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Abstract      

Context. Doxorubicin cardiotoxicity displays a complex and multifactorial progression.  

Objective. Identify early biochemical mechanisms leading to a sustained imbalance of cellular bioenergetics.  

Methods. Measurements of the temporal evolution of selected biochemical markers after treatment of rats 

with doxorubicin (20 mg/kg body weight).  

Results. Doxorubicin treatment increased lipid oxidation, catalase activity and production of H2O2 by Nox-

NADPH oxidases, and down-regulated NAD(P)H:quinone oxidoreductase-1 prior eliciting changes in 

reduced glutathione, protein carbonyls and protein nitrotyrosines. Alterations of mitochondrial and 

myofibrillar bioenergetics biomarkers were detected only after this oxidative imbalance was established.  

Conclusions. NAD(P)H:quinone oxidoreductase-1 activity and increase of hydrogen peroxide production by 

NADPH oxidases are early biomarkers in doxorubicin cardiotoxicity. 

 

Keywords 

Cellular Bioenergetics; Oxidative Stress; Cardiomyopathy; Anthracycline; NQO1; Lipid oxidation 

http://informahealthcare.com/doi/abs/10.3109/1354750X.2014.885084
mailto:carlosgm@unex.es


Lagoa et al., 2014, Author manuscript 

 2 

1. Introduction 

 

Doxorubicin is an antineoplastic anthracycline used for treatment of various hematological 

and solid tumor malignancies including breast cancer and leukemia. Although it is an effective 

chemotherapeutic drug, its clinical use is limited due to severe dose-dependent cardiotoxicity, 

which leads to dilated cardiomyopathy and congestive heart failure (Singal & Iliskovic 1998; 

Berthiaume & Wallace 2007; Takemura & Fujiwara 2007; Sterba et al. 2013). 

Despite an extensive research on anthracycline pathophysiology, the molecular mechanism 

responsible for doxorubicin-induced cardiomyopathy is still controversial. Several mechanisms 

have been implicated in doxorubicin cardiotoxicity, such as apoptosis, disturbance of iron and 

calcium homeostasis and alterations of cardiomyocyte energetics, but many studies suggest that free 

radical-induced oxidative stress plays an important role (Tokarska-Schlattner et al. 2006; 

Berthiaume & Wallace 2007; Takemura & Fujiwara 2007; Sterba et al. 2013). 

It is well established that superoxide anion (O2
·-) is generated during redox cycling of 

doxorubicin or after oxido-reduction processes involving the anthracycline–iron complex, and that 

redox cycling of doxorubicin quinone ring can be catalyzed by several NAD(P)H dehydrogenases 

and oxidases (Doroshow & Davies 1986; Gille & Nohl 1997; Vásquez-Vivar et al. 1997; Deng et al. 

2007; Guilleron et al., 2009).  Cytochrome P450 reductase catalyzes the one-electron reduction of 

doxorubicin that can increase oxidative stress through the generation of superoxide anion (redox 

cycling) in vitro, but more recent in vivo studies have established this enzyme does not contribute to 

doxorubicin cardiotoxicity (Fang et al. 2008; Zhang et al. 2009; Dudka et al. 2012). Other 

NAD(P)H dehydrogenases abundant in the heart tissue, such as xanthine oxidase, nitric oxide 

synthases and Nox (NADPH oxidases), are well described catalysts of doxorubicin redox cycling, 

hence they were targets examined in our work. Deng et al., (2007) pointed to Nox2 as the most 

probable NADPH oxidase isoform activated in the cardiotoxic process induced by doxorubicin. 

Nox2 is composed of the catalytic subunit gp91phox and the membrane binding partner p22phox, 
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and its activation requires the recruitment of several cytosolic subunits (p47phox, p67phox, 

p40phox and Rac1) (Santos et al. 2011). This hypothesis was later supported by the correlation 

found between inhibition of the regulatory subunit Rac 1 and the protective ability of statins against 

doxorubicin cardiotoxicity in vitro and in vivo (Huelsenbeck et al., 2011; Yoshida et al., 2009), as it 

was previously documented for cardiac hypertrophy (Santos et al., 2011; Takemoto et al., 2001). In 

addition, Nox2 can also be activated simply by exposure to H2O2 generated under oxidative stress 

conditions (Li et al. 2001). Then, superoxide anion is converted to hydrogen peroxide (H2O2) or can 

generate the hydroxyl radical in the presence of transition metals, and if nitric oxide is available, it 

reacts with superoxide anion producing peroxynitrite, another strong oxidative species that can 

cause cellular damage. The relevance of oxidative stress in doxorubicin cardiotoxic process has also 

been supported by the observation that antioxidant molecules like vitamin E or flavonoids (Milei et 

al. 1986; Sadzuka et al. 1997; Bast et al. 2007; Aluise et al. 2009; Kebieche et al. 2009; Mokni et al. 

2012), as well as antioxidant enzymes such as superoxide dismutase (SOD) and glutaredoxin 

(Xiong et al. 2006; Ichihara et al. 2007; Diotte et al. 2009), attenuate the cardio-pathological actions 

of the drug in animal models. However, no single therapeutic intervention has proven capable of 

efficiently reducing the adverse effects of doxorubicin in patients. Therefore, the elucidation of the 

pathological process and definition of the core of parameters indicative of biochemical changes 

behind doxorubicin-induced cardiomyopathy remain critical issues (Il'yasova et al. 2009; Panis et 

al. 2012). 

The objective of the present work was to identify primary biomarkers in the cardiotoxic 

process of doxorubicin. By examining the temporal relationships between doxorubicin-triggered 

events and the possible underlying molecular mechanisms, especially at the levels of cellular 

bioenergetics and redox balance, we aimed to clarify the relative importance of different pathways 

and targets proposed to explain doxorubicin toxicity. 
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2. Materials and Methods 

 

2.1. Chemicals and drugs 

Doxorubicin administered to animals was supplied by Pfizer (Madrid, Spain) and that used 

for in vitro studies was obtained from Sigma (St. Louis, MO, USA). Sodium chloride, potassium 

chloride, di-sodium hydrogen phosphate, potassium dihydrogen phosphate, malic acid and 

potassium cyanide were purchased from Merck (Darmstadt, Germany). Reduced glutathione (GSH) 

and sodium pyruvate were from Boehringer Mannheim, Germany. Glycerol and paraformaldehyde 

were from Panreac (Barcelona, Spain). Ketamine was from Pfizer, while diazepam and atropine 

were obtained from B.Braun, Rubí-Barcelona, Spain. All other products were supplied by Sigma, 

unless specified otherwise. 

 

2.2. Animals, treatments and samples 

Male Wistar rats, 10 weeks old, weighting approximately 300 g were housed in a 12 h 

light/dark cycle and allowed free access to food and water during the experiment. The experimental 

procedures followed the animal care guidelines of the European Communities Council Directive 

86/609/EEC. The protocols were approved by the Ethics Committee for Animal Research of the 

local government. 

Doxorubicin was administered by i.p. injection of a drug solution in normal saline at a dose 

of 20 mg/kg of body weight, while Control rats received an injection of normal saline. After the 

injections, the treated animals were observed daily and weighted each morning. At different times 

of treatment, blood samples were collected and rats were sacrificed under anesthesia with ketamine 

(50 g/g), diazepam (2.5 g/g) and atropine (0.05 g/g). The hearts were quickly excised and 

washed in cold phosphate-buffered saline pH 7.4. Blood samples were allowed to clot and 

centrifuged at 5,000 x g at 4 ºC during 10 min. The serum was separated, frozen immediately on 

liquid nitrogen and stored until use. 
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Hearts for histological analysis were fixed in paraformaldehyde and processed for paraffin 

embedding. Tissue sections were obtained with a microtome and hematoxylin-eosin and Masson 

trichrome staining were performed using standard procedures. 

 

2.3. Heart homogenization and preparation of mitochondrial, myofibrillar and 12,500 x g 

fractions  

Heart samples for biochemical studies were homogenized by two different protocols as 

indicated below. 

Total heart homogenates were prepared by homogenization in lysis buffer containing 50 

mM HEPES pH 7.0, 1 mM EDTA, 1 mM EGTA, 50 mM KCl, 0.1%w/v 3-((3-

cholamidopropyl)dimethylammonio)-1-propanesulphonate (CHAPS) and 20%v/v glycerol. 

Homogenates were centrifuged at 500 x g at 4 ºC during 5 min to remove non-lysated material and 

the supernatant fluid was collected. These total homogenates were used for measurements of 

enzymatic activities and markers of oxidatively generated damage. For calpain activity 

measurements and immunoblots, homogenates were further centrifuged at 10,000 x g for 10 min 

and supernatants were used. 

Other heart samples were used to prepare mitochondria, myofibril-enriched fractions and 

homogenate fractions enriched in cytosol, microsomes and membrane fragments (fraction 12,500 x 

g). Tissues were homogenized in Tris-HCl 20 mM pH 7.4, sucrose 0.25 M, EDTA 0.5 mM, EGTA 

0.5 mM and KCl 100 mM, and centrifuged at 1,000 x g during 10 min at 4 ºC. The supernatant was 

then separated from the pellet that included the myofibrils. The supernatant was further centrifuged 

at 9,000 x g at 4 ºC during 10 min, to pellet down mitochondria and separate the supernatant. 

Mitochondria were washed and resuspended in the same sucrose-containing buffer. The supernatant 

from the 9,000 x g centrifugation step was next centrifuged at 12,500 x g and the corresponding 

supernatants were collected for measurements (fraction 12,500 x g).  
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The myofibril-containing pellet from the previous 1,000 x g centrifugation step was re-

suspended in myofibrils isolation buffer (Tris-HCl 20 mM pH 7.4, EDTA 1 mM and KCl 100 mM) 

containing 2% Triton X-100 (Ventura-Clapier et al. 1987; Chicco et al. 2006). Myofibrils were 

pellet down by centrifugation for 10 min at 6,000 x g and the treatment with Triton X-100 was 

repeated again. After, myofibrils were washed three times with isolation buffer without Triton X-

100 and, at the end, resuspended in the same buffer.  

Sub-mitochondrial particles for measurements of mitochondrial enzymatic activities were 

prepared by freeze-thawing mitochondria three times before the assays. 

Protein concentration in all preparations was measured using Thermo Scientific (Rockford, 

IL, USA) protein assay kit (Comassie blue) and bovine serum albumin as standard. 

 

2.4. Measurements of enzyme activities 

The activity of creatine kinase (CK) in the different preparations was measured as described 

in a previous work (Lagoa et al. 2009). In the case of serum CK, the sample was incubated 5 min in 

the assay buffer supplemented with 10 mM GSH before activity was measured. The assay buffer for 

sub-mitochondrial particles was supplemented with 0.25 mg/mL octaethylene glycol monododecyl 

ether, and for myofibrillar fractions 2 mM EGTA was added. 

Calpain and myofibrillar ATPase activity assays are detailed in our previous works (Tiago et 

al. 2006a; Lagoa et al. 2009). Mitochondrial complex I and complex II activities were measured as 

NADH:CoQ1 and succinate:CoQ1 oxidoreductase activities, respectively, following the procedures 

previously described (Lagoa et al. 2011). 

Glutathione reductase activity in heart homogenates was assayed spectrophotometrically by 

the method described in (Carlberg & Mannervik 1985). Assay buffer contained 200 mM potassium 

phosphate (pH 7.0), 2 mM EDTA, 1 mM oxidized glutathione (GSSG) and 100 µM NADPH. The 

sample was added to assay buffer for a final concentration of 0.1 mg protein/mL and the rate of 
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NADPH oxidation was followed at 340 nm, 30 ºC. Enzymatic activity was expressed as nmoles of 

NADPH oxidized/min/mg protein, using an extinction coefficient for NADPH of 6.22 mM-1cm-1. 

Glutathione S-transferase activity was measured through the formation of GSH conjugates 

with 1-chloro-2,4-dinitrobenzene (Habig et al. 1974). First, this substrate was added at a final 

concentration of 1 mM to potassium phosphate buffer 100 mM (pH 6.5) containing 1 mM GSH, at 

30 ºC, and the rate of the (non-catalyzed) conjugation reaction was monitored at 340 nm. 

Thereafter, a sample of heart homogenate was added (final concentration 0.1 mg/mL) and 

absorbance was followed for 3-5 min (total reaction rate). The enzymatic activity was calculated by 

subtracting the non-catalyzed reaction rate from the total rate and it was expressed as 

nmoles/min/mg, using an extinction coefficient of 9.6 mM-1cm-1. 

The activity of glutathione peroxidase was measured by monitoring NADPH oxidation at 

340 nm when GSSG is reduced to GSH by glutathione reductase (Flohé & Gunzler 1984). Assay 

buffer consisted of potassium phosphate 50 mM (pH 7.0), EDTA 0.5 mM, sodium azide 1 mM, 

GSH 1.0 mM, NADPH 150 µM and glutathione reductase 0.24 U/mL, at 37 ºC. Homogenate 

concentration was 10 µg protein/mL buffer. After recording peroxide-independent NADPH 

disappearance for 3 min, 150 µM H2O2 was added and absorbance followed for 5 min (total 

oxidation rate). In a separate assay, the non-enzymatic oxidation rate was measured in the same 

conditions except that no sample was added. Glutathione peroxidase activity was calculated by 

subtracting the peroxide-independent and non-enzymatic NADPH oxidation rates from the total 

oxidation rate. Activity was expressed as nmoles of NADPH oxidized/min/mg, for a GSH 

concentration of 1 mM. 

Glucose-6-phosphate dehydrogenase (G6PDH) in total homogenates was measured by a 

method adapted from Stanton et al., (1991). Reaction buffer consisted of Tris-HCl 50 mM (pH 8.1), 

MgCl2 1 mM and NADP+ 100 M, and the sample (150 g protein/mL) was incubated at 30 ºC. 

First, 200 M 6-phosphogluconate was added and the change in absorbance at 340 nm was 

recorded to quantify the 6-phosphogluconate dehydrogenase activity. Thereafter, 200 M glucose-
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6-phosphate was added and absorbance continuously monitored for the “sum dehydrogenase 

activity” (6-phosphogluconate dehydrogenase + G6PDH). The G6PDH activity was calculated by 

subtracting 6-phosphogluconate dehydrogenase from the “sum dehydrogenase activity”, and 

expressed in nmoles of NADPH/min/mg of protein. 

The activity of SOD in homogenates was assessed by the inhibition of nitroblue tetrazolium 

reduction upon superoxide generation by the xanthine–xanthine oxidase system at 560 nm (Spitz & 

Oberley 1989). Activity was expressed as U/mg protein (1 U is the amount of SOD required to 

inhibit the rate of nitroblue tetrazolium reduction by 50%).  

Catalase activity was measured by the rate of H2O2 decomposition at 240 nm, as proposed in 

(Aebi 1984). Homogenate concentration was 300 g protein/mL potassium phosphate buffer 50 

mM pH 7.0, and the reaction was triggered with H2O2 10 mM, at 25 ºC. The activity was calculated 

from the initial slope of absorbance and was expressed as moles of H2O2 consumed/min/mg 

protein, using an extinction coefficient of 39.4 M-1cm-1. 

The activity of NAD(P)H:quinone oxidoreductase 1 (NQO1) was measured as the 

dicoumarol-sensitive menadione reducing activity (Ernster 1967). Reaction medium consisted of 

Tris-HCl 25 mM (pH 7.4), NADPH 180 M, Tween-20 0.01%, menadione 20 M and 40 g 

homogenate protein/mL. NADPH oxidation was followed spectrophotometrically at 340 nm, at 

25ºC, for 3 min and, then, dicoumarol 20 M was added to correct the non-specific NADPH 

oxidation. NQO1 activity is given in nmoles of NADPH oxidized/min/mg of protein. 

The NADPH oxidase activity of cardiac homogenates was measured following the kinetics 

of decrease of the fluorescence of NADPH (excitation wavelength 375 nm, emission wavelength 

460 nm) at 37 ºC in the following assay medium: sucrose 0.25 M, KH2PO4 5 mM, KCl 10 mM, 

MgCl2 5 mM, NADPH 15 μM, Tris 10 mM (pH 7.4), with 0.1 mg of protein/mL. The change of 

NADPH concentration was calculated after calibration of the fluorescence intensity with standard 

solutions of known concentrations of NADPH, and the NAPDH oxidase activity is expressed as 

nmoles of NADPH oxidized/min/mg of protein. 
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2.5. Caspase-3 and NQO1 immunoblotting analysis 

Caspase-3 activation and the level of NQO1 protein were investigated by Western blotting. 

General procedures routinely used in our laboratory for protein electrophoresis, transfer and 

immunodetection have been described previously (Lagoa et al. 2009). For caspase-3 activation, it 

was employed a polyclonal rabbit anti-activated caspase-3 antibody (Calbiochem PC679, 

Calbiochem-Merck KGaA, Darmstadt, Germany) which recognizes the ~17 kDa cleaved (active) 

fragment of caspase-3. For NQO1, a polyclonal rabbit anti-NQO1 antibody (11451-1-AP from 

Protein Tech, Chicago, IL, USA) was used. 

 

2.6. Markers of oxidatively generated damage 

The concentration of GSH in heart homogenates was measured by the monochlorobimane 

method, as described in Lagoa et al., (2009).  

The extent of lipid oxidation has been monitored following a standard protocol using the 

thiobarbituric acid-reactive substances (TBARS) assay. Homogenates were reacted with 

thiobarbituric acid 0,25% w/v, trichloroacetic acid 10%w/v and hydrochloric acid 0,17N, in 

presence of 1 mM butylated hydroxytoluene, at 100 ºC. After cooling the tubes, absorbance at 535 

nm was measured and TBARS were calculated in nmoles of malondialdehyde per mg of protein, 

using an extinction coefficient of 1.56x105 M-1cm-1.  

Total thiol groups were measured by the 5,5’-dithio-bis(2-nitrobenzoic) acid reduction assay 

described in our previous publication (Tiago et al. 2006a), where the spectrophotometric method for 

detection of protein carbonyls with dinitrophenylhydrazine (DNPH) derivatization is also detailed. 

Protein carbonyls in heart homogenates were also investigated by Western blotting as proposed by 

Robinson et al., (1999).  

The analysis of protein nitrotyrosines in homogenates was performed according to the 

method in Lagoa et al., (2009). 
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2.7. Production of reactive oxygen species 

Production of H2O2 by heart isolated mitochondria and homogenate fractions 12,500 x g was 

quantified by the Amplex Red assay (Zhou et al. 1997). Mitochondria 0.1 mg protein/mL or 0.05 

mg/mL homogenate fraction were incubated in assay buffer composed of sucrose 0.25 M, KH2PO4 

5 mM, KCl 10 mM, MgCl2 5 mM, Tris 10 mM (pH 7.4), horseradish peroxidase 0.2 U/mL and 

Amplex Red (10-acetyl-3,7-dihydroxyphenoxazine) 5 M, at 37 ºC, and the increase in 530/590 nm 

fluorescence was followed. For mitochondria, media was supplemented with respiration substrates 

pyruvate 5 mM, malate 5 mM and with ADP 0.2 mM (Lagoa et al. 2011). Fluorescence units were 

converted into moles of H2O2 produced using a standard curve obtained with known amounts of 

H2O2 in the same assay conditions. 

Generation of reactive oxygen species (ROS) by isolated mitochondria was also assessed by 

using the ROS-sensitive probe dichlorodihydrofluorescein (Martin-Romero et al. 2004). 

Mitochondria were suspended in the same buffer as for the Amplex Red method, the probe (2’,7’-

dichlorodihydrofluorescein, from Molecular Probes, Groningen, The Netherlands) was added at a 

final concentration of 5 µM and the fluorescence was monitored at 37 ºC using excitation and 

emission wavelengths of 504 and 529 nm, respectively. 

 

2.8. Statistical analysis 

Results are expressed as means ±standard error (S.E.). Statistical analysis was carried out by 

Mann–Whitney non-parametric test. Significant difference was accepted at the P <0.05 level. 

All the biochemical data were confirmed with duplicate measurements of at least 

experimental triplicates of each condition. 
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3. Results 

 

Doxorubicin cardiotoxicity has been studied with different animal models using a variety of 

protocols for treatments, although the effects of the drug are known to depend on the 

concentration/dose and exposure time (Tokarska-Schlattner et al. 2006). In the present study, Wistar 

rats were treated with an intraperitoneal injection of 20 mg of doxorubicin/kg body weight. This 

dose was selected after preliminary studies carried out in our laboratory with doses ranging from 10 

to 40 mg of doxorubicin/kg body weight, aiming to set up a suitable protocol to detect the first, 

moderate but specific, signs of doxorubicin cardiotoxicity without a severe impairment of the 

animals. Equal or very similar doses are also used by other authors to investigate the effects of the 

drug in the heart and possible cardio protectors (Sadzuka et al. 1997; Mihm et al. 2002; Xiong et al. 

2006; Andreadou et al. 2007; Ichihara et al. 2007; Diotte et al. 2009; Huelsenbeck et al. 2011; 

Mokni et al. 2012). 

The temporal evolution of different markers of doxorubicin toxicity and possible targets of 

the drug were followed after its administration to the animals, as presented in the following 

sections. In the course of the first 5 days after doxorubicin injection, no mortality occurred, the 

animal weight decreased 18±5% and loss 34±10% of heart mass while Control animals injected 

with saline roughly maintained the weight (4±8% increase) and heart mass (11±11%). 

Histological examination of hearts extracted from rats treated with doxorubicin in our model 

revealed morphological alterations in the myocardium (Fig. 1.A), in accordance with those 

described in the bibliography for doxorubicin-induced cardiomyopathy (Andreadou et al. 2007; 

Takemura & Fujiwara 2007; Sterba et al. 2013). At day 5 after drug administration, some 

cardiomyocytes with vacuolization and an abnormal morphology possibly due to myofibrillar 

disarrangement, could be observed in the stained heart sections. However, neither necrotic areas nor 

fibrosis were seen in Control or in doxorubicin–treated hearts at this stage of treatment. 
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Myocardial injury is known to cause an increase of CK level in serum (Rajappa 2005), and 

we measured higher values of CK activity in the serum of rats treated with doxorubicin, compared 

to Control animals (Fig. 1.B). It is important to note that the maximum CK activity in the serum 

was observed at day 3 after injection, and was followed by a decrease at days 5 and 7 of treatment, 

corroborating that there is a temporal window to detect heart lesion using this biomarker (Diotte et 

al. 2009).  

 

 

3.1. Doxorubicin-activated cell death 

Apoptosis of cardiomyocytes has been reported to be induced by doxorubicin in vitro, 

although the occurrence of this process in vivo and its relevance for the development of 

cardiomyopathy after treatment with the drug is a matter of debate (Takemura & Fujiwara 2007). 

We have experimentally assessed the induction of the apoptotic and necrotic cell death in 

the heart of rats treated with doxorubicin by measuring the level of active caspase-3 and the activity 

of calpains in heart homogenates. As shown in Fig. 2, a 1.8 fold increase of p17 cleaved fragment of 

caspase-3 was observed in samples obtained from animals 5 days after doxorubicin administration. 

Calpain activity of heart homogenates was measured using the fluorogenic substrate Suc-LY-AMC, 

as in a previous work by our laboratory (Lagoa et al. 2009), but no significant changes were 

detected until day 7 of treatment compared to Control samples (results not shown). 

 

 

3.2. Effect of doxorubicin on cellular bioenergetics biomarkers 

Doxorubicin treatment has been shown to disturb several markers of the myocardial 

bioenergetics, but it is not clear if these are early changes or secondary in the process of cellular 

toxicity induced by the drug (Tokarska-Schlattner et al. 2006). 
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Mitochondria have been referred as a primary target of doxorubicin and a key factor in drug 

cardiotoxicity, reviewed in Berthiaume & Wallace, (2007). We initially studied the effect of 

doxorubicin in the respiratory rate of mitochondria in vitro and we found no changes in state 4 and 

3 respiratory rates, either using pyruvate/malate or succinate as substrates (results not shown). In 

spite of this result, as complexes I and II and CK are among the probably more sensitive targets of 

doxorubicin (Tokarska-Schlattner et al. 2006), we have measured the activity of these enzymes in 

mitochondria isolated from the heart of rats after drug administration (Fig. 3). While the enzyme 

activities at days 1 and 3 after injection were similar to those measured in Control samples, a 

significant reduction was detected at day 5. Complex I was the most heavily affected, with an 

almost 50% decrease in activity comparing Control and day 5 values (631±100 and 360±120 

nmoles of NADH oxidized/min/mg protein, respectively). In addition, a loss of 35±10% of 

mitochondrial CK activity was also observed at day 5. 

Another fraction of CK of high relevance for cardiomyocytes is that associated with 

myofibrils. As described in Materials and Methods, we prepared fractions of heart homogenates 

enriched in myofibrils and measured the activities of CK and myosin ATPase in these preparations. 

Doxorubicin treatment caused a gradual decline of both activities, with evident effects 5 days after 

drug injection (Fig. 4). At this time, CK and ATPase activities dropped 46 and 40% from Control 

values, respectively. The loss of myofibrillar CK activity seems to begin at an earlier time in the 

cardiotoxic process, since it was approximately 75% of the Control value already at day 1 after 

injection. However, total CK activity measured in heart homogenates, which includes the 

mitochondrial, myofibrillar and cytosolic fractions of CK, did not show significant changes with 

doxorubicin treatment. Values in mol phosphocreatine hydrolyzed per min per mg of protein were: 

18.2±4.0 in Control samples; and 14.2±2.2, 16.9±3.5 and 16.6±3.0 at days 1, 3 and 5 post-injection, 

respectively. 
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3.3. Effect of doxorubicin on markers of oxidatively generated damage 

To evaluate the oxidatively generated damage elicited by doxorubicin treatment in rat heart, 

the following biomarkers were measured in heart homogenates: extent of lipid oxidation, levels of 

reduced thiol groups, of protein carbonyls and of protein nitrotyrosines. 

The concentration of TBARS was found to increase two-fold after day 3 of treatment with 

doxorubicin compared to Control values (Fig. 5).  

In contrast, the levels of reduced thiol groups in the samples of rats treated with doxorubicin 

were similar to Control values (Fig. S.1.A of Supplementary Data), in good agreement with the 

results obtained for GSH levels which were also unaffected by the treatment, as shown in the Table 1.  

A study by other authors suggested an increase in protein carbonylation induced by 

doxorubicin in vivo (Andreadou et al. 2007). However, in our experimental conditions we did not 

detect an increase in the levels of protein carbonyls in heart homogenates until day 7 post-injection 

of doxorubicin using both the spectrophotometric and the Western blotting method with DNPH 

derivatization (Fig. S.1.B and C of Supplementary Data), nor in the level of protein nitrotyrosines, a 

marker of peroxynitrite and nitrosative stress (Fig. S.1.D of Supplementary Data). 

 

3.4. Effect of doxorubicin on the activity of the major antioxidant cellular defense systems 

The early increase in lipid oxidation caused by doxorubicin, noticed at the time in which the 

CK activity peaked to a maximum in blood serum and preceding the other effects of the drug in rat 

heart, strengthens the hypothesis that oxidative stress is a primary factor in doxorubicin cardiotoxic 

mechanism. However, this is not a generalized nitrosative/oxidative stress as pointed out by the 

results shown above. Then, it was important to check the activity of the major antioxidant systems 

to get a more in depth analysis of the oxidative stress phenomena induced by doxorubicin in rat 

heart. Previous studies pointed that disturbance of the GSH cellular homeostasis, the main 

intracellular antioxidant, could play a major role in doxorubicin cellular toxicity (Wolf & Baynes 

2006; Aluise et al. 2009; Diotte et al. 2009; Joshi et al. 2010). Thus we experimentally assessed the 
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possibility of GSH metabolism alterations after doxorubicin treatment in our model animals, and 

Table 1 summarizes the effect of doxorubicin treatment on GSH levels and in the activity of the 

major GSH metabolizing enzymes glutathione reductase, glutathione S-transferase and glutathione 

peroxidase. 

However, as shown in the Table 1 the concentrations of GSH measured in fresh 

homogenates of heart samples from rats treated with the drug were similar to those measured in 

Control samples. In line with this observation, the activities of glutathione reductase, glutathione S-

transferase and glutathione peroxidase did not show significant changes with doxorubicin treatment 

until day 5 post-injection. As the NADPH availability is a requirement for oxidized glutathione 

recycling by the reductase and NADPH-generation by G6PDH has been shown to play a key role in 

the maintenance of the redox status of cardiomyocytes and also to be implicated in other processes 

of cardiac dysfunction (Gupte et al. 2006; Santos et al. 2011), we measured this activity in heart 

homogenates and we found no significant differences between Control and doxorubicin-treated 

animals, see the Table 1. This enzyme was associated to endothelial oxidative stress and 

dysfunction induced by doxorubicin (Wolf & Baynes 2006), but seems to be not relevant in the 

cardiotoxic process. 

The activity of the chief ROS scavenging enzymes SOD and catalase were also measured in 

heart samples and the results are also included in the Table 1. These results demonstrated a steady 

increase in catalase activity after doxorubicin injection, being significant at day 3 of treatment and 

later. 

NQO1 has been reported to scavenge superoxide directly (Siegel et al. 2004) and, though it 

has a lower rate compared to dismutation catalyzed by superoxide dismutase (SOD), this property 

seems relevant in tissues/cells with lower SOD levels, like cardiovascular cells, where NQO1 

inhibition was found to cause a decrease in superoxide scavenging capacity (Zhu et al. 2007). In 

addition, NQO1 is capable of reducing ubiquinone and probably also vitamin E (Beyer et al. 1996; 

Ross et al. 2000; Dinkova-Kostova & Talalay 2010), endogenous antioxidants whose regeneration 
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is critical for the protection of cell membranes against oxidatively generated damage. A previous 

work has pointed out the importance of NQO1 in prevention of lipid oxidation in artificial 

membranes and preservation of membrane integrity of rat hepatocytes exposed to doxorubicin 

(Beyer et al. 1996). Given that lipid oxidation was the dominant oxidative imbalance produced by 

doxorubicin in rat heart, we hypothesized that treatment with the drug affected the protective 

function of NQO1. The protein level and activity of this enzyme were measured in heart samples at 

days 1, 3 and 5 post-injection and found to be significantly lower only from day 3 post-injection, 

the time at which a significant lipid oxidation was also observed, and the results are presented in 

Fig. 6. Both NQO1 level and enzymatic activity showed an approximately 40% decrease in 

doxorubicin-treated rats compared to Control saline-treated animals. 

 

3.5. Effect of doxorubicin on the activity of the major ROS producing systems 

We then proceeded to investigate the sources of ROS stimulated by doxorubicin treatment 

and causing the oxidatively generated damage observed in rat heart. Mitochondrial enzymes, 

NADPH oxidases of the Nox family, uncoupled nitric oxide synthases and xanthine oxidase are the 

most important sources of O2
·-/H2O2 reported for different cardiac pathophysiological conditions 

(Santos et al. 2011; Sugamura & Keaney Jr 2011), but their specific role in doxorubicin 

cardiotoxicity is still not completely clarified.  

In the first set of experiments, mitochondria isolated from rat hearts were incubated in vitro 

with doxorubicin and H2O2 release was measured by the Amplex Red method. Superoxide anion is 

the primary ROS produced by mitochondrial electron transport chain (Murphy 2009), and can also 

be generated by redox cycling of doxorubicin quinone-semiquinone derivatives, catalyzed by 

mitochondrial NADH dehydrogenases (Doroshow & Davies 1986; Gille & Nohl 1997). It is well 

accepted that superoxide is rapidly converted to H2O2 by mitochondrial SOD and the fluorescent 

probe Amplex Red gives a sensitive and robust method to quantify H2O2 generation (Zhou et al. 

1997). However, the results of Figure S.2.A of Supplementary Data showed that doxorubicin, when 
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added in concentrations of 1 and 10 M to heart mitochondria respiring pyruvate and malate, had 

no significant effect on the rate of H2O2 release by the organelle. 

Although a direct action of doxorubicin on heart mitochondria does not seem to account for 

mitochondrial H2O2 production, the in vivo treatment may potentiate mitochondrial ability to 

produce ROS. We isolated heart mitochondria from rats treated with doxorubicin (day 3 post-

injection) and compared the rate of ROS production with heart mitochondria from Control rats. As 

shown in Fig. S.2.B of Supplementary Data, the rates of H2O2 release by heart mitochondria from 

the two experimental groups were identical, even when respiratory inhibitors that amplify 

mitochondrial H2O2 production were added to the assay medium. In addition, overall ROS 

production was quantified by using dihydrodichlorofluorescein, a probe with a low specificity for 

different ROS (Martin-Romero et al. 2004), but again significant differences between mitochondria 

from doxorubicin-treated and Control animals were not detected (Fig. S.2.C of Supplementary 

Data). 

To investigate the possible participation of non-mitochondrial sources of ROS, a fraction of 

heart homogenates enriched in cytosol, microsomes and membrane fragments was prepared, as 

described in Materials and Methods (fraction supernatant of 12,500 x g), and the rate of H2O2 

generation was measured in different experimental conditions (Fig. 7). The basal rates of H2O2 

generation by the these fractions of heart homogenates from rats treated with doxorubicin (day 3 

post-injection) were not significantly different from those of fractions obtained from Control rats. 

Similar results were obtained when the preparations were incubated with xanthine to stimulate the 

xanthine oxidase activity. The presence of NADH increased the capacity of homogenate fractions to 

produce H2O2, but in the same proportion with doxorubicin-treated and Control samples. However, 

the stimulation by NADPH, in addition to being stronger, was significantly higher in the 

preparations of hearts from doxorubicin-treated rats only from day 3 post-injection (Fig. 7). With 

these preparations, the rates of H2O2 production in the presence of NADPH after 3-5 days post-

injection increased 55-65% with respect to those measured with Control samples (inset of Fig. 7).  



Lagoa et al., 2014, Author manuscript 

 18 

Enzymes like nitric oxide synthases and the NADPH oxidases of the Nox family can 

produce O2
·-/H2O2 in a NADPH-dependent manner and, besides from being implicated in several 

cardiac pathological processes (Gupte et al. 2006; Akki et al. 2009; Sugamura & Keaney Jr 2011), 

are known to catalyze redox cycling of doxorubicin (Vásquez-Vivar et al. 1997; Deng et al. 2007).  

Moreover, Nox has been identified as the major source for NADPH-dependent production of 

superoxide anion in cardiac tissue (Nediani et al. 2007). As apocynin, the most used Nox inhibitor, 

interferes with H2O2 detection with Amplex Red in cell-free systems (Heumuller et al. 2008) and 

can behave itself as an antioxidant acting as a scavenger of reaction products of hydrogen peroxide 

(Wind et al. 2010), we have experimentally assessed that apocynin affords a large inhibition of the 

coupled NADPH oxidase activity in our cardiac homogenates of doxorubicin-treated rats (day 3 

post-injection). Our results showed that 250 and 500 μM apocynin inhibited 75±5% and >90%, 

respectively, of the total NADPH oxidase activity, which was 1.5±0.1 nmoles/min/mg of protein 

measured as indicated in the Materials and Methods section (average of data obtained with three 

different homogenates). Consistently, Nω-nitro-L-arginine methyl ester (L-NAME), a non-selective 

inhibitor of nitric oxide synthases, produced less than 10% inhibition of the NADPH oxidase 

activity and have no effect on the NADPH-stimulated production of H2O2 by the cardiac 

homogenates at day 3 post-injection (average of data obtained with three different homogenates). 

Since Deng et al., (2007) have pointed to Nox2, composed of the catalytic subunit gp91phox and 

the membrane binding partner p22phox, as the most probable isoform activated in the cardiotoxic 

process, we have performed Western blotting analysis of the heart homogenates using anti-

gp91phox (cat. number 611415 from BD Transduction Laboratories, Lexington, KY, USA) and 

anti-p22phox (cat. number sc-20781 from Santa Cruz Biotechnology, Santa Cruz, CA, USA). Our 

results showed that at day 3 post-injection the expression levels of gp91phox and p22phox were not 

significantly different from those found in Control samples of heart homogenates (data not shown), 

therefore, excluding activation of Nox2 by up-regulation of its expression at the earlier stages of 

doxorubicin cardiotoxicity. 
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4. Discussion 

In this work, we followed the temporal evolution of different markers of doxorubicin-

induced early damage and possible targets of the drug in rat heart after an intraperitoneal injection 

of 20 mg of doxorubicin/kg body weight in adult Wistar rats. This treatment revealed the 

involvement of the NQO1 and NADPH oxidase systems in the early stages of doxorubicin 

cardiotoxicity in vivo. In parallel, several plausible effects and targets of the drug were found least 

relevant or secondary in the early stages of the cardiotoxic process. 

Previous works have shown that treatment of rat and mouse with doxorubicin doses about 

15-20 mg/kg body weight induces cardiac dysfunction (Mihm et al. 2002; Xiong et al. 2006; 

Ichihara et al. 2007; Diotte et al. 2009) and lesion evidenced by morphological changes (Sanchez-

Quintana et al. 1994; Mihm et al. 2002; Andreadou et al. 2007) and increase of CK blood serum 

levels (Andreadou et al. 2007; Diotte et al. 2009), supporting the use of these treatments as 

experimental models of doxorubicin cardiomyopathy (Sanchez-Quintana et al. 1994; Sadzuka et al. 

1997; Mihm et al. 2002; Jang et al. 2004; Xiong et al. 2006; Andreadou et al. 2007; Ichihara et al. 

2007; Diotte et al. 2009; Huelsenbeck et al 2011; Mokni et al. 2012). In good agreement with these 

results, we detected markers of myocardial lesion in the rats treated with doxorubicin in our model, 

specifically, cardiomyocyte degeneration and increase of CK in blood serum. Histological 

observations excluded a widespread myocardial damage and a slight, but significant, activation of 

caspase-3 was detected at day 5 post-injection. Other authors have measured increases in the 

activity and level of cleaved form of caspase-3 in the heart of rodents following doxorubicin 

administration, with treatment protocols similar to our model, and the activation observed was also 

weak and time-dependent (Jang et al. 2004; Ichihara et al. 2007; Vitelli et al. 2007). On the other 

hand, activation of calpains, an event usually associated to disturbances in calcium homeostasis and 

ATP levels, and leading to rapid cell death, was not detected in our experimental assays of rat heart 

homogenates. Altogether, these results indicate the prevalence of a slow-developing apoptotic route 
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in our model of doxorubicin cardiotoxicity, while the necrotic route of cell death has little relevance 

in this animal model. 

Lipid oxidation was found to be an early biomarker of heart lesion produced by doxorubicin, 

whereas statistically not-significant changes occurred in the level of reduced thiol groups, GSH, 

protein carbonyls and nitrotyrosines, suggesting that the oxidatively generated damage induced by 

the drug in vivo is not extensive, on the contrary, that the increased ROS production is very limited 

or focalized. Consistent with these experimental observations, the activities of the antioxidant 

enzymes glutathione reductase, glutathione S-transferase, glutathione peroxidase, G6PDH and SOD 

showed no significant alterations, but doxorubicin administration induced a stepwise and sustained 

increase in catalase activity beginning early after the intraperitoneal injections. The increase of 

catalase activity closely paralleled the increase in lipid oxidation, suggesting that this is a cellular 

response to counteract the increased H2O2 production in doxorubicin-treated rats. Noteworthy, 

specific activation of catalase is also associated with human heart failure (Dieterich et al. 2000; 

Borchi et al. 2010). Upregulation of catalase, without significant changes in MnSOD, CuZnSOD 

and glutathione peroxidase, has been described in left ventricles from failing hearts due to dilated 

and ischemic cardiomyopathy (Dieterich et al. 2000). Interestingly, in other work, higher catalase 

activity values observed in right and left ventricles from failing hearts were positively correlated 

with the also increased rates of NADPH-dependent superoxide production (Borchi et al. 2010). 

Taken together, our data support the hypothesis of a restricted oxidatively generated damage in the 

heart of animals treated with doxorubicin, both regarding the ROS implicated and the intracellular 

extension, in the first steps of doxorubicin cardiotoxicity.  

However, the increase of catalase activity is insufficient to afford full protection  against the 

rise of lipid oxidation, probably because in the same period of time doxorubicin administration 

caused a significant decrease in NQO1 activity in rat heart, an enzyme that does not use 

doxorubicin as substrate (Wallin R 1986; Cummings et al. 1992) but that significantly contributes to 

the superoxide scavenging capacity of cardiovascular cells (Zhu et al. 2007). This enzyme plays 
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important antioxidant and cytoprotective actions against toxic substances by reducing different 

quinones to the corresponding hydroquinones, thereby preventing the generation of semiquinone 

intermediates which have high tendency to react with oxygen producing superoxide anion, and 

promoting the elimination/excretion of cytotoxic compounds (Jaiswal 2000; Ross et al. 2000). 

Moreover, data from different studies point out that NQO1 can reduce oxidized forms of 

ubiquinone and vitamin E, being implicated in maintenance of the reduced and active forms of these 

important lipid antioxidants (Beyer et al. 1996; Ross et al. 2000; Dinkova-Kostova & Talalay 

2010). Our results show that, at day 3 post-injection of doxorubicin, the levels of NQO1 protein and 

activity in heart homogenates decreased to approximately 60% of Control values. This decrease 

should facilitate the accumulation of toxic quinonoid compounds in the heart of the animals and 

may slow down regeneration of ubiquinone and vitamin E, contributing to the increase of lipid 

oxidation observed at the same time of treatment. Noteworthy, the temporal decrease of NQO1 

activity closely paralleled the temporal increase of lipid oxidation in our study. Indeed, it has been 

reported that co-administration of vitamins A and E attenuates lipid oxidation and tissue damage 

induced by doxorubicin in rabbit heart (Milei et al. 1986). In fact, it has been demonstrated that 

NQO1 is expressed in human heart (Jaiswal 2000) and also that NQO1 reduces ubiquinone 

incorporated to lipid vesicles and inhibits lipid oxidation (Beyer et al. 1996). In this second study, it 

was observed that ubiquinone protects hepatocytes in vitro against doxorubicin and this protection 

was prevented by dicoumarol, an inhibitor of NQO1. More recently, Morrissy et al., (2012) have 

reported that NQO1 contributes to the protective effect of progesterone against doxorubicin-induced 

apoptosis of cardiomyocytes and that the induction of NQO1 by β-naphthoflavone attenuated 

doxorubicin-induced apoptosis and enhanced the protective effect of progesterone, while NQO1 

inhibition by dicoumarol potentiated doxorubicin toxicity to cardiomyocytes. On these grounds, our 

results suggest the development of clinical studies to further assess the implications of the decay of 

NQO1 in doxorubicin cardiopathology. 
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Studies in vitro have shown that doxorubicin can inactivate CK (Miura et al. 2000; 

Tokarska-Schlattner et al. 2002), and Mihm et al., (2002) reported that at day 5 after treatment of 

mice with doxorubicin, 20 mg/kg i.p., CK activity in heart myofibrillar fractions was decreased in 

approximately 30% comparing to Controls. Our results are in good agreement with this latter work 

since a 46% decrease of myofibrillar CK was also observed at day 5 post-injection. The loss of CK 

activity may be related with the increase in lipid peroxides in rat heart, given that hydroxynonenal, a 

secondary product of lipid oxidation, is known to inactivate the enzyme (Eliuk et al. 2007). Also the 

ATPase activity was lower in heart myofibrils from rats treated with doxorubicin, in line with 

previous studies by our laboratory that pointed out the high sensitivity of actin-myosin ATPase to 

oxidants in vitro (Tiago et al. 2006a; Tiago et al. 2006b). It is worth noting that the decrease in 

myofibril-associated CK activity we observed in doxorubicin cardiac pathology was not followed 

by changes in total CK activity, as also reported for human atrial fibrillation (Mihm et al. 2001), and 

a result that is consistent with different forms of CK (total cytosolic/myofibrillar and mitochondrial) 

having different susceptibilities to oxidative stress (Mihm et al. 2002; Tokarska-Schlattner et al. 

2002). 

The data obtained in the present work indicated that mitochondrial dysfunction is a later 

event in doxorubicin cardiotoxicity. Complexes I and II and CK are regarded as major targets of the 

drug at mitochondria and we found their activities decreased with treatment, but, equally to the 

myofibrillar enzymatic activities, these effects were significant only at day 5 post-injection. 

Mitochondrial and myofibrillar alterations are possibly a consequence of doxorubicin-induced 

oxidative stress that evolves previously, as evidenced by the increases in lipid oxidation and 

catalase activity. These biomarkers suggest doxorubicin-induced oxidative stress in rat heart 

originates, at least initially, from an increase in H2O2 production in cardiac cells. The measurements 

with mitochondria in vitro and with mitochondria isolated from treated rats indicated that 

mitochondria are not the primary source of ROS induced by doxorubicin treatment. Other authors 

have reported even a decrease in H2O2 production rate by heart mitochondria isolated from rats 



Lagoa et al., 2014, Author manuscript 

 23 

treated with doxorubicin (Jang et al. 2004). However, we cannot exclude that mitochondria 

contributes to ROS production in more advanced stages of doxorubicin cardiotoxic process. 

Our study revealed that the NADPH oxidase activity of cardiac homogenates also increased 

with a temporal pattern close to that found for the increase of lipid oxidation, thus, suggesting that 

NADPH oxidases afford a significant contribution to doxorubicin-induced oxidative stress in rat 

heart in the first steps of the cardiotoxic process. Heart samples from doxorubicin-treated rats (day 3 

post-injection) showed an increased rate of NADPH-dependent production of H2O2, while xanthine 

and NADH-stimulated production rates were similar in treated and Control animals, excluding 

xanthine oxidase and NADH dehydrogenases as relevant sources of O2
·-/H2O2 in this model. As 

indicated previously, nitric oxide synthases and Nox isoforms are the major cardiac NADPH 

oxidases that catalyze doxorubicin redox cycling coupled with O2
·- production. As the rate of 

NADPH-dependent production of H2O2 by cardiac homogenates was found to be unaltered by L-

NAME and apocynin largely inhibited the coupled NADPH oxidase activity of cardiac 

homogenates of doxorubicin-treated rats (3 days post-injection), our results pointed out that 

activation of NADPH oxidases of the Nox family is the most likely cause of the increase of 

NADPH oxidase activity induced by doxorubicin. NADPH oxidase activation may afterwards 

contribute to mitochondrial dysfunction, including complex I inhibition as we observed at day 5 in 

our model, since cross talk between mitochondria and NADPH oxidases is now being unravelled 

(Khan et al. 2011). As pointed out in the introduction, cardiotoxic secondary effects of clinical 

treatment with doxorubicin consists on the development of dilated cardiomyopathy that progresses 

to heart failure, and an increased NADPH-dependent production of superoxide anion was also 

observed in heart homogenates from an experimental model of heart failure in dog (Gupte et al. 

2006) and in human failing hearts (Heymes et al. 2003; Nediani et al. 2007; Borchi et al. 2010). 

Consistent with our results, in human heart failure, the mitochondrial complex I, xanthine oxidase 

and nitric oxide synthases were attributed minor importance as pathological ROS sources, because 

the respective inhibitors rotenone, oxypurinol and L-NAME had no evident effect on superoxide 



Lagoa et al., 2014, Author manuscript 

 24 

production by heart samples, while a significant contribution of NADPH oxidases of the Nox 

family has been highlighted (Heymes et al. 2003; Nediani et al. 2007; Borchi et al. 2010). Lipid 

oxidation is also increased in human falling hearts and a significant correlation was found with the 

rate of NADPH-dependent production of superoxide anion (Nediani et al. 2007). Moreover, the 

results obtained in our animal model are also in line with the active implication of NADPH oxidases 

in the apoptotic death induced by doxorubicin to cardiomyocytes in vitro reported by Gilleron et al., 

(2009). Nox2 and Nox4 are the major isoforms of Nox expressed in cardiac tissue (Santos et al. 

2011), but previous works have pointed out that Nox2 is the isoform activated in doxorubicin 

cardiotoxicity (Deng et al. 2007; Yoshida et al. 2009; Huelsenbeck et al. 2011) as well as in cardiac 

hypertrophy (Santos et al., 2011; Takemoto et al., 2001). Our results exclude up-regulation of the 

expression of the main Nox2 subunits gp91phox and p22phox, but it is to be noted that recruitment 

of cytosolic subunits of Nox2 expressed in heart tissue can lead to the observed activation of this 

enzyme by doxorubicin treatment, as pointed out by Yoshida et al., 2009 and Huelsenbeck et al., 

2011. In addition, as exposure of Nox2 to H2O2 elicits a 50% increase of its NADPH oxidase 

activity (Li et al. 2001), an alternate and simple possibility is that doxorubicin-induced increase of 

H2O2 can account for most of the 55-65% increase of the NADPH oxidase activity observed in heart 

homogenates of doxorubicin-treated rats at 3 days post-injection. Owing to its relevance, the 

molecular mechanism(s) underlying the stimulation of the NADPH oxidase activity in the heart of 

doxorubicin-treated rats deserve to be further studied.      
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5. Conclusion 

 

Our work points to the key role of NADPH oxidases of the Nox family in production of 

ROS during the initial stages of doxorubicin cardiotoxicity. In addition, our results also implicate 

deficiencies in the NQO1 system in the cardiac alterations induced by this important therapeutic 

agent. The observed oxidative imbalance is initially focalized in the cell membrane without a 

significant alteration of GSH metabolism, and the lack of increase of protein nitrotyrosines (a 

widely accepted marker of oxidatively generated damage by peroxynitrite) suggests a low incidence 

of nitric oxide-mediated tissue inflammation in the early events in this process. The survey of 

possible cardiotoxic effects of doxorubicin in our model indicated the first signs of cardiac 

oxidative stress induced by the drug are the increases in lipid oxidation and catalase activity. These 

changes occur previous to other alterations in cellular energetics, mitochondrial function and 

apoptosis activation, which certainly assist the cardiotoxic process but seem secondary to the early 

oxidative imbalance. 
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Table 1 

Effect of doxorubicin treatment on the activity of the major antioxidant systems in rat heart. Heart 

homogenates from n= 3-4 animals for each time of treatment were used for measurements and 

means±SE of results are presented.  * p<0.05 versus Control group. 

 
Control  

(saline-treated) 

Doxorubicin- treated 

Day 1 Day 3 Day 5 

GSH level (nmol/mg) 39.1±10.2 39.5±9.8 34.4±10.1 36.2±8.2 

Glutathione reductase activity 

(nmol/min/mg) 
22±4 18±3 23±5 20±4 

Glutathione S-transferase activity 

(nmol/min/mg) 
69±10 55±8 56±7 84±6 

Glutathione peroxidase activity 

(nmol/min/mg) 
530±37 480±89 528±56 469±44 

G6PDH activity (nmol/min/mg) 5.3±0.7 5.4±0.9 6.0±0.6 5.8±0.5 

SOD activity (U/mg) 440±105 531±79 563±88 492±91 

Catalase activity (mol/min/mg) 10.1±2.0 13.0±3.7 18.6±2.4 * 22.3±4.1 * 
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Figure 1. Myocardial lesion induced by doxorubicin treatment in our rat model. Panel A shows 

micrographs of myocardium sections from Control and doxorubicin-treated rats (Dox group, day 5 

after injection) stained by Masson trichrome staining procedure. Myocytes with an altered 

morphology (*) and signs of vacuolization (#) were observed in heart samples from Dox group. 

Scale bar: 10µm. Panel B presents CK activity values measured in serum samples from Control and 

doxorubicin-treated rats at different times after drug injection. Results are means±SE of 

measurements with samples from n= 6 rats of each experimental group or treatment time.  *p<0.05 

versus Control group. 
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Figure 2. Quantification of p17 active fragment of caspase-3 (p17 kDa band) by 

Western blotting analysis of heart homogenates from rats treated with doxorubicin (n= 3 

for each time of treatment). β-Actin was used as housekeeping protein. Means±SE of 

blot intensities relative to Control are indicated.  * p<0.05 versus Control group. 

Control        Day 1        Day 3         Day 5

1.0±0.1           1.0±0.2         1.2±0.3           1.8±0.4 *

p17

Actin

Control        Day 1        Day 3         Day 5

1.0±0.1           1.0±0.2         1.2±0.3           1.8±0.4 *

p17

Actin
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Figure 3. Activity of CK (A) and of complexes I and II (B) in sub-mitochondrial 

particles from the heart of rats treated with saline (Control) and with doxorubicin 1, 3 

and 5 days after injection. Results presented are means±SE of measurements with heart 

preparations from n= 3 animals for each time of treatment.  * p<0.05 versus Control 

group. 
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Figure 4. Activity of CK (A) and of ATPase (B) in myofibrillar fractions from the heart 

of rats treated with saline (Control) and with doxorubicin 1, 3 and 5 days post-injection. 

Results shown are means±SE of measurements with preparations from n= 3 animals for 

each time of treatment.            * p<0.05 versus Control group. 
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Figure 5. Effect of doxorubicin treatment on the extent of lipid oxidation in rat heart. 

The concentration of TBARS in heart homogenates from n= 4 animals for each time of 

treatment was measured and means±SE of results are presented.  * p<0.05 versus 

Control group.  
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Figure 6. Effect of doxorubicin treatment on NQO1 protein level (A) and enzymatic 

activity (B) in rat heart. Measurements were done with heart homogenates from saline-

treated (Control) and doxorubicin-treated 3 days post-injection (Dox) animals. β-Actin 

was used as housekeeping protein. Quantitative data is presented as means±SE of blot 

intensities relative to Control in panel A, and means±SE of enzymatic activities in panel 

B, obtained with n= 6 rats from each experimental group.  * p<0.05 versus Control 

group. 
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Figure 7. Production of H2O2 by fractions 12,500 x g of heart homogenates in different 

conditions. Production rates observed with preparations from saline-treated (Control) 

and doxorubicin-treated (3 days post-injection, Dox) rats. Production rates were 

measured in basal conditions and in presence of xanthine, NADH or NADPH 100 M. 

Inset: Rates of H2O2 production in presence of NADPH obtained with preparations from 

heart samples at days 1, 3 and 5 of treatment. Results are presented as means±SE of 

measurements with heart preparations from n= 4 rats of each experimental group.          

* p<0.05 versus Control group. 
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Figure S1 – Effect of doxorubicin on heart levels of reduced thiol groups, 

protein carbonyls and protein nitrotyrosines 
 

A B 

  

C D 
Control   Day 1    Day 3    Day 5    Day 7 

 

  Control        Day 1       Day 3      Day 5        Day 7 

 

 

Fig. S1. Effect of doxorubicin treatment on the levels of reduced thiol groups (A); protein 

carbonyls measured by the spectrophotometric (B) and the western blotting methods (C); and 

protein nitrotyrosines (D) in rat heart. The results shown in panels A and B are the means±SE, 

and in panels C and C representative results, of measurements done with heart homogenates 

from n= 3 animals for each time of treatment.  
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Figure S2 – Effect of doxorubicin on mitochondrial production of ROS 
 

A 

 

B C 

  
Fig. S2. Effect of doxorubicin in vitro incubation (A) and doxorubicin in vivo treatment (B and 

C) on ROS production by rat heart mitochondria. In panel A, production of H2O2 by isolated 

heart mitochondria was measured by the Amplex Red method, in presence of 1 and 10 M 

doxorubicin. Results are shown as percentage of H2O2 production rate relative to the production 

rate observed with the same mitochondria in the absence of doxorubicin (basal conditions), 

which was normalized to 100%. The H2O2 production rate in basal conditions was 0.25±0.02 

nmol/min/mg protein, respiring piruvate/malate 5/5 mM with ADP 0.2 mM. Panel B represents 

the rate of H2O2 production by heart mitochondria isolated from doxorubicin-treated (day 3 pos-

injection) and Control (saline-treated) rats. Rates were measured in basal conditions and, 

additionally, in presence of rotenone 10 M or antimycin A 2 μM. Panel C shows the overall 

ROS production by heart mitochondria from the same experimental groups, measured as the 

rate of dichlorofluorescein oxidation. All the results in panels A to C are the means±SE from 

measurements made with at least four preparations of mitochondria from each experimental 

group. 
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