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ABSTRACT

Understanding the structure and reactivity of amino acids is necessary for 

the investigation of functionality and reactivity of proteins and peptides in 

biological systems. It has been determined that amino acids tend to be zwitterions 

at neutral pH. Previous electrospray ionization mass spectrometry (ESI-MS) 

studies have shown that gas-phase analysis of these amino acids can provide a 

means to determine the structure preference of a residue (i.e., charge solvation vs. 

zwitterion form).

Computational investigations using the computer program Gaussian 03 

were set up to theoretically model these ion-molecule interactions. Structural 

optimization and energetic information were obtained for both the [amino acid- 

M+ and [amino acid-M+-neutral] complexes. These data can be compared to the 

experimental ESI-MS data to corroborate findings.

A series of ion-molecule reactions were used with ESI-MS to gather 

pertinent information. This analysis can be performed by introducing a volatile 

neutral species into the quadrupole ion trap of the mass spectrometer and allowing 

a reaction to occur between the neutral and an [amino acid-M+] complex. Rates 

determined from these kinetic experiments can then be used to correlate the 

structure and reactivity of the gas-phase [amino acid-M+] complex. Structural
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studies have confirmed that Pro is zwitterionic in the gas phase. Ala, Arg, and 

Lys are also likely to be zwitterions in the gas phase. Both Gly and His are found 

to be charge-solvated in the gas phase.

It is also possible to analyze the reactivity of aromatic amino acids in a 

similar manner. Using pseudo-first-order kinetics, the equilibrium constant, Keq, 

for these reactions was determined. From this value, the bond energy (AH) of the 

reaction was calculated. Aromatic amino acid reactivity studies have shown that 

there is a linear correlation between the theoretical stabilization energy (bond)

2 ‘benergy of [A. A.-H+Ca ] with benzene and the proton affinity of the amino acids. 

Furthermore, experimental and theoretical experiments have shown that there is a 

direct correlation between the observed reaction efficiency and the theoretical 

stabilization energy of [A.A.+Cu++toluene] complexes. Observed bonding 

energies for the [A. A.+Cu++toluene] complexes were calculated to be between 

approximately 96 and 107 kJ mol"1.
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CHAPTER 1

INTRODUCTION

The study of biomolecules is a rich and growing field due to interest in a 

variety of areas: life science, medicine, pharmaceuticals, and polymer technology 

are just a few examples. The broad interest surrounding biomolecules makes it 

essential to develop a better understanding of the interactions, reactivity, and 

structures of peptides. This information can further be applied to proteins, which 

are much more complex biomolecules. Often, these peptide and protein 

interactions can be quite complex. The study of amino acids is essential in order 

to gain insight into their function in larger peptides and proteins.

Biomolecules

The Amino Acids

There are twenty common a-amino acids that compose peptides and 

proteins. Peptides are low  molecular weight organic polymers o f  amino acids 

(less than 50 amino acids long), many of which are functionally important to 

biological processes.1,2 For instance, the peptide insulin is responsible for the
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regulation of sugar levels in blood.1 Proteins are composed of larger amino acid 

chains (up to hundreds of thousands of Daltons). Each a-amino acid consists of a 

chiral carbon atom to which a basic amino (-NH2) group, an acidic carboxyl (- 

COOH) group, an R-group side chain, and a hydrogen atom are attached (Fig. 1). 

The different R-group side chains of the amino acids provide variation in the 

chemical properties of the molecules, allowing for differences in binding energies, 

charge solvation, activity, and structure.

R O

\  //
CH C

/  \  
h 2im o h

Figure 1. The general amino acid structure. The amino group is attached to the 
a-carbon. R represents the individual side-chain group that each amino acid 
contains. The twenty natural amino acids are found in the L-configuration.

Appendix A shows the general structures of the twenty natural a-amino 

acids. Glycine (Gly) is the simplest amino acid, where the R-group is hydrogen. 

However, these R-groups can be more complex, including hydroxyl groups (e.g., 

serine3, threonine 4), sulfur groups (e.g., cysteine [Cys], methionine [Met]), and 

aromatic rings (e.g., phenylalanine [Phe], tyrosine [Tyr], tryptophan [Trp]). There 

are four main categories that the amino acids can be broken into at physiological

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3
pH: nonpolar hydrophobic, polar neutral, acidic, and basic. The size and 

composition of these side chains can affect the coordination capabilities, structure, 

and activities of these amino acids and the biomolecules in which they are 

contained.5

The nonpolar amino acids are the common amino acids with alkyl-chain 

R-groups (alanine, isoleucine, leucine, and valine), proline (which technically is 

an a-imido acid), and the aromatics phenylalanine and tryptophan. These 

nonpolar amino acids are often found inside the protein, where they are less likely 

to interact with the aqueous cellular environment.6

Polar, neutral amino acids often form hydrogen bonds with water through 

their R-groups. The polar, uncharged amino acids include asparagine, cysteine, 

glutamine, glycine, threonine, tyrosine, and serine. The hydrogen-bonding 

interactions with water generally make these amino acids more soluble in water 

than nonpolar amino acids. A few exceptions do apply: glycine does not contain 

an R-group that can hydrogen-bond to water, and tyrosine has the lowest 

solubility in water of all the twenty amino acids.6

Acidic amino acids have R-groups which contain a carboxyl group. The 

two amino acids that fall into this category are aspartic acid and glutamic acid. At 

pH 7, these amino acids have a net negative charge. Many proteins that bind 

metal ions for structural purposes often contain one or more aspartic acid or 

glutamic acid side chains.6
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Finally, the basic amino acids have side chains that are positively charged 

at pH 7. These include arginine, histidine, and lysine. Often, arginine and lysine 

participate in electrostatic interactions in proteins, while histidine participates as a 

proton donor or accepter in enzyme reactions.6

Besides the twenty common amino acids, there are other amino acids that 

occur rarely in proteins or are derivatives of amino acids used for other biological 

functions. For example, the amino acids hydroxylysine and hydroxyproline are 

less common components of proteins but can be found in connecti ve tissues in 

collagen and gelatins. The amino acid histamine is derived from the 

decarboxylation of histidine. Histamine is released by mast cells (cells found in 

loose connective tissue) during allergic reactions.6 Additionally, these rarely 

occurring amino acids can be found in other biological organisms, such as plants 

and bacteria. Table 1 provides some examples of a few of these amino acids.

Table 1

Examples of Some Less Commonly Occurring Amino Acids.7

Amino Acid Biological Function
Carnitine Transports fatty acids to the mitochondria
Citrulline Detoxifies and eliminates ammonia in the liver
Cystine An oxidation product of cysteine; found in hair keratin, insulin, 

and digestive enzymes
Ornithine Functional in the urea cycle and a precursor to other amino acids
Taurine Functions as a neuroinhibitory transmitter and bile acid 

metabolism
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Peptides and Proteins
5

Peptides and proteins are formed by the condensation reaction of amino 

acids, where the loss of water occurs as a peptide bond is formed (Fig. 2). The 

beginning of the chain is considered to be the N-terminus, where the free amino 

group is found. The end of the chain is the C-terminus, where the last amino acid 

contains a free carboxyl group. The peptide bond forms the rigid backbone of the 

protein, which provides the primary structure of the protein. The backbone has a 

repeating sequence of amide bonds (-NH-CO-). Proteins contain secondary and 

tertiary structures, and proteins with multiple peptide chains also contain a 

quaternary structure.5

O o O R '

R c  C ^  -  R '------c ----- ------------~ 1!- Q  R ----- C ----- C ----- --------C ----- C 0 2

I \  I \  I H
n h 2 o h  n h 2 o h  n h 2

Figure 2. The condensation reaction of amino acids. A peptide bond is formed 
between the amino group of one amino acid and the carboxyl group of another. 
The loss of a water molecule occurs as the bond is formed.

Hydrogen bonding, both inter- and intramolecular, is the basis for the 

secondary structure of the protein. Intermolecular hydrogen bonds occur between 

carbonyl and NH groups in the form C =0—H-N.1 Intramolecular hydrogen
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bonding occurs when the carbonyl group of an amino acid of one peptide 

hydrogen bonds to a NH group of an amino acid of another peptide. The bond 

strength of one such bond is approximately 5 kcal/mol. Compared to a typical 

covalent bond, this is rather weak. However, peptides and proteins are capable of 

forming numerous interchain hydrogen bonds, making the occurrence of these 

bonds significant.1

The secondary structure of the protein consists of the a-helix and the 13- 

sheet. The a-helix forms when an intramolecular hydrogen bond forms between 

the carboxyl-group oxygen of one amino acid and the amine hydrogen of the 

amino acid four positions away. Each amino acid in the helix participates in 

hydrogen bonding, which helps to strengthen the structure. The R-groups of the 

amino acids are positioned outwardly to prevent contortion of the helical core.1,5

The P-sheet forms when intermolecular hydrogen bonding occurs between 

the carboxyl-group oxygen of one amino acid and hydrogen on another peptide 

chain. In the P-sheet structure, the amino acids are bound in the same plane, with 

their R-groups alternating above and below the plane of the sheet.1,5 Any 

unstructured parts of the secondary structure are referred to as either loops or 

random coils.5

The tertiary structures of proteins arise from various interactions between

the R-groups o f  the peptide chain: ionic bonds, van der Waals forces, hydrophobic 

bonds, hydrogen bonds, and cation-7t interactions. Hydrophobic amino acids 

typically orient themselves towards the interior of the protein to minimize
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interaction with water, whereas hydrophilic amino acids are more likely to be 

oriented on the surface of the protein.5 There are two main classes of tertiary 

structures for proteins: fibrous and globular.1

Fibrous proteins are contained in the structural materials of bio-organisms. 

These are the proteins contained in keratins (skin, hair, nails), collagens (cartilage, 

blood vessels, tendons), and silks (webs, cocoons). It has been found that keratins 

and collagens are mainly helical in nature, whereas the silks are composed largely 

of (3-sheets. Amino acids with nonpolar R-groups and disulfide cross-link 

capabilities are the main components of fibrous proteins. These features provide 

fibrous proteins with a rigid, insoluble structure.1

Globular proteins are typically spherical. They function as enzymes, 

hormones, transport proteins, or storage proteins. Although the globular proteins 

are mostly helical in nature, the large amount of amino acids with polar or ionic 

side chains allows for a water-soluble, spherical structure.1 Table 2 summarizes 

common biologically relevant fibrous and globular proteins.

Quaternary protein structure occurs when multiple subunits aggregate to 

form high molecular weight proteins. Aggregation of the subunits can prevent 

nonpolar amino acids from interacting from the aqueous cellular environment, 

and it can also act as a biological control mechanism. For instance, a protein may 

only be active in an aggregated form. H em oglobin is an example o f  a quaternary 

protein. It consists of four subunits that participate in oxygen transport in red 

blood cells.1
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Table 2

1 2Examples of Biological Functions of Fibrous and Globular Proteins. ’

Fibrous proteins Function

Collagens Tendons, animal hide, cartilage

Elastins Blood vessels, ligaments
Fibrinogen Blood clotting

Keratins Skin, feathers, wool, hooves, silk, nails

Myosins Muscle tissue
Silks Webs, cocoons

Globular proteins Function

Hemoglobin Oxygen transport in blood cells

Myoglobin Oxygen transport in muscle

Immunoglobins Immune response

Insulin Hormone used to control glucose metabolism

Ribonuclease Enzyme used to control RNA synthesis

Proteins are biological workhorses. Almost all cellular activity is reliant 

on the function of proteins. The largest class of proteins is enzymes. Enzymes 

function as catalysts in biological reactions and are often named for the specific 

biological reaction that they operate on. Regulatory proteins are used to mediate 

the function of other active proteins. Certain proteins are required to move a 

specific species from one area to another. These proteins are called transport 

proteins and can be responsible for activities such as moving oxygen in the lungs 

to muscle tissue or transferring essential nutrients into the cell. Storage proteins 

provide “holding tanks” for essential nutrients.6
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Not all proteins are stationary. Contractile and motile proteins have the 

ability to move. They function in cell division, muscle contraction, and cell 

motility processes. On the other hand, some proteins are more stationary. 

Structural proteins maintain biological structures by strengthening and protecting 

cells and tissues.6

Proteins can also interact with each other for activation and functionality. 

Scaffold proteins (also known as adaptor proteins) have segments which are able 

to recognize and bind structural elements of compatible proteins. These protein- 

protein interactions can be used to assemble multiprotein complexes which are 

often used in coordinating and communicating various cellular signaling 

mechanisms.6

Protective and exploitive proteins take an active role in cell defense. 

Mostly these proteins are antibodies or immunoglobins which are specifically 

designed to recognize foreign molecules. Also included in this category are 

blood-clotting proteins (fibrinogen), neurotoxic proteins (bee venom, ricin), and 

bacterial toxins (diphtheria, cholera). Specific examples for all the classes of 

proteins are give in Table 3.6

To summarize proteins, amino acids are joined together through a 

condensation reaction. These peptide chains continue to grow, forming proteins. 

The secondary structure o f  the protein develops as hydrogen bonding occurs 

between the amino acids in the chain. Further interactions between the amino 

acids of the protein cause a tertiary structure to arise. Finally, the tertiary peptide
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units can aggregate to form a larger quaternary structure. The size and 

composition of these proteins greatly affect all of the structural aspects previously 

mentioned, as well as functional characteristics, which can complicate the 

fundamental understanding of these species. This is why it is important to study 

individual amino acids so that the fundamental understanding of these can be 

applied to larger species.

Table 3

Classes of Proteins and Specific Biological Examples.6

Protein Class Representative Examples
Enzymes Ribonuclease; trypsin; catalase; alcohol dehydrogenase.
Regulatory Insulin; somatotropin; thyrotropin.
Transport Hemoglobin; serum albumin; glucose transporter.
Storage Ovalbumin; casein; ferritin; phaseolin; zein.
Contractile/motile Actin; myosin; tubulin; dynein; kinesin.
Structural Collagen; a-keratin; elastin; fibroin; proteoglycans.
Scaffold Grb 2; crk; she; stat; IRS-1.
Protective/ exploitive Immunoglobins; thrombin; fibrinogen; diphtheria toxin.

The Biological Elements

There are four major categories of elements available to living organisms: 

bulk elements, macrominerals and ions, trace elements, and ultratrace elements. 

As can be discerned from their names, they are found in various concentrations in 

nature. The bulk elements consist of the components of the amino acids
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themselves: H, C, N, O, P, and S. These bulk elements are readily available to 

bio-organisms. The bulk elements O, N, C, and H are responsible for 96% of the 

weight of a human body. The remaining 4% of the human body weight is 

provided by the essential and nonessential elements.8

The essential and nonessential elements are composed of the 

macrominerals, trace elements, ultratrace elements and ions. The macrominerals 

are the species Na, K, Mg, Ca, and Cl and the ions are P043' and S 042'.5 These 

macrominerals are contained in the body at 100 mg to 1 g levels.8 Trace elements 

are the metals Fe, Zn, and Cu.5 These are found in both microgram and milligram

o . . .
levels. The ultratrace elements require sensitive detection techniques and can be 

both metals and nonmetals; the metals can include the elements Mn, Mo, Co, Cr, 

V, Ni, Cd, Sn, Pb, and Li and the nonmetal elements F, I, Se, Si, As, and B.5 

Many of these species are obtained through diet.

' There are minimum daily intake requirements of these elements required 

to maintain appropriate elemental levels in the body. The macrominerals are 

typically required at higher than 100 mg per day. Trace elements require much 

lower levels, at approximately one milligram per day. The ultratrace elements are 

required in such small quantities that there are no general guidelines for their 

dietary intakes.8 Although there are recommended daily intake requirements, the 

human body is capable o f  maxim izing the use o f  the elemental species.

The uptake of iron by the human body occurs in the stomach. As iron is 

acquired, it is often conserved and recycled by the body in a closed system. This
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is because the uptake of iron is relatively inefficient. Iron levels in the body must 

be carefully optimized to ensure continued biological function. The major loss of 

iron by the body is blood loss. Figure 3 depicts the closed system of iron in the 

body.9

Metals can play many roles in biological processes. The Group I and 

Group II metals affect the protein structure, molecular charge, and osmotic 

balance of the system. Transition metals with single oxidation states can also 

affect the protein structure while also functioning as protein activators. Multiple 

oxidation- state transition metals serve as electron carriers, oxygen transport 

mediators, and activators at catalysis sites in enzymes. Thus, there is a wide 

variety of roles that metals attain in these interactions.5 Table 4 identifies some 

of these metals alongside their respective biological roles within humans.
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Transferrin
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Figure 3. Iron uptake and conservation (adapted from Berdanier).9 Most of the 
iron is recycled through the system, while the uptake of iron is mainly triggered 
through blood loss.
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Table 4

Specific Metals, the Biological Roles They Play, and Dietary Sources8,10-13

Element
Composition 

in a 70 kg 
Human

Role Sources

Calcium 1 kg Bone and tooth structure; trigger; 
charge carrier; blood clotting; 
hormone control.

Milk, cheese, broccoli, 
salmon, shellfish, kale, 
beans.

Cobalt ~3 mg Oxidase; alkyl group transfer; 
vitamin B 12.

Liver, shellfish

Copper 72 mg Oxidase; dioxygen transport; 
electron transfer.

Liver, lobster, cherries, 
almonds, raisins, meat.

Iron 4.2 g Oxidase; dioxygen transport and 
storage; electron transfer.

Liver, meat, clams, figs, 
dates, spinach, egg yolks.

Lithium 7 mg — —

Magnesium 19 g Structure; hydrolase; isomerase; 
enzyme activation.

Chocolate, nuts, bran, 
instant coffee, beans, peas

Manganese 12 mg Carbohydrate and lipid 
metabolism.

Nuts, blueberries

Nickel 15 mg {Suggested) Arginase activator; 
membrane conformation; DNA 
and RNA structure.

Cereal, vegetables

Potassium 140 g Charge carrier; essential for 
osmotic balance.

Fruits, nuts, fish, instant 
coffee, bran

Silver 2 mg — —

Sodium 100 g Charge carrier; essential for 
osmotic balance; glucose 
regulation.

Table salt, preserved 
foods, MSG.

Zinc 2.3 g Enzyme function; hormone 
component; wound healing.

Oysters, crab, meat, nuts, 
poultry, eggs, cereal.

Biomolecules and Metals

Metals can be coordinated by amino acids and are expected to form 

inclusion complexes within proteins. Approximately 40% of known proteins and 

enzymes contain complexed metal ions.14 These proteins can be divided into two 

distinct classes: metalloproteins and metal-binding proteins. Metalloproteins have
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relatively high-affinity binding interactions between the metal ion and the protein. 

These interactions are strong enough to resist breaking during sample isolation 

and dilution. Metal-binding proteins have weaker affinity interactions, so the 

metal ion is easily removed from the species. In general, monovalent ions (Na+ 

and K+) are weakly coordinated to proteins. Species such as Ca2+ and Mg2+ are 

more stably bound than the alkali metal ions; however, transition metals are found 

to have the strongest organometallic interactions.14 Often, amino acid side chains 

are the ligating atoms of the biomolecule.11 Table 5 identifies some preferred 

ligands for metal ion binding.

For example, the zinc finger protein coordinates Zn2+ using four ligands: 

two histidine and two cysteine residues.11 It is important to note that there is

9 +binding specificity for the Zn ion; that is, there is a preference for the protein to

• 9 -1-  9 -1-bind a Zn ion over a Ca ion. A possible explanation for this observation is that 

metal binding and interaction with biomolecules are largely governed by ligand 

basicity (i.e., hard/soft acid-base properties).

The Hard and Soft Acid-Base Principle

A theory, called the hard and soft acid-base (HSAB) principle, was 

developed by Pearson in the early 1960’s to rationalize the interactions that are 

observed between different chemical species.15 The principle states that “hard 

acids prefer to coordinate to hard bases and soft acids to soft bases.”16 That is, a
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hard ligand is most likely to interact with a hard metal cation while a soft ligand is 

more likely to interact with a soft metal cation.5

Table 5

Metal Ions and Their Preferred Ligand Binding Groups.9

Metal Ion Ligand Groups
K+ Singly charged nitrogen donors; neutral oxygen ligands

Mg2+ Carboxylase; phosphate; nitrogen donors

O + Similar to Mg2+, but less binding affinity
Fe2+ -SH; NH2; carboxylates (less affinity than NH2)
Fe2+ Carboxylate; tyrosine; -NH2; porphyrin
Co3+ Similar to Fe3+
Cu+ -SH groups of cysteine
Cu2+ Amines»carboxylates

Due to their high charge and/or small electronic radii, hard metal cations 

are unable to share much electron density with ligands. Hard ligands are also 

unable to share their electron density, causing a stabilized interaction with hard 

cations due to electrostatic effects. Conversely, soft metal cations are more likely 

to share electron density, participating in covalent bonds with soft ligands. It is 

important to note that it is also possible to have intermediate ions and ligands that 

can conditionally act as either soft or hard acids or bases (Table 6).11’15

Amino acids can be identified as either hard, soft, or intermediate as 

follows: the hard amino acids are glutamic acid, aspartic acid, tyrosine, serine, 

and threonine; the intermediate amino acid is histidine; and the soft amino acids
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are cysteine and methionine.11 To clarify, since the amino acid tyrosine is a hard 

ligand, it would be likely to interact more favorably with K+, according to HSAB 

theory. This is because both species are less prone to share their electron density 

and will participate in a strong electrostatic interaction. However, the interaction 

of metals and biomolecules can also be affected by the concentration, ion size, 

and charge of the metal species.5

Table 6

HSAB Identifications for Relevant Species.

Hard Soft Intermediate
H+, Li+, Na+, K+ 

Mg2+, Ca2+, Mn2+ 
Fe3+ 

Glutamic Acid 
Aspartic Acid 

Tyrosine 
Serine 

Threonine

Cu+, Ag+ 
Cysteine 

Methionine

Co2+, Ni2+, Cu2+, Zn2+ 
Fe2+ 

Histidine

There is some concern as to the feasibility of the HSAB theory in gas- 

phase situations. Previous in silico (i.e., computational) studies have shown a 

significant number of instances when the HSAB theory fails in the gas phase;17 

specifically, for the species HF, H+, Li+, Na+, and Ag+.17'19 Shoeib et al. have 

suggested that the interactions of ions and neutrals in the gas phase are 

predominantly directed by electrostatics.17 Only when the ion is sufficiently 

solvated in the gas phase is the HSAB theory found to apply.17 To better
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understand the importance and complexity of these metal-protein species, it is 

prudent to identify some representative examples (Table 7).

Table 7

Common Metal-Protein Species.6,8’9

Metal Protein

Calcium Calbindin, calmodulin, parvalbumin, troponin C, 
casein, osteocalcin.

Copper Cytochrome oxidase, tyrosinase, metallothionein.

Iron Ferritin, cytochrome oxidase, nitrogenase, 
hemoglobin, cytochrome C, peroxidase, catalase.

Magnesium Hexokinase, glucose-6-phosphatase.
Potassium Aldosterone synthetase; pyruvate kinase.

Nickel Urease.
Sodium Endothelin I.

Zinc Carbonic anhydrase, alcohol dehydrogenase, 
metallothionein, DNA polymerase.

The zinc finger is a protein segment containing a zinc cation bound by 

four amino acids (Fig. 4). Zinc fingers are often found to participate in 

transcription regulation, where the role of zinc is structural. The tetrahedral 

binding of the zinc cation is responsible for the protein folding appropriately. A 

complete loss of binding is observed when a coordinating cysteine or histidine is 

replaced by a different amino acid residue. A review of the literature suggests that 

zinc has been chosen for these protein motifs not only because of its availability, 

but also due to its lack of redox activity. This lack of redox activity protects DNA
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from potential damage (as would be likely to occur with species such as 

Fe(II)/Fe(III) or Cu(I)/Cu(II)).5

Although the zinc finger provides an example of a metal cation in a 

structural role, it is also possible to find examples of metals which have a more 

active role. For instance, many copper-containing compounds are responsible for 

electron transfer (azurin, plastocyanin) reactions, oxygenation reactions 

(tyrosinase), and oxygen transport (hemocyanin). Often, these proteins and others 

like them require the metal cation to be coordinated for functional activation. A 

tight regulation of cations is required to moderate the activity of these types of 

proteins.5

Serious medical conditions can result from a lack of control over metal- 

protein interactions (Table 8). Not only can the structure of the protein be 

disrupted, but the activity of the protein can also be inefficiently controlled.

Many of these conditions can prove to be fatal. For those that are not fatal, some 

of the symptoms surrounding problematic metal-protein interactions can be 

alleviated by medicinal treatments.
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00Figure 4. The zinc finger motif (image from the Molecular Biology Web Book ). 
The Protein Data Bank (PDB) ID for this motif is 1SP1. Note that the cation is 
coordinated by two His and two Cys residues.
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Table 8

Medical Disorders Related to Metal-Protein Malfunction.9

Metal ion Medical disorder

Calcium
Osteoporosis (deficiency) 
Rickets (deficiency) 
Hypertension (deficiency)

Copper Wilson’s disease (excess) 
Menke’s disease (deficiency)

Cobalt B12 deficiency (deficiency)

Iron Anemia (deficiency) 
Hemochromatosis (excess)

Zinc Dwarfism (deficiency)
Retinitis pigmentosa (rhodopsin binding deficiency)

Bioinorganic Compounds in Medicine

There are two main types of metallic compounds used in medicine: 

chemical elements necessary for life and nonessential (sometimes toxic) elements 

used for specific medicinal treatments. The elements essential for life are 

obtained through diet. Nonessential elements are introduced for diagnostic or 

therapeutic purposes. For example, cis-platin (a platinum-containing drug) is 

used as an anticancer agent, calamine (a zinc-containing ointment) is used to treat 

skin conditions, and auranofin (a gold-containing therapeutic) is used as an 

antiarthritic.5 The large scope of metal-protein interactions -  really, metal-amino 

acid interactions on a smaller scale -  makes the analysis of these systems integral 

to the advancement of the fundamental understanding of biological processes.
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This has further potential to impact the pharmaceutical and medical research 

arenas.

Understanding the entire scope of biomolecule—metal ion interactions is 

complicated due to the large number of amino acids contained in biocompounds 

and the degrees of freedom of metal ions available for coordination. There are 

many combinations of amino acids and subsequent interactions possible. As the 

size of the peptide chain increases, so does the number of interactions. For 

instance, a peptide that is composed of eight individual amino acids can be 

arranged in 40,320 different ways.1 It is sensible to investigate the interactions 

that occur with single amino acids; specifically, the interactions that occur 

between the amino acids and biologically relevant metal ions.

Analysis Methods

There are multiple methods available to analyze the metal—amino acid 

interactions. These include optical spectroscopy, resonance, radiation, 

electrochemical, and spectrometry techniques (Table 9).11 It is also possible to 

perform computational analysis of these interactions using computer modeling 

systems available through such programs as Gaussian or Spartan.5
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Table 9

Analysis Methods.

Method Techniques

Optical

Electronic absorption 
Circular dichroism
Raman spectroscopy 
Luminescence spectroscopy

Resonance Nuclear magnetic resonance (NMR) 
Electron paramagnetic resonance (EPR)

Radiation Extended X-ray adsorption fine structure 
Mossbauer spectroscopy

Electrochemical Cyclic voltammetry 
Differential pulse polarography

Spectrometry
Mass spectrometry 
Flow tube 
Ion mobility

Many of these techniques provide important information about these 

bioinorganics. Nuclear magnetic resonance (NMR) can provide structural 

information about these species. NMR is often used to determine the carbon- 

hydrogen interactions of organic molecules.2 While operating under optimized 

conditions, NMR can be quite sensitive. However, these instruments are 

expensive and require specially equipped rooms for operation. In addition, the 

sample being analyzed must be pure in order to obtain clean NMR spectra. This 

requirement is often inconvenient for biological analysis, where the structure of 

the species may change due to environmental factors.

As with NMR analysis, many of these techniques require that the species 

are treated so that they are no longer in their native or near-native state. An 

example of this is the need for a crystallized sample for X-ray structure analysis.
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The crystallization process removes the sample from its native environment. This 

can alter the overall structure of the species, even causing proteins and peptides to 

denature. Although information about the composition of the amino acids in 

proteins and peptides can still be found, most of the structural information of the 

species is no longer available. Analysis techniques like mass spectrometry (MS) 

and in silico theoretical calculations provide a relatively inexpensive solution to 

the aforementioned problems.

Mass Spectrometry

There are a wide variety of commercially available mass spectrometers

and ionization sources available for biomolecule analysis. The different

combinations of instruments and sources provide a wide range of applications to

researchers: exact mass calculations, fragmentation patterns, structures, binding

affinity, thermodynamics, kinetics, and protein/peptide modifications are just

some of the possible topics that can be studied. Additionally, MS techniques have

a wide range of “real-world” applications including explosives detection at airport

security, semiconductor analysis, determination of steroid use in athletes, food

purity analysis, etc. It is important to note that each instrument and source must be

carefully selected to optimize data quality, cost, and acquisition time factors.

Table 10 summarizes the various MS instruments and Table 11 summarizes

•  21ionization sources commercially available for these instruments.
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Table 10

<y 1
Mass Spectrometers Available for Bioinorganic Investigation.

Mass Analyzer Mass Range 
(Da)

Resolution Dynamic
Range

Cost

Magnetic sector 15,000 200,000
Quadrupole 4,000 Unit *** *
Quadrupole ion 
trap (QIT)

100,000 30,000 *** *

Time-of-flight
(TOF)

Unlimited3 15,000 *** **

Fourier 
transform—ion 
cyclotron 
resonance (FT- 
ICR)

>10b >10b **

a. T h e  m a s s  ra n g e  o f  a  T O F  is  th e o r e t ic a l ly  u n l im i te d ;  h o w e v e r ,  l im i ta t io n s  in  s o f tw a re  a n d  h a rd w a re  
p r e v e n t  th i s  in  a c tu a li ty .

* R e p r e s e n ts  re la t iv e  a m o u n ts .
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Table 11

Common Ionization Methods Available for Mass Spectrometers.21

Ionization
Method

Ion
Type

Sample Type Mass
Analyzer

Pros Cons

Electron ionization 
(El)

M+'
fragments

Nonpolar compounds 
Some polar organics

Quadrupole
QIT
Sector

Can be coupled to GC 
Good for small molecules

Fragmentation can be 
extensive

Chemical ionization 
(Cl)

[M+H]+
[M-H]-
M'

Nonpolar compounds 
Some polar organics

Quadrupole
QIT
Sector

Can be coupled to GC 
More stable ions than with 

El

Cannot ionize 
nonvolatiles

Thermospray [M+H]+
[M-H]-
[M+NH4]+

Polar compounds QIT Can be coupled to LC 
Soft ionization technique 
Good for small nonvolatiles

Limited sensitivity

Fast atom
bombardment (FAB)

[M +H f
[M-H]‘

Peptides, proteins, lipids, 
carbohydrates, nucleotides, 
oligonucleotides, etc.

Sector Can be coupled to LC, CE 
Soft ionization technique

Requires a liquid 
matrix

Atmospheric pressure 
chemical ionization 
(APCI)

[M+H]+
[M-H]‘

Polar compounds 
Drugs

Quadrupole
QIT
Sector

Can be coupled to LC 
Good for low mass 

compounds

Water and solvent 
molecule clusters 
can form

Electrospray ionization 
(ESI)

[M+nH]n"
[M-nH]”'

Peptides, proteins, lipids, 
carbohydrates, oligosaccharides, 
oligonucleotides

Quadrupole
QIT
Sector
TOF
FT-ICR

Can be coupled to LC, CE 
Continuous flow operation 
Good for high and low 

masses

The liquid matrix can 
greatly affect 
ionization

Matrix-assisted laser
desporption/ionization
(MALDI)

[M+H]+
[M-H]‘

Peptides, proteins, lipids, 
carbohydrates, oligosaccharides, 
oligonucleotides

TOF, sector, 
QIT, FT- 
ICR

Can be coupled to LC, CE 
Soft ionization technique

Requires a matrix 
Large matrix 

background
GC: Gas chromatography LC: Liquid chromatography CE: Capillary electrophoresis to



MS Analysis of Noncovalent Complexes
27

The analysis of noncovalent complexes (biomolecule—metal ion 

interactions) is essential to protein chemistry. There are many mass spectrometry 

techniques available to analyze these noncovalently bound species: collision- 

induced dissociation (CID), blackbody infrared dissociation (BIRD), ligand 

exchange experiments (both in solution and in the gas phase), ion mobility mass 

spectrometry, and gas-phase ion-molecule reactions are just a few examples.

CID, also known as collisionally activated dissociation (CAD), is a method 

which can be used to determine the dissociation or ion fragmentation energies of 

noncovalent complexes in the gas phase. In CID experiments, the intact precursor 

ions are collisionally activated and subsequent unimolecular dissociation occurs. 

Atoms of an inert gas, such as helium or argon, are used to collide with the 

precursor ions, exciting them to higher energy states. These fragments of the

9 1precursor ions are then analyzed by a detector.

There are two main types of CID: low-energy collisions and high-energy 

collisions. Low-energy CID is typically performed in triple quadrupole and ion- 

trapping instruments, where the collision energy is in the 1-100 eV range. High- 

energy CID experiments are run in sector and TOF/TOF instruments and involve 

collision energies in the keV range. Mid-range collision energies on the order of 

10-1000 eV are not commonly used for CID experiments.23
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Due to the energy differences employed during low-energy and high- 

energy CID experiments, different fragmentation patterns of precursor ions can be 

observed. This can be seen in Fig. 5. The m/z ratio of the fragments obtained using 

CID can be used to determine the initial structure of the precursor ion. For peptide 

and protein analysis, high-energy CID experiments usually show more side-chain 

fragmentation than is displayed with low-energy CID.23

Quadrupole ion trap mass spectrometers have been used with CID in a 

variety of studies to analyze dissociation mechanisms of mononucleotides,24 ion- 

ligand bond energies and ion fragmentation energies, ' ion solvation effects,

•  •  •  • T1molecular recognition of amino acids, and structures of amino acid-metal ion

• •  T9 •species in the gas phase. It is also common to use a quadrupole ion trap with CID

TT T4experiments to analyze noncovalent complexes ’ and peptide fragmentation. 

Guided ion beam mass spectrometers have been used for threshold CID experiments 

to investigate cation-7i interactions,36'41 structure and binding energies of copper and 

acetone,42 noncovalent interactions of various species with alkali metals,43’44 metal­

ion interactions with biological systems,45 and binding affinities of alkali metal ions 

to neutrals.46’47 An advantage of using CID experiments to analyze various species 

is that many commercially available mass spectrometers are capable of performing 

this type of analysis; triple quadrupoles, quadrupole ion traps, and FT-ICR analyzers 

are examples.
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In addition to structural information, CID experiments can be used to 

determine binding energies of noncovalent complexes in the gas phase. 

Dissociation cross sections of noncovalent complexes are obtained as a function 

of collision energy. The minimum energy required to dissociate the species is 

called the threshold energy. The threshold energy is directly related to the 

binding energies of the noncovalent complexes.36'38,40,41,46

Variable-energy CID is also used to compare the binding energies of 

species with similar sizes and structures.33,48 These experiments are performed 

by increasing the applied CID voltage until complete dissociation of the complex 

is achieved. The determination of the Em  energy (the applied voltage required to 

observe equal intensities of [precursor+M++neutral] and [precursor+M+]) for 

various complexes allows for binding energy comparisons between precursor 

species.33

Blackbody infrared radiative dissociation (BIRD) occurs when infrared 

blackbody photons are emitted from the heated walls of the vacuum chamber of a 

mass spectrometer. Ions isolated in the mass spectrometer at pressures less than
o

10' Torr absorb the photons and subsequently dissociate. BIRD is a collision- 

independent method of analysis; rates of dissociation can be calculated due to the 

temperature dependence of the dissociation.49'51

The activation energy o f  BIRD can be calculated by performing this 

experiment at various temperatures. Fourier transform mass spectrometers are
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used for these BIRD experiments. The Arrhenius equation is used to determine 

the threshold energy for dissociation as follows (Eq. 1.1):

k  =  A e ~ E° IRT <U)

where k  is the rate constant, A is the pre-exponential rate factor, Ea is the 

activation energy, R is the gas constant, and T is the temperature in the ICR cell. 

When large molecules are analyzed this way, the Ea can be considered to be equal 

to the threshold dissociation energy, Eq. The dissociation rate constants (kdiss) for 

the unimolecular dissociation can be derived from the BIRD data. These 

parameters are found as shown in Fig. 6.23
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\  S l o p e - - C / t f
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Figure 6. Determination of kinetic constants from BIRD data (from Sleno and 
Volmer ). First-order dissociation rate constants can be obtained from the slope 
of a plot with respect to the complex fragmentation over time. The dissociation 
rate constants can then be plotted vs. 1/T to determine the activation of the energy 
o f  the system for the BIRD experiment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



32
BIRD-FT-ICR experiments have been used to determine the structures of 

lithiated lysine and similar molecules in the gas phase. BIRD is also useful for 

determining isomeric purity, as shown by Schnier and Williams.53 BIRD-FT-ICR 

can also been used to determine binding energies,54 fragmentation pathways of 

proteins,49 solvation effects on metal-ligand complexes,55 amino acid structures,56- 

58 and gas-phase basicities of organic zwitterions.59

BIRD-FT-ICR methods provide accurate thermochemical data due to the 

high mass range and resolution provided by the FT-ICR analyzer. However, these 

instruments are expensive. Alone, the FT-ICR mass spectrometer is one of the 

most expensive systems on the market. There is currently no commercially 

available BIRD-FT-ICR, so these instruments must be custom designed and built 

for this analysis.

Similar to BIRD experiments, tunable infrared lasers can be used to excite 

gas-phase ions. Spectroscopic analysis of these excited ions can help to measure 

N-H and O-H stretches, which are sensitive to hydrogen bonding. Information 

about the bond stretches can be used to determine structural information about the 

species of interest.34’60-62 As with BIRD-FT-ICR, these instruments are not 

commercially available.

Infrared multiphoton dissociation (IRMPD) is a photodissociation

technique in which lasers operating at various wavelengths provide sufficient 

energy for molecular fragmentation. Gaseous molecules trapped in an FT-ICR 

cell absorb IR radiation, which is redistributed from IR active modes to other
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vibrational modes of the ion. The energy provided by photon absorption 

promotes ion fragmentation. This technique has been applied to the analysis of 

proteins, oligosaccharides, oligonucleotides, and pharmaceuticals.23

In radiative association kinetics (RAK) experiments, the complexation of 

an ion and neutral species in the gas phase can be stabilized by the emission of an 

infrared photon.63 RAK can be used to analyze metal ion—ligand association 

reactions, typically in an FT-ICR mass spectrometer.64 These RAK experiments 

can provide details on binding energies and reaction rates.63,65'67 Although no 

alteration to the mass analyzer is required, a drawback to this method is the 

expense of the analyzer itself.

Additionally, structural and reactivity information can be obtained through 

ion mobility experiments. Ion mobility spectrometry separates ions as a function 

of mobility, as opposed tom /z ratio, as is typical with mass spectrometry. Ions in 

a tube that contains a buffer gas are allowed to move freely under an applied 

electric field. As the ions travel through the tube, they are separated according to 

their size to charge ratio.21 Noncovalent interactions and structures of peptides,68'

71 77  77  7ftprotein structure, molecular structure, " nucleotide structure and 

interactions,77'79 amino acid cluster formation,80 and amino acid structure81 have 

all been studied by ion mobility experiments.

The kinetic method can be used to probe the relative binding energies to

ft7molecules such as amino acids. Developed by Cooks et al., the kinetic method 

is an “approximate method for the determination of thermochemical properties
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based on the rates of competitive dissociation of mass-selected cluster ions.”83 

The kinetic method has been used to investigate alkali metal-ion binding with

qa or
DNA and RNA nucleobases, to analyze sodium cation binding to dipeptides,

•  •  •  • « •to provide structural information on [alkali metal+amino acids] in the gas phase,

•  •  •  •  •  07and to probe copper (I) ion affinities to amino acids.

Last, ion-molecule reactions can be used to study the structures and 

reactivities of a variety of molecules and complexes. Ion-molecule reactions 

occur when an ion of interest interacts with a neutral ambient molecule in the 

mass spectrometer. These interactions are often fast and efficient and can be

00

analyzed in a variety of mass spectrometers. For instance, quadrupole ion traps 

(QIT),33,88-96 sectors and double-sector instruments,88 triple quadrupoles,28’88 and

8 8  8 8  07  07double sector and FT-ICR spectrometers ’ ’ have all been used to analyze 

ion-molecule reactions.

Ion-molecule reactions via ligand-exchange equilibrium experiments take 

advantage of thermochemical observations to analyze gas-phase cation-71 

interactions. FT-ICR mass spectrometers are used to determine equilibrium

n o
thermochemistry, as described for sodiated amino acids by Gapeev and Dunbar. ’ 

99 These experiments measure the transfer of metal ions to amino acids in the gas 

phase. Ligand-exchange experiments have also been performed using a guided 

ion beam instrument with a quadrupole mass filter as an analyzer. Am icangelo  

and Armentrout used this experimental setup to determine dissociation energies 

and entropies of sodium complexes.100 For ligand-exchange experiments utilizing
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FT-ICR mass analyzers, the cost of the mass spectrometer is largely a problem. 

That prevents this technique from being more widely used.

All of these presented methods are sufficient for analyzing noncovalent 

species and to experimentally determine structure and reactivity. Some of these 

techniques are more time and cost effective than others. Additionally, some of 

the instrumentation is not commercially available. A viable alternative for many 

of these methods is the more cost-effective ion-molecule reaction method.

Ion-Molecule Reaction Analysis via ESI-QIT-MS

Electrospray ionization (ESI) is a common and commercially available 

ionization source. ESI-MS is well suited for the analysis of biomolecules, 

specifically for the analysis of noncovalent interactions which occur between the 

amino acids and metal ions. This is because the sample can be analyzed in a near­

native state, while the ionization technique is soft, preventing fragmentation of the 

species of interest; the noncovalent complex survives the ionization process.101 

Since the sample analysis is performed in the gas phase, solvent is removed from 

the species of interest. This helps to eliminate problems that “bulk sample” 

analysis can present. Additionally, simple and fairly inexpensive modifications 

can be implemented on a commercially available ESI-QIT-MS in order to attain a 

setup capable of providing structural and kinetic data via ion-molecule reactions.
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The structure of amino acid—alkali metal ion species and the binding 

affinities of the aromatic amino acids to amino acid—metal ion species are the 

focal points of this study. A modified commercial ESI-MS instrument can be 

used to analyze ion-molecule reactions of these species. Data from these 

experiments can then be used to determine the structure and reactivity of amino 

acids in the gas phase.

Zwitterions

In solution at neutral pH, amino acids tend to have a protonated N- 

terminus and a deprotonated C-terminus, causing the molecule to be zwitterionic. 

The term “zwitterion” stems from the German word zwitter, meaning “hybrid.” 

This term describes the dipolar (charge-separated) nature of the amino acid due to 

the acidic and basic groups it contains.2

In the gas phase, molecules do not interact with the bulk solution that

i (vycauses this zwitterion stabilization to occur. Previous electrospray ionization 

mass spectrometry (ESI-MS) studies have shown that amino acids in the gas 

phase tend to exist as charge-solvated (nonzwitterionic) structures. However, 

some are observed to be zwitterionic.101'104

There are currently a handful of general systems being used to probe the 

gas-phase structure of amino acids. Each involves exploiting the stabilization of 

amino acid structures by various means. One method focuses on the analysis of 

hydrated amino acids.105'107 Another method uses protonated amino acids to

co 01
analyze gas-phase structure. ’ Julian et al. used neutral arginine clusters to
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analyze the structure of arginine in the gas phase.96,108

It is also possible to stabilize zwitterionic amino acids using localized 

charge density by alkali metal ions,62,81’86,103,109-111 alkaline earth m etals,104 and

119transition metals. Amino acids can be complexed to a metal ion before 

introduction to the mass spectrometer. The stabilized amino acid—metal ion 

([A.A.+M+]) complex will exhibit either the nonzwitterionic (charge-solvated) or

1 fY)
zwitterionic (salt-bridge) structure in the gas phase.

Charge-solvated amino acids typically display NO-coordination with the 

metal ion. The amine nitrogen and the carbonyl oxygen will interact with the 

metal. Sometimes a third electron-rich site will also interact, but the overall 

structure of the amino acid remains neutral.111 Salt-bridge amino acid—metal 

complexes display OO-coordination of the metal ion. In this case, both oxygens 

of the carboxyl terminal interact with the metal. The amino terminal is protonated 

(and positively charged), so the deprotonated oxygen on the carboxyl terminal 

carries the negative charge.86 The salt-bridge structure has a spread of charge 

density which can be visualized as NH3 ...COO .. .M (Fig. 7).
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Charge-solvated Zwitterion
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Figure 7. The two possible gas-phase amino acid structures. The charge-solvated 
structure of the amino acid remains neutral while the zwitterionic structure has a 
spatial separation of charges.

The structural preference of the amino acid can be influenced by many 

factors, including the charge associated with the metal ion, the size of the metal 

ion, and the nature of the amino acid side chains. Studies have shown that both 

glycine and alanine form charge-solvated structures with Cu+, but they prefer the

_| |_ | 1A 4 4 A

salt-bridge structure with Cu . ’ The size of the metal ion is another factor

in the structural preference of amino acids. For instance, the structure of arginine 

complexed with alkali metals changes from a charge-solvated to a salt-bridge 

structure as the size of the metal ion increases. These results were corroborated by 

theoretical modeling calculations, which supported the observed change in 

structure.57,104 Furthermore, the chelating ability of the side chain may also affect 

the resulting gas-phase structure. Glutamic acid, tryptophan, and aspartic acid 

have the highest relative binding energies to lithium (all have a metal coordinating 

group in the side chain), whereas glycine and alanine have much weaker relative
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binding energies to lithium and also lack a coordinating group on their side 

chain.109

An inherent drawback to ESI-MS is the lack of direct structural 

information. [A.A.+M+] complexes will display identical mass-to-charge ratios, 

regardless of which gas-phase structure they exhibit.101 Methods have been 

developed to include structural information with mass spectrometric analysis, 

including the use of ion mobility 78’114-116 and blackbody infrared radiative 

dissociation.117,118 However, the analysis of the reactivities of the amino acid— 

metal ion complexes through ion-molecule reactions provides a means to compare 

the structures of the species.

Aromatic Amino Acids

Of recent interest are the cation-7i interactions of aromatic amino acids and 

metal ions. Cation-Jt interactions tend to be mostly electrostatic in nature, where 

the metal ion interacts with the electrons of the delocalized ra-electron cloud of an 

aromatic ring. The metal cation-ji interactions are fairly strong, often greater than 

the interactions involving other jr-systems such as n-n and 7t-hydrogen bonds.119

These noncovalent interactions are involved in protein structure, receptor- 

ligand interaction, ligand binding, and other important biological processes.119' 122 

The role that cation-7r interactions play in molecular recognition is also important 

from a medicinal standpoint. Mecozzi et al. have suggested that the cation-Tt
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interactions of aromatic amino acid side chains could be exploited as binding sites 

for cationic ligands.123

A statistical study of the three aromatic amino acids found that proteins 

contain approximately 3.9% Phe, 3.2% Tyr, and 1.3% Trp. This means that up to 

8.4% of amino acids in a protein could participate in cation-jr interactions.37,124 

Nearly one in twelve amino acids could be involved in these interactions.37

It has been shown that of the aromatic amino acids, Trp is more likely to
-30

participate in cation-7i interactions than either Phe or Tyr. The computer 

program Cation- n Trends Using Realistic Electrostatics (CAPTURE) was used 

by Gallivan and Dougherty125 to identify proteins that are likely to participate in 

cation- ji interactions. In the comparative study of 593 proteins selected from the 

crystallized protein structures in the Protein Data Bank (PDB), the authors found 

that just over 26% of all Trp residues in the studied proteins are involved in 

cation-7t interactions. Conversely, only 10.0% of Phe and 14.3% of Tyr residues 

participated in these interactions.125 In theory, Trp is more likely to participate in 

cation-7i interactions due to the indole substituent on its side chain. Computer 

calculations have shown that indole is capable of binding cations more strongly
-JQ

than benzene or phenol, the side-chain substituents of Phe and Tyr.

In silico analysis of cation-7t interactions has shown that the size of the 

cation and the type o f  7i-system involved can influence the strength o f  the 

interaction. Using AIM (a wave function analysis of atoms in molecules) and 

NBO (natural bond orbital) analysis, Mohajeri and Karimi119 studied the
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interaction of Li+, Na+, K+, H+, and N H / with C2H2, C2H4 , and C6H6. They found 

as the size of the alkali metal cation increases, the charge transfer between the 71- 

system and the cation decreases. In addition, it was confirmed that the 

interactions of cations and benzene are highly electrostatic. Finally, the N-H.. .71  

interaction between NH4+ and benzene was calculated to have a similar bond 

strength to that of a hydrogen bond.119

Cation-7r interactions can also influence the folding of membrane proteins. 

Two major classes of proteins, transmembrane strand (TMS) and transmembrane 

helical (TMH) proteins, were analyzed for potential cation-7t interactions. 

Gromiha126 observed that TMS proteins are involved in more cation-7c interactions 

than TMH proteins; TMS proteins participate in an average of five cation-71 

interactions, whereas the TMH proteins contain an average of three cation-7t 

interactions. This indicates that one cation-7t interaction is present for every 74 

residues of a TMS protein. Cation-7t interactions between Arg-Phe, Arg-Tyr, and 

Lys-Phe have average energy contributions of approximately -6.5 kcal/mole in 

TMH proteins. For TMS, these interactions provide an average contribution 

energy of -4.5 kcal/mole.126

Recently, aromatic amino acids have been implicated in the binding of a 

ribosomal protein to rRNA. The Xenopus ribosomal protein L5 complexes with 

5S rRNA, which facilitates R N A transport to the nucleus for ribosome assembly. 

A large number of aromatic amino acids are contained in the L5 protein. Several 

of these conserved aromatic amino acids are found to be essential for the
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formation of the L5-5S rRNA complex. At least two aromatic amino acids in L5 

are positioned to interact with the 5S rRNA through 7i-stacking interactions, 

which is thought to be the recognition event in the formation of the complex.127

Protein-DNA complexes are also found to be stabilized by cation-7t 

interactions. The studies by Wintjens et al.128 focused on interactions of 

positively charged amino acids, specifically Arg. Although aromatic amino acids 

were not the focus of this study, it is quite possible that aromatic amino acids 

could also be implemented in similar protein-DNA interactions.

Finally, aromatic amino acids are also capable of interaction with metal 

cations to selectively control cation transport. An example of this is the Trp 

residue of the A-Methyl-D-Aspartate (NMD A) receptor responsible for Mg2+

blocking. NMDA receptors are ion channels which are voltage-dependently

2_|_ # 
blocked by Mg . A tryptophan residue in the NMDA channel was found to face

the channel pore, providing an opportunity for cation-71 interaction with a Mg2+

cation. Mutagenic analysis revealed that a substitution of Trp by Leu, Asn, or Ala

reduced Mg2+blocking. However, mutagenic substitution of the aromatics Tyr or

Phe for Trp did not significantly alter Mg2+ blocking. This finding indicates that

cation-7r interactions involving aromatic amino acids play a large role in ion-

170channel control.

A  better characterization o f  these interactions is essential to understanding 

the roles that metals play in biological processes. Dunbar et al. used the kinetic 

method to analyze the affinity of alkali metal ions to the aromatic amino acids
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Phe, Tyr, and Trp.130 Ion-molecule reactions can also be used to probe the 

reactivities of the [A.A.+M+] complexes to compare the binding preferences of 

the aromatic amino acids. Studying the interaction of amino acid—metal ion 

complexes with the aromatic amino acids phenylalanine (Phe), tyrosine (Tyr), and 

tryptophan (Trp) will help to increase the understanding of these cation-jr 

interactions. Both mass spectrometric techniques and theoretical calculations

1 T1have provided evidence for the occurrence of these interactions. Data obtained 

from this study can then be used to predict the interactions of aromatic amino 

acids in larger biomolecules.

Amino-aromatic interactions have also been found to occur in proteins. It 

has been suggested that the positively charged side chain of some amino groups 

interacts favorably with the 7i-system of aromatic rings. Burley and Petsko132 

studied interactions between the side chains of lysine, arginine, asparagine, 

glutamine, and histidine with the aromatic amino acids phenylalanine, tyrosine, 

and tryptophan. High-resolution (> 2 A) crystal structures of 33 proteins were 

analyzed for amino-aromatic interactions. It was found that these interactions 

were most favorable when the amino and aromatic groups were positioned at a 

distance, r, of 3.4 <r <6 A. Table 12 summarizes the results of the study.132
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Table 12

Amino-Aromatic Interactions in 33 Proteins.132

Amino-vorastis contacts < 6  A,

Phe Tyr Trp Lys Arg Asn Gin His

T o a l
number of
residues m 136 74 ITO 94 137 88 111

Numtxi and
fraction o f
residua
Interacting 84(0.49) 86(0.53) 33(0.47) 43(0.26) 44(0.47) 43(0.31) 35(0.40) 44(0.401

Number of
amino-
aromatic
interactions 49 SO 49 44 l i t

Number bf
amino-
aromatic
interactions
per residue 1.09 1.82 I.J4 1.26 2.S2

Number of
amino-
aromatic
interactions
per amino
group 1.09 0.91 1.14 1.26 1.26

Of the identified amino-aromatic contacts which occurred at less than 6 A, 

approximately half of the aromatics interacted with amino groups (Table 12).

That is, 49% of Phe residues, 55% of Tyr residues, and 47% of Trp residues were 

involved. Arg was the most reactive non-aromatic amino acid studied; nearly half 

of the Arg residues were involved in amino-aromatic interactions. Lys was found 

to be least involved in these interactions. In situations where amino-aromatic 

interactions occur, the amino group is positioned at the center of the aromatic
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In their CAPTURE analysis of 593 proteins, Gallivan and Dougherty125 

found that over 70% of all Arg side chains are located near aromatic side chains. 

Arg is more likely to be involved in an aromatic interaction than Lys. This is 

likely due to increased van der Waals interactions available to the larger Arg side 

chain as well as additional hydrogen atoms available for both donation and 

bonding.

It is important to determine if folded proteins orient amino acid side chains

175so that amino-aromatic interactions can occur. Gallivan and Dougherty set up a 

geometric modeling analysis to determine if Lys residues are placed in a more 

electrostatically favorable orientation with respect to the aromatic group of Phe 

than would occur by random distribution. The model for this analysis is shown in 

Fig. 8.

She
I A d  uded  
Volume

Cylinder

Figure 8. The model used to calculate the theoretical location of lysine- 
phenylalanine interacting pairs (from Gallivan and Dougherty).125
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The bisected three-dimensional model in Fig. 8 includes excluded volume, 

cylinder, and shell regions. The excluded volume region is a sum of the volume 

of benzene plus the volume for which atoms with a 1.7 A radius cannot be found. 

The cylinder region is obtained by summing the radii of benzene and a 

neighboring carbon atom. The shell is positioned at a radius of 2.8 A (the 

diameter of a water molecule) from the excluded volume region.125

The cylinder region of Fig. 8 makes up 32% of the total volume of the 

model. This means that 32% of Lys residues should ideally be found in this 

volume region. Out of 1,716 Lys residues studied, 48% of the Lys were found to 

be positioned in the cylinder region. Statistical analysis indicated this to be a 

nonrandom distribution at a confidence level of greater than 99.999%. Therefore, 

cation residues are positioned for favorable cation-7c interactions in proteins.125 A 

further discussion of cation-Ji interactions can be found in Chapter 4.
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CHAPTER 2

EXPERIMENTAL DESIGN AND METHODOLOGY 

Ion-Molecule Reactions

It is possible to probe the preferential gas-phase structure and binding 

preferences of amino acid—metal ion complexes by studying their relative reactivity 

when participating in ion-molecule reactions. This analysis can be done by 

introducing a neutral species into the mass spectrometer’s quadrupole ion trap94,133 

through the helium line and allowing a reaction to occur with an [A.A.+M+] 

complex. By monitoring the relative amounts of [A.A.+M++neutral] formed over 

increasing scan delay times, it is possible to determine reaction kinetics. Rates from 

these kinetic experiments can then be compared and used to compare the structure 

and reactivity of the gas-phase [A.A.+M+] complex.

Neutrals

Neutral species selection is an essential consideration for these particular 

ion-molecule reactions. The neutral must be volatile so that it can be efficiently
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introduced into the helium line. This limits the neutral options to those in the liquid 

phase at room temperature. Table 13 shows relevant physical data for some 

potential neutral species. Charge (proton) transfer from the [A. A.+M+] complex to 

the neutral can be detrimental to kinetics experiments. However, charge transfer 

from the complex to the neutral can be exploited for investigating [A.A.+M+] 

acidity. To avoid proton transfer in these experiments, it is necessary to use neutral 

species with similar proton affinities. The rate at which the base associates with the 

complex is also important. Bases that do not interact within the time frame of the 

experiment are unable to provide useful kinetics data.

Table 13

Boiling Points and Vapor Pressures of Various Neutral Species.

Neutral Boiling Point (°C) Vapor pressure 
(mmHg at 20°C)

Acetone 56 184
Aniline 184 0.7
Benzene 80 74.6
Boron trifluoride-diethyl etherate 126 4.2
n,o-Bis(trimethylsilyl) acetomide 71-73 —

Butylamine 78 68
Ethyl acetate 76.5-77.5 73
Formic acid 100-101 44.8
4-Methylanisole 174 5.25
1-Methylindole 133 —

Piperidine 106 23
T etrahydrofuran 65-67 143
Toluene 110-111 22
Trimethyl borate 68-69 —
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Reaction Mechanism and Kinetics
49

These ion-molecule reactions are association reactions; stabilization of the 

complex occurs via collisions or radiation emission. The mechanism for these 

reactions is shown in Eq. 2.1,

where k/is the bimolecular rate constant, kb is the unimolecular redissociation rate 

constant, and kcfi is the bimolecular rate constant for collisional stabilization by 

collision with the neutral, M. Here, M is the helium in the ion trap.

where £2  is the overall bimolecular rate constant (the one we observe 

experimentally) and kf is the collisional rate constant. The most efficient reaction 

will occur so that the overall bimolecular rate constant will equal the collisional rate 

constant. That is, a reaction will occur between the [A.A.+M+] and the neutral 

every time there is a collision. Less efficient reactions will occur with a rate 

constant smaller than the collisional rate constant. The values for the efficiency of 

the reactions can be compared between the various species to observe which

(2 .1)

h KP

Equation 2.2 can be used to obtain the efficiencies of the [A.A.+M+]

complex reactions,

(2.2)
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reactions proceed more efficiently than others.

Since these reactions occur within the ion trap, in the presence of relatively 

high pressures of helium, it is expected that the stabilization occurs by collisional 

cooling.33,94 Therefore, it is important to consider the collisional rate constant when 

calculating the efficiency of the ion-molecule reactions. The calculation of the 

collisional rate constant is performed as shown by Eq. 2.3:

kf  = Ine

where e is the charge of an electron, a  is the polarizability of the neutral, // is the 

reduced mass of the [A. A.+M+] complex and the neutral species, and % is the dipole 

correction factor. This dipole correction factor is directly dependent on the 

polarizability and dipole moment of the neutral species. The collisional rate 

constant is calculated to determine the rate that collisions occur in the ion trap with 

respect to the neutral species that is present.

For these experiments, the pressure of the neutral in the ion trap is constant; 

the reactions occur under pseudo-first-order kinetics. This causes the overall 

bimolecular rate constant for the reaction to be dependent on the experimental rate 

constant, kj, and the pressure of neutral species in the quadrupole ion trap, 

according to the relation (Eq. 2.4):

k2 = (2'4)
2 (̂acetone)(molecules lew")

The bimolecular rate constant describes the selected reaction of the neutral species

(2.3)
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to the [A.A.+M+]. The value for the rate constant ki is determined from an 

exponential fitting of a plot of the decay of the [A.A.+M+] species over the time 

period of the experiment.

To calculate the efficiency of the reaction, the pressure of the neutral in the 

system must first be determined. Since the actual pressure of the neutral cannot be 

determined experimentally, the pressure must be calculated mathematically. To do 

this, it can be assumed that the standardizing species, discussed in later chapters for 

specific cases, reacts at the collision rate of the ions in the quadrupole ion trap. This 

causes the reaction efficiency,O, of the fastest reaction to be set to unity (k/= kj). 

The pressure of the neutral species in the ion trap can then be calculated as follows 

(Eq. 2.5):

P'neutral (molecules / Ctrl’ ) = 1(̂ +M }
2( A A+ M* )

Ion-Molecule Reaction Methodology

Variable scan delays of ion-molecule reactions were used to determine rate 

kinetics. The [A.A.+M+] was isolated in the quadrupole ion trap and was then 

allowed to react with the neutral species for increasing amounts of time. As the 

reaction time in the trap increased, the intensity of the [A.A.+M+] decreased,

whereas the intensity of the [A.A.+M++neutral] complex increased. The relative 

intensities of ion products can be calculated and plotted against the time allowed to
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pass for the reaction to proceed. Data fitting can then be applied to the kinetics data, 

and the kj experimental rate constant can be determined. It is important to note that 

the uncertainty in the experimental rate can vary ± 30%. This can occur due to 

minor fluctuations in the pressure of the neutral species or helium in the ion trap. 

However, useful comparisons among the amino acids can still be made.

Theoretical Calculations

The experimental data can be compared to data obtained in silico, calculated 

using the computer modeling programs GaussView and Gaussian 03.3 These 

theoretical modeling calculations were calculated with the program operating under 

a method employing the density functional theory (DFT) at the B3LYP/6-31 lG+(d) 

level. These calculations are performed at the same or higher order levels as 

currently published results.106,108,134-140 it is prudent to gain a basic background of 

the calculation theory and level.

There are three method groups currently employed for model calculations: 

the semi-empirical, the ab initio, and the density functional theory (DFT). Semi- 

empirical methods rely on experimental observations and data for their calculations. 

Each semi-empirical method relies on different data parameters, and the quality of 

the calculations depends on the quality of the data set used. Conversely, ab initio 

methods do not use any experimental parameters for their calculations. They rely 

solely on the laws of quantum mechanics and on the values of physical constants 

such as the speed of light, the masses of electrons, etc.141
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The determination for using either the semi-empirical or the ab initio method 

often relies on the balance between output accuracy and computational cost. Semi- 

empirical calculations are relatively inexpensive and are reasonably accurate for 

calculations in which a quality parameter set exists. On the other hand, ab initio 

methods are able to handle a wide range of systems and are not limited to specific 

classes or molecules. The inherent drawback to this method is that the calculations 

are limited by the computational abilities of the workstation. As the system 

increases in size, so does the time and energy required to perform the 

calculations.141

The third type of method available for these calculations is the density 

functional theory (although it is currently under debate as to whether this method is 

in fact an ab initio method). DFT is an improvement on the other methods because 

the correlation and interaction between electrons is considered in the calculations. It 

also affords the benefit of accurate calculations at a lesser cost.141

DFT methods use functionals (a function of a function) to compute electron 

correlations. Electric energies of the system are partitioned into kinetic energy, 

electron-nuclear interaction, Coulomb repulsion, and exchange-correlation term 

components. These are calculated separately, and the manners in which the 

calculations are performed describe the DFT used. It is also possible to use hybrid 

functionals (linear combinations o f  various terms), which increase the accuracy o f  

the theoretical calculations. For the calculations presented here, the hybrid 

functional Becke-style 3-parameter density functional theory employing the Lee-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



54
Yang-Parr correlation functional, or B3LYP, was used.141 The use of B3LYP 

functional theory is fairly standard for these types of amino acid calculations.

As with methods, there are a variety of basis sets available to the user for 

performing these calculations. A basis set is defined by Foresman and Frisch as “a 

mathematical representation of the molecular orbitals within a molecule.”141 Basis 

sets available through computational programs use linear combinations of Gaussian 

functions to describe the molecular orbitals. The number and types of functions that 

each basis set contains is used to characterize the set. As the size of the basis set 

increases, so does the accuracy of the calculation since the electrons are operating 

under fewer constraints. However, an increase in basis set size also corresponds to 

an increase in computational capability.141

The smallest of the basis sets are referred to as minimal basis sets because 

they have the fewest functions to describe the molecular orbitals. For example, the 

STO-3G is considered to be a minimal basis set. In the name, STO refers to the 

“Slater-type orbitals” used to describe the function, whereas 3G represents the three 

Gaussian component functions that construct the basis function.141

For these calculations, the 6-311 G(+)d basis set was used. Here, 6-311G 

indicates that a triple split valence basis set was used; this means that each orbital 

description consists of three sizes of linear Gaussian functions. Adding the (+) to the 

descriptor allows for diffuse functions to be used in the calculation. Diffuse 

functions are s- and p-type functions which allow the orbitals to occupy more space. 

These functions are useful for calculations on molecules with lone pair electrons,
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anions, and other instances when electrons are farther from the nucleus than would 

be normally considered. The “d” indicates that d-functions are applied to heavy 

atoms. What is important here, however, is that the 6-31 lG(+)d basis set is 

recommended for use on medium-sized molecules containing the elements 

hydrogen to bromine.141 For amino acid complex modeling, this is a reasonable 

basis set for these calculations.

The stabilization energies of the [A.A.+M++neutral] complex can be

compared to the relative rates of the ion-molecule reactions in order to explain 

observed kinetics. The charge solvation and zwitterion structures can be modeled to 

predict which species would likely be more stable in the gas phase. In silico 

calculations can also provide information about the distances between the 

[A.A.+M+] complex and the neutral species for the aromatic amino acid binding

experiments. Together with experimental data, these computer-based calculations 

can provide a great deal of insight to the interactions and structures of amino acids, 

furthering the fundamental understanding of bioinorganic molecules.

Both ESI-MS ion-molecule reaction techniques and computer-based 

modeling calculations can be used to analyze and compare the structure of the 

twenty common amino acids complexed to alkali amino acids. These methods can 

also be used to probe the reactivities of the aromatic amino acids with respect to the 

non-aromatic amino acids complexed to alkali earth metals and transition metals.
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Zwitterions Revisited
56

The stability and reactivity of bioinorganics greatly influence biological 

processes such as signal transduction, reaction control and specificity, molecular 

structure, and electrostatic interactions. The stability of these species with charged 

functional groups is related directly to the gas-phase acidities and basicities that they 

display.56 Environmental species, such as water, can provide stabilization for these 

charges. The addition of metal cations can also stabilize the charges on an amino 

acid. Figure 9 shows the representative amino acid serine in both zwitterionic and 

charge-solvated structures when complexed with a sodium cation.

Figure 9. The amino acid serine in both charge-solvated and zwitterion structures. 
The Gaussian software suite was used to model these molecules. Charge-solvated 
species com plex metal ions through NO-coordination. Zwitterions com plex the 
metal ion through OO-coordination. The atoms are represented as follows: carbon 
is grey, hydrogen is white, oxygen is red, nitrogen is blue, and sodium is purple.

Charge-solvated serine Zwitterionic serine
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In neutral solutions (pH of 7), the zwitterion of the amino acid is prevalent, 

where the carboxyl terminal is deprotonated and the amino terminal is protonated.142 

In the gas phase, the solvent is no longer associated with the amino acid, creating a 

situation in which the amino acid is more likely to have an overall neutral charge 

(charge-solvated form).34, 143 In a solvent-free environment, it is possible to probe 

the reactivities of species of interest to better understand the differences between 

gas- and condensed-phase systems.144 A greater understanding of the gas-phase 

properties of these species will provide better information about these species in

56
VIVO.

The basicity and acidity of the functional groups of the amino acid seem to 

influence the stability of a zwitterion in the gas phase (i.e., the more acidic the acid 

is, or the more basic the base is, the more stable the zwitterion will be). It would be 

expected that arginine would be a likely amino acid to form a zwitterion in the gas 

phase due to its basic guanidine group.103,139 Julian and Jarrold explain that the 

formation of the zwitterion in the gas phase depends on Coulombic forces; that is, 

“the Coulombic energy gained from the interaction of oppositely charged groups 

must exceed the difference in the basicity between the protonated base and the 

deprotonated acid.”139 For instance, when the side chain of arginine is methylated, 

the basicity of the amino acid is increased, and zwitterion formation in the gas phase

•  1 "30is favored.

Amino acid zwitterions can be formed in the gas phase through stabilization 

with other species. This can be achieved by hydrating the amino acid143 or through
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the complexation of the species to a metal ion.57,81’86,135,145 Using BIRD-FT-ICR 

analysis, Jockusch et al.143 have shown that only a few water molecules are 

necessary to hydrate a [Val+M+] species to prefer the zwitterion structure. They 

have also shown that in the case of [Val+Li+ (F^O^], the water molecules interact 

only with the lithium ion, yet the structure remains charge-solvated. With the 

addition of a third water molecule, the structure of the [Val+Li+] complex appears to 

change from the charge-solvated structure to that of the zwitterion. This third water 

molecule, unlike the first two, does not interact with the lithium ion; it interacts with 

the N-terminal of valine. As the cation size increases, it seems that fewer water 

molecules are necessary for zwitterion stabilization. For instance, when the 

[Val+K+] complex is analyzed, two water molecules are sufficient for zwitterion 

stabilization.143

Metal Ion Effects

The charge and size of the metal cation can also affect the stability of gas- 

phase amino acid zwitterions. For example, the complexation of a singly charged 

(alkali) metal ion to glycine can increase the zwitterion’s stability over 80 kJ/mole 

relative to the charge solvation form. It is important to note, however, that the 

charge-solvated form for glycine remains lower in energy. When a doubly charged 

(alkali earth) metal ion is com plexed to glycine, the zwitterion becomes 

energetically more stable than the charge-solvated form.103,104’112’117 Theoretical 

computations confirm this finding, as shown in Fig. 10.
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E = -961.3750 a.u. 

Zwitterionic Glycine + Ca2+

E = -961.3719 a.u. 

Charge-solvated Glycine + Ca2+

Figure 10. Gaussian modeling results of glycine complexed to Ca2+. The energy of 
the complex was computed under the same conditions as all theoretical 
computations in this study. The energy is reported in arbitrary units (a.u.). The 
lowest energy structure is the zwitterion, which is calculated to be ~8 kJ/mole more 
stable than the charge-solvated structure.

The size of the metal cation also affects the gas-phase stability of the 

zwitterion. It would be expected that the size of the metal ion would affect the 

binding affinity of the amino acid as follows: Li+>Na+>K+>Rb+>Cs+. In general, 

the smaller the metal ion is, the easier it is for the ligand to complex it. This trend 

can be altered when the ligating portion of the amino acid is incapable of efficiently 

binding the ion. That is, when the metal ion is small, it may easily by complexed. 

When the metal ion is larger, the ligating arm may no longer be able to surround the 

metal ion. This could, in fact, cause a structural change for a m olecule like an 

amino acid.
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Specifically, the smaller alkali metals (i.e., Li+, Na+, and K+) complexed to 

the amino acids alanine, valine, leucine, and isoleucine appear to be charge-solvated 

in the gas phase; however, when a larger alkali metal (Cs+) is complexed to the 

amino acids, the zwitterionic structure is preferred.146 This finding was determined 

using the kinetic method. Glycine complexed to alkaline earth metals104 and 

arginine complexed to alkali metals have shown similar trends.57,146 The apparent 

size trend may not hold true, however, as it has been suggested that rubidium ions

actually stabilize the charge-solvated structure of the amino acid more than a

1 01smaller metal ion (i.e., sodium).

The proton affinity of the amino acid can also affect the stability of the 

zwitterionic structure in the gas phase.102'104,117 Previous studies have shown that a 

relatively linear relationship exists between the proton affinity of aliphatic amino 

acids and the stability of the zwitterionic structures of the complexes.103,117 The 

addition of a cation to the amino acid reduces the effect of the proton affinity on

• •  117zwitterion stability, which can complicate the analysis.

Experimentally identifying the stable structure of amino acids in the gas 

phase has led to many conflicting results, ft is widely accepted that proline 

complexes are zwitterions in the gas phase: Pro is the only amino acid to lack an 

amino group, making it capable of only OO coordination. Much debate continues as

to the structure o f  arginine, lysine, and many o f  the other amino acid com plexes.142

• •  •  • •  • • « 101For instance, it has been reported that sodiated glutamine is both zwitterionic and
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charge-solvated111 in the gas phase. Consequently, it is relevant to continue to 

investigate the gas-phase structure of amino acids.

To summarize, both mass spectrometric and in silico studies can be used to 

analyze the gas-phase structure of amino acid complexes. Information gathered 

from CID studies, the kinetic method, ion-molecule reactions, and other techniques 

can provide relevant kinetic information. Along with the thermochemical data 

provided by theoretical computational analysis, this information can be pieced 

together to determine the structure of amino acid complexes in the gas phase.

Aromatic Amino Acids Revisited

It is widely agreed that cation-71 interactions play an important role in the 

structure of peptides and proteins. In addition to the roles that hydrogen bonds and 

salt bridges play in biological structure, the noncovalent cation-n; interactions can

19S • •  •also play a large role. Pletneva et al. have suggested that cation-7i interactions 

“can be as strong as the familiar salt bridges and hydrogen bonds.”147

Studies concerning cation-7t interactions range from analysis of individual 

amino acids148'150 to peptides containing aromatic amino acids151,152 to protein 

interaction analysis.122,125,126,128,153,154 Mostly, these studies have greatly relied on 

the use o f  theoretical computations and other in silico  analysis techniques to 

investigate the role of amino acids in cation-7t interactions. Many of these studies 

investigated [amino acid+Mx+] species, where M represents alkali, alkali earth, and
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transition metals.148,149,151,155,156 Often, the aromatic amino acids are of interest,

1although Arg and Lys have also been studied.

Spectroscopic measurements have been used to compare the interaction of 

Phe and Tyr to silver through surface-enhanced Raman scattering.157 NMR 

experiments have been used to study amino acid interactions in coiled-coil protein 

domains.154 Cation-jr interactions have also been experimentally studied via mass 

spectrometric techniques. CID has been used to study a variety of metal cation and 

amino acid complexes.36-41,158

Ion-Molecule Reactions

Methodology for Zwitterion Analysis

As previously discussed, it is possible to probe the preferential gas-phase 

structure of amino acid—metal ion complexes by studying their relative reactivity. 

Neutral bases react with the [A.A.+M4] by solvating the metal. The rate and 

amount of reaction with a neutral will differ depending on the [A.A.+M+]. Ion- 

molecule reactions between the [A.A.+M+] and the neutral can be performed by 

introducing the neutral into the quadrupole ion trap133 and allowing a reaction to 

occur with an [A.A.+M +] com plex, where M = Li+, Na+, K+, and Cs+. By varying 

the scan delay reaction time, it is possible to follow the kinetics of formation of the 

[A.A.+M++neutral]. Rates from these kinetic experiments can then be used to
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surmise the structure and reactivity of the gas-phase [A.A.+M+] complex by 

comparison to known zwitterions. The calculations for the kinetics are detailed in 

Eqs. 2.2-2.5.

Amino Acid Standards

To accurately use the reaction kinetics data, it is necessary to use standards 

(i.e., molecules with known permanent gas-phase structure) for the kinetics 

comparisons. Betaine (Sigma Aldrich) was used as a known gas-phase zwitterion. 

As can be seen in Fig. 11, betaine (Bet) has a permanent zwitterionic structure. The 

betaine molecule has three methyl groups attached to the amino terminus, 

preventing NO coordination of the metal ion. The metal must be complexed by the 

carboxyl oxygens in a zwitterionic manner.

Figure 11. The structures the zwitterionic amino acid (left) and betaine (right) 
complexing a metal ion. Betaine displays permanent charge separation.

H2

Zwitterion

O

Betaine
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To model permanent charge-solvated structures, the methyl esters of select 

amino acids were used as known gas-phase nonzwitterions. Methyl esters contain a 

methyl group on the singly bound oxygen on the carboxyl terminal. This methyl 

group remains on the carboxyl oxygen, as opposed to the transferable hydrogen of 

the amino acid, creating a permanent charge-solvated structure. This causes the 

methyl esters to complex the metal ion through NO coordination. The structures of 

all of the methyl esters (obtained from Sigma Aldrich) are depicted in Appendix C.

To review, charge-solvated amino acids complex the metal cation through 

NO coordination. Zwitterions complex the metal cation through OO coordination. 

Methyl esters of amino acids are only capable of complexation through NO 

coordination, which makes them permanently charge-solvated, as shown in Fig. 12.

Figure 12. A comparison of a charge-solvated amino acid complex and the charge- 
solvated complex of glycine methyl ester. Note that the carboxyl group cannot be 
deprotonated in a methyl ester due to the methyl group on the carboxyl oxygen.

OH

Charge-solvated amino acid Charge-solvated glycine methyl ester
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Neutral Species Selection
65

It was necessary to determine an appropriate neutral species for structural 

ion-molecule reaction experiments. The neutral species for these reactions must be 

a volatile liquid with a relatively high vapor pressure. These features guarantee that 

the neutral species will enter the helium stream to the instrument in the gas phase. 

Besides these requirements, it is also necessary that the neutral species is reactive 

towards the [A.A.+M+]. This ensures that kinetic data can be obtained for these 

experiments. All of the neutrals that were used for these experiments were obtained 

from Sigma Aldrich.

Both nitrogen bases (e.g., butylamine, di-isopropylamine, triethylamine) and 

oxygen bases (e.g., ethyl acetate, tetrahydrofuran, acetone) were tested as potential 

neutral species. In the experiments involving butylamine (But) as the neutral, the 

association reaction was too slow to be observed within a reasonable time frame for 

these experiments (Fig. 13). As can be seen in the mass spectrum for sodiated 

proline reacting with butylamine, only a small amount of [Pro+Na++But] is formed 

during a fairly long reaction period of 5000 ms. Since the scan delay limit is 9999 

ms, pertinent kinetic data cannot be obtained if the reaction is not observable at 

approximately half the time limit.
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Sodiated Amino Acids and Butylamine 
(5000 ms)

100000 

80000 

■§* 60000 

|  40000
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0
50 100 150 200 250 300 350 400

m/z

Figure 13. The slow reaction of sodiated amino acids and butylamine (But). An 
addition of 73 m/z to the [A.A.+Na+] is expected for an addition of a butylamine 
molecule. A small amount of [Pro+Na+] is found to complex with butylamine, with 
an m/z of 211.

Other nitrogen bases reacted with the [A.A.+M+] to form the 

[A.A.+M++neutral] complex, although significant amounts of proton transfer to the

neutral species were observed. This is readily apparent for the reaction of 

[Asn+Li+] and triethylamine (TEA) (Fig. 14). In Fig. 14, it can be seen that an ion 

of 102 m/z is observed after a 1000 ms reaction time. This ion corresponds to the 

protonation of the neutral TEA, which has a molecular weight of 101. TEA has a 

high proton affinity (PA) (-235), which is why this transfer occurs.

The ion observed at 157 m/z corresponds to an addition of water to the 

[Asn+Li+] species; the addition of 18 m/z to an ion is indicative of water-complex

Pro+Na

Pro+Na++But
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formation. Finally, an ion of 140 m/z is also present in the spectrum. This ion 

corresponds to the addition of TEA (101 m/z) to the [Asn+Li+] species (139 m/z).

A s n L i+  and TEA

12000 Asn+Li+ 
m/z 13910000

Asn+Li++TEA 
m/z 240

Asn+Li++H20 
m/z 157TEA+H 

m/z 102
4000

2000

50 100 150 200 250 300 350 4000
m/z

Figure 14. Proton transfer to the neutral species triethylamine (TEA). The reaction 
was observed over a scan delay of 1000 ms. The molecular mass of TEA is 101. 
The protonated molecule has an m/z of 102.

Sodiated amino acids do not exhibit as much proton transfer as lithiated 

amino acids. However, proton transfer is still present (Fig. 15). Figure 16 focuses 

on the mass range of 102 m/z to better highlight this observation for multiple 

spectra. Figure 15 also shows that TEA does form complexes with the sodiated 

amino acids in a reasonable time frame of 1000 ms. TEA is not an optimal neutral 

for these experiments, though, due to the proton transfer that is observed.
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Sodiated Amino Acids and TEA 
(1000 ms)

7000
6000
5000
4000
3000
2000
1000

0

Cys + Na+

TEA+H

Cys + Na+ + TEA

—,     , —   . ,---------- (-------
50 100 150 200 250 300 350 400

m/z

Figure 15. The reaction of sodiated cysteine with triethylamine over a 1000 ms scan 
delay period. Both proton transfer to TEA (observed at 102 m/z) and addition of 
TEA to the amino acid complex can be observed at 1000 ms.

Sodiated Amino Acids and TEA 
(1000 ms)

3500
3000
2500
2000
1500
1000
500

0
98 99 100 101

m/z

102 103 104

 ArgNa

 AspNa
 CysNa
_ G lu N a

 HisNa
 lleNa
 MetNa
 ValNa

Figure 16. Protonation of TEA over a 1000 ms time frame. Varying amounts of 
protonation are observed for each of the reactions involving the eight sodiated 
amino acids shown above. The reaction involving [Arg+K+] shows the most proton 
transfer, whereas the reaction involving [Glu+K+] shows the least amount of proton 
transfer to TEA.
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The protonation of the neutral lowers the amount of neutral available to 

complex with the [A.A.+M+] species. This competition directly alters the reaction 

kinetics of the experiment, which complicates the data analysis. Ion-molecule 

reactions involving neutrals with proton transfer were not used for these 

experiments. The proton transfer reactions, however, can be used to study the 

acidity of the [A.A.+M+] complexes, which can also shed light on their structure.

The oxygen bases tetrahydrofuran (PA—197) and ethyl acetate (PA -200) 

exhibited slow reaction kinetics with the [A.A.+M+], preventing the reactions to 

proceed within the time limitations of the experiment (9999 ms). This can be seen 

for tetrahydrofuran (THF) in Fig. 17. After 9000 ms, there is very little addition of 

THF to the [Pro+Na+] ion. Since the [Pro+Na+] species has a 138 m/z, the addition 

of THF (72 m/z) should result in an ion corresponding to 210 m/z. A low-intensity 

ion is observed at 210 m/z after a reaction time of 9000 ms. Since this reaction time 

is near the upper time limit of the experiment, THF is not an optimal neutral to use 

for these ion-molecule reaction experiments. Similar results were also observed for 

different sodiated amino acids reacted with ethyl acetate (EA) as shown in Fig. 18.
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ProNa* + THF 
9000 ms

Pro+Na+ Pro+Na+ + THF
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Figure 17. A demonstration of the slow kinetics of the oxygen base tetrahydrofuran. 
After a reaction time of 9000 ms, there is no noticeable addition of THF to 
[Pro+Na+]. An addition of m/z 72 should be observed for the addition, with an 
expected [Pro+Na++THF] m/z of 120.

Sodiated Amino Acids and Ethyl Acetate 
(9000 ms)

20000
Lys+Na

Ser+Na15000
£
c  10000

Arg+Na

J2c
5000

100 200 300 4000

-ArgNa
-LysNa
-SerNa

m/z

Figure 18. The slow reaction kinetics of the oxygen base ethyl acetate (EA). As 
observed for reactions with THF, there is no significant addition of EA during the 
9000 ms scan delay reaction period.
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It was found that acetone, an oxygen base, was the optimal neutral to use for 

these experiments. Reactions with the [A.A.+M+] complex and acetone did not 

demonstrate proton transfer (PA ~194) and the reaction kinetics were found to be 

appropriate for the time frame of the study (Fig. 19). As can be seen from Fig. 19, a 

significant amount of acetone addition can be observed in the reasonable scan delay 

time frame of 2000 ms. In this figure, the [Pro+Na+] species (138 m/z) is shown to 

react with acetone (molecular weight of 58) to form an ion corresponding to 196 

m/z.

ProNa+ + Acetone 
2000 ms

(0csc
0

— --------- -- -- '
1 Pro+Na+ Pro+Na+ + Acetone
1 m/z 138 m/z 196

/
, , . 1  x. ..................... ..

0 100 200 300 400 500
m/z

Figure 19. An example of the reaction kinetics of the neutral acetone. The addition 
of acetone to the same [A.A.+M+] species occurs at a much faster rate compared to 
THF and EA. The [Pro+Na++Acetone] complex has an m/z of 196.
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A survey of all twenty common amino acids was performed in order to 

ensure that the kinetics of these reactions would be appropriate for the time frame of 

this experiment. Since lithium complexes react fairly quickly, it was necessary to 

establish that slower reactions would be observable. Therefore, sodiated amino 

acids were allowed to react with the acetone for 1000 ms at a pressure of 7 X 10'8 

Torr to ensure that addition of the neutral (however limited) could be observed. 

Example spectra are shown for four of the amino acids tested (Fig. 20).

Sodiated Amino Acids and Acetone 
(1000 ms)

10c
3c

14000
12000
10000
8000
6000
4000
2000

0

Ala+Na +A 
170 m/z

Asn+Na +A
213 m/z

100

Asp+Na +A 
214 m/z

Arg+Na +A 
255 m/z

.AlaNa

-ArgNa

•AsnNa

AspNa

300 400

Figure 20. The reaction of four representative sodiated amino acids with acetone 
after a scan delay period of 1000 ms. An addition of 58 m/z can be observed in all 
spectra presented here. To minimize confusion, only the [A.A.+Na++acetone] 
species is identified. Acetone is abbreviated to A  for ease of data labeling.
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Methodology for Aromatic Amino Acid Analysis
73

The analysis of aromatic amino acids and their cation-7t interactions can be 

analyzed in a similar manner to the structural analysis experiments described 

previously. The [A.A.+M+] complex is formed through ESI, and a reaction is 

allowed to occur with a neutral contained in the quadrupole ion trap. A variety of 

alkaline earth metals and transition metals were used in these experiments. The 

neutral species was selected to model the side chains of the aromatic amino acids 

Phe and Tyr. A further explanation of the neutral selection is provided in Chapter 4. 

The scan delay times for the reaction were increased, and an increase of the 

[A.A.+M++neutral] was observed. The scan delay time was continually increased 

until a steady-state equilibrium of [A. A.+M+] and [A.A.+M++neutral] was obtained. 

The data-fitting and rate-kinetics calculations were performed using the KinFit 

macro in Excel.

Experimental Details

Mass Spectrometry

A  commercial Bruker Esquire 3000 quadrupole ion trap mass spectrometer 

(Bruker Daltonics, Billerica, MA) with an electrospray ionization (ESI) source was 

used in this study. Metal ion -  amino acid complexes were formed by ESI from 10-
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50 pM solutions of amino acid -  metal acetate mixtures. The solutions were 

introduced to the mass spectrometer by a syringe pump (Fisher) at a flow rate of 4 

pL min’1. The ESI source was operated under the following conditions: nebulizer 

gas at 15 psi, dry gas flowing at a rate of 5 L min’1, and a capillary temperature of 

200°C. Source voltages were optimized for maximum ion yield.

1 ^  1 5[QFollowing Gronert’s method, ’ a syringe pump (Fisher) was set up to 

continuously introduce the neutral (Sigma Aldrich) directly into the helium line at 

rates of 3 pL hr"1 or 30 pL hr’1. The neutral species was introduced to the ion trap 

through the helium line for a sufficient amount of time (at least one hour) before the 

experiments were performed in order to allow for a stabilization of neutral pressure 

in the quadrupole ion trap. A gas flow meter (Kurt-Lesker) was used to measure the 

flow of helium, held at a constant 2.00 L min'1.

The [A.A.+M+] complexes were isolated in the quadrupole ion trap using a 

peak width isolation set at 0.7 (Fig. 21). The isolation width was optimized to 

ensure that only the selected ion was trapped. After isolation, the [A. A.+M+] 

species were then allowed to react with the acetone for different amounts of time. 

The variable scan delay option was used to monitor reaction kinetics, which 

occurred within the limits of 0 to 9999 ms. These scan delay limits are imposed by 

the Bruker Esquire 3000 software and cannot be increased for these experiments.
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A Total Ion Scan Mass Spectrum
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Figure 21. Ion isolation, a) The full scan ion spectra without isolation. This is a 
sample mixture containing alanine and silver, b) Isolation of the desired ion species, 
[Ala+Ag+], The m/z of the selected ion is 196.
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Figure 22 shows the experimental ESI-MS setup for neutral introduction. As 

can be seen from the diagram, the mass spectrometer can be operated in either 

normal or ion-molecule reaction mode. Helium is sent directly to the ion trap for 

normal operating mode. In ion-molecule reaction mode, the neutral is directly 

introduced to the helium line. The flow of the neutral is controlled by the syringe 

pump and can vary between 3 and 120 pL hr’1. The estimated neutral pressure in 

the quadrupole ion trap for these flow rates is on the order of 10'8 to 10'9 Torr, as 

calculated by Gronert’s method. Higher flow rates can effectively clog the helium 

line. The helium carrying the neutral is directed to the ion trap at a flow rate of 2.00 

L min'1. The excess helium/neutral gas is diverted to waste.

Ion Trap 
(Normal)

Ion Trap 
(IM Mode)

Syringe Pump 
(Neutral liquid)

Figure 22. The neutral introduction scheme. When operating in ion-molecule 
reaction mode, the neutral is introduced into the helium line and directed to the 
quadrupole ion trap. A digital read-out flow meter regulates the pressure of gas 
flowing to the trap. Excess He gas is directed to waste.
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Initially, the most intense ion present in the quadrupole ion trap under 

isolation mode is the [A.A.+M+]. Typically, before the reaction takes place, the 

isolated species has a relatively high intensity. As the reaction (scan delay) time in 

the ion trap is increased, the intensity of the product [A.A.+M++neutral] species also 

increases. This observation is demonstrated by [Leu+Li+] and acetone experiments 

in Fig. 23. At 0 ms, the [Leu+Li+] species is the most intense ion peak. It can be 

seen that for a 400 ms scan delay, the intensity of the [Leu+Li+] species was a bit 

less than the intensity of the [Leu-Li+-acetone] species. As the scan delay was 

increased to 1000 ms, the greatest intensity ion becomes the [Leu+Li++acetone] 

species. Note that the addition of water to [Leu+Li+] can also be observed.

The scan delay was incrementally increased over an extended period of time 

(i.e., increased from 0 to 5000 ms at 200 ms intervals). The data from each time 

point was then plotted to compare the relative intensities of the parent ion 

([A.A.+M+]) and the complex ([A.A.+JVT+neutral]) versus the scan delay time (Fig. 

24). The relative intensity (RI) of the selected species was obtained by calculating 

the fraction of the species of interest to the total ions present using the following 

equation (Eq. 2.6):

m _ Ion Intensity species
Ion Intensity total (2.6)
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Figure 23. An example of the increase in product formation as the scan delay time 
is increased.
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AlaLi* + Acetone Kinetics
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Figure 24. The typical kinetics trend observed for these reactions. The decrease in 
the [A.A.+M+] occurs simultaneously with the increase of the [A.A.+M++acetone] 
formation over time.

The relative intensity was calculated for both the [A.A.+M+] and the 

[A.A.+M++neutral] species. For zwitterion analysis experiments, the data collection 

concluded when the relative intensity of the [A.A.+M+] complex no longer 

decreased or when the scan delay time reached the limit of 9999 ms. In aromatic 

amino acid studies, the observation of equilibrium signaled the end of data 

collection.

Pseudo first-order rate constants (kj) for the exponential decay of the 

[A.A.+M+] were obtained by data fitting using Excel. In the structural analysis 

experiments, exponential line fitting was used to determine decay constants. The 

KinFit macro for Excel was used to fit data obtained for aromatic amino acid

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



80
experiments. The kinetics data were then used to compare the reactions of the 

[A.A.+M+] species.

Determination of Neutral Pressure

It is possible to estimate the pressure of the neutral in the ion trap using 

Gronert’s method as follows:

(Torr) “  ( iX W ’Torr]
Fr * d R f  1 Y  MW„ V2

(2.7)
1 MW F MWV 1 1  r r  R  A  He A  He

In this equation, the pressure of the neutral can be estimated by the flow rate of the 

neutral (FR) from the syringe pump, the density o f the neutral (dR), the flow rate of 

helium into the ion trap (F//e), and the molecular weights of the neutral (MWr) and 

helium {MWue). For example, the estimated pressure of acetone (d = 0.0872 g mL'1) 

flowing at a rate of 3 pL Hr"1 into the helium line would be estimated by:

- i  \

f 1 1 58 gmol 1 N
l^.OOTmin-1, v4.003gmol~l ,

(2 .8)/ ... „_3/ 3uLHr 1 *0.791 gmL

The result of Eq. 2.8 estimates the pressure of acetone in the quadrupole ion trap to 

be approximately 2.9 X 10"8Torr.

Although it was possible to estimate the pressure of acetone mathematically, 

it was necessary to determine the neutral pressure experimentally. To do this, it can 

be assumed that the fastest reaction occurs at the collisional rate of the species in the 

trap, as previously described. Here, this calculation is demonstrated for experiments
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using acetone as the neutral species. Similar calculations can be preformed for 

neutrals used in the aromatic amino acid modeling experiments to determine the 

neutral pressure in the ion trap.

The lithiated amino acid species demonstrates the fastest reaction kinetics in 

these experiments. The fastest reacting [A. A.+Li+] species, in this instance 

[Ala+Li+], can be used to determine the pressure of acetone in the quadrupole ion 

trap as follows:

_  m Gly+Li+ x m acetone _  96 X 58 _  ^  (2 9)

m G,y+Lr + m  acetone 96 + 58

k f =2 m \ — = 2^(4.8 x 10 ~10)J -----— ------= 9.765 x 10",n °m
' fj, V 36.16*1.67 molecule • s (2.10)

where p is the reduced mass of the [Ala+Li+] species and acetone, k/is the

collisional rate constant, and a is the polarizability of the neutral. The term “1.67”

in the denominator is used to convert the mass of the species to grams. From Eq.

2.10, the pressure of acetone in the quadrupole ion trap was calculated to be 

-8approximately 7 X 1 0 ’ Torr for acetone entering the helium line at a flow rate of 3 

pL hr'1. The estimated pressure uncertainty is approximately ± 30%.

Theoretical Calculations

Theoretical modeling calculations, performed by the Gaussian 03 suite3 

operating under the density functional theory (DFT) at the B3LYP/6-31 lG+(d)
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level, as previously described, were performed. These calculation parameters are the 

published standard for ion-molecule reaction calculations. The preliminary 

structures of the [A.A.+M ] complexes were entered into the GaussView program, 

and the structure was neatened by GaussView and then optimized by Gaussian 03 

calculations. The energy of the optimized structure was calculated using the same 

parameters. The neutral species was added to the optimized [A.A.+M+] complex, 

and the [A.A.+M++neutral] complex was subsequently optimized and analyzed in 

the same fashion (Fig. 25).

For comparison purposes, the stabilization energies of the systems were 

converted from the hartree units computed by Gaussian to kJ mol'1. The 

stabilization energy is calculated as the energy difference between the [A. A.+M+] 

and [A.A.+M++neutral] species. For experiments with neutral acetone, the distance 

between the oxygen atom of the acetone and the complexed metal ion is also 

reported. This distance is important because it shows how well the metal ion and 

acetone are complexed to the amino acid species; the closer the metal ion and the 

oxygen of the acetone are, the greater the stabilization of the system is. This 

information facilitates the evaluation of the data when comparing the [A.A.+M+] 

species to the [A.A.+M++acetone] species. For future reference, the atomic color 

system employed by GaussView is as listed in Table 14.
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C. Before optimization
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Figure 25. The use of Gaussian optimization. A serine molecule before (A.) and 
after (B.) cleaning by the Gaussian program. The most visible change is the position 
of the hydrogens on the nitrogen atom. (C.) The [Gly+Na+] complex before 
optimization and (D.) after optimization. (E.) The [Gly+Na+] complex in (D.) with 
acetone added. (F.) The optimized structure of the [Gly+Na++Acetone].
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Table 14

Colors of the Atoms as Used by Gaussian.

Atom Color
Carbon Grey
Oxygen Red

Nitrogen Blue
Hydrogen White
Sodium Purple

Potassium Dark Purple
Calcium Olive
Copper Salmon
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CHAPTER 3

THE INVESTIGATION OF 
AMINO ACID-ALKALI METAL ION COMPLEXES: 

STRUCTURAL ANALYSIS THROUGH 
ION-MOLECULE REACTIONS

Ion-molecule reactions were used to probe the structure of amino acids in the 

gas phase as described in Chapter 2. The structure of neutral species acetone is 

shown in Fig. 26. Acetone has a boiling point of 56 °C and a vapor pressure of 184 

mmHg (at 20°C). The published polarizability for acetone is 6.33 A3 and was the 

value used in the calculations.160 Data obtained using acetone as the neutral species 

for the zwitterion analysis experiments will be presented here.

Figure 26. The structure of acetone. On the left, acetone is shown as a simple 
drawing. The figure on the right is the acetone molecule as optimized by Gaussian

0
t

03.
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Observed Trends
86

For the group 1A metals studied, a general reactivity trend of the [A.A.+M+] 

complexes of Li+» N a +>K+» C s + is observed (Fig. 27). It can be seen from the 

representative kinetics plot in Fig. 27 that the relative intensity of the parent 

[Ala+Li+] complex decreases at a reasonably fast rate when compared to the other 

alkali metal complexes. In fact, complexes of amino acids with lithium react too 

fast to be able to draw useful conclusions. Some of the lithium reactions reacted 

close to or at the collisional rate of the association reaction, preventing acquisition 

of kinetics data. Since a rate constant could not be obtained for these fast reactions, 

it is difficult to compare them to other reactions involving lithium.

These lithium complexes can also react with water molecules present in the 

background pressure as well as the neutral species, which also further complicates 

data analysis. The peaks corresponding to the addition of water can sometimes be 

fairly intense even at short reaction times, as can be seen occurring for the 

[Leu+Li+] complex in Fig. 23. The addition of water to the [A.A.+Li+] complex 

was not observed for all of the amino acids studied here.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



87

Alanine+M* + Acetone Kinetics
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Figure 27. Representative reaction trends for alkali metals complexed to amino 
acids. It can be seen that the general reaction trend of Li+» N a +>K+ is observed for 
alanine experiments.

Following the observed reactivity trend, the [Ala+Na+] complex intensity 

decreased at a slower rate than that of the lithiated complex (Fig. 27). However, 

unlike lithiated amino acids, sodiated amino acids do not form complexes with 

water molecules under these experimental conditions. This simplifies the 

interpretation of kinetics obtained for the [A.A.+Na+] species. Similarly, 

potassiated species show a slower reaction trend than both lithiated and sodiated 

species and do not form complexes with water. Again, this provides more 

simplified kinetics interpretations.
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Studying amino acids complexed with cesium was problematic due to their 

slow reaction kinetics, many of which reacted too slowly to observe under this 

particular experimental setup. In addition, it was difficult to form a stable complex 

of an amino acid and the Cs+ due to the size of the cation and the apparent lack of 

ability of the side chain to complex the species. Only two amino acids were 

observed to form a cesium complex. These complexes were isolated but not found 

to react with acetone in the time frame of this experiment. Both [Gln+Cs+] and 

[Leu+Cs+] are shown in Fig. 28. Representative kinetic data for Cs+ complexes are 

not shown in Fig. 27 because it could not be obtained.

Although the general trend occurs so that the smaller alkali metal ion 

complexes will react faster than the larger alkali metal ions, the kinetics of each 

[A.A.+M+] species will vary. Each [A.A.+M+] will react with acetone at a different 

rate. Figure 29 shows an example of the relative rate kinetics of a variety of amino 

acids with lithium.

It is important to note that although the lithiated amino acid species will 

react faster than larger alkali metals complexed to the same amino acid, lithiated 

amino acids do not react with the same kinetic rate. For instance, it can be seen that 

out of the five amino acids selected here, [Gly+Li+] and [Ala+Li+] react faster than 

[Ile+Li+], which, in turn, reacts faster than the [Gln+Li+] and [Lys+Li+] species.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



89

Gln+Cs +

12000

10000 Gln+Cs+
279 m/z

3 8000 (0

1  6000
O
c

4000

2000^

n

0 50 100 .150 200 250 300 350 400

Leu+Cs+

1200

1000

!■ 800 <0
i
c  600

Leu+Cs 
264 m/z

400

200

50 100 150 200

m/z
250 300 350 400

Figure 28. Amino acids and cesium. Both Gin and Leu were found to complex 
cesium. This was not observed for the other eighteen common amino acids.
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Figure 29. Kinetics variations with respect to various lithiated amino acids reacting 
with acetone. Significant variations can be seen between the five selected amino 
acids between 0 and 1000 ms reaction times.

These differences in reaction kinetics can help to establish differences in the 

structures of the amino acids in the gas phase. Similar structures should tend to 

react with similar efficiency in the gas phase. Therefore, it is valuable and pertinent 

to compare data not only between individual amino acids but also among the amino 

acids and structural models used in this study.

The kinetic variations between the amino acids can also be observed when 

looking at data for sodiated representative amino acids. The kinetic trends in Fig.

30 show that the variation between amino acids com plexed with the same alkali 

metal ion has a similar trend to that observed with the lithiated species in Fig. 29. 

That is, each amino acid will react with acetone with a different kinetic rate.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



91
Structural determination can be performed by comparing the kinetic trends of 

sodiated amino acids to the model compounds presented earlier.

Sodiated Amino Acid Kinetics
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Figure 30. Representative kinetics plots for sodiated amino acids reacting with 
acetone.

The kinetics plots for amino acids complexed to potassium ions are shown in 

Fig. 31. Comparing Fig. 29 and Fig. 30, it can be seen that the reaction rate 

decreases as the size of the metal ion increases. Most of the potassiated amino acids 

react much more slowly with respect to their lithiated and sodiated counterparts. A 

key feature of Fig. 31 is the kinetics displayed by the [Gln+K+] species. Both 

lithiated and sodiated Gin react slow ly (Fig. 29 and 30); however, here Gin reacts 

faster than would be expected. This finding suggests that Gin undergoes a structural 

change as the size of the cation increases. This could also possibly explain the
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finding that Gin is one of the two amino acids capable of forming a stable complex 

with a cesium cation.

Potassiated Amino Acid Kinetics
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Figure 31. Reaction kinetics for various potassiated amino acids reacting with 
acetone.

It is difficult to experimentally determine if amino acids with large chelating 

side chains are charge-solvated or zwitterionic. The problem was predominantly 

apparent for the amino acids arginine, lysine, and histidine. This is mainly due to 

the fact that the bulky chelating side chain is likely to “wrap” around the metal ion, 

preventing the neutral species (i.e., acetone) from interacting with the ionic charge; 

the amino acid could coordinate the metal ion through OO or NO interaction, but 

the side chain could affect the expected kinetics that those interactions would 

display. Molecular modeling calculations can provide theoretical information that
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can be used to help clarify the identification of gas-phase zwitterions in these 

instances.

Kinetics Data

The results presented from here on will focus on data collected for lithiated, 

sodiated, and potassiated amino acids using an acetone as the neutral species. All 

rate constants were obtained from kinetic plots of the data, using exponential fitting. 

These constants were then used to determine the reaction efficiency (®) of the 

amino acid complexes with acetone. The experimental rate can vary ± 30%. 

However, the comparison of known and permanent zwitterions and charge-solvated 

species to the amino acids with unknown structures can still be made.

Gas-Phase Zwitterions

Proline differs from the other common amino acids in that the cyclic portion 

of the amino acid significantly inhibits the mobility of the molecule. Unlike the 

other amino acids containing cyclic species as a part of their side chains, the main 

portion of proline contains the cyclic structure. Thus, proline has more restrained 

capabilities for binding metal ions.155

Spectroscopic experiments have identified the sodiated form of proline to be 

zwitterionic in the gas phase.62,155 Additional theoretical and experimental results
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indicate that the [Pro+M+] complex will be zwitterionic. This is because the 

hydrogen bonds in Pro tend to form without deforming the ring structure, creating a 

more energetically favorable situation for zwitterion structure.155 In addition, 

proline is able to bind alkali metal cations much stronger than any of the other 

common amino acids, thus giving it noticeably different complex chemistry.155

Proline and betaine are used here to help identify zwitterions in the gas 

phase. As previously mentioned, the betaine molecule is organized so that the two 

carboxyl oxygens are the chelating position for metals. The Gaussian 03-optimized 

structures of proline and betaine are shown in Fig. 32.

Proline Betaine

Figure 32. Proline and betaine zwitterions. Proline is a known zwitterion in the gas 
phase, and betaine is as permanent zwitterion. Both amino acids are shown 
complexed with a sodium ion. The atom color scheme is as follows: hydrogen is 
white, carbon is grey, nitrogen is blue, oxygen is red, and sodium is purple.

The kinetics data for the lithiated and sodiated species of Pro and Bet are 

shown in Fig. 33. As can be seen from the graph, both of the known zwitterions 

have similar reaction trends. As expected, the lithiated species react much faster
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than the sodiated species. Another interesting feature of these kinetics is that the 

sodiated species of Pro and Bet react similarly and relatively slowly. These data 

indicate that ions with a salt-bridge gas-phase structure will likely react with similar 

efficiencies.

Zwitterion Kinetics
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Figure 33. A comparison of the reaction rates of Pro and Bet with acetone in the gas 
phase.

Gas-Phase Nonzwitterions

As previously mentioned, methyl esters of amino acids are permanent 

charge-solvated molecules. The methyl ester on the carboxyl terminal prevents the 

metal ion from being chelated by the two carboxyl oxygens. To better depict this,
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Fig. 34 shows the structure of zwitterionic lysine, charge-solvated lysine, and lysine 

methyl ester. The change in chelating position of the metal ion can easily be seen. 

In zwitterionic lysine, the sodium ion is complexed through the two carboxyl 

oxygens. For the charge-solvated species, the sodium is complexed by a carboxyl 

oxygen and the amino nitrogen. The methyl esters of alanine, arginine, glycine, 

histidine, lysine, and proline were used for these studies.

Figure 34. A comparison of the zwitterionic and charge-solvated lysine species to 
the permanently charge-solvated lysine methyl ester. All species are complexed 
with a sodium cation. The atom color scheme is as follows: carbon is grey, 
hydrogen is white, nitrogen is blue, oxygen is red, and sodium is purple.

Kinetics data was obtained for all of the methyl esters previously mentioned. 

The results for lithiated methyl esters are shown in Fig. 35. As would be expected, 

there is variation between the reaction kinetics of the amino acids. This can be 

attributed to the difference in availability of the lithium to the acetone for each of 

the species. Arginine methyl ester (ArgME), histidine methyl ester (HisME), and

*  J
Zwitterionic lysine Charge-solvated lysine Lysine methyl ester
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lysine methyl ester (LysME) all have side chains which are capable of surrounding 

the lithium ion and effectively reducing its ability to interact with acetone. The 

fastest reacting methyl ester, proline methyl ester (ProME), has little rotational 

ability, allowing for availability of the complexed lithium ion to acetone. Alanine 

methyl ester (AlaME) and glycine methyl ester (GlyME) have bulkier side chains 

than ProME but offer less Li+ protection than ArgME, HisME, or LysME.

Lithiated Methyl Ester Kinetics
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Figure 35. Lithiated methyl ester kinetics with acetone.

When com plexed with sodium, the methyl esters displayed kinetics as 

shown in Fig. 36. Upon comparison with Fig. 35, it is apparent that the rates of the 

sodiated reactions occur more slowly than the lithiated ones. As before, the fastest

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



98
reacting species is the methyl ester with the least chelating ability, ProME. The Na+ 

complexed to ProME is readily available to react with the acetone molecule.

AlaME and GlyME do not have side chains capable of chelating a metal. They 

react slower than ProME but much faster than methyl esters with chelating side 

chains.

As the size of the chelating group of the methyl ester increases, the reaction 

rate decreases. This is why HisME displays a slower reaction rate than ProME, 

AlaME, or GlyME. ArgME and LysME were also analyzed in the sodiated form, 

yet no reaction with acetone was observed. This can again be attributed to the 

protection of Na+ by their larger side chains.

Sodiated Methyl Ester Kinetics
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Figure 36. Sodiated methyl ester kinetics with acetone.
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The methyl esters were also complexed to potassium ions and are shown in 

Fig. 37. These potassium species are likely to have reacted slowly due to ion size 

constraints; the metal ion is likely to be farther away from the amino acid, 

preventing the formation of a stabilized complex. Where available, kinetics data 

will be presented for [A.A.+K+] species that were observed to react within the time 

frame of this experiment.

Potassiated Methyl Ester Kinetics
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Figure 37. Potassiated methyl ester kinetics with acetone.

The Analysis of Selected Amino Acids and Their Corresponding Methyl Esters 

A lan in e

Anh et al.107 focused on a computational look at charge-solvated and 

zwitterionic alanine. The computational analysis focused on bare alanine, neutral
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alanine -(H20)n, and the alanine zwitterion -(H20)n (n= 1 and 2) clusters. Similar 

to the experiments with valine performed by Jockusch et al.,143 the calculations on 

the various alanine species were designed to determine the stability that water 

molecules can provide zwitterions in the gas phase. Anh et al. found that neutral 

(charge-solvated) alanine is calculated to be more stable in the gas phase than 

zwitterionic alanine, whereas the reverse is true for solution-phase alanine.

However, the authors also found that the zwitterionic alanine molecule could be 

stabilized by the binding of at least two water molecules.107 Alkali metal ion 

complexation to the alanine molecule should result in a similar stabilization of the 

zwitterionic structure.

Here, alanine, alanine methyl ester (AlaME), and betaine kinetics are 

compared to identify the gas-phase structure of alanine. The [Ala+Li+] complex and 

the corresponding standards were analyzed, and their reaction kinetics are shown in 

Fig. 38. The exponential decay of [Ala+Li+] and [Bet+Li+] display an almost 

identical kinetic trend. [AlaME+Li+] reacts more slowly than the other two species. 

This observation indicates that lithiated alanine is zwitterionic in the gas phase.
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Lithiated Alanine Kinetics
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Figure 38. Alanine kinetics compared to the amino acid standards in their lithiated 
forms for reactions with acetone. The kinetics data were obtained at an estimated 
acetone pressure of 7 X 10"8 Torr (1) or 2 X 10'7 Torr (2).

When sodiated alanine is compared to [AlaME+Na+] and [Bet+Na+], it 

becomes more difficult to determine the gas-phase structure of [Ala+Na+]. It can be 

seen that out of the three species, [Ala+Na+] reacts fastest and the [AlaME+Na+] 

species reacts slowest (Fig. 39). This would indicate that the Na+ complexed to 

alanine is readily available for interaction with acetone. Conversely, AlaME likely 

shields the Na+ from acetone, which explains the slower reaction kinetics that 

system displays. Although the sodiated alanine complex reacts faster than the 

zwitterionic [Bet+Na+] species, the reaction kinetics indicate that [Ala+Na+] is most 

likely zwitterionic in the gas phase.
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Sodiated Alanine Kinetics
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Figure 39. Sodiated alanine kinetics for reactions with acetone. The kinetics of the 
charge-solvated AlaME and the zwitterion Bet are compared to Ala. Data acquired 
at estimated acetone pressures of 7 X 10 '8 Torr (1) or 2 X 10'7 Torr (2).

When the kinetic trends of potassiated alanine and betaine are compared, it 

can readily be seen that the two species have similar reactions (Fig. 40). Betaine is 

a permanent zwitterion in the gas phase. Ala reacts similarly, indicating that 

[Ala+K+] is a zwitterion in the gas phase. Furthermore, Ala does not react with 

acetone in a similar manner as AlaME. This concurs with the findings for the 

lithiated and sodiated amino acids in the gas phase.
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Potassiated Alanine Kinetics
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Figure 40. The reaction trend of potassiated alanine with acetone.

Although Gaussian analysis was not performed on alanine species for these 

experiments, it can be concluded that Ala is a zwitterion in the gas phase. As 

previously described, Ahn et al. found that two water molecules were needed to

107bind to alanine to form a stable zwitterion in the gas phase. Instead of using 

water in these experiments, alkali metal ions are used to stabilize these ions. 

Therefore, the finding that alanine is zwitterionic in the gas phase is consistent with 

expectations for this amino acid.

Arginine

Figure 41 shows a comparison of the kinetics of arginine, arginine methyl 

ester (ArgME), and betaine. From the kinetics data, it can be seen that the Arg and
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ArgME species react more similarly than the Bet species. The reactions with Arg 

and ArgME were considerably slower, both in the lithiated and sodiated forms. 

Because the lithiated and sodiated arginine displays similar reaction kinetics as the 

known charge-solvated species ArgME, it is possible that the Arg chelates the metal 

ions in a charge-solvated manner.

Arginine Kinetics
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a ArgMELi(2)
■  BetLi (2) 

x  ArgNa (1)
•  ArgNa (2)
+ BetNa(2)

0 1000 2000 3000 4000

Time (ms)

c  0.8

DC 0.2

Figure 41. Arginine kinetics for reactions with acetone. The kinetics of both the 
lithiated and sodiated forms of arginine, arginine methyl ester, and betaine are 
shown above. Data acquired at estimated acetone pressures of 7 X 10 '8 Torr (1) or 2 
X 10'7 Torr (2).

Arginine has a large side chain, able to interact with the metal ion in a few 

ways. The sodiated arginine species were m odeled in the Gaussian program to help 

understand these observations. The optimized structures of zwitterionic and charge- 

solvated species of [Arg+Na+] and [Arg+Na++acetone] are shown in Fig. 42. The
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distance from the sodium ion and the oxygen of the amino acid are reported. The 

charge on the sodium cation is also shown. A comparison of the two structures 

shows that the arginine zwitterion has a lower energy of stabilization than the 

charge-solvated species. It would be expected that the zwitterion structure of 

arginine would be favored in the gas phase.

Kinetics data previously discussed demonstrate that this does not appear to 

be the case. However, there is little difference between the computed energies and 

distances of the two arginine structures. In the optimized zwitterion structure, the 

nitrogen atom on the Arg side chain is shown to “share” a hydrogen atom with a 

carboxyl oxygen. When this occurs, the charge separation usually observed for 

zwitterions is somewhat mediated. This could cause the zwitterion to react more 

slowly than the known betaine zwitterion, but faster than the ArgME.

Additionally, the charge-solvated structure of Arg used for these calculations 

is not the only possible structure.57,86 In Fig. 42, Arg is shown to chelate the 

sodium ion through NO coordination. However, it is possible for the amino 

nitrogen to also participate in chelating the sodium ion. This charge-solvated 

structure would display a higher energy of stabilization.

Kinetics data was also acquired for the potassiated arginine species (Fig. 43). 

It can be seen from Fig. 43 that [Arg+K+] and [Bet+K+] react similarly and that they 

both react slow ly. It can also be seen that although [ArgME+K+] reacts slow ly, it 

reacts faster than the other potassiated species. This finding is interesting since the 

lithiated and sodiated forms of Arg seem to be charge-solvated in the gas phase.
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Figure 42. Zwitterionic and charge-solvated [Arg+Na+]. Both structures are shown 
complexed with acetone. The stabilization energy of zwitterionic arginine is 
calculated to be greater than that of the charge-solvated arginine species.
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One possibility is that the complexation of K+ to Arg is more capable of 

stabilizing the zwitterionic structure than Li+ or Na+. It has been previously 

suggested that the size of the metal ion has a significant effect on the stabilized 

structure; as the size of a metal ion increases, the stabilization of the zwitterion is 

found to increase. Jockusch et al. have suggested that this finding could be 

observed for Arg.57 Therefore, the finding that Arg becomes a more stable 

zwitterion as the size of the cation increases is reasonable.

Potassiated Arginine Kinetics
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Figure 43. The kinetic trends of potassiated arginine species reacting with acetone. 
Data acquired at estimated acetone pressures of 7 X 10 '8 Torr (1) or 2 X 10"7 Torr 
(2).
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Glycine

Glycine is the simplest amino acid, where its R-group is a hydrogen 

molecule. Since it does not have a long side chain, it would be expected that the 

metal ion would be readily available for reaction with acetone in both the zwitterion 

and charge-solvated structures. It is widely accepted that glycine is charge-solvated 

in the gas phase. Thus, it would be expected that the experimental reaction kinetics 

of Gly would display similar reaction trends as glycine methyl ester (GlyME).

Figure 44 shows the kinetic trends for lithiated Gly, GlyME, and Bet. It is 

apparent from the data that both [Gly+Li+] experiments show similar reactions to 

[Bet+Li+] and [GlyME+Li+]. This observation can be attributed to the availability 

of the Li+ to the acetone molecule. In all three amino acid species, the lithium ion is 

unrestricted from interacting with acetone. The slower reaction rate of 

[GlyME+Li+] can be explained by the added polarity of the molecule. Since the 

reaction of acetone with lithiated species is so fast, little structural information can 

be obtained from this experiment.
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Lithiated Glycine Kinetics
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Figure 44. Lithiated glycine kinetics for reactions with acetone. Gly is compared to 
the charge-solvated GlyME and the zwitterionic Bet. Data acquired at estimated 
acetone pressures of 7 X 1 0  '8 Torr (1) or 2 X 10'7 Torr (2).

When the data for the sodiated forms of Gly, GlyME, and Bet are compared, 

an analogous trend appears (Fig. 45). All three species exhibit similar reaction 

kinetics. Again, this observation can be attributed to the readily available sodium 

ion. Since glycine is the simplest amino acid, there is no side chain to interfere with 

the binding of the alkali ion or interaction of the acetone to the [A.A.+M+] complex.
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Sodiated Glycine Kinetics
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Figure 45. Sodiated glycine kinetics for reactions with acetone. All three species 
are found to react with similar rates. Data acquired at estimated acetone pressures 
of 7 X 10 ‘8 Torr (1) or 2 X 10"7 Torr (2).

Theoretical calculations indicate that the observed trends are reasonable. All 

three systems are calculated to have similar distances between the sodium ion and 

acetone, as well as similar stabilization energies (Fig. 46). The theoretical data 

indicate that a similar reaction trend between glycine, glycine methyl ester, and 

betaine is a predictable observation. Since the calculated thermodynamic 

observations are similar, it is understandable that the sensitivity of ion-molecule 

reactions may not be good enough to distinguish these species. Given the ± 30% 

variation in the experimental rate of the kinetics experiments, this conclusion is 

reasonable. However, it is important to note that Gly is accepted to be charge- 

solvated in the gas phase and that the theoretical computations predict that charge- 

solvated Gly will have the greatest stabilization energy.
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Figure 46. A comparison of the structures and energies of Gly, GlyME, and Bet. 
All the amino acids are shown complexed with Na+ on the left and with the 
subsequent addition of acetone on the right.
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Histidine

The analysis of lithiated histidine is fairly straightforward. Both [His+Li+] 

and [HisME+Li+] display similar reaction kinetics, dissimilar to what is shown by 

[Bet+Li+] (Fig. 47). When the lithium cation is complexed to betaine, there is little 

ability for the side chain to protect the ion from acetone. However, histidine has a 

large aromatic arm that is capable of hindering interaction of the lithium and 

acetone. It would be expected that if the aromatic ring were to participate in 

coordination of the metal ion, it would play more of a factor in the charge-solvated 

structure. This is because the carbon chain can position the aromatic moiety closer 

to the amino terminus than the carboxyl terminus. The kinetic trend displayed for 

[His+Li+] indicates that the structure of the amino acid is charge-solvated in the gas 

phase.

It would be expected that the [His+Na+] and [His+K+] species would have 

structure and kinetics similar to that of the [His+Li+] species. A kinetics plot of 

sodiated His, HisME, and Bet confirms this expectation (Fig. 48). Both [His+Na+] 

and [HisME+Na+] react similarly, indicating that His prefers the charge-solvated 

structure in the gas phase. As with the experiment with lithium, [Bet+Na+] reacts 

faster than the charge-solvated species.
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Lithiated Histidine Kinetics
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Figure 47. Lithiated histidine kinetics for reactions with acetone. Data acquired at 
estimated acetone pressures of 7 X 10 '8 Torr (1) or 2 X 10'7 Torr (2).

Sodiated Histidine Kinetics
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Figure 48. Sodiated histidine kinetics for reactions with acetone. His and HisME 
react with similar reaction kinetics. Data acquired at estimated acetone pressures of 
7 X 10 ‘8 Torr (1) or 2 X 10'7 Torr (2).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



114
When [His+K+] and [Bet+K+] kinetics are compared, it can be seen that the 

kinetic trend between the two species differs as before (Fig. 49). There is no 

kinetics data available for [His+K+] reacting with acetone due to the slow reaction 

kinetics the species exhibited. Since Bet is a zwitterion, this finding confirms that 

His is likely to be charge-solvated in the gas phase. From these data, it is possible 

to experimentally determine that histidine prefers the charge-solvated structure in 

the gas phase.

Potassiated Histidine Kinetics
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Figure 49. Reaction kinetics of potassiated histidine for reactions with acetone.

Theoretical calculations were performed with sodiated histidine in both the 

charge-solvated and zwitterionic structure. Figure 50 compares the theoretical 

results from the analysis. The distances between the metal ion and the acetone are 

almost identical for both the charge-solvated and zwitterion structures. The charge- 

solvated histidine structure is calculated to have the greatest stabilization energy.
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Since the structure with the greatest energy of stabilization is the most likely 

structure to be formed, it is likely that charge-solvated histidine is preferred in the 

gas phase.
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Figure 50. Theoretical calculations involving sodiated histidine. Both the distance 
from the Na+ to the oxygen of the acetone and the stabilization energies are 
reported.

It is important to also note that there is more than one possible charge- 

solvated structure for histidine in the gas phase. The structure in Fig. 50 shows that 

the sodium cation is chelated by NO coordination. However, it is also possible that 

the aromatic side chain could also be used to chelate the ion. This additional
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coordination would further stabilize the species. Nevertheless, the calculated 

stabilization energy for the species in Fig. 50 is consistent with the kinetic 

observation that histidine prefers the charge-solvated structure in the gas phase.

Lysine

Lysine is similar to arginine because it has a long carbon side chain capable 

of providing steric hindrance in the structure. It is expected that lysine and arginine 

should exhibit similar reaction trends, and indeed, this is the case. Figure 51 shows 

the kinetics data for the lithiated and sodiated amino acids. The fastest reacting 

species is [Bet+Li+]. The remaining amino acids react more slowly, specifically, 

[LysME+Li+] and [Lys+Na+].

Lysine Kinetics
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Figure 51. Lysine kinetics for reactions with acetone. Data acquired at estimated 
acetone pressures of 7 X 10 '8 Torr (1) or 2 X 10'7 Torr (2).
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Since the lysine reacts faster than the charge-solvated methyl ester, it is 

probable that lysine is zwitterionic in the gas phase. Slower reaction kinetics than 

the betaine zwitterion can be attributed to the shared hydrogen between the side 

chain nitrogen and the carboxyl oxygen. Therefore, it is likely that lysine is 

zwitterionic in the gas phase.

LysME species reacted much slower than most of the amino acids tested.

The reaction kinetics for [LysME+K+] was slower than those observed for 

[LysME+Na+]. Since there was no observable reaction between the potassiated 

LysME, there is no reaction data available. Data for reaction kinetics between 

acetone and [Lys+K+] and [Bet+K+] are shown in Fig. 52.

Potassiated Lysine Kinetics
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Figure 52. The rate kinetics of potassiated lysine for reactions with acetone.
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The [Lys+K+] species reacts faster than [Bet+K+] and [LysME+K+]. From 

this observation, it is possible to conclude that Lys displays reaction kinetics similar 

to those of gas-phase zwitterions. Since methyl esters tend to react slowly with 

acetone, charge-solvated amino acids would also be expected to react slowly. This 

is not the case with Lys, which is seen to react faster than Bet. This finding 

indicates that lysine is zwitterionic in the gas phase.

Theoretical calculations were performed on charge-solvated [Lys+Na+], 

zwitterionic [Lys+Na+], and [LysME+Na+]. The distances and energies for all three 

species were very similar (Fig. 53). This indicates that there is little variation in the 

thermodynamic stabilization of the systems.

The structural optimization of the zwitterion shows that nitrogen and oxygen 

“share” a hydrogen atom. The sharing of this atom would slow down reaction 

kinetics of the zwitterion, which is what was experimentally observed. The charge- 

solvated structure shown in Fig. 53 displays a side chain N and carboxyl O 

coordination of the sodium ion. However, this is only one possible structure. As 

with Arg, another possible structure would be the chelation of the ion by NO and 

side chain N coordination. The chelation with three atoms would provide even 

greater stabilization to the system.

It was calculated that lysine is energetically more stable as a zwitterion in 

the gas phase. However, the stabilization energies o f  the chargc-solvatcd and 

zwitterion complexes do not differ significantly. For data presented here, it can be 

concluded that alkali metal ion-stabilized lysine is zwitterionic in the gas phase.
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Figure 53. Computational results for sodiated Lys and LysME reacting with 
acetone.
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Proline
120

As previously mentioned, proline is a known zwitterion in the gas phase. 

Both kinetic and thermodynamic experiments should confirm that proline is indeed 

zwitterionic. Lithiated proline kinetics show a variation in the expected trend (Fig. 

54). It can be seen that both [ProME+Li+] and [Bet+Li+] react with almost identical 

kinetics, whereas [Pro+Li+] displays a slower reaction rate. Pro should react 

similarly to Bet since they are both known zwitterions. Additionally, ProME should 

react with kinetics different from a gas-phase zwitterion due to structural 

differences. The observation that [Pro+Li+] did not react similarly to Bet can be 

explained by the size and reactivity of Li+. Since Li+ is small and very reactive, it is 

likely to interact quickly with acetone in any gas-phase structure.

When the same amino acid species are complexed to sodium, a different 

kinetics trend is observed (Fig. 55). These data show that the [Pro+Na+] and 

[Bet+Na+] species react much more similarly, as would be expected for gas-phase 

zwitterions. In this experiment, the sodiated ProME is the fastest reacting species. 

Given the kinetic trends demonstrated in Fig. 55, it is possible to state that 

[Pro+Na+] is a zwitterion in the gas phase.
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Lithiated Proline Kinetics
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Figure 54. The reaction trends of the lithiated amino acids Pro, ProME, and Bet 
with acetone. Data acquired at estimated acetone pressures of 7 X 10 '8 Torr (1) or 2 
X 1 O'7 Torr (2).

Sodiated Proline Kinetics
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Figure 55. Sodiated proline kinetics for species reacting with acetone. Data 
acquired at estimated acetone pressures of 7 X 10 '8 Torr (1) or 2 X 10'7 Torr (2).
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A comparison of the kinetic trends of the alkali metal ion-complexed Pro 

species is shown in Fig. 56. This figure is helpful because it provides kinetic trend 

information for all of the Pro and Bet species. It can be seen that both [Pro+Na+] 

and [Pro+K+] react slowly compared to [Pro+Li+], A similar trend occurs with Bet. 

Since the Pro and Bet species react almost identically, these experiments confirm 

that proline is a zwitterion in the gas phase.

Proline Kinetic Trends
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Figure 56. The kinetic trends of the [Pro+M+] species reacting with acetone. It is 
important to note that the lithiated species react similarly, whereas the sodiated and 
potassiated species react much more slowly.

Theoretical modeling calculations have shown that both 

[Pro+Na++acetone] and [Bet+Na++acetone] have similar stabilization energies and 

ion distances (Fig. 57). Calculations of sodiated ProME show that the distance 

between acetone and the metal cation is greater than for the distance between
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acetone and the zwitterion-coordinated metal cation. In addition, the stabilization 

energy for proline methyl ester is less than for the zwitterion. These data 

corroborate the observation that the zwitterionic structure of proline is more stable 

in the gas phase.

Summary

A summary of kinetic and thermodynamic data acquired for the 

sodiated amino acid experiments is presented for Ala, Arg, Gly, His, Lys, and Pro 

(Table 15). Gaussian calculations were not preformed for all methyl esters of these 

amino acids and were only performed on sodiated species. The reaction efficiency 

(O) was calculated using Eq. 2.2.

Other Amino Acids

The remaining amino acids were also analyzed via ion-molecule reactions. 

Methyl esters for these amino acids were not analyzed during the course of these 

experiments, and therefore structural identification for these species is not easily 

performed. It is possible to compare the reaction efficiency of all ion-molecule 

reactions to structurally distinguish these amino acids. This data is presented in 

Tables 16,17, and 18. Gaussian computations can also be used to identify gas- 

phase structures of these species.
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Figure 57. Computational results for sodiated Pro, ProME, and Bet reacting with 
acetone.
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Table 15

Kinetic and Thermodynamic Data for Selected Sodiated Amino Acids and Model Compounds Reacting with Acetone.

Amino Acid (p* Bond Length®
(A)

Acetone Binding 
Energy® 

(kJ/mole)
Structural Determination

Alanine 1.8 X 10‘1T — — Charge-solvated
Alanine methyl ester 5.7 X 10'2 — — Charge-solvated
Arginine Charge-solvated 1.8X 10'2 t 2.204 97.4 ZwitterionZwitterion 2.193 105.3
Arginine met lyl ester 2.6 X I  O'2 — — Charge-solvated
Betaine 4.5 XIO '2 r 2.204 97.0 Zwitterion
Glycine 6.1 X 10'2t 2.186 107.8 Charge-solvated
Glycine methyl ester 5.6 X 10'2 2.190 106.6 Charge-solvated
Histidine Charge-solvated 1.3 X 10‘3t 2.189 107.4 Charge-solvatedZwitterion 2.190 104.5
Histidine met lyl ester 6.0 X 1(T3 — — Charge-solvated
Lysine Charge-solvated 3.1 X 10‘3t 2.207 97.4 ZwitterionZwitterion 2.203 98.2
Lysine methy ester 1.0 X 10'1 2.208 97.0 Charge-solvated
Proline 5.0X10‘3t 2.200 99.1 Zwitterion
Proline methyl ester 2.91 X 10'1 2.206 96.6 Charge-solvated

— Data unavailable * Experimental Kinetics f  Average value reported § Calculated by Gaussian



Lithiated Amino Acids
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As previously observed, the lithiated amino acids are generally the faster 

reacting species in these experiments. It is often difficult to identify the structure of 

these amino acids. This is because both zwitterionic and charge-solvated species 

will react quickly. Since the error associated with rate determination is 

approximately thirty percent, these reactions do not differ significantly enough for 

valuable structural information to be obtained. Table 16 summarizes experimental 

data for lithiated species. Gaussian calculations were not performed for [A. A.+Li+] 

complexes.

Sodiated Amino Acids

Structural information can be obtained for sodiated amino acids due to the 

more variable kinetic trends that these species display. Unlike lithiated species, 

which all react fairly quickly and efficiently, sodiated species will show a variation 

in reactivity due to structural influence. Table 17 summarizes the data obtained for 

sodiated amino acids. In addition, structural identification as predicted by Gaussian 

calculations is also reported for modeled amino acids. Known structures of amino 

acids are identified as w ell as the proposed structures from the experimental and 

theoretical analyses.
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Table 16

Experimental Results for Lithiated Amino Acids Reacting with Acetone.

Amino Acid <D Known Structure

Alanine 1.0 —

Alanine methyl ester 5.0 X 10"' Charge-solvated
Arginine 1.5X 10'Jt —

Arginine methyl ester 1.3 X 10_i Charge-solvated
Asparagine 2.1 X 10'2 —

Aspartic acid 5.1 X 10'1 —

Betaine 1 . 1 T Zwitterion
Glutamine 2.2 X 10'2 —

Glutamic acid 2.6 X 10"1 —

Glycine 6.0 X 10‘1T —

Glycine methyl ester 1.4 X 10_1 Charge-solvated
Histidine 4.3 X 10'2T —

Histidine methyl ester 1.5 X 10‘2 Charge-solvated
Isoleucine 3.4 X 1 0 '1 —

Leucine 1.0 —

Lysine 6.7 X 10'2T —

Lysine methyl ester 2.2 X 10'1 Charge-solvated
Methionine 2.6 X 10’1 —

Phenylalanine 5.7 X 10’1 —

Proline 2 .6X 104t Zwitterion
Proline methyl ester 1.8 Charge-solvated
Serine 8.2 X 10'z —

Threonine 8.4 X 10"z —

Tryptophan 3.1 X 10'1 —

Tyrosine 3.1 X 10'1 —

Valine 8.4 X 10’2 —

t  The average value is reported.
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Table 17

Experimental Results for Sodiated Amino Acids Reacting with Acetone.

Amino Acid O Structure
Known Proposed

Alanine 1.7 X10'1T — Zwitterion8,6
Alanine methyl ester 5.7 X 10’̂ Charge-solvated —

Arginine 1.8 X 10'2T — Zwitterion8,6
Arginine methyl ester 1.3 X 10‘J Charge-solvated —

Asparagine 3.9 X 10'4 — N/A
Aspartic acid 8.7 X 10‘2 — N/A
Betaine 4.5 X 10’2T Zwitterion —

Glutamine 1.3 X 10"2 — N/A
Glutamic acid 4.4 X 10'2 — N/A
Glycine 6.1 X 10'2T Charge-solvated —

Glycine methyl ester 5.6 X I  O'2 Charge-solvated —

Histidine 1.3 X 10'^ — Charge-solvated 8,6
Histidine methyl ester 6.0 X 102 Charge-solvated —

Isoleucine 8.6 X 10'^ — N/A
Leucine 4.8 X 10'1 — N/A
Lysine 3.1 X 10'2T — Zwitterion8,6
Lysine methyl ester 2.6 X 10'2 Charge-solvated —

Methionine 1.8 X 10'2 — N/A
Phenylalanine 4.4 X 10'2 — N/A
Proline 5.0 X 10'2T Zwitterion —

Proline methyl ester 2.9 X 1 0 '1 Charge-solvated —

Serine 1.7 X 10'2 — N/A
Threonine 8.5 X 10'2 — N/A
Tryptophan 2.3 X 10'2 — N/A
Tyrosine 4.5 X 10‘2 — N/A
Valine 1.7 X 10_1 — N/A
tAverage value reported, a. Experimental b. Theoretical N/A not assigned
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Although experiments with sodiated amino acids provide more information 

about structure than lithiated amino acid experiments, it is still difficult to determine 

the structure of some species. In cases for which the methyl ester of an amino acid 

was also analyzed, it was easier to determine structure. An amino acid that reacts 

with kinetics similar to its methyl ester is likely to be charge-solvated in the gas 

phase. If the amino acid differs in kinetics from the methyl ester, and is more 

similar to Bet, it is likely to be zwitterionic.

It is difficult to determine the structure of amino acids without using their 

complementary methyl esters because of the range of kinetics that the methyl esters 

display (see Fig. 35). Some methyl esters react exceptionally slowly (i.e., LysME 

and ArgME), whereas other methyl esters react much more quickly (i.e., ProME and 

AlaME). Since there is not a general reaction trend for all these methyl esters, it is 

difficult to compare amino acids to methyl esters that are not their own. For 

instance, the comparison of Asp to ArgME might not allow for an accurate 

structural determination.

Potassiated Amino Acids

It is also possible to use potassiated amino acid species for structural 

determination. Although some o f  the potassiated amino acids react too slow ly for 

the experimental setup, it is possible to gather relevant kinetic data for those 

reactions which do occur during the time frame of the experiment. Table 18
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summarizes the experimental and theoretical data obtained for potassiated amino 

acids. As with the analysis of potassiated species, it is hard to determine the 

structures of amino acids which do not have methyl ester counterparts. It can be 

seen that the proposed structures of amino acids for potassiated species are 

consistent with the proposed structures of sodiated amino acid species.

Conclusion

Ion-molecule reactions can be used to probe the structure of metal ion— 

amino acid complexes in the gas phase. Comparisons between known charge- 

solvated species, known zwitterion species, and the amino acid complexes in 

question can help to identify gas-phase structures. Theoretical calculations can be 

performed on these amino acids to aid in structure determination.

There were some instances in which the kinetic and/or thermodynamic 

results for the amino acids were similar enough to prevent certain structure 

identification. This is why it is essential to use both methods for structural 

identification. A more certain determination can be made when both kinetic and 

thermodynamic data are used in tandem.
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Table 18

Experimental Results for Potassiated Amino Acids Reacting with Acetone.

Amino Acid O Structure
Known Proposed

Alanine 3.1 X10'JT — Zwitteriona,b
Alanine methyl ester t Charge-solvated —

Arginine 1 — Zwitterion3,1’
Arginine methyl ester * „

Charge-solvated —

Asparagine 8.8 X 10 — N/A
Aspartic acid 2.2 X 10"3 — N/A
Betaine t Zwitterion —

Glutamine 5.3 X 10'1 — N/A
Glutamic acid 4.0 X 10-4 — N/A
Glycine 3.3 X 10'3T Charge-solvated —

Glycine methyl ester X Charge-solvated —

Histidine X — Charge-solvateda,b
Histidine methyl ester X Charge-solvated —

Isoleucine 3.5 X 10"2 — N/A
Leucine 8.7 X 10'J — N/A
Lysine 3.1 X 10'2 — Zwitterion3, b
Lysine methyl ester 8.9 X 10'2 Charge-solvated —

Methionine 1.8 X 10'J — N/A
Phenylalanine 1.8 X 10'2 — N/A
Proline 2.6 X 10‘2 Zwitterion —

Proline methyl ester 1 Charge-solvated —

Serine X — N/A
Threonine 3.0 X 10 '2 — N/A
Tryptophan X — N/A
Tyrosine % — N/A
Valine X — N/A
f  Average value reported. {Rate unobtainable a. Experimental b. Theoretical N/A not assigned
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Metal ion selection is also an important factor in the kinetics of the ion- 

molecule reactions. Lithiated amino acid species are exceptionally reactive. This is 

problematic because both charge-solvated and zwitterionic species will react in a 

similar fashion when complexed with Li+. This problem is alleviated with the use of 

larger cations, for instance sodium or potassium. Species with larger cations such as 

these will react in a more reasonable time frame.

Kinetic and thermodynamic results of these experiments indicate that both 

Ala and Pro are likely to form zwitterionic complexes with Na+ and K+ in the gas 

phase. [Pro+M+] is already known to be zwitterionic in the gas phase. Data for Arg 

and Lys indicate that both species form zwitterionic complexes with Na+ and K+ in 

the gas phase, although the large side chains of these amino acids interact with the 

metal ion so as to complicate this conclusion. Gly and His complexes with Na+ and 

K+ are both found to be charge-solvated in the gas phase. Glycine is known to be 

charge-solvated in the gas phase.
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CHAPTER 4

USING ION-MOLECULE REACTIONS TO SIMULATE 
AROMATIC AMINO ACID INTERACTIONS WITH 

AMINO ACID—METAL ION COMPLEXES

Hydrogen bonds, salt bridges, and cation-jr interactions are all responsible 

for the formation of secondary, tertiary, and quaternary structures of proteins. 

Proteins containing aromatic amino acids are often participants in cation-7t 

interactions with metal species. It has been shown that many of these aromatic- 

metal interactions involve strong binding, especially with transition metals.161

To review, cation-7t interactions are noncovalent interactions which occur 

between cations and neighboring 7r-systems (i.e., potassium and the face of benzene) 

(Fig. 58). These interactions are fairly common in proteins, occurring one time for 

every 77 amino acid residues. Approximately 26% of all Trp residues in a protein 

are thought to participate in significant cation-jr interactions, most of them with the 

charged side chains of Arg and Lys.125 Besides structural functions, cation-7r 

interactions are also important for biomolecule function and selectivity.
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Figure 58. A visualization of a cation-7r interaction (from Ma and Dougherty161). 
The figure on the left shows the positioning of the cation with respect to the 71- 
system of benzene. The figure on the right is a space-filling model of a 
K+...benzene complex.

The Relevance of Cation-7t Interactions

Cation-7r interactions play an important role in biomolecule structure and 

activity. Although some examples of these roles were highlighted in Chapter 1, 

there are many more instances in which cation-7t interactions involving aromatic 

amino acids are prevalent: Protein structure;125,126,162,163 ligand binding;121,164-167

1 9Q 1 AS 1 7  flion channel gating and formation; ’ ' metal cation—aromatic amino acid

interactions;66,98,130,135,140,148,149,156,158 and RNA-,127,171 DNA-,120,128,172 and 

protein-protein binding all involve cation-7c interactions. Some additional examples 

of previously identified cation-7r interactions are described here.
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Cation-71 interactions are likely capable of stabilizing the secondary, tertiary, 

and/or quaternary structures of peptides and proteins. Gallivan and Dougherty 

found that proteins situate “cations at nonrandom positions relative to aromatics,” 

which allows for optimized cation-7r interactions.125 Helical peptides and proteins 

have been analyzed to investigate the stabilizing interactions between aromatic and 

basic side chains. It has been found that basic-aromatic interactions were favorable 

when the amino acid residues were in an i, i + 4 helix (Fig. 59).I62,163 This is likely 

due to cation-7t interactions. Another example of cation-7i interactions in a protein 

can be seen in the human growth hormone receptor extracellular domain (Fig.

59).161

Protein Regulation

Binding specificity is an important regulatory feature of many biomolecules. 

Tight control of ion channels, receptors, transporters, and other ligand-activated 

species is required for the successful function and survival of living systems. Many 

of these ligand-molecule interactions are controlled by specific molecular 

recognition which can be visualized as a lock-key system. Many studies have 

suggested that aromatic amino acids play an important role in molecular recognition 

via cation-7! interactions.
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Figure 59. Cation-71 interactions in proteins. The figure on the left shows the a- 
helical i, i + 4 interaction of Phe and Lys in xylanase (adapted from Andrew et 
al.163). The figure on the right shows the interaction of aromatic amino acids with 
Arg and Lys in the human growth hormone receptor extracellular domain (adapted 
from Ma and Dougherty161).
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For example, cation-71 interaction between an agonist and a tyrosine residue 

in the binding site of the neurotransmitter receptor protein GABAC can alter protein 

function.173 Both sugars galactose and glucose have been shown to interact with

i
aromatic amino acids in the binding site of proteins. Phenylalanine is essential 

for pyrethroid binding in insect sodium channels.170 The mutation of a 

phenylalanine in the ion channel of the nucleotide-binding domain of cystic fibrosis 

transmembrane conductance regulator (CFTR) is the cause of most cases of cystic 

fibrosis. Studies have shown that the aromatic side chain of Phe is required for the 

appropriate function of CFTR.169 Rotem et al.166 have found that EmrE, an E.coli 

protein, requires the presence of tyrosine to function as an ion-coupled transporter.

Finally, the nicotinic acetylcoline receptor (nAChR) is a ligand-gated ion 

channel which is thought to participate in cation-7i interactions. Acetylcoline binds 

the receptor, causing a conformational change to occur. This allows the ion channel 

to open. Figure 60 shows nAChR. The high aromatic amino acid content of the 

receptor provides an ideal situation for cation-7i interactions.161,165 As can be seen 

from these examples, there are a variety of biomolecules which are controlled by 

aromatic amino acid interactions.

Studying Aromatic Interactions with Metal Cations

It is important to study the interactions of metal cations with aromatic amino 

acids in order to better understand the function and control of many biomolecules.
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Currently, there are three basic systems used to study aromatic-metal interactions 

(Fig. 61). The first system is used to study the interaction between a metal ion and 

an aromatic compound (Fig. 61 A). The second system is used to study the 

interaction between a metal-containing species and an aromatic compound (Fig.

6IB). The final system is used to study the interaction between a metal cation and 

an aromatic amino acid (Fig. 61C).

Figure 60. The nicotinic acetylcholine receptor. The figure on the left shows the 
overall receptor layout. The figure on the right shows the aromatic amino acids that 
could contribute to cation-7i interactions in the a-subunit of the protein (from Ma 
and Dougherty161).

The cation-7t interactions of metal cations and aromatics have been studied 

by a variety of groups (Fig. 61 A). Using a theoretical approach, Ikuta and others 

have analyzed the interaction between selected alkali metal cations (M+ = Li+, Na+, 

and K+) with various aromatic molecules.174,175 One study found that anthracene
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and phenanthrene have a greater theoretical binding energy to sodium than is seen 

with benzene. It was also observed that potassium is less strongly bound, enabling 

movement of the cation along the aromatic molecule. It has been suggested that this 

observation could help to explain the selectivity and function of potassium 

channels. 174

It is also important to study the interaction of coordinated metal ions (XM+) 

to aromatics (Fig.61B). Also using theoretical methods, Cheng et al. studied the 

interaction of benzene to a variety of XM+ species (X = H', F', Cf, OH', SH', CN", 

NH2', and CH3'; M = Be2+, Mg2+, and Ca2+) . 176 The authors found that the 

interaction between the alkaline earth metals without counterions and benzene was 

stronger than the interaction between alkali metals with benzene. However, when a 

counterion was complexed to the cation in the form XM+, the interaction between 

the alkaline metals and benzene was similar to the interaction of alkali metals with

1 l f \benzene.

Of greatest relevance to this study is the analysis of the interaction between a 

metal ion and the aromatic side chain of an amino acid (Fig. 61C). A variety of 

experimental and theoretical experiments have been performed, mostly by the 

groups of Rodgers36-41,46,177 and Dunbar. 63,66,130,178 In a series of five studies, 

Amunugama and Rodgers analyzed the binding energies of alkali metals to aromatic 

m olecules selected to model aromatic amino acid side chains; the aromatics toluene, 

fluorobenzene, aniline, phenol, and anisole were used (Fig. 62).36'38,40 One 

observed trend with these threshold CID experiments of [M++neutral] complexes
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showed that the size of the cation is directly related to the binding dissociation 

energy.

X Y
A

> r

lM /V w W u V W W

Figure 61. Aromatic interactions with metal cations. A. A metal cation interacting 
with an aromatic species. B. A metal complex interaction with an aromatic species. 
C. A metal cation interaction with the aromatic moiety of an amino acid.
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v
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Figure 62. The substituted structures of the benzene molecule.

Additionally, Amunugama and Rodgers found the nature of the substituent 

group on the benzene ring directly affected the level of cation-ji interaction observed 

for alkali metal-aromatic species. For instance, the presence of a methyl substituent 

increases the cation-7i interaction between the cation and the ring. An increase in 

cation-7t interactions was also observed for aniline, phenol, and anisole molecules.

On the other hand, the presence of a fluoro substituent on the benzene ring 

decreases the strength of the cation-7t interaction. It has also been suggested that the 

strength of the cation-7i interaction will continue to decrease as additional fluoro
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substitutions are made to the benzene ring.36'38,40 A comparison of the experimental 

A Ho (kJ mol’1) values for these neutrals bound to Li+ shows that the cation-rc 

interactions increase in strength as follows:

Fluorobenzene < Phenol < Toluene < Anisole < Aniline 

This trend is also valid for complexes with the larger alkali cations.36'38,40 This 

indicates that the “polarizability of the % ligand is a key factor in determining the
-5Q

strength of the binding in cation-rc complexes.”

Threshold CID experiments were also performed on alkali metal complexes

TOwith the neutral molecule indole. Indole is the aromatic side chain substituent of 

Trp (Fig. 63). It differs from the side chains of Phe and Tyr because there are two 

aromatic rings with available Jt-systems for binding. A comparison of the binding 

dissociation energies of the three aromatic amino acids shows that there is a 

preference for binding as M+Phe < M+Tyr < M+Trp, where M+ is sodium or

39potassium.

O

II
H2N CH— C OH

HN

Tryptophan

Figure 63. The indole side chain of tryptophan.
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It was found that, as with the other threshold CID studies, the binding 

dissociation energies of these complexes decreased as the size of the alkali metal 

cation increased. Indole is also observed to have a stronger cation-rc interaction than 

the other aromatics due to the extended 7t-system of the molecule. This finding helps

• . -2Q
to explain the large number o f biological cation-7r interactions that are observed.

The Dunbar group has also focused on these metal-aromatic amino acid 

interactions. Radiative association kinetics experiments coupled with theoretical 

modeling calculations were performed to analyze the interactions of metal ions with 

phenol (Tyr) and indole (Trp). It was found that nontransition metal binding to 

phenol had comparable energetics to benzene; however, transition metals such as 

Cr+ and Fe+ showed enhanced binding to phenol over benzene. As expected, indole 

was observed to bind more strongly to metal ions than phenol. Again, this is 

attributed to the expanded 7t-system of the indole molecule.66

Further experiments using the kinetic method and theoretical calculations 

found that Trp binds Na+ and K+ more strongly than Phe and Tyr. In these 

experiments, both Phe and Tyr were shown to have similar binding energies for both 

sodium and potassium ions. In addition, a linear correlation between the proton 

affinity of an amino acid and the experimental binding energies of the amino acids 

was also demonstrated.66

Reddy and Sastry also used a theoretical approach to analyze the interaction 

of a diverse group of cations with the aromatic groups of amino acids.149 Their 

study focused on the interaction of Phe, Tyr, Trp, and His side chains with M = H+,
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Li+, Na+, K+, Ca2+, Mg2+, N H /, and N M e/. It was found that H+ binds selectively 

to a carbon atom of the benzene ring. The metal and ammonium ions were found to 

be centrally positioned above the ring, participating in cation-jr interactions. The 

theoretical energy of the metal interactions was ordered as follows:149

Mg2+ > Ca2+ > Li+ > Na+ > K+

Although many of these previous studies have provided much-needed 

information about the cation-7t interactions of aromatic amino acids, information 

about these systems is not yet complete. Experiments using CID techniques are 

capable of investigating the energy required to break the metal-ring bond, as well as 

the NO coordination bonds from the amino acid to the metal (Fig. 64). CID 

experiments are limited in bond information. When the weakest bond (the cation-7i 

interaction) is broken, the m/z ratio of the [A.A.+M+] complex is not altered. As 

subsequent bonds are broken, the NO coordination is lost and the complex 

fragments into an amino acid and a metal ion.

To investigate cation-71 interactions, it is necessary to find a system that will 

allow for the specific analysis of only the metal-aromatic interactions. This analysis 

can be performed by allowing [A.A.+MX+] complexes to react with selected 

aromatic compounds (Fig. 64) through ion-molecule reactions. These aromatic 

compounds are chosen to model the aromatic side chains of the amino acids.
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O .

A B

:ivr

Model

Figure 64. Modeling cation-71 interactions. Red bars indicate the bonds broken in 
the experiment. A. A diagram of CID analysis, where all three amino acid-M+ 
bonds are broken. B. A diagram of an association reaction in which only the 
cation-7r interaction is analyzed.

The association/dissociation of the aromatic species to/from the [A. A.+Mx+] 

complex alters the m/z ratio observed in the mass spectra; this is solely attributed to 

the cation-7t interaction. The binding energy of the interaction can be calculated 

from the equilibrium of the association reaction. The simple equilibrium of these 

reactions is shown in Eq. 4.1:

h'PN
A + + N < - > B ^

k_ 1
(4.1)

where A+ is the [A.A.+M+] species, B ' is the [A.A.+M++neutral] species, and PN is 

the pressure of the neutral in the ion trap. The equilibrium constant, Keq, can then be 

calculated as follows (Eq. 4.2):
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h L =A
4 ,  k_,pNK eq = ^ L = T ^ r  (4-2)

where Aeq and Beq are the concentrations of A ' and B at equilibrium.

Once Keq has been determined, it can be used to calculate the Gibb’s free 

energy, AG, of the reaction by rearranging Eq. 4.3:

K „ = e x p f - ^ 1  (4.3)
v B.1 y

Here, R is the ideal gas constant and T= 300K. Finally, AG can be used to calculate 

AH using Eq. 4.4:

AG = AH -  TAS (4.4)

where T=  300K and the entropy of the reaction, AS, was the average value for 

similar reactions which corresponds to the loss of three translational degrees of 

freedom for the neutral (~34±6 J mol^K'1).179 The uncertainty in AS is less of a 

factor in these calculations than the uncertainty in Pn. The AH  is the bond energy 

for these ion-molecule reactions.

Model Neutrals

Previous studies have used benzene, phenol, indole, and pyrrole as model n-

• • TQ •systems for the aromatic amino acids. The selection of the model bases used for 

these particular experiments is accomplished by choosing model compounds closely 

structured to the amino acid side chain it is modeling while still being volatile 

enough to be introduced to the quadrupole ion trap through the helium line. The
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neutral species used for these experiments are shown in Fig. 65.

Benzene is the basic structure for the aromatic side chains of amino acids 

(Fig. 65). Benzene is a simple aromatic with no attached substituents. In order to 

improve the modeling relevance of these experiments, aromatic molecules with 

appropriate substituents are required. Benzene was used experimentally to model 

aromatic amino acids and was also used for theoretical modeling calculations in the 

Gaussian program.

Toluene is similar in structure to the phenylalanine side chain, so it was 

chosen as an appropriate model for those experiments (Fig. 65). Toluene has been 

used to successfully model Phe by previous groups.37,130 In these experiments, the 

aromatic moiety of the toluene molecule is used to model the aromatic side chain of 

phenylalanine.

The aromatic moiety of Tyr differs from Phe, having a hydroxide at the 

fourth position of the aromatic ring. The neutral closest in structure to the side 

chain of Tyr is 4-methyl-phenol (Fig. 66). Although this aromatic neutral is an 

identical match to the side chain of Tyr, it was not able to be used because it does 

not have a vapor pressure appropriate for these experiments.

Methyl anisole was chosen as a model for tyrosine. Methyl anisole is similar 

to the aromatic side chain of tyrosine because it contains an oxygen atom at the third 

position o f  the aromatic ring (Fig. 65). It is essential to maintain an oxygen bond at 

this position in order to ensure that the 7t-system of the aromatic ring model is 

consistent with that of the aromatic side chain.
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Figure 65. The aromatic amino acids and their corresponding model neutrals used 
in this study.
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Figure 66. An identical neutral match to the side chain of Tyr.

Theoretical Studies with Benzene

Benzene is a simple six-carbon aromatic molecule and the basic structure of 

the neutrals used to model aromatic amino acids. A partial double bond is shared 

equally between the six carbons, which causes the 7i-system to be evenly distributed 

over the benzene ring. A Gaussian optimized benzene molecule is shown in Fig. 67.

Gaussian analysis of a variety of [A.A.+M+] complexes and benzene was 

performed in order to determine the binding energetics of the systems. The 

[A.A.+M++benzene] complexes were analyzed using the same method previously 

described in Chapter 2. Appendix C contains the images of all the
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[A.A.+M++benzene] systems studied as well as stabilization energy, metal-benzene 

distances, and metal charges.

Figure 67. Benzene. The top view shows the even distribution of the double bonds 
to the six ring carbons. The side view shows that benzene is a planer molecule.

A common feature among the [A.A.+M++benzene] reactions analyzed by 

Gaussian is that the center of the aromatic ring is positioned directly over the 

chelated metal ion (Fig. 68). This positioning indicates that the jr-system of the 

benzene ring interacts with the metal ion in an evenly distributed fashion.

Top view Side view
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J

J
Side view Top view

Figure 68. An example of the benzene-metal interaction (as depicted by Gaussian). 
The [Gly-H+Ca2++benzene]+ system is shown here. The side view shows the face 
of the planer aromatic ring facing the metal cation. The top view clarifies that the 
benzene ring is centered over the metal ion.

Table 19 summarizes the data obtained through the in silico analysis. The 

stabilization energies of all the species are reported for all of the Gaussian optimized 

complexes. A larger stabilization energy indicates a stronger interaction between
y  j |

the benzene molecule and the [A.A.-H+Ca ] complex. The species in Table 19 

are listed in order of increasing stabilization energy.

When the data for the stabilization energies of the amino acids are viewed in 

order of increasing energy, a few trends appear. First, the amino acids with long 

side chains show the lowest calculated stabilization energy. Since the long side 

chains of Arg and Lys are capable of providing additional coordination sites to the 

metal cation, it is likely that the charge of the metal ion would be shielded from 

interaction with the aromatic ring.
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Table 19

Theoretical Data for Benzene Reactions.

Amino Acid 
Complex 

[A.A.-H+Ca2+]+

Stabilization Energy 
(kJ/mole)

Distance* 
M 1"—Benzene

(A)
M+ Charge

Arginine E =  101.4 2.613 1.050
Lysine E = 108.7 2.616 1.043

Glutamic Acid E = 111.6 2.592 1.022
Aspartic Acid E =  116.6 2.594 1.016

Threonine E = 120.4 2.583 0.980
Serine E = 122.9 2.583 1.005

Glycine E = 127.9 2.579 1.238
*Approximate distance to the center o f the plane o f the benzene ring.

4“The optimized structure of [Arg-H+Ca +benzene] shows that the calcium 

ion is coordinated by two oxygens and two nitrogens (Fig. 69). Similarly, Lys 

coordinates calcium with two oxygens and one nitrogen (Fig. 69). The additional 

side chain coordination is able to draw the positive charge away from the metal ion,

I j

creating a situation for weaker interaction between the [Arg-H+Ca ] and [Lys- 

H+Ca2+]+ and benzene.

The next four amino acids in the table are shown to have higher stabilization 

energies. These amino acids all coordinate the metal ion with three oxygen atoms; 

two oxygens from the carboxyl terminus and an oxygen from the side chain. Glu 

has a longer side chain than Asp; therefore, it is capable of more easily shielding the 

calcium with its side chain. This causes the stabilization energy of Glu to be lower 

than Asp. The amino acids Ser and Thr have comparatively short side chains.
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These short side chains prevent the calcium ion from being protected from the 

benzene interaction, allowing for greater stabilization energy.

f

j
[Arg-H+Ca2++benzene]+ [Lys-H+Ca2++benzene]+

Figure 69. The side chain coordination of calcium by Arg and Lys.

Finally, [Gly-H+Ca2+]+ exhibited the greatest stabilization energy upon 

benzene binding. Of the seven amino acids studied, Gly is by far the simplest.

With no side chain available for additional coordination and side chain hindrance, 

the complexed Ca2+ is fully capable of interaction with the benzene molecule (Fig. 

68). With unrestricted access to calcium, the Gly complex would be expected to 

have the greatest calculated stabilization energy. This is confirmed by Gaussian, as 

shown in Table 18.

There is also a correlation between the calculated stabilization energy and 

the distance between the metal cation and the face of the benzene ring. As the 

stabilization energy increases, the distance between the metal ion and benzene
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decreases. On the other hand, there does not appear to be a trend with regards to the 

charge of the metal ion.

A comparison of the proton affinities of the a-amino acids (from

i mWyttenbach et al.) to the calculated stabilization energies of these complexes is 

shown in Fig. 70. It can be seen that there is a correspondence between the two 

values; as the proton affinity increases, the stabilization energy decreases. Both Asp 

and Glu differ slightly from this trend. This is likely because Asp and Glu are

'74-capable of binding Ca more strongly than the other amino acids.

The calculated results from modeling reactions with the simple neutral 

benzene are found to be logically sound: The stabilization energy decreases as the 

amino acid side chain increases in chelating ability. Ion-molecule experiments for 

modeling the interaction of aromatic amino acids to [A. A.+Mn+] species require the 

use of more complex neutral molecules. An increase in neutral complexity could 

limit the ability of experimental data to determine binding affinity.

For instance, bulky additions to the aromatic could prevent spatial alignment 

of the aromatic and the metal cation. Additionally, an increase of groups bound to 

the central ring could alter the 7i-system. Theoretical calculations can be used to 

supplement the findings of ion-molecule reactions. Since the calculations 

performed with benzene have successfully identified reaction trends, it is possible to 

use similar Gaussian analysis on more com plex species.
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Stabilization Energy vs. Proton Affinity
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Figure 70. A comparison of the calculated stabilization energies and the proton 
affinities of the amino acids.

Phenylalanine Modeling

As previously mentioned, toluene was chosen to model the aromatic side 

chain of phenylalanine. The structure of toluene, as optimized by Gaussian, is 

shown in Fig. 71. Toluene is similar in structure to benzene; however, it contains a 

methyl group on the first position carbon. The addition of this methyl group 

disturbs the evenly distributed 7i-system of the aromatic ring. Toluene has a boiling 

point of 110-110 °C, a vapor pressure o f  22 mmHg (at 20 °C), and a density o f  

0.865 g/mL (at 25 °C). It has a published polarizability of 12.25 A3.160
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c h 3

Figure 71. Toluene. The figure on the left is a simple drawing. The figure on the 
right is Gaussian optimized.

Method

Ion-molecule reactions, using toluene as the neutral species, were preformed 

as detailed in Chapter 2. Both [A.A.+M+] species, where M = Ag+ or Cu+, and 

[A.A.-H+M2+]+ species, where M= Ca+, Co+, Fe+, Ni+ or Zn+, were allowed to react 

with toluene until equilibrium was established. The KinFit analysis macro for Excel 

was then used to determine rate constants for the experiments.

Using Gronerf s method, the estimated toluene pressure in the trap was

calculated as 2.5 X 10'7 Torr by (Eq. 4.7):

p  ( t  \ - s f  30mLKt 1»0.865gmZ,
PToluem(T o r r ) a ^ X l °  '

V 92gmol
Y l 92 gmol 1
Jv2.00£min~' , ^4.003gmol~x y (4.7)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



157

In all of the reactions performed with toluene, [Ala-H+Cu2+]+ was the species with 

the largest so it was used to estimate the pressure of toluene in the quadrupole
o

ion trap. This was estimated to be 5.6 X 10' Torr by setting kf=kf, as in Chapter 3. 

The reaction efficiency (O) was calculated using Eq. 2.2.

Experimental Findings

Silver Studies

Although not typically considered a biologically relevant metal, silver is 

known to play important biological roles in a variety of species. Recently, it has 

been suggested that silver drug complexes could be targeted to DNA molecules 

providing a means of specific drug delivery.180 Silver may also play a role in the 

regulation of genetic expression,181 as well as participating in peptide182 and protein 

binding.183’185 Silver is an important metal in these cases, so it is important to gather 

information regarding the interaction of amino acids with silver.

For the most part, [A.A.+Ag+] reactions were very efficient. Not all amino 

acids were experimentally observed. Among those that did, not all were found to 

have reached equilibrium with toluene. A  sample spectrum for an observed reaction 

is shown in Fig. 72. The reaction for [Leu+Ag+] with toluene is shown in Fig. 73.
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AlaAg+ + Toluene 
(5000 ms)

&c

o(0
S3
< 0

r ~ ..— ------------------— ....-.......................

A la+A g++T oluene

A la+A g++H 20
/

1
A la+A g+ .

— — ,------------U-..— — -T—---------—1-T-------------------

0 100 200 300 400
m/z

500

Figure 72. The reaction of [Ala+Ag+] with toluene with a 5000 ms scan delay. The 
addition of water is also observed.

LeuAg++Toluene
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Figure 73. The reaction of [Leu+Ag+] with toluene. The trends lines are calculated 
and placed by the KinFit macro.
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The KinFit program was used to determined the rate constant, ki, of 

reactions involving [A. A.+Ag+] complexes. The k2, kf, and reaction efficiency (<t>) 

of these reactions are given in Table 20. The amino acids are listed in order of 

increasing efficiency.

Table 20

Reaction Data for Amino Acids Complexed to Silver Cations Reacting with 
Toluene.

Amino Acid k2 kf <5>
Met + Ag+ 4.8 X 10'11 2.98 X 10‘y 1.6 X 10'2
Ala + Ag+ 1.5 X 10'1U 3.10 X 10'° 4.8 X 10'2
Glu + Ag+ 1.5 X IO '10 2.99 X 10’y 5.0 X 10'2
Gly + Ag+ 2.4 X IO '10 3.14X10'° 7.6 X 10'2
Ser + Ag+ 2.7 X 10'10 3.06 X 10'y 9.0 X 10'2
Thr + Ag+ 2.8 X 10'1U 3.04 X 10'y 9.2 X 10 '2
Pro + Ag+ 3.1 X 10'10 3.04 X 10'y 1.0 X 10'1
Val + Ag+ 3.5 X 10'1U 3.04X10'° 1.2 X 10'1
lie + Ag+ 5.2 X IO '10 3.01 X 10'° 1.7 X 1 0 '1

Leu + Ag+ 5.3 X 10'10 3.01 X 10'° 1.8 X 10'1

The data presented above is interesting because no apparent trends can be 

seen in the data. Although some amino acids with similar features are found to be 

grouped together, there is no widespread trend. For example, one would expect that 

amino acids with small side chains would exhibit similar reaction kinetics. It could 

be argued that Ala, Gly, and Val all have relatively small side chains. However, 

these three amino acids do not have similar reaction efficiencies and are separated in 

Table 19 by amino acids with larger side chains.
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The lowest efficiency reaction occurred with the [Met+Ag+] species. Met 

has a relatively long side chain which contains a sulfur atom. Both Met and Ag+ are 

considered to be soft species. This feature indicates that Met and Ag+ are more 

likely to participate in covalent interactions. Since the interaction with toluene is 

largely noncovalent in nature, a slow reaction would likely be observed.

An interesting result of these reactions is that both Leu and lie have nearly 

identical reaction kinetics and efficiencies. Both amino acids have similar R- 

groups, with a methyl group either on the first or second carbon of the side chain 

(Fig. 74). This methyl group may play an important role in binding the metal ion. 

The side chain of Val is one carbon shorter than that of Leu and lie; however, it also 

contains a methyl group on the same carbon as He (Fig. 74). Val is also found to 

have a ® slightly less than that of He.

h 2n - CH— C ------ OH H2N-

ch2

c h 3

Leucine

■CH-

CH—t CH3

CH2

c h 3

Isoleucine

■OH H2N-------CH— C- •OH

CH-^CH3^) 

c h 3

Valine

Figure 74. A structural comparison of Leu, He, and Val. The highlighted methyl 
group might be responsible for the similar reaction rate and efficiency of these 
amino acids when they are complexed to Ag+.
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Additional features are contained by the remaining amino acids, which may 

explain their reaction efficiencies. It would be beneficial to have complementary 

Gaussian analysis of the [A. A.+Ag++toluene] interactions to help explain the 

observed reaction kinetics. This information has not yet been acquired for these 

reactions.

Equilibrium data for these experiments were also used to calculate the 

binding energy of these complexes. The equilibrium constant, Keq, was calculated 

for the reactions using Eq. 4.4. This value was then used to calculate the Gibb’s 

free energy (AG) of the system (Eq. 4.5). The bond energy (AH) of the reaction was 

then calculated using Eq. 4.6. Table 21 contains these calculated values. The 

experimentally determined binding energies of the [A. A.+Ag+] complexes ranged 

from approximately 100-109 kJ mol"1.

Table 21

Calculated Kinetic and Thermodynamic Values for Silver Reactions with Toluene.

Amino Acid Keq
(atm'1)

AG
(kJ mol"1)

AH
(kJ mol"1)

Met + Ag+ (2.50 X 10+1U) -59.7 -99.7
Ala + Ag+ (6.84 X 10+u) -68.0 -108.0
Glu + Ag+ (7.14 X 10+1°) -62.3 -102.3
Gly + Ag+ (6.02 X 10+u) -67.7 -107.7
Ser + Ag+ (4.28 X 10+u) -66.8 -106.8
Thr + Ag+ (2.26 X 10+l1) -65.2 -105.2
Pro + Ag+ (8.34 X 10+il) -68.5 -108.5
Val + Ag+ (7.30 X 10+11) -68.1 -108.1
lie + Ag+ (4.86 X 10+il) -67.1 -107.1

Leu + Ag+ (4.92 X 10+11) -67.2 -107.2
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Calcium Studies

Calcium plays an important biological role. Often obtained through diet, 

calcium is essential for the formation of strong bones and teeth, hormone control, 

and blood clotting, among many other things (see Table 4). A plethora of recent

1 8A 1 8Qpapers discuss the biological roles of calcium-binding proteins, ' including 

calbindin,190-192 calmodulin,193-195 and parvalbumin.196-198 There is also a great 

interest in the function of voltage-gated calcium channels.199-201

A wide variety of medical disorders arise from the malfunction of calcium-

9A9protein interactions. Unlike other disorders, these problems are often common

9 0 9  9 05  90A 908and widespread; chronic kidney disease, " hyperparathyroidism,

9 0 0  911 9 1 9  919osteoporosis, - and rickets ’ are just a few examples. Given the vast 

biological importance of calcium, it is relevant to analyze the interaction of amino 

acids with calcium cations.

Unlike silver, calcium is a doubly charged cation. When it is complexed to 

the amino acid, a proton is lost, and the complex becomes singly charged. This 

occurs for all amino acid complexes with doubly charged cations. Reaction data 

was obtained for thirteen of the common amino acids. A sample mass spectrum is 

shown in Fig. 75, and a sample equilibrium plot is shown in Fig. 76.
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Figure 75. The reaction of [Asp-H+Ca ] with toluene over a scan delay of 1000 
ms. The addition of water molecules can be observed.
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Figure 76. Reaction kinetics for [Asp-H+Ca ] with toluene
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Table 22 provides both experimental data for [A.A.-H+Ca2+]+ species. The 

amino acids are listed in order of increasing ®. As with the silver complexes, 

theoretical modeling calculations are unavailable for comparison. However, the 

experimental kinetics can still be analyzed for reaction trends.

Table 22

Data for Amino Acids Comnlexed to Calcium Reacting with Toluene.

Amino Acid k2 kf
Gln-H + Ca2+ 1.7 X 10'11 3.13 X 10'y 5.4 X 10'J
Asp-H + Ca2+ 1.9 X IO '11 3.17 X 10'9 6.0 X 10'J
Ile-H + Ca2+ 7.0 X 10'11 3.18 X 10'y 2.2 X 10'2
Thr-H + Ca2+ 8.0 X IO '11 3.22 X 10'y 2.5 X 10'2
Glu-H + Ca2+ 8.0 X IO '11 3.13 X 10‘y 2.6 X 10'2
Val-H + Ca2+ 9.4 X IO '11 3.22 X 10'y 2.9 X 10'2
Ser-H + Ca2+ 1.1 X 10'10 3.27 X 10'y 3.3 X 10'2
Gly-H + Ca2+ 1.2 X 10'1U 3.44 X 10'y 3.4 X 10'2
Arg-H + Ca2+ 1.2 X 10'10 3.06 X 10'9 3.9 X 10'2
Met-H + Ca2+ 1.3 X 10'lu 3.12 X 10‘y 4.1 X 10'2
Lys-H + Ca2+ 1.3 X 10'1U 3.13 X 10'y 4.3 X 10'2
Asn-H + Ca2+ 1.5 X 10'10 3.17 X 10'y 4.7 X 10'2
Leu-H + Ca2+ 3.1 X 10'10 3.18 X 10'y 9.7 X 10'2

The data presented in Table 22 is difficult to interpret. Both Glu and Asp 

were analyzed in this experiment, yet their exhibited reaction kinetics differs 

extremely. In fact, their reaction efficiency differs by a factor of ten. This is 

difficult to explain since the structure of the two differs only slightly (Fig. 77).
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Since they are so similar, it would be expected that their kinetics would be similar as 

well.

O O

H2N CH—  C- OH H2N------- CH— C ------OH

ch2

c = o  

OH

OH

Aspartic Acid Glutamic Acid

Figure 11. The structures of Asp and Glu. The only difference between the two 
species is highlighted.

Another interesting point is that Leu, lie, and Val no longer exhibit similar 

reaction efficiencies. If their methyl group is involved in silver coordination and

• 9 +  ,reactivity to toluene, it does not appear to be relevant for reactions with Ca . It is 

also interesting that in these reactions, the Leu complex is again the fastest and most 

efficiently reacting species. Finally, it can be seen that amino acids with basic chain 

R-groups react with similar efficiency, as is observed for Arg and Lys. The Met 

complex displayed similar efficiency as well.

Thermodynamic and kinetic calculations were also performed on [A.A.- 

H+Ca2+]+ and toluene reactions. As before, Keq, AG, and AH  are reported in Table

ch2

c = o
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23. It can be seen from these results that the experimentally determined binding 

energies for these reactions range from approximately 94-104 kJ mol’1.

Table 23
j |

Thermodynamic and Kinetic Data for TA.A.-H+Ca 1 Species Reacting with 
Toluene.

Amino Acid Keq
(atm’1)

AG 
(kJ mol'1)

AH
(kJ mol'1)

Gln-H + Caz+ 5.14 X 10+9 -55.8 -96.8
Asp-H + Ca2+ 3.12 X 10+lu -60.3 -100.3
Ile-H + Ca2+ 2.28 X 10+1U -59.5 -99.5
Thr-H + Ca2+ 1.41 X 10+1U -58.3 -98.3
Glu-H + Ca2+ 2.37 X 10+1° -59.6 -99.6
Val-H + Ca2+ 1.22 X 10+lu -57.9 -97.9
Ser-H + Ca2+ 1.40 X 10+il -64.0 -104.0
Gly-H + Ca2+ 5.54 X 10+1U -61.7 -101.7
Arg-H + Cai+ (1.48 X 10+l°) -58.4 -98.4
Met-H + Ca2+ 3.25 X 10+lu -60.4 -100.4
Lys-H + Cai+ 2.85 X 10+lu -60.0 -100.0
Asn-H + Ca2+ 3.98 X 10+lu -60.9 -100.9
Leu-H + Ca2+ 1.94 X 10+lu -59.1 -99.1

Cobalt Studies

Cobalt functions as an oxidase, participates in alkyl group transfer, and is 

contained in vitamin B12. The binding of cobalt to enzymes and proteins is 

responsible for DNA cleavage,214 enzyme deactivation and inhibition,215,216 and

0 1 7  O I O
other protein functions. ' Most often, medical disorders stemming from cobalt-

• 9 9 0  9 99metal malfunction is directly associated with vitamin B12 deficiency.
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Experimental data was obtained for reactions of [A.A.-H+Co2++toluene]+. A 

sample spectrum is given in Fig. 78, and a kinetics plot is shown in Fig. 79. As 

before, the data is summarized in Table 24.

Asn-H+Co2+ + Toluene 
(5000 ms)

400
£*350
g 300
2  250
-  200 0)|  150 
o 100

Asn-H+Co +Toluene

500200 300 4001000
m/z

Figure 78. A sample spectrum of [Asn-H+Co2+]+ reacting with toluene over a 5000 
ms scan delay.
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Figure 79. The kinetics plot of [Asn-H+Co2+]+ reacting with toluene.

Table 24

Data Obtained for Amino Acids Complexed to Cobalt Reacting with Toluene.

Amino Acid k2 k f  u
Arg-H + Co2+ 1.9 X 10'11 3.02 X 10'° 6.2 X 10'J
Lys-H + Co2+ 3.4 X 10'11 3.08 X I 0'° 1.1 X 10'2
Ile-H + Co2+ 5.8 X 10'11 3.12 X 10"° 1.9 X 10'2
Thr-H + Co2+ 6.4 X 10'u 3.15 X 10'° 2.0 X 10'2
Ser-H + Co2+ 7.0 X 10 '11 3.20X10'° 2.2 X 10'2
Gln-H + Co2+ 8.6 X 10'11 3.08 X 10"y 2.8 X 10'2
Pro-H + Co2+ 1.0 X 10'1U 3.17 X 10'y 3.2 X 10'2
Cys-H + Co2+ 1.1 X 10'10 3.14 X 10'° 3.5 X 10'2
Asn-H + Co2+ 1.2 X IO '10 3.11 X 10'° 3.7 X 10'2
Ala-H + Co2+ 1.6 X IO '10 3.26 X I 0'° 4.9 X 10'2
Leu-H + Co2+ 1.9 X IO '10 3.12X10'° 6.1 X 10'2
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The most apparent trend that appears from this table is that the Leu complex 

is the fastest reacting species. In addition, both Arg and Lys complexes display 

similar results as would be expected for species with similar side chains. Both Thr 

and Ser have the same calculated reaction efficiency. This can be explained by the 

presence of a -OH group on the primary carbon in their side chains (Fig. 80). lie 

has similar reaction efficiency to Thr and Ser, which could also be explained by the 

presence of a methyl group on the primary carbon (Fig. 80). Again, theoretical 

results would help to explain the observed kinetics.

O 0  0

II II I
H2N-------CH— C ------OH H2N------ CH— C------OH H2N CH— C OH

ch2CHH-OH

c h 3

Threonine Serine

C H -f-C H 3

Isoleucine

Figure 80. A comparison of Thr, Ser, and He. Each amino acid has a substituted 
group on its primary carbon. This could be responsible for their similar reaction 
kinetics and efficiencies.

Table 25 contains the calculated kinetic and thermodynamic data for cobalt 

reactions. The values were calculated as described previously. Here, the 

experimentally determined binding energies range from about 93-102 kJ mol'1.
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Table 25

Calculated Thermodynamic and Kinetic Results for Cobalt Complexes Reacting 
with Toluene.

Amino Acid Keq
(atm"1)

A G 
(kJ mol"1)

AH
(kJ mol"1)

Arg-H + Co2+ 3.75 X 10+y -55.0 -95.0
Lys-H + Co2+ 1.21 X 10+1° -57.9 -97.9
Ile-H + Co2+ 3.29 X 10+y -54.7 -94.7
Thr-H + Co2+ 2.36 X 10+1° -59.6 -99.6
Ser-H + Co2+ (6.99 X 10+y) -56.5 -96.5
Gln-H + Co2+ 1.61 X I0 +9 -52.9 -92.9
Pro-H + Co2+ 4.81 X 10+y -55.6 -95.6
Cys-H + Co2+ (1.03 X 10+1°) -57.5 -97.5
Asn-H + Co2+ 2.65 X 10+1U -59.9 -99.9
Ala-H + Co2+ (6.65 X 10+1°) -62.2 -102.2
Leu-H + Co2+ 1.49 X 10+1° -58.4 -98.4

Copper Studies

Copper is a biologically relevant metal due to its role in electron transfer, 

dioxygen transport, and as an oxidase. Copper is coordinated by many proteins,223" 

227 including cytochrome oxidase,228'230 tyrosinase,231"233 and metallothionein.234"236 

Wilson’s disease and Menke’s disease are both well-known diseases caused by a 

malfunction in copper-protein interactions.4,237-241

For these Phe modeling experiments, the most information was obtained for 

reactions with [A.A.+Cu+] complexes. Both experimental and theoretical
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information is available for a number of the amino acids studied. A sample 

spectrum and a kinetics plot are show in Fig. 81 and Fig. 82, respectfully.

Table 26 provides both the experimental and computational data. As with 

the previous studies, the amino acids are presented in order of increasing d>. The 

stabilization energy is calculated through Gaussian, as previously described. 

Appendix D shows the Gaussian structures and also contains energy and metal ion 

charge information.

Due to the availability of both experimental and theoretical data, it is 

possible to compare the reaction efficiency to the stabilization energy of the 

reactions. The species are listed in order of increasing reaction efficiency. It can be 

seen that as the reaction efficiency increases, so does the stabilization energy of the 

association reaction. This is expected since the most stable system (with the lowest 

energy and greatest stabilization energy) is more likely to form than higher energy 

species.
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AlaCu+ + Toluene 
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Figure 81. The reaction of [Ala+Cu+] with toluene over a 1000 ms scan delay. As 
before, an addition of water is observed.
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Figure 82. The kinetics of [Ala+Cu+] reacting with toluene.
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Table 26

Experimental and Theoretical Results for Reactions of Amino Acids Complexed to 
Copper Reacting with Toluene.

Amino
Acid k2 kf

Stabilization
Energy

(kJ/mole)
Ser + Cu+ 6.1 X IO '11 3.18 X 10'y 1.9 X 10'2 E =  150.1
Val + Cu+ 6.4 X IO '11 3.14 X 10'y 2.0 X 10'2 —
Thr + Cu+ 7.6 X IO '11 3.14 X 10'9 2.4 X 10 '2 —
Met + Cu+ 8.4 X 10'11 3.06 X 10'9 2.8 X 10'2 E =  157.2
Asn + Cu+ 2.1 X 10'1U 3.10 X 10'9 6.8 X 10'2 —
Gly + Cu+ 2.5 X 10'10 3.30 X 10'9 7.5 X 10'2 E =  182.2
Asp + Cu+ 2.8 X 10'1U 3.10 X 10'9 9.1 X 10'2 E =  191.0
Ala + Cu+ 3.0 X 10'9 3.04 X 1 O'9 1 —

-  indicates that Gaussian data is unavailable

In fact, there is a linear relationship between the experimental reaction 

efficiency and the theoretical stabilization energy. A plot of the two values is 

shown in Fig. 83. Although data is only available for four data sets, a linear 

regression analysis shows fairly good agreement, as indicated by the R2 value of 

0.9981. This is an important indication that these association reactions are 

providing reasonable and useful results.
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Stabilization Energy vs. Reaction 
Efficiency
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Figure 83. The linear correlation between stabilization energy and reaction 
efficiency. This data is shown for [A.A.+Cu++toluene] complexes.

Experimental information was not obtained for [Pro+Cu+]; however, 

theoretical calculations indicate that the stabilization energy for the 

[Pro+Cu++toluene] species is much less than the [Ser+Cu++toluene] species. The 

stabilization energy for this complex was calculated to be 147.7 kJ mol’1. 

[Pro+Cu+] was not observed to react with toluene during the course of these 

experiments. This indicates that the reaction efficiency was very low. Besides 

confirming observed trends, theoretical calculations may also be useful for 

predicting experimental kinetic observations.

As with the previous experiments, thermochemical and kinetic data were 

obtained from the experimental data. These values are shown in Table 27. For 

experiments with [A.A.+Cu+] complexes reacting with toluene, the experimentally
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determine binding energy was determined to be between approximately 96 and 107 

kJ mol'1.

Table 27

Kinetic and Thermochemical Data for Copper Complexes Reacting with Toluene.

Amino Acid Keq
(atm"1)

AG 
(kJ mol"1)

AH  
(kJ mol"1)

Ser + Cu+ (2.91 X10+1°) -60.1 -100.1
Val + Cu+ (4.18 X10+1U) -61.0 -101.0
Thr + Cu+ (2.89 X10+1U) -60.1 -100.1
Met + Cu+ 4.53 X10+11 -66.9 -107.0
Asn + Cu+ 6.63 XI0+9 -56.4 -96.4
Gly + Cu+ 2.18 X10+1U -59.3 -99.4
Asp + Cu+ 6.00 X10+1° -61.9 -101.9
Ala + Cu+ 4.31 X10+u -66.8 -106.8

Iron Studies

Iron is a well-known metal ion component of proteins. It has biological 

functions similar to copper. Iron has been found in a large number of proteins, 

including ferritin,242'244 nitrogenase,245-247 peroxidase,248 and hemoglobin.249"251 Iron

'yc'y  7C 4 9S 7
deficiency can cause anemia; ' excess iron can cause hemochromatosis.

A s before, iron was com plexed with the amino acids, and experimental data was 

obtained via ion-molecule reactions. A sample spectrum is shown in Fig. 84 and a 

kinetics plot is shown in Fig. 85. The results are summarized in Table 27.
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Figure 84. [Met-H+Fe2+]+ reacting with toluene over a 5000 ms scan delay.
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Figure 85. A kinetics plot for [Met-H+Fe2+]+ reacting with toluene.
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The results in Table 28, as with the other experiments, have no readily 

apparent trends. As before, the amino acids with similar R-groups do not have 

similar reaction efficiencies. Thr is the fastest reacting species of the group. Both 

Ser and Pro have similar reactivities to Thr, so it appears that there is a favorable 

feature that all three amino acids contain.

Table 28

Experimental Results for Amino Acids Complexed with Iron Reacting with 
Toluene.

Amino Acid h kf <5>
Cys-H + Fe2+ 5.6 X 10 '12 3.15 XIO '9 1.0 X IO '2
Lys-H + Fe2+ 1.7X 10 '11 3.09 X IO '9 3.1 X 10'2
Leu-H + Fe2+ 2.4 X 10'u 3.12 X 10'9 4.4 X 10'2
Met-H + Fe2+ 2.9 X 10'11 3.08 X 10'9 5.4 X 10'2
Gln-H + Fe2+ 3.2 X IO '11 3.09 X 10'9 5.9 X 10'2
Ile-H + Fe2+ 3.3 X IO '11 3.12 X 10'9 6.1 X 10'2
Ala-H + Fe2+ 4.4 X 10'11 3.27 X 10'9 7.6 X 10'2
Val-H + Fe2+ 6.4 XIO’11 3.17 X 10'9 1.2 X 1 0 '1
Glu-H + Fe2+ 8.5 X 10'11 3.08 X 10'9 1.6 X 10'1
Ser-H + Fe2+ 1.4 X 10'10 3.21 X 10'9 2.5 X 10'1
Pro-H + Fe2+ 1.4 X I  O'10 3.17 XIO '9 2.5 X 10'1
Thr-H + Fe2+ 1.5 X IO '10 3.16 X 10'9 2.7 X 10'1

As previously detailed, Ser and Thr both have -OH groups attached to the 

primary carbon of the side chain. Pro differs from all amino acids because it does 

not have a typical side chain; the R-group of Pro is cyclic on the a-carbon. Pro may 

react with the same efficiency of Ser due to the positioning of the nitrogen atom of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



178
the R-group. It is possible that the nitrogen is oriented toward iron in such a way 

that its interaction is similar to that of hydroxide group (Fig. 86).

O O

CH—

c h 3

H2N CH— C OH H2N CH— C OH

CHg

Threonine Serine

Figure 86. A comparison of Thr, Ser, and Pro.

O

c  QH

HN

Proline

lie, Ala, and Val are also positioned near each other in the table. All three of 

these amino acids have side chain methyl groups available to complex the metal ion 

(Fig. 87). These methyl groups are all positioned on or near the a-carbon of the 

amino acid. The position of the methyl group on the side chain appears to be 

important since Leu also has a side chain methyl group, but it does not react with 

similar reaction efficiency.

Kinetic and thermodynamic data are presented in Table 29. These values 

were calculated using the same method as previously described. In these 

experiments, the binding energy generally ranged from approximately 89 to 100 kJ 

mol'1. However, [Ser-H+Fe2+]+ differed from the eleven other amino acids. Its 

binding energy was calculated to be approximately 120 kJ mol'1, which is 

substantially different for other observed binding energies.
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Isoleucine Alanine

Figure 87. A comparison of lie, Ala, and Val.

Valine

Table 29

Kinetic and Thermodynamic Data for Iron Complex Reactions with Toluene.

Amino Acid Keq
(atm'1)

AG 
(kJ mol'1)

AH  
(kJ mol'1)

Cys-H + Fe2+ (2.98 X10+s) -48.7 -88.7
Lys-H + Fe2+ 5.87 XI0+8 -50.4 -90.4
Leu-H + Fe2+ 2.05 X10+y -53.5 -93.5
Met-H + Fe2+ 1.94 X10+y -53.3 -93.3
Gln-H + Fei+ 8.55 X10+ii -51.3 -91.3
Ile-H + Fe2+ 1.68 X10+y -53.0 -93.0
Ala-H + Fe2+ 3.71 X10+y -55.0 -95.0
Val-H + Fe2+ 2.72 X10+1° -60.0 -99.9
Glu-H + Fe2+ 2.05 X10+y -53.5 -93.5
Ser-H + Fe2+ 8.73 X10+1J -80.1 -120.1
Pro-H + Fe2+ 1.80 X10+1U -58.9 -98.9
Thr-H + Fe2+ (1.71 X10+1U) -58.8 -98.8

In situations like these, where trends do not readily appear, theoretical 

modeling calculations would be useful. Similar in silico modeling experiments

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



180
could be performed on iron complexes. Stabilization energies and reaction 

efficiencies could then be compared to identify kinetic and thermodynamic trends.

Nickel Studies

Nickel is thought to play a role in membrane conformation and is found in 

the protein urease. ' Nickel is often used as a therapeutic agent for certain 

medical treatments. Experimental data was obtained for twelve amino acids 

complexed to nickel. A sample spectrum and a kinetics plot are shown in Fig. 88 

and Fig. 89, respectfully. The results are presented in Table 30.

Leu-H+Ni2+ + Toluene 
(5000 ms)
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400 Leu-H+Ni +Toluenec
3002

3
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<  100

100 200 300 400 5000

m/z

Figure 88. A spectrum of [Leu-H+Ni2+]+ reacting with toluene over a scan delay 
period of 5000 ms.
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Figure 89. The kinetics of [Leu-H+Ni2+]+ reacting with toluene.

Table 30

Experimental Results for Amino Acids Complexed with Nickel Reacting with 
Toluene.

Amino Acid k2 kf O
Val-H+ Ni2+ 1.1 X 10'11 3.16 X 10'y 3.5 X 10"1
Asn-H+ Ni2+ 1.6 X 10'" 3.12 X 10'y 5.2 X 10‘J
Pro-H+ Ni2+ 4.3 X 10'11 3.17 X 10"y 1.4 X 10'2
Gln-H+ Ni2+ 5.4 X 1 0 '11 3.08 X 10'y 1.7 X 10'2
Leu-H+ Ni2+ 9.5 X 1 0 '11 3.12 X 10"y 3.1 X 10'2
Ser-H+ Nii+ 1.2 X 10'1U 3.20 X 10'y 3.8 X 10'2
Thr-H+ Ni2+ 1.2 X 10'10 3.15 X 10'y 3.9 X 10"2
Asp-H+ Ni2+ 1.6 X 10'1U 3.11 X 10'y 5.2 X 10'2
Glu-H+ Ni2+ 2.0 X 10'10 3.08 X 10'y 6.6 X 10'2
Cys-H+ Nii+ 2.2 X 10'IU 3.15 X 10"y 6.9 X 10'2
Ala-H+ Ni2+ 2.5 X 10'10 3.26 X 10'y 7.7 X 10'2
Gly-H+ Ni2+ 3.7 X 10'1U 3.33 X 10'11 1.1 X 10'1
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The two fastest reacting amino acids are the simplest amino acids: Gly and 

Ala. The R-groups for these amino acids are a hydrogen atom and a methyl group, 

respectfully. A quick survey of the results in Table 30 shows that there are two sets 

of amino acids which behave similarly in these experiments: Ser and Thr and Glu 

and Cys. It has been previously observed that Ser and Thr have similar reaction 

rates and efficiencies. Again, this is likely due to similar features in their side 

chains.

The observation that Glu and Cys have very similar reaction efficiencies is 

interesting because the two amino acids do not have similar features. Cys has a 

relatively short side chain that contains a sulfur atom. Glu has a medium-length 

side chain with two oxygen atoms attached to the terminal carbon. Since Asp has a 

similar structure to Glu, it would be expected that the reaction efficiencies of Asp 

and Glu would be more similar. It can be seen, however, that the two amino acids 

are next to each other in order of increasing reaction efficiency. In addition, Cys 

and Ser have similar side chains, yet they are dissimilar in reaction efficiency.
| j

Thermodynamic and kinetic data are presented for [A.A.-H+Ni ] 

complexes reacting with toluene (Table 31). As with the other experiments, the 

calculated Keq, AG, and AIT for each species are reported. For these [A.A.-H+Ni2+]+ 

complexes, the experimental binding energy was determined to range from 

approximately 92-101 kJ mol'1.
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Table 31

Calculated Kinetic and Thermodynamic Values for rA.A.-H+Ni2+l+ Complexes 
Reacting with Toluene.

Amino Acid Keq
(atm-1)

A G 
(kJ mol-1)

AH
(kJ mol-1)

Val-H+ Ni2+ 1.32 X 10+y -52.4 -92.4
Asn-H+ Ni2+ 2.91 X 10+9 -54.4 -94.4
Pro-H+ Ni2+ 6.58 X 10+y -56.4 -96.4
Gln-H+ Ni2+ 1.38 X 10+y -52.5 -92.5
Leu-H+ Ni2+ 7.86 X 10+y -56.8 -96.8
Ser-H+ Ni2+ (9.76 X I0 +9) -57.4 -97.4
Thr-H+ Ni2+ (7.54 X 10+9) -56.7 -96.7
Asp-H+ Ni2+ 2.72 X I0 +9 -54.2 -94.2
Glu-HT- Ni2+ 1.52 X 10+y -52.7 -92.7
Cys-H+ Nii+ 2.62 X 10+1U -59.8 -99.8
Ala-H+Ni2+ 3.46 X 10+1U -60.5 -100.5
Gly-H+ Ni2+ (1.34 X 10+1U) -58.2 -98.2

Zinc Studies

Zinc was the final metal ion used in the study. As with the other metals in 

the study, zinc plays a large role in biochemical functions. Zinc is largely 

associated with the structural role it plays in proteins; the zinc finger domain is a 

common feature of many proteins (see Chapter 1). Some known zinc-containing 

proteins are carbonic anhydrase,261-264 DNA polymerase,265-267 and alcohol 

dehydrogenase.268 A sample spectrum is shown in Fig. 90 and a sample kinetics 

plot is shown in Fig. 91. Data for ion-molecule reactions of [A.A.-H+Zn2+]+ with 

toluene is found in Table 32.
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24™ 4“Figure 90. [Asn-H+Zn ] reacting with toluene over a scan delay period of 1000 
ms.
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Figure 91. The kinetics of [Asn-H+Zn2+]+ reacting with toluene.
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Table 32

Reaction Data for Amino Acid Complexes with Zinc Reacting with Toluene.

Amino Acid k2 kf
Gly-H + Zn2+ 6.1 X 10'12 3.30 X 10'y 1.9 X 10'J
Glu-H + Zn2+ 9.0 X 10'12 3.06 X 1 O'9 2.9 X 10"j
Gln-H + Zn2+ 1.4 X 10'11 3.07 X 10'9 4.7 X 10'J
Arg-H + Zn2+ 1.7 X IO '11 3.01 X 10'9 5.7 X 10'J
Met-H + Zn2+ 2.9 X 10'11 3.06 X 10‘9 9.5 X 10 J
Asn-H + Zn2+ 3.4 X IO '11 3.10 X 10 '9 1.1 X 10'2
Thr-H + Zn2+ 3.7 X 10'11 3.14 X 10 '9 1.2 X 10'2
Pro-H + Zn2+ 3.9 X 10'11 3.15 X 10'9 1.2 X 10'2
Leu-H + Zn2+ 5.5 X IO '11 3.10 X 10 '9 1.8 X 10'2
Cys-H + Zn2+ 7.4 X 10'11 3.13 X 10'9 2.4 X 10'2
Asp-H + Zn2+ 2.1 X 10'1U 3.10 X 10'9 6.7 X 10'2

The fastest reacting zinc species was Asp; the slowest reacting species was 

Gly. As with other reactions with different metals, structural aspects of the amino 

acids do not appear to be responsible for the observed kinetics. Again, theoretical 

calculations would help to identify factors that affect the reaction efficiency.

Table 33 contains the thermodynamic and kinetic data for these reactions. It 

was found that the experimental binding energies for these [A.A.-H+Zn2+]+ 

reactions were between 89 and 97 kJ mol'1. These values are among the lowest 

binding energies observed in these toluene experiments.
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Table 33

Thermodynamic and Kinetic Data for Reactions with Zinc and Toluene.

Amino Acid Keq
(atm'1)

A G 
(kJ mol'1)

AH
(kJ mol'1)

Gly-H + Zn2+ (1.94 X 10+y) -53.3 -93.3
Glu-H + Zn2+ 2.58 X 10+y -54.1 -94.1
Gln-H + Zn2+ 1.96 X 10+y -53.4 -93.4
Arg-H + Zn2+ 3.42 X 10+8 -49.0 -89.0
Met-H + Znz+ (6.20 X 10+y) -56.2 -96.2
Asn-H + Zn2+ 6.57 X 10+y -56.4 -96.4
Thr-H + Zn2+ 8.49 X 10+y -57.0 -97.0
Pro-H + Zn2+ 1.40 X 10+y -52.5 -92.5
Leu-H + Zn2+ 3.72 X 10+y -55.0 -95.0
Cys-H + Zn2+ (4.25 X 10+y) -55.3 -95.3
Asp-H + Zn2+ 8.88 X 10+y -57.1 -97.1

Summary

Figure 92 shows a graphical representation of the reaction efficiency data 

presented here. It can be readily seen that there is significant variation between the 

reaction efficiencies of the amino acids. None of the amino acids tested showed 

predictable trends. Amino acids with similar reaction efficiencies with one metal 

ion reacted with different reaction efficiencies when complexed to another metal 

ion. In addition, the choice of metal ion altered the reaction trend of individual 

amino acids. For instance, [Gly-H+Ni2+]+ was the fastest reacting species of the 

[Gly-H+Ni2++toluene]+ species, yet the slowest reacting species of the zinc studies
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was [Gly-H+Zn2+]+. Additionally, it can be seen that the fastest reacting species by 

far was [Ala+Cu+].

Reaction Efficiencies
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Figure 92. The reaction efficiencies of the amino acids.

Although these experiments are difficult to interpret, it is advantageous that 

theoretical modeling calculations can be correlated with experimental results. 

Although experimental and theoretical data were only available for 

[A.A.+Cu++toluene] complexes, the linear correlation between the reaction 

efficiency and stabilization energy was obvious. Additional sets of data like that of 

Cu reactions will likely identify similar trends with other metal complexes.
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Tyrosine Modeling

The aromatic side chain of Tyr can be modeled using methylanisole. 

Methylanisole (MA) is a more complicated aromatic than benzene or toluene 

because it contains both a methyl group and a methyl phenyl ether group which are 

bonded in a paradistribution. The addition of these groups further disturbs the 71-  

system of the benzene ring. MA has a boiling point of 174 °C, a vapor pressure of 

5.25 mmHg (at 20 °C), and a density of 0.969g/mL (at 25 °C). It has an estimated 

polarizability of 14.10 A3.160 The structure of methylanisole is shown in Fig. 93.

Figure 93. Methylanisole. The figure on the left is the structure. The figure on the 
right is Gaussian optimized.

C H 3

J
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Ion-Molecule Reactions
189

Tyrosine modeling reactions using MA as the neutral were performed as 

described previously in Chapter 2. As with toluene experiments, the KinFit macro 

for Excel was used to determine the experimental rate constant, k\, for these 

reactions.

It was necessary to determine the pressure of MA in the quadrupole ion trap 

in order to calculate the reaction efficiencies of the various [A. A.+M+] species. The 

estimated pressure of MA in the quadrupole ion trap was calculated as 2.5 X 10'7 

Torr using Gronert’s method (Eq. 4.8):

p
Toluene

(Torr) *  ( u n o - 1  ̂ LHr ' • 0 . 9 6 9 ^
\  \22gmol Y 1 1

\22gmol 1
Jv2.00Lmin_1, ^4.003gm or ' , (4.8)

As with the toluene experiments, the [A.A.+M+] species that reacted with the 

largest ki was [Ala+Cu+]. Like before, was set equal to kf, and the pressure of
Q

MA in the ion trap was then estimated to be approximately 8.8 X 10' Torr. 

[A.A.+Ag+] and [A.A.+Cu+] complexes were formed, and association reactions with 

MA were analyzed.

Silver Studies

Ion-molecule reactions of [A. A.+Ag+] with MA were preformed. A sample 

spectrum is shown in Fig. 94, and a kinetics plots is shown in Fig. 95. The kinetic
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rate constants and reaction efficiencies are reported in Table 34. As with previous 

experiments, the amino acids are listed in order of increasing <E>.

AlaAg* + Methylanisole 
(1000 ms)

£.20000
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Ala+Ag++ MA

Ala+Ag
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m/z

Figure 94. The reaction of [Ala+Ag+] with methylanisole over a scan delay period 
of 1000 ms.
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Figure 95. The reaction kinetics of [Ala+Ag+] with methylanisole.

Table 34

Reaction Data for Amino Acid Complexes with Silver Reacting with Methylanisole.

Amino Acid k2 kf
Asn + Ag+ 2.1 X 10'10 1.66 X 10‘y 1.3 X 1 0 '1
Gin + Ag+ 4.1 X 10'1U 1.64 X 10'y 2.5 X 10'1
Glu + Ag+ 4.3 X 10'1U 1.64 X 10"y 2.6 X 10'1
lie + Ag+ 4.4 X 10'10 1.66 X 10'y 2.7 X 10'1

Asp + Ag+ 5.3 X 10'1U 1.66 X 10'y 3.2 X 10'1
Gly + Ag+ 6.5 X 10'1U 1.75 X 10'y 3.7 X 10'1
Ala + Ag+ 7.6 X 10'IU 1.73 X 10'y 4.4 X 10'1
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Of the amino acids complexed with silver, Ala was the fastest reacting and 

most efficient species. Unlike some of the toluene reactions, there are some 

apparent reaction trends presented in Table 34. First, Asn, Gin, and Glu are the 

slowest reacting and least efficient species of the study. All three of these amino 

acids contain a similarly positioned double-bonded oxygen atom on their side chain 

(Fig. 96). Asp also has a similarly bound oxygen atom on its side chain. Asp is 

separated in the table from the other amino acids by lie. Nevertheless, it appears 

that the functional groups on the side chain directly affect the reaction efficiency; 

when amine groups are replaced by hydroxide groups, an increase in reaction 

efficiency is observed.

Gly and Ala complexes have the greatest reaction efficiency. These two 

amino acids have the simplest structure of the twenty common amino acids. It 

appears that a general feature of these reactions is that the species with the shorter 

side chains will react with the greatest efficiency.

Thermodynamic and kinetic calculations were also obtained for ion- 

molecule experiments of [A.A.+Ag+] complexes with methylanisole. Table 35 

contains this data. For these experiments, it was found that the experimentally 

determined binding energy ranged from approximately 97 to 107 kJ mol'1.
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Figure 96. The structures of Asn, Gin, Glu, and Asp. Each of these amino acids has 
the common feature of a double-bonded oxygen on a side chain carbon (red). The 
lower efficiency species have amine groups (green), while the faster reacting species 
have hydroxide groups at the same position (blue).
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Table 35

Thermodynamic and Kinetic Data for Reactions with Silver and Methylanisole.

Amino Acid Keq
(atm'1)

AG 
(kJ mol'1)

AH
(kJ mol'1)

Asn + Ag+ 9.28 X 10+y -57.2 -97.2
Gin + Ag+ 1.03 X 10+1U -57.5 -97.5
Glu + Ag+ 4.13 X 10+" -66.7 -106.7
lie + Ag+ (7.13 X 10+1°) -62.3 -102.3

Asp + Ag+ (2.42 X 10+11) -65.4 -105.4
Gly + Ag+ 4.37 X 10+l1 -66.9 -106.9
Ala + Ag+ 1.16 X 10+u -63.5 -103.5

Copper Studies

Copper complexes were successfully formed with twelve amino acids. A 

sample spectrum and kinetic plot are shown in Fig. 97 and Fig. 98. Kinetics data 

was obtained and is presented in Table 36.

As with [A.A.+Ag++MA] studies, the fastest reacting amino acid for copper 

studies was Ala. The reaction efficiencies of these reactions are much more diverse 

than with other studies, with O values ranging from 0.00048 to 1. [Arg+Cu+] is the 

least efficiently reacting species. This is likely due to the size of the Arg side chain. 

It is likely that Cu+ is solvated by the chain, preventing interaction with the MA 

molecule. [Ile+Cu+] also exhibits a low reaction efficiency. This is likely due to a 

similar side chain interaction.
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Figure 97. The reaction of [Ala+Cu+] with methylanisole after a 1000 ms scan 
delay.
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Figure 98. The reaction kinetics of [Ala+Cu+] with methylanisole.
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Table 36

Reaction Data for Amino Acid Complexes with Copper and Methylanisole.

Amino Acid k2 kf
Arg + Cu+ 9.7 X 10'iJ 1.66 X 10'9 5.8 X 10"4
lie + Cu+ 1.5 X IO ’11 1.72 X 1 O'9 8.5 X \0 's
Cys + Cu+ (2.3 X 10'11) 1.74 X 1 O'9 1.3 X 10'^
Glu + Cu+ (2.4 X 10'11) 1.70 X 10"y 1.4 X 10'2
Met + Cu+ (4.2 X 10'1U) 1.70 X 10'y 2.5 X 10'1
Asn + Cu+ 4.8 X 10'1U 1.72 X 10‘y 2.8 X 10'1
Asp + Cu+ 5.6 X 10'10 1.72 X 1 O'9 3.3 X 10'1
Thr + Cu+ 7.4 X IO '10 1.75 X 10'9 4.2 X 10'1
Val + Cu+ 9.1 X 10'10 1.75 X IO '9 5.2 X IO '1
Ser + Cu+ (1.1 X 10'y) 1.77 X 10'y 6.0 XIO"1
Gly + Cu+ 1.4 X 10"y 1.85 X 10‘9 7.3 X 10'1
Ala + Cu+ 1.8 X 10'9 1.81 XIO'9 1

Both Cys and Glu react with similar efficiencies. There are no features in 

the structures of the amino acids that would indicate a functional group effect on 

these similar reaction efficiencies. However, Met and Cys both contain a sulfur 

atom in their side chains which could account for them being grouped in a similar 

position in Table 36. Asn and Asp are found to react with similar efficiencies. 

Similar to the [A.A.+Ag++MA] study, the replacement of the amine group with a 

hydroxide group appears to play a factor in the increase in reaction rate and 

efficiency.

Finally, the amino acids with the shortest and simplest R-groups are found to 

react with the fastest kinetics and reaction efficiency. The similar reaction 

efficiencies of Thr, Val, and Ser were observed in previous experiments. Finally,
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the two simplest amino acids, Gly and Ala, also react with similar efficiency as 

observed for the [A. A.+Ag++MA] studies.

As with the previous experiments, the Keq, AG, and AH  values were 

determined for [A.A.+Cu++MA] studies. These calculated values are presented in 

Table 37. It can be seen that the experimentally determined binding energies of 

these species ranged from approximately 85 to 108 kJ mol'1.

Table 37

Kinetic and Thermodynamic Data for Reactions with Copper and Methylanisole.

Amino Acid Keq
(atm'1)

AG 
(kJ mol'1)

AH
(kJ mol'1)

Arg + Cu+ 7.88 X 10+7 -45.4 -85.4
lie + Cu+ 1.97 X 10+y -53.4 -93.4

Cys + Cu+ 7.95 X 10+8 -51.1 -91.1
Glu + Cu+ 2.37 X 10+y -53.8 -93.8
Met + Cu+ 4.03 X 10+u -66.7 -106.7
Asn + Cu+ 7.45 X 10+y -56.7 -96.7
Asp + Cu+ 8.65 X 10+y -57.1 -97.1
Thr + Cu+ 1.83 X 10+1U -58.9 -98.9
Val + Cu+ 1.82 X 10+11 -64.7 -104.7
Ser + Cu+ 2.31 X 10+u -65.3 -105.3
Gly + Cu+ 6.39 X 10+u -67.8 -107.8
Ala + Cu+ 9.90 X 10+1U -63.2 -103.2

Summary

Figure 99 compares the reaction efficiencies for [A.A.+Ag+] and [A.A.+Cu+] 

complexes with methylanisole. In general, the reactions with copper were more
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efficient. This differs from ion-molecule reactions with toluene as the neutral, 

where silver complexes generally reacted with the greatest reaction efficiency.

Reaction Efficiencies for MA Reactions

1.2E+00
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<0
S. 4.0E-01 

2.0E-01 

O.OE+OO I
Ala Arg Asn Asp Cys Gin Glu Gly lie Leu Lys Met Pro Ser Thr Val

Amino Acid

Figure 99. The reaction efficiencies of methylanisole reactions. Data presented for 
[A.A.+Ag+] and [A.A.+Cu+] complexes.

Results and Discussion

The cation-7r interactions involving the aromatic groups of Phe and Tyr are 

often observed to occur with metal ions and positively charge amine groups in 

peptides and proteins. The aromatic groups of these amino acids have similar 

structures; however, the functional groups attached to the central benzene ring can 

alter the interaction of these aromatic amino acids with [A. A.+M+] complexes. Ion-
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molecule reactions can be used to determine which [A.A.+M++aromatic] 

interactions would be likely to occur in proteins.

It is apparent from the data presented for these aromatic modeling 

experiments that each non-aromatic amino acid reacts with different efficiencies 

depending on the metal ion species to which it is complexed. While it would be 

expected that kinetic trends would be easily correlated to amino acid structure, this 

is not the case. Experimental and theoretical results of [A. A.+Cu+] reactions with 

toluene demonstrate that kinetic observations have a linear correlation to 

stabilization energies of the species. The agreement between kinetic and 

thermodynamic data provides an indication that these ion-molecule reactions are 

capable of providing important reaction and binding information with regard to 

cation-7r interactions.

The reaction efficiencies of [A.A.+Ag+] and [A.A.+Cu+] are compared in 

Fig. 100. In general, there are considerable differences between the interactions of 

toluene and methylanisole. For example, toluene is found to react with some amino 

acid complexes that were not observed to react with MA and vice versa. This 

provides important information regarding which aromatic interactions are likely to 

occur in vivo. In addition, some [A.A.+Ag+] complexes show an increased binding 

efficiency to one of the aromatic species. For example, there is a considerable 

increase in binding preference observed for toluene over M A with [Ile+Ag+], 

Although less pronounced, [Ala+Ag+] demonstrates a distinct preference for 

interaction with MA over toluene.
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There are a few instances in which the binding affinities of the [A.A.+Ag+] 

are not altered significantly by the neutral species. [Glu+Ag+] and [Gly+Ag+] react 

with the neutrals with similar reaction efficiencies. This indicates that Phe and Tyr 

are equally likely to participate in cation-7t interactions.

T oluene a n d  M ethylanisole 
R eaction  C om parison  of Silver C om plexes

Reaction
Efficiency

Amino Acid Complexes

Figure 100. A comparison of reaction efficiencies for [A.A.+Ag+] complexes with 
toluene and methylanisole.

Similar side-by-side analysis can be performed for [A. A.+Cu+] reactions 

(Fig. 101). As with the silver studies, there are instances in which an amino acid 

will react with the neutral with a distinct preference. For example, Ala, Gly, Met, 

Ser, Thr, and Val complexes are observed to prefer to interact more strongly with
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methylanisole than with toluene. However, Asn and Asp prefer to interact with 

toluene more than methylanisole.

Toluene and Methylanisole 
Reaction Comparison of Copper Complexes

0.8

Reaction Efficiency 0.6
□ MA
■ Tol0.4-

0.2

Amino Acid C om plexes

Figure 101. A comparison of reaction efficiencies for [A.A.+Cu+] complexes with 
toluene and methylanisole.

Unlike reactions with silver, there are no amino acids which demonstrate 

nearly identical reaction efficiencies. This is an important observation from a 

biochemical standpoint. There are many copper metalloproteins that exist in nature. 

These metalloproteins must show high levels of binding specificity and interactions 

in order to ensure proper functionality. The difference in binding preference even 

with similar molecules demonstrates the amazing selectivity of biomolecules.

Through these ion-molecule reactions, both observed and in silico, it has 

been shown that model aromatics prefer to bind with specific [A.A.+M+]
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complexes. It is assumed that the model aromatics will mimic the actual binding 

preferences of the amino acids in the gas phase. When this information is applied to 

the aromatic amino acids, association predictions can be made.

Theoretical calculations using the neutral benzene indicated that [A.A.-

2+
H+Ca ] would show an increase in stabilization energy as follows:

Arg < Lys < Glu < Asp < Thr < Ser < Gly 

This information can be used to predict that the reaction efficiency of the 

association will increase in the same order. Benzene is not an optimal neutral for 

experiments modeling aromatic amino acids since the R-groups of these species 

contain functional groups on the benzene ring. However, Gaussian calculations 

performed on the neutrals used to model these aromatic interactions can provide 

similar thermochemical results.

It was experimentally determined that Phe is most likely to show binding 

preference to [Leu+Ag+], [Leu-H+Ca2+], [Leu-H+Co2+], [Asp+Cu+], [Thr-H+Fe2+],
-"i I I

[Gly-H+Ni ], and [Asp-H+Zn ]. Theoretical modeling calculations for 

[A. A.+Cu+] species were shown to follow a linear trend with reaction efficiency of 

these reactions. Although fewer studies were performed with methylanisole, it can 

be said that Tyr will likely show binding preference to [Ala+Ag+] and [Ala+Cu+].
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It has been demonstrated here that the use of ion-molecule reactions to probe 

the kinetics of aromatic amino acid interactions is a viable means of predicting 

reactivity and binding. An in-depth look at the cation-7t interactions can be achieved 

through kinetics experiments and theoretical computations. Information gathered 

from these experiments can be used to help determine protein structure, design 

target drugs, and advance protein engineering.

Aromatic amino acid ion-molecule reaction studies were undertaken for 

[A. A.+M+] species for a variety of metal ions. Data for association reactions with 

model neutrals can be obtained in a reasonable time frame, when compared with 

other analytical techniques. However, the time required to perform these 

experiments is not trivial.

Ion-molecule reactions were attempted for all non-aromatic amino acids 

complexed with seven different metal ions; for each modeling experiment, 119 

[A.A.+M+] complexes were analyzed. The concentration of the [A.A.+M+] 

complexes needed to be optimized for the greatest signal intensity, and kinetics data 

needed to be obtained. Data acquisition time varied greatly depending on the 

stability of the [A.A.+M+] complex, reaction kinetics, and amount of scan delay 

increments used.

Theoretical calculations were necessary to complement experimental data. 

The data obtained from these calculations are significant for the scope of the
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experiments; however, the computations come with a cost of time. The time 

required for Gaussian optimization and energy calculations increases drastically as 

the size of the species increase. With our lab’s current computer power, the 

computational time can span from taking a few hours to a few weeks.

In general, the entire set of optimizations and calculations for the 

[A.A.+M++neutral] could be obtained in approximately 2 weeks, which is a 

conservative estimate. This means that on average it would take approximately 34 

weeks to complete theoretical calculations for only one set of metal complexes 

reacting with one neutral species. In addition, if theoretical calculations were 

performed for all 119 [A.A.+M++toluene] reactions analyzed, assuming the same 

computational time, it would take ~ 4.5 years to complete these reactions. 

Unfortunately, this time frame is not optimal for a complete data analysis 

(experimental and theoretical) in a reasonable time frame.

Nevertheless, experimental and theoretical analysis of cation-7i interactions 

has proved to be beneficial. It has been demonstrated that ion-molecule reactions 

can be effectively used to probe the reactivity of aromatic amino acids in the gas 

phase. Although much has been accomplished, the need for further investigation of 

these interactions remains.
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CHAPTER 5 

FUTURE DIRECTIONS

It has been demonstrated that the use of ion-molecule reactions is an 

effective and efficient means to probe the structure and reactivity of amino acids in 

the gas phase. The structure of amino acids in the gas phase has been a topic of 

interest for many years. It has been shown that the use of ion-molecule reactions is 

a relatively inexpensive and practical means to determine gas-phase amino acid 

structure. It has also been shown that the reactivity of amino acids in the gas phase 

can be probed when the neutral species is used to model aromatic amino acids. 

Although much information about amino acids has been gathered over the course of 

these experiments, the use of ion-molecule reactions to analyze amino acids has not 

yet been exhausted.

Simple modifications to the experiments can be performed in order to 

improve data collection and amino acid analysis. Additional neutral species can be 

chosen to provide data which can be compared to what has already been gathered. 

Different biologically relevant metals can be complexed to amino acids in the 

aromatic studies to study the interaction of a wider range of species. Interesting 

features of other amino acids can be exploited using ion-molecule reactions to probe 

the reactivity of those species. Finally, ion-molecule reactions could be used to 

identify species separated by high-performance liquid chromatography (HPLC) in a 

real-time analysis setup.
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Structural Analysis

The current experimental setup for probing the structure of amino acids in 

the gas phase has allowed for data collection for many species. As has been 

previously shown, some of these amino acid species react significantly slower than 

other amino acids; these reactions are too slow to observe during the time frame of 

the experiments. Small modifications to the instrument would enable these slower 

reactions to be observed.

One possible adjustment that could be made is to alter the computer program 

that controls the scan delay of the instrument. The instrument has a scan delay limit 

of 9000 ms, which can be insufficient to observe slower reactions. If the scan delay 

limit could be increased, it is possible that ion-molecule reaction data could be 

obtained and used to identify the gas-phase structures of slower reacting species. 

Ideally, more data would be collected from software changes, but possible 

drawbacks to this change might render this option unfavorable.

The [A.A.+M+] and/or the [A.A.+M++neutral] species may not be stable at 

higher scan delays. Repetitive collisions with molecules in the trap would cause 

these molecules to fragment. This would affect data analysis because the decay 

curves of the [A.A.+M+] would no longer be dictated by kinetics. Both kinetic and 

collisional decay factors would be observed.

Another option is to alter the instrumental setup itself. One possibility is to 

introduce higher pressures of the neutral species into the ion trap. Another is to find
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a neutral that is more reactive than the current neutral, acetone. The higher pressure 

of neutral would cause the kinetics to be observed for all amino acids in a much 

faster time frame. This would decrease the reaction time of already fast-reacting 

species but would also decrease the reaction time of the slower species. If the 

pressure was significantly different enough, it is theoretically possible to observe 

reactions for all amino acid species.

The pressure of neutral entering the quadrupole ion trap is governed by the 

flow rate of the syringe pump. Slower flow rates of neutral correspond to lower 

pressures of the neutral in the trap and vice versa. Increasing the flow rate of the 

neutral can be an effective way to increase the pressure of the neutral in the trap. 

However, there are limits to increasing the flow rate. The syringe pump has a 

maximum pump speed that it can operate at. Moreover, there is a point at which the 

helium gas will become “saturated” with the neutral species. Even if the flow rate is 

increased, a saturation limit will prevent higher pressures of the neutral from 

entering the trap. It is also possible that neutral species flowing into the helium line 

at too high a flow rate might block the line, where the liquid neutral might prevent 

the helium from flowing into the trap at optimal pressure.

One of the easiest modifications that can be made to these experiments is to 

alter the neutral species used for these experiments. Structural studies present in 

Chapter 3 used acetone as the neutral species, and for most o f  the amino acids, data 

could be obtained. It is possible that another neutral species would react faster with 

the [A.A.+M+] studied and would therefore provide information not yet obtained.
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Future work should focus on probing the structure of amino acids in the gas 

phase while implementing one, if not all, of the previously suggested improvements. 

It will then be possible to collect data for the slow-reacting sodiated and potassiated 

species, as well as the [A.A.+Cs+] whose reactions were previously unobservable.

Reactivity of the Amino Acids

The reactivity of the aromatic amino acids was another focus of these ion- 

molecule reaction experiments. Neutral species were used to model interactions of 

[A.A.+M+] species with phenylalanine and tyrosine, where M = Ag, Ca, Co, Cu, Fe, 

Ni, and Zn. Improvements to these experiments include the use of additional 

neutral models, the use of additional metal ions, the investigation of other amino 

acids with cyclic groups, and an increased production of corroborate theoretical 

computations.

For these ion-molecule reaction experiments, neutral species were selected 

that closely resemble the aromatic groups of Phe and Tyr. Although the neutrals 

used for these experiments provided relevant reactivity data, additional neutral 

species could be identified for future experiments. For example, the neutral species 

4-methylindole could be used to model the aromatic side chain of Trp. It is also 

possible that other neutral species could be selected in an attempt to more 

specifically model the aromatic amino residues.

The aromatic reactivity studies here focused on amino acids complexed to a 

variety of transition metals and calcium. These metals are biologically significant
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due to their contribution to protein function in the body. The scope of these 

experiments could be broadened by studying the interactions of model aromatic 

neutrals with amino acids complexed to different metal species. Other biologically 

relevant metal cations include magnesium, lithium, manganese, chromium, and 

molybdenum. Data from these studies would provide additional insight to these 

aromatic amino acid interactions.

Last, the reactivity of other amino acids can also be analyzed using ion- 

molecule reactions. A focus was placed on the aromatic amino acids Phe, Tyr, and 

Trp for these experiments. Future experiments could focus on amino acids with 

different features such as cyclic groups or sulfides. Both histidine and proline have 

cyclic groups on their side chains that would be capable of interacting with metal- 

complexed amino acids in interesting ways.

Neutral species could be selected to model these cyclic amino acids to 

investigate their reactivity. Examples of neutrals that could be used for ion- 

molecule reactions modeling cyclic amino acids are shown in Fig. 102. It is 

important to note that these examples are only suggestions and are not an exhaustive 

list of possible neutral species. Additionally, these neutrals are suggested as models 

due to their molecular similarity to the amino acid they are modeling and for their 

chemical characteristics.
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Figure 102. Cyclic amino acids and potential neutral models.
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Cysteine and methionine are two amino acids which might also exhibit 

interesting interactions with [A.A.+M+] species. Both amino acids have sulfur- 

containing R-groups. As before, neutrals can be selected to model these amino acids 

to probe their reactivity in the gas phase. Fig. 103 shows these molecules.

Real-Time Analysis

Additionally, faster reactions in the quadrupole ion trap would facilitate real­

time analysis of HPLC eluents. The current experimental setup is not capable of 

analyzing amino acid structure in a time frame suitable for LC-coupled analysis. In 

the event that reaction rates can be increased in the quadrupole ion trap, this method 

would be sufficient for real-time LC-coupled analysis.

This type of data acquisition is extremely important for high-throughput data 

analysis. With the ability of ion-molecule reactions to identify structural 

characteristics of amino acids in the gas phase comes an important advance in 

peptide and protein screening. Furthermore, this technique could be expanded to 

analyzing other biomolecules, including, but not limited to, carbohydrates, steroids, 

sugars, and DNA. Eventually, ion-molecule reactions could be developed for use as 

a molecular identifier in such areas as drug screening, histology, and genetic and 

disease testing.
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Figure 103. Neutral models for sulfur-containing amino acids.
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Significant advances have been made for the analysis of protein chemistry. 

The understanding of protein function and interaction is not trivial; the complex 

nature of peptides and proteins requires that a fundamental understanding of amino 

acids is achieved. As the structure and reactivity of these protein building blocks is 

better understood, the mystery of proteins will be better solved. Advances in 

protein chemistry are essential to the development of antibiotics, disease treatment, 

gene therapy, and a myriad of other medical advances. If nothing else, the increase 

in the understanding of proteins is proportional to an added appreciation of the 

nuances of these amazing biomolecules.
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APPENDIX C

THEORETICAL MODELING RESULTS FOR 
AMINO ACID-METAL ION COMPLEXES 

WITH BENZENE
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APPENDIX D

THEORETICAL MODELING OF 
PHENYLALANINE INTERACTIONS 

USING TOLUENE
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A.A. amino acid CFTR cystic fibrosis

transmembrane
[A.A.+M+] amino acid+ metal conductance regulator

complex
Cl chemical ionization

AlaME alanine methyl
ester CID collision-induced

dissociation
APCI atmospheric

pressure chemical DFT density functional theory
ionization

DNA deoxyribonucleic acid
ArgME arginine methyl

ester EA ethyl acetate

a.u. arbitrary units El electron ionization

B3LYP Becke-style 3- EPR electron paramagnetic
parameter density resonance
functional theory
with Lee-Yang- ESI electrospray ionization
Parr correlation

FAB fast atom bombardment
Bet betaine

FT-ICR Fourier transform-ion
cyclotron resonance

BIRD blackbody
infrared radiative GABA gamma-aminobutyric
dissociation acid

bp boiling point GC gas chromatography

But butylamine GlyME glycine methyl ester

CAD collision-activated HisME histidirte methyl ester
dissociation

HPLC high performance liquid
CAPTURE Cation-7t Trends chromatography

Using Realistic
Electrostatics HSAB hard-soft acid-base

CE capillary IM ion-molecule
Electrophoresis

IR infrared
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IRMPD infrared RAK radiative association
multiphoton kinetics
dissociation

RI relative intensity
LC liquid

chromatography RNA ribonucleic acid

LysME lysine methyl rRNA ribosomal ribonucleic
ester acid

MALDI matrix-assisted STO Slater-type orbitals
laser
desporption/ioniza TEA triethylamine
tion

THF tetrahydrofuran
MA methylanisole

TMH transmembrane helix
MS mass spectrometry

TMS transmembrane strand
N/A not available/ not

assigned TOF time-of-flight

nAChR nicotimic Z dipole correction factor
acetylcoline
receptor

NBO natural bond order

NMDA /V-methyl-r>
aspartate

NMR nuclear magnetic
resonance

PA proton affinity

PDB protein database

ProME proline methyl
ester

QIT quadrupole ion
trap
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