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ABSTRACT

Chang and Wong investigated the optimal hedging strategy for a multinational 

firm which has future cash flows in a foreign currency but is unable to directly hedge 

the exchange rate risk. The firm then uses a third currency to partially hedge the 

risk. This paper generalizes the paper of Chang and Wong by showing th a t some 

of the assumptions about the distributions of the stochastic process generating the 

exchange rates are more restrictive than necessary, i.e., tha t the same results hold 

under weaker assumptions. It then does specific calculations for the case of bivariate 

lognormal distributions and compares the results to those of Chang and Wong. Using 

the bivariate lognormal model with a term for inflation gives the best performance 

under a real-life data set.
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CHAPTER 1

INTRODUCTION

This paper investigates some extensions of the paper by Chang and Wong (2003), 

hereafter referred to as CW. The situation investigated by CW is to find the optimal 

hedging strategy for a firm based on the following scenario. The firm is multinational 

and has a future cash flow in a foreign currency, but the firm is unable to directly 

hedge the exchange rate risk of that currency due to incomplete markets. The firm 

then attem pts to partially hedge the risk using derivatives for the currency of a third 

country. In the industrialized countries of the world there are mature markets for 

currency futures and derivatives. For less developed countries such markets may be 

either absent or immature. Often the contracts which can be purchased are more 

akin to insurance contracts on the future cash flows, with large spreads to cover the 

risk assumed. The optimal cross-hedging strategy is investigated in both a one period 

model and in a multi-period, dynamic model.

CW derives the optimal hedge for the firm using futures and options, but their 

principal results are obtained under several assumptions. One assumption is tha t the 

firm maximizes expected utility with a quadratic utility function. Another is that the 

distributions for the exchange rates are bounded and symmetric and tha t when one 

exchange rate is regressed on the other the regression error is independent. A third
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assumption is th a t the volatilities of the exchange rates are constant over time. These 

assumptions are restrictive, but this is justified by the difficulty of getting concrete 

results without them.

The cash flows resulting from futures contracts arc a linear function of the un­

derlying exchange rate, while those resulting from options are nonlinear, as are those 

resulting from other derivatives. One of the frustrations of building models for hedg­

ing strategies is th a t most of the models which are simple enough to analyze in detail 

give the result th a t any use of non-linear instruments is not optimal. For instance, in 

the Black-Scholes model (Black and Scholes, 1973), all investors are risk-neutral, and 

this leads to the conclusion tha t there is no reason to use derivatives at all. The use 

of derivatives, including options, is typical of real-life behavior, since derivatives mar­

kets are very large and options are a considerable portion of this market. Bodnar et 

al. (1995, 1996, 1998) attem pted to survey U.S. firms on their use of financial deriva­

tives, and this was followed up by several related surveys and comparative studies 

by Bodnar and Gebhardt (1999), Bodnar, de Jong, and MacRae (2003), Bprsum and 

0degaard (2005), and Jakoniuk et al. (2000). These surveys show that many firms, 

especially the smaller ones, use only futures for hedging purposes, but a significant 

proportion of the larger companies use options as well. In using these survey results, 

one should keep in mind tha t they are limited by self-selection, since, as is typical 

of surveys, the response rates were around 20%-25%. A detailed series of surveys of 

derivatives usage, specific to the gold mining industry, was made by Ted Reeve (1991, 

1993, 1994), and these were used by Tufano (1996) to analyze the motivations behind
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hedging behavior. The gold mining industry has a tradition of publicly declaring such 

details of its operations and so is amenable to the construction of such a data set.

The fact th a t CW obtained an optimal hedge which used nonlinear derivatives, 

namely options, is therefore noteworthy in itself. Our results allow this analysis to 

be extended to models for the exchange rate process tha t more closely approach the 

real-world processes.

This paper shows tha t the assumptions about the distributions of the exchange 

rates are unnecessary. The assumption that the exchange rate processes are symmet­

ric and bounded, with an independent error for the regression, and the assumption 

that the volatility between periods is nonrandom and independent over time can be 

omitted without any change in the conclusions. The same results th a t CW obtained 

are shown to still be true when these assumptions are relaxed, both in the one period 

model and in the dynamic model. This allows for consideration of more realistic as­

sumptions about the stochastic process governing the exchange rates. We then apply 

these results to the case of a bivariate lognormal distribution. We obtain explicit 

formulas for the optimal hedge, and we compare the performance of this hedging 

strategy for the same three countries used by CW: Japan, Taiwan, and the U.S., over 

the period 1997 through 2001. The hedge based on the assumption of a bivariate 

lognormal distribution does do better at minimizing the variance of the cash flows, 

and a model including a trend term for the exchange rate improves the hedging result 

a bit more.

One assumption from CW is still preserved, the assumption tha t the firm’s utility
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is quadratic. A satisfactory theory must deal with something more general than 

the quadratic utility function, but our analysis depends in an essential way on this 

assumption.

The outline of this thesis is as follows. In Chapter 2 we develop the basic model 

for the case of one period, and in Chapter 3 we develop the basic dynamic model, 

which involves periods 1, . . . ,  T. Then in Chapter 4 we implement the details of the 

one period model for the case of bivariate lognormal distributions, and in Chapter 5 

we implement the details of the dynamic model for bivariate lognormal distributions. 

Chapter 6  discusses an adaptation of Newton’s method for a system of equations, 

which is necessary for finding the maximum likelihood estimators (MLEs) in variations 

of the model. Chapter 7 then shows how to calculate these MLEs. In Chapter 

8  we calculate the estimators and compare the performance of the variations on the 

model for the bivariate normal distributions and the bivariate lognormal distributions. 

Chapter 9 discusses the results of simulations which were run to assess the consistency 

of the underlying model and its parameters. Finally, Chapter 10 discusses the overall 

conclusions and considers some possible directions for future research.
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CHAPTER 2

THE ONE PERIOD MODEL

In this chapter we discuss the general outlines of our model for cross-hedging 

with currency futures and options and develop the consequences of this model as far 

as possible without knowing the specifics of the underlying distributions.

For the one period model, the situation is this. A firm is expecting a future 

cash flow of X , denominated in a foreign currency, which is known with certainty. 

The exchange rate to the domestic currency at the end of the period is a random 

variable S, so th a t the cash flow converted to domestic currency will be S X .  (I shall 

not use tildes to distinguish random variables from their realizations, as done in CW, 

but will rely on context or a specific comment for this.) The firm wishes to hedge its 

risk, but there is no market, or an inadequate one, for exchange rate derivatives in 

the foreign currency. Instead, the firm will hedge the cash flow with derivatives of a 

third currency, one which does have a mature market.

Let S i be the random variable for the exchange rate from the third currency 

into the domestic currency, and let S 2 be the random variable for the exchange rate 

of the foreign currency into the third currency, so th a t S  = S 1S 2 . We assume that 

the firm’s internal assessment of future exchange rates is objectively accurate, so all
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expectations are taken with the same distributions.
Third Currency

To hedge the cash flow the firm will sell H  futures 

contracts and Z  put options. We allow that the 

firm might decide to buy these derivatives, instead of 

selling them, by perm itting H  and Z  to be negative.

We are assuming transaction costs to be zero, so the put-call parity relation shows 

that allowing the purchase or sale of call options would be redundant. The price 

F  of a futures contract is assumed to be revenue neutral, so th a t it is equal to the 

expected value F  = S i =  £[<Si]. The put options, for simplicity, are assumed only to 

be available at a single strike price, which we take to be S\.  Since this is a one period 

model, there’s no sense in asking whether the options are American or European. To 

simplify the analysis, we assume the interest rate to be zero. Then for the futures 

contract, it receives S \ H  at the beginning of the period and pays out S i H  at the 

end of the period, for a net cash flow of (Si — S \ ) H . If the interest rate were a 

deterministic amount S 7  ̂ 0, then the price F  =  E [ ~ ^  S'i] =  ~_£'[S 'i] would reflect 

this, and the cash flow at the end of the period would be the same. If 5 were random, 

then a considerable increase in complexity would result, and we are avoiding this. 

We let m represent the random variable for the cash outflow at the end of the period 

from selling one put option. Thus

x f 0 - if Si > Si , ,
m  =  m a x ( 0 ,S 1 - S 1) =  | _ i _ Si i  (2-1)

We also assume the price P  of a put option is such tha t the cash flow at the end of 

the period is revenue neutral, P  =  E[m\. For the put option, the firm’s net cash flow
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for the period is (P  — m)Z.  The cash flow for the period, including the results of the 

hedge, is now

n =  n (H, Z) = S 1S 2X  + (Si  -  S J H  +  (P  -  m)Z.  (2-2)

We assume th a t the firm maximizes expected utility for a utility function P(II), 

so its objective is to maximize the function

0 ( H , Z )  = E[U(U(H,Z))} .  (2-3)

The minimum assumptions necessary for this to make sense are th a t U is increas­

ing and strictly concave. W ith only these assumptions, we can only conclude tha t U 

is continuous, U has a left derivative U'{Tl~) and a right derivative f //(IT+ ) at every 

point; tha t these are decreasing, in the sense tha t 1 1 1  < II2  implies

u \ nr) > U'(U+) > u'(n 2-)  > u'(n 2+) > o; (2-4)

and that, if it exists, U"(Jl) < 0. We note here tha t even if U"(H) exists everywhere, 

strict concavity does not imply [/"(II) > 0 for every II; it only implies tha t every 

interval contains one point at which the inequality is strict. In order to apply standard 

calculus techniques to the maximization problem, i t ’s necessary tha t 0 ( H ,  Z)  have 

continuous first and second derivatives at every point. Therefore, we first, assume 

that CP(II) and U" {11) exist for every II.

Some further assumptions are necessary, since rather than the derivatives of 

P(n), we want the derivatives of 0 ( H , Z ) .  The ensuing analysis depends on being

s\ a n2 a2 a2
able to take each of the operators ^ , ^ 2 , onaz  • and inside the expectations
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operator, as, for example, in

8
d H

(2-5)

For our purposes, the simplest assumptions which permit this are, first of all, th a t U 

is a thrice-continuously differentiable function and, second, th a t all of the moments

E[U( n)], £?[(51- S ’1)tf,(n)], E [ (P -m )U ' (U )} ,

EftSx -  S i ) k(P  -  m )2 “ fef/"(n )], where k = 2 ,1 ,0, and (2-6)

£ [(5 X -  S i ) k(P  -  m )3- kU'"(n)], where k = 3 , 2 , 1 , 0, 

are finite. Then the generalized mean value theorem says th a t for any All, there is

a A 3 II which lies in the range 0 < A 3II < All or All < A 3 II < 0, whichever is

relevant, so tha t

u( n  +  An) =  u( n) + An • u'{ n) + |(A n )2 u"( n) + | ( A 3n)3 u"'( n). (2-7)

Then, for instance, if An =  H(H  +  AH ,  Z) — n(77, Z) = (5 i — S i ) A H ,  we have

d
d H ( m  n)]) = ai ta 0£

u( n + An) -  u(u) 
A H

= Alh n o ^E[{Si  -  Si)U'(H)] + \ A H  ■ p [ ( 5 i  -  5 i ) 2  U"{n)]

+ \ { A zH f E  { S i - S i f U ' " { n )
(2-8)

=  E {S\ — 5i)c/'(n)j.

Similar computations show th a t all of the other derivative operators can be taken 

inside the expectations operator. We proceed under the assumption th a t the moments 

in (2 -6 ) are finite, so th a t this change of order is justified.
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The first-order conditions for the maximum are then

E[U,(U)(S1 - S l )] = 0,
E[U'(H)(P — m,)} = 0, ^

and the second-order condition, since there are no constraints, is th a t the Hessian 7~t 

be negative semi-definite. For any h, =  [hi, h,2\ . we calculate

h 'H h  = E  [f/"(n){fc 1 (5i -  S i) +  h2(P -  m )}21 < 0, (2-10)

so we see th a t 7 i  is negative semi-definite, and if we make the very mild assumption 

that

for all h ±  [0,0]', P ro b [t/" (n ){ /n (5 i -  S i) +  h,2(P  -  m,)}2 ±  o] > 0, (2-11)

we can say in addition tha t 7~L is negative definite, so that the solution to the first- 

order equations, if it exists, is unique and is the global maximum.

To see how mild this condition really is, since m  =  m ax(Si — Si,  0), we can say 

that for any fixed hi and h2, the quantity {h i (S i  — S\)  + h2(P — m ) } , as a function of 

Si,  consists of two straight-line portions, one to either side of .S’i = S\.  Consequently, 

we can have {h i (S i  — S i) +  h2(P  — m )} =  0 at two values of Si  at the most. Then 

at all other values of Si,  we can have 17//(n ){ /ii(5 i — Si) + h2(P — m )} 2 = 0  only 

when U"(U) =  0, and the set U"(U) ^  0, when these two values are excluded, must 

have probability zero. It is possible to have strictly convex functions U with many 

points at which Lr" (n )  =  0 , but for most of the models used in the literature, we have 

U" (n) < 0 at all n , and for these models the condition (2-11) can fail only when Si 

is concentrated at two points. In particular, this is the case under the assumption of 

quadratic utility, which we now consider.
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The above holds for any 17(11), but for the rest of this section we assume that

for some 6  > 0. Every quadratic utility function is equivalent to one with this form. 

Its marginal utility f7'(II) =  1 — 2611 is linear, and U" =  —26 < 0 is a constant. It is 

defined only for II < 1/26.

Quadratic utility is always disconcerting to deal with because there is an amount 

of money, 1/26, beyond which utility is undefined. If Sj and S 2 have a distribution 

which allows arbitrarily large values, then II will sometimes be assuming meaningless 

values with positive probability. We ultimately have to rationalize this by assuming 

that the true utility function is defined for all values of II and is equal to the quadratic 

utility on a region including the global maximum. This throws off the accuracy of 

the first-order conditions (2-9), since the expectations involved in them are affected 

by all values of C/(II), not just the values near the optimum. To remedy this we 

have to assume, in addition, th a t the probability of events outside the region where 

U is quadratic is so small tha t the solution of the first-order conditions under the 

assumption of quadratic utility is a good approximation to the true maximum. We 

shall proceed under these assumptions.

Under quadratic utility, since 17(11) is quadratic and II is linear, in order for the 

moments in (2 -6 ) to be finite, it is equivalent tha t the moments of S 1 and S 2 of orders 

0 , 1 , and 2  be finite.

Since marginal utility is now linear, the first-order conditions simplify to

(/(n) = n  -  mi2 (2- 12)

{
E[U(Si -  Si)] =  -C ov[n , Si] -  0 
E[U(P -  m)\ =  -C ov[n , m] =  0.

(2-13)
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Before proceeding, we want to note tha t these same equations produce the opti­

mizing values of H* and Z* for the expected value of any quadratic function of II. In 

particular, the variance of II is the expectation of a quadratic function of II, and so 

it is minimized for exactly the same values of H* and Z* which maximize E[U(II)]. 

This is useful in Chapter 5, where we calculate the variances of the cash flows, since 

this result shows that, under quadratic utility, minimizing the variance is equivalent 

to maximizing the expected utility.

Applying the definition (2-2) of II we can rewrite (2-13) as

' A n H  + A l2Z  = B xX
< (2-14)
_ A 2 1 H  +  A 2 2 Z  — B 2 X,

where
An  =  Var[Si]

A 12 =  A 21 = Cov[Si,ra]

A 22 = Var[m] (2-15)

B x = C ov[S iS 2,Si]

B 2 = Cov[Si 6 2 , 7 7 1].

The determinant of this system of equations is thus

A =  Var[Si]Var[m] — Cov[5i, m ] 2  =  Var[Si]Var[m](l — R 2), (2-16)

where R  is the correlation coefficient between S 1 and m. When A ^  0 the solution 

to the system of equations will exist and be unique, so we examine the case A =  0. 

This is equivalent to having an equation p(S  1 -  S i) 4- q{m — P)  =  0 being true on a 

set of probability 1, for some p, q, not both zero. (This is the condition for having 

equality in the Cauchy-Schwarz inequality C ov[5i,m ] 2  < Var[S'i]Var[m].)
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The case q = 0 is equivalent to the case th a t S\  is a point mass, so we now 

assume th a t S\  is not a point mass.

Suppose Si  is concentrated at two points S f  < S*  and th a t Prob[Si =  Ŝ ~] — p. 

Then Si — pS± +  (1 — p ) S f , so that m  =  0 at Si  =  S± and m = p(Si  — S f )  at Si — 

S f . Consequently P  =  p ( l — p)(S± — S f ), and we see that p(Si — Si) + (m — P) — 0 is 

true at both Si — S f  and at Si  =  S^ . It follows th a t A =  0 when S\  is concentrated 

at two points.

Conversely, suppose A =  0 and Si  is not a point mass. Take p ^  0 such that 

p(Si — Si)  + (m — P) — 0 on a set of measure 1. There must be at least one value 

S f  > Si  for which Si — S± occurs with positive probability (or probability density). 

But for this value of Si we have m  =  0, and so we can calculate S f  = Si + ^P.  This 

is then the only value greater than or equal to Si for which the probability is positive. 

Similarly, the only value less than or equal to Si for which the probability is positive 

is S f  =  Si — j— T- From S f  < Si < we obtain 0 < p < 1, and from E[m\ =  P  

and I?[Si] =  Si we find that Prob[Si =  S f  ] =  1 — p and Prob[Si =  SJ1"] =  p. Hence 

Si is concentrated at two points.

This proves tha t A =  0 if and only if Si is concentrated at one or two points. In 

these cases the equations will not have a unique solution but will have two degrees or 

one degree of freedom, respectively. However, these cases are not interesting for our 

hedging problem. If Si is concentrated at one point, then there is no risk to hedge. 

If Si is concentrated at two points, then, as mentioned above, we have (m — P) = 

—p(Si  — Si) a.e., so the two instruments are equivalent; you can hedge whatever risk
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there is equally well with either derivative. Since these cases have no interest to us, 

we shall omit them from all future discussion. We have proved the following. 

P ro p o s itio n  1. Under quadratic utility, so long as Si  is not concentrated at one or 

two points, the hedging problem has a unique global maximum.

We want to make a comparison with the results in CW. By Cramer’s rule the 

solution to the hedging problem is

The solution in proposition 2 of CW has a distinctly different appearance. Specifically,

This can be reconciled as follows. To solve for H°,  we ignore the second equation in 

(2-14) and solve the first equation with Z  set equal to 0. Doing so, we see tha t

(2-17)

if we let H°  be the optimal number of futures contracts to sell if options are not used,

then combining (CW-14) and (CW-27), their results say

H* = H°  +  \Z* . (2-18)

(2-19)

Then from (2-17), with no restrictions on Z , we get

H* = H° + (3Z*, (2-20)

where

- A 12 Cov[Si,m] 
Var[Si] '

(2-21)
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The covariance of S i and m  is

_ fSi
CoV[Si, m] =  E[(Sx -  Sx)m] = -  (§x -  5 1 )2 / ( 5 i ) d 5 1, (2-22)

J — oo

which shows th a t (3 > 0 is always true. CW assumed symmetry, and from this follows

/ •OO
(Sx -  Sx)2f(Sx)  dSx = - iV a r^ x ] , (2-23)

-OO

so that (3 =  |  and we have (2-18), which shows tha t we can obtain the same format 

for our answer as CW did.

This concludes the development of the basic model, insofar as we can know it 

without having details of the underlying distributions. In the next chapter we do the 

same for the dynamic model, with a discrete number of periods 1, . . . ,  T.
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CHAPTER 3

THE DYNAMIC MODEL

We now turn  to the dynamic model, reverting for the moment to the situation 

in which no assumptions are made about the distribution of Si  and 6 Y  For the next 

few paragraphs, until equation (3-8), we shall suspend the assumption tha t utility 

is quadratic and discuss, for an arbitrary utility function, the time dependence of 

knowledge of the optimal hedge.

We suppose the firm is facing a series of cash flows X i , . . . ,  X t  at the end of 

each of the next T  periods, all of the periods being the same length. Time is now 

measured from t =  0 to t =  T,  in integer increments, and period t runs from time 

t — 1 to time t. Instead of making one hedge, the firm will make a separate hedge for 

each period, depending on the results of the previous periods and its expectations for 

the future. For period t, the firm will at time t — 1 sell Ht futures contracts and Zt 

options, which m ature at time t. At time t these will be cashed out, and if t < T,  a 

new hedge of H t+i futures contracts and Zt+i options will be established.

The exchange rates at time t are S i }t and £ 2 ,t, and these form a stochastic process. 

That is, there is some collection ujt of random variables for period t, tha t determines 

S i j  and whose distributions may depend on the realizations u T for r  < t. Let luq be 

a set of initial values and parameters, and let f l t = ujq U . . .  U ujt . In order to deal
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with expectations for random variables over different lengths of time, the notation 

E tl ..t2[F] for t\ < t2 will be used to denote the expectation of F tha t is expected 

at time t2, as seen from time ti  — 1. T hat is, u>o, . . . ,  Lut l - i  have been realized, and 

the expectation is being taken over the set of variables u tl U . . .  U uit2, conditional on 

these realizations. When there is only one period t involved, this will be shortened 

to E t [F\ = E t.,t [F).

The net cash flow at the end of period t is

n t = SlftS2,tXt + (Sht -  Sht)Ht + (Pt -  m t )Zu (3-1)

and the accumulated cash flows over the first t periods is

t
Wt = J 2 Ur. (3-2)

T — 1

The company’s aim is to maximize its expected utility of W t , but it does not 

have to choose Ht and Zt until time t  — 1 , so this is a nested series of optimization 

problems. At time t — 1 the firm knows the realizations of f2t_i and it also knows

its past decisions H\, Z i , . . . ,  H t~i, Zt~i, and can only plan on the future choices for

Ht+1 , Z t+1 , . . . ,  Ht-, Z t -  The optimal solutions HI  and Z l  will be functions of some or 

all of these quantities. Note tha t when we are considering the period t optimization, 

the quantities H T or Z T for t  < t are presumed to have been chosen earlier, and 

so they are constants, but they can assume any feasible values. Also, the variables 

of are realized and are also treated as constant. The solution for the hedging 

problem is done one period at a time, working backwards from time T.

The optimization problem for period T,  the last period, is to take the values 

of Qt - i  and Hi, Z \ , . . . ,  H t - i, Z t - i  as given and to choose H^- and so as to
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maximize

O t (Ht , Z t ) = E t [U(Wt )]. (3-3)

Here H\, Z \ , . . . ,  H t - i, Z t - i are not assumed to necessarily be optimal, but simply 

whatever choices the firm has made in the past, and all of the variables in f l r - i  

are realized. We denote the solution to this problem by H ^  and Z^.  These will be 

functions of Qt - i, Hi, Z \ , . . . ,  H t - i, and Z t - i- Knowledge of H£  will be different 

at different points in time, so we denote by Hrp the value of / /£  as it is known at 

time t. Accordingly, this solution is denoted H ^ T ~l> and Z ^ T~1\  Similarly H * ^

*(t)and Z T for any t < r  will denote H* and Z *, the solutions to the optimization 

problem for period r ,  as they are seen from time t. Once these are known, let

n ;w  =  s 1iTs 2,tx t +  (51)T -  s hT) H ; w  +  _  m T) z ; ^  (3-4)

be the optimized cash flow for period r ,  as seen from time t, and let

t T

w ty  = J 2  n r +  X I  n r (,)- (3-5)
r= 1 r= t+l

All of the variables SitT might also be noted as depending on the time t, since their 

distributions may be conditional on the variables Qt , which are realized at time t, and 

also on the variables oJt+i U .. ,UwT_i,  which are still random variables. However, we 

will leave this dependence on time as implicit.

*(£)Suppose th a t at some time t < T  -  1  all of the future optimal choices H T for 

periods r  > t are known. We consider the firm’s optimization problem for period t, 

which is done a t time t — 1. It needs to choose H£ = H ^ f ^  and Z'l =  Z*^1 ^  so as 

to maximize

O t {Hu Zt) = E t..T [U(WZT )\. (3-6)
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As an induction assumption, we assume H * ^  — i , H x, Z x, . . . ,  Ht , Z t ) for

all r  > t. This assumption says tha t the solution for H*, as known at time t, depends 

on all of the variables in some of which are realized and some of which are still

random variables, but only on the past choices for H x, Z x, . . . ,  H t , Z t th a t were made 

up to time t — 1. They are not dependent on H t+X, Z t+i , . . . ,  HT, Z T. This is true for 

t =  T  — 1, since there are no times r  > t, which starts the induction. Then Wt*T 

is a function of f ix  and H x, Z x, . . . ,  H t , Z t , and the expectations operator in (3-6) 

removes all of the variables in a;* U . . .  U o~>t - This means the solution to the period 

t optimization problem is a function H t* =  H i , Z x, . . . ,  H t- X, Z t- \ )  and a

similar equation for . We then use this to replace each occurrence of H t and Zt in 

H r(t) with H I  and Zt*, respectively:

H ^ - D  =  h ; ^ ( Q t_ i , H i , Z i , . . . ,  H t_ i , Z t„i,H*t , Z*t )
(3-7)

=  H p - V i i l  r - 1 , H x, Z i , . . . ,  H t- \ ,  Z t - i ) ,  

and a similar equation for Z * ^ \  The function is obtained from H * ^  by

replacing Ht  and Z t by H I  and Zt*. By induction, we now conclude tha t for all 

1 < t < t  < T,  it is true tha t H * ^  =  H * ^ H x, Z \ , . . . ,  H t , Z t ). The set 

of random variables f 2 r _i is determined by the later time r  and the set of decision

variables H\, Z x, . . . ,  H t- 1 , Z t- X is determined by the earlier time t.

This has been done for any form of the firm’s utility function, and this result 

will be true, with a similar proof, for any optimization problem which consists of a 

similar nested series of optimizations, solvable by backward induction.

We now reinstate the assumption that the utility function is quadratic, and we
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want to show that in this case H* =  H* (f2r _i) and Z* — Z*{fiT_i) also have no 

dependence on the past hedging choices. For this part we leave the perspective time 

t implicit and simply write H* and Z*.

The first-order conditions for the optimization problem are

t . .T
dW 4t ,T
dH t

t . .T U \ W t*T )-
dW 4t ,T

dZt

=  0

=  0 .

(3-8)

We now prove th a t the first-order conditions (3-8) can be reduced to the following. 

This is highly dependent on the assumption of quadratic utility.

T

Vart [5i,t] • Ht +  Covt [Si)t, m t\ ■ Z t =  ^  Covt..r [5i)T5 2;T, Si,t] • X T
T =  t

T
CoV([5i,t , m t] ■ H t +  Vart [m(] • Z t = ^  Cov, .. [.S'i , 6 2  . .  ’a f] - X ,

(3-9)

T — t

Since there is no appearance of Hi, Z \ . . . ,  Ht- 1 , Z t- \  in these equations, the solutions 

Ht and Zt* are independent of them. The variance and covariance quantities on the 

left are dependent only on f l t - i ,  and the operators Covt..r [ ] on the right remove 

all of the variables in wt U . . .  U w r, so the lefthand side is also dependent only on 

and this will justify writing H£ — H^(f l t - i )  and Zt* =  Zt* (flt-i).

Proof of Reduction of the First-Order Conditions

Suppose this is true for all t  >  t .  For the case t  =  T, this supposition is vacuously 

true and the argument th a t follows will also serve to begin the induction.
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By the induction assumption,

^  ^  =  0 (3-10)
dHt dZt [ j

for all r  > t, and the values of H\, Z \ , . . . ,  Ht~ i, Z t~\  are known and constant, so we 

also conclude tha t

for all t  <  t .  From these and the definitions (3-4) and (3-5), we conclude that 

dWt*T/ d H t =  — S iit) and d W ^T/ d Z t — (Pt — rnt ). This allows us to simplify

(3-8) to

Et..r [U'(Wt*T )(Sht -  Slit)] -  0

(3-12)

E t..T [U'(Wt*T)(Pt - m t ) ] =  0.

We remark here that, because of the induction assumption, we can now conclude, 

in exactly the same way as in the one period case, tha t the Hessian is negative definite, 

so the solution, if it exists, is unique and is a global maximum.

Since we are assuming quadratic utility, we can use the fact th a t U'(W)  is linear 

and tha t E t..T[Si,t — -S'l.t] =  E t..T[Pt — mt] =  0  to rewrite (3-12) as

( 0 =  Et..T
(3-13)

I 0 =  E t..T [W*T -(Pt - m t )] .
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We can use (3-5) to expand the quantity W(*T and thereby obtain

t - 1

o = Y  E t..T [nT (SM -  Si,t)] + E t..T [nt (sltt -  S iit)]

T

+ Y  Et -T [ n ;  {sht- s ht)]
T = t + 1  (3-14)

0  =  E t..T [nT (Pt -  m t)] + E t..T [nt (Pt -  m t )\

T

+ Y  E t..T [U*T (Pt - m t )}.
T — t + 1

The first summation in each of these equations is zero, since at time t  — 1 each IIT for 

t  <  t  is constant and factors out of the expectation. Removing this summation and 

expanding the II* in the second one by its definition (3-4), the first equation becomes

r —1

t -1
T =  1

0  =  Et..r n t (5lit -  Sltt) ] + Y  [Si,tS2,tX t ■ (Sltt -  Sht)
r= t+ 1

T

+  Y  E*- t [ (5i . t  -  {Si,t - sht)
T  =  t +1

T

+ J 2  E >

(3-15)

T = t +1

and similarly the second equation becomes

T

0  =  Et..r n t (Pt -  rnt) + Y  Et -T s i,tS2,tX t • (Pt -  m )
r= t+1

T

(3-16)
T =  t +  1

T

+  Y  E t ..T [ ( P r - m T) Z ; ( P t - m t )
T = t+1

We can evaluate the expectations in two stages, as E t . . r [  ] =  E t ..T- i  \ E t . . t [  ] ] •

When we do this in the second summation of (3-15), the one involving H*, then
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because H* does not depend on any variables in ujt U . . .  U ujt, as was proved above, 

it can be factored out of the inner expectation. Also, (S \ tt — Si,t) can be factored out 

of the inner expectation. Thus

t . .T (S1,T - S 1,T)H : ( S 1,t - S 1,t)

= Ef .. -j- — 1

=  E i t  — 1 

=  0 .

E t.A (SliT- S liT) t f ; ( S u - S 1)t)

-  SM) • E t..t  (<S1)T — Si,T)

A similar argument also shows that

E t..T [(PT - m T)Z*T(Sh t - S 1<t) 

E t. T \(SltT- S ltT)H;(Pt - m t ) 

E t ..T

This transforms (3-14) into

(PT -  m T)Z*(Pt -  m t )

=  0 

=  0 

- 0 .

0  =  E t . . T  [n t {SX,t -  S i,t )] +  E t..T [Si,rS2 ,r (§l,t ~ S Ut)
r = t + 1 

T

0 =  E t ..T [ n t ( P t -  m t )] +  ^ 2  E t . . T  S i ,tS2,t ( P t  ~ m t )

■Xr

T = t +  1

■XT

(3-17)

(3-18)

(3-19)

This completes the induction, since (3-19) does not involve any of H T, ZT for r  ^  CH

We do a final rearrangement of the first-order conditions to make them look more 

like the one period case. We again expand the IIt and rearrange terms to write (3-19) 

as (3-9), which we repeat here for convenience:

T

Vart [5i,t] • H t +  Covt [5ijt, m t\ • Z t = ^  Covt..T[S'i,r S'2 ,T, Si,t] • X T

7  (3-9)

Cov( [5i,t , m t] ■ Ht +  Vart[mt] ■ Z t = T .  Cov(..T[S'i,r 5'2,T, m t\ ■ X T.
T =  t
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We introduce notations for the coefficients, analogous to equations (2-15) of the 

one period case:

^ 1 1 ,t =  Var[iS'i)t], A i 2 ,t = A 2M =  Cov[5iit, m t\, A 22,t = Var[rat],
(3-20)

H itttr =  Covj r [5 'iiTiS'2 )r) B 2 =  Covt..r [5 i,T5 2 ,r , m t],

so that
T

A n j H t  + A 12>tZ t =  B i j ,tX t

(3-21)

A 2i,tHt +  A 22ttZt = B 2>t,TX T.
T=t

The equations (3-21) are clearly linear in Y  = ( X i t h e  sequence of 

cash flows. Consequently, the solutions will also be linear. This proves the following 

proposition.

P ro p o s itio n  2. Under quadratic utility, but with no distributional assumptions about 

the exchange rate stochastic process, the solutions to the hedging problem are linear. 

That is, suppose Y  =  (Xl5. . . ,  X t ) ,  Y '  — {X [ , . . . ,  X'T), and Y "  =  ( X " , . . . ,  Xlf) are 

any three cash flows, and suppose their optimal hedges are Ti, = (Hi,  Z\ , . . . ,  H t ,  Z t ) ,

=  (H[, Z [ , . . . ,  H't , Z't ), and 7i"  =  (H", Z '{,. . . ,  H!f, Zlf), respectively. Then 

Y  = a Y '  +  f tY"  implies 7 i  = ahC  -t- f fH"  for any real numbers a. and p.

This will allow us to build a solution from simpler cases. The simplest hedging 

problem in the multi-period case is when there is a single cash flow in period h in the 

amount of one unit of currency. This cash flow is X T =  STj t, which is 1 when r  =  h 

and is 0 when r  ^  h. We represent the optimal hedge for this cash flow as (gtji, Ct,h)■ 

In this case, for t > h, the righthand side of both equations in (3-21) becomes 0, so 

the solution is (r/t^, (t,h) =  (0,0). This makes sense. If there are no more cash flows
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due after time h, then there is no point in doing any further hedging. When t < h, it

is the solution of the following simplified version of (3-21):

+  A 12<tZ t =
(3-22)

A 21 , t H t  +  A 22 , t Z t  —  B 2,t,h-

Analogous to equation (2-17), the solution by Cramer’s rule is

Vt,h =  ( B i tt ,h .A22,t — B 2 t t , h A i 2 t t ) / A t , 

C t ,h =  { A n , t B 2j , h  — A 2i }tB i t t^ h ) / A t , 

where

(3-23)

A t = A 1 MA2 2 ,t -  A 2i,tA 12<t =  Var[5i)t]Var[mf] -  CovfSi,*, m t}2. (3-24)

These equations are also valid when t > h, for SihS2h is deterministic at time t > h,

so Bi j,h  = B 2j,h — 0, and we again have r)tth — Ct,h — 0. Putting in the explicit 

definitions of and B l)t,h, these are

Vt,h =  (Cov[SihS2h, Sit]Vax[rnt} -  Cov[SihS2h,mt}Cov[Sit ,mt\) /A t ,
(3-25)

(t,h = (Cov[S’i/lS'2/l , m t]Var[iS'it] -  Cov[5i/l5 2/l, S’it]Cov[5it , m t] ) /A t .

I t ’s interesting to look at this solution in terms of regression coefficients. If X  

and Y  are two random variables, then the regression of Y  on A  is the equation

Y  -  E[Y ] =  p ( X  -  E[X}) +  e, (3-26)

where i?[e] =  0 =  C ov[A , e] and

p  = (3[Y, X] = Cov[y, A]/Var[A], (3-27)

As in (3-18), we can write

A t =  Var[Slt]Var[mt] • (1 -  R 2), (3-28)
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where R  is the correlation coefficient between S u  and m t :

=  (3 ' 2 9 )

Putting these together, the equations for 77^  and (,t,h when t < h become 

r/t,h — (P[SihS2 h, Sit] -  f3[m,t , Su]fl[SihS 2h, ™t})/( 1 -  R 2t ),
(3-30)

Ct,h = m S i hS 2h, mt] -  P[Sit, m t](3[slhs 2h, S u ]/(1 -  R 2t ).

We now express the solution to the hedging problem in the general case in terms of 

this simpler solution. Let Yh =  (0 , . . . ,  0 , 1 , 0 , . . . ,  0) for each h = 1 , . . . ,  T  be the series 

of cash flows which is 1  in period h but is 0  in each period r  ^  h, and let the optimal 

hedge sequence for Yh be TCh = Ci,/i, ■ • •, Vr,h, CT,h)- Y  = ( X i , . . . ,  X T) is
 ̂ rj~i

any series of cash flows, then we have Y  = ^2h=i Xh  ■ Yh, and the linearity proven in 

proposition 2 shows th a t the optimal hedge sequence for Y  is 7~C — Y^h=i Xh • 'Hh- 

This proves the following proposition.

P ro p o s itio n  3. Under the assumption of quadratic utility, the optimal hedge for the 

cash flow Y  — (X \ , . . . ,  X t ) is 7~C — (H *, Z \ , . . . ,  H Z ? f ) ,  where

h ;  = Y s ^ h - X h
h=t

T~  (3-31)

h'
h=t

The optimal hedge is obtained by hedging each future cash flow separately, without 

any interaction and without any effects over time.

In the case treated by Chang and Wong, was independent of h, and there­
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fore so were rjt,h and Q ^ - and in this case the solution simplifies further to

T

H ; = r h - Y , x h
< hp  (3-32)

z ;  = q . J 2 x h.
. h = t

In this case, one simply adds up all future cash flows and then hedges them as though 

it were a one period hedge.

We have now developed the model for both the one period case and the multi­

period case, as far as we can without having details of the underlying distributions. 

We now turn  to consideration of the behavior of the model when the distributions of 

the exchange rates are bivariate lognormal distributions. In Chapter 4 we consider 

the one period model, and in Chapter 5 we look at the dynamic model.
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CHAPTER 4

BIVARIATE LOGNORMAL EXCHANGE RATES: THE ONE PERIOD MODEL

In this chapter we develop the one period model under the assumption that the 

distributions of the exchange rates are bivariate lognormal distributions.

Before doing so, we want to discuss what models of currency exchange rates are 

considered to be reasonably realistic. For a discussion about the distributions for 

price series one can see Taylor (1986), in particular pages 12 and 14. It is the changes 

in the prices tha t we are interested in, rather than the absolute level of the price 

series, so we are concerned with the differences between periods. Next we observe 

that the behavior of the series should not depend on the unit of measurement chosen. 

For this reason i t ’s best to use either the differenced logarithms log 5Vt — log 

or the relative change (SJ>t — 5 i,t_ i) /S i,t- i, rather than the differences S{tt — S^t - 1  

of the series itself. Either of these will have the desired effect.

The next point of consideration is some stylized facts.

1 ) {x t } is (almost) uncorrelated.

2 ) { |} is correlated.

3) Unusual events occur far more often than the normal distribution allows.

4) The distributions are skewed.

These are observations which seem to be approximately true for a broad range of
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market price series {xt }.

Items 1) and 2) might seem, at first glance, to be contradictory. However, a 

simple example clarifies this. Let et for t = 1 , . . . ,  2T be independent random variables 

with values ±1, each occurring with probability 1/2. Let x t = t t for t = 1 , . . . ,  T  and 

x t =  2et for t = T  + 1 , . . . ,  2T.  Then {x t } is uncorrelated, but {|.xt |} has values 1 

for t = 1, , T  and values 2 for t = T  +  1 , . . . , 2T,  which is definitely correlated. To 

make this kind of example work for a less trivial situation, we can construct a series 

xt  =  Ut ■ Vt, where Ut is a series of independent, but identical, distributions, and Vt 

is a series of variances th a t change over time, perhaps randomly. Taylor (1986) has 

further discussion of such series.

Item 3) is often resolved by using a distribution which has “fatter” tails than 

the normal distribution does, such as the Student t-distribution with 7 degrees of 

freedom. In conjunction with this, item 4) can be accommodated by squeezing the 

left side of the distribution and stretching the right side, thereby making it skewed 

to the right. A model which incorporates all of these variations is developed in Giot 

and Laurent (2003), and they seem to have considerable success in using their model 

for assessing value-at-risk.

The theoretical model developed in the previous chapters can accommodate all of 

these variations, but implementing them poses considerable technical difficulty. For 

this reason we shall address only the simplest variation.

In CW the simplest possible model was used. Their distributional assumption 

was th a t the differences of the direct exchange rate series ASi,* =  5 i )t — S i ^ - i  and
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AS2,t = ,t — S 2 ,t- 1  have a bivariate normal distribution.

The simplest assumption tha t goes beyond this is tha t S\  and S 2 have a bivariate 

lognormal distribution; i.e., their logarithms have a bivariate normal distribution:

(log Si,  log S 2) ~  N2[m ,H 2,v f ,vhp \ ,  (4-1)

and for this section we assume Si and S 2 are so distributed. It is often easier to use

standardized forms 2  =  (log Si — Mi) / ^ 1  an<4 w =  (l°g $ 2  — ^ 2 ) / ^ 2 , which then satisfy

{log Si =  p i +  i>i z
(4-2)

logS 2  =  / / 2  + V2 W, 

and whose joint distribution (z, w) ~  iV2 [0,0 ,1 ,1, p] has the joint p.d.f.

f ( z , w ) = -------1 e - $ l z 2+vj2- 2 Pz w ] / ( i - P*)'  ( 4 _3 )
27X y j l  — p 2

We let Si , 0  be the value of the exchange rate at the beginning of the period. 

One does not usually expect exchange rates to have any upward or downward bias, 

barring specific information about the economies involved, so we want i?[Si] =  Si,o- 

By Jensen’s inequality, we will then have to have £'[log(Si)] < log(Si,o). By (4-4), 

below, we see th a t we can get i?[Si] =  Si , 0  by taking pi =  log(Si,o) — ^ / 2 ,  and then 

we have E[log(Si)] =  log(Si,o) — fyfy2 . The assumption th a t the expected value of 

the exchange rate at the end of the period is the same as the exchange rate at the 

beginning of the period forces the logarithms to have a downward drift.

To evaluate H* and Z* from equation (2-17), we need to evaluate the variances 

and covariances involved in the Aij and Bi, and these are obtained from moments 

of the form £7[Sf], E[S[°S2], E[Sfm], and i?[SfS 2 m]. We state the relevant moment 

equations in (4-4), (4-5), and (4-6) and then prove them.
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For convenience we set 0* =  e"*, A =  e^"1"2, and i/'fc =  e{k2-k) i 2 v\+kl>vLv2 ^he 

moments without m  are

^  =  S ifi

E [ S ^ = S ^ f ~ k)/2 (4-4)

£?[S’f 5 2] =  S ^ S 2 (!>f2~k)/2Xk.

Let <f>(x) denote the cumulative density function of the normal distribution, let 

c =  —kui — npv 2 , and define the auxiliary functions

$k,n = = e - k^ - knP ^ 2^ ( c +  f )  -  $ ( c - f ) .  (4-5)

Then the moments including m  are

E[SkS^m] = E[S*+lS%] <&fc,n . (4-6)

Although this is true for all n, it will only be used for n = 0 and n =  1 .

Derivation of Lognormal Moments

First we note the following standard result, when z and w have a bivariate normal 

distribution, (log z, log to) ~  iV2 (0 , 0 , 1 , 1 , /o):

E[eaz+bw] =  e^ ('a‘2+b2^+pab. (4-7)

This appears in many standard sources, including Johnson and Kotz (1972). We give 

a brief proof.
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P ro o f  o f  (4 -7). We complete the square in the following by choosing A — a + pb, 

B  = b + ap, and C  = A 2 + B 2 — 2p A B  =  (1 — p2 )(a 2  + b2 + 2pab).

/ OO p O O
/  e a z + b w - ± [ z 2+ w 2 - 2 p z w \ / ( l - p 2 ) d y } d z

-O O  J —  OO

/ OO p o o
/  e - i [ ( z - A f  +  ( ™ - B ) 2 - 2 p ( z - A ) { w - B ) - C ] / ( l - p 2 ) d w d Z f

- o o  • /  — OO

—  g 2  ( i - p 2 )  —  g ^ { a 2 + b 2) + p a b ' | |

From this, since S\ = pi  +  v \z  and S 2 = P2 + ^ w ,  we have 

E[SkS%] = ekfXl+niX2 E[ek‘' lZ+nU2W},

—  e k p i + n p .2 ^ [ { k v i ) 2 +  {ni/2 ) 2] + p { k v i ) ( n u 2 )'j

(4-8)
_  e k ( m + v f / 2 ) e n ( ^ 2 + ^ | / 2 ) e ( i ( f c2~ k ) v 2 +  k ( n 2 - n ^ l + k n p u ! ^ )

= S kS ^ f ^  \ kn,

and this includes equations (4-4).

Now we want to  consider the moments involving m. In the following we use the 

notation (z <  c) in an expression E[F(z ,w)(z  < c)] to denote the indicator function

( 0 , if z > c
.  (4-9)

( 1 , if z < c.

Then since Si > Si  if and only if z < i>i/2, we can write 

E[SkS2m] = E[SkS%(Si -  S i ) ( z  < f )]
(4-10)

=  S iE [S kS%(z < f )] -  E[S*+1S?(z  < f ) ] .

As in the proof of (4-4), we first prove a lemma, but this one is less standard. 

L em m a. For any real numbers a, b, and c

E[eaz+bw(z < c)] =  E[eaz+bw}${c - a -  bp), (4-11)
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where $(c) =  -^== e~z2 !2dz is the cumulative density function of the unit normal 

distribution.

P ro o f. W ith B  = pz  +  6(1 — p2), we have

/ C p  OO
/  e a z + b w - ± l z 2 + w > - 2 P z w } / ( l - p * )  d w d z

- o o  J -<

e
' — oo J — oo 

r*c , 2 /•oo/ c  1 2  /*C _

J~,
= ^ J C e°2 - ^ | - ^ L =  J ° °  dw}  dz

= ± f C e—
—oo v '

^LexpH
=  v b  /  exP { - ^ ( 2 -  (a +  M )2 +  ^ («2 + fe2) +  ^

= ei(a2+62)+pa6 $(c _ a _ b/J)

= £[e“*+b™] $(c-a-6p). □

From (4-4) we see th a t =  Sii?[5 f 5 2  ]0iAn , and so

E[SkS%m) = E[SiS%Sl (z < f )] -  E[s[k+1)S^ (z  < f ) ]

= SiE[SlfS2]$(!% -  kux -  npu2) -  E[S\ k + 1 ) -  (k + l ) v x -  npu2)

=  £ [ s f + 1 )S£] 

=  E[s[k+1)S2\ _  kvx -  npi/2) _  _  (fc +  i ) ^  _  npU2)

The quantity in brackets is $fc n , so (4-6) is proven.

For each k and n, we have — S XS2 • y>{vi,v2,p) for some function p.

Two things should be noted about these moments. First p x and p 2 occur only in the
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powers of 5 i and S 2- The second is a variety of homogeneity in th a t the powers of 

Si  and § 2  match those of S\  and S 2-

We now use these to evaluate the coefficients of the first-order equations (2-14) 

for H* and Z *:

A n  =  Var[Si] =  i£[Si] -  S f  =  S 2 -[0i -  1],

A 12 = Cov[5i, m\ = E[Sim]  -  £[5i].E[m] =  S 2 • [0 i$ i,o -  $ 2 ,0 ],

^ 2 2  =  Var[m] =  E[(Si -  Si)m] -  E[m}2 = §1 • [$0,o -  0 i$ i,o  -  $ 0 ,0 ] >

Bi  =  - E [ S i S 2(S i - 5 0 ]  =  S 2 • [faX2 -  A] , and

B 2 =  - E [ S i S 2(P  -  m)} = S 2S 2 • [0iA2$ m  -  A$0 ,o] •

(4-13)

We define quantities a,ij and bi by A{j = S 2 ■ aij and B t = S 2S 2 ■ bt so tha t these are 

the expressions in brackets in (4-13):

a il  =  0 i - l ,

« 1 2  =  « 2 1  =  0 1  $ 1 , 0  — $ 0 ,0 ,

« 2 2  =  $ 0 , 0  — $ 0 , 0  — 01 $ 1 ,0 ) (4-14)

b\ =  0i A2  — A, and

62 =  0 iA2 $ 1,1 — A$o,o- 

Each of and bi is independent of /ii and fi2 • Because every coefficient of the

equations (2-14) have the same factor S 2, it can be factored out, and they become

au H* + a12Z* = b i - S 2X
(4-15)

a2xH* + a 22Z* = b 2 - S 2X.
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These equations are linear in S 2X ,  so the solution of the hedging equations has the 

form
H* =  n ■ S 2X

(4-16)
Z* = (■ s 2x ,

where rj and £ are functions of only iq, i/2, and p and are given by Cramer’s rule:

V = (ha -22 ~  b2ai2)/S
(4-17)

C — ( h a n  — h a 2i)/S, 

where d = a n a 22 -  a i 2 a 2 i.

This concludes the development of the one period model when the underlying 

distributions are the bivariate lognormal distributions. In the next chapter we do the 

same for the dynamic model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5

BIVARIATE LOGNORMAL EXCHANGE RATES: THE DYNAMIC MODEL

We now apply the previous section to the dynamic model. The assumption of 

CW (see the introduction), th a t the volatilities are nonstochastic, will be maintained 

here. This is not realistic and is known empirically to  be false. There is considerable 

discussion of this topic in Taylor (1986), and there are many articles in the current 

literature about the observed patterns of volatility memory in price series. Two such 

examples are Ding and Granger (1996) and Zumbach (2004). In this chapter we deal 

with the following model, for which the volatility is known and does not vary across 

periods. We could, at the cost of more cumbersome notation, equally well handle 

the case in which each period has its own volatilities Ui)t and correlation pt , but the 

results would be essentially the same.

We assume 5i,t and 5 2 ,t, t = 1 , . . . ,  T  are related by

where (zt :wt ) A ^O ,0,1 ,1 , p). We assume that each of zt and wt is independent of

zT and wT when r  ^  t. We can iterate log 5i.< from its definition to get

' lo g 5 i>t =  log51)t_i +  vxzt -  v \ /2

, log S 2,t = logS 2 )t_i +  ^2 wt -  1/3 / 2 ,
(5-1)

log Si,t — l°g S i , 0  +  (z i +  • • • +  zt) — t ■ v \ /2  

log S 2,t =  log 5 2 ,o +  ^ 2  (wi +  . . .  +  wt) -  t ■ v \ j 2  .
(5-2)
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The initial values are u)q =  {<Si,0 ) 6 2 ,0 }, and the random variable sets are u>t = {zt, wt}. 

From this we see th a t «Si)t and are independent of ujt for all r  > t. In addition, 

note th a t the variance of Si,t, as seen from time t =  0 , is t ■ vf ,  which grows linearly 

with time, as does the drift —t ■ t f / 2 .

Most of the work has been done in the previous section, and we only need to 

make slight alterations appropriate to this process. First note th a t for one period 

expectations,

£ > [ $ , < ]  =  S i , .  = (5-3)

so tha t using equations (4-4) and, as before, A =  e ^ 1"2, we have

(5-4)

Then by induction, for any t < h,

(5-5)

This lets us evaluate

— —Et . .h  S i , h , S 2 , h ( S i tt — S h t )

- E t E t + 1 ..h [ S l ,h S 2 , h ] - { S 1,t - S i , t ) (5-6)

and a similar result holds for • Hence, if we define

( S lit =  - S t [5llt5 2,t (5 i1t - 5 ' M)]
(5-7)

then we have

(5-8)
D    \ h —t  D  

- D 2 , t ,h ~  A  0 2 , t-
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This makes the first-order conditions

A lh tH l h +  A 12ttZ l h = B u  • Xh~tX f l
(5-9)

A 21,tH;th +  A 22ttZ l h = B 2it ■ X ^ X b .

In addition, the dependence on t can be factored out, since, with and bi as in 

equations (4-15), we have
A i j j  — ’ and

(5-10)
Bi,t — S\,t^2,t ■ bi-

The factors S \  t are common to all terms and so cancel out of the equations, and we 

are left with equations (4-16), but with S2X  replaced by S 2}tXh~tXfl , so we can write 

the solution in the form of equations (4-18).

' H*t,h =  * ■ t X h
(5-11)

Z* /• \ h—t o vt,h —

Because the volatilities and correlation were assumed to be constant, the one period 

solutions rj and £ have no dependence on t, and they are given by equations (4-18). 

Summing these solutions gives the optimal hedge for the entire cash flow series:

T

H t* = V - S 2 , t J 2 x h- tX h
h=t
T

Z t* =  c - S 2 ,t

(5-12)

h—t

The direct exchange rate between the domestic currency and the foreign currency 

is 5  =  S i S 2 and, although both Si  and S 2 have their end-of-period expectation equal 

to their beginning-of-period value, this is not true for S, as is seen in (5-4). I t’s not 

very much different, for all of p, u\, and v>2 are relatively small numbers, and thus 

A =  exp(puiu2) is very close to 1, but it is different, nonetheless. Usually p is negative,
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whereas Vi and v2 are always positive, so S  experiences a slight deflation over one 

period due to the negative correlation of S\  and S 2. Over h — t periods, the deflation 

becomes \ h~t , as we see in (5-5), and this is the factor which appears in the hedging 

formulas (5-12).

This concludes the theoretical discussion of the model, for one period or for 

many periods, assuming tha t the exchange rates have bivariate lognormal distribu­

tions. In the next three chapters we want to estimate the parameters and assess 

the performance of the competing models for a concrete case. We will consider the 

Japan-Taiwan-U.S. currencies over the period 1997-2001. This requires finding the 

maximum likelihood estimators, which are the solution of a system of equations. In 

order to solve these we first discuss in Chapter 6  an extension of Newton’s method 

for a system of equations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 6

NEW TON’S METHOD FOR A SYSTEM OF EQUATIONS

In the next section we will discuss the estimation of parameters for various mod­

els. This will sometimes require solving a system of several nonlinear equations in 

several unknowns. In this section we discuss the application of Newton’s method in 

this setting. I haven’t seen this anywhere before, so I don’t  have a reference, but I 

presume this is not the first exposition of this method.

Suppose we have a system of n equations in n unknowns:

(6- 1)

Let’s suppose th a t we can solve the last n — k equations for each of Xfc+i,. . . ,  x n as a 

function of x \ , . . . ,  Xk, i.e., x m — x m ( x i , . . . ,  Xk), for m  = k  +  1 , . . . ,  n. Substituting 

these into the A;-th equation, we obtain a function f k ( x i , , Xk) =  Ffc(xi,. . . ,  x n). 

We want to find the partial derivative of this function with respect to in terms of 

the partial derivatives of the original system of equations. The answer is

(6-2)
oxk Dk + 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



40

where

Dk

Fk,k ■ • • Fk,

(6-3)

• X  n , n

with each Fitj being the corresponding partial derivative, and where D k + i  is the 

subdeterminant obtained by striking out the first row and column of D k .

P ro o f  o f  (6-2). The values of Xk+1 , • • ■, x n are determined by the last (n — k) 

equations of the system (6 - 1 ):

' Fk+i(xi ,  . . . , x n) = 0

I (6-4)

> Fn(%li • • • t %n) = 0  •

Provided each Fm is continuously differentiable, the implicit function theorem guaran­

tees tha t each of X k + 1 , . . . ,  x n is determined as a continuously differentiable function 

of x i , . . . ,  Xk-  Then we can implicitly differentiate each of these with respect to Xk  to 

get a system of equations:

„  „  dxk+ l  d x n
F k + l , k  +  F k + l , k + l ~ ^  1" • • ■ + - P f c + l . n  ^ ------  =  0

OXk OXk

(6-5)

„  „  dxk+i  „  d x n
Fn,k T  F n<k + 1 —-------1-. . .  +  F n n — = 0 .n,n o 

OXid x k o x k

This can be solved by Cramer’s rule, and the answer is

d x T
d x k

■Pfc+i ,  

D fc+i
(6-6 )

where D k + i,m is obtained by replacing the column ( F k + i , rn-, ■ ■ ■, F n ,rn)'  of the deter­

minant D k + 1 with the column (—Ffc+ljfc, . . . ,  —Fn k)'-  The minus sign can be factored
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out of the determinant and the column (Fk+i,k , • • •, Fntk)' moved to the front, result­

ing in

D k + I ,m  =  ( -1  )k+mM k,m , (6-7)

where Mk,m is the subdeterminant obtained from D k by striking out its first row and

the column , Fn m )'. Note tha t D k+1 =  M k,k- We can now differentiate:

d fk  d
a—  =  a— F*>VXl> • • • > x n) o x k d x k

— Fk,k +  Fk’m ~ d ^
m—k+ 1

=  Fk, k +  i t  Fk, m ( - l ) k+1¥ r 1  (6-8)
Dk+i

= F k , m ( - i r +kM k,m /D k+l
m=k

D k

Dk+i
□

The solution of the entire system (6-1) by Newton’s method will now be recursive. 

Supposing we know how to solve the subsystem (6-4) whenever necessary, we proceed 

as follows:

Step 0: Suppose we have some initial values x \ , . . .  , x k- 

Step 1: Solve the system (6-4) for the values of x k+i, . . . , x n .

Step 2: Use the partial derivative (6-2) to make an iteration by Newton’s method.

i Fk{x\ ^ . . . ,  x n)
Xk ~ Xk d f k/ d x k l

Replacing x k with x'k go back to step 0 and repeat until convergence is reached. When
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When it converges, we have a set Xk, ■ ■ ■, x n which is the solution of

' Fk{ x i , . . . , x n) = 0

: (6 -9 )

k Fn(%I 5 • • • i 2 'ti) 6

for the given values of x i , . . . ,  x^-x-

This process involves iterations within iterations, and if the number of equations 

is large it could conceivably be quite time consuming, so it behooves us to consider 

an efficient choice for a stopping rule. The question is, how many iterations do we do 

at each level? In the applications done for the following section, I ’ve found that the 

inner loops can be done with only one iteration, while the outer loop, for k =  1 , must 

be done for five iterations to avoid loss of accuracy. Further iterations of the inner 

loops don’t seem to add anything to the accuracy of the final approximation nor to 

reduce the number of iterations necessary at the outer level. W ith this stopping rule, 

we seem to have a fairly efficient technique. I can’t say whether this will always be a 

good rule. It may be tha t it works for these examples only because of the nature of the 

equations involved or because the initial approximation is fairly good to start with. 

If this method is to be used in a different setting, I ’d advise testing the convergence 

properties before trusting it too far.

In this chapter we have developed a method for solving a system of equations in 

several variables. In the next chapter we apply this method to finding the maximum 

likelihood estimators for the parameters of distributions.
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CHAPTER 7 

MAXIMUM LIKELIHOOD ESTIMATORS

We now want to do a numerical example, comparing the hedging results obtained 

for different models. In implementing these models we need to use estimates for the 

parameters, and the estimates we use will be the maximum likelihood estimators, 

adjusted for bias when possible. For the bivariate normal model the estimators will 

be the familiar ones used in ordinary regression. For the bivariate lognormal model, 

with the term  —u f/2  added to avoid inflation, we need to use a multidimensional 

Newton’s method to find the estimates.

The Bivariate Normal Model

We start with the simplest model, the bivariate normal model with 1 1 0  inflation, 

which is specified by

' S \ tt =  S i tt - i  +  c i zt ,
(7-1)

, S2,t ~  S2,t- 1 +  0 2 lUt , 

where (zt ,w t ) AT2 (0 ,0 ,1,1, p). This is standard, but we’ll have to deal with vari­

ations on it, so we treat it in detail here so tha t we can adapt the method for the 

other models.

The negative logarithm of the probability density function, in terms of the dif­
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ferences A S iit = S itt -  Sitt- i ,  is

-  log /(ASm, AS2,t) =  log(27r) +  ]- log(l -  p2) +  log oq +  log o2

! (7-2)
+  2 (!  _  p2) (zt2 +  w t  ~  Z f i v t z t ) ,

where zt = A S \ tt /o i  and wt =  A S 2,t/o 2 - Summing over all t =  1, . . . ,  T  we get the

likelihood function to be minimized by the maximum likelihood estimators:
T

A =  - ^ l o g / ( A S lit,A S 2,t)
t=l

=  T log(27r) +  ̂  log(l -  p2) +  T  log ay +  T lo g a2 (7-3)

1  ^

2 ( 1  _  ^ 2 ) £ ( * *  +  ^  “  2^ ^ ) -+

Since this goes to infinity as p —> ±1 and ai, o2 —>■ oo, or 0 1 , 0 2  0, there must be

a minimum at the solution to the first-order equations. Before taking the derivatives 

with respect to ox and (T2 , we note tha t dzt/dox  =  —zt /o i  and dwt/d o 2 =  —w t/ 0 2 .

Setting the derivatives of A with respect to o \ , o2 and p equal to 0 we have

3  A T  1 ^—\ . o \
0  =  X—  = -----------7Z------oT y { Z t  -  pztwt ),

doi o x 0 -1 (1 - P 2) ^

<9 A T  1  ^—\. 2  \ in a\
0 =  ^  -  ^ 7 ) S (," ‘ '  ( ]

dA —T  ■ p p 2  2 \ 1 +  p2

7l 2^2 7i 2 ^  /  ) 7i 9\2 /  ^ 'dp ( l - p 2 ) 2  ( ! - p ) 2 ^

We simplify these equations first by writing A S i ttA S j )t so tha t Y l zt =

J u l  o f, ^2 wt = < ^ 2 2  /  ̂ 2 , and J 2 ztwt — J i 2 / ( o io 2) and then clearing the denomina­

tors, which leaves us with

' ( a )  0 =  T p ( l  — p2)ofo% — p J n o 2 + P 2J i 2 0 io 2,

(b) 0 = Tp{l -  p2)o jo l  -  pJ22o 2 + p 2J i 2 0 io 2, (7-5)

> (c) 0 =  Tp(  1 -  p2)o2o 2 -  p J u o l  -  pJ22 o \  +  (1 +  P2)J \ 2 0 \o 2.
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a i =  \ / ^ p  and

J22
°2 =  \/ ~jT

(7-6)

45

Subtracting (a) from (c) and (b) from (c) gives us

(a) p J n &2 ~  J \ 2 Vi&2 ,

(b) pJ22&\ = J12&1&2- 

Multiplying (7-6-a) and (7-6-b) gives us

^12 tn n\
P = 7 7 ^ S ’ < 7 ' 7 )

and substituting (7-6-a) into (7-5-a) and (7-6-b) into (7-5-b) gives us

(7-8)

Since there is no mean in the original model, the estimate for the variance is unbiased, 

as is seen from

= k E £ iA S« ]  =  ff.2' <7-9)
t=1

and the small sample bias correction is not needed.

The Bivariate Lognormal Model with No Drift

The simplest form of the bivariate lognormal model does not have the terms 

—vf /2  th a t were added to the model in section 3, and its equations are

r io g S lit =  logSM_i + u 1zt ,
\  log s 2,t = log 1 +  V2 Wf

These satisfy .E^logS^t] =  logs’l l - ! ,  rather than E[Sirt] — S q t-i- The reason for 

considering this model is to follow the stylized fact th a t there is no statistically sig­

nificant difference observed in markets between the average of logS^t and log
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The other model was chosen in the development of section 4 because the term —vf / 2  

introduced there was too small to be statistically significant, so its presence doesn’t 

really contradict the stylized fact, and theoretically i t ’s more satisfying to assume

Formally, with A log Sl t̂ substituted for A S ,^  and vl substituted for rij, the 

analysis of the maximum likelihood estimators is identical to th a t given above for the 

bivariate normal model.

The Bivariate Lognormal Model with No Inflation 

For this model we assume
1

log Si,t =  logSi,t-i -  - v \  +  i/1z 1<t
\  (7-H)

log 6 2 ^ =  l0 g S 2 ,t - l  -  2 ^ 2  +  »2 Z2 ,t, 

where (zi,t,Z 2 ,t) ~  -^ (O ,0 ,1,1, p). Then, since in general E[eaZi't+b] = e6+^“2, we 

will have E[Si,t] =  S i , t -h  i.e., there is no expected inflation.

The maximum likelihood estimators (MLEs) for 1̂ 2 , and p will minimize the 

function

T

A =  -  £  log / (A  log S h t , A log .S2 ,*)
t=i

=  Tlog(27r) +  ^  log(l -  p2) +  T logi/i +  Tlogi/2 (7-12)

1  T
+  2(1  _  p2) 5 Z ( Zb* +  22,t -  2pZl , tZ2, t ) -

Each Zj,t =  (A log +  \ v f ) / v t is determined by ur and the data  points, and the 

derivatives satisfy dzi%t/dv i  =  1 — From this we find the first-order conditions
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for the minimum to be

n _  ^  _  T  i * ( n (i Zlt \  o (i 2M\
0  -  -  * +  2 ( 1 3 7 )  E  ( m , . ( i  -  - ^ )  -  M l  -  —  K .

« aA t  
0 =  —  =  —  +dv2 v2 2 ( 1  -  p2)

(7-13)

0 = ^  =
- T p

+ 5 > m +  4* ) -  / 1 — p2\2 E  zb ^ 2

t=i v h ! t - 1
5/? ( 1  — p2)2 ( 1  — p2)2

These are not as tractable as the equations from the previous model, though we can 

do some similar simplifications, and we can solve for p explicitly in terms of iq and
 ̂rj~\ ^rjp

iq. We set Z i  =  X ) t = i  z i, t  and Z tJ =  £ ) t = 1  Z i j Z j j .  Keep in mind th a t each Z{tt is a

function of zq and hence so also are the Z t and . Introducing these and clearing

the denominators allows us to rewrite the first-order conditions as 

0 =  T(1 — p 2 ) +  i q Z i  — Z n  — p U \ Z 2  +  p Z \  2 ,

0 =  T(1 — p2) + U2 Z 2 — Z 22 ~ PV2 Z 1 +  pZ\2i (7-14)

0 =  T p (  1 -  p2) -  p[Zn  +  Z 2 2 ] +  (1 +  P2)Z 12.

Comparing the first two of these equations, we see that

U\Z\ — Z \\  — PV1 Z 2 — V2 Z 2 — Z 22 ~  pzqZ 1 , (7-15)

and this gives us p in terms of zq and zq:

v \Z \  — Z \\  — V2 Z 2 +  Z 22 

V1 Z 2 — 1̂2 Z\
(7-16)

There seems to be no way to get explicit expressions for zq and zq, so we shall have 

to use iterative techniques. For this system of equations we need to  use Newton’s 

method for a system of equations, as discussed in Chapter 5. For initial values we use
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the parameters from the lognormal model with no drift, since we expect the solutions 

to be fairly close.

The Bivariate Lognormal Model with Sensed Inflation

Another reasonable model is to assume the bivariate lognormal model, but with 

a drift which is to be determined from the data. This would be

flo g S 1)t =  logSi,t_i +viz t  + fii, 
\  log S2,t =  log S2,t- 1 +  ”2wt +  A*2-

(7-17)

This is a standard regression equation, and we will obtain the standard estimates. The 

likelihood function is formally the same as (7-3), but with zt — (A log5 i,t — Aii)/* 'i 

and wt =  (A log 5 2 ,t — P2 ) /v 2- The equations (7-4) for the partial derivatives are still 

valid, but to them we must add the two equations for the derivatives with respect to 

Hi and p 2:

d/ii

dA
dfi2

t - 1  

T

t'l
(7-18)

=  Y ,  (2 tu*(—-L) -  2 p z , ( - L ) )  =  0 .
t= 1 1 1

Since p2 ^  1, these give us £  zt — Y , wt = &nd applying the above equations for

zt and wt we get th a t pi  and p 2 are the usual sample means:

T
1

£ i = T

1

£ 2 T

t= 1 
T

E
t=i

(7-19)

The equations (7-4)-(7-8) now follow exactly as before, with the difference tha t we 

take Jij — ]C tli(A  log Si<t -  A*)(A log Sht ~ Pj)- There now is, however, a bias to the
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estimates of the variances i/f and v%. To see this, first note tha t E[A log S 2|t] =  v f+ f i2 

and, for s / f ,  -E’[AlogS'MA logS,M] =  /j%. Then

T

Tv- = J ^ ( A  log5 i)t -  p ) 2
t= 1

T  1 T  T

= X /(A  lo§ Si j ) 2 ~  t  S  A l0g Si’tA  l0g Si’s
t =  1 t=l s=l

T  T

=  (x -  ;f) A lo§ s i,t )2 -  f  2  A log ̂  A log 5i’
*=i t=l s^t

and so

(7-20)

(7-21)

=  ( r - i ) i f

To get an unbiased estimate for the variance, we must use the small sample estimate

V i  - =  \Z E f .i(A io g S M -  w ) 2 / ( r - 1 ) . (7-22)

N.B. Although the variance estimate is unbiased, the standard deviation estimate i>i 

cannot be unbiased at the same time because, due to the concavity of the square root 

function,

r ' v1. (7-23)
• ' / - 2 ‘

E Vi = E < ^ E "i

The Bivariate Normal Model with Sensed Inflation

To make a comparison between the assumptions of lognormal distributions versus 

normal distributions, we also estimate the hedge using a bivariate normal model which 

allows for inflation parameter, £1} £2> determined by the data. The specification for
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this is

(7-24)
V ^2,t — 6  ’ <S2 ,t - l  +  a2Wt

where (zt , wt ) ~  A^(0 , 0 , 1 , 1 , p) are independent, identically distributed pairs.

formally the same as in (7-3). Since the differentiation formulas dzt /d o i  — —Zt/cr\ 

and dwt /dcT2 — —uit/ ^ 2  are still valid, all of the subsequent formulas are still good, 

and the maximum likelihood estimators <ti, <7 2 , and p are given by (7-7) and (7-8). 

Keep in mind th a t Jij now incorporates the modified difference T>Si t , and tha t the 

maximum likelihood estimators £ 1  and ( 2  have not been determined yet.

We now examine the marginal equations for 6  and £2 - Using the facts that 

dzt/d^x  =  — / <Ti and d w t/d ^ 2  =  — 1 / 0 2 , the corresponding first-order 

equations become

We set V S i j  =  S i , t  -  1 and Jlj = 'Zn=i'DS itt'DS2,t. Then zt =  V S ^ t /v x

and wt = 'DS2 tt / & 2  and the likelihood function A =  — ^ g / ^ S i ^ P S ^ t )  is

2 ( 1  -  ?)  t = i

5 6  2 ( 1  - p 2)

dA  1

dA  1

(7-25)

These can be simplified to

(7-26)
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This expands to

T  T

<72 _  ~  Pa  1 ~~ & S2 ,t- l)S l , t - l ,
t= 1 t=l
T T

O'! ^ ( ^ t  — 2̂>S,2 ,t- l)5 2 ,t- i =  p<72 ^ ( 5 1 , t — C l5 i>f_ i)5 2 ,t- l.
t=1  t=l

Now let K tJ = E L V i ^ t - b  =  E L i  S i'tS j 't- i  and K tj = J2t=i

(Thus a superscript indicates a lagged variable S itt- 1 -) Then the equations (7-27)

become
^ a 2K u  -  p & i K 12 = o2K \  -  poxK \ ,

(7-28)
- p£i <t2K 12+ t 2o xK 22 = o xK 2 - p o 2K 2 .

These can be solved by Cramer’s rule, and now we explicitly indicate th a t the a\, cr2,

and p involved are the estimators:

? _  k 22k \  -  p2K 12K 2 M  k 22k \  -  K l2K 2
— r/ 1 1  r/22 s2j 1̂9i 1̂9 Pi.K l l K 2 2  -  p2K l2K 12 K n K 22 -  p2K l2K 12

(7-29)
P K U K% -  p2K l2K \  .<72 K u K l -  K 12K \

~  K l l K 22 -  p2K l2K 1 2  ~  PJ [  K l l K 22 -  p2K 12K 12'

These, together with (7-7) and (7-8), give a system of five equations in five unknowns, 

whose solutions are the maximum likelihood estimators <t2, p, £i, and £2. We can 

use the Newton’s method for a system of equations to find the solutions.

In this chapter we have developed equations for the maximum likelihood esti­

mators of the distributions we want to evaluate. In the next chapter we want to 

apply these, with the help of Newton’s method for a system of equations, to a specific 

example.
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CHAPTER 8  

JAPAN-TAIWAN-USA 1997-2001: AN EXAMPLE

In this chapter we apply the methods we have developed to a specific historical 

situation, the Taiwanese dollar, Japanese yen, and U.S. dollar over the period 1997- 

2001. This is the same example used in CW, and we use this example for the sake 

of comparison. They used the Japanese yen (JPY) as the domestic currency, the 

Taiwanese dollar (NTD) as the foreign currency, and the United States dollar (USD) 

as the third currency. This is not perfectly realistic, since there are robust derivatives 

markets between all of these currencies, but it is convenient since the exchange rate 

data are easily available.

Before doing this, we want to point out th a t CW carried out this part of their 

paper improperly, and in doing so obtained far too optimistic a conclusion for the 

use of options. The proper fitting of the parameters for their model should have been 

obtained by a regression of on A S i jt- Instead, they incorrectly regressed

on S i j  and applied the hedging model to the undifferenced series, where it makes no 

sense, instead of applying it to the differenced series, where it does make sense. As a 

result, they claim th a t in this situation there is a further 5% reduction in the variance 

of the cash flows when options and futures are used, over the reduction obtained by 

using futures alone. This is an amount which makes the use of options an appealing
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addition to the hedging strategy. This is, however, far too generous. We shall see here 

that the true reduction using options is a paltry 0.044% over the reduction obtained 

by using futures alone. W ith such a small improvement, the use of options no longer 

looks economically feasible. The improvement is so small th a t it is hard to  imagine a 

situation where the additional cost or trouble of using options for currency hedging 

would be worthwhile.

We will compare five different hedging strategies. The first will be to make no 

hedge. The second will be to use only futures, assuming a bivariate normal process, 

with the hedge H°, as in CW. The third will be to use only futures, assuming a 

bivariate lognormal process, with the hedge H° as given in Chapter 4. The fourth 

will be to use both futures and options, assuming a bivariate lognormal distribution, 

using H* and Z* as in CW. The fifth will be to use both futures and options, assuming 

a bivariate lognormal distribution, using H* and Z* as discussed in Chapter 4.

We assume there is a cash flow of X  — NTD100 expected in one week for each 

week tha t is to be hedged. The parameters will be calibrated from data over the 

previous 52 weeks. Since the objective is to minimize the variance of the cash flow, 

we will calculate the sample variance of the differences of the actual cash flow CF 

with the expected cash flow CFo =  S t - \ X  for each of the models. This will be done 

over 200 weeks, from 17.10.1997 through 30.3.2001 (date convention is dd.mm.yyyy), 

and the variances will be reported in batches of 2 0  weeks, together with a cumulative 

total.

For a bivariate normal process S^t =  <%,*-i +  Vizn t — 1 , . . . ,  T, where (zi, 2 2 ) ~
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7V2(0, Oj 1) 1) P)i we se  ̂ Ji ~ Y 1  A S ? t an(l X  =  Yh A 5 i,tA 5 2 ,t, and then the maximum 

likelihood estimates are 0{ — \J J %/ T  and p =  X /y /J \  J 2. Since there is no constant 

term in the relation A S^t = ViZi, this is unbiased, and we do not need to correct for 

bias by replacing T  with T  — 1 in the estimates of z>;. (The calculations in CW used 

a regression of 52,t on 5 i,t) which is not appropriate in this model.) For the bivariate 

lognormal model, we do the same, replacing each A 5i)t with A log 5*,*. The results 

are reported in Table 1. The period analyzed is 11/1997 through 4/2002. This was 

chosen because i t ’s the same period of time considered by CW. There is data from 

1983, but the results over all of this time are fairly similar. In most periods the 

unhedged cash flow has by far the highest variance.

Table 1

Comparison of cash flow variances for five hedging strategies

D a t e  u n h e d g e d N L L G N L L G N L N L L G N L N L L G N L L G N L N L L G N L

n i , f o n i , f o n d ,f o s i , f o s i , f o n i n i n d s i s i

1 4 .1 1 .1 9 9 7 6 0 .3 5 5 3 1 .5 8 0 3 1 .5 4 5 3 1 .5 4 0 3 1 .5 0 2 3 1 .4 6 5 3 1 .6 0 5 3 1 .5 5 6 3 1 .5 4 6 3 1 .5 2 3 3 1 .5 5 8

3 . 4 .1 9 9 8 4 9 .6 8 2 3 9 .6 0 2 3 9 .9 0 7 3 9 .9 4 5 3 9 .9 2 2 4 0 .2 4 9 3 9 .6 4 0 3 9 .9 2 3 3 9 .9 5 1 3 9 .9 5 2 3 8 .6 6 5

2 1 . 8 .1 9 9 8 8 1 .2 7 7 3 .7 6 8 4 .0 3 3 4 .0 2 0 4 .2 8 1 4 .7 9 1 3 .8 0 1 4 .0 5 2 4 .0 6 4 4 .3 3 2 5 .7 9 9

8 . 1 .1 9 9 9 1 5 8 .1 3 0 7 .5 8 2 7 .3 0 3 7 .2 6 6 6 .9 5 4 6 .7 9 8 7 .2 4 2 7 .1 7 9 7 .1 7 2 6 .6 9 6 5 .8 2 2

2 8 . 5 .1 9 9 9 5 7 .2 7 0 4 .5 5 4 4 .9 6 2 4 .9 5 9 4 .5 6 0 4 .9 5 0 4 .5 9 1 4 .9 8 1 4 .9 6 5 4 .5 9 7 3 .6 7 9

1 5 .1 0 .1 9 9 9 3 9 .6 2 0 1 .2 7 0 1 .4 0 2 1 .4 0 4 1 .2 5 5 1 .3 8 1 1 .2 3 8 1 .3 8 5 1 .3 8 9 1 .2 2 4 0 .9 4 7

3 . 3 .2 0 0 0 3 3 .1 8 9 2 .7 4 6 2 .8 2 5 2 .8 2 5 2 .7 3 9 2 .8 1 3 2 .7 5 5 2 .8 2 9 2 .8 2 7 2 .7 4 8 2 .5 3 1

2 1 . 7 .2 0 0 0 2 7 .8 3 8 0 .6 4 1 0 .6 4 7 0 .6 4 4 0 .6 8 9 0 .6 9 7 0 .6 4 4 0 .6 4 8 0 .6 4 4 0 .6 9 1 0 .8 3 6

8 .1 2 .2 0 0 0 7 .7 5 2 3 .7 5 6 3 .7 7 7 3 .7 7 7 3 .7 6 9 3 .7 9 8 3 .7 5 2 3 .7 7 5 3 .7 8 4 3 .7 6 5 3 .5 4 3

2 7 . 4 .2 0 0 1 2 3 .3 2 7 2 .3 9 2 2 .3 2 1 2 .3 1 9 2 .3 1 7 2 .2 6 0 2 .4 0 1 2 .3 2 4 2 .3 2 1 2 .3 2 4 2 .0 2 0

A v e r a g e 5 3 .8 4 4 9 .7 8 9 9 .8 7 2 9 .8 7 0 9 .7 9 9 9 .9 2 0 9 .7 6 7 9 .8 6 5 9 .8 6 6 9 .7 8 5 9 .5 4 0

N L = n o r m a l ,  L G N L = l o g n o r m a l ,  n i = n o  in f la t i o n ,  f o = d u t u r e s  o n ly ,  n d:= n o  d r i f t , s i = s e n s e d  in f la t io n
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We see a considerable reduction of the variance of the cash flows by using any 

one of the hedges, with the average reduction being a little over 80%.

When any of the hedging methods are employed, the amount of reduction in 

the average variance of the cash flows is very nearly the same. If we have to pick a 

best of the lot, it is the last one, the one which uses the bivariate lognormal model 

with an inflation term  included, and this achieves a 2% or 3% improvement over 

the other models. However, there is considerable variablity in the numbers and this 

improvement is neither statistically nor economically significant.

A larger concern is the discrepancy between these averages for the variance of 

the cash flows, compared with the theoretical averages, if the assumed model were to 

match reality fairly well. If the bivariate lognormal model with no drift were assumed 

to be accurate, then the average of the variances of the cash flows should be around 

3.60, and the values in Table 1 are considerably higher. This point is discussed further 

in the next chapter.

The above 200-week period was chosen to match the period considered in CW. 

There is data, however, from 1983, and in Figure 1 we show graphically the cash 

flow differences C F  — CF$ for each week in the roughly 900-week period from 1983 

through 2 0 0 2 , where CFq is the cash flow which would have resulted if the exchange 

rates at the end of the period were the same as those at the beginning of the pe­

riod. The results for three of these hedges are displayed. The first graph is for the 

unhedged cash flows, the second is for the cash flow differences resulting from the
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Figure 1. Cash flow deviations over a 900-week period 1983-2002. 

Panels are a) unhedged, b) lognormal, c) normal: futures only.
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hedges derived from the bivariate lognormal model, and the third is the cash flows 

resulting from the hedges derived from the bivariate normal model without the use 

of options. The first thing to note is how very much similar the last two are. At first 

glance, they seem to be the same, although small differences can be detected. The 

graphs for the other seven hedges are just as similar and are omitted. The second 

thing to note is how big the improvement is by any hedge over the unhedged cash 

flows. In particular, any sort of hedge removes the huge negative spikes at around 

weeks 50 and 720.

We turn  in the next chapter to a comparison of these real-life results with theo­

retically predicted results.
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CHAPTER 9

SIMULATION RESULTS

In this chapter we wish to apply simulations to compare the real-life results of 

the previous chapter to those predicted by theory. In an earlier chapter we developed 

formulas for moments under the assumption of a bivariate lognormal model with no 

drift. If this is assumed to be the true underlying process, then using various hedge 

methods would lead to an expected variance of cash flows as shown in the first line 

of Table 2. There is a large discrepancy between these theoretical values and the 

actual averages shown in the last line of Table 1. The most likely explanation for this 

discrepancy is th a t the bivariate lognormal model is not a good representation of the 

real-life process. However, before reaching tha t conclusion, we wish to first rule out 

a couple of other possibilities.

Table 2

Comparison of theoretical and simulated cash flow variances

method: unhedged NL LGNL sample NL LGNL sample
ni,fo nd,fo fo ni nd

theoretical 27.49353562 3.59522822 3.59522818 3.59524320 3.59524320
simulated 27.49266499 3.59694874 3.59694836 3.59694764 3.59697377 3.59693599 3.59693449

The simulation is 7 million samples from the bivariate lognormal model with no drift. 

NL=normal, LGNL=lognormal, ni=no inflation, fo=futures only, nd=no drift, si=sensed inflation
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The first possibility we wish to rule out is tha t the formulas used for the theoreti­

cal calculation are in error. To check this, we run a lengthy simulation of the bivariate 

lognormal model with no drift and compare the resulting variances of the cash flows. 

We use the values vx =  0.01641526297, v2 =  0.005990652048, and p = -0.2322515625, 

which match those of the Taiwanese dollar, Japanese yen, and U.S. dollar exchange 

rates over the period 1996-2001. The results are shown in the second line of Table 

2 , and these show th a t there is no significant difference between the simulated values 

and the theoretical values. We conclude tha t the theoretical calculations are not the 

source of the discrepancy. The last column of Table 2 refers to a “sample” method. 

This is the ex post optimal hedge. That is, after all of the data are known, H  and Z  

are calculated to minimize the cash flow variance given exactly those data. Thus no 

theoretical method can do better.

A second possible source of the discrepancy is the fact th a t estimators were 

used for the quantities ux, u2, R, crx, cr2, and p. The theoretical values in Table 2 

were calculated with the actual values for the parameters, and using estimators will 

introduce some discrepancy. To see how much effect this has, we run a simulation 

which generates sets of 252 weeks of simulated exchange rates. The hedges are then 

implemented for each of the last 2 0 0  weeks in the set, with estimators calculated 

from an entirely independent 52-week simulation for each week of the set. Thus the 

calculation of the cash flow variances requires 10,652 simulations for each set of 252 

weeks, and so we cannot do anywhere near the 7 million iterations we did for Table 

2. We repeat the simulation of such a period 2,100 times and compare the variances
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of the cash flows for several of the hedging methods. Table 3 reports the upper and 

lower limits for a 99% confidence interval for the mean cash flow variance based on 

this simulation. The lower limit is higher than the theoretical values given in Table 

2, but not nearly so high as those encountered in Table 1.

Table 3

Cash flow variances based on estimated parameters

Method unhedged normal lognormal normal lognormal
ni,fo nd,fo ni nd

Upper 29.63354370 3.954476546 3.951799010 3.954641218 3.951773151
Lower 28.67119301 3.824129545 3.821534938 3.824266617 3.821501509

Upper and lower 99% confidence intervals for the cash flow variances.

From these simulation results, we can conclude tha t the difference between the 

real-life average cash flow variances shown in the last line of Table 1 and the theoretical 

mean cash flow variances calculated for the first line of Table 2 occurs because the 

model assumed, namely the bivariate lognormal model with no drift, is not a very 

good fit for the real-life exchange rates process.
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CHAPTER 10

CONCLUSION AND DIRECTIONS FOR FUTURE RESEARCH

In this thesis we considered the situation of a firm receiving a payment or pay­

ments in the future denominated in a foreign currency, as was done in Chang and 

Wong (2003). The firm is assumed unable to directly hedge the foreign exchange 

risk and wishes to partially hedge the risk by selling futures or options in a third 

currency. Under the assumption of a quadratic utility function for the firm, Chang 

and Wong calculated the optimal hedging strategy under some assumptions about 

the distribution of the exchange rate processes. This thesis shows tha t, still using 

the assumption th a t the firm’s utility function is quadratic, those assumptions can 

be removed and virtually the same results can be obtained. This allows for other 

distributional assumptions to be fitted, and the formulas for the optimal hedge were 

calculated for several variations, based on the bivariate lognormal model or the bi­

variate normal model. These formulas were then applied to  the exchange rate series 

for Japan-Taiwan-United States over the period 1997-2001, and the variance of the 

cash flows after hedging were compared for these models. The best performance was 

obtained by the model which assumed a bivariate lognormal process with an infla­

tion term, but the differences between the models were not statistically significant. 

Simulations showed th a t the considerable gap between the variances of the cash flows
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experienced by the real-life data and those predicted by the theory was not due to 

errors in the calculation nor by the use of estimators for the parameters, but it is 

rather due to the inadequacy of the models considered to explain the real-life data.

There are several points tha t future investigations can examine. First, data from 

other countries can be used. This should be fairly simple, as exchange rate data is 

readily available.

A second avenue for investigation is the use of different distributions. This is more 

difficult. Even in the simplest case considered in this thesis, there was considerable 

difficulty deriving the theoretical values for the hedging strategy. In order to use 

other distributions it will probably be necessary to develop approximating techniques 

for the moments necessary to implement the hedge. A computer algebra system 

might be able to evaluate some of these, but it might not; many integrals do not 

have a closed-form solution. Numerical methods of integration also have a difficulty 

in tha t the solution requires multiply iterated integrals, and approximations to these 

are difficult to make accurate. It is also possible to approximate the distributions 

by simulation, but th a t does not give more than a few digits of accuracy. Since the 

hedge formulas seem to be fairly sensitive to the values of the moments, this may 

not be a reliable method. Thus, there will be trouble adapting the results to more 

complicated distributions no m atter what approximation technique we choose.

The underlying method, as developed in this thesis, used only options with a 

single at-the-money strike price. Allowing the firm to choose an optimal strike price 

would be more realistic. Implementing this modification would be a fairly Straight­
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forward extension of the techniques we have developed. It would also be possible to 

allow options a t two or more strike prices. This introduces an extra variable into the 

first-order conditions for the optimum, but no further difficulties.

The most pressing need is to  find out why there is such a large difference between 

the theoretical performance of the hedges and the real-life results. This is certainly 

due to  the inadequacy of the bivariate lognormal model, and there are a number of 

better models discussed in the literature. It would not be too difficult to develop a 

simulation using one of these improved models, and then applying the hedge formulas 

from this thesis would show whether this closes the gap. If not, then more work would 

be necessary.

It is possible to introduce other variations in the model which would bring it closer 

to reality. The interest rate is always uncertain, and the result th a t the interest rate 

didn’t  m atter was only true when tha t rate was certain. So an uncertain interest rate 

will change the nature of the solution. The amount tha t the firm expects to receive 

is often uncertain. Although one future payment might be known exactly, if we’re 

applying this technique to a series of future payments, we can expect some of them 

to have uncertainty. There is a question, then, of how significant th a t uncertainty is.
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