

# The tri-trophic transfer of Zinc to newly emerged seven-spotted ladybirds (Coccinella septempunctata) from sewage sludge amended soil.

I.D. Green<sup>1</sup>, L. Winder<sup>2</sup>, G. Merrington<sup>3</sup> & M. Tibbett<sup>1</sup>.

#### Introduction

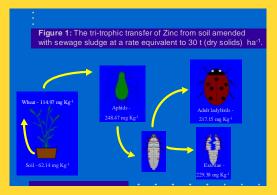
The recycling of sewage sludge to agricultural land is widespread and may introduce potentially toxic elements (PTEs), including Zn, into the food chain<sup>1</sup>. The exposure to domestic animals and humans to PTEs is well controlled<sup>1</sup> but the fate of PTEs within the invertebrate component of agricultural ecosystems is poorly understood.

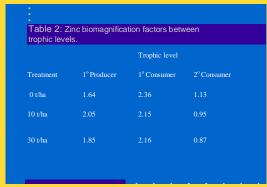
### Methodology

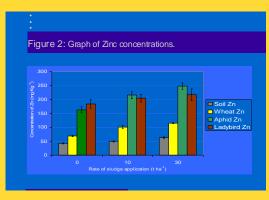
Grain aphids (*Sitobion avenae L.*) were harvested from spring wheat (*Triticum aestivum L.* cv. Alexander) propagated in agricultural soil amended with sewage sludge (see Table 1). Harvested aphids were frozen until they were fed daily to fourth instar seven-spotted ladybird larvae in surplus of the larvae's daily food requirement. Feeding was continued until pupation and on emergence adults and pupal exuviae were analysed for Zn.

|                     | 0 t/ha         | 10 t/ha        | 30t/ha           |
|---------------------|----------------|----------------|------------------|
| Soil                | 42.1 ± 2.0     | 49. ± 2.1*     | 62.1 ± 3.6**     |
| Wheat               | 68.9 ± 2.9     | 100.6 ± 5.1**  | 115.0 ± 1.8**    |
| Aphids              | 162.9 ± 11.2   | 215.9 ± 12.4** | 248.5 ± 11.5**   |
| Adult<br>ladybirds  | 184.2 ± 15.3   | 204.5 ± 13.5   | 217.1 ± 21.4     |
| Ladybird<br>Exuviae | $230.5\pm18.9$ | $220.4\pm14.8$ | $229.4 \pm 16.7$ |

## **Results**


- Bioaccumulation of Zn in wheat plants reflected the level of sludge amendment (see Table 1 & Figure 2).
- Transfer of Zn from the wheat plants to aphids resulted in the largest magnification of Zn (see Table 2).
- There was no bioaccumulation in newly emerged adult ladybirds or in their exuviae.


## **Discussion and conclusion**


- There was no bioaccumulation from prey to predator.
- Zn levels in the exuviae did not differ significantly between treatments. This suggests that Zn is not sequestered and excluded in the exuviae during pupation.
- It was concluded that there must be another mechanism for regulating Zn body burden in the fourth instar. This mechanism is currently under investigation.

#### References

MAFF, 1993. Review of the Rules for Sewage Sludge Application to Agricultural Land. Soil fertility Aspects
of Potentially Toxic Elements. Report of the Independent Scientific Committee. MAFF Publications, London.







<sup>&</sup>lt;sup>1.</sup> Bournemouth University, School of Conservation Sciences, Wallisdown, Poole, Dorset. BH12 5BB

<sup>&</sup>lt;sup>2</sup> University of Plymouth, Department of Agriculture & Food Studies, Seale-Hayne, Newton Abbot, TQ12 6NQ.

<sup>3.</sup> University of Adelaide, Faculty of Agriculture & Natural Resource Science, Glen Osmond, South Australia, 5064.