damage by the Vickers indenter after LBC tests. 

 

3.5.2 Micro-scratch tests  

Microscratch tests were carried out on the treated surface using a Teer ST 3001 friction-

monitored scratch tester. During the test, a linear-increased load was applied to the static 

indenter at a loading rate of 100 N/min, while the sample moved with a table at a speed of 

10 mm/min. The tip slid at the surface of samples under a linearly increasing normal force 

from 0 ~ 60 N. At the same time, the friction force was recorded and displayed as a function 

of load. The critical load, Lc, was defined as the load at which the friction force suddenly 

increased and surface layer failure occurred.  
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Chapter 4: Experimental Results  

 

4.1 Introduction 

The present investigation has been focused on the design, deposition and characterisation of 

novel carbon-doped low-friction nano-scale multilayer CrAlTiCN coatings. Systematic 

materials characterisation and property evaluation have been conducted for the as-deposited 

and oxidation tested novel carbon-doped CrAlTiCN coatings.  

 

Of the following sections, Section 4.2 concerns the effect of addition of carbon on the 

microstructure of the as-deposited carbon-doped CrAlTiCN coatings. Sections 4.3 and 4.4 

focus on the tribological behavior and surface damage resistance of the as-deposited novel 

carbon-doped CrAlTiCN coatings. Finally, Section 4.5 details the effect of high-temperature 

oxidation on the microstructural and properties of the carbon-doped CrAlTiCN coatings.    
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4.2 Microstructure of as-deposited coating materials 

4.2.1 Surface morphology and fractography   

Figure 4.2-1 illustrates the typical SEM surface morphologies of the as-deposited coatings. 

The referenced numbers of coatings are designated in terms of the carbon target current. As 

can be seen, all the coatings are dense and there is no observable porosity or cracks on the 

surface. The results for each coating were reproducible. The surface morphologies of the 

carbon-doped CrAlTiCN coatings (Figs. 4.2-1 b-f) are similar to that of carbon-free 

CrAlTiN coating (Fig. 4.2-1a). The coating surfaces reveal particle boundaries with an 

average diameter around 100～300 nm. This was further confirmed by three dimensional 

AFM studies, as illustrated in Figure 4.2-2, and the quantitative surface roughness values 

are summarised in Table 4.2-1. It can be seen that although the surface roughness of the 

carbon-doped CrAlTiCN coatings is in general higher than that of the carbon-free CrAlTiN 

coating, the difference is not significant if the experimental errors are taken into account.    

 

SEM micrographs presented in Figure 4.2-1 also show the fractural cross sections of the 

carbon-doped CrAlTiCN coatings deposited as well as carbon-free CrAlTiN coating for 

comparison. As can be seen, the total layer thickness for all the samples is about 4.5 μm, 

thus eliminating the potential influences of the layer thickness. All the coatings are densely 

packed and there is no sign of cracking at the coating-substrate interfaces or within the 

coatings, indicating that relatively good compactness has been achieved in general. The 

coatings deposited by the magnetron sputtering ion plating (MSIP) method were well 

adherent to the metal substrates.  
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However, as compared with carbon-free CrAlTiN-0# sample, the carbon-doped coatings 

presented two sub-layers with different contrasts, especially for CrAlTiCN-4# and 5# 

samples doped with a relatively higher carbon content (Figure 4.2-1e & f).  This was most 

probably caused by introducing the carbon atoms into the coatings, which changed their 

chemical composition and microstructure. More detailed investigations on the 

microstructure of these coatings will be carried out in the next section. 

 

4.2.2 Composition, structure and bonding  

Chemical composition 

Table 4.2-2 summarises the composition of the coatings which was analysed by WDX for 

the light elements of carbon and nitrogen and EDX for other Cr, Ti, and Al elements.  

 

It can be seen that the carbon content (Table 4.2-2) in the coatings increased with the 

current of the carbon target (Table 3.2-1) used during the deposition of these carbon-doped 

coatings. When increasing the carbon target current from 0 to 5A, the carbon content of the 

CrAlTiCN coatings was found to be increased to 24.34 at% for CrAlTiCN-5# coating. 

Except for CrAlTiCN-5# coating, the nitrogen content of all other deposited samples is 

similar in view of the experimental errors (3-5%) of WDX for light elements. 

 

In general, the absolute content of the metallic elements Cr, Al, and Ti decreased with 

increasing the carbon content in the carbon-doped CrAlTiCN coatings; however, the ratios 

of the metallic element contents did not change obviously in the doped coatings. This is in 

line with the fact that the current of Cr, Al, and Ti targets was constant during the deposition 

of all the coatings (Section 3.2.1). 
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Composition depth 

Figure 4.2-3 shows the composition depth profiles of carbon-doped CrAlTiCN-3# (Fig. 4.2-

3a) and 5# (Fig. 4.2-3b) coatings on HSS substrate. All the composition profiles fluctuated 

within the first ~ 0.20 µm (200 nm), which is most likely related to the surface roughness of 

these coatings [264]. The composition changed greatly at the coating-substrate interface, 

where the signals of iron and carbon (dissolved in steel) appeared while the signals 

belonging to the coating elements disappeared. However, the change of composition at the 

interface was not abrupt but gradual. This is because the bottom of the GDS craters was not 

ideally flat but rough and sputtering occurred at slightly different depths [265].  

 

According to the composition-depth profiles of species (Cr, Al, Ti, N, and C), the whole 

coating layer could be divided into several sublayers as indicated by dotted lines. A thin Cr 

adhesion sublayer (Sublayer I Cr) was observed above the substrate as indicated by the very 

high Cr peak. Then, the amount of Cr reduced while Ti, Al and N increase gradually until a 

short plateau was reached. This sublayer (Sublayer II Cr-N) seems to be dominated by Cr 

and N together with a small amount of Ti and Al. The relative amounts of Ti and Al in 

Sublayer III (CrAlTiN), corresponding to the plateau, increased and the ratio between the 

alloying elements of Cr, Ti, Al and N is fairly constant. Finally, a long composition plateau 

was formed when carbon was doped into the sublayer (Sublayer IV CrAlTiCN).    

 

The main difference between Figs. 4.2-3a and b is the level of carbon in the carbon-doped 

surface layer, which is in line with the different carbon target current used to deposit these 

two coatings. More detailed layer structure investigation by TEM will be presented in the 

next section. 
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 Crystal structure  

Figure 4.2-4 shows the XRD patterns obtained from the carbon-free and carbon-doped 

coatings. Due to the substrate contribution, it is difficult to distinguish the peaks accurately. 

A tentative indexing shown in Fig. 4.2-4 displayed fcc (111), (200), (220), and (311) 

reflections of all the coatings, and the (110), (200), (211), and (220) reflections of the bcc α-

Fe substrate. The intensity of the peaks is relatively weak except the peak around 2θ=450, 

which was superimposed with α-Fe (110) from the substrate.   

 

In order to avoid substrate interference effects, glancing angle XRD was employed and the 

typical GAXRD charts are given in Figure 4.2-5. As shown in Fig. 4.2-5a, a set of fcc (111), 

(200), (220), (311), (222), and (400) reflections were obtained from the coatings, which 

confirmed the indexes in Figure 4.2-4. The results of the XRD line fitting are shown in Figs. 

4.2-5b, c, and d on the examples of the low-angle diffraction lines. A slight increase of the 

peak broadening with increasing the carbon contents in the coatings is observed, which 

might indicate an increase in stress and a decrease in grain size [ 266 ]. Table 4.2-3 

summarises the lattice parameters and average crystallite size of the fcc phase in the 

respective samples, which were calculated using the sin2Ψ method [267,268]. The lattice 

parameter for stoichiometric TiN (0.424 nm), CrN (0.417 nm) [269,270], TiC (0.431 nm) 

[271], AlN (0.412 nm) [272] and TiCN (0.426 nm) [273], the calculated lattice parameters 

of this fcc structure does not exactly match any known phases, but is close to CrN. 

 

It could be concluded that the most likely phase existing in the carbon-doped CrAlTiCN 

coatings is the fcc structured intermixed (Cr, Al, Ti)(C, N) phases in general. Further 

elucidation has been achieved through the following XPS and TEM studies. 
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Bonding status  

Figure 4.2-6 illustrates a typical XPS survey spectrum of carbon-doped CrAlTiCN-5# 

coating, which shows Cr2p, O1s, Ti2p, N1s, C1s, Al2s, Cr2s, Cr3s and Cr3p peaks. 

Although cleaning was conducted at the beginning using Ar+ to remove the top 

contamination layer, the oxygen peak was still observable in all the coatings. This might be 

caused by the residual air present in the chamber during deposition period. The Ti2p and 

Al2s XPS spectra were very week.  

 

Figure 4.2-7 shows the spectra of Cr2p, C1s, N1s and O1s from CrAlTiCN-5# coating. In 

the fitting spectrum of Cr2p, four group peaks are observed, as shown in Figure 4.2-7a. The 

Cr2p levels at 574.6 eV is typical for the metallic Cr0 binding state [274]. The Cr2p peak 

centers at 575.6eV could be assigned to CrN [275], while the tail of the peak could be 

assigned to Cr-O [276]. In addition, the shoulder at a higher binding energy of 583.5 eV is 

allocated to Cr-C and/or Cr-N bonds [277,278].  

 

The C1s spectrum (Figure 4.2-7b) shows an asymmetrical peak, which can be fitted into 

two components located at 282.3 and 284.6 eV. The 282.3 eV peak could be attributed to 

Cr-C binding and the peak at 284.6 eV is typical for amorphous free carbon sitting in a 

graphic environment [279].  

 

Figure 4.2-7c shows the spectrum of N1s which were ideally fitted by two peaks. The peak 

at 396.9 eV and Cr2p 575.6 eV peak positions are in agreement with the literature data for 

the CrN phase [280,281,282,283]. Moreover, the Cr2N (397.2±0.2 eV) [284,285] could also 

be detected. 
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The peaks of O1s are decomposed to two peaks, as shown in Figure 4.2-7d. The maximum 

peak at 531.4±0.2 eV is Cr-O [286,287], which is consistent with the Cr2p peak at 576.9 eV. 

The secondary peak could be allocated to the presence of Al2O3 (531.8 eV) [288]. 

 

4.2.3 Multilayer microstructure 

Figure 4.2-8 shows a typical bright field cross-sectional TEM observation and EDX 

compositional analysis of carbon-doped CrAlTiCN-5# coating. It can be seen that the 

coating contained four sublayers starting from the substrate: a pure chromium interface 

layer (Sublayers I); a chromium nitrides layer (Sublayers II); a CrAlTiN alternative layer 

(Sublayers III); and a carbon-doped composited CrAlTiCN sublayer (Sublayer IV).  

 

Sublayers I, II and III 

Figure 4.2-9 shows a higher magnification bright field TEM taken from Sublayers I & II. As 

shown in Figures 4.2-8 and 4.2-9a, Sublayer I is a pure chromium interface layer and 

presents a dense columnar structure with the column diameter on the order of 150～170 nm. 

The average thickness of Sublayer I is about 0.5 μm.  

 

When N2 was introduced with Cr deposition, a chromium nitride layer (Sublayer II) was 

formed. The TEM microstructure shown in Figure 4.2-9a indicates that, similar to Sublayer 

I, the chromium nitride Sublayer II is also columnar structured but the diameter of the 

columns is smaller (30～50 nm) than the columns in Sublayer I. Figure 4.2-9b shows a 

selected area diffraction (SAD) pattern taken form the region “A” in the interface between 
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sublayers I and II, and confirms that the sublayers are mainly composed of Cr, CrN and 

Cr2N. 

 

Figure 4.2-10 exhibits an image of adjacent to the interface between Sublayer III and 

Sublayer IV. It can be seen the multilayer structure with interval thickness of 5～10 nm 

(Figures 4.2-10a & d) was formed in Sublayer III and Sublayer IV, which could be 

produced when samples were rotating against the different targets: chromium, aluminum, 

and titanium during the deposition process. The thickness of a single interval is based on the 

target power and substrate rotation (rev./min) [289]. In addition, as shown in Fig. 4.2-10d, 

there existed many finer columnar microstructures with the columnar diameter around 20～

25 nm. These columns do not extend through the entire Sublayer III but they nucleated and 

grew following the growth direction of the whole coating. Figure 4.2-10c shows an SAD 

pattern taken from the region of Sublayer III, which confirmed a typical fcc structure with 

the crystal constant a=0.414 nm. It can be noticed that (111) and (200) rings are not 

homogenous. The discontinuous bright arcs may indicate preferential orientation of the 

crystal. 

  

Sublayer IV 

The effect of carbon content on the microstructure of Sublayer IV was studied. Figure 4.2-

11 shows the bright field TEM micrographs taken from the Sublayer IV of carbon-doped 

CrAlTiCN-1# sample. As shown in Figure 4.2-11a, it consists of an obvious multilayer 

structure. The thickness of each interval is around 5～10 nm. The columnar structure with 

the diameter in the range of 100～200 nm is also observed. Figure 4.2-11b shows a high 

resolution TEM observation of the marked region in Fig. 4.2-11a. The lattice fringes which 
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showed apparent crystalline structure continuously cross the multilayer boundaries (Figure 

4.2-11b). The origin of the contrast between intervals in this case in the TEM bright field 

mode might be due to the slightly changed compositions during the deposition. The brighter 

regions might be dominated by the lighter element - carbon. Figure 4.2-11c is a selected 

area diffraction (SAD) pattern, which corresponds to a typical single cubic B1 NaCl-type 

structure. 

 

Figure 4.2-12 shows the bright field TEM micrographs taken from the Sublayer IV of the 

carbon-doped CrAlTiCN-3# sample. As shown in Figure 4.2-12a, the columnar structure 

with the diameter in the range of 200-300 nm can be observed. High resolution TEM which 

taken from the marked region proved that the lattice fringes discontinued across the 

multilayer boundaries (Fig. 4.2-12b). Within the area defined as amorphous phase small 

ordered domains are found (circled in Fig.4.2-12b), suggesting that its structure is indeed a 

dispersion of nanocrystals in an amorphous matrix. The inset SAD pattern shown in Figure 

4.2-12c is slightly diffused compared to the CrAlTiCN-1# sample (Figure 4.2-11c).  

 

Figure 4.2-13 shows the bright field TEM micrographs taken from the Sublayer IV of 

carbon-doped CrAlTiCN-5# sample. The HRTEM image (Fig. 4.2-13b) taken from the 

marked region indicated a larger ratio of the bright region to the dark region, which could be 

also composed of amorphous carbon cluster and nanocrystalline structures (circled in Fig. 

4.2-13b), respectively. As shown in Figure 4.2-13c, the inset electron diffraction pattern 

presents continuous rings superimposed with diffused rings, indicating a random orientation 

and no texture are presented in this sublayer.  
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In summary, comparisons of TEM observations in the carbon-doped CrAlTiCN layer or 

Sublayer IV revealed some common microstructure features. Firstly, Sublayer IV is 

characterised by columnar and multilayer structures as shown in Figures 4.2-10～13. 

Secondly, Sublayer IV possesses a single cubic B1 NaCl-type structure as evidenced by the 

SAD patterns shown in Figures 4.2-11c, 4.2-12c and 4.2-13c. However, by comparing the 

SAD patterns from these three samples, it can be seen that the diffraction rings changed 

from sharp/inhomogenous to diffuse/homogenous with the increasing of carbon contents, 

which indicates a reduction of crystallization and loss of preferred orientation as also clearly 

indicated in the high resolution TEM microstructures (Figures 4.2-11b, 4.2-12b, and 4.2-

13b).  

 

Figure 4.2-14 shows that the crystallinity and the size of the crystals changed along the 

distance from the interface between Sublayer III and Sublayer IV for carbon-doped 

CrAlTiCN-5# coating, which has the highest carbon content (23.34 at%). It can be seen 

from Figure 4.2-14a that when carbon was first introduced into the coating, the nano-scale 

multi-layer shows relatively sharp interfaces between the dark region and the bright region. 

Clear lattice fringes can be observed in the dark crystalline region while the bright carbon-

rich regions are mainly amorphous embedded with few fine crystals. In the middle areas of 

the (Cr, Al, Ti)(C, N) sublayer (Figure 4.2-14b), the amorphous carbon layer is thicker and 

the crystals are smaller than those showed in Figure 4.2-14a. At the outermost area, only 

extremely fine crystal clusters are embedded in the amorphous structure in both dark and 

bright regions (Figure 4.2-14c).  
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4.3 Mechanical properties 

4.3.1 Nano-hardness and Young’s modulus 

The hardness (H) and Young’s modulus (E) of CrAlTiN and CrAlTiCN coatings were 

probed using the nano-indentation technique [ 290 ]. A typical load/unload against 

displacement curve is plotted in Figure 4.3-1.  

 

Figure 4.3-2 summarises the surface nano-mechanical properties in terms of hardness and 

Young’s modulus of CrAlTiN and carbon-doped CrAlTiCN nano-scale multilayer coatings. 

It can be seen that both the hardness and Young’s modulus decreased gradually with 

increasing the carbon content from 1# (2.34 at% C) to 3# (9.65 at% C) and then flattened 

out once the carbon content exceeded about 10% for 4# (12.53 at% C) and 5# (24.34 at% C) 

samples (Table 4.2-2).   

 

4.3.2 Cracking and toughness characteristics 

The toughness characteristics of carbon-free CrAlTiN coating and carbon-doped CrAlTiCN 

coatings were investigated using a Vickers micro-indenter under a load of 1000g. Figure 

4.3-3 shows laser confocal images of indentation crack patterns formed in the CrAlTiN-0# 

and carbon-doped CrAlTiCN (1#-5#) coatings during micro-indentation.   

 

It can be seen from Figure 4.3-3 that none of the coatings exhibit obvious delamination at 

the indentation corners, indicative of relatively good bonding between the surface coating 

and hardened high-speed steel substrate. Although cracks were observed for all the coatings, 

the crack patterns varied with the carbon content of the coatings.  
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As shown in 4.3-3a, in addition to circular or ring cracks,  the corner area of the indented 

surface of CrAlTiN (0# without carbon) coating revealed damage in the form of radial 

cracks (as circled), which is a typical feature of a brittle material [291]. When the CrAlTiN 

coating was doped with carbon, the length of the radial cracks formed in the carbon-doped 

CrAlTiCN coatings which reduced gradually with the increase in carbon content (especially 

for 3#-5# CrAlTiCN coatings). Indeed, almost no appreciable radial cracks could be 

observed for the CrAlTiCN-5# coating containing the highest carbon content (24.34 at%). 

Clearly, addition of carbon can effectively improve the toughness of the hard CrAlTiN 

coating.  

 

In order to acquire supplementary (especially 3-D) damage feature information, depth 

profile across the Vickers indentation impressions were generated based on laser confocal 

microscopy and the results are given in Figure 4.3-4. The V-shaped lines (i.e. cross section 

of the indentation surfaces) of the CrAlTiN-0# (without carbon) coating was evidently 

zigzagged, indicative of severe cracking of the surface coatings; on the other hand, the V-

shaped lines of the carbon-doped CrAlTiCN-1# and 5# became much smoother.  

 

It is also noted from Figure 4.3-4 that the final displacement of the indentations after 

complete unloading decreased from 1# to 5# samples as the carbon content was increased in 

the coatings, which is evidence of increased elastic recovery of the carbon-doped coatings.  
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4.3.3 Scratch resistance 

As discussed in Chapter 3, two scratching techniques, micro-mar and micro-scratch, were 

used to investigate the effect of carbon addition on the scratch resistance of carbon-doped 

CrAlTiCN coatings. 

 

Micro-mar resistance (MMR) 

Mar resistance is a measure of a material’s ability to resist surface damage under a light 

load. Figure 4.3-5 shows typical surface morphologies and the cross-sectional profiles of the 

mars formed in bench-mark CrAlTiN coating (0# without carbon) and carbon-doped 

CrAlTiCN coating (5# with highest carbon content). It is evidenced in Figure 4.3-5 that 

plastic deformation dominated in the mars of these coatings; two small shoulders sit on both 

sides of the ditch, indicating that the material was displaced from the ditch to build these 

two shoulders during the marring.  

 

Depths vs. the scratching distance plots measured in micro-mar resistance tests are shown in 

Figure 4.3-6. In all the plots, the lower curve is the real-time scratching depth, and the upper 

curve is the residual depth of the ditch. It can be seen that the real time depth increased from 

about 280 nm for 0# sample (Figure 4.3-6a) to about 290 nm for 1# sample (Figure 4.3-6b) 

and to around 350 nm for 5# sample (Figure 4.3-6c). This is largely in line with the 

hardness trend (Figure 4.3-2), the real time depth (i.e. total depth) of the mars formed 

increased with the decrease in hardness.   

 

 Be aware of that the real-time scratching depth is normally different from the residual depth 

because the elastic deformation of the scratched surface might make a large contribution to 
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the real-time scratching depth. The distance between the real-time depth and the residual 

depth indicated the elastic recovery of the coatings when the force was removed. With the 

higher carbon content involved in the coating, it can be seen that this difference increased 

from about 200 nm for CrAlTiCN 1# sample (Fig. 4.3-6b) to around 250 nm for 5# sample 

(Fig. 4.3-6c), which indicated the improved elastic deformation capacity.  

 

Table 4.3-1 lists the values of MMR of the deposited samples measured under a constant 

force of 50 mN. Comparing these values, measurable before the cracking or delamination 

occurred, the bench-mark CrAlTiN coating (0# without carbon) had a higher MMR than the 

CrAlTiCN coatings (1#-5#). This is consistent with their nano-hardness values (Figure 4.3-

2).  

 

Scratch resistance 

Scratch tests were carried out on 0#, 3#, and 5# samples under both normal and tangential 

forces. Figure 4.3-7 shows the load-friction force curves for these three representative 

samples. The 1st derivative curve shows the instantaneous rate of change of the friction. It 

can be seen that the friction force increased smoothly with the increase in the applied load 

before it fluctuated greatly when the applied load reached a critical value – the so-called the 

first critical load Lc. As summarised in Table 4.3-2, the critical load decreased from around 

42 N for 0# sample to around 36 N for 3# sample and around 33 N for 5# sample.  

 

Figure 4.3-8 shows the typical surface scratched damage morphologies of CrAlTiCN-3# 

sample. At the beginning of the scratch test, the scratch track looked smooth without any 

cracks (Figure 4.3-8a). Elastic and plastic deformation might have occurred. Then, as shown 
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in Figure 4.3-8b, buckling cracks on both sides further occurred and fish bone like cracks 

can be seen inside the track. Further increase in load led to the buckle spallation inside the 

track (Figure 4.3-8c), which is corresponding to the critical load Lc.  

 

Figures 4.3-9～4.3-11 show the EDX analysis of the scratched end region of the track for 

CrAlTiN-0#, CrAlTiCN-3# and 5# samples, respectively. It can be seen for these three 

coatings, Fe element can only be detected at the very end of the scratch track, which means 

delamination appeared between coatings and substrate. In general, relatively good adhesion 

ability can be attained.  
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4.4 Tribological behaviour  

4.4.1 Unidirectional sliding wear 

Pin-on-Disc unidirectional sliding wear tests were carried out to evaluate the tribological 

properties of carbon-doped CrAlTiCN coatings as well as the benchmark carbon-free 

CrAlTiN coating for comparison. The evolutions of the carbon content vs. frictional 

coefficient of the coatings are shown in Table 4.4-1. It can be seen that the coefficient of 

friction (CoF) of the benchmark carbon-free CrAlTiN-0# coating is about 0.655, typical 

value for hard ceramic coatings [292,293]. When a small amount (2.34 at%) of carbon was 

added (i.e. 1# sample), the CoF of CrAlTiCN-1# coating was effectively reduced from 

0.655 to 0.420 representing a reduction of 36%. Further increase in carbon content did not 

lead to significant reduction in CoF until a larger amount of carbon (24.34 at% for 5# 

sample) was added, which led to a CoF of 0.350. Clearly, doping of carbon can effectively 

reduce the frictional coefficients of hard ceramic CrAlTiN coatings—one of the objectives 

of this PhD studies.  

 

The wear of the tested coatings in terms of wear volume lost was quantitatively measured 

and the results are compared in Figure 4.4-1a. In general, the wear volume lost of the 

carbon-doped CrAlTiCN coatings reduced with increasing carbon content under the current 

test conditions. In particular, the high-carbon CrAlTiCN 3#, 4# and 5# samples exhibited 

obviously reduced worn volumes in relative to the carbon-free CrAlTiN coating. 
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Observations of the wear tracks under SEM revealed differences in morphology (Figures 

4.4-2～5), and the EDX compositional analysis of the wear surfaces also showed the 

difference in their compositions.  

 

Figure 4.4-2 shows the typical wear morphologies of carbon-free CrAlTiN-0# coating after 

unidirectional sliding against a WC-Co ball under unlubricated conditions at room 

temperature. It can be seen that the surface of undoped CrAlTiN-0# coating was severely 

damaged as evidenced by many coarse scratches. Chipping or cracking can be clearly found 

from the higher magnification image (Figure 4.4-2b). This suggests that under the present 

test conditions severe abrasive wear occurred and a micro-cutting effect may constitute the 

main wear mechanism [294]. In this case, the protruding parts of the counterpart exert 

plowing and cutting effects on the coatings surface. In addition, EDX compositional 

analysis has probed a relatively high amount of W in the wear surface after sliding against a 

WC-Co ball, indicative of the transfer of W from the counterpart to coating surface (i.e. 

adhesive wear). Furthermore, a large amount of oxygen was detected from the wear surface, 

indicating that oxidational wear also played a role in the wear of the undoped CrAlTiN-0# 

coatings. 

 

Figure 4.4-3 shows the wear morphologies of carbon-doped CrAlTiCN-1# sample, which 

looks similar to that of the undoped CrAlTiN-0# coating. However, comparison indicated 

that although both surfaces were dominated by abrasive wear, the scratches formed in 

carbon-doped CrAlTiCN-1# sample were finer and more even than those formed in the 

undoped CrAlTiN-0# sample. In addition, the W content is relatively lower in the wear 
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surface of 1# sample (1.05 at%) than in 0# sample (3.35 at%). This implies that the addition 

of a small amount of carbon can reduce the transfer of W from the WC-Co ball counterpart.  

 

Figures 4.4-4 and 4.4-5 show the wear morphologies of high-carbon doped CrAlTiCN 

samples (3# and 5#) respectively, which indicate great difference from those for undoped 

(0#, Fig. 4.4-2) or low-carbon doped (1#, Fig. 4.4-3) samples. It can be seen that the 

coatings were lightly scratched with fine and evenly distributed wear grooves. Higher 

magnification images (Figs. 4.4-4b & 4.4-5b) further revealed that most of the wear surface 

was of regular pattern with fine rumple features, which is most probably consisted of 

compacted wear debris. Small patches (B in Figs. 4.4-4b and 4.4-5b) with different surface 

morphologies were also observed, which contained a relatively lower amount of W as 

compared with the rest of the surfaces.  

 

In general, no iron was identified by EDX examination from the wear surfaces with 

different morphologies. This indicates that although the surface coating was worn by the 

sliding of WC-Co balls, the substrate was still covered by the surface coating.  

 

4.4.2 Reciprocating sliding wear 

Reciprocating sliding wear tests against a WC-Co ball without lubrication at room 

temperature was also carried out. The results of wear volume lost are summarised in Figure 

4.4-1b, and it is clear that no obvious difference in wear volume lost can be found among all 

the tested coatings.  
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Figures 4.4-6～8 show the SEM micrographs and EDX compositional analysis of the wear 

tracks formed in CrAlTiN-0#, CrAlTiCN-3# and 5# samples by the sliding of a counterpart 

WC-Co ball. In general, the wear tracks formed in these coatings appeared similar around 

300 μm wide with dark wear debris piled up at both ends of the wear track. Observations 

under higher magnifications revealed fine scratches along the sliding direction inside the 

wear track and small black spots. Parallel cracks perpendicular to the sliding direction were 

observed near both the ends of the wear track under a higher magnification.  

 

EDX compositional analysis indicated that the composition inside the wear track was 

similar to that of the original surface and Fe was not detected. This demonstrated that wear 

occurred within the thickness of the coating. The dark areas near the ends of the wear track 

contained 40-50 at% oxygen with almost no nitrogen. This implied that oxidation wear 

occurred during the reciprocating sliding and the generated oxide debris was pushed to the 

both ends of the wear track, compacted by repeated rubbing of WC-Co ball and eventually 

cracks under repeated compression and tension stressing. A certain amount of W was also 

detected from the wear debris piled up near the both ends of the wear track, which was 

thought to be transferred from the counterpart WC-Co ball.  

 

Therefore, rubbing of WC-Co ball caused abrasive and oxidative wear of the CrAlTiN and 

CrAlTiCN coatings. The similar wear morphologies and wear mechanisms can explain the 

almost the same wear resistance of these coatings under reciprocating sliding conditions 

against a WC-Co ball under unlubricated conditions at room temperature.  
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4.4.3 Fretting wear 

The fretting wear behaviour of CrAlTiN and CrAlTiCN coatings were investigated by 

fretting against a hardened SAE 52100 steel ball at a speed of 3HZ with an 100 micron 

displacement amplitude repeated 5000 times at both room temperature and 350℃. 

 
Figure 4.4-9 shows the effect of carbon content on the fretting wear of undoped CrAlTiN 

(0#) and carbon-doped CrAlTiCN coatings (1#-5#) at room temperature and 350℃. In 

general, the doping of carbon possesses a moderate effect on the fretting wear of these 

coatings at room temperature and 350℃ under the current fretting wear test conditions. 

However, some differences have also been observed in terms of the effect of the carbon 

content and the test temperatures.  

 

It can be seen from Figure 4.4-9a that the high-carbon doped 4# and 5# CrAlTiCN coatings 

show a marginally lower fretting wear volume lost compared with the undoped 0# and low-

carbon doped CrAlTiCN 1#, 2# and 3# samples. This is probably attributed to the friction-

reduction of the high carbon content in 4# and 5# CrAlTiCN coatings. On the other hand, 

for 350℃ testing, as shown in Figure 4.4-9b, the fretting wear increased of these coatings 

with increasing the carbon doped in the coatings, which will be discussed in the next 

chapter. It is of interest to note that except for sample 5#, the fretting wear for all other 

samples was lower when tested at 350℃ than at room temperature.  

 

The fretting scars formed were examined using microscopy and the typical optical images 

and SEM/EDX results are given in Figures 4.4-10～13. Figure 4.4-10 shows optical 

micrographs of the wear scar after testing at room temperature. The wear carters can be 
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divided into two regions: (1) middle regions, which correspond to the main scar and (2) end 

regions corresponding to the edges of the scar. The micrographs show wear scratches 

parallel to the sliding directions, indicative of the abrasion action during the fretting wear 

processes.  

 

Figures 4.4-11～13 are the SEM micrographs showing the wear scars formed in room 

temperature tested 0#, 1# and 4# samples. Fine scratches were observed within the middle 

region of wear scars. Note that shear stress pushed the wear debris out of the scar which was 

piled up at the end region of the wear scar with a number of cracks and loose particles. EDX 

compositional analysis (Fig. 4.4-12) proved that the wear debris formed in all the coatings is 

rich in oxygen and therefore oxidation should have played an important role in the fretting 

of these coatings.  

 

The EDX compositional analyses also reveal a very high amount of Fe especially in the 

wear debris piled up at the ends of wear scars. Judging by the fact that the wear depth 

(around 1μm) is much smaller than the coating thickness (around 4.5μm), the Fe detected by 

EDX should be contributed by the SAE 52100 counterpart ball. Hence, damage of the 

counterpart balls and transfer of steel from the ball to the coating surface occurred. 

 

Figures 4.4-14～17 show the optical and SEM micrographs of the wear scars formed at 350

℃ tested 0#, 1# and 4# samples. In general, the wear scar morphologies of the 350℃ 

fretting wear tested coatings are similar to that for the room temperature tested coatings 

(Figs. 4.4-10～13). As shown in Figure 4.4-14, the wear scar formed in carbon-doped 

CrAlTiCN-5# sample is larger than that formed in carbon-free CrAlTiN-0# sample, which 
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is consistent with the fretting wear results shown in Figure 4.4-9b. It is also noted that while 

the wear scar formed in CrAlTiN-0# sample showed only one oval-shaped edge crater, the 

wear scar formed in CrAlTiCN-5# sample showed a white oval-shaped band outside the 

grey middle region. As shown in Figure 4.4-14, the fretting scar have not penetrated the top 

layer (i.e. Sublayer IV in Fig. 4.2-10) 

 

Qualitatively, EDX compositional analyses (Fig. 4.4-16) of the wear debris formed from the 

350℃ fretting wear tested coatings demonstrate similar elements to that formed from room-

temperature testing. However, the quantitative measurement indicated that more oxygen 

was detected from the debris which formed from the 350℃ fretting wear tested coatings.  
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4.5 Effect of high-temperature 

4.5.1 Microstructure and composition of the oxidised layers 

SEM observations on the surfaces of as-deposited and oxidised coatings at different 

temperatures were conducted and some representative SEM images are shown in Figure 

4.5-1. Below 700 ℃ , all the oxidised coating surfaces looked similar, which were 

characterised by fine homogenous particles (100～300 nm) on dense coating surfaces 

without visible cracks. In general, the size of these surface particles increased with 

increasing the oxidation temperature. However, when oxidised at 800 ℃ or above, some 

surface particles grown faster than the others as evidenced by some large particles (Fig. 4.5-

1). 

 

Obvious difference in surface morphologies between the benchmark carbon-free 

CrAlTiCN-0# and carbon-doped CrAlTiCN coatings were observed when they were 

oxidised at 1000 ℃. While most of the particles on the 1000 ℃ oxidised CrAlTiN-0# 

sample were still round-shaped with a diameter in the range of 500 to 700 nm (Fig. 4.5-1a), 

the 1000 ℃ oxidised CrAlTiCN-4# and CrAlTiCN-5# coatings were characterised large 

and irregular particles (Figs. 4.5-1b & c). It should be pointed out that after oxidation at 

1000℃ , the surface of CrAlTiCN-5# sample was severely damaged as evidenced by 

extremely coarse oxide particles and cracks (Figure 4.5-1c). It is expected that spallation 

may have occurred to the surface of oxidised CrAlTiCN-5# sample at 1000 ℃. 
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Figure 4.5-2 shows the quantitatively measured roughness results, which further support the 

observations made above based on SEM studies. As shown in Figure 4.5-2, in general the 

Ra of the oxidised samples increased slowly with oxidation temperature, but no appreciable 

difference in Ra can be identified among these samples when oxidised from 400 ℃ to 900 

℃. However, after oxidation at 1000 ℃, an abrupt increase can be found in all the coatings. 

Whist the Ra for 0#-4# coatings showed a similar value around 0.11 μm, the Ra for 5# 

coating increased to around 0.16 μm, which was caused by the spallation during oxidation 

at 1000 ℃ (Figure 4.5-1c).  

 

Figures 4.5-3, 4 & 5 show the BSE (back scattered electron) cross-sectional morphologies 

of the oxide layers formed on the coatings after oxidation for 2 hrs at 400 ℃, 900 ℃, and 

1000 ℃ for 0#, 1#, and 5# samples, respectively. In general, for all the samples, the oxide 

layer became thicker with increasing the oxidation temperature.  

 

After oxidation at 400 ℃, for 0#, 1#, and 5# samples, a relatively flat and clear interface 

existed between the top coatings (CrAlTiN-0# and CrAlTiCN-1# & 5#) and the protective 

Ni plating layer. Due to the poor adhesion between the electro-deposited Ni layers and the 

oxidised coatings, an obvious gap with a dark contrast can be seen in Figures 4.5-3, 4.5-4 

and 4.5-5. 

 

For 900 ℃ oxidised samples, an oxide scale was formed and the interface between the top 

oxide layers and the protective Ni plating layers became zigzagged. It can be seen that the 

thickness of the oxide layer formed on 0# and 1# samples at 900 ℃ is similar (0.4～0.5 μm). 
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However, for the higher carbon 5# sample (Figure 4.5-5), the thickness of the top oxide 

layer was much thicker (around 1.0 μm) and rougher as compared with that of the 0# and 1# 

samples.  

 

After oxidation at 1000 ℃, a thick and rough oxide layer was observed for 0# and 1# 

samples (Figs. 4.5-3 & 4). However, an oxide layer with a dark grey colour was formed on 

the 1000 ℃  oxidised CrAlTiCN-5# sample. It can be deduced from the continuous 

distribution of the carbide band from the HSS substrate into the oxide layer that this is most 

probably an oxide layer of HSS formed when the CrAlTiCN surface was spallated from the 

HSS substrate (Fig. 4.5-5). This will be discussed in more detail in the next section (Fig. 

4.5-8).  

 

Figures 4.5-6, 4.5-7, and 4.5-8 show the chemical composition profiles along the lines 

marked in the cross-sectional images of the CrAlTiN-0#, CrAlTiCN-1#, and 5# coatings 

after oxidation for 2 hrs at 900 ℃ and 1000 ℃. 

 

In general, the oxide scale formed at 900 ℃ for these three coatings and at 1000 ℃ for 0# 

and 1# samples contained oxygen, chromium, titanium, and aluminium but the Cr, Ti and 

Al concentration in the surface oxide scale was lower than that in the as-deposited coatings 

mainly because of oxidation. The oxygen content in the main coating part is very low 

implying that oxygen was trapped by the chromium, titanium, and aluminium atoms in the 

top layer.  
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However, no Cr, Ti or Al was detected but the surface oxide layer was rich in iron for 

CrAlTiCN-5# sample (Fig. 4.5-8). This is in line with the observations made in the last 

section that the surface coating was severely oxidised and most probably came off (i.e. 

spallation). 

 

4.5.2 Phase identification 

Figure 4.5-9 shows the typical XRD reflection patterns of the 0#, 3#, and 5# coatings before 

and after oxidation at different temperatures. It can be seen that except for 1000 ℃ oxidised 

CrAlTiCN-5# sample, all other oxidised samples exhibited peaks corresponding to a B1-

NaCl (rock-salt) structure, indicating that the fcc (Cr, Al, Ti) (C, N) phase formed in the as-

deposited coating was still remained.  It is noted that the peak around 2θ=45°is the Fe (110) 

reflection from the M2 tool steel substrate. In addition, the peaks belonging to the fcc (Cr, 

Al, Ti) (C, N) became sharp with increasing oxidation temperature. This might imply the 

crystallinity of the coating is improved and/or the relaxation of the residual stress during the 

oxidation process. 

 

Oxides appeared in the XRD patterns after oxidation in air at 700 ℃ can be indexed to 

Al2O3 (No. 00-010-0414). After oxidation at 800 ℃, a mixture of Cr2O3 (No.00-038-1479), 

TiO (No. 00-088-0117), and Al2O3 (No. 00-010-0414) can be identified. For the CrAlTiCN-

5# sample (Fig. 4.5-9c), the coating was completely delaminated from the HSS substrate 

since only Fe3O4 and Fe2O3 phases were detected, which is consistent with the SEM and 

EDX analysis (Fig. 4.5-5c & 4.5-8).  
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4.5.3 TEM observations 

In order to further clarify the microstructural changes of the coatings after thermal oxidation, 

cross-sectional TEM observations were carried out on 800 ℃ oxidised CrAlTiN-0# and 

CrAlTiCN-3# coatings. 

  

CrAlTiN-0# sample 

As has been discussed in Section 4.2.3, CrAlTiCN-5# sample contained four sublayers 

(starting from the HSS substrate): a pure chromium interface layer (Sublayer I), a columnar 

chromium nitrides layer (Sublayer II), a CrAlTiN alternative columnar layer (Sublayer III) 

and a carbon-containing nano-scale multilayer (Sublayer IV). As discussed in Chapter 3, all 

the coatings were processed with the same deposition parameters before carbon was 

introduced (Table 3.2-1). Therefore, it is reasonable to assume that the as-deposited 

CrAlTiN-0# coating would contain similar sublayers I, II and III as observed in the as-

deposited CrAlTiCN-5# coating although Sublayer III is much thicker in the CrAlTiN-0# 

sample than in the CrAlTiCN-5# coating.  

 

Figure 4.5-10 shows the TEM cross-sectional microstructure of 800 ℃ oxidised CrAlTiN-

0# coating, which revealed a four-sublayer structure. Sublayers Ⅰ, Ⅱ and Ⅲ are still 

distinguishable with a top oxide layer of about 100～120 nm in thickness. Two large holes 

were found within Sublayer III, which were formed during the FIB thinning process. No 

obvious crack or delamination was found along the interfaces between these sublayers and 

between Sublayer I and the substrate.  
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Figure 4.5-11 shows a bright field TEM micrograph taken from sublayersⅠandⅡ. As 

shown in Fig. 4.5-11a, although sublayersⅠandⅡ in the oxidised coating are still columnar 

structured, the interface between these two layers is blurry and can not be distinguished 

clearly as compared to the as-deposited coating (Fig. 4.2-9a). The average diameter of 

columns increased to 200～250 nm, which is around five times as larger as the columns in 

Sublayer Ⅱ in the as-deposited coating. Figure 4.5-11c shows a selected area diffraction 

pattern taken from the region “A”, which confirmed that the sublayers ⅠandⅡ are still 

composed of mixed Cr2N, Cr, and CrN.  

 

Figure 4.5-12 reveals the microstructure of the Sublayer Ⅲ and the top oxide layer. As can 

be seen in Figure 4.5-12a, the multilayer feature in Sublayer Ⅲ was preserved with interval 

thickness of around 5-10 nm even after oxidation at 800 ℃. Many small grains throughout 

the whole Sublayer Ⅲ can also be observed with the contrast coming from different 

diffraction conditions of these grains in this case in the TEM bright field mode. Figure 4.5-

12b shows an SAD pattern taken from the region of Sublayer Ⅲ, which showed continuous 

fcc rings.  

 

As shown in Figure 4.5-12a, some fink white lines can be observed at the interface between 

Sublayer Ⅲ and the top oxide layer as well as along the columnar boundaries in Sublayer 

Ⅲ, which could be the oxygen diffusion path (see the next chapter). As shown in Figure 

4.5-12c, the SAD pattern which contributed from region “A” can be confimed to Al2O3 (No. 

00-010-0414), Cr2O3 (No. 00-038-1479) and TiO (No. 00-088-0117), which is consistent 

with the XRD results (Figure 4.5-9). 



Chapter 4: Experimental Results 

 91

 CrAlTiCN-3# sample 

In order to investigate the effect of carbon addition on the oxidation resistance of CrAlTiCN 

coatings, the 800 ℃ oxidised carbon-doped CrAlTiCN-3# sample was also studied using 

XTEM.  

 

Figure 4.5-13 shows a bright field cross-sectional TEM observation of CrAlTiCN-3# 

sample, which presented a five-sublayer structure formed on the HSS substrate: a pure 

chromium interface layer (Sublayer I), a chromium nitrides layer (Sublayer II), a CrAlTiN 

alternative layer (Sublayer III), a carbon-containing nano-scale layer (Sublayer IV), and a 

top oxide layer. It can be observed that the microstructure of sublayersⅠ, Ⅱ and Ⅲ in the 

800 ℃ oxidised CrAlTiCN-3# sample are similar to the corresponding sublayers in the 800 

℃ oxidised CrAlTiN-0# sample (Figs. 4.5-11 & 12). This is in line with the fact that before 

carbon was introduced, the same deposition conditions were used for all the coatings 

investigated in the project (see Section 3.2.1).   

 

Figure 4.5-14 shows a bright field TEM micrograph taken from the Sublayer IV and oxide 

layer of oxidised CrAlTiCN-3# sample. As shown in Figure 4.5-14a, the thickness of the 

top oxide layer is about 200～230 nm, which is thicker than that (100~120 nm) in the 

oxidised CrAlTiN-0# sample (Fig. 4.5-12a). The same types of oxides, Cr2O3, Al2O3, and 

TiO, were identified from the oxide top layer formed on both oxidised CrAlTiN-0# and 

CrAlTiCN-3# samples. Therefore, it seems that the doping of carbon will to some extent 

increase the oxidation rate of CrAlTiN coatings.  
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Compare with Sublayer Ⅳ in the as-deposited CrAlTiCN-3# coating (Fig. 4.2-12), TEM 

observations on the oxidation treated Sublayer Ⅳ (Fig. 4.5-14) revealed some 

microstructural features. Firstly, the interfaces between the nano multilayers in the oxidation 

treated sublayer became blurred probably because of diffusion at high-temperature. 

Secondly, the SAD diffraction patterns (Figures 4.5-14b and c) taken from the oxidation 

treated Sublayer Ⅳ revealed Cr23C6 was formed, which was not found in the Sublayer IV of 

the as-deposited CrAlTiCN-3# sample (Figure 4.2-12c). Thirdly, Sublayer Ⅳ (carbon-

doped layer) still possessed a single cubic B1 NaCl-type structure as evidenced by the SAD 

pattern shown in Figure 4.5-14b.  

 

4.5.4 Mechanical properties 

The nano-hardness and Young’s modulus of oxidised CrAlTiN and CrAlTiCN coatings 

were measured and the results are plotted as a function of the oxidising temperature in 

Figure 4.5-15. It can be seen that after oxidation at 300 ℃, the hardness of all the oxidised 

coatings increased slightly; however, further increase in temperature led to a gradual 

decrease in hardness for all the oxidised samples. Similar trend was observed for the effect 

of oxidation temperature on the Young’s modulus of the oxidised samples; but it is noted 

that the Young’s modulus of the 900 ℃ oxidised samples was in general slightly higher than 

that for the 800 ℃ oxidised samples.  

 

The formation of porous oxide layer especially at high temperatures could influence on the 

hardness and Young’s modulus (Figures 4.5-3～4.5-5). It is noticed that in general the 
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experimental errors increased with increasing the oxidation temperatures, which could be 

attributed to the increased surface roughness (Fig. 4.5-2). 

 

Dynamic load bearing capacity of 700 ℃ oxidised 0#, 3#, and 5# samples was evaluated by 

micro scratching under both normal and tangential forces. It can be seen from Figure 4.5-16 

that the friction force first increased linearly with the applied normal load before it became 

fluctuated at a certain load, which is normally defined as the first critical load Lc. 

Comparison of the friction force-load curves for 0#, 3# and 5# samples revealed that the 

critical load for these three samples was about 7N, 9N and 11N, respectively (Table 4.5-1).   

 

The scratch tracks produced were studied by SEM observations and the typical damage 

morphologies are compared in Figure 4.5-17. It can be seen that when the applied normal 

load was below Lc, the bottom of the scratch track looked smooth without any appreciable 

damage for all these three samples. During this stage, elastic and plastic deformation 

occurred in the coating material under the tip. However, some radial cracks were observed 

along the both edges of the scratch track produced in 0# sample. The length of the smooth 

scratch track increased in the order of 0#, 3# and 5# samples, which is in good agreement 

with the Lc values extracted from the friction force-load curves (Table 4.5-1).  As shown in 

Fig. 4.5-17, once the applied load was above Lc, damage of the oxidised coatings occurred.  

More detailed work was conducted to study the failure modes of these oxidised coating 

surfaces during scratch.  

 

Figure 4.5-18 shows the typical damage morphologies of 700 ℃/2 hrs oxidised CrAlTiN-0# 

sample. As shown in Figure 4.5-18b, radial cracks can be clearly seen along the both sides 
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of the scratch track in the first stage. When the load was further increased to above the 

critical load Lc, chippings and brittle tensile cracks were observed (Figures 4.5-18c & d). 

Although obvious cracking and chipping formed during scratching, it seems that the 

substrate was not exposed, which is evidenced by the fact that only little Fe can be detected 

even at the end of the scratch track by EDX (Figures 4.5-19, 4.3-20). This implies that the 

bonding between the coating and the substrate was strong enough to resist such interfacial 

failure as spallation.  

 

 Figures 4.3-21 & 4.3-23 show the scratch tracks of carbon-doped CrAlTiCN-3# & 5# 

samples under the same scratch conditions. It can be seen from Figs. 4.3-21a & 4.3-23a that 

no radial cracks but only deformation can be observed in the 3# and 5# samples when the 

applied load was below the Lc, and buckling has occurred at the critical load; chippings 

were also found at the last edge of the scratch track, but the size is smaller than that on the 

0# coating (Fig. 4.5-18). Figure 4.3-22 & 4.3-24 show the EDX compositional analysis at 

the end region of the scratch tracks. Only a small amount of Fe could be detected from the 

scratched surface. This would be an indication of good adhesion between the coatings and 

the HSS substrate.  
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Chapter 5: Interpretations and Discussion of Results 

5.1 Effect of carbon on coating microstructure 

In closed-field unbalanced magnetron sputtering processes, the coatings are deposited in 

vacuum by condensation from a flux of neutral or ionized atoms of metals, which are 

ejected mechanically from a target by the impact of ions or energetic neutral atoms [295]. 

The growth speed, binding state and surface temperature during the deposition of coating 

depend on the atomic masses of the participating ionized atoms, which are mainly 

controlled by the voltage and current of targets and thus the ion bombardment of the 

growing film [296, 297]. In this section, the effect of carbon addition on the microstructure 

of the carbon-doped CrAlTiCN coatings will be discussed.  

 

5.1.1 Structure & binding state 

Crystal structure 

As stated in Section 4.2, the carbon-doped CrAlTiCN coatings possessed an fcc structure 

similar to that of CrN, i.e. B1 (NaCl) structure. As indicated by Shtansky and Loffer 

[298,299], the Cr-Al-Ti-N-C system has no equilibrium phase. Aluminium and titanium 

atoms are substituted for chromium atoms in the lattice. These substitutions are attributed to 

the unbalanced magnetron sputtering ion-plating (MSIP) effect during the deposition. The 

magnetic and electrical fields and the voltage and current of targets can promote the 

formation of a metastable (Cr, Al, Ti) (C, N) single phase rather than mixed phases of 

CrN(C), AlN and TiN(C). Similar substitutions occurred using this MSIP technique has 

already been demonstrated by other researchers [300,301]. 
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As shown in Figure 4.2-7, the XPS spectra of the Cr-Al-Ti-C-N coatings show the binding 

energy peak of N1s due to Cr-N bond (Fig. 4.2-7c), but does not show the energy peaks due 

to Ti-N and Al-N bonds. Similarly, the binding energy peak of C1s due to Cr-C bond can be 

clearly seen from Fig. 4.2-7b, but no peaks corresponding to Ti-C or Al-C could be detected 

from the carbon-doped CrAlTiCN coatings. This has further supposed the fact that the 

carbon containing CrAlTiCN coatings has a similar crystal structure to that of CrN phase 

with part of Cr being substituted by Al and Ti and part of N with C, i.e. (Cr, Al, Ti) (C, N). 

  

It is noted from Table 4.2-3 that the lattice parameter of the CrAlTiCN coatings is smaller 

than that of CrN (0.417 nm). Substitution of Cr atoms with Al, Ti atoms and substitution of 

N atom with C in the B1-NaCl structure of CrN are expected to result in lattice expansion 

since the atomic radii of the substituting Ti and C atoms are larger than that of Cr and N, as 

shown in Table 5.1-1. However, a contracted lattice was observed for the carbon-doped 

CrAlTiCN-1#, 3#, and 5# coatings (Table 4.2-3). A similar trend was also reported by 

Suzuki et al. [302] that the unit cell parameter of (Cr, Al) N and (Ti, Al) N coatings 

decrease as the Al to Cr ratio and Al to Ti ratio increased. This decrease in the unit cell 

parameter with Al is considered to be due to the much smaller ionic radius of Al than Cr 

and Ti. In addition, the deviations from stoichiometric composition of the (Cr, Al, Ti) (C, N) 

phase, i.e. with 50 at% (N, C) and 50 at% (Cr, Al, Ti), may have resulted in unoccupied 

atomic lattice positions, thus distorting the entire lattice and leading to reduction in the 

lattice parameter of the coatings. Furthermore, it may be also related to the metastable phase 

formed during the coating process [303]. Therefore, the observed seemingly abnormal 

lattice contraction could be attributed to the smaller ionic radius of Al and the non-

equilibrium nature of magnetic sputtering.  
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Binding state of C  

As observed in Section 4.2.2, when increasing the carbon content, the abundant carbon 

atoms start to build a disordered and irregular phase. The C-C bonding revealed by XPS 

(Figure 4.2-7b) with a bonding energy of 284.6 eV should be corresponded to C sitting in a 

sp2 dominated graphitic environment. 

 

The electron energy loss spectroscopy (EELS) technique has been employed to provide 

complementary information on the hybridization state of carbon atoms in the newly 

developed CrAlTiCN coatings. Figure 5.1-1 shows the near-edge fine structures as observed 

on the C-K edge after background subtraction and deconvolution from the low-loss part for 

CrAlTiCN-5# coating. It can be seen that the fingerprints observed in the C-K edge 

(1s→ *π ) clearly correspond to the π -bonding structure of graphite. Attention should be 

paid to the 1s→ *π transition peak, lying at the bottom of the conduction band around 285 

eV, which is characteristic of sp2-hybridisation of carbon atoms. The typical feature has also 

been discovered by other researchers [304,305,306] in carbon based coatings containing 

sp2-hybridisation.  

 

In summary, the (Cr, Al, Ti) (C, N) phase has an fcc B1-NaCl structure which is similar to 

that of CrN. The addition of carbon into CrAlTiN coatings will not cause appreciable 

change in their crystal structure but carbon will partially substitute N when the carbon 

content is below its solubility in the coatings; excessive carbon would form a phase 

dominated by a sp2 C-C bonding when carbon content exceeds its solubility in the (Cr, Al, 

Ti) (C, N) coatings. 
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5.1.2 Formation of nano-composite coatings 

The concept of multilayered coatings has been recognised to be useful tool for tailoring and 

adjusting the properties of thin coatings according to specific application requirement. This 

is mainly because the multilayer structure can enhance the performance of coatings by 

stopping or slowing down the propagation of cracks [307]. As evidenced in cross-sectional 

TEM results (Figures 4.2-10 ～ 4.2-13), nano-scale multilayers have been formed in 

sublayers III and IV of the newly designed carbon-doped CrAlTiCN coatings. 

   

The formation of such nano-scale multilayers is facilitated by the development of modern 

PVD technologies. In a typical closed-field unbalanced magnetron sputtering system, such 

as the UDP 450 system used in this work, targets stand vertically along the circular chamber 

wall while the substrates mounted on the sample carousel rotate around the central axis of 

the chamber (three-fold holder rotation) and pass the targets one by one at a chosen distance 

(Figures 3.2-2 and 3.2-3). The landing of sputtered atoms is interrupted in-between the 

targets and ion impingement may fluctuate to a large extent [12]. For magnetron sputtering, 

the mixture of Ar and N2 gases occurs in the plasma everywhere inside the chamber and 

provides some of the species for deposition that continuously reach the growing film front 

from all angles and at any position. The thickness of each single layer is based on the target 

power, deposition rate, distance between targets and samples, and substrate rotation speed. 

The influence of a specific rotation on the multilayer structure has been studied by Panjan et 

al. [308]. 

 

As shown in Figures 4.2-10～4.2-14, the multilayers were perpendicular to the coatings 

growth direction and the inter-multilayer spacing was almost constant, indicating that the 
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isostructured nano-scale multilayer was formed. This structure, which has tremendous 

interface density, makes interfacial and surface energies contribution predominant. This is 

supposed to encourage the stabilization of metastable structures and increase the solubility 

limit in immiscible system, thus enhancing the mechanical or tribological properties 

[309,310]. 

 

In addition, waviness was observed in the multilayers (Figure 5.1-2) and the further 

deposition of the multilayers did not result in the enhancement of the waviness. The closed-

filed unbalanced magnetron can supply the efficient and highly energetic sources form 

[311]. However, the relatively low deposition temperature and hence the low adatom 

mobility on the coating surface did not promote the formation of a flat surface. Therefore, 

wavy topography was formed in addition to the columnar growth of the coating. The similar 

feature was also observed by Gubisch et al. in the growth of WC/C multilayers [312]. 

 

Close observation of Sublayer Ⅲ revealed many fine-grained columns (Figure 4.2-10d) 

which grow perpendicularly to the substrate but do not extend through the entire thickness 

of the coating. This might be defined by low coating temperature compared to melting point 

and high-energetic bombardment of the growing coatings [313,314,315].  

 

5.1.3 Growth model  

Due to an appropriate choice of the deposition conditions, the stability of the nanocomposite 

coatings consisting of fcc (Cr, Al, Ti) (C, N) phase and amorphous carbon seems to be fairly 

high. Although a varying quantity of carbon was introduced in Sublayer Ⅳ of carbon-doped 
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CrAlTiCN 1#-5# coatings, no trace of crystalline carbides could be identified in the SAD 

patterns taken from 1#, 3#, and 5# samples (Figures 4.2-10～4.2-13). The construction of 

the nanocomposite is carbon content dependent, the higher the carbon content, the lower the 

crystalinity and the weaker the preferred orientation of the coatings. A similar relationship 

was also found in the Ti-Al-N-C coating systems [316]. This phenomenon  is most likely 

related to the position of the carbon atoms within the coating structures during film growth 

procedures. 

  

On the basis of the microstructural evolution of these carbon-doped CrAlTiCN coatings, a 

growth model is suggested as in Figure 5.1-3. First, an N-deficit is evident from the 

(Cr+Al+Ti)/N ratio of the carbon-free nanocrystalline fcc (Cr, Al, Ti) N coating (Table 4.2-

2, 0# sample). When a low concentration of carbon, such as CrAlTiCN- 1# sample, was 

sputtered on to the coating surface, the carbon was resolved in the fcc (Cr, Al, Ti) N phase, 

resulting in the formation of a metastable single fcc (Cr, Al, Ti) (C, N) phase (Figure 5.1-

3a). The nanoscale multilayer period favours the necessary interdiffusion of carbon to (Cr, 

Al, Ti) N phase.  

 

However, when the total amount of carbon and nitrogen exceeds 50 at%, the coating is not 

in an N-deficit, such as in CrAlTiCN-3# samples, carbon atoms can start to build 

nanoclusters or agglomerates as a thin interlayer (Figure 5.1-3b) in addition to being 

resolved into the (Cr, Al, Ti) (C, N) phase.  

 

When increasing the carbon content further, the size of carbon clusters and the thickness of 

amorphous carbon layers increase. The growth of (Cr, Al, Ti) (C, N) crystals is interrupted 
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by these carbon nanolayers, thus decreasing the grain size of (Cr, Al, Ti) (C, N) further 

(Figure 5.1-3c).  
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5.2 Mechanical behavior  

Enhancing the capabilities of coatings in different applications should start with an analysis 

of reasons for both positive and negative results. Optimized wear behaviour, is not 

necessarily achieved with the used of the hardest coating materials, but also depends on the 

elastic modulus, adhesion, chemical and toughness, the load-bearing capacity and 

sometimes other physical attributes.  

 

The general mechanical properties of bench-mark CrAlTiN coating and carbon-doped 

CrAlTiCN nanocomposite coatings have been summarised in Figure 4.3-2 and Tables 4.3-1 

and 4.3-2. In general, an increase in carbon content leads to decreasing in the nano-hardness, 

elastic modulus, and micro mar resistance but increase in toughness of the nanocomposite 

coatings (Figure 4.3-3). 

 
 
 
 

5.2.1 Hardness and Young’s modulus 

The deposition parameters significantly influence the chemical composition, carbon 

amorphous environment, the interconnectivity of the amorphous network and the final 

mechanical properties of the carbon-doped CrAlTiCN coatings. A softening trend with 

increasing carbon content has been observed in the present CrAlTiCN coatings, and the 

similar trend was reported in TiAlNC coatings deposited by the same magnetron sputtering 

PVD technique [317].  
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It can be seen from Figure 4.3-2 that the addition of a small amount of carbon into the 

CrAlTiN coating (CrAlTiCN-1# sample) led to marginal decrease in hardness only; 

however, significant decrease in hardness occurred once the total amount of carbon and 

nitrogen exceeded 50 at% for CrAlTiCN-2# and CrAlTiCN-3# samples; but further increase 

in carbon content caused very mild reduction in hardness for CrAlTiCN-4# and CrAlTiCN-

5# samples. 

 

The above change in hardness could be related to the evolution of the microstructure of the 

carbon-doped coatings as a function of the carbon content in the coatings. As discussed in 

the preceding section, when the total amount of nitrogen and carbon is below 50 at%, the 

doped carbon is dissolved in the solid solution of (Cr, Al, Ti) (C, N) phase. This has led to 

marginal decrease in hardness most probably because of the relatively weak affinity 

between Cr and C than between Cr and N [318]. 

 

Once the carbon content exceeds 50 at%, amorphous carbon clusters and thin layers form in 

between nanocrystalline (Cr, Al, Ti) (C, N). This will reduce the cohesion between 

nanocrystalline (Cr, Al, Ti) (C, N) grains because of the formation of relatively weak phase 

boundaries between the nanocrstalline and amorphous phases [319]. This is evidenced by a 

much lower hardness of CrAlTiCN-2# as compared with CrAlTiCN-1#. Further increase in 

carbon content significantly increased the volume fraction of the amorphous phase and the 

inter-spacing between the nanocrystalline (Cr, Al, Ti) (C, N) compounds. Consequently, the 

coating hardness decreased significantly from 24.5 GPa for bench-mark CrAlTiN-0# to 18.2 

GPa for CrAlTiCN-3#. The similar hardness values for CrAlTiCN-4# and CrAlTiCN-5# 
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could be explained by the fact that their microstructure has been dominated by amorphous 

carbon phase embedded by nanocrystalline (Cr, Al, Ti) (C, N) particles.  

 

This softening trend with increasing carbon content in the CrAlTiCN coatings agrees well 

with previous observations [320, 321, 322]. For example, Stueber et al. have reported that in 

the Ti-Al-N-C system, the hardness of the coatings decrease with the carbon content 

because of the formation of amorphous phase. However, Veprek has proposed a hardening 

mechanism for the coating based on the ternary Ti-Si-N system and attributed the 

superhardness to the formation of a thin amorphous phase of α-Si3N4 between the 

nanocrystalline TiN grains (i.e. formation of n-TiN/ α-Si3N4 nanocomposite coatings). The 

different roles of amorphous phase could be attributed to the difference in the nature of the 

amorphous phases formed in these two different systems. In the present work, the 

amorphous carbon phase has a sp2 binding state and is in the graphitic environment and 

therefore low-hardness is expected. The imperative for coating tribologists has been, for 

many years, the development of ever harder (and stiffer) coatings; however, it is 

increasingly recongised that except for abrasive wear, hardness is not necessarily the prime 

requirement for wear resistance, which will be discussed in detail in the next section.     

 

As has been shown in Figure 4.3-2, in general the Young’s modulus (E) and hardness (H) 

follow a similar trend with the carbon content. This is understandable because the formation 

of sp2 amorphous carbon would reduce the stiffness of the carbon-doped coatings. However, 

quantitative calculation has revealed that both the H/E ratio (which is related to the elastic 

strain to failure) and H3/E*2 (related to the resistance against plastic deformation) (where E* 

=E/(1-ν2) is the effective Young’s modulus and ν is the poisson’s ratio) slightly decreased 
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with increasing the carbon content (Table 5.2-1). This implies that more elastic/plastic 

deformation could occur to the carbon-doped CrAlTiCN coatings before they fracture, 

which is related to the toughness [323].  

 

5.2.2 Cracking and toughness 

In essence, toughness is the ability of a material to absorb energy during deformation up to 

fracture. According to this definition, toughness encompasses energy required both to create 

the crack and to enable the crack to propagate until fracture. It is difficult to directly 

measure the toughness of thin coatings using conventional methods for bulk materials, and 

hence indentation is most widely used for the assessment of thin film toughness. 

 

As reported in Section 4.3.2, micro-indentation method has been used to study the effect of 

carbon addition on the toughness of CrAlTiCN coatings. Ring cracks were observed for 

both CrAlTiN and carbon-doped CrAlTiCN coatings (Figure 4.3-3). However, it has been 

noted that although radial cracks were observed at each corner of the indentation in the 

bench-mark CrAlTiN coating (Fig. 4.3-3a), the number and length of the radial cracks 

formed in the carbon-doped CrAlTiCN coatings were reduced with the carbon (Figures 4.3-

3b to 4.3-3e) and almost no appreciable radial cracks could be found for CrAlTiCN-5# 

coating which contained the highest carbon content (Fig. 4.3-3f). 

  

Marshall and Lawn [324], Anstis et al. [325] developed a quantitative relationship between 

the toughness K1c and the radial crack dimension C as follows: 
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where E and H are the Young’s Modulus and hardness of the material. For Berkovich and 

Vickers indenters, χ=0.016. 

 

Notwithstanding the fact that quantitatively Eq. 5.2-1 is not fully applicable to the present 

results since the length of the radial cracks are much shorter than the diagonals of the 

indentations, the equation indicates that the toughness of hard coatings increases when the 

radial length reduces. It thus follows that the toughness of the carbon-doped CrAlTiCN 

coatings is higher than that of the bench-mark CrAlTiN coating since the radial cracks are 

shorter in the former than in the latter. 

 

It can be deduced from Eq. 5.2-1 that the toughness of a thin coating is, to some extent, also 

related to the E/H ratio of the coating. As discussed earlier, the H/E ratio reduced (hence the 

E/H ratio increased) with increasing the carbon content in the CrAlTiCN coatings (Table 

5.2-1). It is known that the E/H ratio is a measure of plasticity and increased E/H promotes 

plastic deformation [342,343]. Therefore, the energy dissipation through plastic deformation 

can release the elastic energy stored, thus delaying the formation of cracks (i.e. fracture). 

Hence, the enhanced toughness of the carbon doped CrAlTiCN coatings could be partially 

attributed to the increased E/H ratio.  

 

From microstructure point-of-view, the toughening of the developed nanocomposite 

coatings can be achieved via two different scales, namely by restraining the formation of 

columns on a microscale and through manipulating the nanostructure on a nanoscale [326]. 
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First, it has been frequently observed that columnar boundaries act as sites for crack 

initiation and preferential crack propagation [344, 345]. In the present research, the 

microstructure of the coatings changed by doping carbon from columnar structures (as 

schematically shown in Figure 5.1-3a) to multilayer structures with amorphous carbon 

(Figures 5.1-3b and 5.1-3c). Therefore, the formation and propagation of cracks along the 

columnar boundaries can be reduced; the amorphous carbon phase could also eliminate 

crack initiation and help to divert and arrest macro-crack development [ 327 , 328 ]. 

Consequently, enhanced toughness by carbon doping is expected.   

 

Second, the carbon-doped CrAlTiCN coatings developed from this research is nano-

multilayer structured especially for medium and high carbon-doped coatings. As introduced 

in Section 2.2.3.3, multilayers can play a significant role in controlling the residual strain 

and the stress within the coatings and enhancing their toughness by allowing layers or 

phases to slide over each other when they are deflected under load. In addition, the 

nanostructured multilayer coatings generate a high density of interfaces to assist in crack 

deflection and termination of crack propagation. In a homogenous single layer coating, the 

cracks will easily propagate perpendicular to the substrate along the columnar grain contrast; 

however, these cracks in a multilayer coating will change their propagation direction at 

layer interfaces.  

 

Finally, the enhanced toughness of the carbon-doped CrAlTiCN coatings has also been 

supported by V-shaped cross-sectional profiles of the indentations shown in Figure 4.3-4. 

Although the ring cracks formed in CrAlTiN coating (Figure 4.3-3a) and the carbon-doped 

CrAlTiCN coatings (Figures 4.3-3c and 4.3-3f) seem to similar from the surface images, it 
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is clear from the cross-sections of the indentations (Figure 4.3-4) that the cracking is much 

more severe in the CrAlTiN coating than in the carbon-doped CrAlTiCN coatings as 

evidenced by the zigzags appearing on the side lines of the V-shaped indentation.  
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5.3 Tribological behaviour 

The tribological process takes place as the two surfaces are moving in relation to each other, 

and both physical and chemical changes occur in accordance with the physical and chemical 

laws with respect to the input data. As a function of time, the tribolgical process causes 

changes in both the geometry and the material composition and results in friction and wear 

[329]. In this section the effect of carbon addition on the tribolgical characteristics in terms 

of friction and wear of the newly developed CrAlTiCN coatings is discussed based the 

results present in Section 4.4. 

 

5.3.1 Friction coefficient 

As described in Section 4.4, the doped carbon can effectively reduce the coefficient of 

friction of the developed CrAlTiCN coatings. As listed in Table 4.4-1, the coefficient of 

friction can be reduced from 0.655 for the bench-mark CrAlTiN (0# without carbon) to as 

low as 0.350 for the carbon-doped CrAlTiCN-5# coating. The friction-reduction behaviour 

of the nano-composite coatings can be mainly attributed to the tribological characteristics of 

the amorphous carbon phase formed in the carbon-doped nanocomposite CrAlTiCN 

coatings. 

 

It is generally accepted that the low friction of most carbon coatings is largely due to the 

fact that these materials are chemically inert and consequently they exert very little adhesive 

force during sliding against other materials [69]. Therefore, carbon containing coatings 

could more or less reduce the adhesive component of friction. In addition, alike sp2 

dominated carbon-based coatings have low shear strength.   
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According to classic friction theory, during dry sliding, the force F is required to displace an 

asperity of the softer material with shear strength S on a real area of contact A [330] while 

the applied W is supported by the real area of contact with a compressive strength of P: 

ASF =                         (5.3-1) 

APW =                        (5.3-2) 

According to Amonton’s friction law, the coefficient of friction f is defined by the ratio of 

friction force F to the applied load W [348],  

P
S

W
Ff ==                   (5.3-3) 

 

It can be deduced from Eq. 5.3-3 that a material with a low shear strength and a high 

compressive strength should exhibit a low friction when contact with a counterpart during 

sliding. This tribological principle has been successfully used to explain the low-friction 

behaviour of such lamellar, low shear strength solid lubricant materials as graphite and 

MoS2 [331].  

 

Basically, carbon exists in the present nanocomposite CrAlTiCN coatings as an amorphous 

network. This network consists of strongly cross-linked carbon atoms with mainly graphite-

like bonds (Figures 4.2-7 and 5.1-1). Therefore, it is reasonably assumed that alike graphite, 

the amorphous carbon in the nanocomposite CrAlTiCN coatings should have low shear 

strength. As discussed in Section 5.1, the amount of the amorphous phase in the 

nanocomposite coatings increased with the doped carbon, and therefore the friction 

coefficient of the nanocomposite CrAlTiCN coatings would reduce with increasing the 

carbon content. 
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In order to advance the understanding of the friction-reduction mechanism involved, cross-

sectional TEM analysis of the wear surface has been conducted. Focused ion beam (FIB) 

was used to extract a cross-sectional TEM thin foil from the worn surfaces. Figure 5.3-1 

shows the SEM wear track morphologies of the tested CrAlTiCN-5# sample and FIB 

sampling position. 

 

The bright-field TEM micrographs of cross section of the wear surface on tested CrAlTiCN-

5# sample are shown in Figure 5.3-2. The cross section of the worn surface, as shown in 

Figure 5.3-2a, comprises (from the bottom to the top) CrAlTiCN layer, a thin tribofilm layer, and 

a dark Tungsten protective layer. Closer inspection (figure 5.3-2b) revealed a bright feature-

less layer on the top of the nano-scale multilayered CrAlTiCN coatings. High resolution 

TEM (Figure 5.3-3) and EDX compositional analysis (Figure 4.4-5) indicated that the 

tribofilm is amorphous with a thickness ranging from 50 to 100 nm, which contains a high 

amount of oxygen and carbon.  It is believed that this thin amorphous tribofilm might have 

played an important role in reducing the friction of the carbon-doped CrAlTiCN coatings.   

 

5.3.2 Wear resistance 

In view of their potential tribological applications, the wear properties of the bench-mark 

CrAlTiN and carbon-doped CrAlTiCN coatings have been investigated under three different 

motion conditions: unidirectional sliding, reciprocating sliding and fretting.  
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5.3.2.1 Carbon effect 

As has been shown in Figure 4.4-1a, when tested at room temperature under unidirectional 

sliding conditions, the wear volume lost of CrAlTiCN coatings was found to decrease with 

increasing their carbon content; but experimental results have also indicated that the 

hardness of the CrAlTiCN coatings reduced with the carbon content. It is thus of interest to 

note that the wear resistance of the carbon-doped CrAlTiCN coatings increased with 

decreasing their hardness. Furthermore, coarse and deep parallel grooves have been 

observed for the bench-mark CrAlTiN coating (Figure 4.4-2) and low-carbon CrAlTiCN-1# 

coating (Figure 4.4-3), indicative of severe abrasive wear; on the other hand, relatively 

smooth wear tracks with shallow and fine grooves were formed in high-carbon, low-

hardness CrAlTiCN-5# coating (Figure 4.4-5). 

 

Clearly, the above abnormal results cannot be explained using classical abrasive wear 

theory. This is because, as discussed in Chapter 2, the abrasive wear resistance of a surface 

mainly depends on its hardness. In the present study, the hard bench-mark CrAlTiN-0# 

coating and the low-carbon CrAlTiCN-1# coating showed more severe abrasive wear than 

the high-carbon, low-hardness CrAlTiCN-5# coating. 

 

When a WC-Co counterface and the coating come into contact, the contact takes place only 

on high asperities and the real area of contact is a small fraction of the apparent area of 

contact. Figure 5.3-4 illustrates the two-body and three-body contact of tough surfaces [332]. 

During sliding, the collision of the asperities from the wearing surfaces results in their 

fragmentation especially for the hard bench-mark CrAlTiN coating because of its brittleness 

as discussed in Section 5.2.2. The hard and brittle wear debris trapped at the interface 
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between the two contact surfaces will cause severe abrasive wear to the WC-Co counterface 

and the coating surface. Because the WC-Co counterface is in constant contact with the 

coating surface during unidirectional sliding and the hardness of the WC-Co is very similar 

to that of CrAlTiN coating, rapid wear is expected to occur to the WC-Co counterball. Once 

the WC-Co counterface is damaged, it will in turn cause severe abrasive wear to the coating 

surface. 

 

In the contrast, the high-carbon CrAlTiCN coating are softer (Section 5.2.1) and tougher 

(Section 5.2.2) with a much higher plasticity (Table 5.2-1) as compared with the low-carbon 

CrAlTiCN coatings. Therefore, less wear debris will form during the collision of the 

asperities from the two contact surfaces during sliding because of the reduced brittleness of 

the high-carbon CrAlTiCN coatings. Moreover, the high-carbon CrAlTiCN coatings are 

much softer than the WC-Co counterface and therefore it can only cause mild, if any, 

abrasive wear to the WC-Co counterface. Furthermore, it is known from the previous 

discussion that the amorphous carbon wear debris could act as a solid lubricant rather than 

abrasives. Consequently, the high-carbon, low-hardness CrAlTiCN coatings possess a better 

wear resistance than the low-carbon high-hardness counterparts. 

 

5.3.2.2 Unidirectional vs reciprocating sliding wear 

As has been discussed above, the wear resistance of the carbon-doped CrAlTiCN coatings 

increased with the carbon content under unidirectional sliding conditions. However, as 

shown in Figure 4.4-1b, under reciprocating sliding conditions no difference in wear 

resistance could be observed for the CrAlTiCN coatings doped with different levels of 
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carbon. The experimental results indicate clearly that the test conditions have a strong effect 

on the performance of the coatings. 

 

As shown in Table 5.3-1, the material of the counterball, contact pressure and contact area 

are same for both unidirectional and reciprocating sliding tests. Therefore, the difference in 

the effect of carbon on the wear of the carbon-doped CrAlTiCN coatings could be attributed 

to the different types of motion. Indeed, it is recognised that wear is not an intrinsic but a 

systems property [333] and the behaviour of materials in wear situations depends on the 

type of motion, the levels of stresses and the nature of environment [334].   

 

During unidirectional sliding tests, since the wear track is a closed circle, the wear debris 

formed is confined within the wear track, whereas in reciprocating motion, detached 

material are pushed towards both end regions of the wear track (Figures 4.4-6～4.4-8). 

 

As discussed in the preceding section, wear debris has played an important role in 

determining the wear behaviour of the carbon-doped CrAlTiCN coatings. When sliding 

against a WC-Co counterface, hard wear debris from the low-carbon CrAlTiCN coatings 

can act as hard abrasives to damage the WC-Co counterface, which in turn cause severe 

abrasive wear of the hard and brittle CrAlTiCN coatings. However, such detrimental effect 

of hard wear debris could be reduced during reciprocating sliding wear since such wear 

debris is pushed towards both ends of the wear track. Similarly, the benefit effect of soft, 

self-lubricating carbon debris is also reduced during reciprocating sliding wear because such 

carbon wear debris is pushed towards both ends of the wear track. Hence, the combination 
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of the above effects may have led to the similar wear resistance of the CrAlTiCN coatings 

under reciprocating sliding wear. 

 

5.3.2.3 Fretting wear behaviour  

The fretting wear properties of carbon-doped CrAlTiCN nanocomposite coatings at room 

temperature and 350 ℃ were investigated in the present study and the results have been 

reported in Section 4.4.3. It is of interest to find that when tested at room temperature, the 

fretting wear of these carbon-doped CrAlTiCN nanocomposite coatings increase with 

carbon content; however, when tested at 350 ℃ the opposite trend was observed. Clearly, 

the test temperature has played an important role in the fretting wear of the carbon-doped 

CrAlTiCN nanocomposite coatings.  

 

It can be found by comparing Fig. 4.4-9a with Fig. 4.4-1 that the effect of carbon on the 

fretting wear of the carbon-doped CrAlTiCN nanocomposite coatings at room temperature 

is, to some extent, similar to that on the unidirectional wear of these coatings. Therefore, 

similar discussion given in Section 5.3.2.1 could be used to understand the effect of carbon 

content on the fretting wear of these carbon-doped CrAlTiCN nanocomposite coatings at 

room temperature.  

 

It is well-known that fretting wear is not a basic but a complex wear process involving 

adhesion, abrasive and oxidation. The carbon-doped, lubricous nanocomposite coatings 

could reduce the friction and abrasive wear between the fretting surfaces. Consequently, the 

fretting wear of the carbon-doped CrAlTiCN nanocomposite coatings was reduced when 

increasing the carbon content. However, it is also noted that the effect of the doped carbon 
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on the fretting wear is not as significant as on the unidirectional sliding wear of the carbon-

doped CrAlTiCN nanocomposite coatings (Figs. 4.4-9a vs. 4.4-1a). This is mainly because, 

as discussed in Section 5.3.2.1, the effect of the doped carbon on the sliding wear of the 

carbon-doped CrAlTiCN nanocomposite coatings also depends on the type of motion. 

While the carbon-rich wear debris can retain in the wear track during unidirectional sliding, 

the wear debris formed during fretting is normally pushed to the both ends of the wear track 

because fretting is essentially a reciprocating process. However, the amplitude of fretting is 

normally much smaller than that for conventional reciprocating sliding. Therefore, some 

carbon-rich wear debris may still be trapped in the fretting surfaces although some would be 

removed away by the reciprocating action. 

 

However, the beneficial effect of carbon on the fretting wear of the carbon-doped 

CrAlTiCN nanocomposite coatings becomes detrimental at elevated temperatures. As has 

been shown in Figure 4.4-9b, the fretting wear of these carbon-doped CrAlTiCN 

nanocomposite coatings increases with the carbon doped when tested at 350 ℃. This should 

be related to the oxidation of the carbon-doped CrAlTiCN nanocomposite coatings. Firstly, 

some researchers have reported that amorphous carbon films will lose their superior 

lubricous characteristics at elevated temperatures [353, 354]. It is thus reasonable to assume 

that when tested at 350 ℃, the desirable lubricous features of the amorphous carbon within 

the nanocomposite coating diminished or disappeared. Secondly, it can be seen from Figure 

4.5-15a that the hardness of these carbon-doped coatings at 300 and 400 ℃ decreased with 

the carbon content. Therefore, it is expected that this will increase the abrasive wear 

component of the fretting wear as fretting wear is a complex wear process involving 

adhesion, abrasion and oxidation. 
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Another interesting observation on the fretting behaviour of the carbon-doped CrAlTiCN 

nanocomposite coatings is that, except for CrAlTiCN-5# sample, more fretting wear 

occurred when tested at room temperature than 350 ℃ (Figure 4.4-9). This difference could 

be attributed to the beneficial effect of oxidation at elevated temperature because it is well-

known that oxide films can reduce friction and adhesion between the fretting surfaces. This 

is supported by the high oxygen measured from the 350 ℃ tested surface (58.71 at% O in 

Fig. 4.4-16) than from room temperature tested one (47.55 at% in Fig. 4.4-12). 

 

5.3.2.4 Comparing among CrAlTiN, CrAlTiCN and GLC coatings 

As reviewed in Chapter 2, CrAlTiN coatings are characterised by high hardness and wear 

resistance but high coefficient of friction; on the other hand, carbon-based coatings have 

high wear resistance and low coefficient of friction but poor performance at elevated 

temperatures. Therefore, it is worthwhile to compare the tribological properties of the newly 

developed carbon-doped CrAlTiCN nanocomposite coatings with bench-mark CrAlTiN and 

amorphous graphite-like carbon (GLC) coatings. Table 5.3-2 summarises the tribological 

properties of these three types of coatings in terms of coefficient of friction and wear 

volume lost measured by pin-on-disc unidirectional sliding wear at room temperature and 

fretting wear at room temperature and 350 ℃. 

 

It can be seen that when tested at room temperature, the GLC coating can exhibit the best 

tribological properties under both unidirectional sliding and fretting wear conditions among 

these three types of coatings. This is mainly because GLC coatings share many of the 

properties of graphite: a significant proportion of sp2 bonding, chemical inertness and low-
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friction; but unlike graphite, GLC coatings are amorphous and have a much higher hardness 

and wear resistance than graphite. 

 

However, when fretted at 350 ℃, both CrAlTiN and carbon-doped CrAlTiCN 

nanocomposite coatings outperformed the GLC coating. This is largely because the 

amorphous carbon films could not retain their superior characteristics at a higher 

temperature because of the irreversible changes in the structure, which limits the application 

of these films at high temperature [335, 336]. In order to further understand the poor wear 

performance of the GLC coating at 350 ℃, thermal stability tests at 350 ℃ for the same 

dwell time have been carried out. Figures 5.3-5 and 5.3-6 show the surface morphology and 

EDX compositional analysis of as-deposited and oxidised GLC coating respectively. It can 

be seen that the as-deposited coating is quite smooth and dominated by C and Cr with a very 

small amount of O (Fig. 5.3-5). After thermal stability tests at 350 ℃, flake-like loose oxide 

layers with cracks were formed and the GLC coating was destroyed as evidenced by the 

high content of Fe from the steel substrate (Fig. 5.3-6). This is also strongly supported by 

the rapid increase in the surface roughness (Fig. 4.5-2). Clearly, GLC coatings will easily 

oxidise and loss their attractive tribological properties at high temperature. 

 

The experimental results shown in Table 5.3-2 clearly indicate that although the fretting 

wear of the newly carbon-doped CrAlTiCN nanocomposite coatings at room temperature is 

slightly higher than that of the GLC coating, the former possesses a much lower fretting 

wear than the latter at 350 ℃. Therefore, newly carbon-doped CrAlTiCN nanocomposite 

coatings can significantly outperform the GLC coating at elevated temperatures. 
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Table 5.3-2 also demonstrates that compared with the bench-mark CrAlTiN coating, the 

newly carbon-doped CrAlTiCN nanocomposite coatings possess better tribological 

properties in terms of significantly reduced friction and wear under both unidirectional 

sliding and fretting wear at room temperature. 

 

In short, at room temperature the newly carbon-doped CrAlTiCN nanocomposite coatings 

can outperform the bench-mark CrAlTiN coating, in particular the significantly reduced 

coefficient of friction; at elevated temperature the newly carbon-doped CrAlTiCN 

nanocomposite coatings are superior to GLC coatings. 
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5.4 Oxidation behavior 

Some engineering components are subjected to elevated temperature in service and some 

components (such as cutting tools) suffered from friction heating, particularly at high 

sliding speeds under larger contact loads. Therefore, thermal stability and oxidation 

behaviour are important properties for the coatings developed for tribological applications 

to this end, the thermal stability of the carbon-doped CrAlTiCN nanocomposite coatings are 

compared with CrAlTiN and GLC coatings and its oxidation mechanism is discussed in this 

section.  

 

5.4.1 Thermal stability  

As shown in Figures 4.5-1, 4.5-2, and 4.5-15, when annealed in air at temperatures up to 

400 ℃ for 2h, no significant changes in the surface roughness and hardness occur to all 

carbon-doped nanocomposite CrAlTiCN as well as the bench-mark CrAlTiN coatings. On 

the other hand, the surface roughness of GLC coating increases rapidly when oxidised at 

temperature above 300 ℃. Clearly, the thermal stability of the newly developed carbon-

doped nanocomposite CrAlTiCN coatings is similar to that of bench-mark CrAlTiN coating 

but much better than the GLC coating.  

 

When increasing the oxidising temperatures from 400 to 700 ℃, the surface roughness of 

all carbon-doped nanocomposite CrAlTiCN and CrAlTiN coatings increased (Figure 4.5-2) 

and the surface hardness (Figure 4.5-15) decreased gradually with the oxidation temperature. 

This implies that the carbon-doped nanocomposite CrAlTiCN coatings may have similar 



Chapter 5: Interpretations and Discussion of Results 

 121

thermal stability to the bench-mark CrAlTiN coating within this temperature range. This is 

supported by the fact that after oxidation at 700 ℃ for 2h the scratch critical load of the 

carbon-doped 3# and 5# CrAlTiCN coatings is slightly higher than that of the bench-mark 

CrAlTiN coating. 

 

Differences in surface oxide layer thickness were observed for the bench-mark CrAlTiN 

coating and the carbon-doped CrAlTiCN coatings when oxidised under temperatures at 800 

℃ or above. After 800 ℃/2h annealing in air, the thickness of the surface oxide film formed 

on the CrAlTiCN-3# coating (Figure 4.5-14a) is 200～230 nm, which is twice as thick as 

that (100～120 nm) formed on the bench-mark CrAlTiN coating (Figure 4.5-12a); similarly, 

after 900 ℃/2h annealing in air, the thickness formed on the bench-mark CrAlTiN coating 

is about 0.5 μm (Fig. 4.5-3), which is about half that (around 1 μm) formed on CrAlTiCN-

5# coating (Fig. 4.5-5). This implies that the thermal stability of the newly developed 

carbon-doped CrAlTiCN coatings may be inferior to the bench-mark CrAlTiN coating at 

temperatures above 800 ℃. 

 

The thermal stability of the carbon-doped CrAlTiCN coatings also depends on their carbon 

content. For example, when oxidised at 1000 ℃ the surface roughness of CrAlTiCN-5# 

coating increased dramatically (Fig. 4.5-2) and delamination of the surface coating occurred 

as evidenced in Figures 4.5-1c, 4.5-5c and 4.5-9c. Clearly, the CrAlTiCN-5# coating cannot 

be used at temperatures above 900 ℃. 
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 5.4.2 Oxidation mechanism 

As discussed in Section 5.1.1.1, because of the unbalanced magnetic field and intensive 

deposition conditions, aluminium and titanium atoms are substituted for chromium atoms in 

the lattice of CrN phase to form a metastable (Cr, Al, Ti) (C, N) single phase rather than a 

mixture of phases of CrN(C), AlN and TiN(C) for the carbon-doped CrAlTiCN coatings. 

The XRD and cross-sectional TEM analyses have revealed that oxides Cr2O3, TiO and 

Al2O3 were formed during the oxidation of these carbon-doped CrAlTiCN coatings in air. 

Therefore, the following reaction might be suggested for the oxidation of these carbon-

doped CrAlTiCN coatings: 

 

↑+↑+++→+ 2232322 226))((2 CONTiOOAlOCrOCNCrAlTi  

 

 

However, these oxides were formed gradually at different temperature. As evidenced in 

Figure 4.5-9, Al2O3 phase was detected from 700℃ oxidised samples while Cr2O3 and TiO 

were found from the samples oxidised at temperatures at 800 ℃ and above. This could be 

attributed the difference in affinity of oxygen to aluminium, chromium and titanium, which 

could be estimated by the standard Gibbs free energy of formation of these oxide phases: 

 

)/(37.21510124110
32 molJTG OCrf +−=Δ  for Cr2O3 [337] 

)/(24.32316829000
32 molJTG OAlf +−=Δ  for Al2O3 [338] 

)/(5.1005429500 molJTGTiOf +−=Δ  for TiO [339] 
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The standard Gibbs free energy for formation of Al2O3, Cr2O3 and TiO [340] at 700℃ are 

calculated to be -1368.4 KJ/mol, -802.9 KJ/mol, and -444.9 KJ/mol, respectively, and 

therefore Al2O3 would preferably form. However, a continuous Al2O3 layer did not form, 

which means that the Al activity in CrAlTiCN coatings is not high enough in the present 

work (Table 4.2-2). When oxidised at 800℃ or above, Cr2O3 and TiO were formed but the 

former may dominate in view of its high percentage and thus its activity. 

 

The good thermal stability of the carbon-doped CrAlTiCN coatings with low-to-medium 

carbon content under oxidative conditions observed in this work could be mainly attributed 

to the abundant Cr2O3. This stable oxide film can act as an oxygen diffusion barrier, thus 

protecting the coatings underneath from oxidation at temperatures below 900 ℃. This is in 

line with the findings by other researchers [341, 342] that Cr content determined the 

oxidation resistance of the coating and 30 at% Cr was found to be optimal. In the present 

research, despite of different carbon amounts used, the Cr content is still more than 30 at% 

in all the coatings (Table 4.2-2). 

 

5.4.3 Carbon effect 

Although all designed CrAlTiCN coatings showed good oxidation resistance in general, the 

carbon content still has a strong effect on the oxidation behaviour. The CrAlTiCN-5# 

coating, which has been doped with the highest level of carbon in the present research 

(Table 4.2-2), was completely destroyed at 1000 ℃ (Figure 4.5-9c).  
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As has been schematically shown in Figure 5.1-3, the microstructure of the designed 

carbon-doped CrAlTiCN coatings depends on the amount of carbon doped. When doped 

with low-to-medium level of carbon, the microstructure consists mainly of alternating layers 

of amorphous carbon and (Cr, Al, Ti) (C, N) crystals. When oxidised in air, dense and stable 

oxide film dominated by Cr2O3 formed, which stops or retards the inwards diffusion of 

oxygen and thus protect the underneath coating from oxidation. However, the 

microstructure of the high-carbon CrAlTiCN-5# coating is dominated by amorphous carbon 

with (Cr, Al, Ti) (C, N) phase imbedded into the carbon matrix. Therefore, it is impossible 

to form a continue oxide film to act as an oxygen diffusion barrier. In addition, the phase 

boundaries between the (Cr, Al, Ti) (C, N) and amorphous carbon can serve as the short-

circuit for oxygen diffusion. Consequently, rapid oxygen diffusion and severe oxidation 

occur at high-temperature.  

 

Furthermore, the formation of amorphous carbon phase may accelerate the oxidation rate. 

Yanez-Limon [343] reported that annealing in the air of sputtered amorphous carbon films 

with predominantly sp2 bonds led to their low temperature crystallization. The catalytic 

effect of oxygen in the crystallization process was explained in terms of the generation of a 

porous structure in the carbon coating due to the vaporization of carbon oxide. With the 

porous structure and micro-cracks inside the oxide layer, the oxidation diffusion mechanism 

for oxygen transport changed from atomic diffusion to mass transfer [344]. Therefore, 

oxygen can easily diffuse inwardly accompanied by faster growth of Cr2O3, Al2O3, and TiO. 

 

This mechanism is supported by the oxidation results of Cr doped amorphous GLC coating. 

As shown in Figures 5.4-1 and 5.4-2, the GLC coating was destructed at 400℃ and almost 
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fully destroyed at 700 ℃ as evidenced by the very high iron and oxygen content measured. 

Indeed, after oxidation at 1000 ℃, the surface roughness of the high-carbon CrAlTiCN-5# 

coating is very close to that of GLC (Figure 4.5-2). Therefore, a large amount of amorphous 

carbon will reduce the thermal stability of carbon-doped CrAlTiCN coatings.  
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Chapter 6: Summary and Conclusions 

 

The evidence produced throughout this project and the discussion presented in the last 

chapter can be summarised as follows: 

 

Design and synthesis of new Cr-Al-Ti-C-N coatings: 

 

(1) It is possible to generate novel carbon-doped CrAlTiCN coatings with the carbon 

content up to 24.34 at % by closed-field unbalanced magnetron sputtering of graphite target.  

 

(2) The carbon content in the CrAlTiCN coatings increased with the current of the graphite 

target used during the deposition of these carbon-doped coatings.  

 

Characterisation of new Cr-Al-Ti-C-N coatings: 

 

(3)  An fcc structured metastable phase (Cr, Al, Ti) (C, N) has been identified by XRD in 

the all CrAlTiCN coatings developed from the project. The lattice parameters of the (Cr, Al, 

Ti) (C, N) is smaller than that of CrN.  

 

(4) As designed in this project, the new coating system consists of (from the substrate to the 

surface) a pure chromium interface layer, a chromium nitrides layer, a CrAlTiN layer and a 

new CrAlTiCN top layer. The microstructure of the top carbon containing CrAlTiCN layer 

mainly depends on the graphite target current and thus the carbon content.   
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(5) When the carbon content is low (between 2.34 and 3.96 at %), carbon atoms are mainly 

dissolved in the crystal lattice of (Cr, Al, Ti) N to partially substitute nitrogen, thus forming 

fcc structured metastable phase (Cr, Al, Ti) (C, N).   

 

(6) When the carbon content of the top layer ranges from 9.65 to 12.53 at %, the excessive 

carbon atoms will begin to form amorphous carbon layer, thus producing multilayered 

nanocomposite coating with alternating amorphous carbon and nano-crystalline (Cr, Al, Ti) 

(C, N) layers. 

 

(7) When the carbon content of the top layer reaches 24.34 at %, the top carbon-containing 

layer consists of (Cr, Al, Ti) (C, N) grains embedded in an amorphous carbon matrix.  

 

(8) XPS and EELS analyses indicate that the amorphous free carbon in the top layer of 

medium-to-high carbon doped CrAlTiCN coatings has a C-C bond state and is in a sp2 

dominated graphitic environment. 

 

Mechanical properties of new Cr-Al-Ti-C-N coatings: 

 

(9) The addition of a small amount of carbon into the CrAlTiN coating (CrAlTiCN-1# 

sample) can lead to only marginally decrease in hardness and Young’s modulus; however, 

significant decrease will occur once the total amount of carbon and nitrogen exceeded 50 

at% (for CrAlTiCN-2# and CrAlTiCN-3# samples) because of the formation of amorphous 

layers. 
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(10) The toughness of CrAlTiCN coatings increase effectively with the carbon doped 

mainly because of the formation of amorphous carbon, the nano-multilayer structure and the 

increased plasticity.    

 

Tribological behaviour of new Cr-Al-Ti-C-N coatings: 

 

(11)  The doping of carbon can effectively reduce the coefficient of friction of the 

developed CrAlTiCN coatings. The coefficient of friction can be reduced from 0.655 for the 

non-doped bench-mark CrAlTiN coating to as low as 0.350 for the carbon-doped 

CrAlTiCN-5# coating because of the amorphous phase formed in the coatings.  

 

 (12) When tested at room temperature under unidirectional sliding conditions, the wear 

resistance of the CrAlTiCN coatings increase with increasing their carbon content most 

probably due to the reduced damage to the counterface and the retained lubricous wear 

debris. However, no obvious difference in wear resistance could be observed for the 

CrAlTiCN coatings doped with different levels of carbon different under reciprocating 

sliding conditions. 

 

(13) It is of interest to find that when tested at room temperature, the fretting wear of these 

carbon-doped CrAlTiCN nanocomposite coatings increase with carbon content; however, 

when tested at 350 ℃ the opposite occurs.  

 

(14) When tested at room temperature, amorphous graphite-like carbon (GLC) coatings 

possess a better wear resistance than the carbon-doped CrAlTiCN nanocomposite coatings; 
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however, when fretted at 350°C, the carbon-doped CrAlTiCN nanocomposite coatings can 

outperform the GLC coating owing to its oxidation-induced degradation.    

 

Thermal stability and oxidation resistance: 

 

(15)  When oxidised in air at temperatures up to 400 ℃ for 2h, no significant changes in the 

surface roughness and hardness occur to all carbon-doped nanocomposite CrAlTiCN. The 

thermal stability of the newly developed carbon-doped nanocomposite CrAlTiCN coatings 

is similar to that of bench-mark CrAlTiN coating but much better than the GLC coating.  

 

(16) The carbon-doped nanocomposite CrAlTiCN coatings have very similar thermal 

stability to the bench-mark CrAlTiN coating at temperatures ranging from 400 to 900 ℃ 

mainly because of the formation of protective Cr2O3 as well as Al2O3 films.  

 

(17)  The CrAlTiCN-5# coating, which has been doped with the highest level of carbon in 

the present research, was completely destroyed at 1000 ℃ because the amorphous carbon 

matrix cannot form any protective films during the oxidation.  
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Chapter 7: Proposals for Future Work 

This study has clearly shown that a novel low-friction, wear and oxidation resistant 

multilayered nanocomposite Cr-Al-Ti-C-N coatings can be generated using closed-field 

unbalanced magnetron ion plating technique. To realise their potential for high-speed dry 

machine and other high temperature applications, the following topics are proposed for the 

future studies: 

 

Friction properties and wear tests: 

More work could be conducted to reduce the frictional coefficient further. 

 

In order to identify the application window, more laboratory wear tests could be conducted 

under different test conditions such as higher temperatures and higher sliding speeds.  If 

feasible, the new coatings could be evaluated using real cutting or drilling trials.    

 

Oxidation mechanisms: 

The good oxidation resistance seems to be intrinsic to (Cr, Al, Ti) N based coatings but the 

oxidising process and anti-oxidation mechanisms of the new multilayered nanocomposite 

Cr-Al-Ti-C-N coatings deserve further attention.  

 

Potential for both sp2 and sp3 carbon: 

The coating hardness of high-carbon Cr-Al-Ti-C-N coatings could be increased by changing 

the deposition conditions to form carbon-based phases with both sp2 and sp3 hybridisations.   
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Table 2.2-1: Carbides, nitrides, oxides and borides employed to combat corrosion and wear. 

Resource: Ref [125] 

Carbides Nitrides Oxides Borides 
Corrosion-resistant ceramics 

SiC Si3N4, Sialon Al2O3 TiB2 
HfC HfN SiO2 MoB 
ZrC ZrN TiO2 WB 

 TiN ZrO2 NbB2 
  SnO2 TaB2 
  MgAl2O4 ZrB2 
  MgO HfB2 
  Cr2O3  

Tribological ceramics 
TiC TiN Al2O3 TiB2 
HfC HfN SiO2 MoB 
ZrC Si3N4 TiO2 WB 
SiC BN ZrO2 NbB2 
B4C ZrN Ta2O5 TaB2 
B2C TaN Cr2O3 ZrB2 
W2C AlN HfO2 HfB2 
Cr7C3 VN V2O3 VB 
Cr2O3 NbN   
Cr23C6    
TaC    
VC    

NbC    
WC    
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Table 2.2-2: Various compounds used as coating materials for tribological applications.  

Data from various sources 

 

 Ⅳ B ⅤB Ⅵ B Ⅲ A Ⅳ A 
 Ti Zr Hf V Nb Ta Cr Mo W B Al Si  

B ● ●    ●        
C ● ● ● ● ● ● ●  ● ●  ●  
N ● ● ● ● ● ● ● ●  ● ● ●  
O ● ●     ●    ●   

CN ● ●            
ON ●             

OCN ●             
 

 

 

Table 2.2-3: Ternary and quaternary hard compounds used as tribological coatings.  

Data from various sources 

 

 Ti 
 Zr Hf V Nb Ta Cr Mo W Al Si AlV AlZr 

B             
C             
N ● ● ● ● ● ●   ● ●   
O         ●  ● ● 

CN   ●      ● ● ●  
ON         ●    

OCN         ●    
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Table 2.2-4: Classification of various hard materials. Data from various sources 

 

Metallic Covalent Ionic 
Borides borides oxides of Al, Zr, Ti, Be 
carbides carbides  
nitrides  

of the transition metals  
nitrides  

of Al, Si, B, diamond  
 

e.g.  
TiB, TiC, TiN, VC, WC 

e.g.  
B4C, SiC, BN 

e.g.  
Al2O3, ZrO2, BeO 

 

 

 

 

 

Table.2.2-5: Properties and bahaviour of various groups of hard materials. 

Data from various sources 

 

Properties and behaviour of carious groups of hard materials 
(M=Metallic; C=Covalent; I=Ionic) 
 

Level Hardness Brittleness Marking
Point 

Stability
-△G 

Thermal 
Expansion

Co-
efficient 

Adherence 
to Metallic 
Substrates 

Interaction 
tendency 

Multilayer 
Suitability 

C I M I I M M M 
M C C M M I C I 

High 
↓ 

Low I M I C C C I C 
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Table 3.1-1: Chemical composition of M2 High speed steel 

 

Element C Si Mn Cr Mo V W Fe 
Composition 

(wt%) 
0.78-
0.88 

0.20-
0.40 

0.20-
0.40 

3.75-
4.50 

4.50-
5.50 

1.60-
2.20 

5.50-
6.75 

balance 

 

 

 

 

 

 

 

 

 

 

Table 3.2-1: Typical deposition conditions for carbon-doped CrAlTiCN coatings 

 by the CUMSIP system 

 

Variable CrAlTiN-0# CrAlTiCN-1# CrAlTiCN-2# CrAlTiCN-3# CrAlTiCN-4# CrAlTiCN-5# 

Cr/Al/Ti  
target current 

4.5/3.5/3.5A 4.5/3.5/3.5A 4.5/3.5/3.5A 4.5/3.5/3.5A 4.5/3.5/3.5A 4.5/3.5/3.5A 

C target 
current 

0 A 1 A 2 A 3 A 4 A 5 A 

Bias 

Base pressure 

Substrate rotation speed 

Typical coatings thickness 

70 V 

< 3.0×10-3 Pa 

5 rpm 

～4.5 μm 
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Table 3.3-1: XRD settings 

 

Variable Value 
Scan-Detector arrangement θ-2θ 

Step size (2θ) 0.02° 
Scan step time (s) 1.00 s 

Scan type Continuous 
Anode material Cu 

Generator settings 40 KV, 40 mA 
Used wavelength (Kα1) 1.540 Å 

 

 

 

 

 

Table 3.3-2: AFM settings 

 

Tip 

 Height 2.5 μm-3.5 μm 

Front and side angles 35° 

Tip radius 20 nm 

  

Cantilever 

Material Silicon nitride 

Top layer Au (60 nm) 

Shape Triangular 

Length 180 μm 

Width 33 μm 

Elastic constant 0.12 N/m 
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Table 3.3-3: Stylus profilometer settings for different measurements 

 

Parameter Roughness Wear track 

Filter Gaussian 2CR 

λc 0.8 mm 2.5 mm 

Length 5.0 mm 2.5 mm 

Standard ISO/BS ANSI/JIS 82 

Data Ra/Ry/Rz PPFL 

Tip radius 2 μm 2 μm 
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Table 4.2-1: Surface roughness of CrAlTiN and carbon-doped CrAlTiCN coatings 

 

Sample CrAlTiN-0# CrAlTiCN-1# CrAlTiCN-2# CrAlTiCN-3# CrAlTiCN-4# CrAlTiCN-5# 
Roughness  

(μm) 

0.0303 

±0.0013 

0.0315 

±0.0015 

0.0378 

±0.0018 

0.0372 

±0.0028 

0.0405 

±0.0035 

0.0388 

±0.0022 

 

 

 

 

Table 4.2-2: Elemental concentration of CrAlTiN and carbon-doped CrAlTiCN coatings 

using EDX and WDX 

 

 

Element (at %) 

WDX EDX 

 

Sample 

N C Al Ti Cr N C 

CrAlTiN-0# 45.98   6.87 6.07 40.53 46.53  

CrAlTiCN-1# 44.12 2.34 6.96 6.45 40.13 43.54 2.92 

CrAlTiCN-2# 47.02 3.96 6.58 5.09 37.35 46.29 4.69 

CrAlTiCN-3# 44.79 9.65 5.91 5.87 33.78 45.69 8.75 

CrAlTiCN-4# 41.87 12.53 6.09 5.33 34.18 42.14 12.26 

CrAlTiCN-5# 33.16 24.34 5.78 5.35 31.37 35.18 22.32 

 

 

 

Table 4.2-3: Lattice parameters and grain sizes of carbon-doped coatings from GAXRD 

 

Sample Stress-free lattice parameter Crystallite size 

CrAlTiCN-1# (0.4135 ± 0.004) nm (3.0 ± 0.5) nm 

CrAlTiCN-3# (0.4152 ± 0.003) nm (3.0 ± 0.6) nm 

CrAlTiCN-5# (0.4141 ± 0.004) nm (2.5 ± 0.4) nm 



Tables 

 157 
 

 

 

Table 4.3-1: Micro-mar resistance of CrAlTiN and carbon-doped CrAlTiCN coatings 

 

Sample CrAlTiN-0# CrAlTiCN-1# CrAlTiCN-2# CrAlTiCN-3# CrAlTiCN-4# CrAlTiCN-5# 
MMR (GPa) 634 527 503 491 375 357 

 

 

 

 

 

Table 4.3-2: Critical load of scratch obtained on as-deposited coatings  
 
 

Sample CrAlTiN-0# CrAlTiCN-3# CrAlTiCN-5# 
Critical Load (Lc)  (N) 42 36 33 
 

 

 

 

 

Table 4.4-1: Coefficient of friction of CrAlTiN and carbon-doped CrAlTiN coatings 

 

Sample CrAlTiN-0# CrAlTiCN-1# CrAlTiCN-2# CrAlTiCN-3# CrAlTiCN-4# CrAlTiCN-5# 
Cof 0.655 

±0.003 
 0.420 
±0.003 

0.410 
±0.006 

 0.375 
±0.003 

 0.400 
±0.001 

 0.350 
±0.002 

 

 

 

 

 
Table 4.5-1: Critical load of scratch obtained on 700 ℃/2 hrs oxidised coatings  

 
 

Sample CrAlTiN-0# CrAlTiCN-3# CrAlTiCN-5# 
Critical Load (Lc)  (N) 7 9 11 
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Table 5.1-1:  Atomic radius and ionic radius 

Data from various sources 

 
Element Cr Al Ti C N 

Atomic radius (×10-12 m) 128 125 140 70 65 
Ionic radius (×10-12 m) 90.5 (2+ ion) 

75.5 (3+ ion) 
53.5 (3+ ion) 100 (2+ ion) 

81 (3+ ion) 
  

 
 
 
 
 

Table 5.2-1: H/E and H3/E*2 ratios  
 

 CrAlTiN-0# CrAlTiCN-1# CrAlTiCN-2# CrAlTiCN-3# CrAlTiCN-4# CrAlTiCN-5# 
H3/E*2 10-2 16.44 15.50 13.40 9.97 9.27 9.08 

H/E 10-3 86.49 84.86 81.85 77.11 75.15 74.61 
 

 

 
 

Table 5.3-1: Elastic contact stress of wear tests 
 

 
 
 
 
 

Table 5.3-2: Comparison of friction coefficient and wear volume lost 
 

 
Cof Worn volume 

Fretting  
 
 

Sample 
 

Unidirectional sliding 
 

Room 
temperature 

350 ℃ 

 
GLC coating 

0.273 
 

3.5×106 μm3 5.8×105 μm3 8.3×105 μm3 

CrAlTiN-0# 0.655 7.8×106 μm3 7.0×105 μm3 4.8×105 μm3 
CrAlTiCN-5# 0.350 5.1×106 μm3 6.2×105 μm3 6.5×105 μm3 

 

Test  Contact load 
(N) 

Ball diameter 
(mm) 

Contact radius 
(μm) 

Hertz stress 
(GPa) 

Pin-on-disc  
(WC-Co) 

20 5 59.84 2.668 

Reciprocating 
(WC-Co) 

50 8 94.99 2.667 

Fretting  
(Cobalt-Chromium) 

100 40 495.90 0.194 
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Figure 2.1-1: The tribological contact process is determined by a number of geometry, 

material and energy related parameters, including changes that can be described on e.g. 

macro- micro- and nano-level and results in friction, wear and changed contact conditions. 

Source: Ref [37] 

 

 

Figure 2.1-2: The basic friction and wear mechanisms are related to adhesion, ploughing 

and hysteresis. In the case of wear these contact mechanisms results in material fracture, 

detachment and removal. Source: Ref [38-40] 
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Figure 2.1-3: Tribological interactions and wear mechanisms. Source: Ref [63] 
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Adhesive wear model: 

(1) asperity contact deformation;  

(2) removal of surface films;  

(3) formation of adhesive junctions;  

(4) fracture of junctions and transfer of material;  

(5) modification of transferred fragments (e.g. strain energy storage, tribochemical effects);  

(6) removal of transferred/backtransferred fragments (e.g. by frtigue, fracture, abrasion) 

 

Figure 2.1-4: Adhesive wear model. Source: Ref [55] 

 

Adhesive wear mechanisms 

FF 

FN 

adhesive 
junction 

Simple relation: 
WV=k‧s‧FN/H 
H: hardness 
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Figure 2.1-5: typical thickness and hardness of surface engineered layers.  

Source: Ref [84,85] 
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Figure 2.2-1: Historical development of tribological coatings and solid films.  

Source: Ref [88] 

 

 

Figure 2.2-2: In DLC sp2-bonded carbon interconnected by a random network of sp3-

bonded atomic sites. Source: Ref [105] 
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Figure 2.2-3: Raman spectra of DLC films at different temperature. Source: Ref [107] 

 

Figure 2.2-4: Fiction coefficient of GiC coating as a function of the sliding distance using 

applied normal loads equal to 20, 40, 60, 80 and 100 N. Source: Ref [120] 
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Figure 2.2-5: Bright field and HRTEM of TiN/CNx layers deposited by reactive magnetron 

sputtering. Source: Ref [149]. 
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Figure 2.2-6: Mechanisms of toughness enhancement in hard ceramic multilayers.  

Source: Ref [154] 

 

 

Figure 2.2-7: Realized concepts for hard and protecting coatings. Source: Ref [163] 
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Figure 2.2-8: Typical values of coating thickness and process temperature (temperature at the 

substrate surface) of today’s tribological coating methods. Source: Ref [164] 
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Figure 2.2-9: PVD processes. Source: Ref [168-171] 
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Figure 2.2-10: Schematic representation of the plasma confinement observed  

in conventional and unbalanced magnetron. Source: Ref [178] 
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Figure 2.2-11: Dual unbalanced magnetron configurations. Source: Ref [182] 

 

 

 

Figure 2.3-1: Schematic illustration of the dependence of specimen hardness on the wear 

resistance in three-body abrasion with hard abrasives. Source: Ref [192] 
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Figure 2.3-2: Schematic illustration of indentation load-displacement data  

showing important measured parameters. Source: Ref [222] 

 

 

Figure 2.3-3: Schematic illustration of the unloading process showing parameters 

characterizing the contact geometry. Source: Ref [222] 
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Figure 2.3-4: Cross-section profile of a typical mar under a constant load.  

Source: Ref [242] 
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Aind: Cross-section area of the indentation 

Adit: Cross-section area of the ditch 

Ashs: Cross-section area of the two shoulders 

Atrgh: Cross-section area of the trough 

Micro Mar Resistance: (Aind - Adit) / Aind * % 

Plastic Deformation: Ashs /Aind * % 

Abrasive Wear: (Adit - Ashs) / Aind * % 

 

 

Figure 2.3-5: Cross-section areas used in calculating responses of a coating to marring stress. 

Source: Ref [244] 
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Figure 3.1-1: Schematic view of the steps involved in the preparation of  

a Cross-section TEM sample preparation 

 

 

 

 

 

 
 

 

Figure 3.1-2: Secondary electron image of FIB cross-section sample 
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Figure 3.2-1: UDP 450 closed-field unbalanced magnetron sputtering ion plating system  
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Figure 3.2-2: Cross-section schematic drawing of arrangement of magnetron targets and 

substrate holder in CFUBMSIP system 

 

 

 
Figure 3.2-3: Schematic illustration of sample arrangement  

 

M2  HSS Si wafer 

N2 

Ar 
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Figure 3.2-4: Schematics of the layer structure of CrAlTiCN coating systems 

 

 

 
 

Figure 3.4-1: Schematic view of nano-indentation testing machine 
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Figure 3.4-2: Schematic view of pin-on-disc tribometer 

 

 

 

 
 

Figure 3.4-3: Schematic view of reciprocating wear tribometer 
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(a) CrAlTiN-0# 
 
 
 
 
 

 
 

(b) CrAlTiCN-1# 
 
 
 
 
 
 
 

Substrate 

Substrate 
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(c) CrAlTiCN-2# 
 
 
 
 
 

 
 

(d) CrAlTiCN-3# 
 
 
 
 
 
 
 

Substrate 

Substrate 
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(e) CrAlTiCN-4# 
 
 
 
 
 

 
 

(f) CrAlTiCN-5# 
 

 
Figure 4.2-1: Surface and cross-sectional SEI SEM micrographs of 

(a) CrAlTiN-0#, (b) CrAlTiCN-1#, (c) CrAlTiCN-2#, (d) CrAlTiCN-3#,  
(e) CrAlTiCN-4# and (f) CrAlTiCN-5# samples 

 

Substrate 

Substrate 
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(a) CrAlTiN-0# 
 
  
 

 
 

(b) CrAlTiCN-1# 
 
 
 

       
 

(c) CrAlTiCN-2# 
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(d) CrAlTiCN-3# 
 
   

     
 

(e) CrAlTiCN-4# 
      
 
 

         
 

(f) CrAlTiCN-5# 
      

Figure 4.2-2: 3-D AFM images of  
(a) CrAlTiN-0#, (b) CrAlTiCN-1#, (c) CrAlTiCN-2#, (d) CrAlTiCN-3#, 

(e) CrAlTiCN-4# and (f) CrAlTiCN-5# samples 
  
 

(d) 
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(a) CrAlTiCN-3# 
 
 
 
  

 
(b) CrAlTiCN-5# 

 
 

Figure 4.2-3: GDOES composition-depth profiles of: 
(a) CrAlTiCN-3# and (b) CrAlTiCN-5# samples 
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Figure 4.2-4: XRD patterns obtained on CrAlTiN and carbon-doped CrAlTiCN coatings 
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(a) 
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(b) CrAlTiCN-1# 

 

 
(c) CrAlTiCN-3# 

 

 
(d) CrAlTiCN-5# 

 
Figure 4.2-5: GAXRD patterns (a) and the line fittings obtained on carbon-doped CrAlTiCN  

(b) 1#, (c) 3# and (d) 5# coatings 
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Figure 4.2-6: XPS survey spectra of CrAlTiCN-5# coating 
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(a) Cr2p 

 
 
 
 

    
(b) C1s 
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(c) N1s 

 
 
 
 

 
(d) O1s 

 
 
 

Figure 4.2-7: Fitting spectrum by XPS for carbon-doped CrAlTiCN-5# coating: 
(a) Cr2p, (b) C1s, (c) N1s and (d) O1s 
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Figure 4.2-8:Cross-sectional TEM micrograph of CrAlTiCN-5# layer structure  
and EDX spectrums 
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Figure 4.2-9: TEM micrograph and electron diffraction pattern on  
sublayersⅠandⅡ from CrAlTiCN-5# coating 
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Figure 4.2-10: TEM micrographs and electron diffraction patterns on  
sublayers Ⅲ and Ⅳ from CrAlTiCN-5# coating  
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Figure 4.2-11: TEM micrographs and electron diffraction pattern on  
Sublayer Ⅳfrom CrAlTiCN-1# coating 
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Figure 4.2-12: TEM micrographs and electron diffraction pattern on  
Sublayer Ⅳfrom CrAlTiCN-3# coating  
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Figure 4.2-13: TEM micrographs and electron diffraction pattern on 
 Sublayer Ⅳfrom CrAlTiCN-5# coating 
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Figure 4.2-14: High-resolution TEM micrographs on Sublayer Ⅳ from CrAlTiCN-5# coating: (a) initial region, (b) middle region and (c) top region 
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Figure 4.3-1: Typical nano-indentaion load against displacement curve of CrAlTiCN-5# coating 

 
 
 
 
 

 
 
 

Figure 4.3-2: Nano-hardness and Young’s modulus varied with  
CrAlTiN and carbon-doped CrAlTiCN coatings 
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(a) CrAlTiN-0# 
 

 
 

(b) CrAlTiCN-1# 
 

 
 

(c) CrAlTiCN-2# 
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(d) CrAlTiCN-3# 
 

 
 

(e) CrAlTiCN-4# 
 

 
 

(f) CrAlTiCN-5# 
Figure 4.3-3: Laser confocal microscope images of indentations on 

(a) CrAlTiN-0#, (b) CrAlTiCN-1#, (c) CrAlTiCN-2#, (d) CrAlTiCN-3#,  
(e) CrAlTiCN-4# and (f) CrAlTiCN-5# samples 
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(a) CrAlTiN-0# 
 
 

 
 

(b) CrAlTiCN-1# 
 
 

 
 

(c) CrAlTiCN-5# 
 
 
 

Figure 4.3-4: Typical depth-profiles of the indentations on  
(a) CrAlTiN-0#, (b) CrAlTiCN-1# and (c) CrAlTiCN-5# samples 
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Figure 4.3-5: Typical depth-profiles of micro-mar on  
(a) CrAlTiN-0# and (b) CrAlTiCN-5# samples 
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(a) CrAlTiN-0# 

 
 
 
 

     
(b) CrAlTiCN-1#                                                          (c) CrAlTiCN-5# 

 
  
 

Figure 4.3-6: Depths vs. scratching distance plots after micro-mar resistance tests from  
(a) CrAlTiN-0#, (b) CrAlTiCN-1# and (c) CrAlTiCN-5# samples 
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(a) CrAlTiN-0# 

 
 

 
 
 

 
(b) CrAlTiCN-3#                                                          (c) CrAlTiCN-5# 

 
 
 
 
 

Figure 4.3-7: Friction force and its first derivation against scratch load  
from (a) CrAlTiN-0#, (b) CrAlTiCN-3# and (c) CrAlTiCN-5# samples 
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Figure 4.3-8: Typical scratch track SEM morphologies of as-deposited CrAlTiCN-3# sample 
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Figure 4.3-9: SEM images of the end region of the scratched track and EDX spectrums 
 from CrAlTiN-0# sample  

A

B

C

A

B 

C 



Figures and illustrations 

 207 
 

 

 
 

 
 

 
 

Figure 4.3-10: SEM images of the end region of the scratched track and EDX spectrums 
 from CrAlTiCN-3# sample 

A

B

C

A

B 

C 



Figures and illustrations 

 208 
 

 

 
 

 
 

 
 

Figure 4.3-11: SEM images of the end region of the scratched track and EDX spectrums  
from CrAlTiCN-5# sample 
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         (b) 
 
 

Figure 4.4-1: Measured worn volume after (a) unidirectional sliding tests and  
(b) reciprocating sliding tests 
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Element           Cr          Al         Ti          N            O         W 
    at% 38.48±0.40 5.33±0.06 5.84±0.08 1.71±0.57 45.29±0.32 3.35±0.14 

 
 
 
 
 

Figure 4.4-2: SEM images of unidirectional sliding wear track and EDX spectrum  
from CrAlTiN-0# coating 
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Element            Cr          Al         Ti           N           O         C        W 
    at% 33.31±0.32 4.53±0.04 5.67±0.07 15.50±0.43 32.64±0.22 7.30±0.21 1.05±0.09 

 
 
 
 
 

Figure 4.4-3: SEM images of unidirectional sliding wear track and EDX spectrum  
from CrAlTiCN-1# coating 
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Element           Cr          Al          Ti           N           O           C         W 
A (at%) 34.12±0.36 5.56±0.05 5.35±0.10 5.43±0.70 33.14±0.39 15.19±0.29 1.21±0.17

B (at%) 35.50±0.55 5.81±0.07 5.57±0.10 35.12±0.69 1.78±0.39 15.37±0.35 0.85±0.13
   

Figure 4.4-4: SEM images of unidirectional sliding wear track and EDX spectrums 
from CrAlTiCN-3# coating 
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Element        Cr         Al         Ti          N           O           C        W 
A (at%) 35.85±0.16 4.66±0.05 4.74±0.07 2.97±0.58 39.27±0.31 11.30±0.26 1.21±0.16 
B (at%) 38.26±0.42 7.43±0.07 6.23±0.08 32.46±0.47  15.05±0.32 0.57±0.09 

       
 

Figure 4.4-5: SEM images of unidirectional sliding wear track and EDX spectrums  
from CrAlTiCN-5# coating 
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 Element       Cr         Al        Ti         O          N         W 
  A (at%)  52.60±0.34 8.25±0.06 7.60±0.07  31.55±0.40  
  B (at%)  38.48±0.40 5.34±0.06 5.84±0.08  45.69±0.08 2.70±0.57  1.95±0.14 
  C (at%)  54.58±0.35 8.52±0.06 7.83±0.07  29.07±0.41  

 
 
 
 

Figure 4.4-6: SEM images of reciprocating sliding wear track and EDX spectrums  
from CrAlTiN-0# coating 
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Element       Cr       Al       Ti        O        N       W      C 
A (at%) 35.90±0.45 6.24±0.07 5.52±0.08  31.08±0.53  21.26±0.33 
B (at%) 29.32±0.40 4.33±0.06 4.75±0.08 45.59±0.35 4.52±0.62   2.17±0.16  9.32±0.35 

 
 
   
 

Figure 4.4-7: SEM images of reciprocating sliding wear track and EDX spectrums 
 from CrAlTiCN-3# coating 
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 Element       Cr         Al        Ti         O        N       W        C 
  A (at%) 38.38±0.42  7.43±0.07  5.99±0.08  33.22±0.47   14.98±0.32 
  B (at%)  30.35±0.37  3.66±0.05  4.74±0.07  43.27±0.31 3.97±0.58  2.71±0.16 11.30±0.26 
  C (at%)  38.60±0.41  7.31±0.07  6.07±0.08    32.85±0.46   15.17±0.31 

 
 

Figure 4.4-8: SEM images of reciprocating sliding wear track and EDX spectrums 
 from CrAlTiCN-5# coating 
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(a) 

 
 
 

 
 

(b) 
 
 

Figure 4.4-9: Measured worn volume after fretting wear tests at:  
(a) room temperature and (b) 350 ℃ 
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Figure 4.4-10: Optical micrographs of room temperature fretting wear tests on  
CrAlTiN-0# and CrAlTiCN-5# samples 
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Figure 4.4-11: SEM images of room temperature fretting wear tracks on CrAlTiN-0# sample 
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Element           Cr         Al        Ti           N          O           C         Fe 
A (at%) 20.66±0.15 1.89±0.05 3.34±0.07  47.55±0.31 12.32±0.39 14.24±0.06 
B (at%) 35.61±0.32 5.81±0.05 5.33±0.08 43.34±0.17 2.07±0.13 4.59±0.32 3.25±0.08 

 
     
 
     
 

Figure 4.4-12: SEM images of room temperature fretting wear tracks and EDX spectrums  
from CrAlTiCN-1# sample 
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Figure 4.4-13: SEM images of room temperature fretting wear tracks on CrAlTiCN-4# sample 
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Figure 4.4-14: Optical micrographs of 350 ℃ fretting wear tests on  
CrAlTiN-0# and CrAlTiCN-5# samples 
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Figure 4.4-15: SEM images of 350℃ fretting wear tracks on CrAlTiN-0# sample 
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Element         Cr         Al         Ti           N            O         C          Fe 
 A (at%) 7.36±0.13 0.23±0.05 1.47±0.07 1.50±0.06 58.71±0.21 9.05±0.09 20.58±0.05 
 B (at%) 27.47±0.12 5.19±0.07 4.71±0.08 42.58±0.07 1.67±0.13 13.95±0.03 4.43±0.06 

 
 
 
 
 

Figure 4.4-16: SEM images of 350℃ fretting wear tracks and EDX spectrums 
from CrAlTiCN-1# coatings 
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Figure 4.4-17: SEM images of 350℃ fretting wear tracks on CrAlTiCN-4# sample 
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(a) CrAlTiN-0# 
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(b) CrAlTiCN-4# 
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(c) CrAlTiCN-5# 

 
Figure 4.5-1: SEM micrographs of oxidised: 

(a) CrAlTiN-0#,  (b) CrAlTiCN-4# and  (c) CrAlTiCN-5# samples 
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Figure 4.5-2: Surface roughness of oxidised coatings 
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(c) 1000℃ 
 

Figure 4.5-3 Cross-sectional SEM BSE micrographs of CrAlTiN-0# sample after oxidation  
at 400℃, 900℃, and 1000℃ 
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(b) 900℃ 

 
 

(c) 1000℃ 
 

Figure 4.5-4: Cross-sectional SEM BSE micrographs of CrAlTiCN-1# sample after oxidation 
at 400℃, 900℃, and 1000℃ 
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(a) 400℃ 
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(c) 1000℃ 
 
 

Figure 4.5-5: Cross-sectional SEM BSE micrographs of CrAlTiCN-5# sample after oxidation 
at 400℃, 900℃, and 1000℃ 
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Figure 4.5-6: EDX line scanning of oxidised CrAlTiN-0# sample 
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Figure 4.5-7: EDX line scanning of oxidised CrAlTiCN-1# sample 
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Figure 4.5-8: EDX line scanning of oxidised CrAlTiCN-5# sample 
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(a) CrAlTiN-0# 
 
 
 
 

 
 

(b) CrAlTiCN-3# 
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(c) CrAlTiCN-5# 
 

Figure 4.5-9: XRD patterns obtained on oxidised  
(a) CrAlTiN-0#, (b) CrAlTiCN-3# and (c) CrAlTiCN-5# samples  
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Figure 4.5-10: Cross-sectional TEM micrograph of oxidised CrAlTiN-0# sample 
 
 
 
 
 
 
 
 

 
 
 

0.2μm 

HSS Substrate 

Sublayer Ⅱ    

Sublayer Ⅰ  

Sublayer Ⅲ    

Oxide layer 



Figures and illustrations 

 246 
 

 

 
 

           
 
 

Figure 4.5-11: TEM micrograph (a) and diffraction patterns on substrate (b) and 
sublayers Ⅰand Ⅱ(c) from 800 ℃/2 hrs oxidised CrAlTiN-0# sample 
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Figure 4.5-12: TEM micrograph (a) and diffraction patterns on 
Sublayer Ⅲ (b) and Sublayer Ⅲ with oxide layer (c) from 800 ℃/2 hrs oxidised CrAlTiN-0# sample 
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Figure 4.5-13: Cross-sectional TEM micrograph of oxidised CrAlTiCN-3# sample 
 
 
 
 
 
 
 
 

0.2μm 

Sublayer Ⅲ 

Oxide layer 

Sublayer Ⅰ 

Sublayer Ⅱ 

HSS Substrate 

Sublayer Ⅳ  

W layer 

b 



Figures and illustrations 

 249 
 

 
 

 
 

 
Figure 4.5-14: TEM micrograph (a) and diffraction patterns on Sublayer Ⅳ (b) 

and Sublayer Ⅳ with oxide layer (c) from 800 ℃/2 hrs oxidised CrAlTiCN-3# sample 
 
 
 

0.2μm 

W layer 

(a) 

(640)    (220) 

 (511)    (200) 
 (420)    (111) 

Cr23C6   MCN 

(440) 

(400) 

 (640)     (220) 

  (113)             (511)     (200) 

   Al2O3  Cr2O3   TiO  Cr23C6   MCN 

    (006)                 ● 

(201)                  ●

(533) 

  (114)                  ● 

(c)

Sublayer Ⅳ 

Oxide layer 

(b) 

(110)             (420)     (111) 



Figures and illustrations 

 250 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 (a) 

 
(b) 

 
Figure 4.5-15: Nano-hardness (a) and Young’s modulus (b)  of oxidised coatings 
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(a) CrAlTiN-0# 

 
 
 

    
(b) CrAlTiCN-3#                                                          (c) CrAlTiCN-5# 

 
 
 

Figure 4.5-16: Friction force and its first derivation against scratch load 
from oxidised (a) CrAlTiN-0#, (b) CrAlTiCN-3# and (c) CrAlTiCN-5# samples 
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Figure 4.5-17: Overview scratch tracks of 0#, 3#, and 5# samples after oxidation at 700℃ 
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Figure 4.5-18: SEM images of the scratched track from 700℃/ 2 hrs oxidised CrAlTiN-0# sample 
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Figure 4.5-19: SEM images of the side region of the scratched track and EDX spectrums from  
700℃/ 2 hrs oxidised CrAlTiN-0# sample  

 

A 

B 

A 

B 



Figures and illustrations 

 255 
 

 
 

Fe FeFeTi
Cr

N
Ti

Cr
Al Ti

Cr

0 1 2 3 4 5 6 7 8 9 10
keVFull Scale 3227 cts Cursor: -0.040  (125 cts)

Spectrum 2

 
 

Fe Fe
Fe Ti

Cr
N

Ti

Cr
Al Ti

Cr

0 1 2 3 4 5 6 7 8 9 10
keVFull Scale 3768 cts Cursor: -0.070  (0 cts)

Spectrum 1

 
 

Fe
FeFeTi

N
Ti

Cr

TiAl Cr

Cr

0 1 2 3 4 5 6 7 8 9 10
keVFull Scale 3918 cts Cursor: -0.055  (13 cts)

Spectrum 5

 
 

Figure 4.5-20: SEM images of the end region of the scratched track and EDX spectrums from  
700℃/ 2 hrs oxidised CrAlTiN-0# sample  

 
 

A

B

C

A 

B 

C 



Figures and illustrations 

 256 
 

 
 

 
 
 

Figure 4.5-21: SEM images of the scratched track from 700℃/ 2 hrs oxidised  
CrAlTiCN-3# sample 
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Figure 4.5-22: SEM images of the end region of the scratched track and EDX spectrums from  
700℃/ 2 hrs oxidised CrAlTiCN-3# sample  
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Figure 4.5-23: SEM images of the scratched track from 700℃/ 2 hrs oxidised  
CrAlTiCN-5# sample 
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Figure 4.5-24: SEM images of the end region of the scratched track and EDX spectrums from  
700℃/ 2 hrs oxidised CrAlTiCN-5# sample  
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Figure 5.1-1: EELS spectrum for CrAlTiCN-5# coating 
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Figure 5.1-2: TEM morphologies showing waviness features on sublayers Ⅲ and Ⅳ  
from CrAlTiCN-5# coating 
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(a) 
 

 
(b) 
 

 
(c) 

 
Figure 5.1-3: Schematic drawing showing evolution of the microstructure of carbon-doped 

CrAlTiCN coatings with (a) low-carbon; (b) medium-carbon; (c) high-carbon content  
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Figure 5.3-1: SEM image showing tribolayer formed in CrAlTiCN-5# sample 
 
 
 
 
 
 
 

 
 
 
 

Figure 5.3-2: Cross-sectional TEM observation of the tribofilm slid  
from CrAlTiCN-5# coating 
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Figure 5.3-3: High resolution image of tribofilm from CrAlTiCN-5# coating   
 
 
 
 
 
 
 

 
 
 

Figure 5.3-4: Schematics of two-body and three-body contact of rough surfaces [350] 
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Element           Cr          C         O 
    at% 19.27±0.43 79.67±0.43 1.06±0.16 

 
 
 
 

Figure 5.3-5: SEM images and EDX compositional analysis of as-deposited GLC coating  
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     Element           Cr          C         O          Fe 
    Spectrum 1 61.39±1.00 20.09±0.69 6.38±0.54 12.14±0.75 
    Spectrum 2 58.61±0.99 21.72±0.72 7.37±0.56 12.30±0.73 

 
 
 

Figure 5.3-6: SEM images and EDX compositional analysis of oxidised GLC coating  
 
 

 



Figures and illustrations 

 267 
 

 
 
 

Element C O Cr Fe 
Content (at%) 29.26±0.98 10.37±0.05 44.37±0.76 16.00±0.55 

 
(a) 

 
 

 
 
 
 

Element C O Cr Fe 
Content (at%) 15.57±0.32 51.70±0.54 2.42±0.18 30.31±0.43 

 
(b) 

 
Figure 5.4-1: SEM images and EDX compositional analysis of GLC coating oxidised at  

(a) 400℃; (b) 700℃ 
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Figure 5.4-2: XRD patterns obtained on GLC coating oxidised at: 
 (a) 400℃; (b) 700℃ 
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Appendices 

A-1 Calculation of d-spacing from TEM 

For Figure 4.2-9, the camera constant used (Lλ) is 1.25 nm2. The shortest radius for Fig. 

4.2-9b is 5.2 mm. According to equation  

R
Ld λ

=  

Therefore the d-spacing (d) =0 .2404nm 

This is then repeated for the other SAD 

 

 

A-2 Calculation of the Contact Pressure and Area Radius 

 

Example calculation: of the contact pressure and the contact area that occur throughout the 

pin-on-disc test. The calculations for the reciprocating wear test follow using the according 

variables.  

Data can be obtained from Table A-8 

 

Radius of sphere counterface (R): 2.5 mm 

Young’s modulus of CrAlTiCN-5# (E): 230 GPa 

Young’s modulus of WC-Co sphere (Ei): 600 GPa 

Poisson ratio of CrAlTiCN coating (ν): 0.23 

Poisson ratio of WC-Co sphere (νi): 0.22 
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Substituting the values in Equations A-1 

i

i

EE

E 22 11
1*

υυ −
+

−
=           (A-1) 

E*=186 GPa 

Substituting the values in Equations A-2 

3/1

2

2

0
*61

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

R
PEP

π
              (A-2) 

Contact pressure (P0) =2.668 GPa 

Substituting the values in Equations A-3 

3/1

*4
3

⎟
⎠
⎞

⎜
⎝
⎛=

E
RPa                           (A-3) 

 

Contact area radius (a) =0.05984 mm 
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A-3 Tables 

 

 

Table A-1 Cr (No. 00-006-0694) 

 

h k l d (nm) 2θ I (%) 

1 1 0 0.20390 44.393 100.0 

2 0 0 0.14419 64.583 16.0 

2 1 1 0.11774 81.724 30.0 

2 2 0 0.10195 98.150 18.0 

3 1 0 0.09120 115.264 20.0 

 

 

Table A-2 CrN (No. 00-003-1157) 

 

h k l d (nm) 2θ I (%) 

1 1 1 0.240 37.442 80.0 

2 0 0 0.207 43.694 80.0 

2 2 0 0.147 63.204 100.0 

3 1 1 0.125 76.084 88.0 
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Table A-3 Cr2N (No. 00-001-1232) 

h k l d (nm) 2θ I (%) 

1 1 0 0.238 37.768 25.0 

0 0 2 0.222 40.606 25.0 

1 1 1 0.210 43.038 100.0 

1 1 2 0.163 56.403 25.0 

3 0 0 0.138 67.861 25.0 

2 1 2 0.127 74.679 20.0 

 

 

 

Table A-4 Cr2O3 (No.00-038-1479) 

h k l d (nm) 2θ I (%) 

0 1 2 0.363132 24.494 73.0 

1 0 4 0.266533 33.597 100.0 

1 1 0 0.247969 36.196 93.0 

0 0 6 0.226585 39.749 7.0 

1 1 3 0.217520 41.480 35.0 

2 0 2 0.204771 44.194 6.0 

0 2 4 0.181521 50.220 38.0 

1 1 6 0.167237 54.853 87.0 
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Table A-5 Al2O3 (No. 00-010-0414) 

h k l d (nm) 2θ I (%) 

0 0 6 0.378 23.517 10.0 

1 1 0 0.280 31.937 50.0 

1 0 7 0.268 33.408 70.0 

1 1 4 0.251 35.744 30.0 

2 0 1 0.241 37.281 30.0 

2 0 4 0.224 40.227 30.0 

2 0 5 0.214 42.195 30.0 

 

 

Table A-6 TiO (No. 00-088-0117) 

h k l d (nm) 2θ I (%) 

   0.3750 23.707 60.0 

   0.3320 26.823 80.0 

   0.2950 30.273 60.0 

   0.2790 32.292 60.0 

   0.2770 32.292 60.0 

   0.2441 36.790 30.0 

   0.2414 37.217 60.0 

   0.2390 37.604 80.0 

   0.2098 43.081 80.0 

   0.2069 43.716 100.0 

   0.1942 46.738 10.0 
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Table A-7 Cr23C6 (No 00-035-0783) 

h k l d (nm) 2θ I (%) 

4 0 0 0.266579 33.591 4.0 

4 2 0 0.238305 37.718 23.0 

4 2 2 0.217615 41.461 24.0 

5 1 1 0.205199 44.097 100.0 

4 4 0 0.188403 48.266 20.0 

5 3 3 0.162607 56.552 2.0 

6 4 0 0.147877 62.786 1.0 

 

 

Table A-8 Fe (No. 00-006-0696) 

h k l d (nm) 2θ I (%) 

1 1 0 0.20268 44.674 100.0 

2 0 0 0.14332 65.023 20.0 

2 1 1 0.11702 82.335 30.0 

2 2 0 0.10134 98.949 10.0 

3 1 0 0.09064 116.390 12.0 
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Table A-9 Modulus and Poisson ratio of materials used for tribological tests 

Material Modulus, E (GPa) Poisson ratio, ν 

Cobalt-Chromium 230 0.3 

Tungsten Carbide 600  0.22  

Diamond 1220  0.1-0.29  

CrAlTiCN coating 283-231 0.23 [1] 

 

Values obtained from data sheets of supplier 

                                                 
[1]  Q. Luo, A. H. Jones, High-precision determination of residual stress of polycrystalline coatings using 
optimized XRD-sin2Ψ technique, Surface & Coatings Technology, Processing 


