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Resumo

A estimativa de notas musicais, também conhecida como determinação da frequência
fundamental (F0), tem sido um tópico bastante popular por muitos anos, e é ainda
bastante investigada hoje em dia. O objectivo da estimativa de notas musicais é des-
cobrir a nota ou frequência fundamental de uma gravação digital de um discurso ou
música. Desempenha um papel fundamental na transcrição de música, pois permite
saber que notas estão a ser tocadas a cada instante.
A estimativa de notas musicais de sons gravados com instrumentos reais é uma tarefa
bastante complicada. Cada instrumento tem diferentes características físicas, o que
faz com que tenham diferentes características espectrais. Além disso, as condições de
gravação podem variar de estúdio para estúdio, e eventuais ruídos de fundo têm de ser
considerados.
Esta dissertação apresenta uma nova abordagem para o problema da estimativa de
notas musicais, utilizando Programação Genética Cartesiana (PGC). Aproveitamos
as vantagens dos algoritmos evolucionários, particularmente da PGC, para explorar e
desenvolver funções matemáticas complexas que actuam como classificadores. Esses
classificadores são usados para identificar notas de piano num sinal de áudio.
Para nos ajudar com a codificação do problema, foi construída uma toolbox de PGC,
flexível e genérica o suficiente para codificar diferentes tipos de programas. A toolbox é
bastante fácil de usar. O algoritmo evolucionário presente na toolbox é conhecido como
1 + λ, onde o valor de λ é configurável. A probabilidade de mutação, o número de
execuções e gerações são também configuráveis. A representação cartesiana da PGC
pode tomar várias formas. Além disso, é capaz de codificar parâmetros para as funções
do function-set, tem um sistema útil de callbacks e está preparada para lidar com dife-
rentes funções de fitness : maximização de f(x) e minimização de f(x).
Foram treinados sessenta e um classificadores, correspondentes a sessenta e uma notas
de piano. Foram usados conjuntos de sinais aúdio para treinar cada um dos classi-
ficadores, em que metade dos sinais tinham uma frequência fundamental igual à do
classificador (sinais positivos), e outra metade com frequência fundamental diferente
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dos classificadores (sinais negativos). A função de fitness utilizada foi a F-measure.
Sinais com a mesma nota do classificador, e que foram identificados correctamente
pelo classificador, contam como verdadeiros positivos. Sinais com a mesma nota do
classificador, e que não foram identificados correctamente pelo classificador, contam
como falsos negativos. Sinais com uma nota diferente do classificador, e que foram
identificados correctamente pelo classificador, contam como falsos positivos. Sinais
com uma nota diferente do classificador, e que não foram identificados correctamente
pelo classificador, contam como verdadeiros negativos.
Numa primeira abordagem, foram evoluídos classificadores para a identificação de sinais
artificiais, criados por funções matemáticas: onda sinusoidal, onda triangular e onda
quadrada. O function-set é basicamente composto por operações de filtragem sobre
vetores e por operações aritméticas com constantes e vetores. Todos os classificadores
identificaram corretamente os sinais positivos e não identificaram os sinais negativos.
De seguida, procedeu-se para o treino de classificadores com gravações de áudio reais.
Para testar os classificadores, foram escolhidos sinais de áudio diferentes dos utilizados
durante a fase de treino. Os resultados obtidos foram muito promissores, mas podiam
ser melhorados. Fizemos pequenas alterações na nossa abordagem e o número de falsos
positivos reduziu 33%, comparativamente com a primeira abordagem. De seguida, os
classificadores evoluídos foram aplicados a sinais de áudio polifónicos. Os resultados
indicam que a técnica utilizada é um bom ponto de partida para abordar o problema
de estimativa de notas musicais.

Palavras-chave: estimativa de notas musicais, programação genética cartesiana, al-
goritmos evolucionários, toolbox de programação genética cartesiana, determinação da
frequência fundamental
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Abstract

Pitch Estimation, also known as Fundamental Frequency (F0) estimation, has been a
popular research topic for many years, and is still investigated nowadays. The goal of
Pitch Estimation is to find the pitch or fundamental frequency of a digital recording of
a speech or musical notes. It plays an important role, because it is the key to identify
which notes are being played and at what time.
Pitch Estimation of real instruments is a very hard task to address. Each instrument
has its own physical characteristics, which reflects in different spectral characteristics.
Furthermore, the recording conditions can vary from studio to studio and background
noises must be considered.
This dissertation presents a novel approach to the problem of Pitch Estimation, using
Cartesian Genetic Programming (CGP). We take advantage of evolutionary algorithms,
in particular CGP, to explore and evolve complex mathematical functions that act as
classifiers. These classifiers are used to identify piano notes pitches in an audio signal.
To help us with the codification of the problem, we built a highly flexible CGP Tool-
box, generic enough to encode different kind of programs. The encoded evolutionary
algorithm is the one known as 1 + λ, and we can choose the value for λ. The toolbox
is very simple to use. Settings such as the mutation probability, number of runs and
generations are configurable. The cartesian representation of CGP can take multiple
forms and it is able to encode function parameters. It is prepared to handle with dif-
ferent type of fitness functions: minimization of f(x) and maximization of f(x) and
has a useful system of callbacks.
We trained 61 classifiers corresponding to 61 piano notes. A training set of audio sig-
nals was used for each of the classifiers: half were signals with the same pitch as the
classifier (true positive signals) and the other half were signals with different pitches
(true negative signals). F-measure was used for the fitness function. Signals with the
same pitch of the classifier that were correctly identified by the classifier, count as a
true positives. Signals with the same pitch of the classifier that were not correctly
identified by the classifier, count as a false negatives. Signals with different pitch of the
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classifier that were not identified by the classifier, count as a true negatives. Signals
with different pitch of the classifier that were identified by the classifier, count as a
false positives.
Our first approach was to evolve classifiers for identifying artifical signals, created by
mathematical functions: sine, sawtooth and square waves. Our function set is basi-
cally composed by filtering operations on vectors and by arithmetic operations with
constants and vectors. All the classifiers correctly identified true positive signals and
did not identify true negative signals. We then moved to real audio recordings.
For testing the classifiers, we picked different audio signals from the ones used during
the training phase. For a first approach, the obtained results were very promising, but
could be improved. We have made slight changes to our approach and the number of
false positives reduced 33%, compared to the first approach.
We then applied the evolved classifiers to polyphonic audio signals, and the results
indicate that our approach is a good starting point for addressing the problem of Pitch
Estimation.

Keywords: pitch estimation, cartesian genetic programming, evolutionary algorithm,
cartesian genetic programming toolbox, fundamental frequency estimation
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Chapter 1

Introduction

Music transcription could be defined as the analysis of an acoustic signal, in order
to find the pitch, onset time, duration and source of each sound (see Figure 1.1).
Automatic Music Transcription (AMT) is making this process automatic.

(a)

(b)

(c)

Figure 1.1: General overview of a music transcription system. (a) - Record the sound
into the computer. (b) - Apply the transcription technique to obtain a piano-roll
representation of the sound. (c) - Convert the piano-roll representation to a partiture.

1



2 1.1. OBJECTIVES AND SCOPE OF THE THESIS

AMT is a general problem, which comprises several problems of its own, and can
be decomposed in: pitch estimation, note onset/offset detection, loudness estimation
and quantization, instrument recognition, extraction of rythmic information, and time
quantization (Benetos et al., 2013). Pitch Estimation, also known as Fundamental
Frequency (F0) estimation, is a sub-problem of AMT; it has been a popular research
topic for many years and still is investigated nowadays. The goal of Pitch Estimation is
to find the pitch or fundamental frequency of a digital recording of a speech or musical
note. It plays an important role, because it is the key to identify which notes are being
played and at what time.
Signals where several sounds are played simultaneously are called polyphonic signals,
in contrast to monophonic signals, where at most one note is present at a time. Con-
versely, Single-Pitch Estimation identifies pitches on monophonic signals and Multi-
Pitch Estimation identifies multiple pitches in polyphonic signals. Pitch Estimation of
real instruments is a very hard task to address. Each instrument has its own physical
characteristics, which reflects in different spectral characteristics. Furthermore, the
recording conditions can varie from studio to studio and background noise must be
considered.

1.1 Objectives and Scope of the Thesis

To the best of our knowledge, there are no Cartesian Genetic Programming (CGP)
approaches for addressing the Pitch Estimation problem. This thesis presents a novel
approach to the problem of Pitch Estimation, using CGP. We take advantage of the
evolutionary algorithms, in particular CGP, to search for complex mathematical func-
tions that act as classifiers. These classifiers are used to identify piano notes pitches
in an audio signal. Given an audio recording of a C3 piano note, the classifier for that
note, should recognize that a C3 is present in that sound. There will be one classifier
for each piano note.

1.2 Thesis Contributions

The main contributions contained within this dissertation are summarized below:

• A Cartesian Genetic Programming Toolbox for Matlab was built and it is freely
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available. This toolbox is generic enough to encode different problems with dif-
ferent requirements.

• A novel approach for detecting pitches using CGP is presented. The results show
the feasibility of the approach and validate the evolution of classifiers using CGP
for Pitch Estimation.

• We wrote an article, where we presented our approach and first results on Pitch
Estimation, that was accepted on the 2016 IEEE Symposium Series on Compu-
tational Intelligence (IEEE SSCI 2016).

1.3 Outline of the Thesis

This dissertation is organized as follows.

Chapter 2 This chapter starts presenting a brief explanation of several terminology
and concepts, from waves and sampling to audio signal processing. Single-Pitch
Estimation approaches are presented and the problem complexity for Multi-Pitch
Estimation is also discussed.

Chapter 3 In this chapter a literature review of previous studies on multiple-F0 esti-
mation is presented.

Chapter 4 This chapter introduces CGP and the algorithm that it uses. An example
of CGP applied to Image Processing is also presented.

Chapter 5 In this chapter we describe the Cartesian Genetic Programming Toolbox
that we developed. We show how this toolbox can encode multiple programs,
and how configurable it is. An example of the application of the toolbox to a
symbolic regression problem is presented.

Chapter 6 In this chapter our approach of applying Cartesian Genetic Programming
to the problem of Pitch Estimation is presented. Our work was divided in multiple
steps: application of classifiers to signals artificially created by mathematical
models; application of classifiers to real audio recordings of monophonic piano
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signals; application of classifiers to polyphonic audio signals. The experiments
and results for each step is shown and discussed. We also applied those classifiers
to polyphonic audio recordings and present the results.

Chapter 7 Finally, this chapter presents our main conclusions. We also present a few
suggestions to future work of applying classifiers evolved by Cartesian Genetic
Programming to Pitch Estimation.



Chapter 2

Terminology and Concepts

Relevant terminology and concepts about several background topics are presented in
this chapter. A brief introduction to sounds, its characteristics and signal processing
is presented.

2.1 Waves and Sound

Sound is the propagation of disturbances in a medium, regardless of whether the sub-
stance of the medium is gaseous, liquid or solid, some of which can be detected by
the human ear. Those disturbances are called sound waves, and propagate by repet-
itive variations of compression (high pressure) and rarefaction (low pressure) of the
medium. The most important properties of sound waves are: wavelength, amplitude
and frequency. The wavelength is the distance between any point in the wave and the
equivalent point in the next cycle. The amplitude is the strength of a wave signal. The
more amplitude the wave signal has, the more loud the volume will sound. Frequency
is the number of cycles per second and it is measured in hertz (Hz). Thus, frequency
is the number of times the wavelength occurs in one second. The frequency range of
the human ear is:

20Hz ≤ f ≤ 20kHz. (2.1)

5



6 2.2. DIGITAL AUDIO RECORDING

This means that humans can hear vibrations occurring between 20 and 20 000 times
per second. Any sound with a frequency below 20 Hz as infrasound and above than 20
kHz is known as ultrasound. The decibel (dB) is a logarithmic unit used to describe
the intensity of sound. Our ear has a logarithmic sensitivity, thus the decibel scale is
commonly used to measure sound levels.

Shotgun - 170

Handgun - 160

Threshold of Pain - 130

Motorcycle - 100

Vacuum Cleaner - 80

Conversation - 65

Rusting Leaves - 30

Pin Falling - 15

Jet Takeo! - 140

Pneumatic Riveter - 124

Rock Concert - 105

City Tra"c - 78

Air Conditioning Unit - 60

Electrical Transformer - 45

Decibel Scale

Figure 2.1: Sound intensity measured by the Decibel (dB) unit.

2.2 Digital Audio Recording

The process of recording and playing sound from a digital device, such as a computer,
is a very complex task. A brief description of both processes will be introduced, where
one of the key elements are the transducers.
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2.2.1 AD/DA Converters

Transducers are devices that convert energy from one form to another. The sound
of an instrument reaches an acoustic-to-electric transducer (e.g. microphone) and the
vibrations are converted into an electric signal which is then amplified. An analog-to-
digital converter (ADC) converts the electric signal into digital data which is stored on
a hard-drive, CD, or other data storage device (see Figure 2.2).

 IN           ADC       OUT

Analog Input Digital Output

Figure 2.2: Analog-Digital converter.

To play the recorded sound, the data previously stored is transformed back to an
analog signal with a digital-to-analog converter (DAC) (see Figure 2.3). The ana-
log signal is amplified and converted to sound by an electroacoustic transducer (e.g.
loudspeaker).

Analog OutputDigital Input

IN          DAC      OUT

Figure 2.3: Digital-Analog converter.

Microphones convert acoustical energy into electrical energy, sound waves into audio
signals. There are different types of microphones based on how they convert the energy,
but basically, they all have a diaphragm which vibrates accordingly to the vibrations
in the air (sound waves). Those vibrations are then converted into electrical current,
which is then amplified.
In order to convert the electrical signal into digital data, a sound card or digital mixer
is used. These systems incorporate an AD/DA converter. The analog-to-digital con-
verter samples the input signal periodically (sampling frequency) based on its voltage
level.
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1 - Sound waves

2 - Front Plate (Diaphragm)

3 - Back Plate

4 - Battery

5 - Output Audio Signal 

4 5321

Figure 2.4: Condenser microphone overview.

The voltage level is continuous in time, which means some information is lost, during
the sampling process (see Figure 2.5). The digital-to-analog is the opposite, it converts
the numbers back into electrical voltage.
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(a) - Continous-Time Signal
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(b) - Discrete-Time Signal

Figure 2.5: Signal sampling. When sampling a continous-time signal, some information
is lost, only a few points in time are recorded. (a) - Continuous signal in time. (b) -
Sampled signal.

2.2.2 Nyquist Theorem

The Nyquist theorem, also known as the sampling theorem, is a principle that is fol-
lowed in the digitization of analog signals. For a faithful reproduction of the signal, the
analog waveform must be sampled frequently. The number of samples per second is
called sampling frequency or sampling rate. The most simple case of an analog signal
is a sine wave or a sinusoid. These kind of signals have all the energy concentrated
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at one frequency. Most signals consist of different components at various frequencies.
Bandwidth is defined as a range within a band of frequencies. For analog signals, band-
with is expressed in Hertz. The highest frequency component determines the bandwith
of an analog signal. The Nyquist theorem specifies that in order for all the relevant
information in an analog signal to be preserved in the sampling process, the sampling
rate must be at least 2 × Fmax, or twice the highest analog frequency component.
Mathematically, the theorem can be expressed as:

Fs ≥ 2× Fmax, (2.2)

where Fs is the sampling frequency, and Fmax is the highest frequency contained in the
signal. If a sound wave has a single sine wave at a frequency of 1Hz, the minimum
sampling frequency ditacted by the Nyquist theorem is 2Hz. Thus, if this sound wave
is sampled at a frequency bigger or equal than 2Hz, there will be more than enough
samples on its digitalized version for the human ear to perceive the sound as if it
was analogic, and no significant signal information is lost. However, if the signal is
sampled at a frequency below than 2Hz, aliasing occurs, because there are not enough
samples to capture the significant variations of the signal through time, information
will be lost and the result will lead to a different signal being perceived. This is the
main reason why industry adopted 44.1 kHz for the CD sampling rate: to cover all the
frequencies from the 20 Hz to 20 kHz, which is the highest frequency the human hear
can perceive:

44.1kHz > 2× 20kHz (2.3)

2.2.3 Quantization

The sampling process converts a continous-time signal into a discrete-time signal. Each
sample or slice, present in the discrete-time signal, contains an amplitude value. The
stored amplitude value is the closest to the real one, from a set of possible values.
The number of values or levels are expressed in "bits", the binary system. A two bit
resolution sampling could store four different values (see Figure 2.6). The most common
resolutions are 8-bits, which stores 256 levels, 16-bits, which stores 65536 levels and 32-
bits, which stores 4.3 billion levels. The industry adopted 16-bits sampling resolution
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for the CD to reproduce a high quality sound.

11

10

01

00

Figure 2.6: 2 bit resolution sampling.

2.3 Music Characteristics

Music is an art resulting from the combination of sounds, that uses rythm, melody,
harmony and silence. The Concise Oxford English Dictionary (2002) defines music
as:

“the art of combining vocal or instrumental sounds (or both) to produce beauty of form,
harmony, and expression of emotion”.

As stated before, sounds are vibrations that travel through the air or another medium.
Music sounds have four fundamental characteristics: dynamics, duration, timbre and
pitch.

Dynamics
The dynamics of a sound is the perception of the amplitude of the sound wave.
This is physically related to the amount of energy that is transported by a sound
wave, when the particles vibrate in the medium. It is more commonly referred to
as the volume or loudness of a sound. The most common dynamic indications in
music, which are also referenced by their Italian words, are very soft (pianissimo),
soft (piano), loud (forte) and very loud (fortissimo).
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Duration
Each sound occurs during a certain period of time. The duration of a sound is
the elapsed time between its start time (onset) and end time (offset).

Timbre
In music, timbre is the quality that distinguishes different types of sounds, e.g.
a piano from a guitar. The timbre of a sound is determined by the shape of the
sound wave.

Pitch
Is the tonal height of the sound. It is related to how low or how high a note sounds.
It is a subjective attribute of sound, that is closely related to the frequency, which
is an objective physical property. Pitch is an auditory sensation that maps the
vibrations of a sound wave to a tone in a musical scale.

2.4 Signals

Signals can be defined as anything that carries information. Examples of signals are
gestures, images, human voice, sounds, etc. Technically, signals can be represented as a
function of time, space or other observation variable that transfers information. Audio
signals carry a representation of a sound, typically an electrical voltage (see Figure
2.7).

2.4.1 Types of Signals

Signals can be classified in a variety of ways, according to their own characteristics. A
brief description will be presented of the characteristics which we find more suitable
for the undestanding of this dissertation.

Continuous-Time Signals
A signal is continuous in time if the independent variable (t) is continuous in
f(t) and will always have a value. Any analog signal is countinous by nature and
analog audio signals are not an exception (see Figure 2.5-a).
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Figure 2.7: Sound signal as a function of time.

Discrete-Time Signals
When an analog signal is sampled and converted to bits by an ADC, the signal
is represented in small fractions in time. Instead of having a full representation
where every instant has a value, we only have a collection of values, depending
on the sampling rate and the length of the signal. The signal is represented as
x[n], and the independent variable (n) takes on only discrete values (see Figure
2.5-b).

Periodic Signals
A signal is periodic if it repeats itself exactly after some period of time. Some
examples of periodic signals are sine waves, square waves, triangle waves, and so
on. In continous-time, a signal is periodic if M is an integer and there exists any
value T such that:
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f(t) = f(t+MT ). (2.4)

The period of the signal is the smallest value of T for which the above relation
holds true: the wavelength.
For discrete-time, a signal is periodic if it repeats itself after some period, with
one key difference: the period must be an integer. A discrete time signal x[n] is
said to be periodic if, both M and N are positive integer values such that:

x[n] = x[n+MN ]. (2.5)

The period of the signal is the smallest value of N for which the above relation
holds true.

Quasi-Periodic Signals
Some discrete signals that are almost periodic and can be represented by

x[n] ≈ x[n+MN ] (2.6)

are called quasi-periodic signals. These signals, when compared to periodic sig-
nals, might not have identical points across periods, but will have very similar
points. The general waveshape is nearly the same as if it were a periodic signal.

2.4.2 Signal Processing

Signal processing operates in some fashion on a signal in order to extract useful in-
formation. It has many application fields, such as audio signal processing, speech
signal processing, image processing, wireless communications and so forth. According
to the type of signal, signal processing can be divided into five categories: analog signal
processing, continuous-time signal processing, discrete-time signal processing, digital
signal processing and nonlinear signal processing.

Digital signal processing (DSP) is the manipulation of signals using a general-
purpose computer or digital circuits, in order to analyze, filter, create or compress
digitalized signals. DSP applications include, among others, digital image processing,
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audio signal processing, sonar and radar signal processing, biomedical signal pro-
cessing and seismic data processing. It is applied to digital signals and has also been
applied during our work. DSP makes use of several transforms, being the most relevant
to our work the Fourier Transform, which will be introduced in the next section.

2.4.3 Fourier Analysis

Regardless of the source of the sound wave, the particles in the air move back and forth
at a given frequency. As stated before, the period of the sound wave is the wavelength,
and it is also the inverse of the frequency: a sound wave with high frequency will have
a smaller period, whereas a sound wave with low frequency will have a larger period
(see Figure 2.8).

Period
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re
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Time

Period

High Frequency
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re
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re

Time

Figure 2.8: Low frequency and high frequency representation.

Jean-Baptiste Joseph Fourier had the insight to see that any continuous function could
be represented as an infinite sum of oscillating functions. Fourier analysis is the process
of decomposing any periodic signal into the sum of a possibly infinite set of sine and
cosine functions or complex exponentials. Fourier synthesis is the process of converting
those sines and cosines back into a periodic function (see Figure 2.9). A sine wave or
sinusoid is a mathematical curve that describes a smooth repetitive oscillation. A
sinusoid is represented as a function of time f(t):
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y(t) = A× sin(2πft+ ϕ) = A× sin($t+ ϕ), (2.7)

where A is the amplitude of the wave, f is the number os oscillations per second,
2πf = $ is the angular frequency, and ϕ is the phase.
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Figure 2.9: Figure (a) Approximates the square wave by a sine function with the same
F0 (2Hz). Figure (b) represents a sum of two sine waves oscillating at the F0 and
an integer multiple of the F0 (called partial). Figure (c) represents a sum of three
sine waves oscillating at the F0 and integer multiples of the F0. Figure (d) represents
almost a clear decomposition of the square wave into multiple sine functions.

As stated before, a periodic signal can be expressed as a sum of sines or cosines func-
tions. In particular, a square wave can be approximated by an odd-multiple frequency
sine waves at diminishing amplitude. In Figure 2.9-a, the red curve is described by the
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Equation 6.8, and the frequency at which it oscillates is equal to the F0 of the square
wave underneath:

y(t) = 1.3sin(2π2t). (2.8)

As we can see in Figure 2.9-b, by summing two sine functions (see Equation 2.9), we
can start to see that the result is an approximation of the square wave.

y(t) = 1.3sin(2π2t) + 0.42sin(2π6t). (2.9)

In Figure 2.9-c, we add a third partial (see Equation 2.10), which makes it even closer
to the square wave.

y(t) = 1.3sin(2π2t) + 0.42sin(2π6t) + 0.24sin(2π10t). (2.10)

Those multiple sine functions are the frequency components (partials) that make up
the composed signal. The frequency of each component or partial is an integer multiple
of the fundamental frequency. In Figure 2.9-d, the summation of the sine functions
is almost at infinite, reproducing the original signal without almost no difference to
the human ear. Each wave oscillates at a specific frequency. The lowest frequency of
all waves present in a note is defined as the Fundamental Frequency (F0). Funda-
mental frequency is the inverse of the fundamental period or P0 and corresponds to
the perceived pitch. All the waves are called partials. Frequencies of the partials are
mostly limited to integer multiples of the lowest frequency (Fundamental Frequency -
F0), forming the harmonic series. A harmonic is a partial that is exactly an integer
multiple of F0. F0 is also considered a harmonic partial, because it is one times itself.
Except the fundamental frequency, all the partials that make up the harmonic series
are called overtones (over F0).

Fourier Series

The Fourier series is used to represent a periodic signal by a discrete sum of complex
exponentials. If a continuous function f(t) is periodic with period T, then it may
be approximated by a linear combination of harmonically related exponentials. The



CHAPTER 2. TERMINOLOGY AND CONCEPTS 17

Fourier series representation of a periodic signal f(t) is given by the following synthesis
equation:

x̃ =
∞∑

k=−∞

ake
jqw0t, k ∈ Z, (2.11)

where w0 = 2πF0 =
2π

T0
. This equation can be used as a synthesizer to generate

a signal as a weighted combination of fundamental frequencies. The corresponding
analysis equation for the Fourier series is written as:

ãk =
1

T0

∫

T0

x̃(t)ejqw0tdt. (2.12)

The value ak carries the amplitude and the phase of the frequency content of the signal
at kw0 Hz. The complex exponentials that form a periodic signal occur only at integer
multiples (harmonics) of the fundamental frequency w0. The synthesis Equation 2.11
can be rearrenged into:

x̃(t) = a0 +
+∞∑

k=1

(ake
jkw0t + a−ke

−jkw0t). (2.13)

If we take into account that a∗k = a−k, furthermore, Equation 2.13 can be expressed
as:

x̃(t) = a0 +
+∞∑

k=1

(ake
jkw0t + a∗ke

−jkw0t). (2.14)

The following trigonometric Equation is used to express the Fourier Series of periodic

signals and is obtained by reference ak in its polar form as ak =
Ak
2
ejφk :

x̃(t) = a0 +
+∞∑

k=1

Akcos(kw0t+ φk). (2.15)
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A harmonic sound is a periodic signal and can be represented by Equation 2.15. Quasi-
periodic signals do not have frequencies at multiple locations of its fundamental fre-
quency. Those frequencies are simply referred to as partials, instead of harmonic
partials, since their frequency is not an exact multiple of the corresponding F0. For
an approximation of this type of signals, a finite number of harmonic components H
is used:

x̃(t) ≈ a0 +
H∑

k=1

Akcos(kw0t+ φk). (2.16)

Fourier Transform - FT

The Fourier transform (FT) is used to represent a periodic signal (function) by a
countinous superposition or integral of complex exponentials. It decomposes a signal
as a function of time into multiple frequencies resulting in a complex-valued function of
frequency. The absolute value represents the frequency band over a range of frequencies
present in the original signal and the complex value represents the phase offset of the
sinusoid in that frequency. The FT is generally used in signal processing, specially in
time-frequency analysis. For a periodic signal, with infinte length, it is defined as:

FTx̃(f) = X̃(f) =

∫ +∞

−∞
x̃(t)e−j2πftdt. (2.17)

This equation results in the frequency domain representation of the original signal.

Discrete Fourier Transform - DFT

The Discrete Fourier Transform (DFT) is the equivalent of the continuous Fourier
Transform for sampled signals. The DFT is used to perform Fourier analysis in many
practical applications, such as digital signal processing. DFT can be achieved in a
continous sampled signal by applying the following equation:

DFTx̃[k] = X̃[k] =
+∞∑

n=−∞

x̃[n]e−j2πkn, (2.18)

where k is the spectral bin corresponding to each frequency. Since the computation of
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an infinite continous-sampled signal is not efficiently possible, one must restrict the size
of the signal. Having N as number of samples, the DFT for finite signals is represented
as:

DFTx̃[k] = X̃[k] =
N−1∑

n=0

x̃[n]e
−j

2π

N
kn
, k = 0, · · · , N − 1. (2.19)

The magnitude spectrum (see Figure 2.10) is given by |X̃[k]|.
The problem with DFT is that it requires 2N2 real multiplications and additions, which
makes it really hard to apply in real-time signal processing.

Fast Fourier Transform - FFT

The Fast Fourier Transform (FFT) is an algorithm which optimizes the DFT and was
invented by Gauss in 1805, and later re-discovered by Cooley and Tukey in 1965. The
FFT applies to signals that have a structured number of samples, such as a power of 2.
The first step of the FFT is to decompose an N point time-domain signal into N time
domain-signals, where each signal is composed of a single point. Then, the frequency
spectra of each N time-domain signals are computed. The last step is to aggregate and
synthesize all the N spectra into one single frequency spectrum. Through this method,
the FFT only requires Nlog2N operations, which allows its application in real-time
signal processing.

2.4.4 Power Spectral Density

Power Spectral Density function (PSD) represents the strength of variations as a func-
tion of frequency and is computed from the squared magnitude value of the DFT of
a signal. The unit of PSD is energy per frequency. The PSD is obtained by applying
|X̃[k]|2, assuming that X̃[k] is the DFT of a signal x[n]. By integrating PSD within a
specific frequency range, we obtain the energy for those frequencies. The result of the
DSP application is the power spectrum (see Figure 2.11).
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Figure 2.10: The left image shows the signal x(t) in time, whereas the right image
shows the magnitude spectrum or absolute value of the DFT - |X̃[k]|.
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Figure 2.11: This figure compares the magnitude spectrum given by |X̃[k]|, and the
Power Spectral Density given by |X̃[k]|2.

2.4.5 Spectral Leakage

The DFT assumes that the input repeats over and over again (periodic). If a sinewave
oscilates at 10 Hz, we would have to calculate the number of samples to work on, to give
us the exact period. If the DFT is applied to a signal that is not periodic (the number
of samples do not finish on a whole number of periods), discontinuity will occur, and
the frequency representation of the signal will be distorted (see Figure 2.12). An effect
known as spectral leakage occurs when the energy of a frequency bin is leaked or
spread across adjacent frequency bins. This effect could interfere with the overall shape
of the magnitude spectrum.
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Figure 2.12: The top chart displays a 10hz sinewave, sampled at a 100hz sampling
rate. The middle chart displays the DFT applied to the 100 samples of the signal, a
whole number of periods. The bottom chart displays a spectral leakage, because the
DFT was applied to more samples than the period.

2.4.6 Windowing

In order to minimize the spectral leakage effect, the samples in the frame can be
multiplied by a smooth window shape. This will smooth the abrupt edges caused by
the truncation of a signal into a single time window. Windowing is the process where
the input time signal is multiplied by a windowing function (see Figure 2.13). This
process is often used for spectral analysis, filter design, and beamforming. When we
want to apply the FFT to a signal, we have to choose which interval do we want to
analyse. There are multiple types of windows: triangular, Parzen, Hanning, Hamming,
Blackman, and so on.
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Figure 2.13: Preprocessing process: (a) input time signal piano note, (b) Hanning
window, (c) resulting windowed signal, (c) frequency domain signal.

2.4.7 Relation between the signal’s properties

It is important to distinguish both time resolution and frequency resolution and the
implications that both have in signal analysis. The number of samples of a signal varies
with the sampling rate and the seconds of information that we have. Having Fs as the
sampling rate and t as the number of seconds recorded, we can calculate n, the total
number of samples recorded:

n = Fs × t (2.20)

Since the DFT is discrete (Discrete Fourier Transform), this means that the frequency
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is also discrete, being k the corresponding Frequency Bin. This way, by analyzing
Equation 2.19, we can see that the frequency resolution is related to the number of
samples (N). Thus, frequency resolution is the distance in Hz between two adjacent
frequency bins in the DFT and can be expressed as:

∆F =
Fs
N
, (2.21)

where N is the DFT window size.
Time resolution, on the other hand, is the minimum time of a signal in seconds that
one could extract information from.

∆t =
N

Fs
. (2.22)

If we have a 2 second music signal recorded at a sampling rate of 22050 samples per
second, we would end up with 22050×2 = 44100 samples. Let us consider that the DFT

has a window size of 4096 samples. The frequency resolution is
22050

4096
, which means

that each bin, will correspond, approximately, to 5,38 Hz. The time resolution is
4096

22050
,

which means that we could only detect musical notes with duration equal or greater
then 0.19 seconds. The window size of the DFT must be properly set according to
the type of information that we want to focus on, either time information or frequency
information. The greater the DFT size is, the shorter the frequency resolution is, which
makes it easier to analyse low frequencies, but it will increase the time resolution, which
makes harder to analyse shorter periods of time.

2.4.8 Missing Fundamentals

A missing fundamental occurs when we perceive a fundamental frequency in a sound,
that does not have that frequency. The missing fundamental or phantom fundamental,
may be created by the overtones present in the signal such that, together, suggest a
frequency that does not exist. The brain perceives a pitch by the fundamental frequency
or the periodicity of an audio signal. If a signal has two pure tones at 1000 Hz and
1300 Hz, we might perceive a missing fundamental by hearing those two frequencies
and an additional one, created by the difference of the two signals. We would end up
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with one additional pitch correspondent to the frequency of 300 Hz, because of the
form of the waveform (see Figure 2.14).
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Figure 2.14: Complex tone with a phantom frequency at 300Hz.

2.4.9 Pitch

Each musical note is composed by an harmonic series: its fundamental frequency (F0)
and the corresponding partials. What the human ear perceives as Pitch is the fun-
damental frequency (i.e.: lowest harmonic partial) of each harmonic series or musical
note. A sound wave that vibrates at a specific frequency, will be mapped internally by
our brain to a certain pitch. Each pitch is related to a musical note (see Figure 2.15).
If, for instance, we hear a sound wave vibrating at, approximately, 262 Hz, our brain
will map internally that sound wave to the pitch C4 (middle C in a 88 keys keyboard),
because the fundamental frequency of C4 is, approximately, 262 Hz. Since pitch is
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an auditory sensation, if the previous sound wave vibrates at 260 Hz or 262 Hz, our
brain probably would still map it to a C4 pitch. One octave higher (pitch C5) has the
fundamental frequency of, approximately, 523 Hz. Comparing this two signals, pitch
C5 will sound ’higher’ than pitch C4. The distance perceived between C2 and C3 (66
Hz) is the same as the distance between C3 and C4 (131 Hz), since the human ear
perceives pitch in a logarithmic scale: for each octave, the frequency doubles. Note
that A2, A3, A4 and A5 have 110Hz, 220Hz, 440Hz and 880Hz respectively.

NOTE
OCTAVE

0         1         2         3        4         5         6          7         8

    16         33        65        131      262      523     1047    2093    4186

    17         35        69        139      278      554     1109    2218    4435

    18         37        73        147      294      587     1175    2349    4699

    20         39        78        156      311      622     1245    2489    4978

    21         41        82        165      330      659     1319    2637    5274

    22         44        87        175      349      699     1397    2794    5588

    23         46        93        185      370      740     1475    2960    5920

    26         52       104       208      415      831     1661   3322    6645

    29         58        117      233      466      932     1865   3729    7459

    25         49        98       196       392      784     1568    3136    6272

    28         55       110       220      440      880     1760   3520    7040

    31         62        124      247      494      988     1976   3951    7902

C
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D

D#

E

F

F#

G

G#

A

A#

B

Figure 2.15: Pitch to frequency relationship. C4 has the frequency of 262 Hz.

2.4.10 Pitch vs Fundamental Frequency

Pitch detection and F0 detection are two different processes that are easily confused.
Several algorithms have been developed to address the single-pitch and multi-pitch
estimation problems. In the overall, what all try to achieve is the pitch transcription,
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what notes are being played. Fundamental frequency estimation approaches, try to
identify exactly the frequency of the signals. After knowing which F0 or F0s are present
in the signal, they are mapped to pitches or notes. Pitch estimation approaches, try
to identify the pitch or pitches present in the signal, without the need of knowing
exactly what is the exact fundamental frequency. In this dissertation, the problem
which we are trying to solve is the pitch estimation, not the fundamental frequency
estimation.

2.5 Single-Pitch Estimation

Signals where several sounds are played simultaneously are called polyphonic signals, in
contrast to monophonic signals, where at most one note is present at a time (Klapuri
and Davy, 2006). Yeh (2008) states that, without loss of generality, a monophonic
signal can be expressed as a sum of a quasi-periodic part x̃[n] and the residual z[n]:

x[n] = x̃[n] + z[n] ≈
H∑

h=1

Ah cos(hω0n+ φh) + z[n]. (2.23)

The goal is to extract the periodicity part of x[n], and not to minimize the residual z[n].
The most common errors are harmonically related to the correct F0: subharmonic
errors and super-harmonic errors. Subharmonic errors are errors in which the
results are unit fractions of the correct F0 and super-harmonic errors are errors in
which the results are multiples of the correct F0. Single-F0 estimation algorithms can
be classified as time domain approaches or spectral domain approaches. Temporal
domain methods try to find the fundamental period, as opposed to frequency-domain
methods which rely on the spectral analysis.

2.5.1 Spectral-location Approaches

Time domain methods look for a similar repetitive waveform in x[t] through pattern
matching between x[t] and a delayed version of x[t]. Pattern matching in time domain
can be carried out through multiplication or subtraction between patterns.
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2.5.1.1 Autocorrelation

The autocorrelation function (ACF) allows to measure the similarity between a sig-
nal and delayed versions of itself at different points in time. It corresponds to the
cross-correlation of a signal with itself for a given lag or delay. Mathematically, the
autocorrelation function can be calculated as the sum of the product between a signal
x[n] of finite duration L and its delayed version x[n+ τ ], for each lag τ :

ACF [τ ] =
1

L

L−τ−1∑

n=0

x[n]x[n+ τ ]. (2.24)

For quasi-peridic signals, correlation will be higher when τ equals the period or a
multiple of the period. Nonetheless, this technique is sensitive to resonance in music
signals.

2.5.1.2 Magnitude difference

Ross et al. (1974) evaluate the distance between two patterns by comparing the dissimi-
rality of x[n] and x[n+τ ]. This method is called theAverage Magnitude Difference
Function (AMDF). It is used often for real time applications as it involves less com-
putation. Analytically, it is represented by:

AMDF [τ ] =
1

L− τ
L−τ−1∑

n=0

|x[n]− x[n+ τ ]|. (2.25)

For quasi-periodic signals, the result of the AMDF is particularly small at delays cor-
responding to the period or integer multiples of the period. The AMDF is not very
accurate when the signal has background noise. Ghulam (2011) extended this tech-
nique to address this issue. A similar technique called Squared Difference Function
(SDF) measures the dissimilarity by the squared difference:

SDF [τ ] =
1

L− τ
L−τ−1∑

n=0

(x[n]− x[n+ τ ])2. (2.26)

de Cheveigné and Kawahara (2002) adapted this function for the YIN algorithm, by
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normalizing SDF with its average over shorter-lag values. It is commonly addressed as
Cumulative Mean Normalized Difference Function and avoids super-harmonic
errors. Both methods are related to the autocorrelation function. Hess (1983) demon-
strated that both those methods are error prone when submited to intensity variations,
noise and low-frequency spurious signals.

2.5.1.3 Cepstrum

The cepstrum is the result of taking the Fourier Transform (FT) of the logarithm of
the power spectrum of a signal. This results in a complex cepstrum, a real cepstrum,
a power cepstrum and a phase cepstrum. This technique is useful to measure the
periodicity between peaks in the frequency domain. The real cepstrum or the power
cepstrum is calculated by applying the following equation:

c(τ) = IDFT{log |DFT (x[n])|)}. (2.27)

Schroeder, in 1962, proposed the application of the power cepstrum for F0 estimation
based on the first cepstral analysis paper on echoes resulting from earthquakes and
bomb explosions. Noll (1967) proposed, later, a short-time power cepstrum analysis
for pitch determination of human speech. The spectral envelope information if given by
the lower-quefrency components in the cepstrum. The period candidates correspond
to the sharp cepstral peaks components.
Figure 2.16 shows three time-domain salience functions applied to a baritone sax signal
of T0 = 2.3ms.

2.5.2 Spectral-interval Approaches

In spectral domain approaches, F0 estimation is performed by extracting the period-
icity from the spectrum, after applying a Fourier Transform. The resulting spectrum
contains the spectral information of the harmonic, including its partials at almost in-
teger multiples of the fundamental frequency. One approach of the spectral domain
techniques is to measure the space between dominant peaks and assume it as the F0 of
the signal. Another approach is to extract the F0 based on a function of hypothetical
partials. Based on this assumptions, Yeh (2008) states that fundamental frequency can
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Figure 2.16: (A) signal waveform; (B) autocorrelation function; (C) average magnitude
difference function; (D) squared difference function; and (E) cepstrum. Figure taken
from Reis (2012), page 26, with permission.

also be defined as the greatest common divisor of the frequencies of all the harmon-
ics.

2.5.2.1 Spectral Autocorrelation

Lahat et al. (1987) showed that since the autocorrelation function searches for repet-
itive patterns in the time domain, it can also be applied to the spectral domain. The
periodicity is obtained by pattern matching between the spectrum and its shifted ver-
sions. The ACF function applied to the magnitude spectrum is calculated as:

ACFS(m) =
2

K − 2m

k

2
−m−1
∑

k=0

|X[k]||X[k +m]|, (2.28)

where X[k] is the spectrum and X[k + m] are its shifted versions. When the shift
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m is equal to F0, the ACFS should result in the maximal spectral autocorrelation
coefficient. The product between the spectrum and the shifted spectrum is attenuated
when the shift m is not equal to F0 or multiples of F0, since the partial peaks are not
aligned.

2.5.2.2 Harmonic Matching

Harmonic matching or pattern matching makes use of harmonic spectral patterns to
match the observed spectrum. These harmonic spectral patterns can either be a spe-
cific spectral model or a harmonic comb without specifying the amplitudes of the
harmonics. A harmonic comb is a series of spectral pulses with equal spacing defined by
a F0 hypothesis. Specific spectral models are often used in multi-pitch signals, whereas
harmonic comb is often used on single-pitch estimation. In the works of (Martin, 1982)
and (Brown, 1992), a F0 hypothesis can be evaluated based on the correlation between
the harmonic comb and the observed spectrum. In Goldstein (1973) and Duifhuis and
Willems (1973) a F0 hypothesis is evaluated based on the minimization of the dis-
tance between the frequencies of the harmonics and the frequencies of the matched
peaks.

2.6 Multi-Pitch Estimation

Multi-pitch estimation algorithms are used for short-time signals that can have more
than 1 harmonic source at the same time. Yeh (2008) stated that those signals can
be expressed as a sum of harmonic sources Ym[n] plus a residual z[n], where M is the
number of harmonic sources:

y[n] =
M∑

m=1

Ym[n] + z[n],M > 0. (2.29)

The goal of multiple-F0 estimation algorithms is to infer the number of sources and
the related F0s. The residual z[n] is not related to the sinusoids but can be explained
by background noise, spurious components or inharmonic partials. Equation 2.30 rep-
resents this model by the Fourier Series.
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y[n] =
M∑

m=1

{
∞∑

k=1

Am,k cos(kωmn+ φm,k)}. (2.30)

The complexity of polyphonic music signals is far superior to monophonic music sig-
nals.

Figure 2.17: Comparison between two spectrograms of monophonic and polyphonic
signals.
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(a) Spectrogram of a monophonic signal,
recorded from a piano.

1 2 3 4 5 6 7 8 9 10

Time (mins)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

N
o

rm
a

liz
e

d
 F

re
q

u
e

n
c
y
  

(×
π

 r
a

d
/s

a
m

p
le

)

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

P
o
w

e
r/

fr
e
q
u
e
n
c
y
 (

d
B

/r
a
d
/s

a
m

p
le

)

(b) Spectrogram of a polyphonic signal,
recorded from a piano.

Figure 2.17a shows the representation of a spectrogram of a monophonic signal, recorded
from a piano and Figure 2.17b is the representation of a spectrogram of a polyphonic
signal with 4 harmonic sources, recorded from a piano. As we can see, the spectrogram
of a polyphonic signal has more frequency components than a monophonic signal. In
polyphonic music we need to infer the number of harmonic sources, whereas in mono-
phonic music there is no such need, because we only deal with one harmonic source.
Extracting the correct multiple F0s from a music piece is very difficult, due to the
overlapping partials, transients, reverberation and the different spectral characteristics
of the musical instruments.
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2.6.1 Overlapping Partials

For polyphonic signals, different harmonic sources may overlap or interfere with one
another, in time and in frequency. Different sources, in polyphonic signals, with funda-
mental frequencies Fa and Fb are harmonically related when they can be represented
by Equation 2.31.

Fa =
m

n
Fb, n,m ∈ N. (2.31)

As demonstraded by Klapuri (1998), every nth partial of the source a overlaps everymth

partial of source b. This frequently happens when the sources are harmonically related
to each other, since it could result in partial colisions. One of the issues when dealing
with multi-pitch signals is that most of the musical notes are harmonically related,
which results in a high probability of partial overlapping. Another issue is that when
fundamental frequencies of two notes are multiples of each other, the partials of the
higher note may overlap completely with those of the lower note (Yeh, 2008). The
frequencies, amplitudes and phases of the overlapping partials of harmonic sources are
thus disturbed. Parsons (1976) addressed the problem of separating the voice of a
vocalist speech, by trying to detect the overlapping components, based on three tests:
spectral peak symmetry, distance and well-behaved phase. This technique is restricted
to two voices and relied on the sinusoidality of stationary sinusoids and is not suitable
for modulated sinusoids. As highlighted by several authors, it still remains very difficult
to decompose the overlapping partials into their original sources, even if the number of
concurrent sources is known beforehand (H. Viste and G. Evangelista (2002);Virtanen
(2003);Every and Szymanski (2004);Yeh and Roebel (2009)).

2.6.2 Spectral Characteristics

Since polyphonic music signals could have multiple instruments playing at the same
time, the diverse spectral characteristics of each one, increases the complexity of the
transcription problem.
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2.6.2.1 Spectral Envelopes

Spectral envelope denotes a countour that passes through the peaks of the spectrum.
Generally, those peaks are the partials of the signal. Many musical instruments have
smooth spectral envelopes but differ immensely in their shapes. The spectral shape
also evolves with time, by having partials decaying at different rates. Furthermore,
pianos, bassoons, oboes and guitars often produce relatively weak fundamentals on
the lower frequencies. A universal model that generalizes musical instruments still has
to be developed, according to previous studies (Jensen (1999); Loureiro et al. (2004);
Burred et al. (2006)).

2.6.2.2 Inharmonic Partials

Because of the physical properties of instruments, most of them do not produce sounds
with harmonic partials, but partials slightly deviated from the ideal frequency. Those
partials are called inharmonic partials, and occur often in string instrument sounds.
The measure of how much inharmonic partials are deviated from their ideal frequencies,
is called inharmonicity deviation. For strectched strings, the frequencies of the partials
are given by the Equation 2.32, where F is the fundamental frequency, h is the partial
number, and β is the inharmonicity factor (Fletcher and Rossing, 2008).

fh = hF
√

1 + β(h2 − 1), (2.32)

A harmonic model needs to allow for certain inharmonicity in order to explain the
frequency deviation from each partial. If that is not the case, additional sources may
be needed to explain the inharmonic partials.

2.6.2.3 Spurious components

Some instruments have dominant frequency components excited along with the partials,
called phantom partials. These phantom partials, observed in string instruments, are
related to the tension variation of the plucked strings and appear close to the frequencies
of the partials (Conklin, 1999).
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2.6.3 Transients

Transients can be simply stated as an event or zone of short duration where a fast
variation of the sound signal occurs (Rodet and Jaillet, 2001). These variations can
occur at note onsets as fast attacks or at note offsets with fast releases. Due to its highly
non-stationary nature, it is very difficult to estimate the correct F0 within transients.
As demonstrated by McIntyre et al. (1983), sometimes the attack transient also excites
subharmonics on bowed and woodwind instruments. Transients often have high energy
which results in spectral collisions with other sound sources. Recent research deal with
transients as a specific signal component. Rodet and Jaillet (2001), Röbel (2003)
and Bello et al. (2005) detect transients by applying non-parametric approaches, as
oposed to Molla and Torrésani (2004) and Daudet (2004), which applied parametric
approaches.

2.6.4 Reverberation

Reverberation prolongs preceding sounds by overlapping them with the following sounds,
and also increases the complexity of the task of F0 estimation. A recorded signal be-
comes a mixture of multiple sounds, such as direct sounds, reflected sounds and rever-
berated sounds. As studied by Beauchamp et al. (1993), Baskind and De Cheveigné
(2003) and Röbel et al. (2006), even a record of a monodic instrument in a reverber-
ant environment can be polyphonic. The reverberated parts are often non-stationary,
adding even more complexity to the analysis of the signal.
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Chapter 3

Related Work

At the time of this dissertation, a general-purpose transcription system does not exist.
Over the years, there has been a lot of research on Pitch Estimation.

Yeh (2008) categorized the approches to Automatic Music Transcription as joint es-
timation or iterative estimation. Iterative estimation approaches typically find the
most predominant F0 value, cancel the detected F0 and iterate again to find the next
fundamental frequency. The cancellation technique is applied to the detected F0, in
order to remove its harmonics and subharmonics, otherwise it would infer noise and
could lead to false results on future detection processes. These algorithms often have
a small computational cost, but at each iteration, tend to acumulate errors. Join
Estimation approaches often have a greater computational cost compared to the iter-
ative approaches. Instead of evaluating one fundamental frequency at each step, they
evaluate F0 combinations, increasing the results accuracy.

According to Su and Yang (2015), multi-pitch estimation could be categorized depend-
ing on wether a training dataset with ground-truth pitch and instrument annotations
is used. Most of the work done earlier, used unsupervised learning, while more re-
cently, several approaches use supervised learning. For this purpose, a few datasets are
available, such as Emiya et al. (2010a), Goto et al. (2002), Fritts (2006).

Given that the most recent approaches are mostly joint approaches, Benetos et al.
(2013) categorize the current multi-pitch detection systems into three groups, according
to the core techniques employed: feature-based, statistical model-based or spectrogram
factorisation-based. Feature-based techniques do not use a specific model, but try to
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devise measures of pitch salience and criteria for selecting and scoring pitch candidates
from time-frequency representations. Statistical model-based techniques use probabilis-
tic methods to model the spectral peaks or envelops. Spectrogram factorisation-based
techniques use templates of spectral patterns of different pitch combinations and then
decompose an input magnitude spectrogram according to the activation of different
templates. Next we will use this type of categorization in our description.

3.1 Feature-based multi-pitch detection

3.1.1 Hypothetical Partial Sequence

Yeh et al. (2010), Yeh (2008) present a frame-based system for estimating single-channel
polyphonic music signals based on the STFT representation. The system classifies the
spectral peaks into sinusoids and noise with an adaptive noise level estimation. The
Rayleigh distribution is used to model the spectral magnitude distribution of noise
(Yeh and Roebel, 2006). The plausibility of a set of F0 hypotheses is jointly evaluated,
in order to match as many sinusoidal peaks as possible, taking into consideration
the overlapping partials. For each hypothesis, the frequencies and the amplitudes
of their hypothetical partial sequences (HPS) are calculated by partial selection,
using a harmonic matching technique and an overlapping partial treatment. The joint
estimation algorithm is based on the characteristics of harmonic instrument sounds:
harmonicity, the smoothness of spectral envelope and synchronous evolution of partial
amplitudes. The score function is a linear combination of four criteria: harmonicity
(HAR), mean bandwidth (MBW), spectral centroid (SPC) and the standard deviation
of mean time (SYNC). The HAR criterion evaluates the harmonic matching between
the combination of the HPS and the observed spectral peaks. The MBW criterion
evaluates the frequency of the envelope of a HPS by its bandwidth. The SPC criterion
is used to prevent subharmonic errors. The SYNC criterion estimates the mean time for
each individual peak, in order to evaluate the synchronicity of the temporal evolution
of the partials in a HPS. These criteria are then combined by the sum of the peak
salience of the related partials. A F0 hypothesis is considered a valid estimate if it
either explains significant energy or improves the spectral smoothness of the set of the
valid F0 estimates.
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3.1.2 Cancellation by Spectral Models

Klapuri (2003) presented an iterative estimation approach based on harmonicity and
spectral smoothness. The input signal is preprocessed by a RASTA-like technique
(Hynek Hermansky, 1993) on a logarithmic frequency scale such that the spectral mag-
nitudes are compressed and the additive noise is removed. The preprocessed spectrum
is spllited into multiple frequency bands. At each subband, F0 weights are calculated
by normalizing the sum of their partial amplitudes. Those weights are then com-
bined taking inharmonicity into account. The predominant F0 source is smoothed and
subtracted from the signal spectrum in order to avoid its corruption after multiple
iterations of direct cancellation. After the subtraction, the overlapping partials still
persist in the remaining sources. The method described uses the average amplitude
within one octave band in order to smooth out the envelope of an extracted source,
and is called the bandwise smooth model. The process repeats itself by computing
the weights of each candidate and extracting the F0 candidate until the maximum
weight related to signal-to-noise ratio (SNR) is below a fixed threshold. A perceptually
motivated multiple-F0 estimation method is presented by Klapuri (2005). The input
signal is splitted into multiple frequency bands by using a bank of bandpass filters,
which models the frequency selectivity of the inner ear. Each subband signals are com-
pressed, half-wave rectified and low-pass filtered. The magnitude spectra is summed
across channels and used to perform the harmonic matching to extract the predomi-
nant F0. A 1/k smooth model1 is used to remove the predominant source from the
mixture, while keeping the energy of higher partials for the next iterations. Klapuri
(2006) presents a spectral model which attempts to generalize a variety of musical
instrument sounds. An input signal is first spectrally flattened in order to suppress
timbral information. Then, the salience of a F0 candidate is calculated as a weighted
sum of the amplitudes of its harmonic partials. Santoro and Cheng (2009) present
an algorithm for multiple F0 estimation in the transform domain, based on Klapuri’s
work, to function in the Modified Discrete Cosine Transform (MDCT) domain.

3.1.3 Combined Frequency and Period Domains

Peeters (2006) and Emiya et al. (2007) use both frequency and lag domain features
to tackle the problem of single-pitch estimation. They multiply a spectral and a tem-
poral representation of the input audio signal to determine the likelihood of a pitch

1Partial amplitudes are approximately inversely proportional to the partial index.
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candidate. Bello et al. (2006) extended this ideia to multi-pitch estimation of piano
music and presents a system which uses a hybrid method, where the frequency domain
approach is improved by a time–domain recognition process. This method takes into
account the information contained in phase relationships that are lost when only the
magnitude spectra of sounds are analyzed. Su and Yang (2015) extends Peeters (2006)
and Emiya et al. (2007) work for multi-pitch estimation and propose an unsupervised
feature-based approach referred to as Combined Frequency and Periodicity. This sys-
tem detects pitches according to both harmonic series in the frequency domain and
a subharmonic series in the quefrency domain. The log-scaled amplitude spectrum is
used for the frequency representation of the signal, which is then pseudo-whitened to
spectrally flatten the signal as in Klapuri (2003). The generalized cepstrum is employed
for the temporal representation of the signal. After thresholding both signals, a peak
picking process is applied to all local maxima and discards other non-peak terms. The
presence of a true pitch is identified by three conditions: a prominent harmonic series
in the frequency representation, a prominent subharmonic series in the temporal repre-
sentation and the fundamental frequency of the harmonic series and the fundamental
period of the subharmonic series match at the same fundamental frequency. Criteria
to deal with missing fundamental frequencies and stacked harmonics are presented.
False positives are reduced by sparcity contraints. In post-processing, pitches above
C5 that leave any other pitches in the affinity of 0.1 seconds by more than one octave
are discarded. Then, a comparison is done between the pitch estimates in neighbor
frames for temporal smoothness which connects non-continuous estimates and removes
isolated notes shorter than 0.12 seconds.

3.1.4 Neural Networks

Marolt (2004), presented a connectionist approach to automatic transcription of poly-
phonic piano music, using a partial tracking technique, based on a combination of an
auditory model and adaptive oscillator networks. The input audio signal is converted
to a time-frequency representation through the use of an auditory model. The au-
ditory model, which imitates the functionality of human cochlea, has two parts: the
Patterson-Holdsworth gammatone filterbank (Patterson and Holdsworth, 1996) and
the Meddis hair cell model (Meddis, 1986). The first, applies a series of logarithmi-
cally spaced gammatone filters to the acoustic signal, which splits the input signal into
several frequency channels, in order to model the movement of basilar membrane in
the inner ear. The output from each filter is processed, using Meddis model (Meddis,
1986) of hair cell transduction, which simulates several of the cell’s characteristics, like
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half-wave rectification, saturation and adaptation. The auditory model results in a
quasi-periodic impulsive signal that represents the firing patterns of inner hair cells.
To achieve partial tracking, Large and Kolen (1994) adaptive oscillators were used to
synchronize the frequency and phase from the output channels of the auditory model.
Phase and period of the oscillators are updated by minimizing an error function, ac-
cording to the modified gradient descent rule. A partial is detected if a synchronization
occurs. This model was extended to track multiple harmonically related partials. Par-
tial groups are tracked using 88 networks of adaptive oscillators, corresponding to 88
piano tones (A0-C8). Each network consists of up to ten interconnected oscillators, and
the frequency of each oscillator in the network is initially set to an integer multiple of
the fundamental. Networks of oscillators are more resistant to noise and are more ro-
bust on indicating the presence of a tone than an individual oscillator. To perform note
recognition, a set of 76 neural networks was used to recognize notes from A1-C8. The
inputs of each network consist on the output values of oscillator networks, amplitude
envelopes of signals in frequency channels of the auditory model, and a combination of
amplitude envelopes and oscillator network’s outputs. The neural network model used
is the time-delay neural network (Waibel et al., 1990). The partial tracking model
and time-delay neural networks were integrated into SONIC, a system for transcription
of piano music (Marolt, 2001). An onset detector, and a module for detecting repeated
notes were also included in this system.

3.1.5 Blackboard Systems

A blackboard system is an artifical intelligence application designed to handle com-
plex problems, where the solution is the sum of its parts (Nii, 1986b). According
to Nii (1986a), a blackboard-system application consists of three major components:
knowledge sources, blackboard and control shell. The knowledge sources are a diverse
group of specialists, each one being a self-cointained expert on some aspects of the
problem which can contribute to the solution independently of the particular mix of
other specialists (Corkill, 1991). The blackboard is a common knowledge base, shared
repository of problems, partial solutions, suggestions, and contributed information. It
is constantly being updated by the knowledge sources, in order to achieve a solution.
The control shell is responsible for controlling the flow of problem-solving activity in
the system, organizing the common knowledge sources in the most effective way. Mar-
tin (1996) presents a blackboard approach to automatic music transcription where a
new system is proposed, based on the log-lag correlogram (Ellis, 1996). Bello and San-
dler (2000), Bello et al. (2000) present a system based on a top-down approach. The
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blackboard system is composed of three hierarchical levels. The inputs are the result
of a segmentation routine in the form of an averaged STFT matrix. The blackboard
has a hypotheses database, a scheduler and knowledge sources. One of those sources
is a neural network, trained for chord recognition, which allows the system to output
more than one note hypothesis at a time.

3.2 Statistical Model-Based Multi-Pitch Detection

3.2.1 Maximum a Posteriori Estimation Approach

Emiya et al. (2007) address the problem of single-pitch estimation with a technique
based on a Weighted Maximum Likelihood principle. The signal is decomposed into
a sum of sinusoidal components and a colored noise. A moving average process is
assumed for the noise while the spectral envelope of the partials is modeled by an au-
toregressive model. The fundamental frequency is calculated by following a Weighted
Maximum Likelihood principle, which simultaneously whitens both noise and sinu-
soidal sub-spectrums. This technique is extented for multi-pitch estimation, by jointly
evaluate multiple F0’s at the same time. Emiya (2007) incorporates an onset detector
presented by Alonso et al. (2005). For each segment, the first frames are analised and
the largest peaks will result in a set of F0 candidates. Then, for each frame and for
each combination of notes among the selected candidates, the likelihood of the spec-
trum is derived, according to the previous work in Emiya et al. (2007). The maximum
likelihood estimation is embedded into a Hidden Markov Model framework. Finally,
detected pitches in consecutive frames and segments are merged together. Emiya et al.
(2010) extend this approach to multipitch estimation of multiple concurrent pitches in
piano sounds. A new spectral model is employed where the inharmonic distribution is
taken into account and adjusted for each possible note. A smooth autoregressive model
is introduced to model the spectral envelope of the overtones and a low-order moving-
average (MA) process is used for the residual noise. Goto (2004) propose a method
called PreFEst to estimate the most predominant F0 of melody and bass lines in audio
signals. Maximum A Posteriori Probability estimation is employed to represent every
possible F0 as a probability density function, by using the expectation-maximisation
algorithm (Dempster et al., 1977). Kameoka et al. (2007) present a multipitch analyzer
called the harmonic temporal structured clustering method. This method jointly esti-
mates multiple fundamental frequencies, onsets, offsets and dynamics. The harmonic
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structure model is an extension of the Goto (2004) work. The frequency of each partial
is modelled using a Gaussian distribution function and the spectra is obtained by the
constant Q transform. The synchronous evolution of partials is modelled by Gaussian
mixtures.

3.2.2 Time-domain Bayesian Approach

Davy et al. (2006) extends the polyphonic time-domain Bayesian harmonic model previ-
ously presented in (Walmsley et al., 1998), (Walmsley et al., 1999), (Davy and Godsill,
2003) and (Godsill and Davy, 2002), for multi-pitch transcription, with slight modifica-
tions. The authors use a Gabor representation of nonstationary signals and a Markov
chain Monte Carlo method for the parameter estimation algorithm. The model sup-
ports time-varying amplitudes and inharmonicity. Peeling and Godsill (2011) propose
a new method for solving the problem of multi-pitch estimation using novel statistical
models. The partial frequencies in the frequency domain are modeled by an inho-
mogeneous Poisson process. Koretz and Tabrikian (2011) addresses the problem of
multi-pitch estimation using a combination of the maximum likelihood and maximum
a posteriori probability criteria. Each of the fundamental frequencies is modeled by
a Markov process. The dominant signal is modeled as a harmonic source and the
remaining sources are modeled as Gaussian interference. The dominant source is esti-
mated and removed from the mixture, and the process is applied to the next harmonic
source.

3.2.3 Maximum-Likelihood Approach

Duan et al. (2010) presents a maximum likelihood approach to multiple fundamental
frequency (F0) estimation. The audio signal is splitted into multiple frames. To each
frame, the Short Time Fourier Transform, hamming window and zero-pagging are ap-
plied, to obtain a power spectrum. Spectral peaks are detected using the peak detector
presented in Duan et al. (2008). The parameters for the model are learned from mono-
phonic and polyphonic data. The system models the power spectral density as both
spectral peaks and non-peak regions. The peak likelihood aims to find F0s that have
harmonics that explain peaks and the non-peak likelihood aims to avoid F0s that have
harmonics in non-peak regions. Yoshii and Goto (2012) present a statistical method
called infinite latent harmonic allocation (iLHA) to deal with multiple fundamental
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frequencies (F0s) estimation in polyphonic music audio signals. The method relies
on hierarchical nonparametric Bayesian models that can deal with complex models of
multiple F0’s and their harmonic structures.

3.3 Spectrogram Factorisation-Based Multi-Pitch De-

tection

3.3.1 Genetic Algorithms

Reis and Vega (2007), Reis et al. (2007) consider music transcription as a search prob-
lem and present a new method for multi-pitch estimation on piano recordings, using
genetic algorithms. Altough the authors show the feasibility of the approach, the ge-
netic algorithm tends to create additional notes in harmonic locations of the original
notes to minimize the timbre differences between the original audio signal, and the in-
ternal samples. In order to avoid harmonic overfitting, Reis et al. (2008) add harmonic
gains in the algorithm, which boost or cut the value of the first 20 harmonic peaks, on
each note harmonic. Reis (2012); Reis et al. (2012) present a method which consists in
a genetic algorithm aided by two major components: an adaptative spectral envelope
modeling and a dynamic noise level estimation. The system starts with an onset de-
tector, based on Martins (2009) with slight modifications, which splits the input signal
into multiple segments. For each segment, a genetic algorithm, is launched to perform
the transcription. After applying the genetic algorithm, all the segments are joined
into one whole transcription, and an Hill-Climber algorithm is used to merge consec-
utive notes. Each individual represents a candidate transcription, which encodes each
musical note, with its start time, duration, MIDI note and MIDI velocity. An adapta-
tive threshold component encodes the dynamic noise level estimation, by adjusting the
noise level for each frequency bin in the spectrum. The spectral envelope component
encodes the internal synthesizer, by using the gain of its harmonics, expressed in dB,
and its inharmonicity deviation for each partial, in order to best match the input pi-
ano in the original signal. A general system to encode the harmonic deviation of each
partial was adopted to work with other kinds of pitched instruments. Each solution is
first rendered by an internal synthesizer. Then, the fitness function, based on the log
spectral distance, compares the input audio signal with the generated transcription, in
the frequency domain.
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3.3.2 Non-Negative Matrix Factorisation

Most recent multi-pitch detection techniques use and expand spectrogram factorisation
techniques (Benetos et al., 2013). Smaragdis and Brown (2003) present a methodology
for analyzing polyphonic music based on Non-negative Matrix Factorization (NMF)
of magnitude spectra. Non-negative Matrix Factorization is a useful decomposition
for multivariate data Lee and Seung (2000). The method proposed by Cont (2006)
for Automatic Music Transcription, extends the work done previously by Sha and Saul
(2005). The method uses unsupervised learning to reconstruct the realtime audio, using
previously learned pitch structures of an instrument. A modified sparse Non-negative
Matrix Factorization algorithm is used for realtime pitch observation. Vincent et al.
(2010) incorporates harmonicity constraints in the NMF model. Each basis spectrum
is modeled as a weighted sum of narrowband spectra representing a few adjacent har-
monic partials. The spectral envelope is adapted to each instrument to enforce har-
monicity and spectral smoothness. Bertin et al. (2010) present a NMF in a Bayesian
framework applied to polyphonic music transcription, which uses a model of superim-
posed Gaussian components. The likelihood function incorporates spectral smoothness
constraints. A space-alternating generalized expectation-maximization (SAGE) algo-
rithm is applied to estimate the parameters. Ochiai et al. (2012) proposes a NMF
for estimating simultaneously basis spectra and activations, detecting note onsets and
duration, and determining beat locations. The rythmic structure is used to constrain
NMF by parametrically modeling each note activation with a Gaussian mixture. They
also developed an algorithm which iteratively updates the model parameters.
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Chapter 4

Cartesian Genetic Programming

Genetic Programming is a type of evolutionary algorithm whereby programs are evolved.
Evolutionary Algorithms are methods of parallel search and optimization, that mimick
the processes of Darwinian evolution and molecular genetics such as selection, recom-
bination and mutation, the so called genetic operators. The selection operator gives
preference to better candidate solutions by stochastically passing them to the next gen-
eration of the algorithm. The crossover operator takes more than one parent solution
and recombine their genes. The goal is for the algorithm to take the better parts of
each parent solution and produce a candidate solution better than the previous ones.
The mutation operator encourages genetic diversity amongst candidate solutions and
tries to prevent the algorithm from converging to a local minimum. These techniques
are used to exploration of the search space and exploitation of "good" zones.
In each generation (iteration) exists a population of possible solutions (candidate so-
lutions) to the problem, which are referred as individuals. During each iteration, all
the individuals are evaluated by an evaluation function, often referred to as fitness
function. After the evaluation, they are submitted to a process of selection, where the
best individuals are preferably chosen. Those individuals can be recombined and suffer
mutations. The resulting individuals will constitute the next population in the new
generation.

47
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4.1 Genetic Programming

Genetic Programming is concerned with the automatic evolution of computational
structures in the form of Lisp like parse trees (Koza, 1992). Those computational struc-
tures (mathematical equations, computer programs, digital circuits, etc.) are evolved
and applied to solve problems for which it is very difficult for humans to design solu-
tions. Complex problems generally require larger population sizes to solve and crossover
is most often used as the primary method of developing new candidate solutions from
the previous generations (Koza, 1994). In contrast, Evolutionary Programming (EP)
tends to promote the importance of the mutation operator (Fogel et al., 1966), (Fogel,
1995). They both share the same underlying structure, where programs are represented
as parse trees, without having a distinction between genotype and phenotype (Miller
and Thomson, 2000).

4.2 Cartesian Genetic Programming

Cartesian Genetic Programming (CGP) grew out of the work of Miller et al.
(1997), as a method of evolving digital circuits. However, the term "Cartesian Genetic
Programming" appeared two years later in Miller (1999). CGP is now considered as
a general form of Genetic Programming (Miller and Thomson, 2000). It is being ap-
plied to many fields, such as machine learning, neural networks, data mining, financial
prediction, function optimization, classification, electronic circuit design, and so on.
According to Miller (1999), CGP is more efficient than standard GP methods in learn-
ing Boolean functions.
CGP is Cartesian because it encodes programs as a two-dimensional grid of nodes that
are addressed in the Cartesian coordinate system (see Section 4.2.2). In its classic
form, it uses a very simple integer based genetic representation of a program in the
form of a directed graph instead of a tree. Graphs are very useful program represen-
tations, more general than trees, and can be applied to many domains (e.g. electronic
circuits, neural networks).
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4.2.1 Programs

CGP Programs have three major components: program inputs, computational nodes
and program outputs. Computational nodes are structures organized and composed
by input connections and a function. The input connections of a node have their origin
in any program input or other precedent nodes. The function is among the ones
previously defined in a look-up table and it takes as arguments the values received
through the node’s inputs. The node itself is indexed by an integer value so that it can
be referenced by other node input connections. The computational nodes, organized in
a two-dimensional grid of nodes, are numbered sequentially and linked directly between
them in a feed-forward manner (see Figure 4.1). A program can have several inputs,
named program inputs. Program outputs are indexes that link to some nodes.
For example, if the program’s output is the number 4, the result of the program is the
value computed by node 4’s function (see Figure 4.1). Program inputs and nodes are
referenced by sequential numbers. The idea is best explained with a simple example. In
Figure 4.1 we can see that the program has two inputs, four nodes and one output.

Program 

inputs

Computational 

nodes

Program

output

0

1

2

3

4

5

4

Figure 4.1: Overall strucuture of a CGP program. Program inputs and computational
nodes are numbered sequentially. The program outputs can link to any computational
node or program input.

4.2.2 Genotype

The genotype is the codification of a program as it is used and manipulated by the CGP
algorithm. It describes what are the programs inputs, computational nodes, program
outputs and how they are connected together. In general, it is a list of genes where each
gene is an integer. As we have seen earlier, program inputs and nodes are referenced
by their index. Since a node is a structure with input connections and a function,
each node has multiple genes (see Figure 4.2). The genetic structure that encodes a
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node first references the function value and then the values of the node’s connections
sources. In Figure 4.2, the list of genes to encode the node are: 2 3 4.

  3

 4

2 5

Node 

Index

Function

Gene

Node 

Inputs

Figure 4.2: Example of a node that has two connection genes: node 3 and node 4. It
will compute the function number 2 in the function-set. The node is referenced by the
number 5.

Each node has a function gene which is an address in a look up table of functions.
Usually, all functions have as many inputs as the maximum function arity and unused
connections are ignored. This introduces an additional redundancy into the genome.
In the example of Figure 4.2, the node 5 will have nodes 3 and 4 has inputs and it will
apply the function number 2 defined previously. If function 2 represents a sum, node
5 would compute the following:

y = c1 + c2, (4.1)

where c1 is the value comming through the first connection and c2 is the value comming
through the second connection. If c1 = 2 and c2 = 1, the value of node 5 would be
2 + 1 = 3 (see Figure 4.3).

2

1

Sum 3

Node 5 = 2 + 1 = 3.

Values Function Result

Figure 4.3: The result of node 5 will be 2 + 1 = 3.

There are a few number of parameters that we need to define in order to encode a CGP
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Table 4.1: Parameters of the program illustrasted in Figure 4.4

Parameter Value
Number of Inputs (ni) 3
Number of Outputs (no) 1
Number of Rows (nr) 1
Number of Columns (nc) 3
Inputs (ii) 0,1,2
Functions (fi) 5,3,1
Outputs (Oi) 4
Genotype 512 303 102 4
Phenotype 512 303 4

program. The number of program inputs is given by ni and the number of program
outputs is given by no. Given that nodes are organized in a tabular way, the number
of columns is given by nc and the number of rows by nr. For example, the program
in Figure 4.4 has the following attributes: ni = 3, no = 1, nc = 3, nr = 1 and the
genotype is the following list of integers: 512 303 102 and 4. Knowing that ni = 3,
the genotype encodes the first node at index 3, since the first three indexes represent
the program inputs and the first index is 0. The first node in the genotype, node 3,
computes function 5, and its connections are the program input 1 and program input 2.
Node 4 computes function 3, and its connections are the program input 0 and the value
of node 3. The output of that program is the value of node 4. We point that there
are no program outputs nor nodes whose input connections reference node 5. This
means that this node cannot influence the program output. More on this in Section
4.2.4.

Figure 4.4: CGP graph, where ni = 3 and no = 1. The grid has nc = 3 (columns) and
nr = 1 (row).

Table 4.1, enumerates a few parameters of the program illustrasted in Figure 4.4.
Figure 4.4 shows the general form of a CGP graph, with nr = 1 and nc = 3.
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4.2.3 Allelic Constrains

There are some allelic constrains, that the genotype must respect. The alleles (values)
of function genes fi must take valid address values in the look-up table of primitive
functions. Let nf represent the number of allowed functions. Then fi must obey to
the following range:

0 ≤ fi < nf. (4.2)

There is another parameter called levels-back l, which determines how many previous
columns of nodes may connect to a node in the current column. When nr = 1 and
l = nc, any node can have input connections coming from any program input and any
node on its left, which allows unrestricted connectivity. However, if nr > 1, nodes
cannot connect to other nodes in the same column. Then, having a node in column j,
and j ≥ l, node connections, Cij, must obey to the following range:

ni+ (j − l)nr ≤ Cij ≤ ni+ j × nr. (4.3)

If j < l, then the following condition must be met:

0 ≤ Cij ≤ ni+ j × nr. (4.4)

Program output genes Oi can connect to any node or program input:

0 ≤ Oi < ni+ Ln, (4.5)

where Ln is the number of nodes in the genotype, computed by the following:

Ln = nr × nc. (4.6)

This representation is very simple, flexible and convenient for many problems.
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4.2.4 Genotype-Phenotype Mapping

One of the key characteristics of CGP is the genotype-phenotype mapping. The geno-
type is of fixed-length but the phenotype is not, duo to the fact that the genotype
can have inactive genes. Thus, they are redundant because they cannot influence the
programs output. The corresponding genes are called non-coding genes or inactive
genes. This means that we can have a phenotype different from the genotype because
non-coding genes are not expressed in the phenotype, that is, the program that will
run in practice.
The output or outputs of the CGP are nodes that point to other nodes (connection
genes) and so on. Decoding the program is recursive in nature and works from the
program output genes first. To decode the program outputs, the active nodes should
be identified. The process begins by looking at which nodes are directly connected
to the output genes. Then these nodes are examined to find out which nodes are di-
rectly linked to them. Since non-coding genes are not addressed, they present little
computational overhead.

4.3 Algorithm

The evolutionary strategy widely used for CGP is a special case of the µ+ λ (Hansen
et al., 2015) where µ = 1 (Algorithm 1). This means that, in this special case, the
population size is always one. At each iteration (generation), λ new offspring are
generated from the current one through mutation. Then, the best among the current
individual and the offspring becomes the current individual in the next iteration. An
offspring can become the current individual in the next iteration when it has the
same fitness as the current individual and there is no other individual with a better
fitness.

4.4 Genetic Operators

The selection operator is mainly expressed in step 8 of Algorithm 1 above, where the
best among the current individual and the λ offspring is chosen as the next iteration
individual.
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Algorithm 1 Algorithm ((1 + λ)EA)

1: t← 0;
2: Set current individual I0 as the best of λ individuals created randomly;
3: while a stop condition is not fulfilled, do
4: for i = 1 to λ do
5: Create a copy xi of current individual It;
6: Mutate each gene of xi with probability p;
7: end for
8: Set new current individual It+1 as the best of It ∪ {x1, . . . , xλ};
9: t← t+ 1;

10: end while

The mutation operator used in CGP is a point mutation operator and it is very simple
to implement. One merely has to allow changes to the genes which respect either the
functional constraints or the constraints imposed by levels-back. If the gene to mutate
is a function gene, we have to make sure that the new chosen value is valid in the
function-set table. If a connection gene is chosen for mutation, then a valid value is the
address of the output of any previous node, respecting the levels-back parameter, or
of any program input. If the gene to mutate is an output gene, we choose any random
node.
Crossover operators don’t usually receive much attention in CGP. In (Miller and Thom-
son, 2000), a one-point crossover operator was used but they found it to be disruptive to
the subgraphs within the chromosome, which affected the performance of CGP.

4.5 Example - CGP applied to Image Processing

Harding et al. (2013); Hardingb et al. (2013) present a technique based on CGP, that
allows the automatic generation of computer programs using a subset of the OpenCV
image processing library functionality. This approach is refered to as Cartesian Genetic
Programming for Image Processing (CGP-IP) and it is applied to several domains, such
as basic image processing, medical imaging, and object detection in robotics. They also
present a framework combining computer vision and machine learning for the learning
of object recognition in humanoid robots using CGP.
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4.5.1 Object Detection - Classification Problem

One of the domains that CGP-IP is used for is object detection, where the goal is to
target a certain object in an image. To train CGP-IP, a number of images were collected
from a few cameras. For each collected image, the target object was repositioned. The
training set is implicitly composed by multiple views of the target object with different
angles, scales and lighting conditions. The target object was then hand segmented for
each image in the traning set (see Figure 4.5). A set of filters are trained to produce

Figure 4.5: The set of the left shows each collected images with a target object. The set
on the right shows the binary classification, determined by a human, where a particular
box is highlighted in white. Image was taken from Harding et al. (2013), page 11.

a binary classification on new images, different from the ones used in the training
set. The program inputs are based on the training-set images: the camera image in
grayscale, the image’s red, green and blue (RGB) channel, as well as, its hue, saturation
and brightness value (HSV) channels. Figure 4.6 shows the application of an evolved
filter running in real time.

Figure 4.6: Examples of an evolved filter running in real time. Image was taken from
Harding et al. (2013), page 11.

The next two sections describe the two features of CGP-IP that were applied to our
work and that will be discussed later in the next chapters.
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4.5.2 Parameters

CGP-IP uses a large function-set composed by primitive functions and high level image
functions. These functions often require one or more parameters and are sensitive to
their type and range (e.g. to subtract each image pixel the value of the first parameter
p0). The total number of parameters is represented by np, and each parameter is
denoted by p0, p1, . . . , pnp−1. Compared to classical CGP, CGP-IP encodes 5 additional
values (parameters) into each node. p0 is a real number, typically used as a constant
value. p1 and p2 are integers in the range −16 to +16, used as a parameter to an image
operation. p3 is an integer in the range 0 to 16, used as a parameter for Gabor filter
operations. Finally, p4 is an integer in the range -8 to 8, used as a parameter for Gabor
filter operations. Figure 4.7 shows a node with two parameters.

node indexparametersinputs

function

Figure 4.7: Representation of a node with two parameters, where np = 2, p0 = 9.5 and
p1 = 0.4.

4.5.3 Threshold

For the classification problems (e.g. object detection), the output of the CGP program
(an image) is thresholded and treated as a binary image. Each pixel in the image
is treated as a binary classification test case. This is then compared to the target
image using the Matthews Correlation Coefficient (a measure of the quality of binary
classifications).
The threshold has a range of 0 to 255. It performs a binary threshold of an image by
outputting a white pixel if a value is more than p0 and a black pixel otherwise. This
threshold suffers mutation, and is modified with a 1% probability: uniform noise of
+/-10% is added. It has an important role in the classification of the test cases.



Chapter 5

Cartesian Genetic Programming
Toolbox

As the first step on applying Cartesian Genetic Programming to sound processing,
we decided to create a Matlab Toolbox for this task. The idea was to have a highly
flexible toolbox, configurable throughout parameters and function callbacks. Then,
we moved to the problem of Pitch Estimation by applying and configuring the same
toolbox to our particular case. This toolbox is open source and freely available at:
https://github.com/tiagoinacio/cgp-toolbox.
The toolbox’s architecture will be introduced throughout this chapter. Then, each
component will be explained in detail. Lastly, we will show an example of the toolbox
applied to a sixth order polynomial symbolic regression problem.

5.1 Architecture

The CGP Toolbox is very simple to use and allows to quickly encode a problem. The
structure of classic CGP is reproduced in the toolbox. One of the main goals was to
have a generic toolbox that could help us to encode from smaller to bigger problems.
With that in mind, a few design decisions were made that will be explained next.

57
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5.1.1 Overview

All the combinations of rows and columns are possible, considering that nr > 0 and
nc > 0 . The allelic constrains are generated dynamically, depending on the cartesian
representation of the nodes. Levels-back was also taken into consideration. Addition-
ally, the toolbox is prepared to use parameters in the genotype. There are no limits
for the number of parameters. The fitness function is any function provided by the
user (it is explained in more detail in Section 5.2.11). The toolbox is prepared to re-
ceive one or more program inputs of any types and values. The number of program
outputs can be one or more, in order to address different problem requirements. The
function-set is also provided by the user and the look-up table is automatically gener-
ated. Furthermore, there is a system of callbacks which is discussed in Section 5.2.1.
The Evolutionary Algorithm (EA) used is the 1 + λ, referred previously in Section
4.3.

5.1.2 Evolutionary Algorithm

A detailed representation of the encoded EA is presented in Algorithm 2. The goal
is to have a toolbox as generic as possible, so a few parameters for the evolutionary
process were chosen to be configurable.

Algorithm 2 Algorithm ((1 + λ)EA) encoded with multiple runs
1: r ← 0;
2: while r < mr do;
3: g ← 0;
4: Set current individual I0 as the best of λ individuals created randomly;
5: Fg ← fitness of current individual;
6: while g < mg or Fg < f do
7: for i = 1 to λ do
8: Create new individual xi from the current individual Ig;
9: Mutate each gene of xi with probability p;

10: end for
11: Set new current individual Ig+1 as the best of Ig ∪ {x0, . . . , xλ};
12: g ← g + 1;
13: Fg ← fitness of current individual;
14: end while
15: Save the best individual of run r (Ig) as Br;
16: r ← r + 1;
17: end while

The number of offspring (λ) is defined by the user. This is useful because there can be
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some problems that require a small number of offspring and others that require a bigger
number of offspring. The mutation rate (p) is also configurable. This is the mutation
probability for each gene. The maximum number of runs, mr, and maximum number
of generations, mg, are also required parameters. Finally, the last parameter is the
maximum or minimum fitness, f , for a solution to be considered valid, depending if
we want to maximize or minimize the fitness function. The EA needs to know when
a candidate solution can be considered as a valid solution for the problem, in order to
stop the evolutionary process.

5.1.3 Components

CONNECTION

CGPSTRUCTURE

EA

OFFSPRING

RUN

GENOTYPE MUTATION

FUNCTION OUTPUT FITNESS

GENERATION

Figure 5.1: Components that are part of the toolbox.

The toolbox is divided into several components. Each one has its purpose and special
role. The first one is the CGP component. It exposes all the functionality to encode
an application built on top of the toolbox. This component comunicates with the EA
and Structure components. The Structure is just an helper, which stores the posi-
tions of the genes according to the type of gene (connection, function, program output
and parameter) and it will be explained in detail in Section 5.2.2. The EA component
is responsible for initializing the runs in the evolutionary algorithm. It starts with a
certain number of Offspring, created by the Genotype component which, in turn, is
composed by the Connection, Functions, Ouputs and Fitness components. Run
is connected to the Generation component, by executing it multiple times. In each
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generation, Mutation can occur, which will change the genotypes (using the Con-
nection, Functions, Outputs and Fitness components). Figure 5.1 shows the overall
structure of the toolbox’s components. Each component will be addressed in detail
next.

5.2 Implementation

The toolbox was built using Object Oriented Programming methodology of Matlab
(version R2016a). All the classes that compose the toolbox will be introduced in the
next sections. For some classes, a detailed explanation of the most relevant properties
and methods is also presented.

5.2.1 CGP

The CGP class provides access to an API that lists all the features needed to encode
a program. It is the “core” of the toolbox and its primary component. The CGP class
lets the user add the program inputs, provide the fitness function, add parameters and
define the function-set. The constructor takes a configuration object. This object will
contain all the configuration necessary for the CGP and for the EA.
For the CGP, the parameters are divided into: number of rows, number of columns,
number of levels back and number of program outputs. Since some CGP approaches
assume that the output node is the last node of the graph, this option was also taken
into consideration. So, if we pass the value last to the output_type, the last node of
the genotype will be considered the program output. This option only works when
the number of program outputs is set to 1, otherwise it will be ignored. Having these
parameters configurable, the user has total control of the grid layout of the generated
program (genotype).
For the EA, the parameters are: maximum number of generations, maximum number
of runs, number of offspring, mutation rate, the fitness threshold and the fitness oper-
ator. The fitness threshold is the limit for which a candidate solution is considered a
valid solution to the problem. This allows the evolutionary process to stop or skip to
the next run. In some kind of problems, the goal is to minimize an error rate, where 0
would be the best value for the fitness. Also, there are other problems where the goal
is to maximimze the fitness function, as we have in our approach. The fitness_solution
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property covers that necessity. However, the operator to use in the comparison be-
tween fitness values also needs to be configurable, because the optimization of those
values is different. The fitness operator, O, is the operator to use when comparing
the new fitness candidate solution with the parent’s fitness, and can take the following
values: ‘>’, ‘<’, ‘>=’and ‘<=’. For example, consider the parent’s fitness as f0 and an
offspring fitness as f1: if O = ‘>’, f0 = 0.5 and f1 = 0.6, then the offspring will replace
the parent in the new generation; if O = ‘<’, f0 = 0.5 and f1 = 0.6, the parent will
remain as it have the best fitness. This operator is also used for checking if a solution
is a valid solution for the given problem. Therefore, it is also used for comparison
between a solution’s fitness and the fitness_solution value, also configurable. Figure
5.1 describes every possible field for the configuration.

Table 5.1: Configuration table with the fields that the structure should have, the type
of value and the description of each one.

Key Type Description
rows double number of rows
columns double number of columns
levels_back double number of levels-back
outputs double number of outputs
output_type string set the program output as the last node (last, random)
runs double number of runs
generations double number of generations
offspring double number of offspring
mutation double probability of mutation
fitness_solution double fitness for a solution to be considered valid
fitness_operator string fitness operator (‘>’,‘<’,‘>=’ or ‘<=’)

At the time of instantiaton, the CGP class will verify if all the required settings were
passed in the configuration object.
This class also exposes the functionallity of adding program inputs. Each problem
requires a specific set of program input or inputs. Some may require one integer as
input, others may require an array, or even a complex type of object. To address this
abstraction, the input provided for the CGP toolbox is of type struct (structure).
Each field in the structure is a program input. Therefore, the program inputs can be
of any type: integers, strings, structs, arrays, matrix, etc. The number of fields present
in the structure indicates the number of inputs that the toolbox needs to set in the
genotype, which is dynamically set: there is no need to specify how many program
inputs this program will have.
The fitness function is passed by callback (function pointer) to the program.
The toolbox reads the function set from a specific directory provided by the user.
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This directory should have all the functions that could be used in the genotype. All
the functions should receive as many inputs as the maximum function arity. This
is a requirement for the program to work. Besides the maximum function arity, if
the user used added parameters to the genotype, these should be also passed to each
function. This method will iterate through all the Matlab files in the directory passed
as argument, and it will create a function handle for each one.
Some specific signal processing functions might require special arguments like ranges
or constants to be executed (e.g.: a low pass filter needs to know which percentage
of the original signal will be attenuated). Those parameters might need to evolve
through time, because their best values for the contribution to the solution of the
problem is unknown beforehand. The genotype can encode those parameters and add
them to the evolutionary process. Parameters should have integer or double values.
Each parameter is encoded by a structure with a name, a callback function for the
initialization of the parameter value, and another callback function for mutating the
value. The initialization and mutation functions should return an integer or a double.
The mutation function should also accept an argument, that is the value of the current
parameter to mutate. When running the algorithm, there are a number of events from
the evolutionary process that can be useful to handle, for running additional scripts
or simply to add some kind of report. In order to have that range of possibilities,
the user is able to pass optional callbacks, each of which, will fire at the following
events: the configuration has been set, a fittest solution is achieved after a run, a
fittest solution is achieved in a generation, a new solution is created, a new generation
starts, a new run starts and a genotype is mutated. After adding all the program
inputs, fitness function, parameters and callbacks, the configuration callback is fired,
with a few useful parameters about the configuration of the program. All the methods
and properties of the CGP class are listed in figure 5.2.

5.2.2 Structure

There are several components that need to know how many genes are in the genotype,
or if a specific gene is a function-gene or a connection gene. Instead of having to deter-
mine those properties multiple times and at different stages, this information is only
computed once, in this class. The Structure class serves as an helper throughout the
entire evolutionary process. The main goal is to classify each gene a priori, according
to its type: connection, paremeter, program output or function. For example, if we
have 3 genes per computational node and our genotype starts at number 1 (Matlab
does not accept zero-based vectors), we know in advance that gene 1 will represent a
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Figure 5.2: Properties and methods for the CGP class.

CGP
- config_
- callbacks_
- functions_
- inputs_
- parameters_
+ addCallbacks(callbacks : struct)
+ addFitnessFunction(fitness_function: function_handle)
+ addFunctionsFromPath(path: char array)
+ addInputs(inputs : struct)
+ addParameters(parameters : struct)
+ run()
- isValidConstructor_(configuration : struct)
- configuration_()
- areValidParameters_(parameters : struct)

function and genes 2 and 3 will both correspond to connections. Since this class will
be responsible for defining the type of genes, it needs to know a few parameters, such
as: the number of genes, the number of genes per node, the connection genes per node,
the number of computational nodes and the number of parameters. Figure 5.3 lists the
properties and methods of the class.

Figure 5.3: Properties and methods for the Structure class.

Structure
+ connectionGenes
+ parameters
+ programOutputs
+ functionGenes
- setConnectionGenes_(genes : double, genes_per_node : double,
connections : double)
- setParameters_(genes : double, genes_per_node : double,
connections : double, nodes : double, parameters : double)
- setFunctionGenes_(genes : double, genes_per_node : double)
- setProgramOutputs_(genes : double, genes_per_node : double,
nodes : double)

5.2.3 EA

The EA class is responsible for starting the evolutionary process. It iterates for the
maximum number of runs, defined in the configuration of the CGP, storing the fittest



64 5.2. IMPLEMENTATION

candidate solution of each one.

Figure 5.4: Properties and methods for the EA class.

EA
- fittestSolution_
- solutionOfAllRuns_
- configuration_
+ getSolutions()
+ run()
- updateSolutions_(functions : cell array, run : double)
- initSolutions_()

If the callback RUN_ENDED is provided, it will be fired after each run, with a few
parameters, such as the genes of the fittest solution and their fitness.
Figure 5.4 lists the properties and methods of this class.

5.2.4 Run

The Run class is responsible for initializing a run. First, it generates a few candidate
solutions. Then, it will start the evolutionary loop over the generations. The class
stores the best candidate solution, while evaluating if a solution for the problem was
found. The properties and methods for the Run class are listed in figure 5.5.
The Run class contains two callback events. The FITTEST_SOLUTION occurs when
a candidate solution has better fitness than the previous stored solution. The GEN-
ERATION_ENDED occurs each time a new generation ends.
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Figure 5.5: Methods and properties of the Run class.

Run
- configuration_
- fitnessOfAllGenerations_
- fittestSolution_
+ getFittestSolution()
+ initGenerations()
+ initOffspring()
- solutionNotFound_(fitness_solution : double, fitness_operator : char array)
- maxGenerationNotReached_(currentGeneration : double, maxGenerations : double)
- fireCallback_(callbackName : char array, activeNodes : array, genes : array)

5.2.5 Generation

The Generation class is responsible for initializing a new generation. It starts with
the previous fittest candidate solution (parent), and generates a few mutated versions,
according to the configuration provided. If the λ chosen in the configuration phase is 4,
it will generate four mutated versions of the parent solution. All the new genotypes are
evaluated, and the fittest solution is stored. Figure 5.6 lists the methods and properties
of this class.

Figure 5.6: Methods and properties of the Generation class.

Generation
- configuration_
- fittestSolution_
+ getFittestSolution()
+ mutate()
- isThisSolutionFitterThanParent_(solution_fitness : double, fitness_operator : char array)

TheGeneration class contains two callback events: NEW_SOLUTION_IN_GENERATION
and FITTEST_SOLUTION_OF_GENERATION. The first, occurs everytime a new
solution is generated. The last one, occurs each time a new solution is generated and
has a better fitness than the parent.
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5.2.6 Offspring

The Offspring class is responsible for the initialization of a specific number of offspring,
previously defined, at random, before iterating through the generations. It initializes
randomly different genotypes which are then evaluated. The fittest solution is stored
and used as the parent solution, for the generation loop initialization.
Figure 5.7 lists the properties and methods of the class.

Figure 5.7: Methods and properties of the Offspring class.

Offspring
- configuration_
- candidateSolutions_
- fittestSolution_
+ createOffspring()
+ getFittestSolution()

5.2.7 Genotype

The Genotype class is responsible for the creation of a genotype, restricted to the
configuration provided: number of columns, number of rows, number of program inputs,
parameters, and so on. First, the function genes are added to the genotype. Then,
the connection genes are randomly generated, as well as the parameters and program
outputs.
After the genotype is created, the active nodes are recursively found by analysing the
program outputs. For each output, the connection nodes are retrieved and stored in
an array. For each of those, their connections are also saved in that array, and so on.
This process stops until there are no more nodes to analyse. Lastly, the fitness of this
new candidate solution is computed.
Figure 5.8 lists the properties and methods of the class.
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Figure 5.8: Methods and properties of the Genotype class.

Genotype
- configuration_
- activeNodes_
- genes_
- fitness_
+ createGenotype()
+ getActiveNodes()
+ getFitness()
+ getGenes()
- findActiveNodes_(sizes : struct, connectionGenes : struct)
- createParameters_(sizes : struct, parameters : struct)
- createProgramOutputs_(genes : double,
outputs : double, nodes : double, shouldBeLastNode : bool)
- createFunctionGenes_(functionGenes: array, functionSet : double)
- createConnectionGenes_(structure : struct, sizes : struct)

5.2.8 Connection

The Connection class is responsible for generating a random and valid connection for a
specific node. It receives the connection gene index as argument. The class first finds
which node belongs the connection gene. This is done by subtracting the number of
program inputs from the gene index and dividing that value by the number of genes
per node. Then, it finds all the possible connections for that node. This is achieved
by recursively iterating through the previous nodes, taking into account that nodes in
the same row cannot be connected between each other, and also taking into account
the number of levels-back. Lastly, it randomly pick one connection from the possible
connections.
Figure 5.9 lists the properties and methods of the class.
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Figure 5.9: Methods and properties of the class.

Connection
-configuration_
- newConnection_
- nodeIndex_
- possibleConnections_
+ createConnection()
- findPossibleConnections_(sizes : struct)
- findWhichNodeBelongs_(sizes : struct, gene : double)

5.2.9 Functions

The Functions class is responsible for randomly generating the function genes for the
genotypes. It takes into account the number of functions present in the function-set, to
be able to generate valid function genes. It can generate one function gene at a time or
multiple function genes. This is is useful, because we find where all the function-genes
are positionated in the genotype, and call this class once, which returns function genes
to all those positions. If we have 10 nodes, we have to generate 10 function-genes in
the genotype. If our function-set is composed by 5 functions, this class will generate
10 random values between 1 and 5, each corresponding to a function-gene mapped to
one of the functions in the function-set.
Figure 5.10 lists the properties and methods of this class.

Figure 5.10: Methods and properties of the Functions class.

Functions
- configuration_
+ createFunctions()

5.2.10 Output

The Output class is responsible for generating a valid program output. Depending
on the settings provided initially, this class can pick the last node to be the program
output, or randomly pick any program input or computational node in the genotype.
Figure 5.11 lists the properties and methods of the class.
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Figure 5.11: Methods and properties of the Output class.

Output
- configuration_
+ createOutput()

5.2.11 Fitness

The Fitness class is responsible for calling the fitness callback provided in the config-
uration phase. A few properties are passed to that callback, such as the genes in the
genotype, active nodes, function-set, program inputs and others. It has a validation of
the type returned by the function, which should return an integer or double value. The
returned value, is stored and used as the fitness of that particular candidate solution.
Figure 5.12 lists the properties and methods of the class.

Figure 5.12: Methods and properties of the Fitness class.

Fitness
- fitness_
+ getFitness()

5.2.12 Mutation

The Mutation class receives a genotype and iterates over its genes. All the genes have
the same mutation probability. For a gene being mutated, we first find what type of
gene it is: connection, function, parameter or program output. If it is a program out-
put, the Output class is used. If it is a connection gene, the Connection class is used. If
it is a function gene, the Functions class is used. Recall that when we add parameters
to the CGP, we must provide an initialization function and a mutation function. If it
is a parameter gene, the mutation function provided will be called.
After iterating all genes, the active nodes are found again, and the fitness is recalcu-
lated. If the GENOTYPE_MUTATED callback is provided, it will be called, having
as arguments the genes before the mutation, the genes after the mutation and the index
of the mutated genes.
Figure 5.13 lists the properties and methods of the class.
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Figure 5.13: Methods and properties of the Mutation class.

Mutation
- configuration_
- activeNodes_
- genes_
- fitness_
+ createMutation()
+ getGenes()
+ getActiveNodes()
+ getFitness()
+ mutate_()
+ findActiveNodes_()

5.3 Symbolic Regression (Example)

We now show how the toolbox can be used using, as an example, the following classic
symbolic regression problem:

y(t) = x6 − 2(x4) + x2. (5.1)

To start enconding one application built on top of the toolbox, we must import the
package cgptoolbox into our Matlab workspace. The necessary steps for running the
toolbox are the following (see Figure 5.14):

• configure the CGP;

• add the program inputs;

• provide a fitness function;

• add the function-set.

Also, there are two optional steps:



CHAPTER 5. CARTESIAN GENETIC PROGRAMMING TOOLBOX 71

• add callbacks to be executed during the evolutionary process;

• add parameters to the genotype.

CGP
Toolbox

Configuration

Inputs

Parameters

Function-Set

Fitness
Function

Callbacks

Figure 5.14: Components to provide to the CGP Toolbox.

5.3.1 Configuration

The method for instantiating a new CGP application is by referencing the toolbox
cgptoolbox and the CGP class. Listing 5.1 illustrates one possible configuration (as
in Miller and Thomson (2000)), and instantiation of the CGP Class:

Listing 5.1: Example of initializing the CGP Class.

% create a configuration struct

configuration = struct(

’rows’, 1, ...
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’columns’, 10, ...

’levels_back’, 10, ...

’output_type’, ’random’, ...

’runs’, 100, ...

’outputs’, 1, ...

’generations’, 8000, ...

’offspring’, 9, ...

’mutation’, 0.02, ...

’fitness_solution’, 0.01, ...

’fitness_operator’, ’<=’ ...

);

% initialize a CGP instance with a custom configuration

cgp = cgptoolbox.CGP(configuration);

5.3.2 Inputs

Since we are trying to solve a symbolic regression problem, we will create 50 points,
between −1 and 1, with Equation 5.1. Those points will constitute the program input
(see Listing 5.2).

Listing 5.2: Example of adding inputs to the CGP.

% initialize CGP instance

cgp = cgptoolbox.CGP(configuration);

% create 50 points of x^6 - 2*(x^4) + x^2, between -1 and 1.

a = zeros(1, 50);

b = zeros(1, 50);

index = 1;

for x = -1:2/50:1

a(index) = x^6 - 2*(x^4) + x^2;

b(index) = x;

index = index + 1;

end

% add program inputs

cgp.addInputs( ...

struct( ...
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’points’, struct(’x’, b, ’y’, a) ...

) ...

);

5.3.3 Parameters

The following listing shows how to add two parameters to the genotype. The first is a
double, and the second is an integer. This example would not be used in the symbolic
regression problem, because there is no need for additional parameters in the genotype
in that case.

Listing 5.3: Example of adding two parameteres to the genotype.

% initialize CGP instance

cgp = cgptoolbox.CGP(configuration);

% add the parameters to the genotype

cgp.addParameters(

struct(

’name’, ’some-parameter’,

’initialize’, @()rand(),

’mutate’, @(x) x + rand()

),

struct(

’name’, ’constant’,

’initialize’, @()randi([-10, 10]),

’mutate’, @mutateParameter

)

);

These parameters will be encoded in the genotype and share the mutation probability
with the rest of the genotype’s genes. Listing 5.4 shows a possible mutation function
for a parameter.

Listing 5.4: Example of one function that doubles the parameter value at every muta-
tion.

function newValue = mutateParameter(parameter)

% mutate the old parameter value to a new one
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newValue = parameter * 2;

end

5.3.4 Function Set

All the functions from the function-set should be under the same directory. The path
to this directory is passed to the CGP’s public method addFunctionsFromPath (see
Listing 5.5).

Listing 5.5: Example of adding the path to the function-set.

% initialize CGP instance

cgp = cgptoolbox.CGP(configuration);

% set the directory of the function-set

cgp.addFunctionsFromPath(’./my-path/function-set/’)

Listing 5.6 lists four functions used for the symbolic regression problem. Each function
is in a separated file, under ’./my-path/function-set/’.

Listing 5.6: Example of four functions that receive two inputs and do some action with
those.

% function that sums the first and second input

function result = Sum(x, y)

result = plus(x, y);

end

% function that subtracts the first and second input

function result = Subtract(x, y)

result = x - y;

end

% function that divides the first and second input

function result = Divide(x, y)

if y == 0

result = x;

else

result = x / y;
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end

end

% function that multiplies the first and second input

function result = Times(x, y)

result = x * y;

end

5.3.5 Fitness Function

The fitness function is provided by callback, which means that we pass the reference
of this function to the toolbox. The public method for this is addFitnessFunction (see
Listing 5.7).

Listing 5.7: Example of passing the Fitness function to the program.

% initialize a CGP instance with a custom configuration

cgp = cgptoolbox.CGP(configuration);

% pass the fitness function as reference

cgp.addFitnessFunction(@myFitnessFunction);

The fitness function receives a struct with a series of fields that help with the decodifica-
tion of the phenotype (see Section 5.2.11). The fitness function should return a double
or integer for the fitness value. Listing 5.8 shows how to decode a phenotype from the
symbolic regression problem, step by step. The goal of the symbolic regression fitness
function is to minimize the difference between the output of a candidate program and
the required output. The fitness (f) is computed by applying the absolute sum of the
errors:

f =
50∑

t=1

|et|. (5.2)

The lower the fitness, the lower the error and the better this candidate solution.

Listing 5.8: Example of a fitness function.
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function score = fitness(args)

score = 0.0;

values = zeros(1, args.config.sizes.nodes);

% for each data point or test case

for j = 1:50

values(1) = args.programInputs.points.x(j);

% iterate through active nodes

for i = args.config.sizes.inputs + 1:size(args.activeNodes, 2)

% get current active node that we want to decode

currentActiveNode = args.activeNodes(i);

% get the gene that points to the function-gene of the active node

functionGeneOfActiveNode =

args.config.structure.functionGenes(currentActiveNode);

% get the function gene of the active node

currentFunctionGene = args.genes(functionGeneOfActiveNode);

% get the genes index

geneFirstConnection =

args.config.structure.connectionGenes{1}(currentActiveNode);

geneSecondConnection =

args.config.structure.connectionGenes{2}(currentActiveNode);

% get the nodes index

nodeFirstConnection = args.genes(geneFirstConnection);

nodeSecondConnection = args.genes(geneSecondConnection);

% get the values of the connections

firstConnection = values(nodeFirstConnection);

secondConnection = values(nodeSecondConnection);

% call the function which index is given by currentFunctionGene

values(currentActiveNode) =

args.functionSet{currentFunctionGene}(firstConnection,

secondConnection);

end

% compute the sum of squared error
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score = score + abs(values(args.activeNodes(end)) -

args.programInputs.points.y(j));

end

end

If the genotype is encoded with parameters, those are very easy to extract. Consider
the node connection inputs as ci, the number of parameters as np and the number of
genes per node as g. If ci = 2 and np = 2, then g = 5: one gene for the function
gene, two genes for the node’s connection inputs, and two additional genes for the
parameters. To recall, the genotype is a sequence of numbers, the genes composing
the nodes and the program outputs. Each node starts with the function gene, then the
connection inputs and lastly are the parameters. So, if the user wants to extract the
parameters relative to node 2, all it needs is to address the last genes from the node.
Listing 5.9 is the continuation of Listing 5.8, extended to decode the parameters from
the genotype and pass them to each function call. The functions from the function-set
should know which parameters to use and which to ignore.

Listing 5.9: Example of decoding the parameters of the current node.

for i = args.config.sizes.inputs + 1:size(args.activeNodes, 2)

% decode the firstConnection and secondConnection

...

% find how many genes per node

genesPerNode = 3 + args.config.sizes.parameters;

% genes of the active node

lastParameter = currentActiveNode * genesPerNode;

% gene of the first parameter

firstParameter = lastParameter - args.config.sizes.parameters + 1;

% get all parameter genes

allParameters = firstParameter:lastParameter;

% get the value of each parameter

for k = 1:size(allParameters, 2)

parameters(k) = args.genes(allParameters(k));

end
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% pass the parameters to the functions

values(currentActiveNode) =

args.functionSet{currentFunctionGene}(firstConnection,

secondConnection, parameters);

end

5.3.6 Callbacks

All callbacks receive a struct object with specific properties, relevant to each event.

5.3.6.1 Generation Ended

After running a generation, the callback GENERATION_ENDED is fired. This is
very useful for knowing the genes present or the fitness value at each generation. The
callback accepts a structure with a few fields, such as the current generation and
the fitness value. In Listing 5.10, the function will print to the output window the
generations and corresponding fitness.

Listing 5.10: Example of passing the GENERATION_ENDED callback function to
the program.

function myGenerationCallback(args)

% print current generation and fitness

fprintf(’%d - %.16f\n’, args.generation, args.fitness);

end

% initialize a CGP instance with some custom configuration

cgp = cgptoolbox.CGP(configuration);

% pass the callback function as reference

cgp.addCallbacks(struct(

’GENERATION_ENDED’, @myGenerationCallback

));
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5.3.6.2 Run Ended

At the end of a run, the callback RUN_ENDED is fired. This is very useful for
knowning the fitness value of each run. The callback accepts a structure with a few
fields, such as the current run. In Listing 5.11, the function will print to the output
window the run that is currently being processed.

Listing 5.11: Example of passing the RUN_ENDED callback function to the program.

function myRunCallback(args)

% print current run

fprintf(’run: %d\n’, args.run);

end

% initialize a CGP instance with some custom configuration

cgp = cgptoolbox.CGP(configuration);

% pass the callback function as reference

cgp.addCallbacks(struct(

’RUN_ENDED’, @myRunCallback

));

5.3.6.3 New Solution In Generation

When a new solution is generated a NEW_SOLUTION_IN_GENERATION event is
fired. This is useful to know exactly which offspring is being evaluated at each time.
The callback accepts a structure with a few fields, such as the current fitness and
current offspring. In Listing 5.12, the function will print to the output window the
offspring that is currently being processed.
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Listing 5.12: Example of passing the NEW_SOLUTION_IN_GENERATION call-
back function to the program.

function myNewSolutionCallback(args)

% print current offspring

fprintf(’current offspring: %d\n’, args.offspringIndex);

end

% initialize a CGP instance with some custom configuration

cgp = cgptoolbox.CGP(configuration);

% pass the callback function as reference

cgp.addCallbacks(struct(

’NEW_SOLUTION_IN_GENERATION’, @myNewSolutionCallback

));

5.3.6.4 Genotype Mutated

Everytime a solution is created and the genotype is mutated, aGENOTYPE_MUTATED
event is fired. This event is useful in order to know which genes were mutated. The
callback accepts a structure with three fields: genes before mutation, genes after mu-
tation and index of the mutated genes. Example 5.13 shows a function that prints the
mutated genes.

Listing 5.13: Example of writing to a file the genes before and after mutation.

function genotypeMutatedCallback(args)

% open a file and store in someFileHandler variable

before = args.genesBeforeMutation(args.genesMutated);

after = args.genesAfterMutation(args.genesMutated);

dlmwrite(someFileHandler, [args.genesMutated(:), before(:), after(:)],

’-append’);

end

5.3.6.5 Fittest Solution Found In A Run

When a new solution is better then a previous achieved one, the FITTEST_SOLUTION
event is fired. The callback accepts a structure with a few fields, such as the current
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fitness and current run. Example 5.14 prints to the output window all the runs that
obtained a better candidate solution.

Listing 5.14: Example of passing the FITTEST_GENERATION callback function to
the program.

function myFittestSolutionCallback(args)

% print current generation and fitness

fprintf(’new fittest solution at run: %d \n’, args.run);

end

% initialize a CGP instance with some custom configuration

cgp = cgptoolbox.CGP(configuration);

% pass the callback function as reference

cgp.addCallbacks(struct(

’FITTEST_SOLUTION’, @myFittestSolutionCallback

));

5.3.6.6 Fittest Solution Of A Generation

When iterating through the offspring, if a solution is better than the previous one, the
event FITTEST_SOLUTION_OF_GENERATION is fired. The callback accepts a
structure with a few fields, such as the current fitness and current offspring. Example
5.15 prints to the output window the new fittest offspring index.



82 5.3. SYMBOLIC REGRESSION (EXAMPLE)

Listing 5.15: Example of passing the FITTEST_SOLUTION_OF_GENERATION
callback function to the program.

function myFittestSolutionOfGenerationCallback(args)

fprintf(’new fittest offspring: %d \n’, args.offspringIndex);

end

% initialize a CGP instance with some custom configuration

cgp = cgptoolbox.CGP(configuration);

% pass the callback function as reference

cgp.addCallbacks(struct(

’FITTEST_SOLUTION_OF_GENERATION’,

@myFittestSolutionOfGenerationCallback

));



Chapter 6

CGP approach to Pitch Estimation

In our CGP approach to Pitch Estimation, we have multiple inputs and we have only
one row of graph nodes, one output (the result of the corresponding classifier), and
levels-back = nc. To perform pitch detection using CGP, we developed a system
where some important decisions and tasks were made besides the CGP. We had to
define what kind of inputs to use from the original piano audio signal, through a pre-
processing task. We also had to develop a process to reach a binary output in order to
perform our fitness function.

Figure 6.1: System architecture.

The block diagram of our proposed system is much more than a simple CGP process

83
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and is depicted in Figure 6.1. Our goal is to train 61 classifiers, each one corresponding
to one pitch or piano note: from C1 to C6. To train one classifier, we first start with a
set of learning cases: a group of audio signals corresponding to the pitch that we want
to identify and a group of audio signals without that pitch. Those audio signals are
pre-processed in order to extract some important features that will be used as program
inputs like for example, the magnitude spectrum. The computational nodes in the
genotype have two connection inputs, one function and two parameters. Each program
is an evolved mathematical function, which is applied to each of the learning cases.
The output of that function is compared to a triangular signal, where a threshold is
applied, for binary classification. After the binary classification of all learning cases,
the fitness function is applied.
To tackle the problem of Pitch Estimation, we started by addressing a simplified ver-
sion of the problem, and then we increased its difficulty. First, we started with simple
mathematical models: sine waves, sawtooth waves (triangular wave) and square waves.
Then, we moved to real audio monophonic recordings. Lastly, slight changes were
made to improve the results obtained previously, which are discussed in the last sec-
tion. The following sections describe our three approaches (from working with simple
mathematical signals to dealing with real audio) in detail and present the obtained
results.

6.1 General Approach

The common configurations used for all the experiments, is described carefully through-
out this section.

6.1.1 Inputs

The algorithm inputs are obtained from the preprocessing system (described in each
of the experiments sections), which returns a set of audio signals used in the training
phase of our approach. Those are vectors in time with a sample rate of 44.100 samples
per second. Each audio signal is split into time frames and transformed into frequency
domain using a DFT. The time-frame was set to 4096 samples. With this settings, we

have a frequency resolution of
44100

4096
= 10.76Hz and a time resolution of

4096

44100
= 93

milliseconds. This lets us identify notes in small portions of time while having a good
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frequency resolution to extract the frequency components.
By applying the DFT, we get frames with 2048 frequency bins with complex domain
numbers, each one representing a time frame of a signal with 96 milliseconds duration.
From this vectorX[k] in the frequency domain we may use two different representations
of a complex number, cartesian and polar:

1. <{X[k]}

2. ={X[k]}

3. ]{X[k]}

4. ||X[k]||

We have a couple of vectors each one with two components making four usable pro-
gram inputs. Two from the cartesian representation: the real and imaginary parts,
and two from the polar representation: magnitude and phase. By having redundant
information, regarding the four inputs, we ensure the CGP system has a variety of
representations of the same data, so it can be able to choose the one which best fits
the problem.

6.1.2 Individual Encoding

Our proposed algorithm contains four program inputs and one single program output.
We used a single row CGP configuration. The number of columns differ from experience
to experience. Each computational node contains five genes (see Figure 6.2): two
connection inputs, one function gene and two function parameters.

6.1.3 Function parameters

The functions of the instruction set may have up to two parameters, because most
functions need real parameters to perform their tasks. These parameters also evolve
during the training process. We used two real parameters for each computational node.
This way, each function has its particular parameters with a particular meaning. Each
parameter r1, r2 of each function has its own range. Those intervals are normalized
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node indexparametersinputs

function

Figure 6.2: Node Genes(5): inputs, code function and real parameters.

into [0, 1]: all intervals are transformed from [a, b] to a normalized one [0, 1]. By using
this technique, the actual value of any parameter can bee seen as a number between 0
and 1 or a percentage of the interval.

6.1.4 Program Output

Since our system is a classifier, the final program output must return a binary value. In
order to transform the output vector into a binary value, our system uses a threshold
after a comparison between the program output and a base signal. This base signal
is a triangular signal centered on frequency bin of the corresponding F0 of the note
classifier. The threshold function has a constraint to ensure that it is the last function
before the binary output. This threshold is also evolved: parameter θ mutates from an
initial configurable value with an also configurable mutation probability.

6.1.5 Mutation

In CGP, mutation plays a major role on the evolution process. Here, each gene may be
subject to mutation according to a configurable parameter: the mutation probability.
This parameter represents the probability of each gene to be mutated. For instance,
p = 0.01 means that each gene mutates with a probability 0.01. In our case, different
mutation processes are used according to the gene type and domain: if a function gene
happens to be mutated, then a valid value must be chosen for selecting a new function
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in the function set lookup table; if a mutation occurs in a connection gene, then a valid
value is the index of any previous node in the genotype or any program input; the valid
values for the program output are the index of any node in the genotype or the address
of a program input. All these mutations happen according to the uniform probability
distribution function for integers. Two additional genes can also mutate: the real
parameters used by the functions of the function set. According to each function, each
parameter has a specific meaning and also has its own domain range where it can
variate. In this case, we take any value in the normalized interval [0, 1] and transform
it into the real interval [a, b]. The mutation of the real genes (function parameters) is
done using the normal distribution in order to address the entire range:

f(x) =
e−(x−µ)

2/(2σ2)

σ
√

2π
, (6.1)

where f(x) represents the density function of x variable, with a normal distribution.
This function is also represented as N(µ, σ), where µ is the mean and σ is the standard
deviation. To perform the mutation of a function parameter, rold, we generate a new
random rmutate using the normal distribution N(µ = rold, σ), with σ being configurable
in our system. This way, we ensure that when a mutation occurs in a real parameter,
all the parameter interval is reachable, but with higher probability to mutate to closer
values.
As previously described in Section 6.1.4, the program output is obtained by using a
threshold value in order to have a binary output. This threshold mutates independently
from the genotype genes, with a different probability. It has 50% chances of being
mutated. Based on a few experiments, we set the initial value of the threshold at 0.5.
This value is mutated with step increments of 0.01. If it is marked for mutation, it has
50% chances for increment and 50% for decrement its value (this was later adapted to
evolve using a normal distribution - see Section 6.4).

6.1.6 Fitness Function

The main goal of the proposed system is to evolve a classifier for each pitch. The
output of each classifier is binary: when the corresponding note is detected the output
is 1, otherwise it is 0. During the evolutionary process, we used as program inputs
an amount of signals with the desired pitch (fundamental frequency) and the same
amount of signals with different pitches. Thus, for each classifier, we used 50 signals
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with the desired pitch and 50 signals with different pitches. If a signal with the desired
pitch is identified by the classifier, it counts as a true positive (tp). If a signal with
the desired pitch is not identified by the classifier, it counts as a false negative signal
(fn). If a signal with different F0 from the desired pitch is identified by the classifier,
it counts as a false positive signal (fp). If a signal with different F0 from the desired
pitch is not identified by the classifier, it counts as a true negative signal (tn). During
the evolutionary process, the evaluation of each individual (classifier) is done using
F-measure, Equation (6.2)

Fmeasure = 2× recall × precision
recall + precision

, (6.2)

where:
precision =

tp

tp+ fp
, recall =

tp

tp+ fn
. (6.3)

One of our system peculiar characteristics is the binaritazion process, since the CGP
output is a signal vector processed and filtered. In order to accomplish a binary output,
where 1 means the presence of the corresponding pitch in the analyzed frame and 0
means the opposite, we used a comparison process between the CGP ouput vector
normalized in amplitude OCGP (n) and a base signal with the frequency corresponding
to the pitch of the estimator, BF0(n). The first step is the normalization of the output
vector in amplitude. This way all the elements of the vector fall in the interval [0,1].
The base signal is obtained with a triangular mask on frequency domain around the
F0 of the estimator. We used a triangular mask with three configurable points in both
in size and amplitude. We then generate the following scalar:

x =
N∑

n=0

OCGP (n) ∗BF0(n), (6.4)

where x measures the interception between the two discrete time signals. If we approxi-
mate these signals to continuous time we could see x as the intersected area between the
two signals. Finally, we used a threshold function to accomplish the binary result:

T (x) =





1, if x > θ

0, if x <= θ
(6.5)
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where θ is the threshold value. Since both signals are normalized, the max value for x
is:

x =
N∑

n=0

BF0(n). (6.6)

6.2 Pitch Estimation of Mathematical Functions: Sine,

Square and Sawtooth Waves

Our first approach started with the application of the CGP to simple mathematical
models. These are artificial signals, which were not recorded from real world instru-
ments. We first wanted to validate that the application of CGP to Pitch Estimation
is a valid method and that our approach works with simple and pure signals. Those
type of signals were chosen to be analysed first, because its characteristics, such as the
harmonic structure, are well known. There are no problems with reverberation, tran-
sients and background noise; although we added some white noise in the pre-processing
stage, it is a controlled noise (later discussed in Section 6.2.1).

6.2.1 Preprocessig

We used three types of signals: sine wave, sawtooth (triangular) wave and square wave.
To recall what we presented in Section 2.4.3, the sine wave is given by the following
equation:

y(t) = A× sin(2πft+ ϕ), (6.7)

where A is the amplitude of the wave, f is the number os oscillations per second and
ϕ is the phase. In our experiments, A is set to 1 and f is the fundamental frequency
of the pitch that we want to classify. To train the classifier of pitch 60, which has as
fundamental frequency 261.6 Hz, the Equation 6.8 takes the form of:
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AND SAWTOOTH WAVES

y(t) = sin(2π × 261.6× t+ ϕ). (6.8)

The sawtooth wave can be approximated by the Fourier series:

y(t) =
A

2
− A

π

∞∑

k=1

(−1)k
sin(2πkft)

k
. (6.9)

To train the classifier of pitch 60, the Equation 6.10 takes the form of:

y(t) = 0.5− 1

π

∞∑

k=1

(−1)k
sin(2πk × 261.6× t)

k
. (6.10)

The square wave is given by the following equation:

y(t) =
4

π

∞∑

k=1

sin(2π(2k − 1)ft

2k − 1
. (6.11)

Adapting for the classifier of pitch 60, we have:

y(t) =
4

π

∞∑

k=1

sin(2π(2k − 1)261.6× t
2k − 1

. (6.12)

Figure 6.3 shows the three types of waves signals used.

In order to increase the difficulty of the algorithm, we apply an additive white Gaussian
noise (AWGN), which is a basic noise model used to mimic the effect of many random
processes that occur in nature. It adds noise with uniform power across the frequency
band to our signal.
Figure 6.4 shows the three types of waves signals used after the application of an
AWGN.
To accomplish a good base for signal processing common tasks, we transform the
domain signals from the time domain to the frequency domain, using the Discrete
Fourier Transform (DFT), shown in Equation 2.19. In order to do so, each frame is
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(a) - Sine wave with F0 = 261,6 Hz.
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(b) - Magnitude value of the DFT of a sine wave with F0 = 261,6 Hz.
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(c) - Sawtooth wave with F0 = 261,6 Hz.
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(d) - Magnitude value of the DFT of a sawtooth wave with F0 = 261,6 Hz.
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(e) - Square wave with F0 = 261,6 Hz.
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(f) - Magnitude value of the DFT of a square wave with F0 = 261,6 Hz.

Figure 6.3: Types of signals: (a) sine wave in time-domain, (b) sine wave in frequency
domain, (c) sawtooth wave in time domain, (d) sawtooth wave in frequency domain,
(e) square wave in time domain, (f) square wave in frequency domain.

windowed (see Equation 6.13) using an Hanning window (see Equation 6.14) to avoid
spectral leakage. Then, the DFT is applied, obtaining signal frames in the frequency
domain. Figure 6.5 shows the steps for preprocessing.

xw[n] = w[n].x[n]. (6.13)

w[n] = 0.5

(
1− cos

(
2πn

N − 1

))
. (6.14)

Recall that any signal cannot be uniquely represented for frequencies above fs
2
, where

fs is the sampling frequency of the sequence (see Section 2.2.2). Above fs
2

all signal
energy is reflected back into the frequency range −fs

2
. Between fs

2
and fs, the reflection

is in reverse order, which gives rise to a DFT frequency domain period of [0, fs].
Due to the DFT spectrum properties, the symmetry of the real part and the anti-
symmetry of the imaginary part relative to the Nyquist frequency fs

2
, we may only

use half of the resulting signal of the DFT, so only the first 2048 frequency bins were
considered.
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(d) - Magnitude value of the DFT of a sawtooth wave with F0 = 261,6 Hz.
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(a) - Sine wave with F0 = 261,6 Hz.
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(b) - Magnitude value of the DFT of a sine wave with F0 = 261,6 Hz.
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(c) - Sawtooth wave with F0 = 261,6 Hz.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Time (s)

-1.5

-1

-0.5

0

0.5

1

1.5

A
m

p
lit

u
d

e

(e) - Square wave with F0 = 261,6 Hz.
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(f) - Magnitude value of the DFT of a square wave with F0 = 261,6 Hz.

Figure 6.4: Types of signals with AWNG applied: (a) sine wave in time-domain, (b)
sine wave in frequency domain, (c) sawtooth wave in time domain, (d) sawtooth wave
in frequency domain, (e) square wave in time domain, (f) square wave in frequency
domain.

Arti�cial Signal

Hanning Window

DFT

AWGN

Figure 6.5: First, the mathematical models are created. Then, the additive white
Gaussian noise is added, the Hanning window is applied and the DFT transforms the
time domain signal into the frequency domain.
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6.2.2 Function set

Each function node has a gene that indicates which function of the function set should
be used on that node. Table 6.1 shows the function set or look-up table that was used
in the experiments. The maximum function arity is 2. Note that all the functions are
prepared to receive one or two vectors, and all of them return a vector. The returned
vector is then normalized between 0 and 1.

Table 6.1: Function set - lookup table.

Index Function Description

1 SPConvolution Convolution
2 SPCos Cosine Function
3 SPDivide poit to point Division
4 SPFFT Absolute value of the

DFT
5 SPGaussfilter Gaussian filter
6 SPIFFT Absolute value of In-

verst DFT
7 SPLog Natural logarithm
8 SPLog10 Common logarithm
9 SPMedFilter Median filter
10 SPMod Remainder after divi-

sion
11 SPMulConst Multiplication by con-

stant
12 SPNormalizeMax Normalization maxi-

mum
13 SPNormalizeSum Normalization sum
14 SPPeaks Find peaks
15 SPSin Sine Function
16 SPSubtract Subtraction
17 SPSum Sum
18 SPSumConst Sum with a constant
19 SPThreshold tresholding
20 SPTimes Multiplication

Our function set is basically composed of filtering operations on vectors and of arith-
metic operations with constants and vectors. Each function may use one or two real
parameters that are encoded in genotype as well. There are functions that do not need
such parameters, so they are ignored.

SPConvolution performs a convolution between the first input vector and the second
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input vector.

SPCos applies the cosine function to each data point in the first vector and returns
it.

SPDivide divides each point in the first input vector by each data point in the second
input vector.

SPFFT applies the DFT to the first input vector, and returns its absolute value.

SPGaussfilter applies a Gaussian filter to the first input vector. Sigma (first param-
eter) can evolve between 1 and 10, depending on the interval parameter encoded
in the node.

SPIFFT applies the Inverse DFT to the first input vector, and returns its absolute
value.

SPLog returns the natural logarithm of the first input vector.

SPLog10 returns the absolute value of the common logarithm applied to the first
input vector.

SPMedFilter applies a median filter to the first input vector. The percentage of
signal that will be filtered is in a range between 3% to 10%, depending on the
first parameter.

SPMod returns the remainder after division of the first input vector by the second
input vector.

SPMulConst return the multiplication of the first vector by a constant (second pa-
rameter).

SPNormalizeMax returns the normalization of the first input vector by the maxi-
mum value in the vector.

SPNormalizeSum returns the normalization of the first input vector by sum.

SPPeaks returns the first input vector with all non-peak values set to 0.
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SPSine applies the sine function to each data point in the first vector and returns it.

SPSubtract returns the subtraction of the first input vector by the second input
vector.

SPSum returns the sum of the first input vector with the second input vector.

SPSumConst returns the sum of the first input vector with a constant (second pa-
rameter).

SPThreshold sets all values of the first vector below a certain threshold (first param-
eter) to zero, and returns its value.

SPTimes multiplies the first vector by the second vector.

6.2.3 Experiments and Results

Since this is our first approach to the problem of Pitch Estimation using CGP, our main
goal is to show the applicability of CGP on this problem. We evolved one classifier for
each pitch which is represented by the corresponding MIDI note number, being 60 the
MIDI note number corresponding to the C4 musical note (the middle C). Table 6.2
shows the values of the configurable parameters for our system.

Table 6.2: List of parameters used in the experiments.

Parameter Value

Frame Size 4096
Fitness Threshold 0.5
Positive Test Cases 50
Negative Test Cases 50
Program Outputs 1
Rows 1
Columns 50
Levels Back 50
Offspring 4
Mutation Probability 5%
Runs 10
Generations 500

The evolutionary process consisted of 10 runs with 500 generations each, using 50
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positive and 50 negative cases. The classifiers were evaluated using the F-measure
(Equation 6.2). Table 6.3 lists all the classifiers and their best runs. All achieved
fitness of 1, which is the maximum possible fitness value. That is, all the evolved
classifiers give a correct answer for all the given inputs.

6.3 Moving to Real Audio Recordings

Since we obtained good results with the application of CGP to simple mathematical
models, we moved to real monophonic signals. We used the piano samples (audio
signals) from the MAPS database Emiya et al. (2010b). This is a huge dataset with
multiple piano samples, chords and melodies in wave format.
Classifying mathematical signals is different from classifying real sounds: we have to
take into consideration the noise and the harmonic structure.

6.3.1 Approach to Real Audio Signals

The piano sound signals are vectors in time with a sample rate of 44.100 samples per
second. For the preprocessing task, we split each piano sound signal into frames of 4096
samples width, corresponding to 96 milliseconds. We followed the same preprocessing
tasks from the previous experiments: application of the Hanning window, followed by
the DFT.
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Table 6.3: Training results for 61 classifiers for pure signals.

classifier generation fitness

24 68 1
25 35 1
26 145 1
27 61 1
28 71 1
29 19 1
30 15 1
31 71 1
32 57 1
33 19 1
34 18 1
35 79 1
36 48 1
37 49 1
38 54 1
39 61 1
40 183 1
41 69 1
42 120 1
43 31 1
44 213 1
45 100 1
46 46 1
47 54 1
48 22 1
49 196 1
50 120 1
51 105 1
52 107 1
53 23 1
54 20 1
55 165 1
56 54 1
58 24 1
59 16 1
60 56 1
61 32 1
62 76 1
63 48 1
64 42 1
65 21 1
66 89 1
67 76 1
68 43 1
69 34 1
70 153 1
71 11 1
72 27 1
73 16 1
74 24 1
75 13 1
76 8 1
77 7 1
78 9 1
79 9 1
80 6 1
81 9 1
82 9 1
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Figure 6.6: Preprocessing process: (a) input time signal piano note, (b) Hanning
window, (c) resulting windowed signal, (d) frequency domain signal.

Figure 6.6 shows the preprocessing stages for a real audio piano note, from the input
time signal to one of the program inputs in the frequency domain: the magnitude
spectrum. As we can see, the frequency spectrum is very different from a pure sine
wave, square wave or sawtooth wave. Many musical instruments produce sounds with
smooth spectral envelopes but differ immensely in their shapes. In Figure 6.6, we can
observe that the strongest harmonic is the third one, not the F0.
The problem complexity rises and we have to deal with different spectral envelopes from
different pianos, played in different conditions, inharmonic partials, spurious compo-
nents, transients and reverberation (see Section 2.6). The program inputs are obtained
in the same way as in the previous approach (see Section 6.1.1).

Table 6.4: Function set lookup table

Index Function Description

1 SPBPGaussFilter band pass Gaussian
filter

2 SPHighPassFilter high pass filter
3 SPLowPassFilter low pass filter

The function-set used in the experiments with artificial signals was extended, by adding
three more filters, to give more options for tackling those problems (see Figure 6.4).
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The filters are a band pass Gaussian filter, a high pass filter an a low pass filter.
These can be helpful to filter out frequency components that are not relevant for the
identification of the fundamental frequency.
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Figure 6.7: (a) CGP output signal, (b) base triangular signal (c) computing intersection
for threshold.

The method for computing fitness is the same. All the fitness computation process in-
cluding the sum and the thresholding is illustrated in Figure 6.7 with tree graphs.

6.3.2 Experiments and Results

Table 6.7 shows the values of the configurable parameters for our system. The evolu-
tionary process consisted of 30 runs with 5000 generations each, using 50 positive and
50 negative cases. The number of computational nodes is increased, from 50 to 100.
The classifiers were evaluated using the F-measure (Equation 6.2).
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Table 6.5: List of parameters used in the experiments.

Parameter Value

Frame Size 4096
Fitness Threshold 0.5
Positive Test Cases 50
Negative Test Cases 50
Outputs 1
Rows 1
Columns 100
Levels Back 100
Offspring 4
Mutation Probability 5%
Runs 30
Generations 5000
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Figure 6.8: Training results obtained during 30 runs for pitch 60. Fitness values were
calculated using F-measure.

Figure 6.8 shows the individual results of each run (i.e. evolved pitch estimator) for
classifying note 60. The best generated classifier was chosen as the pitch estimator for
note 60.

Figure 6.9 depicts the resulting program of this classifier. It shows the functions used
in each node as well as the inputs of each node. For instance: node 101 contains
the Gaussian filter function and the function arguments (inputs) are the outputs of
the nodes 36 and 87. The resulting program is a set of mathematical functions, with
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Node 1 = input (1)
Node 2 = input (2)
Node 3 = input (3)
Node 4 = input (4)
Node 5 = SPConvolution ( 1 , 1 ) 
Node 6 = SPFFT ( 1 , 4 )  
Node 7 = SPConvolution ( 4 , 4 )  
Node 8 = SPTimes ( 5 , 7 )  
Node 10 = SPSum ( 2 , 1 )  
Node 11 = SPIFFT ( 10 , 4 )  
Node 12 = SPPeaks ( 8 , 11 )  
Node 13 = SPPeaks ( 11 , 10 )  
Node 14 = SPSum ( 3 , 10 )  
Node 15 = SPSubtract ( 1 , 13 )  
Node 16 = SPAbs ( 13 , 12 )  
Node 17 = SPLog10 ( 16 , 10 ) 
Node 18 = SPThreshold ( 5 , 16 )  
Node 19 = SPCos ( 17 , 18 )  
Node 20 = SPLog ( 8 , 2 )  
Node 23 = SPNormalizeSum ( 6 , 14 )  
Node 24 = SPAbs ( 13 , 13 )  
Node 33 = SPDivide ( 12 , 23 )  
Node 36 = SPHighPassFilter ( 19 , 20 )  
Node 87 = SPSum ( 15 , 33 )  
Node 101 = SPGaussfilter ( 36 , 87 )  
Node 104 = SPIFFT ( 24 , 101 )

Figure 6.9: Evolved classifier code for pitch 60.

specific parameters, over vectors - our phenotype.
After the training process, each classifier was tested with a different test set. Each test
set consisted in 144 negative notes (48 × 3) and 5 positive notes, comprising a total
of 149 piano sound samples. Table 6.6 shows our results. As a first approach with
real signals, these results are very encouraging, since for almost all notes we achieved
a classifier with F-Measure values greater than 70%.
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Table 6.6: Test results for 61 classifiers

classifier tp tn fp fn f-measure

24 5 138 6 0 0.63
25 5 127 17 0 0.37
26 5 127 17 0 0.37
27 5 127 17 0 0.37
28 5 127 17 0 0.37
29 5 124 20 0 0.33
30 4 122 22 1 0.26
31 5 108 36 0 0.22
32 5 132 12 0 0.46
33 4 138 6 1 0.53
34 5 111 33 0 0.23
35 5 139 5 0 0.66
36 5 140 4 0 0.71
37 5 121 23 0 0.30
38 5 140 4 0 0.71
39 5 113 31 0 0.24
40 4 130 14 1 0.35
41 4 138 6 1 0.53
42 4 124 20 1 0.28
43 4 138 6 1 0.53
44 5 112 32 0 0.24
45 5 135 9 0 0.53
46 3 138 6 2 0.43
47 4 119 25 1 0.24
48 5 135 9 0 0.53
49 5 136 8 0 0.55
50 5 140 4 0 0.71
51 5 127 17 0 0.37
52 5 138 6 0 0.63
53 5 142 2 0 0.83
54 5 128 16 0 0.39
55 5 138 6 0 0.63
56 5 128 16 0 0.39
57 5 139 5 0 0.67
58 5 139 5 0 0.67
59 5 137 7 0 0.59
60 5 142 2 0 0.83
61 4 142 2 1 0.73
62 4 144 0 1 0.88
63 4 144 0 1 0.88
64 5 138 6 0 0.63
65 5 141 3 0 0.77
66 5 139 5 0 0.67
67 5 141 3 0 0.77
68 5 141 3 0 0.77
69 5 141 3 0 0.77
70 5 142 2 0 0.83
71 5 142 2 0 0.83
72 5 142 2 0 0.83
73 5 144 3 0 0.77
74 5 146 1 0 0.91
75 5 142 5 0 0.66
76 5 142 5 0 0.66
77 5 146 1 0 0.91
78 5 143 4 0 0.71
79 5 144 3 0 0.77
80 5 143 4 0 0.71
81 5 147 0 0 1
82 5 147 0 0 1
83 5 146 1 0 0.91
84 5 145 2 0 0.83
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In order to compare our results with the ones by other authors we generated the
graph depicted in Figure 6.10 where, besides F-measure, we can see the error rate in
percentage for the data-set test with 96ms frames. The three main monophonic pitch
estimators are: Parametric F0 estimator (Emiya et al. (2007)), the Non-parametric
F0 estimator and the YIN estimator (De Cheveigné and Kawahara, 2002) and those
estimators have mean error rates of 2.4%, 3.0% and 11.0%, respectively. Our Cartesian
Genetic Programing approach to F0 estimation reaches the mean error rate of 6%.
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Figure 6.10: Graph with 61 classifiers evaluation results in error rate and F-measure.

6.4 Improvements on Real Audio Recordings

As can be seen in Table 6.6, we only have 12 false negatives, which means that, from
the 305 positive test cases (61 classifiers x 5 positive test cases for each classifier), only
12 were not correctly identified. In contrast, we have a bigger number of false positives,
specially on the lower notes. This is the major problem with the results obtained in
this first approach with real signals. One possible reason for this, is that in the binary
threshold, we compare the output vector with a base signal, and this base signal is
a triangular signal with its peak on the F0 of the current classifier. That is, the F0
peak on the base signal is being matched by harmonics in pitches different from the
classifier.
In order to mitigate the problem identified after the first experiments with real signals,
we decided to add a second triangle to the base signal, with a peak in the second
harmonic. The first triangular mask remains the same, with values [0.5; 1; 0.5] and
the second has an amplitude of [0.2; 0.3; 0.2].
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Figure 6.11 shows the intersection of the normalized magnitude spectrum of one piano
note with pitch 60 that serves as one of the program inputs to CGP, and its base signal.
Two triangles are centerered on its F0 (261.6Hz) and second harmonic (532.2 Hz). The
intersection of those two vectors gives a value of 1.42. As we increase the base signal,
we have to increase also the threshold. Before, its initial value was set to 0.5. Now, the
initial value of the threshold is set to 1.5. The goal of CGP is to evolve a mathematical
function that salients the peaks on F0 and second harmonic of the signal.
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Figure 6.11: Intersection of magnitude spectrum of one piano note with pitch 60 and
normalized, with its base signal. Two triangles are centerered on its F0 (261.6Hz) and
second harmonic (532.2 Hz).

In the first approach, the mutation of the threshold was a simple step increment of
+0.01 and -0.01. Besides, adding a second triangle to the base signal, we also changed
the step increment to a normal distribution in order to verify if this could lead to some
improvement in the results (see Equation 6.1).

6.4.1 Experiments and Results

The experiments conditions are listed in Table 6.7. Each classifier takes almost a day
to evolve with 30 runs. Due to short time, we could not fullfill the table with all 61
classifiers. We concentrate mainly on the lower pitches, where the amount of false
positives is higher.
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Table 6.7: List of parameters used in the experiments.

Parameter Value

Frame Size 4096
Fitness Threshold 1.5
Positive Test Cases 50
Negative Test Cases 50
Outputs 1
Rows 1
Columns 100
Levels Back 100
Offspring 4
Mutation Probability 5%
Runs 30
Generations 5000

Table 6.8 lists a few experiments and the results are encouraging, where the lowest
notes reduce drastically the number of false positives, when compared to the first
approach. The mean F-measure of the same classifiers, from the previous experiments,
was 0.48, whereas in current experiments is 0.57: it was improved, approximately, 9%.
The number of false positives was reduced from to 201 to 135, which corresponds,
approximately, to 33%. These are very good indicators that the CGP can have a valid
application for Pitch Estimation.
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Table 6.8: Test results for classifiers by intersecting the output vector with two trian-
gles.

classifier tp tn fp fn f-measure f-measure of previous experiments

24 5 139 5 0 0.66 0.63
26 5 129 15 0 0.40 0.37
29 4 131 13 1 0.36 0.33
30 5 116 28 0 0.26 0.26
31 5 129 15 0 0.40 0.22
32 5 137 7 0 0.59 0.46
34 5 127 17 0 0.37 0.23
39 5 122 22 0 0.31 0.24
48 5 141 3 0 0.77 0.53
53 5 143 1 0 0.91 0.83
55 5 139 5 0 0.66 0.63
57 5 141 3 0 0.77 0.67
60 5 143 1 0 0.91 0.83

6.5 Applying Classifiers to Polyphonic Audio Record-

ings

This section was not one of the objectives of this thesis, but we find interesting to apply
the classifiers, trained with monophonic audio signals, to polyphonic audio signals. For
this, we also used the piano samples from the MAPS database Emiya et al. (2010b).
Our test set is composed of 20 audio recordings of chords, where the classifier’s pitch
is present and 75 chords without the classifier’s pitch. As we can see in Table 6.9, the
results show room for improvements and future work, however, they also validate that
our particular approach is a good starting point for evolving classifiers using CGP.
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Table 6.9: Test results for classifiers applied to polyphonic recordings.

classifier tp tn fp fn f-measure

24 15 50 25 5 0.50
26 17 42 33 3 0.49
29 8 50 25 12 0.30
30 17 38 37 3 0.46
31 15 63 12 5 0.64
32 12 51 24 8 0.43
34 9 61 14 11 0.42
39 6 70 5 14 0.39
48 15 65 10 5 0.66
53 18 59 16 2 0.67
55 15 69 6 5 0.73
57 10 71 4 10 0.59
60 15 74 1 5 0.83
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Chapter 7

Conclusions and Future Work

The objective of this thesis consisted on the application of Cartesian Genetic Pro-
gramming to the problem of Pitch Estimation of piano notes. Our goal was to train
61 classifiers from C1 to C6 piano notes, that could identify when those pitches are
present in small time-frames of an audio signal. In order to do this, we have developed
a toolbox to help us encoding this problem under a classic CGP approach. The exper-
iments for the Pitch Estimation were broken down as follows: application of classifiers
to signals artificially created by mathematical models; application of classifiers to real
audio recordings of monophonic piano signals; application of classifiers to polyphonic
audio signals.

7.1 CGP Toolbox

Pitch Estimation is a very complex problem, so we decided to take incremental steps
for addressing this problem. We wanted to apply CGP for evolving pitch classifiers.
Our first step for this was to create a toolbox to help us with the codification of the
problem. Instead of creating a toolbox specific for audio processing, we made that
toolbox generic enough to encode different kind of problems. The first main reason
was to validate that our CGP code works. The second reason was that, with a toolbox,
we can clearly define what code belongs to the CGP itself, and what code belongs to
the pitch estimation problem. We could debug and track better what was hapenning
during the evolutionary process.
The toolbox is very simple to use. We only need to provide a small configuration, define

109
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program inputs, a fitness function and the path to the function-set. The EA encoded
is the 1 + λ, and we can choose the value for λ. Settings such as the mutation proba-
bility, number of runs and generations are configurable. The cartesian representation
of CGP can take multiple forms, because the number of rows, columns, levels-back
and program outputs are customizable. It is prepared to handle with different type of
fitness functions: minimization of f(x) and maximization of f(x). It can receive mul-
tiple program inputs, of any type. The toolbox is also prepared to receive parameters
for each node. Those parameters are encoded in the genotype and can also mutate.
Furthermore, it has a useful system of callbacks. This callback system let us handle
multiple events, such as knowing when a new genotype was created, a new solution
candidate was found or a run ended. Each callback receives useful information about
the event itself: genotype, active nodes, fitness of the current candidate solution, and
so on.

7.2 Pitch Estimation

During the first phase of our experiments, we applied our algorithm to artifical signals,
created with mathematical models: sine, square and sawtooth waves. All the evolved
classifiers found the correct pitch on true positive signals, and did not match true neg-
ative signals. Those were very promising results, and led us one step further. We then
went into real audio monophonic signals. The function-set was updated to include
more filters to help the algorithm deal with the harmonic structure of real recordings.
After the results, we could see that the first approach could be improved specially on
the lower pitches, because the classifiers were identifying a few false positives. On the
other hand, only a short ammount of false negatives was found, which means that the
classifiers were identifying correctly almost all notes that had the same F0 as the clas-
sifier. To decrease the false positives, we changed the mutation of the threshold, and
add a second harmonic to the base signal. The experiments showed that false positives
decreased and the overall F-measure of the classifiers increased. Altough, there are
still classifiers to test with this new approach; for lack of time, we concentrate mainly
on lower pitches. For testing purposes, we also applied those classifiers to polyphonic
signals (chords). The results were encouraging, not great, but a good starting point
for future work (we stress that the classifiers were not evolved to classify polyphonic
signals). With those results, we have shown the feasibility of our approach to the prob-
lem of Pitch Estimation, using CGP to evolve classifiers.
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7.3 Future Work

We have taken a little step into de world of evolving classifiers using CGP for Pitch
Estimation, but more can be taken. For future work, we propose the following experi-
ments:

• the application of polyphonic signals in the training phase of the classifiers. These
could lead to better results in multi-pitch estimation.

• add more program inputs to increase the data for the function-set to work on. Cep-
strum and power spectrum would be suitable candidates for this. They both add
relevant information about frequency and periodicity.

• the function-set could be improved with more filters and signal processing functions.

• instead of using the product of the base signal with the output vector, we could use
a normalized autocorrelation.

• another suggestion would be to try to use the Matthews correlation coefficient (MCC)
(Matthews, 1975) in the fitness function.

• our approach can detect pitches in small time-frames, which let us also infer the onset
and offset of a note. It would be interesting to, in the future, include dynamic
perception, to extract the amplitude or velocity of each note.

We think that this dissertation is a contribute to the resolution of the Pitch Estimation
problem, adding one more technique to the existing ones.
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Cartesian Genetic Programming applied to pitch detection of piano notes
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Abstract—Pitch Estimation, also known as Fundamental Fre-
quency (F0) estimation, has been a popular research topic for
many years, and is still investigated nowadays. This paper
presents a novel approach to the problem of Pitch Estima-
tion, using Cartesian Genetic Programming (CGP). We take
advantage of the evolutionary algorithms, in particular CGP,
to explore and evolve complex mathematical functions that act
as classifiers. These classifiers are used to identify piano notes
pitches in an audio signal. For a first approach, the obtained
results are very promising: our error rate outperforms two of
three state-of-the-art pitch estimators.

1. Introduction

Pitch estimation on sound signals, also known as F0
detection, is a very important task of Automatic Music Tran-
scription. This is a process in which a computer program
writes the instrument’s partitures of a given song or an audio
signal. Usually, only pitched musical instruments are con-
sidered. Music transcription is a very difficult problem from
both musical and computational points of view: although
there has been much research devoted to it, it still remains
an unsolved problem.

Given that Cartesian Genetic Programming (CGP) has
already demonstrated its capabilities for synthesizing com-
plex functions capable of extracting main features from
images and performing image segmentation [1], we wanted
to see its capabilities, when applied to audio processing,
specially on Pitch Estimation. To tackle the problem of Pitch
Estimation by using CGP, and future problems related to
audio signal processing, we created the CGP-AP toolbox for
Matlab. CGP-AP stands for Cartesian Gentic Programming
for Audio Signal Processing. Then, by using this toolbox,
we created a CGP System to synthesize mathematical ex-
pressions which act as classifiers capable of identifying the
Pitch of all piano keys.

The rest of this section explains the related work. Section
2 presents the Cartesian Genetic Programming features,
Section 3 explains our approach, on Section 4 we show our
experiments and results and finally on section 5 we present
our conclusions and future work.

1.1. Related Work

Over the years, there has been a lot of research on Pitch
Estimation. However, to the best of our knowledge, there are
no Cartesian Genetic Programming approaches for address-
ing this problem. Yeh et al. [2] proposed an algorithm based
on the short-time Fourier transform (STFT) representation,
by applying an adaptive noise level estimation algorithm
and an harmonic matching technique. Klapuri [3], proposed
an iterative approach algorithm, based on harmonicity and
spectral smoothness. Reis et al. [4], used a genetic algorithm
approach which relies on an adaptive spectral envelope
modeling and dynamic noise level estimation. Marolt [5],
presented a connectionist approach where he uses a partial
tracking technique, based on an auditory model, which
converts the acoustic signal into time-frequency space, and
uses adaptive oscillators to detect periodicities in the output
of the auditory model. Benetos and Weyde [6], based on
probabilistic latent component analysis and supporting the
use of sound state spectral templates, proposed an efficient,
general-purpose model for multiple instrument polyphonic
music transcription.

2. Cartesian Genetic Programming

Cartesian Genetic Programming is an increasingly pop-
ular and efficient form of Genetic Programming [7], [8]
proposed by Julian Miller in 2000 [9]. In its classic form, it
uses a very simple integer based genetic representation of a
program in the form of a directed graph.

The genotype is a list of integers (and possibly real
parameters) that represent the program primitives and how
they are connected together (see Fig. 1). The programs
are represented as graphs in which there are non-coding
genes. The genes are addresses in data (connection genes),
addresses in a look up table of functions and additional
parameters. This representation is very simple, flexible and
convenient for many problems. In the Figure 1 is shown the
general form of a CGP graph. Usually, all functions have
as many inputs as the maximum function arity and unused
connections are ignored.



Figure 1. CGP general form. It is a grid of nodes whose functions are
chosen from a set of primitive functions.There are 2 inputs and 3 outputs.
The grid has nc = 3 (columns) and nr = 2 (rows).

CGP is Cartesian because it considers a grid of nodes
that are addressed in a Cartesian coordinate system. Each
CGP graph node may contain additional genes for encoding
additional parameters that might be necessary for specific
functions (eg.: a threshold value). The CGP uses individuals
as possible problem solutions, a set of individuals is usually
called population, to evaluate the quality of an individual or
solution a fitness function is used, with this simple process
all the solutions are evaluated quantitatively and the best
solution is found. Each problem iteration or generation con-
tains a set of possible solutions, population. The e population
changes each generation pursuing the best problem solution.

Algorithm 1 General CGP Algorithm
1: Generate initial population at random (subject to constraints)
2: while stopping criterion not reached do
3: Evaluate fitness of genotypes in population
4: Promote fittest genotype to new population
5: Fill remaining places in the population with mutated ver-

sions of the fittest
6: end while

The CGP algorithm shown in Algorithm 1, begins with
the generation of the initial population, then it uses a fitness
function to evaluate the individuals of the population. The
evolutionary strategy chooses the fittest one (best individual)
and promote it directly the next generation. The remaining
places in the population are mutated versions of the fittest
individual. The algorithm stops when the stopping criterion
is reached.

3. CGP approach to Pitch Estimation

The CGP general form is a grid of nodes whose func-
tions are chosen from a set of primitive functions. The grid
has nc (columns) and nr (rows), the idea is illustrated in
Figure 1. Depending on nr, nc and levels-back a wide
range of graphs can be generated, when nr = 1 and
levels-back = nc, arbitrary directed graphs can be created
with a maximum depth. In general choosing these param-
eters imposes the least constraints, so without specialist
knowledge this is the best and most general choice. [10].
In our particular CGP approach, we have multiple inputs,

5 2 3

4Node

Genotype 3 1 4

5

1 1 3

6

5

Output

Figure 2. CGP graph with multiple inputs, one row, one output and its
resulting genotype.

Figure 3. System architecture

only one row of graph nodes, one output (the result of the
corresponding classifier), and levels-back = nc as depicted
in Fig. 2.The resulting graph and genotype codification is
also shown.

To perform the pitch detection using CGP, we developed
a system where some important decisions and tasks were
made besides the CGP. We defined what kind of inputs we
used from the original piano audio signal, through a prepro-
cessing task. We also had to develop a process to reach a
binary output in order to perform our fitness function. The
block diagram of our proposed system is much more than a
simple CGP process and is depicted in Fig. 3. Each step of
this system is described carefully throughout this section.

3.1. Preprocessig

The first task of the proposed system is the Preprocess-
ing. For this, we used the piano samples (audio signals)
from the MAPS database [11]. This is a huge dataset with
multiple piano melodies in wave format. The piano sound
signals are vectors in time with a sample rate of 44.100
samples per second.

For the preprocessing task, we split each piano sound
signal into frames of 4096 samples width, corresponding
to 96 milliseconds. To accomplish a good base for signal
processing common tasks we transform the domain signals
from the time domain to the frequency domain, using the
Discrete Fourier Transform (DFT), shown in Equation 1. In
order to do so, each frame is windowed (see Equation 2)
using an hanning window (see Equation 3) to avoid spectral
leakage. Then, the DFT is applied, obtaining signal frames
in frequency domain.
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Figure 4. Preprocessing process: (a) input time signal piano note, (b)
Hanning window, (c) resulting windowed signal, (d) frequency domain
signal

X[k] =

N−1∑

n=0

xw[n]e
−j( 2π

N )nk, (k = 0, 1, ..., N − 1). (1)

xw[n] = w[n].x[n]. (2)

w[n] = 0.5

(
1− cos

(
2πn

N − 1

))
. (3)

Typically, the DFT is computed using the Fast Fourier
Transform algorithm (FFT), because it is faster, the differ-
ence in speed can be enormous. The resulting frequency
domain signal used in our system is obtained using the
Equation 1 where xw[n] is the time signal windowed and
N is the number of samples in the vector. Recall that any
signal cannot be uniquely represented for frequencies above
fs
2 (also known as the Nyquist frequency) where fs is the

sampling frequency of the sequence (also known as the
Nyquist frequency). Above fs

2 all signal energy is reflected
back into the frequency range − fs2 . Between fs

2 and fs,
the reflection is in reverse order which gives rise to a DFT
frequency domain period [0; fs].

Due to the DFT spectrum properties, the symmetry of
the real part and the antisymmetry of the imaginary part
relative to Nyquist frequency fs

2 , we may only use half
of the resulting signal of the DFT, so only the first 2048
frequency bins were considered. The preprocessing process
is illustrated in Fig. 4, from the input time signal of a piano
note to generated CGP input in frequency domain.

3.2. Individual Encoding

Evolutionary Algorithms encode each possible solution
(individual) to the problem as a set of genes. During the

Figure 5. Node Genes(5): inputs, code function and real parameters

evolutionary process, the genes of each individual or pos-
sible solution to the problem are mutated, and possibly
recombined, to create better and fitter individuals. At the
end of each iteration (generation) all the individuals are
evaluated and, according to their quality (fitness value) as
a solution for the problem, some pass to next generation
and some are discarded. Therefore, the individuals encoding
plays a major role on achieving good results and high speed
computing.

In general, when working with CGP, the genotype is
composed by input nodes, function nodes and the output
node. Our proposed algorithm contains 4 input nodes and
one single output node. We used a single row CGP con-
figuration with 100 function nodes. Each function node
contains 5 genes (see Fig.5): two inputs, corresponding to
the maximum function arity (the number of arguments or
operands that the function takes), one integer corresponding
to the function used from the function set and two function
parameters. All function nodes return a vector. However,
since our system is a classifier, the final output it must
return a binary value. In order to transform the output vector
into a binary value, our system uses a threshold after a
comparison between the output and a base signal. This base
signal is a triangular signal centered on frequency bin of the
corresponding Fundamental Frequency of the note classifier.
This threshold function has a constraint to ensure it is the
last function before the binary output. This threshold is also
evolved: the parameter θ mutates from an initial configurable
value with an also configurable mutation probability.

3.2.1. Inputs. The algorithm inputs are obtained from the
preprocessing system (see Subsection 3.1). Each piano sam-
ple is split into time frames and transformed into frequency
domain using a DFT. By doing so, we get frames with 2048
samples with complex domain numbers, each one represent-
ing a time frame of a piano sample note with 96 milliseconds
duration. From this vector X[k] in frequency domain we
may use two different representations of a complex number,
Cartesian and polar:

1) <{X[k]}
2) ={X[k]}
3) ]{X[k]}
4) ||X[k]||
We have a couple of vectors each one with 2 compo-

nents, making 4 usable inputs. By having redundant infor-



mation, regarding the 4 inputs, we ensure the CGP system
has a variety of representations of the same data, so it can
be able to choose the one which best fits the problem.

3.2.2. Function set. As depicted Figure 5, each function
node has a gene that indicates which function of the function
set should be used on that node. Table 1 shows our current
function set or lookup table. Note that all the functions are
prepared to receive one or two vectors and all of them return
a vector, the maximum function arity is 2.

TABLE 1. FUNCTION SET LOOKUP TABLE

Index Function Description

1 SPAbs Absolute value
2 SPBPGaussFilter band pass Gaussian filter
3 SPConvolution Convolution
4 SPCos Cosine
5 SPDivide poit to point Division
6 SPFFT Absolute value of the DFT
7 SPGaussfilter Gaussian filter
8 SPHighPassFilter high pass filter
9 SPIFFT Absolute value of Inverst DFT
10 SPLog Natural logarithm
11 SPLog10 Common logarithm
12 SPLowPassFilter low pass filter
13 SPMedFilter Median filter
14 SPMod Remainder after division
15 SPMulConst Multiplication by constant
16 SPNormalizeMax Normalization maximum
17 SPNormalizeSum Normalization sum
18 SPPeaks Find peaks
19 SPSin Sine
20 SPSubtract Subtraction
21 SPSum Sum
22 SPSumConst Sum with a constant
23 SPThreshold tresholding
24 SPTimes Multiplication

Our function set is basically composed by filtering
operations on vectors and by arithmetic operations with
constants and vectors. Each function may also have one or
two real parameters that are encoded as parameter genes,
these parameters also evolve during the training process.

3.2.3. Function parameters. As previously mentioned, the
functions of the instruction set may have up to two parame-
ters. In fact, most functions need real parameters to perform
their tasks. In order to evolve those parameters as well, we
encoded them in genotype as genes, so they can also mutate.
We used 2 real parameters for each function node. This way,
each function has its particular parameters with a particular
meaning. Each parameter r1, r2 of each function has its own
range. Those intervals are normalized into [0, 1]: all intervals
are transformed from [a, b] to a normalized one [0, 1]. By
using this technique, the actual value of any parameter can
bee seen as number between 0 and 1 or a percentage of the
interval.

3.3. Mutation

In Cartesian Genetic Programming, mutation plays a
major role on the evolution of the algorithm. Here, each
gene might be subject to mutation according to a config-
urable parameter: the mutation probability. This parameter
represents the probability of each gene to be mutated. For
instance, p = 0.01 means that each gene will mutate with a
1% probability. In our case, different mutation processes are
used according to the gene type and domain: if a function
gene happens to be mutated, then a valid value must be
chosen for selecting a new function in the function set
lookup table; if a mutation occurs in a gene node input,
then a valid value is the output of any previous node in the
genotype or any system input; the valid values for the system
output genes are the output of any node in the genotype or
the address of a system input. All these mutations happen
according to the uniform probability distribution function
for integers. Two additional genes can also mutate: the real
parameters used by the functions of the function set. These
are important parameters used by those functions to perform
specific tasks. According to each function, each parameter
has a specific meaning and also has its own domain range
where it can variate. In this case, we take any value in
the normalized interval [0, 1] and transform it into the real
interval [a, b]. The mutation of the real genes (function
parameters) is done using the normal distribution in order
to address the entire range:

f(x) =
e−(x−µ)2/(2σ2)

σ
√
2π

, (4)

where f(x) represents the density function of x variable,
with a normal distribution. This function is also represented
as N(µ, σ), where µ is the mean and σ is the standard
deviation. To perform the mutation of a function parameter,
rold, we generate a new random rmutate using the normal
distribution N(µ = rold, σ), with σ being configurable in
our system. This way, we ensure that when a mutation
occurs in a real parameter, all the parameter interval is
reachable, but with higher probability to mutate to closer
values.

As previously described in Section 3.2, the output of the
system is obtained by using a threshold value in order to
have a binary output. This threshold mutates independently
from the genotype genes, with a different configurable prob-
ability.

3.4. Evolutionary Strategy

Our evolutionary strategy is a variant of a simple evolu-
tionary algorithm known as 1+λ [12], which is widely used
for CGP: the new offspring is obtained promoting the fittest
individual and generate λ new individuals trough mutation.
Also, an offspring can replace a parent when it has the
same fitness as its parent and there is no other population
member with a better fitness (see Algorithm 2). According
to Goldman [13], an empirical value for λ is 4.



Algorithm 2 Algorithm ((µ+ λ)EA)

1: t← 0;
2: Initialize P0 with µ individuals chosen uniformly at random;
3: while a stop condition is fulfilled. do
4: for i = 1 to λ do
5: choose xi ∈ Pt uniformly at random;
6: mutate each gene xi with probability p;
7: end for
8: Create the new population Pt+1 by choosing the best µ

individuals out of Pt ∪ {x1, . . . , xλ};
9: t← t+ 1;

10: end while

During the evolutionary process, there is a reasonable
percentage of inactive genes. Such inactive genes have a
neutral effect on the genotype fitness [14]. However, the
influence of neutrality in CGP has been investigated in detail
by Vassilev and Miller [15] and was shown shown to be
extremely beneficial to the efficiency of the evolutionary
process. For better computing performance, we also took in
account the similarity between individuals: when an indi-
vidual has the same active genes than the offspring parent,
there is no need to compute its fitness.

3.5. Fitness Function

The main goal of the proposed system is to evolve a
classifier for each piano note. The output of each classifier is
binary: when the corresponding note is detected the output
is 1, otherwise is 0. During the evolutionary process, we
used as inputs an amount of piano samples with the desired
pitch (fundamental frequency) and the same amount of piano
samples with different pitches. Thus, for each classifier, we
used 50 true positive piano samples and 50 piano samples
with different pitches. During the evolutionary process, the
evaluation of each individual (classifier) is done using F-
measure, eq. (5)

Fmeasure = 2× recall × precision
recall + precision

, (5)

where:

precision =
tp

tp+ fp
, recall =

tp

tp+ fn
. (6)

One of our system peculiar characteristics is the bina-
ritazion process, since the CGP output is a signal vector
processed and filtered. In order to accomplish a binary
output, where 1 means the presence of the corresponding
pitch in the analyzed frame and 0 means the opposite, we
used a comparison process between the CGP ouput vector
normalized in amplitude OCGP (n) and a base signal with
the frequency corresponding to the pitch of the estimator,
BF0(n). The first step is the normalization of the output
vector in amplitude, this way all the elements of the vector
are between 0 and 1. The base signal is obtained with a
triangular mask on frequency domain around the F0 of the
estimator. We used a triangular mask with 3 configurable

points in both in size and amplitude. We then generate the
following scalar:

x =

N∑

n=0

OCGP (n) ∗BF0(n), (7)

where x measures the interception between the two discrete
time signals. If we approximate these signals to continuous
time we could see x as the intersected area between the two
signals. Finally, we used a threshold function to accomplish
the binary result:

T (x) =

{
1, if x > θ

0, if x <= θ
, (8)

where θ is the threshold value. Since both signals are
normalized the max value for x is:

x =

N∑

n=0

BF0(n). (9)
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Figure 6. (a) CGP output signal, (b) base triangular signal (c) computing
intersection for threshold.

All the fitness process including the sum and the thresh-
olding is illustrated in Fig. 6 with tree graphs.

4. Experiments and Results

Since this is our first approach to the problem of Pitch
Estimation of piano notes using Cartesian Genetic Program-
ming, our main goal is to show the applicability of CGP
on this problem. We evolved one classifier for each piano
note. Each piano key is represented by the corresponding
MIDI note number, being 60 the MIDI note number cor-
responding to the C4 musical note (the middle C). The
piano sounds used for training and testing are those from



the MAPS database [11]. Table 2 shows the values of the
configurable parameters for our system. The evolutionary
process consisted of 30 runs with 5000 generations each,
using 50 positive and 50 negative cases. The classifiers were
evaluated using F-measure (Equation 5).

TABLE 2. EXPERIMENTS PARAMETERS

Parameter Value

Frame Size 4096
Fitness Threshold 0.5
Positive Test Cases 50
Negative Test Cases 50
Outputs 1
Rows 1
Columns 100
Levels Back 100
Population Size 4
Mutation Probability 5%
Runs 30
Generations 5000
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Figure 7. Classifier 60 fitness values for 30 runs using F-measure

Figure 7 shows the individual results of each run (i.e.
evolved pitch estimator) for classifying the note 60. The
best generated classifier was chosen as the pitch estimator
for note 60. Figure 8 depicts the resulting program of this
classifier. It shows the functions used in each node as well as
the inputs of each node. For instance: the node 101 contains
the Gaussian filter function and the function arguments
(inputs) are the outputs of the nodes 36 and 87. The resulting
program is a set of mathematical functions over vectors -
our phenotype.

After the training process, each classifier was tested with
a different test set. Each test set consisted in 144 negative
notes (48 × 3) and 5 positive notes, comprising a total of
149 piano sound samples. Table 3 shows our results. As a
first approach, these results are very encouraging, since for
almost notes we achieved a classifier with F-Measure values
greater than 70%.

For comparing our results with other techniques and al-
gorithms we generated the graph depicted in Figure 9, where

Node 1 = input (1)
Node 2 = input (2)
Node 3 = input (3)
Node 4 = input (4)
Node 5 = SPConvolution ( 1 , 1 ) 
Node 6 = SPFFT ( 1 , 4 )  
Node 7 = SPConvolution ( 4 , 4 )  
Node 8 = SPTimes ( 5 , 7 )  
Node 10 = SPSum ( 2 , 1 )  
Node 11 = SPIFFT ( 10 , 4 )  
Node 12 = SPPeaks ( 8 , 11 )  
Node 13 = SPPeaks ( 11 , 10 )  
Node 14 = SPSum ( 3 , 10 )  
Node 15 = SPSubtract ( 1 , 13 )  
Node 16 = SPAbs ( 13 , 12 )  
Node 17 = SPLog10 ( 16 , 10 ) 
Node 18 = SPThreshold ( 5 , 16 )  
Node 19 = SPCos ( 17 , 18 )  
Node 20 = SPLog ( 8 , 2 )  
Node 23 = SPNormalizeSum ( 6 , 14 )  
Node 24 = SPAbs ( 13 , 13 )  
Node 33 = SPDivide ( 12 , 23 )  
Node 36 = SPHighPassFilter ( 19 , 20 )  
Node 87 = SPSum ( 15 , 33 )  
Node 101 = SPGaussfilter ( 36 , 87 )  
Node 104 = SPIFFT ( 24 , 101 )

Figure 8. Evolved classifier code for pitch 60

TABLE 3. TEST RESULTS FOR 19 CLASSIFIERS

classifier tp tn fp fn f-measure

48 5 135 9 0 0.53
50 5 140 4 0 0.71
52 5 138 6 0 0.63
53 5 142 2 0 0.83
55 5 138 6 0 0.63
57 5 139 5 0 0.67
60 5 142 2 0 0.83
61 4 142 2 1 0.73
62 4 144 0 1 0.88
63 4 144 0 1 0.88
64 5 138 6 0 0.63
65 5 141 3 0 0.77
66 5 139 5 0 0.67
67 5 141 3 0 0.77
68 5 141 3 0 0.77
69 5 141 3 0 0.77
70 5 142 2 0 0.83
71 5 142 2 0 0.83
72 5 142 2 0 0.83

besides F-mesure we can see the error rate in percentage for
the data-set test with 96ms frames. According to Emiya [16]
the three main monophonic pitch estimatiors are: Parametric
F0 estimator, the Nonparametric F0 estimator and the YIN
estimator [17] and those estimators have mean error rates of
2.4%, 3.0% and 11.0% respectively. Our Cartesian Genetic
Programing approach to F0 estimation reaches the mean
error rate of 2.5%, a very encouraging result.

5. Conclusions and Future Work

With our work and experiments, we have shown the
feasibility of the proposed approach. The results are encour-
aging and it can bee considered a good starting point. The
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results accomplished with the CGP technique are in line
or even better than the most popular algorithms for pitch
recognition on piano notes.

Planning ahead, we aim to test and tune all the CGP
parameters in order to obtain even better results. We are
also considering taking into account additional inputs for
our system, such as the generated Cepstrum of each audio
frame. Another important aspect that we are planning to take
into account is the use of the harmonic information during
the comparison process.
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