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Abstract 

 

Recent advancements in the area of nanotechnology have brought us into a new age of pervasive 

computing devices. These computing devices grow ever smaller and are being used in ways which 

were unimaginable before. Recent interest in developing a precise indoor positioning system, as 

opposed to existing outdoor systems, has given way to much research heading into the area. The 

use of these small computing devices offers many conveniences for usage in indoor positioning 

systems. This thesis will deal with using small computing devices Raspberry Pi’s to enable and 

improve position estimation of mobile devices within closed spaces. The newly patented 

Orthogonal Perfect DFT Golay coding sequences will be used inside this scenario, and their 

positioning properties will be tested. After that, testing and comparisons with other coding 

sequences will be done. 
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Introduction 

 

Looking at the world in which we live in, there is no denial that technology makes a big part of our 

everyday lives. Wherever we go, whatever we do, technology follows us and helps us on the way. 

Computers (big and small) make a big part of this technology. Computing has been constantly 

evolving since the arrival of the first personal computers (PC’s) [1]. To this day, computing has 

gone through a number of revolutions to get to the point in which it is now. 

 

The first revolution in computing happened with the emergence of distributed systems [2]. 

Distributed systems imply a collection of (static) computers, which are interconnected and work to 

achieve a certain purpose, as can be seen in Figure 1. These systems transformed the way we work. 

By implementing distributed systems of computers into the workplace, classrooms and other 

places, many of the tasks done before started being automated, thus making them easier to do by 

introducing fault-tolerance. Distributed systems also provided us with remote access to 

information, remote communication between computers, distributed security and high availability. 

 

 

Figure 1: Transition to distributed systems 
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The second revolution in computing arrived in the form of mobile computing [3]. Mobile 

computing was built on the current distributed systems, and brought many improvements that 

transformed the computing space. It allowed for networking and information access on the go, 

which is the main feature in today’s workspaces and homes (Figure 2). It also allowed for location 

sensitivity, application adaptiveness and energy awareness in computing systems. These 

improvements have transformed (and are still transforming) the way we work, live, play and learn. 

 

 

Figure 2: Mobile computing system 

While the mobile computing trend has taken a major swing in our lives, there is another trend in 

computing slowly approaching. A new revolution in computing is called pervasive computing, 

sometimes called ubiquitous computing [4]. This trend in computing takes computing to a whole 

other level.  

 

Pervasive computing has different goals in mind when compared to the distributed systems and 

mobile computing. The main goal of pervasive computing is to remove technology from the eyes 

of the user, while still enhancing the user’s life. The main distinction between pervasive systems 

and other systems is the fact that it is context-aware. 
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An example of pervasive computing are smart spaces (smart houses, smart streets). These spaces 

help the user with his everyday chores at home and elsewhere, while not providing him the details 

of how they do it. They take input from our environment, and adjust certain parameters of our 

environment dynamically and autonomously. One example of such action would be adjusting the 

air conditioning temperature inside closed spaces depending on the temperature outside the space, 

so that is never exceeds the difference of 7 degrees Celsius and never drops under the standard 

room temperature. This makes the user unaware of how the actual system works. It just works, and 

the user always expects the optimal temperature without his intervention.  

 

 

Figure 3: Smart home 

In Figure 3 you can see an example of how a smart home would function. A smart home serves as 

a great example of a pervasive system. After being woken up by an alarm clock (depending on 

your online calendar) your breakfast starts getting ready and your coffee is being prepared as you 

get out of bed. After getting out of bed you sit at the table and eat your breakfast and drink your 

coffee. The water in your shower starts to warm up, and your washing machine sends you a 

notification to your phone that the laundry you left to wash during the night is finished. After taking 

a shower, you get dressed and start walking towards the car. As you exit the house, your refrigerator 
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sends you a message, telling you that your milk has expired and that you should buy more when 

returning home. As you approach the car, the car unlocks itself. Sensing that the temperature 

outside is low, the car starts the engine a few minutes earlier to warm it up, to avoid the possibility 

of you being late for work. You sit in your car and the car autonomously drives you to work, taking 

the most optimal road with the least traffic. 

 

Besides the example above, pervasive computing encompasses a huge number of different 

computing devices, serving many purposes, and has a huge potential in improving life standard, 

automating mundane tasks, improving business analytics, improving traffic safety, and many other 

areas. That is one of the reasons why lots of research and development has been going on in this 

area in recent years. 

 

Here, we will focus on a specific part of pervasive systems, called the Indoor Positioning System 

(IPS). 

 

Indoor positioning systems are able to estimate the location of entities inside closed spaces. Many 

types of positioning systems depend, to varying degrees, on line-of-sight (LOS) between 

transmitters and receivers, as does the conventional well-known Global Positioning System (GPS). 

These systems allow for accurate outdoor location estimation approximately around 3 meters (best 

case scenario), dependent on the GPS system, propagation errors, signal multipath, receiver clock 

errors, GPS satellite orbit errors, number of satellites in LOS, satellite position geometry and the 

variation in atmospheric conditions. These are computed in terms of GPS dilution of precision 

(DOP).  

 

Indoor, underground and heavy woods environments (among others) are not suitable for GPS as 

only minimal and/or partial LOS can be achieved causing lack of coverage and insufficient 

accuracy in estimation. Additionally, for a positioning system to be usable indoors, the error of 

estimation has to be lowered from meters to centimeters, as the estimation error in meters would 

often fail to estimate the correct location of an entity or object.   
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This thesis will deal with researching into the topic of indoor positioning systems [5]. The 

methodology of implementing an IPS will be explained. All of the related technologies and 

methods will be explained in detail, and the purpose of these will be shown. After that, a model of 

the IPS will be created and shown. Testing scenarios will be set up, tests performed and results 

displayed.  

 

This work was based on my research published in the following publications: 

 M. Ferreira, J. Bagarić, Jose M. Lanza-Gutierrez, S. Priem-Mendes, J. S. Pereira, 

Juan A. Gomez-Pulido, On the Use of Perfect Sequences and Genetic Algorithms 

for Estimating the Indoor Location of Wireless Sensors, International Journal of 

Distributed Sensor Networks, April 22, 2015 [6] 

 J. Bagarić, M. Ferreira, J. S. Pereira, S. Priem-Mendes, Estimating Indoor Location 

Using Wireless Communication Between Sensors, ConfTele 2015, Conference on 

Telecommunications - Aveiro, Portugal, September 18, 2015 [7] 

 J. Bagarić, J. S. Pereira, S. Priem-Mendes, Standing Wave Cancellation – Wireless 

Transmitter, Receiver, System and Respective Method, Submitted patent, 

Portuguese Patent #109137 [8] 
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Bibliography review 

 

1.1. State of the art 

With the current pace of technological advancements, the need of an NLOS positioning system 

grows ever larger. The omnipresence of small and powerful computer and processing units has 

given way to practical uses of NLOS positioning systems, mainly focusing on indoor scenarios. 

Taking into consideration the well-known example of the GPS [9], we can display the amount of 

factors that are being taken into consideration in order to estimate the location of the receiver. Some 

of these factors include propagation errors, which occur when the signal propagates through the 

troposphere, and signal multipath, which occurs when the signal is reflected from different entities, 

resulting in a delay due to the extra time it takes to get to the receiver. Other factors include 

mismatches in clock between satellites and the receivers, deviations in the satellite orbit, number 

of satellites visible, etc. While the errors in indoor positioning systems are also influenced by some 

of these factors, there are also a number of additional factors that have to be taken into account 

when building an IPS. 

 

Indoor position of a receiver can be calculated in a multitude of ways. A popular method of 

calculating the indoor position is to use some of the wireless technologies available today. Many 

of the systems try to use existing (or new) Wi-Fi access points to create a Wi-Fi Positioning System 

(WPS) by measuring the received signal strength (RSS) for each of the available access points, and 

then calculating the position accordingly. The problem with WPS is its lack of precision due to the 

possible signal fluctuations that may occur, increasing errors and inaccuracies.  

 

Another way to calculate the position would be to use compass chips to determine magnetic 

positioning. By sensing and recording the local magnetic variations caused by the iron in the 

buildings, a compass (e.g. inside a regular smartphone) would be able to map the indoor location 
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with the accuracy of 1-2 meters. While the error margin of this method is considered to be low, it 

still does not yield results that are accurate enough to be useful in purposes where centimeters make 

a difference. 

 

Bluetooth [10] is another example using wireless communication, however it is known to be an 

indoor proximity solution, not an indoor positioning solution. It is mostly used for geo-fencing and 

micro-fencing. 

 

Radio frequency identification (RFID) [11] can also be used for indoor positioning but, despite 

its cost–effectiveness, it does not support any metrics. Visible light communication (VLC) also 

grants some positioning properties, where indoor lighting can be used as a transmitter of 

information, and a smartphone camera can be used to detect changes in light to determine its 

location based on the source that emits it. This method can yield accuracies up to decimeters, but 

suffers of sporadic detection points. Tango Google Project is one of such VCL examples. 

 

Ultra-wideband (UWB) [12] can also be a viable solution for positioning purposes, as it provides 

location accuracy up to 10 cm. UWB uses brief bursts of radio energy, akin to some radars, and 

then measures the time it takes for the signal to reach the other receivers. This avoids the multipath 

problems due to the brevity of the radio wave. While this gives accurate results, the problem is that 

UWB waves get blocked very easily, around 40 percent of the time. 

 

Using ultrasound for indoor positioning has also received quite a bit of attention, due to the high 

accuracy of its slow-moving waves. Ultrasound can be used to track and identify the location of 

objects using inexpensive tags embedded into devices which provide ultrasound sensors with their 

location. The shortcoming of this technology is its short range, which makes it impractical in many 

situations, despite its high accuracy and robustness when compared to radio technologies, where 

the waves can pass through the walls more easily than ultrasounds.  
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 Research 

In this section we investigate the different approaches that are currently being researched. 

1.1.1.1. Ultrasonic positioning systems 

A number of ongoing researches have been dealing with ultrasound as a media for indoor 

positioning.  

 

Indoor Positioning for Smartphones Using Asynchronous Ultrasound Trilateration [13] proposes 

a system that uses regular commercial off-the-shelf (COTS) hardware such as smartphones to 

determine the indoor position of the user. In their research, they have proven that a very short 21.5 

kHz ultrasound “beep” emitted from a smartphone and received by four receivers in the corners of 

the room can lead to errors lower than 1 meter (averaging around 10 cm in their research). The 

receivers use a TDOA (Time-Difference-of-Arrival) or the asynchronous approach to determine 

the distance of each receiver and the smartphone. While this approach, so called Ultrasound 

trilateration, seems promising, the directional nature of ultrasound, it’s susceptibility to certain high 

frequency background noises, and the need for line-of-sight between speaker and receiver were 

identified as the biggest obstacles to positioning accuracy. 

1.1.1.2. Wi-Fi 

In order to mitigate many of the problems in Wi-Fi positioning, WLocator: An Indoor Positioning 

System [14] introduces a few improvements to the IPS system. Dealing with fluctuation, fingerprint 

management and location-aware application development are some of the principles and 

algorithms introduced, along with performance changes and lightweight software. This system is 

expanded in WHLocator: Hybrid Indoor Positioning System [15] by combining the WiFi 

positioning with altimeter and image sensors, and results in higher accuracies in 3D scenarios. 

By implementing the transmission of multiple predefined messages WiFi-based indoor positioning 

[16] maintains the high-accuracy of other Wi-Fi based IPS, while at the same time reducing the 

need for a large number of antennas and relaxing the need for wide signal bandwidth. Their 

simulation results show that this approach can achieve 1 m accuracy, boasting no hardware changes 

in commercial WiFi products. 
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Researchers at MIT’s Computer Science and Artificial Intelligence lab have managed to achieve 

decimeter-level IPS accuracy with their novel Chronos [17] technology. This technology works 

with a single access point and off-the-shelf Wi-Fi cards, and uses time-of-arrival calculation 

between a receiver and transmitter to localize them.  It does so by making the receiver and 

transmitter to hop between all 35 frequency bands in the 2.4 GHz to 5.8 GHz range. This changes 

the rate at which signals accumulate phase for each of the frequencies, which is then used by 

Chronos to calculate the time-of-arrival of signals and estimate the distance. Some tests have 

managed to localize devices to within 65 centimeters.  

1.1.1.3. Visible Light Communication 

An Indoor Visible Light Communication Positioning System Using a RF Carrier Allocation 

Technique [18] proposes an indoor positioning system that adopts Visible Light Communication 

(VLC) that is based on the intensity modulation and direct detection (IM/DD) in a line-of-sight 

environment. They investigated this principle by simulations and experiments and found that, 

although it was inaccurate when estimating distance based on the effects of radiation directivity 

and the incidence angle, the positioning error would be reduced when the adjustment process by 

normalizing method is used. Their results show that the average error of estimated positions can be 

reduced to 2.4 cm using, which is compared with 141.1 cm without the adjustment process. 

 

On the other hand, Indoor Positioning System Using Visible Light and Accelerometer [19] proposes 

a different approach to VLC, by complementing the IPS system with the results of the smartphone’s 

accelerometer. The system uses the accelerometer to detect the orientation of the device, and uses 

the light sensor to detect the received light intensity. Their low-complexity algorithm requires no 

knowledge of the LED transmitters’ physical parameters, and their tests show it is possible to 

achieve an average position error of less than 0.25 m. 

1.1.1.4. Radio Frequency Identification 

A Standalone RFID Indoor Positioning System Using Passive Tags [20] suggests an indoor 

positioning system based on RFID. This kind of IPS system proposes that small RFID tags are set 

up around the space. As the user moves through the space, the receiver object would pick up the 
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signals from these tags, and determine its location based on the signal provided by these RFID tags. 

Development of an Indoor Navigation System Using NFC Technology [21] proposes a similar 

solution, but uses Near-Field Communication (NFC) [22], a branch of High Frequency (HF) RFID. 

1.1.1.5. Geomagnetism 

Indoor positioning system using geomagnetic anomalies for smartphones [23] proposes a novel 

technique that makes use of the perturbations of the geomagnetic field caused by structural steel 

elements in a building. The advantage of this system is that it does not require any sort of physical 

infrastructure, which makes it a very cost-effective solution. After a building has been mapped, 

and its magnetic footprint recorded, a target’s position could be estimated by comparing the sensor 

measurement of a device (e.g. smartphone) to the measurements on the magnetic footprint of the 

building. Their results show that the accuracy of such a system is within 3 meters. 

1.1.1.6. Hybrid 

Instead of building an IPS system using a single technology, some IPS systems combine more 

technologies that complement each other and improve the accuracy.  

 

Hybrid Indoor Positioning with Wi-Fi and Bluetooth: Architecture and Performance [24] does just 

that. In their scenario, a Wi-Fi based position estimation method is used, and is enhanced by using 

Bluetooth hotspot devices. The Bluetooth devices help the Wi-Fi IPS by partitioning the indoor 

space using the divide-and-conquer method. 

 

Redpin - Adaptive, Zero-Configuration Indoor Localization through User Collaboration [25] 

describes an open source indoor positioning system that was developed with an aim to allow for at 

least room-level accuracy. Additionally, it introduces an alternative to time-consuming training 

phases by incorporating a system that enables the users to train the IPS system as they use it. Redpin 

works with standard GSM, Wi-Fi or other wireless technologies that mobile phones implement. 
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 Commercial 

On the commercial side, there a few IPS systems available, some of which will be described in this 

section. 

1.1.2.1. Wifarer 

One example of a commercial IP system is Wifarer [26]. In order to enable indoor positioning 

inside a closed location, Wifarer needs to map the indoor space. It does so by scanning the 

fingerprint of Wi-Fi or Bluetooth LE (BLE) networks. It uses the signal strength of nearby 

networks, and maps it to a certain point inside the indoor space. Once the whole indoor space has 

been mapped, it enables indoor positioning and navigation. 

 

 

Figure 4: Wifarer [27] 

The error of the Wifarer system greatly depends on the amount of Wi-Fi and Bluetooth LE 

networks are present inside the indoor space, but for areas with dense Wi-Fi networks such as 

airports and bus stations, Wifarer’s CEO boasts an error as low as half a meter. The advantages 



37 

 

using Wifarer are that it can be installed on any smartphone that has a magnetometer/compass, and 

can be used straight away. 

1.1.2.2. IndoorAtlas 

Another contender in the commercial space is IndoorAtlas [28]. IndoorAtlas platform takes a more 

innovative approach to indoor positioning by using the magnetic footprint of buildings to map the 

indoor space. Same as with Wifarer, the advantage of IndoorAtlas is that it can be installed on any 

smartphone that has a magnetometer/compass, and can be used straight away. 

 

 

Figure 5: IndoorAtlas [29] 

The user installs the IndoorAtlas app, uploads a map of the indoor space to the application, and 

starts mapping the space. For the indoor positioning to take place, the user first has to map the 

space by walking around the building and capturing the magnetic footprint at a large amount of 

points inside the building. 

 

After the mapping is complete, the indoor positioning can take place. When off-the-shelf handsets 

are used, IndoorAtlas boasts an accuracy typically less than 3 meters.  
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1.1.2.3. Pozyx 

For indoor positioning developers, another hope arose when in 2015, a new campaign started on 

Kickstarter. Pozyx [30] was founded by a group of developers in Brussels, Belgium, and their aim 

was to use the existing Ultra-wideband technology to develop an accurate IPS system. 

 

 

Figure 6: Pozyx system elements 

The Pozyx system consists of four anchors (UWB transmitters) and a tag (UWB receiver). After 

the anchors are set up around the indoor scenario, the tag can be used to compute the indoor location 

of the device. Pozyx comes with an Arduino library and can be programmed to suit different 

purposes and can be embedded into different devices.  

1.1.2.4. ByteLight 

Developers at AcuityBrands [31] took on the approach of using Visible Light Communication to 

implement their indoor positioning system. They use the indoor positioning to allow the retailers 

to pinpoint certain objects to their clients, thereby custom-tailoring their shopping experience. 

 

https://www.kickstarter.com/projects/pozyx/pozyx-accurate-indoor-positioning-for-arduino/description
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Figure 7: ByteLight business model 

ByteLight uses the flickering of the light-emitting diodes (LEDs) to determine the location of the 

user, and uses that location to present them with special offers.  

1.1.2.5. Phillips’ LED-based IPS 

In 2015, in a Carrefour supermarket in Lille, France, Philips has implemented their IPS system, 

and this enabling for one of the first IPS-enabled supermarkets. 

 

Phillips bases their IPS on the existing VLC technologies. Every LED lamp that is a part of the IPS 

system emits a specific code, which is then registered by the user’s smartphone (with the 

corresponding smartphone app) and then used to calculate the indoor position. Phillips boasts a 

sub-meter accuracy with their IPS. 
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Figure 8: Carrefour smartphone app - uses Phillips' IPS 

1.1.2.6. Nextome 

Nextome [32] was formed by three young graduate students from Puglia, Italy. The decided to use 

the newly created Apple’s standard called iBeacon [33] to implement their IPS, combined with 

Bluetooth Low Energy (BLE). iBeacons would be used as BLE transmitters and set up around the 

indoor scenario. After that, a BLE 4.0 enabled smartphone (Android or iOS) would be used to 

detect its indoor position.  

 

Nextome use a new localization method, called MLV3. This method limits the “path fading” effect 

by removing signal interferences bouncing off walls, floors and other indoor objects. Additionally, 

they use Intelliwalk [34] technology to detect in which direction the user is moving, which requires 

the phone to have a gyroscope, a magnetometer, a compass and other (these days) standard phone 

sensors. Lastly, they use particle filtering (Sequential Montecarlo Filtering [35]) to on the map 

information, which removes the odds of user being positioned in an unreachable zone and saves 

the energy and battery of the smartphone. 
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 Methodology 

 

This section describes the related technologies used inside the IPS system, as well as the methods 

used to achieve results. 

 

There are a number of factors that need to be taken into account when building a quality IPS system. 

One of the key factors is radio signal and distance measurement method used inside the system. 

Different methods have been considered to solve for the positioning problem. According to [36], 

some of these include: 

 Received signal strength (RSS) method 

o Strength of the received signal between two node deteriorates with distance 

between them. 

 Angle-of-arrival (AOA) 

o Measuring the angle of arrival of a signal, from one node to another. 

 Time-of-arrival (TOA) 

o Calculating the distance between two nodes based on the time the signal 

spends travelling from one node to another. 

 Time-difference-of-arrival (TDOA) 

o Measuring the distance difference between an unknown node and two 

synchronized reference nodes. 

 

The application of such methods can be found in [36]. This method has to meet some of the criteria 

imposed by the usage of radio waves for determining the position. 

 

We combine the distance measurement method with a localization algorithm to implement the IPS. 

As seen in [37], some of the most common localization algorithms include: 

 Trilateration 
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o Process of determining a location of a point by using the geometry of circles 

and measurement of distances. 

 Triangulation 

o Process of determining a location of a point by using the geometry of circles 

and measurement of angles. 

 Fingerprinting 

o Creation of a database with the probability distribution of signal strengths 

in the scenario, and usage of a map of these distributions to locate a given 

RSS sample.  
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1.2. Received Signal Strength and Triangulation 

By examining the methods in Section 41, the method that was chosen for this scenario is the 

Received signal strength (RSS) method, combined with a modified triangulation localization 

algorithm.  

 

The scenario in which this IPS system would be used is usually a closed space, such as a building. 

Buildings have a considerable amount of walls surrounding the rooms, and the receiver should be 

able to detect its location regardless of these physical obstacles. For that reason, the RSS-based 

positioning method would be most suitable in this scenario. 

 

RSS-based positioning method enables us to avoid interferences. Indirect signals reach the antenna 

receiver with a lower signal strength than direct. We can, almost always, filter out these 

interferences by only accounting for the strongest (direct) signal. 
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1.3. Autocorrelation and Cross-correlation 

One of the major problems of wireless communication is multipath interference (MPI). 

Transmission media, such as wireless, can bounce off certain obstacles, taking multiple paths to 

reach the receiver. Delays created by these obstacles can cause interference in communication. 

Other interference include the multicarrier interference, inter-symbol interference and multiple 

access interference.  

 

The task of this IPS system is to improve accuracy above other IPS systems that use wireless 

communication. In indoor wireless communication, the use of code sequences that are resistant to 

multipath interferences is vital to achieve accuracy, due to a large number of obstacles present in 

the environment. In this thesis, the usage of perfect sequences [38] is proposed, whose correlation 

properties render them immune to multipath interferences, as opposed to the more commonly used 

coding sequences. 

 

In this section, autocorrelation and cross-correlation properties of coding sequences will be 

explained. 

 

Cross-correlation is defined as a measure of similarity between two series of data (signals, or 

waveforms) as a function of time-lag applied to one of them.  

 

Autocorrelation, on the other hand, is a cross-correlation of a signal with itself. In autocorrelation, 

there will be a peak at a lag of zero, and its size will be the signal power, as can be seen in Figure 

9. 
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Figure 9: Autocorrelation vs. Cross-correlation [39] 

A sequence x is a periodic sequence with a period M when, where x(n) = x(mod(n, M)) where 

mod(a, b) is the remainder of a divided by b. 

 

Let x[n] with n = 0, 1, 2, …, M – 1, be one of the M values of a periodic sequence x. The DFT 

(Discrete Fourier Transform) of x[n] is defined as 
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Equation 1: Discrete Fourier Transform (DFT) 

where WM = exp(-j2π/M), k = 0, 1, 2, …, M - 1, with j = 1  for convenience of notation. The 

IDFT (Inverse Discrete Fourier Transform) of X[k] is then given by 
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Equation 2: Inverse Discrete Fourier Transform (IDFT) 

Using Equation 1 and Equation 2 the periodic cross-correlation between two different sequences 

x(r) and x(s) is defined as 
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Equation 3: Periodic cross-correlation between two different sequences 

https://en.wikipedia.org/wiki/Autocorrelation
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Alternatively, it can be defined as 

   ( ) ( )
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r s

x x
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Equation 4: Periodic cross-correlation between two different sequences (alternate) 

where the superscript * denotes the complex conjugate. 

 

The autocorrelation of a periodic sequence can also be calculated using Equation 4, when r = s. 

 

When a periodic sequence has an autocorrelation of zero for any non-zero delay, the sequence is 

said to be a perfect sequence. Additionally, the two different sequences are called orthogonal if the 

cross-correlation between them is zero for a null delay.  
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1.4. Orthogonal Perfect DFT Golay coding sequences 

This section explains how the Orthogonal Perfect DFT Golay (OPDG) coding sequences were 

formed. 

 

Any sequence set with perfect [40] or near-perfect autocorrelation values, which is also orthogonal 

or near-orthogonal, is a good candidate to be used in asynchronous communication systems, such 

as DS-CDMA (Direct-Sequence Code-Division Multiple Access), or any other system where the 

signal reception may be contaminated by the multi-path problem. Another important property of 

the sequence set is the number of orthogonal sequences available. The Gold sequences [41] are a 

good example of a set of sequences having these properties, since they have excellent correlation 

properties while being possible to generate in large numbers. For instance, it is possible to create 

32 orthogonal Gold sequences [42] with a length of 32. However, sequences with low cross-

correlation values usually have high out-of-phase autocorrelation values. Likewise, low out-of-

phase autocorrelation values are usually achieved at the cost of higher cross-correlation values. A 

compromise between these properties must be carefully selected for usage on a CDMA-based 

communication system. 

 

Golay sequences [43] are bipolar complementary sequences. Additionally, the autocorrelation of a 

single sequence of a Golay pair is not zero with all non-null delays, for any length L = 2N. 

However, the sum of the out-of-phase autocorrelations of both sequences in the pair is zero. 

Therefore, Golay sequences are not perfect sequences. Nevertheless, they are interesting for their 

properties. A generic algorithm for Golay sequence generation was presented by Budisin [44] as 

follows 
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Equation 5: Generic algorithm for Golay sequence generation 
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where δ[k] is the unit pulse function that works as a trigger signal, an[k] and bn[k] are the Golay 

sequences, wn is a generation seed (either 1 or -1), and Dn is a delay (2n − 1 ). 

 

An example of a Golay complementary sequence of length 4 is the following pair: (+1,+1,+1,−1) 

and (+1,+1,−1,+1). The amplitude of a Golay sequence an[k] is a constant value given by   1kan
. 

 

It is well-known that any constant amplitude sequence, defined in the frequency domain, 

corresponds to a perfect sequence in the time domain [45].  

 

Applying an IDFT to Golay sequences creates two new polyphase perfect sequences, which are 
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Equation 6: Polyphase perfect sequences 

It should be noted that it is possible to find the IDFT of any sequence X using also a DFT, because 
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Equation 7: IDFT to DFT 

The same sequences can be achieved by a recursive algorithm as follows 
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Equation 8: Recursive algorithm 

where A is a constant signal or vector , WL = exp(-j2π/L), j = 1   and 0 < n ≤ N. The resulting 

sequences an and bn are the OPDG1 and OPDG2 as per Equation 6 scaled by A × L. They can be 

on the same scale as Equation 6 using A = 1/L, with L = 2N. 
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Several operations can be applied to the OPDG sequences to generate different sequences. One can 

create a real code by ignoring the imaginary part of the complex valued sequences and keeping 

only the real part (Re{OPDGx}). Likewise, one can ignore the real part of the sequence and keep 

only the imaginary part (Im{OPDGx}). One can also add the real part to the imaginary part 

(Re{OPDGx}+Im{OPDGx}). It is also possible to apply a sign function to any of the previous 

sequences. A sign function (Sgn(x)) returns −1 to negative inputs, and 1 to positive ones. Another 

possibility is to make a cyclic shift of the imaginary part of each code, prior to the sum, thus 

generating L − 1 new complex valued sequences. 

 

It is also possible to decode the original input value A, from Equation 8, back from the OPDG 

codes. A recursive decoding method can be used as follows 
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Equation 9: Recursive decoding method 

where 1 ≤ n ≤ N, an and bn are the OPDG1 and OPDG2 that resulted from Equation 8, and, as 

previously, WL = exp(-j2π/L). Notice that in Equation 9, n varies from N down to 1. From a0 and 

b0, a vector A’ can be created by 

     .' 00 kbkakA   

Equation 10: Vector A 

The resulting A’ is an interesting vector because it presents two different method decoding 

processes: 
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Equation 11: Decoding process - First method 

and 
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Equation 12: Decoding process - Second method 
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As seen in Equation 11, the real part of a DFT applied to A’ is proportional to a Dirac pulse delayed 

by 2N − 1. This property allows an enhanced detection process in spite of MPI. 
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1.5. Autocorrelation Crest Factor (ACCF) 

The novel OPDG [46] codes are derived from real orthogonal perfect DFT sequences. To be more 

precise, the first OPDG code is obtained by making the sum of the real and imaginary part of 

OPDG1. The second OPDG code is built using the addition of the real and imaginary part of 

OPDG2. These novel codes are real, orthogonal and perfect. As such, they should be optimum 

alternative codes to the ZigBee [47] codes, which are widely used in the mainstream.  

 

An autocorrelation crest factor [6] can be used as a parameter of autocorrelation efficiency. The 

autocorrelation crest factor ACCF is defined as a ratio of the maximum peak Apeak and the root 

mean square of the autocorrelation function Arms as: 

rms

peak

A

A
ACCF 

 

Equation 13: Autocorrelation Crest Factor (ACCF) 

When the autocorrelation is perfect, like a Dirac pulse, the ACCF of a periodic sequence of length 

L is equal to L . 

 

 

Figure 10: Normalized absolute periodic autocorrelation - ZigBee pseudorandom noise (PN) codes, with a 

resolution of 16 bits. 

A comparison between these two codes follows. Figure 10 shows the normalized periodic 

autocorrelation properties of the standard ZigBee codes with the code length of 32. The ACCF 

average is 7.77.  
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Figure 11: Normalized absolute periodic autocorrelation – OPDG codes, with a resolution of 16 bits. 

Figure 11 shows the normalized periodic autocorrelation properties of the OPDG codes with the 

length of 32. The ACCF average is 9.48.  Furthermore, by increasing the code length, 

autocorrelation properties (or ACCF) increase greatly. Increasing the code length of the OPDG 

codes results in a reduction of fluctuation in the normalized periodic autocorrelation function, as 

can be seen in Figure 12. This last ACCF average - 18.62 - is much higher. 

 

 

Figure 12: Normalized absolute periodic autocorrelation - OPDG codes with the code length of 128, with a 

resolution of 16 bits 

The ACCF enables us to find the better code set, and helps us minimize the MPI effect, as can be 

indicated by the lower amplitudes of the out-of-phase autocorrelation values in Figure 12 when 

compared to Figure 10 and Figure 11.  
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1.6. Standing Wave Cancellation 

A common occurrence in the field of wireless communication is the standing wave. In 

environments that contain many obstacles, such as closed spaces, the wave that is being sent from 

the transmitter to the receiver propagates through space and gets reflected from different kinds of 

surfaces. These reflections cause the receiving end to receive multiple instances of the same wave, 

some of them arriving directly, while others arriving after being reflected from a certain object. 

This occurrence is commonly called MPI, and represents a common issue in indoor positioning 

systems that use wireless technology. 

 

The MPI has another side-effect, which is called the standing wave. When a wave gets reflected 

from a surface, it generates another wave that propagates back in the opposite direction. If one puts 

a receiver somewhere between the transmitter and the reflective surface, detecting the strength of 

the signal would vary on the position in which the receiver is placed because of the standing wave 

effect. Certain positions, particularly those that are half wavelength apart, would show no 

oscillations in the signal strength when measured multiple times. These points along the medium 

are called nodes (N). Some other points along the medium would yield different results, showing 

high oscillations in signal strength. The points that contain the highest amount of oscillations are 

called the antinodes (AN) [48]. 

 

In order to achieve accurate and consistent indoor positioning estimation using signal strength, 

inside closed spaces, mitigating the effect of the standing wave is one of the problems that needs 

to be addressed. Currently, a technical solution to this problem does not exist, and as a part of this 

thesis, a way to solve the problem of the standing wave will be introduced, in cases where wireless 

communication is used in indoor positioning systems. 

 

To solve this problem, a different kind of wireless transmitter and receiver is used within the IPS 

system. The functioning of this transmitters and receivers will be furtherly explained. 
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Figure 13: Standing wave cancellation 

The standing wave cancellation wireless transmitter consists of a signal generator suitable for 

creating a signal with wavelength , an output and a relay switch, connected so that a relay switch 

alternatively connects the signal generator through a first path generating a first wave and through 

a second path to the output to generate the second wave. These two paths deliver two different 

signals. The first wave is created with a wavelength of , whereas the second wave is created with 

half the wavelength , by guiding the signal through a different path towards the output, as seen in 

Figure 14.  
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Figure 14: Standing Wave Cancellation - Mechanism 

To generate the signal, a radio signal generator is used. The signal that the generator generates is 

then either sent directly to the antenna, or a relay switch (Double Pole Double Throw - DPDT) 

redirects the signal through a coaxial cable which has a length such as to generate a wave shifted 

in half the wavelength , again to the same antenna. The relay switch is then used in such a way to 

emit these two radio waves in time-division multiplexing, thus enabling the receiver to mitigate the 

effect of the standing wave by summing up the two waves before processing them. 

 

A Portuguese patent under the number #109137 has been submitted for this mechanism. More 

information is available in the appendix. 
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1.7. Indoor Positioning System 

In order to accurately determine the indoor position of an entity in closed space, a number of 

problems need to be solved. One of the problems is the MPI, which we believe can be mitigated 

using the OPDG codes. The other problem is the standing wave, which can be mitigated using the 

method described in section 1.6. 

 

We propose a system that can use the communication of Frequency Modulation (FM) transmitters 

and receivers with OPDG codes to determine the indoor location of a device. The computing device 

we use to receive and process the codes is a small, low-powered single-board computer Raspberry 

Pi [49] equipped with a transceiver. A second Raspberry Pi is also used to control the transmissions 

of all transmitter pairs. 

 

FM Transmitter
Pair 1, OPDG 1

FM Transmitter
Pair 2, OPDG 1

FM Transmitter
Pair n, OPDG 1

FM Transmitter
Pair n, OPDG 2

FM Transmitter
Pair 1, OPDG 2

FM Transmitter
Pair 2, OPDG 2

FM receiver

 

Figure 15: Indoor Positioning System - Network Topology 

Figure 15 displays the network topology of our indoor positioning system. The topology consists 

of transmitters and receivers (both built with the Raspberry Pi computers). 
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 Raspberry Pi 

The Raspberry Pi is a low cost, credit-card sized computer developed with the intention of 

promoting the teaching of basic computer science in schools. Taking its size into consideration, it 

is a capable device that enables people of all ages to explore computing, and to learn how to 

program, as well as getting started with all kinds of electronics projects. It is capable of doing 

everything you would expect a desktop computer to do, from browsing the internet and playing 

high-definition video, to making spread sheets, word-processing, and playing games, and much 

more. 

 

It was developed by The Raspberry Pi Foundation [49] (a charity association) and is manufactured 

through licensed manufacturing deals with Newark element14, RS Components and Egoman. 

These companies sell the Raspberry Pi online. 

 

The form factor of the Raspberry Pi can be seen in Figure 16 below. 

 

 
Figure 16: The Raspberry Pi 

Due to the available resources, we have used two different model of the Raspberry Pi. The first 

model, Model B, can be seen on the left of the figure, while the second model, Model B+ can be 

seen on the right.  

 

Raspberry Pi’s have been used as both the receivers, as well as the transmitters inside the IPS 

system. 
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 FM Receiver 

It has been mentioned that the Raspberry Pi will be used as a computing device in order to process 

the FM signals it receives from the transmitters in order to determine its indoor position. In order 

to use the Raspberry Pi as a computing device for the received FM signal, we need some kind of 

way to receive the FM signal and forward it to the Raspberry Pi for further processing. Out-of-the-

box, the Raspberry Pi does not offer any way of receiving a FM signal. Hence, in order to receive 

the FM signal, an external receiver should be used. 

 

In this case, a cheap FM tuner evaluation board was bought online and used to receive the signal. 

The SparkFun FM Tuner Evaluation Board (Si4703) [50] is an evaluation board that enables us to 

tune into FM radio stations. It breaks out all the major pins and makes it easy to incorporate the 

chip as a part of a bigger project. The board is powered by 3.3V, which matches the output of the 

Raspberry Pi’s general-purpose input/output (GPIO) pins and makes a great match with the 

Raspberry Pi. The board, displayed in Figure 17, also allows us to tune and seek for FM signals 

using a few built-in GPIO pins. By plugging the headphones into the 3.5 mm jack, we can 

effectively use the headphones cable as an antenna for the receiver. 

 

 

Figure 17: Si4703 FM Tuner 

In order to forward the signal from the FM module to the Raspberry Pi, we have used a male-to-

male 3.5 mm jack cable, as displayed in Figure 18. One end of the cable was connected to the 3.5 

mm female port on the FM module, while the other end was connected to the Mic input of an 
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external USB soundcard. This external sound card was connected via USB to the Raspberry Pi, 

since out-of-the-box the Raspberry Pi does not feature any audio input ports. 

 

 
Figure 18: FM receiver module 

Figure 18 also shows all the components that make up the receiver. These components are: 

1. Raspberry Pi 

2. External sound card 

3. Si4703 FM receiver module 

4. 3.5 mm jack cable 

5. Power supply 

 

The receiver would be usually powered through a USB 3.0 port on a laptop, since both the laptop 

and the receiver have to be carried around when performing measurements around a scenario. 

The Si4703 module was connected to the Raspberry Pi using the connections seen in Figure 19 

below. 
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Figure 19: Si4703 to Raspberry Pi connection 

 

 FM Transmitter 

Now that we have the hardware of the receiver set up, we need to set up the transmitters. In order 

to add functionality and modularity to the FM transmitter, we have opted to, again, use the 

Raspberry Pi’s. 

 

One of the features that was not originally intended for the Raspberry Pi was the transmission of 

radio signals. Using a piece of code [51] hacked together at Code Club, it is possible to turn the 

Raspberry Pi into an FM transmitter. By connecting a short piece of wire to the GPIO 4 (GPCLK0) 

pin of the Raspberry Pi, and running the piece of code, you effectively get a FM transmitter.  

 

Since the code is written in Python, it is easy to expand the functionality of the FM transmitter by 

adding mode features to the code, which is exactly what has been done in this case. Functionality 

to start/stop the receiver remotely has been included, as well as a few tweaks that help us build the 

IPS scenario. 
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Figure 20: FM Transmitter 

The transmitter, displayed in Figure 20, consists of the following parts: 

1. Raspberry Pi 

2. Antenna 

3. Power supply 

 

The antenna of the transmitter can be any piece of wire. In this case, we used a 35 cm long piece 

of copper wire. 

 Control Software 

In order for the system to work seamlessly, we need to connect all the nodes (receivers and 

transmitters) into a coherent system. To see that all of our tests for the IPS scenario have been 

successful, we need to find a way to monitor and control all the nodes. 

 

While testing this software and different measurement mechanisms, there were many iterations of 

the software as well. For the simplicity of explaining, only the software for one scenario will be 

explained. 
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Since this software requires communication between the transmitters and the receiver. We have to 

make sure that all the transmitters and the receiver are connected to the same network, and that the 

receiver software has all the IP addresses of the transmitters defined.  

 

 

Figure 21: IPS - simplified scenario 

Figure 21 above displays a scenario in which most of the tests were performed, and the software 

for this scenario will be explained. 

 

The software will be divided into two parts: 

 Transmitter software 

 Receiver software 

1.7.4.1. Transmitter software 

As mentioned, in order to make the Raspberry Pi transmitters emit radio signals, a piece of code 

developed by Code Club PiHack was used as a base, after which it was upgraded to meet the needs 

of the IPS scenario. 
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Figure 22: Transmitter software flowchart 

Figure 22 shows the flowchart that explains the way the transmitter communicates with the 

receiver. The transmitter waits for the signal from the receiver to know when it needs to start 

emitting the OPDG code. The signal is received through a Transmission Control Protocol (TCP) 

connection between the transmitters and the receiver. 

1.7.4.2. Receiver software 

The second part of the system is the receiver. Functions of the receiver are the following: 

 Controls the transmitters (start/stop signaling) using TCP; 

 Captures and processes the FM signal coming from the transmitters. 
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Figure 23: Receiver software flowchart 

Figure 23 shows the flow of functions in the implementation of the receiver. After requesting some 

initial information from the user (amount of measurements, etc.) it starts capturing the FM signal 

coming from the transmitters. 

 

Following the initial setup, the control software opens TCP communications towards the 

transmitters. It then uses this TCP communication to signal the transmitters when to transmit. The 

message sequence can be seen in Figure 24 below. 
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Figure 24: TCP Communication - Transmitter to Receiver 

After the measurements start, at the end of each measurement the receiver is moved to a different 

position (due to a lack of available equipment). For each of these positions, it calculates the ratio 

of OPDG1/OPDG2 codes which are transmitted on only 2 transmitters at a time. The process of 

calculating the ACCF ratios is shown in Figure 25 below. 

 

 

Figure 25: ACCF Ratio calculation 

This part uses raw audio and reference codes (text files with signal amplitudes defined) to calculate 

the ACCF ratios. First it extracts the peaks from the correlation of the two signals. After extracting 

the signals, it uses the formula for the autocorrelation crest factor (defined in the Methodology 

section) to calculate the ACCF of each of the codes (OPDG1 and OPDG2). Finally, it calculates 

the ratio between the two signals and stores it. 
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After all the positions were measured, it exports the results into an Excel file. From this Excel file 

we can then further process the information and create some graphs to see the results. 
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Setting up 

 

This section will deal with how the indoor positioning system was set up. The instructions will be 

laid out step by step and each of the steps explained. 

 

Things we need: 

 5x Raspberry Pi 

 5x USB WiFi dongle 

 4x 5V power supply 

 4x antenna 

 1x external sound card 

 1x SparkFun FM Tuner Evaluation Board (Si4703) 

 1x 3.5mm jack cable 

 Transmitter and receiver files (provided in the attached DVD) 
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1.8. Transmitters 

Setting up the transmitters is pretty simple and straightforward. The setup will be divided into 

multiple parts. 

 Hardware 

The transmitter contains the elements explained in 1.7.3. The antenna has to be connected to the 

Pin 7 on the Raspberry Pi GPIO header, as displayed in Figure 26. 

 

Figure 26: FM Transmitter - Antenna connection 

In order to establish the communication between the transmitter and the receiver, they need to be 

connected to the same network. 

 Software 

The software package for the transmitter contains the following: 

 PiFm binary (“pifm”) 

 PiFm source code (“pifm.c”) 

 Transmitter program (“transmitter.py”) 

 Audio (WAV) files of the OPDG1 and OPDG2 codes 

 

To set up the transmitter, continue with the following steps: 

1. Transfer the files from the transmitter folder to the Raspberry Pi. Files can be transferred 

over the network (using Secure Copy – SCP or SSH File Transfer Protocol – SFTP) or using 

removable media (Universal Serial Bus – USB flash drive, etc.). Transfer them to the folder 

~/transmitter. 

7 
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2. The Raspberry Pi should come preinstalled with Python 3.x. If that is not the case, make 

sure it is installed with the following commands: 

sudo apt-get update 

sudo apt-get install python3 

 

3. Run the transmitter script: 

sudo python3 ~/transmitter/transmitter.py <wav_file> 

An example would be: 

sudo python3 ~/transmitter/transmitter.py OPDG1_N128_c4_x256.wav 

 

At this point, the script is running, and our transmitter is waiting for the signal from the receiver 

on when it should transmit the code. This concludes setting up the transmitter. 
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1.9. Receiver 

As with the transmitters, we will divide the setup of the receiver into hardware and software. 

 Hardware 

The receiver contains the elements described in 1.7.2. Before setting up the software, make sure 

that the receiver’s hardware components are connected in a proper manner, as described in 1.7.2. 

 Software 

The software package for the receiver contains the following: 

 Receiver program (“receiver.py”) 

 Configuration file (“config.cfg”) 

 Textual representations of the amplitudes in audio (WAV) files of the OPDG1 and 

OPDG2 codes from the transmitter – Reference file 

 

To set up the receiver, continue with the following steps: 

1. Transfer the files from the receiver folder to the Raspberry Pi. Files can be transferred over 

the network (SCP, SFTP) or using removable media (USB flash drive, etc.). Transfer them 

to the folder ~/receiver. 

2. The Raspberry Pi should come preinstalled with Python 3.x. If that is not the case, make 

sure it is installed with the following commands: 

sudo apt-get update 

sudo apt-get install python3 

 

3. Turn on all the transmitters and make sure they are connected to the same network as the 

receiver. 

4. Define the IP addresses of all the transmitters in config.cfg configuration file. 

5. Run the transmitter script: 
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sudo python3 ~/receiver/receiver.py <reference_file_1> <reference_file_2> 

An example would be: 

sudo python3 ~/receiver/receiver.py OPDG1.txt OPDG2.txt 

 

6. Input the number of wanted measurements and wanted ratios when the program asks for it. 
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Tests 

 

To test out our IPS system, a number of real-world indoor scenarios were set up, starting with a 

simple scenario with two transmitters, and then moving to the 2D scenario with four transmitters.  

1.10. Linear scenario tests 

For the first scenario, we placed two FM transmitters at a defined distance away from each other. 

Each transmitter was transmitting one code from a code pair on the frequency of 106.9 MHz, which 

has been chosen to minimize the problem of MPI due to the absence of commercial FM radio 

transmitters in the measurement zone. The receiver, a Raspberry Pi with a FM receiver module, 

was moved from one transmitter to the other, and measurements were taken at specific interval 

lengths. Measurements were made by simultaneously calculating the ACCF for both codes in the 

pair, after which a ratio was made between the two obtained values in order to cancel the FM 

automatic gain control. In Figure 27, the dots in between the transmitters denote the positions of 

the measurements taken. 

 

 

Figure 27: Linear scenario 

 

The transmitters transmit their signals in two ways: 

 Simultaneous; 

 TDM. 
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The test scenarios will cover both of the approaches, after which the best approach will be used for 

further testing. 

 Test scenario 1 

Table 1 below displays the parameters of this test scenario.  

Table 1: Test scenario 1 - Parameters 

Distance between transmitters 10 meters 

Code families tested OPDG 

Measurements taken every 1.25 meters 

Emitting type Simultaneous 

Antenna length 0.15 m 

 

 
Figure 28: Test scenario 1 - Results 

Results gained in this first scenario, displayed in Figure 28, show the potential of the ACCF, and 

how it can be used to estimate the location of the receiver between two transmitters. 

 

If we take into account the trend line of the actual results (y), we can see that the ratio of the two 

ACCFs slowly drops as we move from the first to the second antenna (0 to 10 m). Using the 

equation of the trend line y, we are able to give a rough estimation of the receiver between the two 

transmitters.  
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The following scenarios look into alternative ways of measuring the results in order to improve the 

location estimation. 

 Test scenario 2 

Table 2 below displays the parameters of this test scenario.  

Table 2: Test scenario 2 - Parameters 

Distance between transmitters 10 meters 

Code families tested OPDG 

Measurements taken every 1.25 meters 

Emitting type Simultaneous 

Antenna length 0.125, 0.25, 0.5, 1 meters 

 

 
Figure 29: Test scenario 2 - Results 

In Figure 29 we can see the results of testing the same 2-transmitter scenario, at a distance of 7 

meters between each other, and with different antenna lengths. 

 

For the antennas, we used a piece of thin copper wire that was cut to the appropriate length. 
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From this graph we can concluded that antennas between 0.25 and 0.5 meters of length gave better 

results in terms of ACCF1/ACCF2 to distance ratio. 

 Test scenario 3 

Table 3 below displays the parameters of this test scenario.  

Table 3: Test scenario 3 - Parameters 

Distance between transmitters 21 meters 

Code families tested OPDG 

Measurements taken every 3 meters 

Emitting type Simultaneous 

Antenna length 0.35 m 

 

 
Figure 30: Test scenario 3 - Results 

This test scenario was built with the purpose of testing how the distance between the transmitters 

affects the ACCF1/ACCF2 ratio. From Figure 30 we can clearly conclude that, with distance, 

results improve significantly, judging by the linear trend line. 

 

We can see a larger difference in the ACCF1/ACCF2 ratio between each measurement, which 

makes it easier for us to estimate the location of the receiver between the transmitters.  
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1.11. Two-dimensional scenario tests 

Following the linear tests, the next logical step is to test out the same methods and principles in a 

two-dimensional scenario. 

 Test scenario 4 - TDM 

 

Figure 31: Test scenario 4 

Based on the conclusion from the linear tests, which show that accuracy increases with length, this 

test was performed in the biggest room at disposal at the time. Unfortunately, the room in this test, 

Figure 31, was of an irregular shape, but still served the purpose. 
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Transmitters were placed in the far corners of the room, in order to achieve maximum distance 

between transmitters. 

 

The first method that was tested was Time-division Multiplexing (TDM). The approach taken in 

this test was to make the transmitters emit the signal only one transmitter at a time. The algorithm 

would go as follows: 

1. The receiver would be placed in a certain position inside the room. 

2. The transmitters that are placed in the corners of the room would start emitting the signal 

in the following order: 

 Transmitter 1 – emitting the first generated OPDG code (OPDG1); 

 Transmitter 3 – emitting the second generated OPDG code (OPDG2); 

 Transmitter 2 – emitting the first generated OPDG code (OPDG1); 

 Transmitter 4 – emitting the second generated OPDG code (OPDG2). 

Each of the transmitters would emit the signal for 15 seconds. 

3. The receiver would detect the signal of Transmitter 1 and start processing it. During these 

15 seconds the receiver would process the signal and calculate the ACCF. 

4. After this is done, it would process the signal of Transmitter 3 immediately afterwards and 

calculate its ACCF. After both of these would be calculated, it would calculate the ratio of 

these ACCFs. This way we get the ratio of two signals. 

5. Steps 3 and 4 would be repeated for Transmitters 2 and 4. 

6. The whole procedure would be repeated for all of the marked positions inside the scenario. 

 

These results were proven to be unusable, because we didn’t find any significant change in the ratio 

of the OPDG1 and OPDG2 signals between neither of the pairs, as can be seen in Figure 32 below. 



79 

 

 

Figure 32: Test scenario 4 - Results 

 Test scenario 5 – Simultaneous emitting 

To setup the second two-dimensional scenario, we used 4 transmitters again, which were placed in 

the corners of a large classroom filled with tables and chairs with metallic legs. The codes were 

transmitting simultaneously in pairs, and all transmitters were put on corner tables. 

 

 

Figure 33: Test scenario 5 
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In the this test scenario, displayed in Figure 33 above, a pair of real OPDG codes {Re[OPDG1] + 

Im[OPDG1]} and {Re[OPDG2] + Im[OPDG2]} has been used. The first FM transmitter of the 

pair, with the code {Re[OPDG1] + Im[OPDG1]}, was located at -3.5 meters of the central point 

zero. The second FM transmitter of the pair, with the code {Re[OPDG2] + Im[OPDG2]}, was 

located at +3.5 meters. Both transmitters were in LOS, with some walls around them, creating a 

real indoor environment with some MPI. 

 

The transmitters were placed 6.8 and 11.5 meters apart, and the pairs were transmitting the signals 

interchangeably. The receiver, in this case, was moved around a number of points in the middle of 

the scenario. Positions closer to the transmitters (less than a 1.25 m) were avoided in order to 

minimize the near-field effect of the transmitters which is a well-known issue [52]. Measurements 

were taken in these points in a similar fashion as the ones in the scenario with two transmitters. For 

each point, two ACCF ratios were measured. The first ratio was calculated as a ratio of the ACCF 

of the first code and the ACCF ratio of the second code, for the first pair of antennas. The second 

ratio was calculated as a ratio of the ACCF of the first and the ACCF of the second code for the 

second pair.   

 

For this test, we took a sample of 30 measurements per position, meaning each of the ratios were 

measured and calculated 30 times, and average values were taken in account for further calculations 

in order to decrease the error of measurement. Taking into consideration the time that was available 

to do the tests, we evaluated that 30 measurements per position would be enough to give a proper 

average reading.  

 

This scenario yielded better results, which will be explained in the Results section of the thesis. 
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Results 

 

Our IPS measurements of the ACCF, shown in Figure 34, show that OPDG codes with the same 

code length as ZigBee codes give an average of 8% better ACCF, while increasing the code length 

of the OPDG codes to 128 highly improves the ACCF to an average of 7.1. These measurements 

were made during 30 seconds. 

 

 

Figure 34: ACCF measurements - ZigBee vs. OPDG 

Furthermore, while testing the proposed 2D scenarios, results show that, using the linear trend line 

of the ACCF1/ACCF2 ratios, we are able estimate the position of the receiver between the two 

transmitters and calculate the error. OPDG codes have shown better properties in this scenario by 

trend line with a higher absolute slope, which can be used to approximate the position between the 

two transmitters.  

 

The tests were performed with Golay, Chu, ZigBee and OPDG codes, and the results are shown in 

Figure 35 below. 
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Figure 35: Test results – Golay, Chu, ZigBee and OPDG 

To estimate the position of the receiver between the two transmitters the trend line equation y has 

been used. By doing that, the x value in the equation would provide us with the estimated location. 

A few measurements that are close to the transmitters were discarded in order to avoid the near-

field effect. 

 

By calculating the average estimation error using the trend line equation and the ACCF1/ACCF2 

ratio for each of the code family, we can determine the efficiency of the code family. 

 

All codes used are real codes and they have been selected with the same length of 128 chips. The 

128-length ZigBee codes have been constructed using a Hadamard transform [53] based on 32-

length ZigBee codes. All codes have been transmitted with the same power in our TDM-CDMA 

system with a mono FM transmission at 106.9 MHz. The transmission rate for all different codes 

was 4000 samples/sec. 
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Code Family Average estimation error 

Golay 13.48 m 

Chu 14.28 m 

ZigBee 7.99 m 

OPDG 3.67 m 

Table 4: Average indoor location estimation error between two transmitters - Golay, Chu, ZigBee and OPDG 

Results, displayed in Table 4, show that using the OPDG codes we were able to estimate the 

position of the receivers between two transmitters with an error near 3.5 meters (almost the same 

error as the commercial GPS). This shows better estimation properties than ZigBee, Golay and Chu 

codes, which had an error higher than 7, 13 and 14 meters respectively. The error averages were 

calculated without discarding the estimated distances that were higher than our real scenario 

(classroom distances). 

 

The same method can be used to estimate positions inside a 2D scenario with 4 transmitters. Since 

we are using 4 transmitters, the transmitters emit the codes in pairs in order to cover the whole 

scenario. 

 

 

Figure 36: Triangulation process 

In order to estimate the location of the receiver, we used the average ACCF ratios for each one of 

the pairs to estimate the power coverage area to that specific location. The location process was 

calculated using a representation of transmitter influence radiuses. An example of the triangulation 
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process for the influence radii can be seen in Figure 36 above. Shaded areas represent the influence 

radius of each of the transmitters on the two-dimensional scenario. In our calculation, we have 

assumed that the influence radius of the second transmitter in the pair reaches half way to the other 

transmitter. By setting those influence radii to fixed values, we can use the ACCF1/ACCF2 ratio 

of that pair to estimate influence radius of the other transmitter in the pair. If we define the distance 

between the two transmitters in the pair as d, then the influence radius (IR) of the second transmitter 

in each of the pairs would be half the distance between those transmitters. 

 

Transmitter Influence radius 

Pair 1 – Code 1 
IRe11

= IRe12
+
ACCF -1

ACPMe11e12  

Pair 1 – Code 2 
IRe12

=
1

2
de11e12

 

Pair 2 – Code 1 
IRe21

= IRe22
+
ACCF -1

ACPMe21e22  

Pair 2 – Code 2 
IRe22

=
1

2
de21e22

 

Table 5: Influence radii of transmitters 

The IR distance used in Table 5: Influence radii of transmitters is in function of exy, where x 

indicates the number of the pair and y indicates the transmitter number inside the pair. ACCF 

represents the calculated ACCF1/ACCF2 ratio of the pair in the measuring position, and ACPM 

represents the change of ACCF1/ACCF2 ratio values per meter when moving from one transmitter 

in the pair to the other (calculated from the linear equation of the trend line). 

 

After calculating the influence radii of all the transmitters, we use the intersection points of the 

radii to estimate the position of the receiver. The position is estimated using a method similar to 

the triangulation process, by calculating the intersection of the lines that pass through the 

intersection points. E marks the estimated position and R marks the real position of the receiver.  
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Code Family Average estimation error Successful estimations  

Golay 4.29 m 19/81 (23.5%) 

Chu 2.27 m 6/81 (7.4%) 

ZigBee 2.90 m 23/81 (28.4%) 

OPDG 2.78 m 21/81 (25.9%) 

Table 6: Average indoor location estimation error in a scenario with four transmitters – Golay, Chu, ZigBee 

and OPDG 

Following the 2D scenario tests with four transmitters, we were able to calculate the error 

estimation for each of the code families using the calculation methods described in Table 5. The 

results have shown that OPDG codes display better ratio of average localization estimation errors 

(2.78 m) and the number of successful estimations (25.9%), as presented in Table 6. Unsuccessful 

estimations occur when transmitter influence radiuses do not intersect. In spite of presenting a 

lower error (2.27 m), the Chu sequences reveal the lowest successful estimation (7.4%) inside the 

classroom. 
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Conclusion 

 

Results of testing the indoor position estimation properties of the new OPDG codes have led to 

encouraging results. We have shown that the OPDG coding sequences, used in a TDM/CDMA 

network with FM modulation, have shown superior location estimation properties when compared 

to other well-known coding sequences such as ZigBee, Golay, due to their natural immunity to 

multipath interference. 

 

Besides the location estimation accuracy, OPDG codes have shown to be good candidates for usage 

in this scenario by displaying one of the highest successful estimation rates within the test area 

(even higher than Chu codes). We have also shown that improving our IPS scenario could give 

way to a viable low cost alternative to existing indoor positioning systems based on the signal 

strength of a FM signal. Future work will show how to improve the location precision and success 

rate by deploying additional pairs of transmitters, by mitigating the negative effects of the standing 

wave, as well as introducing a more realistic indoor scenario with some walls between each 

transmitter pair. 
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 Future work 

 

If we are to take into consideration the result of using OPDG codes in a TDM-CDMA network 

with FM modulation as a method for positioning, development of the system is still needed if we 

were to use this system in a real world scenario. The error of 2.78 meters is still too big to be 

considered as a good option for indoor positioning.  

 

In order to improve the accuracy of the system, additional sensor mechanisms can be added which 

would complement the existing system.  

 

An additional mechanism could use a similar approach to the first one, but use ultrasonic waves 

instead of radio waves. This type of a mechanism would be similar to the RF mechanism, except it 

would implement microphones instead of antennas. 

 

A third mechanism could be added, which would be equipped with magnetometers. These 

magnetometers would detect the magnetic footprint and associate it with a certain position inside 

the scenario. 

 

Lastly, this system could be improved by adding a final mechanism. This fourth mechanism would 

start off with a large number of photos being taken from different points of the environment. The 

photos taken would then be stored into a database, with each of the photos mapped to the location 

in the environment. In order to accomplish that, the receiver would be equipped with two cameras, 

facing in opposite directions. After receiving the location estimation from the three mechanisms 

(radio waves, ultrasound, and local magnetic variations), the image capture mechanism activates 

and takes photos from the two mounted cameras. These photos are then compared to the photos in 

the database, for the locations around the estimated position. After being compared, the location 

estimation improves significantly due to the photo comparison. 
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The combination of these four mechanisms could enhance the location estimation accuracy and 

bring it to a level that is usable in the real world. A model of this IPS can be seen in Figure 37 

below. 

 

 

Figure 37: Theoretical four mechanism IPS 

The downside of an indoor positioning such as this one would be the complexity of the system. To 

make four different mechanisms work in a seamless fashion would be no easy task. Furthermore, 

taking into consideration all the components in the system, many of these components are not 

readily available in existing indoor scenarios, and would have to be purchased separately. Ideally, 

it would be possible to build a system like this using consumer off-the-shelf hardware, but at the 

current state of technology it is still not the case. 
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Appendices and attachments 

 

This chapter contains all of the additional work that has been created while researching into the 

topic of this thesis. 
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Abstract – Determining the indoor location is usually performed by using several sensors. Some of these sensors are fixed 

to a known location and either transmit or receive information that allows other sensors to estimate their own locations. The 

estimation of the location can use information such as the time-of-arrival of the transmitted signals, or the received signal 

strength, among others. Major problems of indoor location include the interferences caused by the many obstacles in such 

cases, causing among others the signal multipath problem and the variation of the signal strength due to the many 

transmission media in the path from the emitter to the receiver. In this paper, the creation and usage of perfect sequences 

that eliminate the signal multipath problem is presented. It also shows the influence of the positioning of the fixed sensors 

to the precision of the location estimation. Finally, genetic algorithms were used for searching the optimal location of these 

fixed sensors, therefore minimizing the location estimation error. 

 

1. Introduction 

The GPS (Global Positioning System) receivers work well in line-of-sight (LOS) conditions, meaning they cannot 

be used in an indoor scenario or locations in which there is limited LOS to the GPS satellites. Current GPS outdoor 
location accuracy is around 3 meters and is too high for most home automation purpose tasks. Additionally, a GPS 
signal cannot be caught clearly in indoor scenarios. 

The type and quality of measurements have a considerable effect on the performance of a positioning algorithm in a 
Wireless Sensor Network (WSN). Different types of measurements have been considered in the literature -[5] for the 
positioning problem, e.g., received signal strength (RSS), angle-of-arrival (AOA), time-of-arrival (TOA), and time-
difference-of-arrival (TDOA). The application of such techniques can be found in [6]. 

Since designing an estimator for the positioning problem strongly depends on the model of measurements, it is of 
great importance to use an accurate model for measurements. The sensor nodes can be either stationary or moving. They 
might also be able to make more than one type of measurement. Our project started with RSS-based measurement 
because it is the only accepted measurement that does not suffer from NLOS conditions. Our real scenario work instance 
is a building with a considerable set of walls where a wireless sensor should be able to locate itself. 

http://dx.doi.org/10.1155/2015/720574
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The performance of communication systems using Code Division Multiple Access (CDMA) and Orthogonal 
Frequency Division Multiple Access (OFDMA) is directly related to the coding sequence they use. These sequences 
should have a perfect autocorrelation and excellent cross-correlation properties for synchronization or code detection in 
noisy environments. The importance of code detection accuracy in these coding sequences becomes evident when they 
are applied in WSN environments that have much interference. 

In this paper, the general issue of implementing an accurate Indoor Positioning System (IPS) will be tackled, using 
a small TDM-CDMA (Time Division Multiplexing – Code Division Multiple Access) distributed sensor network. This 
IPS system will be implemented using low cost FM (Frequency Modulation) transmitters and receivers. 

Several sequences have been proposed and used in communication and localization systems. In the third generation 
of mobile communication (3G), Walsh-Hadamard Sequences are used in UMTS [7]. This system has been further 
improved in what is now called 4G Long Term Evolution (LTE), using Zadoff-Chu sequences instead of the Walsh-
Hadamad [7]. Another set of sequences, the Gold Sequences, are currently used in the Global Positioning System (GPS) 
for outdoor localization [8]. Golay sequences are also widely considered in many areas, including radar systems [9]. 

An analysis was performed by comparing the behavior of novel OPDG (Orthogonal Perfect DFT Golay) codes to 
the ZigBee codes (32-length Pseudo Noise code of a WSN), demonstrating that OPDG codes have better correlation 
properties. Afterwards, a scenario of an IPS is set up, and the significance of using OPDG codes with better correlation 
properties is presented. We start the paper by explaining the intention of using a novel code family (OPDG), comparing 
it to the well-known PN (Pseudo Noise) ZigBee codes. Afterwards, a scenario of our IPS system is introduced, and 
testing results are presented. To further improve the IPS system, we introduce a genetic algorithm that helps us locate 
the optimum FM transmitter placement positions within the indoor scenario. 

At the end, it is pointed out how the presented results indicate that this system is a viable alternative to existing IPS 
systems, with the additional advantage of its low implementation cost. 

2. OPDG IPS Model 

One of the major problems of wireless communication is multipath Interference (MPI). Transmission media, such 
as wireless, can bounce off certain obstacles, taking multiple paths to reach the receiver. Delays created by these 
obstacles can cause interference in communication. Other interferences include the multi-carrier interference, inter-
symbol interference and the multiple access interference. These interferences can be reduced by using perfect sequences 
for transmission [10]. The latter two interferences can be reduced if those sequences are also orthogonal for any delay 
between them [11]. 

Our task is to improve accuracy in IPS systems that use wireless communication. In indoor wireless communication, 
the use of code sequences that are resistant to multi-path interferences is vital to achieve accuracy, due to a large number 
of obstacles present in the environment. We propose the use of perfect sequences, whose correlation properties render 
them immune to multipath interferences, as opposed to commonly used coding sequences. 

In this section, autocorrelation and cross-correlation properties of coding sequences will be explained. Further on, a 
comparison will be made between the widely-used ZigBee coding sequences and the novel OPDG sequences. Lastly, a 
low cost IPS scenario will be set up and explained. 

A. Autocorrelation and cross-correlation 

A sequence x is a periodic sequence with a period M when, where x(n) = x(mod(n, M)) where mod(a, b) is the 
remainder of a divided by b. 

Let x[n] with n = 0, 1, 2, …, M – 1, be one of the M values of a periodic sequence x. The DFT (Discrete Fourier 
Transform) of x[n] is defined as 
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where WM = exp(-j2π/M), k = 0, 1, 2, …, M - 1, with j = 1  for convenience of notation. The IDFT (Inverse Discrete 

Fourier Transform) of X[k] is then given by 
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Using (1) and (2), the periodic cross-correlation between two different sequences x(r) and x(s) is defined as 
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Alternatively, it can be defined as 
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where the superscript * denotes the complex conjugate. 

The autocorrelation of a periodic sequence can also be calculated using (4), when r = s. 

When a periodic sequence has an autocorrelation of zero for any non-zero delay, the sequence is said to be a perfect 
sequence. Additionally, the two different sequences are called orthogonal if the cross-correlation between them is zero 
for a null delay. Because of these correlation properties, orthogonal perfect sequences are ideal to be used in several 
applications, such as radar systems, sonar systems, communication synchronization systems, etc. 

B. OPDG code 

Any sequence set with perfect or near-perfect autocorrelation values, which is also orthogonal or near-orthogonal, 
is a good candidate to be used in asynchronous communication systems, such as DS-CDMA (Direct-Sequence Code-
Division Multiple Access), or any other system where the signal reception may be contaminated by the multi-path 
problem. Another important property for the sequence set is the number of orthogonal sequences available. The Gold 
sequences are a good example of a set of sequences having these properties, since they have excellent correlation 
properties while being possible to generate in large numbers. For instance, it is possible to create 32 orthogonal Gold 
sequences with a length of 32. However, sequences with low cross-correlation values usually have high out-of-phase 
autocorrelation values. Likewise, low out-of-phase autocorrelation values are usually achieved at the cost of higher 
cross-correlation values. A compromise between these properties must be carefully selected for usage on a CDMA-
based communication system. 

Golay sequences are bipolar complementary sequences. Additionally, the autocorrelation of a single sequence of a 
Golay pair is not zero with all non-null delays, for any length L = 2N. However, the sum of the out-of-phase 
autocorrelations of both sequences in the pair is zero. Therefore, Golay sequences are not perfect sequences. 
Nevertheless, they are interesting for their properties. A generic algorithm for Golay sequence generation was presented 
by Budisin [12] as follows 
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where δ[k] is the unit pulse function that works as a trigger signal, an[k] and bn[k] are the Golay sequences, wn is a 
generation seed (either 1 or -1), and Dn is a delay (2n−1 ). 

An example of a Golay complementary sequence of length 4 is the following pair: (+1,+1,+1,−1) and (+1,+1,−1,+1). 

The amplitude of a Golay sequence an[k] is a constant value given by   1kan
. 

It is well-known that any constant amplitude sequence, defined in the frequency domain, corresponds to a perfect 
sequence in the time domain.  

Applying an IDFT to Golay sequences creates two new polyphase perfect sequences, which are 
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It should be noted that it is possible to find the IDFT of any sequence X using also a DFT, because 
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The same sequences can be achieved by a recursive algorithm as follows 
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where A is a constant signal or vector , WL = exp(-j2π/L), j = 1  and 0 < n ≤ N. The resulting sequences an and bn are 

the OPDG1 and OPDG2 as per (7) scaled by A × L. They can be on the same scale as (7) using A = 1/L, with L = 2N. 

Several operations can be applied to the OPDG sequences to generate different sequences. One can create a real 
code by ignoring the imaginary part of the complex valued sequences and keeping only the real part (Re{OPDGx}). 
Likewise, one can ignore the real part of the sequence and keep only the imaginary part (Im{OPDGx}). One can also 
add the real part to the imaginary part (Re{OPDGx}+Im{OPDGx}). It is also possible to apply a sign function to any of 
the previous sequences. A sign function (Sgn(x)) returns −1 to negative inputs, and 1 to positive ones. Another possibility 
is to make a cyclic shift of the imaginary part of each code, prior to the sum, thus generating L − 1 new complex valued 
sequences. 

It is also possible to decode the original input value A, from (9), back from the OPDG codes. A recursive decoding 
method can be used as follows 
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where 1 ≤ n ≤ N, an and bn are the OPDG1 and OPDG2 that resulted from (9), and, as previously, WL = exp(-j2π/L). 
Notice that in (10), n varies from N down to 1. From a0 and b0, a vector A’ can be created by 
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The resulting A’ is an interesting vector because it presents two different method decoding processes: 
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As seen in (12), the real part of a DFT applied to A’ is proportional to a Dirac pulse delayed by 2N − 1. This property 
allows an enhanced detection process in spite of MPI. 

C. Usage in the ZigBee communication system 

The novel OPDG codes are derived from real orthogonal perfect DFT sequences. To be more precise, the first OPDG 
code is obtained by making the sum of the real and imaginary part of OPDG1. The second OPDG code is built using the 
addition of the real and imaginary part of OPDG2. These novel codes are real, orthogonal and perfect. As such, they 
should be optimum alternative codes for a ZigBee communication system, which uses PN codes defined in [13] and 
[15].  

An autocorrelation crest factor can be used as a parameter of autocorrelation efficiency. The autocorrelation crest 
factor ACCF is defined as a ratio of the maximum peak Apeak and the root mean square of the autocorrelation function 
Arms as: 


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When the autocorrelation is perfect, like a Dirac pulse, the ACCF of a periodic sequence of length L is equal to L

. 

A comparison between these two codes follows. Figure 1 shows the normalized periodic autocorrelation properties 
of the standard ZigBee codes with the code length of 32. The ACCF average is 7.77. Figure 2 shows the normalized 
periodic autocorrelation properties of the OPDG codes with the length of 32. The ACCF average is 9.48.  Furthermore, 
by increasing the code length, autocorrelation properties (or ACCF) increase greatly. Increasing the code length of the 
OPDG codes results in a reduction of fluctuation in the normalized periodic autocorrelation function, as can be seen in 
Fig. 3. This last ACCF average - 18.62 - is much higher. 

As it may be observed, the novel OPDG codes have better correlation properties despite using a simple 16-bit 
resolution. 
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D. Indoor Positioning System 

Building an IPS system that would enable us to accurately determine the position of an entity in a closed space, with 
a lot of MPI, is a difficult problem in positioning systems. We believe that the use of the OPDG codes can greatly 
enhance the accuracy of low cost IPS systems that use CDMA. 

 

Fig. 1. Normalized absolute periodic autocorrelation – OPDG codes, with resolution of 16 bits. 

 

Fig. 2. Normalized absolute periodic autocorrelation - OPDG codes with the code length of 128, with a resolution of 16 bits. 

We propose a system that can use the communication of FM transmitters and receivers with OPDG codes to 
determine the indoor location of a device. The computing device we use to receive and process the codes is a small, 
low-powered single-board computer Raspberry Pi [15]. A second Raspberry Pi is also used to control the transmissions 
of all emitter pairs. 
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Fig. 3. IPS network topology 

Our system is depicted by Fig. 4, where each pair transmits its code in TDM. Inside the indoor scenario, FM 
transmitters are placed in optimum positions to cover the room with as much signal as possible. The Raspberry Pi is 
mounted on an object that allows its location discovery. As the different FM transmitters emit different OPDG codes, 
Raspberry Pi uses those codes to approximate the distance to each individual transmitter using the following formula: 
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 Equation (15) was derived from the distance estimation equation introduced in [6], and represents the distance 
between nodes i and j. P0i denotes the power in dB at the distance d0, β is a path-loss exponent that is usually between 2 
and 6 [16], ACCF is the autocorrelation crest factor and Arms is the root mean square of the autocorrelation function. 

E. Use case scenario 

We have implemented an IPS scenario using a pair of FM transmitters. Each emitter was broadcasting one different 
real OPDG code of the set {Re[OPDG1] + Im[OPDG1] U Re[OPDG2] + Im[OPDG2]}. Both FM emitters transmitted 
128-length OPDG codes with a total-length of 128×4 chips, at 106.9 MHz (mono), with a sample rate of 8000 sample/sec 
and a hardware resolution of 16 bits. The broadcast was continuous during 30 seconds. FM transmitters were located 7 
m away from each other. 

 



 

105 

 

105 

 

Fig. 4. Theoretical ACCF1/ACCF2 ratios. 

Figure 5 shows two theoretical ratios of ACCF values of a pair of OPDG codes. Using this ratio, we can approximate 
a linear function for the displacement estimation, and reduce the error of the IPS. The theoretical worst case ratio of Fig. 
5 was calculated using all phases of the two FM signals. 

On the other hand, the theoretical best case ratio was achieved considering 2 constructive multipath interferences. 
These interferences were created by placing a RF (Radio Frequency) reflector 35 cm behind each emitter. Using this 
scenario, a stationary wave average has less fluctuation, and represents the best theoretical case. 

This theoretical model shows the possibility of finding a linear function based on the interval around -1.75 m and 3 
m. 

3. Results and Discussion 

We have implemented the first stage of our low cost IPS testbed and in this section we will present some results. 
Normalized autocorrelation functions and ACCF parameters are presented in the next figures.  

 

Fig. 5. Normalized autocorrelation of ZigBee codes, 32-length 
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Fig. 6. Normalized autocorrelation of OPDG codes, 32-length 

Figures 6 and 7 show the correlation between the received and reference codes within the Raspberry FM receiver. 
When compared to the ZigBee codes, OPDG codes with the length of 32 can reveal an ACCF 40% higher and therefore 
substantially better. Figure 8 shows the correlation of 128-length OPDG codes. Peaks are distinguishable and the 
fluctuation is significantly lower. Its better autocorrelation properties enable better approximation of the crest factor 
using (14). 

 

Fig. 7. Normalized periodic autocorrelation of OPDG codes, 128-length 

Our IPS measurements of the ACCF are shown in Fig. 9. OPDG codes with the same code length as ZigBee codes 
give an average of 8% better ACCF, while increasing the code length of the OPDG codes to 128 highly improves the 
ACCF to an average of 7.1. These measurements were made during 30 seconds. 

In the last scenario, a pair of real OPDG codes {Re[OPDG1] + Im[OPDG1]} and {Re[OPDG2] + Im[OPDG2]} has 
been used. The first FM emitter of the pair, with the code {Re[OPDG1] + Im[OPDG1]}, was located at -3.5 meters of 
the central point zero. The second FM emitter of the pair, with the code {Re[OPDG2] + Im[OPDG2]}, was located at 
+3.5 meters. Both emitters were in LOS, with some walls were around them, creating a real indoor environment with 
some MPI. 
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Fig. 8. ACCF measurements of different codes 

We have tested the theoretical model of the ACCF ratios in a real scenario, and have come to the following results. 
By emitting 2 pairs of 128-length OPDG codes, a decreasing line trend from one FM emitter to the other is visible, as 
can be seen in Fig. 10. Two linear equations are also shown in the figure, along with reliability R. 

Reliability can be further increased by calculating the average of the functions in Fig. 10, as seen in Fig. 11. 

 

Fig. 9. ACCF ratios of 2 pairs of OPDG codes with FM modulation at a distance of 7 m 

With two pairs of FM OPDG emitters, we obtain an average IPS error of 0.86 meters, with a maximum error of 2 
meters. However, it is possible to predict a lower error if more pairs of emitters can be used around the FM receiver. 
The correct emitter locations are an open issue that should be solved shortly. 
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Fig. 10. The average of 2 ACCF ratios of 2 pairs of 128-lengtht OPDG codes with FM modulation at a distance of 7 m 

4. Positioning the sensors using Genetic Algorithms 

The indoor location, as seen in the previous section, is estimated using the Received Signal Strength (RSS) of 
multiple emitters. The placement of these emitters can have a large influence on the location estimation error of the 
receiver sensor. In this section, we will show a metaheuristic approach to this signal emitter placement problem, namely 
using Genetic Algorithms. 

A. Positioning of the sensors 

The emitter placement presents two different problems to solve: how many emitters are needed to cover an area 
(such as a building or a room), and where to place them so that their signal is best used. The first problem is a standard 
coverage problem and can be stated as follows: given a site plant, including all possible emitter locations, how many 
emitters are needed so that every position in that location receives n different signals? This is a minimization problem 
where the variable to minimize is the number of required emitters. 

The second problem is more complex. When a receiver detects n signals it will start the triangulation calculations to 
estimate its location. However, the resulting precision of that estimation will vary greatly with the source of those signals. 
Figures 12 and 13 exemplify this problem. These figures represent a simple 4 m x 4 m square room with 3 emitters 
(represented by triangles in the figures) and 1 receiver (represented by an x). The plus sign (symbol +) represents the 
location estimation of the receiver considering the RSS of the emitters. The 3 emitted signals cover all the room, so the 
signal coverage is the same for both figures. In figure 1, the emitters are close to each other, which makes having 3 
signals almost as good as having only 1, resulting in a large location estimation error (above 1 meter). Dispersing the 
location of the emitters, as shown in figure 13, result in better conditions to estimate the receiver location. In this 
example, the theoretical location estimation error is reduced from around 1 meter in figure 12 to mere 4 cm in figure 13. 
Taking this into account, the second problem consists in finding the best location of n signal emitters so that the location 
estimation error of a receiver is minimized for all possible receiver locations. 

Both of the previously described problems can be seen as combinatorial optimization problems. The number of 
possible combinations is, however, extremely large, and would take too long for a computer to calculate and evaluate 
all of the possible combinations. Since the finding of the optimal solution is very hard, in these classes of problems one 
generally accepts a near optimal solution. Metaheuristic algorithms deliver this near optimal solution and have been 
successfully applied to combinatorial optimization problems. One such algorithm is the Genetic Algorithm. 
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Fig. 11. Low precision of the location estimation when the signal sources are too near to each other. The estimation is approximately 1 m away 
from the true location of the receiver. 

 

Fig. 12. High precision of the location estimation when the emitters are scattered around the target location. In here, the estimated location is 

only 4 cm away from the true receiver location. 

B. Genetic Algorithms 

A Genetic Algorithm (GA) is a population based metaheuristic search algorithm [17][18]. Its basic operation is 
depicted in Algorithm 1. A GA starts by creating an initial population P0 and evaluating it. Then, a new population P0’ 
is created by selecting parents from the original population P0 and applying several different operators to them. These 
operators are usually crossover and mutation operators. The execution of the GA proceeds to the evaluation of P0’ and 
then combine P0 with P0’, replacing the previous generation of the population (P0) with a new population generation 
(P1). Since the population size is usually immutable during the algorithm execution, this combination is basically a 
selection of a few members from the old population P0 with the remaining slots being filled with elements of the new 
population P0’. Selection, modification, evaluation and replacement operations repeat for many generations until a 
stopping condition is reached.  

 

Alg. 1. Pseudocode of a Genetic Algorithm 

n=0 
P0 = generateInitialPopulation() 
evaluate(P0) 
while not stoppingCondition() do 
 Pn’ = selectParents(Pn) 
 Pn’ = applyVariationOperators(Pn’) 
 evaluate(Pn’) 
 Pn+1 = selectNewPopulation(Pn, Pn’) 
 n = n + 1 
end while 
return the best found solution 



 

110 

 

110 

With GA being a metaheuristic algorithm, all these operations must be tuned to the problem it will solve. The 
adaptations that need to be made consist in the definition of the solution representation for the GA, the evaluation and 
scoring of a solution (also called the fitness calculation), the initial population creation method, the mutation and 
crossover operators, the parent selection and the population replacement method. 

C. Solution representation 

In both emitter placement problems, a solution consists simply in the location of a set of signal emitters. These 
locations are chosen from a larger set of all possible locations. Visually, this set can be represented as in figure 14, which 
shows a small part of a site plant. In this figure, 12 possible locations for signal emitters are presented, with a signal 
emitter being placed in the 6th location (from left to right). A solution like the one presented can be encoded in a binary 
string of length n, where n is the number of possible emitter locations. In this bit string, 0 indicates an unused possible 
location while 1 indicates a used location. The solution in figure 14 would then be encoded as ‘000001000000’.  

 

Fig. 13. Possible signal emitter locations near a wall. Light gray triangles are the possible locations for the placement of signal emitters, while 

the dark triangle is a placed signal emitter. 

Encoding a solution as a string of bits present a few advantages: they are easy to encode and decode, they don’t 
require large amounts of memory and they have a fixed size, independently of the number of signal emitters placed. 
This encoding also facilitates the mutation and crossover operations. Also, this encoding makes it easy to calculate the 
number of possible emitter placement combinations: 2n different combinations. This exponential growth of the number 
of combinations is what makes it impossible to find the optimal solution using classic search techniques, such as brute-
force searching. 

D. Solution fitness calculation for the coverage problem 

The evaluation of a solution regarding the coverage problem is based on a few input parameters: the area and shape 
to cover, the minimum signal strength detected by a receiver, the power of the signal emitter and the properties of the 
transmission media. We define the area and shape as a set of rectangular areas. While this does not allow all possible 
shapes (circular shapes are impossible with this setup), it does allow a good approximation of them while simplifying 
the calculations. 

 

Fig. 14. An irregular shaped area approximated by 3 rectangular areas. 

For the calculation of the area covered by a single signal emitter, we model the power decay, in dB, of the transmitter 
with 
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where P0i is the power at distance d0, d(xi,xj) is the Euclidean distance between xi and xj, b is a path-loss exponent, xi and 

xj  are the location of the emitter and the signal power measurement location respectively, and ij  is a zero mean 

Gaussian random variable with variance ij
2. We ignored the noise and assumed always zero for ij  while calculating 

the coverage of a signal emitter. We also reduce the signal power whenever it crosses a wall by 2 dB per 15 cm of wall. 
We considered all walls to be brick walls and this value was found experimentally. 

 

Fig. 15. Graphical representation of the coverage of 2 signal emitters. Small dots indicate that no signal reaches it, larger dots indicate that the 

area is covered by at least one signal (larger dots means more signal coverage). 

Figure 16 shows a graphical representation of the coverage of 2 signal emitters. In this figure, it is easy to see the 
effects of walls in the signal power, as well as the overlap of two different signals. After determining the area covered 
by each and every signal emitter, we calculate the average number of signals in every location in the area (each location 
is represented by a dot in figures 15 and 16), as well as the minimum coverage and the standard deviation. The fitness 
value can then be calculated by: 

 f = map(avg, curve) + stddev + max(ideal–min, 0) 

where avg is the average number of signals at every location, curve is the fitness curve shown in figure 17, map(a,b) is 
a function that maps the value a to the corresponding value in the curve b, stddev is the standard deviation of the 
coverage, max(a,b) is the mathematical maximum between a and b, ideal is the ideal coverage, and min is the minimum 
coverage found at all possible locations. The fitness curve shown in figure 17 allows the guidance of the Genetic 
Algorithm by having a clear preference for more signals than ideal over less signals than ideal. Also, the stddev and the 
max(ideal-min) are penalties applied to the fitness. The first one will guide the GA to solutions where there is no 
deviation (all locations have exactly the same number of signals covering the location), while the second one heavily 
penalizes the solution if there are still locations where the ideal number of signals is not reached. 

 

Fig. 16. Fitness curve for the average of the coverage. The horizontal axis is the average number of signals in each location, while the vertical 

axis is the fitness value. 

E. Solution fitness calculation for the error minimization problem 
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When considering the minimization of the location estimation error, a different evaluation of possible solutions must 
be used. Firstly, let us define how the location is estimated. Given a received signal strength s sent from a specific emitter 
i, according to (16) the distance d of the receiver from the emitter is 






10

0

0

10





sP i

dd   

where P0i is the power measured at d0 from emitter i,  is a zero mean Gaussian random variable with variance ij
2 and 

d is the distance of the receiver to the emitter i, given a signal strength of s. Since this distance d depends on the unknown 
value of  , and the signal strength read by the receiver may contain oscillations, one can assume that the receiver is 

located somewhere in an area defined by an inner circle of radius d- and an outer circle of radius d+, both centered 

around the emitter, with  being a configurable reading precision error. If another signal is read by the receiver, then the 
receiver location can be restricted to the intersection of the calculated circular areas of both emitters. As the number of 
signals increase, so does the intersected area decreases. After all the intersections are made, the estimated location is 
calculated to be the geometrical center of the resulting area. Figure 18 illustrates this process by showing the inner and 
outer circles of two received signals, as well as their intersection and estimation of the receiver’s location. After 
estimating the location, its error can be easily calculated as the Euclidean distance between the receiver’s real location 
and the receiver’s estimated location. For calculus simplification, we discretize the space into square cells and consider 
only the center of each cell. This discretization can also be seen in figure 18, with each dot corresponding to the center 
of each cell. 

 

Fig. 17. Estimation of the location (+) of a receiver (x) using the signal strength of 2 different emitters. 

With the estimated location error calculated for each cell, the solution fitness is simply the average of all the errors. 
Since the error is a Euclidean distance, there will be no negative errors, so an ideal solution would have a fitness of 0, 
meaning no error at all in any location. 

F. Mutation operators 

As described in algorithm 1, the new generation of a population is obtained by applying different operators to 
selected parents of the current generation. One of those operators is the mutation operator.  

During the mutation, each gene can, according to a given probability, maintain its value, flip it or swap it with another 
gene. Figure 19 shows an example of a gene’s value flip, with the third gene flipping its value from 1 to 0. A gene flip 
will either increase or decrease the solution’s number of emitters. Figure 20 shows an example of a gene swap, where 
the first gene is swapped with the third gene. A gene swap always maintains the number of emitters, but changes their 
location. The gene swaps always occur between a gene with value 1 and a gene with value 0. This condition guarantees 
that no unnecessary work is done by the genetic algorithm in the reevaluation of an identical solution. 
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Fig. 18. Example of a gene value flip. On top is the original solution, on bottom is the mutated solution. 

 

Fig. 19. Example of a gene swap. On top is the original solution, on bottom is the mutated solution. 

In the coverage problem, the number of emitters varies and must be able to grow or shrink as necessary, thus we use 
the bit flip mutation. In the error minimization problem, however, the number of emitters is fixed, so the gene swap 
mutation is applied.  

G. Crossover operators 

A crossover operator is responsible for recombining the chromosomes of parent solutions into offspring solutions. 
This process will hopefully combine the best parts of the parents into fitter offspring for the problem. 

As with the mutation operators, we must consider crossover operators that may change the number of emitters for 
the coverage problem and operators that do not change the number of emitters for the error minimization problem. We 
use a one-point crossover operator in the coverage problem. This operator will randomly select one point on two different 
parent solutions, split them at that point and then recombine them into two other offspring solutions. Since the point of 
crossover is selected blindly, the crossover may increase or decrease the number of emitters in the solution. Figure 21 
exemplifies a one-point recombination where the top offspring has less emitters and the bottom offspring has more 
emitters than the parent solutions 

 

Fig. 20. One-point crossover. On the left are the parent solutions while at the right are the offspring generated by crossing over the parents. 

For the error minimization problem, the number of emitters is constant, so a different approach has to be used for 
the crossover. For this problem, the crossover creates offspring solutions where each emitter is placed from a location 
of one of the parents. This maintains the number of emitters, while still hopefully use the best parts of each parent 
solution. Figure 22 shows an example of the application of this crossover to solutions with 2 emitters. 

 

Fig. 21. Error minimization problem crossover. This crossover maintains the number of ones in the offspring by selecting ones from any of the 
parents 

In both problems we select the parents to crossover using a Binary Tournament selection. In a binary tournament 
selection two solutions are randomly selected from the population and the best of them (according to their fitness value) 
is chosen as a parent for the crossover. Doing the selection twice, we get both parents needed for a crossover. 

0 0 1 1 0 0 0 1 0 0 0 0

0 1 0 0 1 0 0 0 1 1 1 0

crossover point

0 0 1 1 0 0 0 1 0 1 0 0

0 1 0 0 1 0 0 0 1 0 1 0

 

0 0 1 1 0 0

0 0 0 1 0 0

 

0 0 1 1 0 0

1 0 0 1 0 0
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5. Experiments and Results 

To evaluate the proposed Genetic Algorithms, we created two different test scenarios. The first test scenario is a 
long L-shaped corridor of 15 m by 10 m, 3 m wide. In this scenario, the emitters can be placed near the walls with a 25 
cm minimum distance between them. Figure 23 shows a map of this corridor along with all the possible emitter locations. 
The second test scenario is based on the plant of the Telecommunications Institute office at the Polytechnic Institute of 
Leiria and, as such, represents a real building. In this last scenario we allow the emitters to be near the walls with a 25 
cm minimum distance between them as in the last scenario, but we also allow them to be in the ceiling through the 
middle of each room. Figure 24 shows the map used in this scenario. 

 

Fig. 22. Test scenario 1: a L-shaped corridor. 

 

Fig. 23. Test scenario 2: the TI office at Polytechnic Institute of Leiria. 

We used the genetic algorithms we described for both placement problems and for the two test scenarios. The 
parameters we used for the genetic algorithm in each problem is detailed in table I. The values of these parameters where 
chosen using some well-known values, and fine-tuned while experimenting [19]. The large population size was chosen 
to have some diversity in the population and it proved to be enough according to our results. We found the stopping 
criteria of 20000 evaluations to be sufficient to converge the results, as shown by Fig. 27. The selection operator (Binary 
Tournament) puts pressure on the convergence, while not falling into premature convergence in our experiments, thus 
being employed. Mutation and crossover operators used were the ones explained in previous sections and were 
specifically tailored to this problem. The mutation probability was chosen so that, on average, only one bit is mutated 
per individual, thus not making large changes to each individual. Further studies are required to determine if and how 
these parameters can be improved. We believe that the convergence speed may be improved, although the rest of the 
results are technology dependent. Also, we have discretized the space for the measurements into 50 cm by 50 cm cells. 
Each measurement was simulated in the center of each cell. Because of the stochastic nature of the genetic algorithm, 
we ran each experiment 50 times to get statistically valid results. 
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Fig. 24. Convergence of the coverage problem genetic algorithm in the first test scenario. 

 

TABLE I - PARAMETERS USED IN THE GENETIC ALGORITHMS 

Parameter Coverage Error 
Minimization 

Population size 100 100 

Stopping 
Criteria 

20000 Evaluations 20000 Evaluations 

Selection 
Operator 

Binary Tournament Binary 
Tournament 

Mutation 
Operator 

Bit flip Bit swap 

Mutation 
Probability 

1/number of possible 
emitter locations 

1/number of 
emitters 

Crossover 
Operator 

One-point crossover Random emitters 
from parents 

Crossover 
probability 

0.5 0.5 

 

Regarding the coverage problem, the experiment consisted in trying to find the minimum number of emitters to get 
coverage of 16 signals in each cell. In the first scenario, the GA converged to an ideal solution in every execution after 
around 12000 solution evaluations. Figure 25 shows the best, worst and average solution fitness of the 50 runs.  

In the minimization of the location estimation error, we instructed the algorithm to place 16 emitters. Figure 26 
shows how the average estimation error improved as more solutions were tried by the genetic algorithm. The figure 
shows that, on average, the location estimation improves in an order of 20%. For the location estimation we set a power 
reading error of ±5dB and even with this large error, the algorithm placed the emitters to reduce the estimation error to 
an average of 15cm and a maximum estimation error of 43cm. 

In the second scenario, the results are about the same. Figure 27 shows that, again, the GA finds optimum solutions 
in the coverage problem, although it took more evaluations (and thus, more generations) to reach those solutions. 
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Fig. 25. Evolution of the solutions in the minimization of the estimation error. 

Even though the optimum solution for the minimization of the estimation error with 16 emitters is unknown to us, 
the GA still shows that it will find good solutions. Figure 28 shows the improvement of the solutions as generations 
pass. 

 

Fig. 26. Convergence of the coverage problem genetic algorithm in the second test scenario. 

 

Fig. 27. Fitness of the solutions found during the minimization of the estimation error for the second test scenario. 

Although the genetic algorithms appear to give good results, they can be further improved. One such improvement 
is to join both of the search objectives into a single algorithm, creating a multi-objective algorithm. Such an algorithm 
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will show how the number of emitters affects the precision of the location estimation and also if and when the law of 
diminishing returns affects that precision. 

6. Conclusions 

By creating a testbed for a new low cost Indoor Positioning System based on distributed sensor networks, we have 
to come to encouraging results. 

We have shown that the OPDG codes, used in a TDM-CDMA network with a FM modulation, provide better results 
in an IPS scenario than the ZigBee system, due to its natural immunity to multipath interference.  

The new approach with the Autocorrelation Crest Factor shows a way to find a linear function of the distance 
between the FM receiver and a pair of transmitters, which lowers the error of the IPS. Likewise, the introduction of the 
genetic algorithm to find the optimum FM transmitter positioning helps in lowering the error and the cost of the IPS. 

Results shown in this paper suggest that our IPS system can be further developed to prove itself a viable alternative 
to existing solutions based on other distributed sensor network technologies. 
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Abstract – The use of wireless communication in determining the location of a sensor within a sensor network enables a 

number of added conveniences. Mobile sensors can use information such as time-of-arrival and wireless signal strength of 

the received signal to determine its location relative to the stationary sensors. Using such information within indoor 

scenarios, as opposed to outdoor scenarios, becomes more problematic due to the added accuracy requirements. Coding 

sequences used in the wireless communication can greatly affect the estimation of location. This paper deals with comparing 

the use of perfect sequences to the use of mainstream coding sequences for the purpose of indoor location estimation of 

wireless sensors. A new approach has been used to show that the use of perfect sequences delivers accuracy improvement 

over mainstream solutions. 

1. Introduction 

As opposed to outdoor scenarios, determining the location of sensors in indoor scenarios require much higher 
accuracy due to the added number of obstacles. While solutions like the GPS (Global Positioning System) work well 
for outdoor scenarios, where location accuracy is not as delicate, restrictions like line-of-sight (LOS) and an error of 3 
meters render them unusable in indoor scenarios. 

A different approach is needed in order to meet the requirements of the indoor scenario. Different types of positioning 
methods have been considered [36] to solve the positioning problem. Choosing the correct model for measurements is 
of utmost importance in order to achieve the highest accuracy. The positioning method used in this paper uses an 
approach based on the received signal strength (RSS) method. Furthermore, the performance of communication systems 
using Code Division Multiple Access (CDMA) [54] and Orthogonal Frequency Division Multiple Access (OFDMA) is 
directly related to the coding sequence used, especially in noisy environments, where perfect autocorrelation and cross-
correlation properties of the sequences are essential for code detection and synchronization. The importance of these 
properties is pronounced even more in indoor scenarios, where multipath interferences become an issue. 

In this paper we will compare and test the behavior of novel OPDG (Orthogonal Perfect DFT Golay) [55] coding 
sequences to the widely used ZigBee sequences (Pseudo Noise code used in wireless sensor networks [56]) as well as 
other coding sequences such as Golay [57] and Chu [58]. 

A small TDM-CDMA (Time Division Multiplexing - Code Division Multiple Access) wireless sensor network 
(WSN) will be created using low cost FM (Frequency Modulation) transmitters and receivers inside an indoor scenario. 
Then, wireless communication and RSS estimation method will be used to test and compare coding sequences, using 
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the same code length and testing environment. RSS estimation method will be extended using a novel approach with 
the autocorrelation crest factor (ACCF) ratio as described in [6]. 

2. Indoor Positioning System Model 

A major issue in wireless communication is multipath interference (MPI). Radio waves can bounce off certain 
objects, thus taking multiple paths to reach their destination. These multiple paths can create delays on the receiver side, 
and thus cause interference in communication. The problem of multipath interference is even more pronounced in indoor 
scenarios, where large amount of objects and the lack of line-of-sight greatly increase the chances of having interference 
in communication. 

To reduce the problem of MPI, perfect sequences can be used in the transmission. Furthermore, if these sequences 
are orthogonal for any delay between them, other common interferences can also be reduced such as multicarrier 
interference, inter-symbol interference, and the multiple access interference. 

This section will cover the methods used to determine the position of a wireless receiver inside an indoor positioning 
system (IPS) scenario. Firstly, autocorrelation, cross-correlation, perfect sequences and the autocorrelation crest factor 
will be explained. Afterwards, an indoor scenario will be defined, set up and explained. 

A. Autocorrelation and cross-correlation 

A sequence x is a periodic sequence with a period M when, where x(n) = x(mod(n, M)) where mod(a, b) is the 
remainder of a divided by b. 

Let x[n] with n = 0, 1, 2, …, M – 1, be one of the M values of a periodic sequence x. The DFT (Discrete Fourier 
Transform) of x[n] is defined as 
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where WM = exp(-j2π/M), k = 0, 1, 2, …, M - 1, with j = 1  for convenience of notation. The IDFT (Inverse Discrete 

Fourier Transform) of X[k] is then given by 
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Using (1) and (2), the periodic cross-correlation between two different sequences x(r) and x(s) is defined as 
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Alternatively, it can be defined as 
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where the superscript * denotes the complex conjugate. 
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The autocorrelation of a periodic sequence can also be calculated using (4), when r = s. 

When a periodic sequence has an autocorrelation of zero for any non-zero delay, the sequence is said to be a perfect 
sequence. Additionally, the two different sequences are called orthogonal if the cross-correlation between them is zero 
for a null delay. Because of these correlation properties, orthogonal perfect sequences are ideal to be used in several 
applications, such as radar systems, sonar systems, communication synchronization systems, etc. 

B. OPDG code 

The OPDG coding sequences are an essential part of our IPS system. Its perfect autocorrelation properties make 
them a good candidate to be used in asynchronous communication systems, such as DS-CDMA (Direct-Sequence Code-
Division Multiple Access), or any other system where the signal reception may be contaminated by the multi-path 
problem. The properties of the OPDG coding sequences allow for enhanced detection of codes in spite of MPI, as 
described in detail in [6]. In this new work, we present more measurements in a real two-dimensional scenario with 
different code families and using low cost hardware. 

C. Autocorrelation Crest Factor 

In calculating the efficiency of autocorrelation, an autocorrelation crest factor can be used as a parameter. The 
autocorrelation crest factor (ACCF) is defined as a ratio of the maximum peak Apeak and the root mean square of the 
autocorrelation function Arms as: 

 ACCF =
Apeak

Arms
 

When the autocorrelation is perfect the ACCF of a periodic sequence of length L is equal to L . 

D. Indoor Positioning System 

In order to accurately determine the indoor position of an entity in closed space, a number of problems need to be 

solved. One of the problems is the MPI, which we believe can be mitigated using the OPDG codes. 

To test out our theory we set up a number of indoor scenarios, starting with a simple scenario with two emitters, and 

then moving to the 2D scenario with four emitters. 

For the first scenario we placed two FM emitters at a distance of 13 meters away, as shown in Fig. 1. Each transmitter 

was transmitting one code from a code pair on the frequency of 106.9 MHz, which has been chosen to minimize the 

problem of MPI due to the absence of commercial FM radio emitters in the measurement zone. The receiver, a Raspberry 

Pi with a FM receiver module, was moved from one emitter to the other, and measurements were taken every 0.625 

meters (~1/4 wavelength). Measurements were done by simultaneously calculating the ACCF for both codes in the pair, 

after which a ratio was made between the two obtained values. The dots in between the emitters denote the positions of 

the measurements taken. Encouraging values were obtained and the scenario was fit into a two-dimensional area. 

To setup the two-dimensional scenario, we used 4 emitters, which were placed in the corners of a large classroom 

filled with tables and chairs with metallic legs. The codes were transmitting in pairs, as depicted in Fig. 2 and all emitters 

were put on corner tables. 

The emitters were placed 6.8 and 11.5 meters apart, and the pairs were transmitting the signals interchangeably. The 
receiver, in this case, was moved around a number of points in the middle of the scenario. Positions closer to the emitters 
(less than a 1.25 m) were avoided in order to minimize the near-field effect of the emitters which is a well-known issue 
[59]. Measurements were taken in these points in a similar fashion as the ones in the scenario with two emitters. For 
each point, two ACCF ratios were measured. The first ratio was a ratio of the first and second code of the first pair. The 
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second was the ratio of the first and second code of the second pair. Each of the ratios were measured and calculated 30 
times, and average values were taken in account for further calculations in order to decrease the error of measurement. 

 

 

Figure 1: Two antenna position estimation scenario 

 

 

Figure 2: Indoor positioning scenario with 4 emitters 

3. Results and Discussion 

The results obtained in testing the scenario in Fig. 1 reveal some good OPDG properties, as can be seen in Fig. 3. 
The results show that, using the linear trend line of the ACCF1/ACCF2 ratios, we are able estimate the position of the 
receiver between the two emitters and calculate the error. OPDG codes have shown better properties in this scenario by 
trend line with a higher absolute slope, which can be used to approximate the position between the two emitters. 

To estimate the position of the receiver between the two emitters the trend line equation y has been used. By doing 
that, the x value in the equation would provide us with the estimated location. A few measurements that are close to the 
emitters were discarded in order to avoid the near-field effect. 

By calculating the average estimation error using the trend line equation and the ACCF1/ACCF2 ratio for each of 
the code family, we can determine the efficiency of the code family. For the measurements displayed in Fig. 3, average 
indoor location estimation errors can be seen in Table 1. 
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Figure 3: Two emitter scenario results for Golay, ZigBee, OPDG and Chu 

All codes used are real orthogonal codes and they have been selected with the same length of 128 chips. The 128-
length ZigBee codes have been constructed using a Hadamard transform based on 32-length ZigBee codes. All codes 
have been transmitted with the same power in our TDM-CDMA system with a mono FM transmission at 106.9 MHz. 
The transmission rate for all different codes was 4000 samples/sec. 

Results show that using the OPDG codes we were able to estimate the position of the receivers between two emitters 
with an error near 3.5 meters (almost the same error as the commercial GPS). This shows better estimation properties 
than ZigBee, Golay and Chu codes, which had an error higher than 7, 13 and 14 meters respectively. The error averages 
were calculated without discarding the estimated distances that were higher than our real scenario (classroom distances). 

The same method can be used to estimate positions inside a 2D scenario with 4 emitters, as displayed in Fig. 2. 
Since we are using 4 emitters, the transmitters emit the codes in pairs in order to cover the whole scenario. 
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In order to estimate the location of the receiver, we used the average ACCF ratios for each one of the pairs to estimate 
the power coverage area to that specific location. The location process was calculated using a representation of emitter 
influence radiuses. An example of the triangulation process for the influence radii can be seen in Fig. 4. Shaded areas 
represent the influence radius of each of the emitters on the two-dimensional scenario. In our calculation we have 
assumed that the influence radius of the second emitter in the pair reaches half way to the other emitter. By setting those 
influence radii to fixed values, we can use the ACCF1/ACCF2 ratio of that pair to estimate influence radius of the other 
emitter in the pair. If we define the distance between the two emitters in the pair as d, then the influence radius (IR) of 
the second emitter in each of the pairs would be half the distance between those emitters, as can be seen in Fig. 4. 

TABLE 1: AVERAGE INDOOR LOCATION ESTIMATION ERROR BETWEEN TWO EMITTERS - DIFFERENT CODE FAMILIES 

Code Family Average estimation error 

Golay 13.48 m 

Chu 14.28 m 

ZigBee 7.99 m 

OPDG 3.67 m 

 

 

Figure 4: Approximate emitter influences and estimation calculation representation 

TABLE 2: INFLUENCE RADII OF EMITTERS 

Emitter Influence radius 

Pair 1 – Code 1 IRe11
= IRe12

+
ACCF -1

ACPMe11e12



Pair 1 – Code 2 IRe12
=

1

2
de11e12



Pair 2 – Code 1 IRe21
= IRe22

+
ACCF -1

ACPMe21e22



Pair 2 – Code 2 IRe22
=

1

2
de21e22


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The IR distance used in Table 2 is in function of exy, where x indicates the number of the pair and y indicates the 
emitter number inside the pair. ACCF represents the calculated ACCF1/ACCF2 ratio of the pair in the measuring 
position, and ACPM represents the change of ACCF1/ACCF2 ratio values per meter when moving from one emitter in 
the pair to the other (calculated from the linear equation of the trend line). 

After calculating the influence radii of all the emitters, we use the intersection points of the radii to estimate the 
position of the receiver. The position is estimated using a method similar to the triangulation process [60], by calculating 
the intersection of the lines that pass through the intersection points, as shown in Fig. 4. E marks the estimated position 
and R marks the real position of the receiver. 

By testing this scenario, we were able to calculate the error estimation for each of the code families using the 
calculation methods above. The results have shown that OPDG codes display better ratio of average localization 
estimation errors (2.78 m) and the number of successful estimations (25.9%), as presented in Table 3. Unsuccessful 
estimations occur when emitter influence radiuses do not intersect. In spite of presenting a lower error (2.27 m), the Chu 
sequences reveal the lowest successful estimation (7.4%) inside the classroom. 

4. Conclusions 

Results of testing the indoor position estimation properties of the new OPDG codes have led to encouraging results. 
We have shown that the OPDG coding sequences, used in a TDM-CDMA network with FM modulation, have shown 
superior location estimation properties when compared to other well-known coding sequences such as ZigBee, Golay, 
due to their natural immunity to multipath interference. 

TABLE 3: AVERAGE INDOOR LOCATION ESTIMATION ERROR IN A SCENARIO WITH FOUR EMITTERS - DIFFERENT CODE FAMILIES 

Code Family Average estimation error Successful estimations (inside the classroom of Fig. 2) 

Golay 4.29 m 19/81 (23.5%) 

Chu 2.27 m 6/81 (7.4%) 

ZigBee 2.90 m 23/81 (28.4%) 

OPDG 2.78 m 21/81 (25.9%) 

Besides the location estimation accuracy, OPDG codes have shown to be good candidates for usage in this scenario 
by displaying one of the highest successful estimation rates within the test area (even higher than Chu codes). 

We have also shown that improving our IPS scenario could give way to a viable low cost alternative to existing 
indoor positioning systems based on the signal strength of a FM signal. Future work will show how to improve the 
location precision and success rate by deploying additional pairs of emitters, by mitigating the negative effects of the 
standing wave, as well as introducing a more realistic indoor scenario with some walls between each emitter pair. 
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Appendix 3 – Patent 

 

ABSTRACT 
 

STANDING WAVE CANCELLATION WIRELESS TRANSMITTER, RECEIVER, SYSTEM AND 

RESPECTIVE METHOD 

 

The present invention is enclosed in the area of wireless communication systems, generally 

directed towards the problem of multipath interference, and specifically towards mitigating the 

effect of the standing wave in indoor positioning systems. 

The present invention includes a standing wave cancellation wireless transmitter which is 

configured to, for each signal with wavelength  to be transmitted, transmit a first wave with 

wavelength  and transmit a second wave with wavelength  and a shift equal to half the 

wavelength . 

It is also an object of present invention a standing wave cancellation wireless receiver which it is 

configured to perform the average of a first wave with wavelength  and a second wave with 

wavelength  and a shift equal to half the wavelength , creating a single received signal. 

It is yet part of the present invention a system which comprises at least one of said wireless 

transmitters and at least one of said wireless receivers, as well as a method implemented by said 

transmitter and receiver. 

 

 

DESCRIPTION 
 

STANDING WAVE CANCELLATION WIRELESS TRANSMITTER, RECEIVER, SYSTEM AND 

RESPECTIVE METHOD 

 

FIELD OF THE INVENTION 
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This invention is enclosed in the area of wireless communication systems, generally directed 

towards the problem of multipath interference, and specifically towards mitigating the effect of 

the standing wave in indoor positioning systems. It relates to the impact of standing waves in 

wireless communication and proposes a solution to reduce the negative impact of standing waves 

when wireless communication is used in indoor positioning systems (IPS). 

 

PRIOR ART 

 

A common occurrence in the field of wireless communication is the standing wave. In 

environments that contain many obstacles, such as closed spaces, the wave that is being sent 

from the transmitter to the receiver propagates through space and gets reflected from different 

kinds of surfaces. These reflections cause the receiving end to receive multiple instances of the 

same wave, some of them arriving directly, while others arriving after being reflected from a 

certain object. This occurrence is commonly called multipath interference (MPI), and represents 

a common issue in indoor positioning systems that use wireless technology. 

 

The MPI has another side-effect, which is called the standing wave. When a wave 

gets reflected from a surface, it generates another wave that propagates back in the opposite 

direction. If one puts a receiver somewhere between the transmitter and the reflective surface, 

detecting the strength of the signal would vary on the position in which the receiver is placed 

because of the standing wave effect. Certain positions, particularly those that are half wave length 

apart, would show no oscillations in the signal strength when measured multiple times. These 

points along the medium are called nodes (N). Some other points along the medium would yield 

different results, showing high oscillations in signal strength. The points that contain the highest 

amount of oscillations are called the antinodes (AN). 
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In order to achieve accurate and consistent indoor positioning estimation using 

signal strength, inside closed spaces, mitigating the effect of the standing wave is one of the 

problems that needs to be addressed. Currently, a technical solution to this problem does not 

exist, and this patent introduces a way to solve the problem of the standing wave when wireless 

communication is used in indoor positioning systems. 

 

The Portuguese patent number 106755 (J. Pereira , H. A. Silva , Codificador e 

descodificador eletrónico de sinais ortogonais e perfeitos) has been presented to cancel 

multipath interferences through a CODEC of orthogonal perfect DFT of Golay codes (OPDG). 

However this CODEC does not address the standing wave issue. The OPDG autocorrelation peak 

follows the standing wave fluctuation.   

 

SOLVED TECHNICAL PROBLEMS 

 

As detailed above, the present invention is directed into the problem of multipath 

interference, more specifically to standing wave cancellation.  

 

Another problem is the displacement speed of the standing wave. When too slow, real-

time measurements cannot be achieved, and as a result such a system is not usable in a real-

world application.   

 

The present invention proposes to correct the slow motion standing wave problem. This 

is achieved by devices and methods that swiftly alternate a primary standing wave with a second 

one that is generated in opposite phase. 

 

Therefore, this invention provides a solution to a well-known problem in wireless 

communication indoor scenarios, where multipath interferences may generate standing waves 

between reflective obstacles. These are a common issue in indoor scenarios that in turn makes 
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such an approach unfeasible when considering indoor positioning system accuracy. Until now this 

problem remains unsolved as no solution has ever been presented. 

 

 

SUMMARY OF THE INVENTION 

 

It is an object of the present invention a standing wave cancellation wireless transmitter 

configured to, for each signal with wavelength  to be transmitted, transmit a first wave with 

wavelength  and transmit a second wave with wavelength  and a shift equal to half the 

wavelength . 

 

Referring to Figure 1, it depicts a graph displaying the effect of the standing wave on the 

indoor positioning system estimation. The graph also displays the standing wave effect mitigation 

used in the standing wave cancellation wireless transmitter, standing wave cancellation wireless 

receiver and methods of the present invention. The standing wave effect has a major impact on 

the accuracy of location estimation in the radio wave mechanism, due to the constant change in 

amplitude of the wave that affects signal strength readings, and thus, location accuracy. To 

mitigate the effect of the standing waves, hardware-based techniques are implemented to 

generate two different standing waves. 

 

The first standing wave is a wave with a full wavelength of λ. The second standing wave 

also has a wavelength of λ, but starts with a shift of λ/2. The curve gained from summing up the 

two waves proves to be better for usage, for example, in location estimation scenarios when 

considering that the X-axis is the distance and the Y-axis is the power of the signal received. It 

may be used both in radio frequency waves and ultrasonic waves. 
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It is also object of the present invention a standing wave cancellation wireless receiver 

which is configured to perform the average of a first wave with wavelength  and a second wave 

with wavelength  and a shift equal to half the wavelength , creating a single received signal. 

 

Also as said for the standing wave cancellation wireless transmitter, this receiver enables 

the mitigation of the effect of the standing waves, as seen in the graph of Figure 1, by combining 

said two received waves. 

 

Also, the present invention includes a standing wave cancellation wireless system which 

comprises at least a standing wave cancellation wireless transmitter as previously defined and at 

least a standing wave cancellation wireless receiver as previously defined. 

 

Additionally, it is also an object of the present invention a method for the cancellation of 

standing wave in wireless communications implemented by said system, which comprises a 

transmission stage and a receiving stage, wherein: 

• In the transmission stage a standing wave cancellation wireless transmitter, based in a a 

single signal, transmits a first wave with wavelength   and a second wave with wavelength   and 

a shift equal to half the wavelength   and  

• In the receiving stage, a standing wave cancellation wireless receiver, for a received first 

wave with wavelength  and a received second wave with wavelength   and a shift equal to half 

the wavelength , calculates their average on power or amplitude, obtaining a single signal. 

 

DESCRIPTION OF DRAWINGS 

 

The features of the invention believed to be innovative are set forth with particularity in 

the claims. The invention itself, however, may be best understood by reference to the following 

detailed description of the invention, which describes exemplary embodiments of the invention, 

taken in conjunction with the accompanying drawings, in which:  
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Figure 1 – a graph displaying the effect of the standing wave on the indoor positioning 

system estimation, along with the effect of the mitigation used within the system; 

Figure 2 – a schematic view of the electric circuit used to mitigate the standing wave 

effect in the radio wave transmission.  

Figure 3 – a schematic view of the electric circuit used to mitigate the standing wave 

effect in ultrasound transmission. 

Figure 4 – a graph displaying linear estimations of signal strength trend lines gained from 

measuring signals from different pairs of transmitters after the standing wave cancelation 

process, in a range of approximately 12 meters. It is gained from measuring signals from different 

pairs of transmitters. This graph contains a number of lines equal to the number of emitter pairs 

inside an example scenario (not limited to three pairs). 

 

 

DETAILED DESCRIPTION OF THE INVENTION 

 

The most general configurations of the present invention are defined in the Summary of 

the invention. These configurations may be further detailed. 

 

The standing wave cancellation wireless transmitter may further comprise a signal 

generator suitable for creating a signal with wavelength , an output and a relay switch, so 

connected that the double pole double throw (DPDT) relay switch alternatively connects the 

signal generator through a first path generating a first wave and to a second path to the output, 

wherein the second path contains a coaxial cable suitable for shifting the signal in half the 

wavelength , creating the second wave. It consists in a possible implementation of the previously 

defined transmitter, delivering two waves, in which the second wave is shifted in half the 

wavelength. 
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When the relay switch is in the initial position, the signal generator transmits a first wave 

directly to the output using the shortest path possible. The signal generator may also control the 

relay switch, so when it switches the relay switch to the alternate position, the signal passes 

through a coaxial cable of a certain length, and then to the output. This causes the half wavelength 

delay generated by the correct length of the coaxial cable and generates the second wave. The 

dashed line surrounding all of the elements besides the antenna represents a metallic enclosure 

that serves as a reflector and isolator of the radio signal contained inside the electric circuit. 

 

The transmitter of the present invention may implement radio or ultrasound 

communications. 

 

Specifically for radio communications, said signal generator is a radio signal generator, 

the relay switch is a DPDT relay switch and the output an antenna. The half wavelength delay 

generated by the correct length of the coaxial cable (the "Coax" displayed in Fig. 2) generates the 

second radio wave. A radio wireless transmitter according to the present invention uses the relay 

switch to emit two radio waves in time-division multiplexing, thus mitigating the effect of the 

standing wave by summing up the two waves before processing them. The dashed line in Fig. 2 

surrounding all of the elements besides the antenna represents a metallic enclosure that serves 

as a reflector and isolator of the radio signal contained inside the electric circuit. 

 

Therefore, in a preferred embodiment relative to radio communication, the wireless 

transmitter of the present invention is further configured to implement time division multiplexing 

which, as said, mitigates the effect of the standing wave by summing up the two waves before 

processing them. 

 

Specifically for ultrasound communications, said signal generator is an ultrasonic signal 

generator and the relay switch is a single pole double throw (SPDT) relay switch and the output a 

speaker. Similarly to what was referred to radio communications and considering Fig. 3, which 
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displays a hardware-based solution that implements the standing wave mitigation for ultrasound 

waves, the ultrasound transmitter is connected to a Single Pole Double Throw (SPDT) relay switch, 

which enables the signal generator to switch between two audio outputs. One of the outputs is a 

regular λ wavelength ultrasound wave. The other audio output outputs the same ultrasound 

wave, but with a shift for λ/2. 

 

Considering the wireless receiver of the present invention, said average performed to 

the first and second received waves, it is the average of the amplitude or power of said first and 

second waves. 

 

Also, the wireless receiver of the present invention may implement radio or ultrasound 

communications. 

 

Specifically for radio communications, it comprises an antenna and radio wave 

transducer means. 

 

Specifically for ultrasound communications, it comprises a microphone and ultrasound 

transducer means. 

 

The system defined in Summary of the invention may include a wireless transmitter and 

a wireless receiver as defined in any of previously defined embodiments. 

 

Also, the method defined in Summary of the invention may also be implemented by this 

system, including its previously referred embodiment. This method may still be further detailed 

in that it comprises the following steps: 

 a signal with wavelength  is generated in a wave generator; 

 said signal is inserted into a first path and into a second path by means of a relay switch; 
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 in said second path, the signal is passed through a coaxial cable which shifts it in half the 

wavelength ; 

 both the signal from the first path and the signal from the second path are wirelessly 

transmitted through the output. 

 

Also, in any of the embodiments of said method, the signal may be a radio signal or an 

ultrasound signal. 

 

The present invention also includes the use of the previously referred system, in any of 

its embodiments, in positioning systems, preferably indoor positioning systems. 

 

CLAIMS 
 

1. Standing wave cancellation wireless transmitter characterized in that it is 

configured to, for each signal with wavelength  to be transmitted, transmit a first wave with 

wavelength  and transmit a second wave with wavelength  and a shift equal to half the 

wavelength . 

 

2. Standing wave cancellation wireless transmitter according to the previous claim 

characterized in that it comprises a signal generator suitable for creating a signal with wavelength 

, an output and a relay switch, so connected that the DPDT relay switch alternatively connects 

the signal generator through a first path generating a first wave and to a second path to the 

output, wherein the second path contains a coaxial cable suitable for shifting the signal in half the 

wavelength , creating the second wave. 

 

3. Standing wave cancellation wireless transmitter according to claim 1 characterized 

in that the signal generator is an ultrasonic signal generator and the relay switch is a single pole 

double throw (SPDT) relay switch and the output a speaker. 
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4. Standing wave cancellation wireless transmitter according to claim 1 characterized 

in that the signal generator is a radio signal generator, the relay switch is a double pole double 

throw (DPDT) relay switch and the output an antenna. 

 

5. Standing wave cancellation wireless transmitter according to the previous claim 

characterized in that it is further configured to implement time division multiplexing. 

 

6. Standing wave cancellation wireless receiver characterized in that it is configured 

to perform the average of a first wave with wavelength  and a second wave with wavelength  

and a shift equal to half the wavelength , creating a single received signal. 

 

7. Standing wave cancellation wireless receiver according to the previous claim 

characterized in that said average is the average of the amplitude or power of said first and 

second waves. 

 

8. Standing wave cancellation receiver according to any of the claims 6-7 

characterized in that it comprises an antenna and radio wave transducer means or in that it 

comprises a microphone and ultrasound transducer means. 

 

9.  Standing wave cancellation wireless system characterized in that it comprises at 

least a standing wave cancellation wireless transmitter as defined by any of the claims 1-5 and at 

least a standing wave cancellation wireless receiver as defined by any of the claims 6-8. 

 

10. Method for the cancellation of standing wave in wireless communications 

implemented by the system of claim 9 characterized in that it comprises a transmission stage and 

a receiving stage, wherein: 
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 In the transmission stage a standing wave cancellation wireless 

transmitter, based in a a single signal, transmits a first wave with wavelength  and a 

second wave with wavelength  and a shift equal to half the wavelength , and  

 In the receiving stage, a standing wave cancellation wireless receiver, for a 

received first wave with wavelength  and a received second wave with wavelength  and 

a shift equal to half the wavelength , calculates their average on power or amplitude, 

obtaining a single signal. 

 

11. Method according to the previous claim characterized in that the transmission 

stage further comprises the following steps: 

 a signal with wavelength  is generated in a wave generator; 

 said signal is inserted into a first path and into a second path by means of 

a relay switch; 

 in said second path, the signal is passed through a coaxial cable which shifts 

it in half the wavelength ; 

 both the signal from the first path and the signal from the second path are 

wirelessly transmitted through the output. 

 

12. Method according to any of the claims 10-11 characterized in that the signal is a 

radio signal or an ultrasound signal. 

 

13. Use of the system of claim 9 in positioning systems, preferably indoor positioning 

systems. 
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Figure 42 

 

 

Figure 43 
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Figure 44 

 

 

Figure 45 

 


