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Abstract Recently there has been some spurt of interestsséophotoelastic materials for
sensing applications. This has been successfulijieap for designing a number of signal-
based sensors, however, there have been limitedteffo design image-based sensors on
photoelasticity which can have wider applicationddrm of actual loading and visualisation.
The main difficulty in achieving this is the infteiloading conditions that may generate same
image on the material surface. This, however, aamudeful for known loading situations as
this can provide dynamic and actual conditionsaading in real time. This is particularly
useful for separating components of forces in amtl @f the loading plane. One such
application is the separation of normal and shearek acting on the plantar surface of foot of
diabetic patients for predicting ulceration. I earlier work we have used neural networks to
extract normal force information from the fringetteans using image intensity. This paper
considers geometric and various other statistieadupeters in addition to the image intensity
to extract normal as well as shear force inforrmafi@mm the fringe pattern in a controlled
experimental environment. The results of neuralvoet output with the above parameters and
their combinations are compared and discussed.aithes to generalise the technique for a
range of loading conditions that can be exploitadwhole-field load visualisation and sensing
applications in biomedical field.

1. Introduction

Photoelasticity has been conventionally used fgregrmental stress analysis, however, use of this
technique is not very well explored in sensing maions, especially by analysing the fringe patser
The main challenge involved is to extract load finfation from the fringe patterns, as there may be
infinite number of load settings for the same riisglpatterns. This may be further compounded due
to generalised loading conditions and out of pldeformation of the photoelastic material. The
technique, however, looks ever more promising Wit advent of high computing power and low
straining photoelastic material that can lend toatgic and wave propagation studies. Advantage of
using this technique is to get whole-field visualian of the stress field, which may provide load
information of the entire field as opposed to emglg strain gauges, or load cells that only offer
discrete load information. Photoelasticity has based in developing a number of discrete signal-
based sensors [1-3], however, as the material dgsefringe patterns that contain details of the
loading conditions this can be exploited for depélg a whole-field sensor. If this technique idyul
developed for a sensing device, it could find aggion in many biomedical sensing areas such as
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early detection of diabetic foot ulceration or @sseent of pressure sores in disabled subjectgliyer
enacting prevention strategies by suitable footwedred designs.

One of the main impediments in assessment of deafmedt ulceration is the difficulty of resolving
the forces acting on the sole of the foot durirapding and walking. The shear force acting during
walking is considered to be more harmful than theieal force alone [4] as it occludes the bloal
more severely, thus resulting in tissue dystrophg eapid ulceration. However, the mechanism of
ulceration due to biomechanical forces is not weeyl understood [5, 6], partly due to unavailalilit
of appropriate sensors that can resolve thesedaenee partly because the forces cannot be quahtifie
Some interesting works have been reported on ghearalysis of walking foot pressure in diabetic
patients using pedobarograph [7, 8], however, tiese looked at foot pressure not the components of
forces under foot. This research aims to tacklsghmoblems by analysing normal and shear force
data from the image under actual condition of IngdiThis requires inverse problem of force
extraction to be solved i.e. finding the applieccéofrom the generated fringe patterns. In ouriexarl
work [9] we proposed use of neural networks foramtion of vertical load using intensity informatio
from photoelastic fringes. It was shown that ineatz® of analytical solutions, neural network is a
better approach for such inverse problems. Inghger we consider various geometric and statistical
parameters of the image to train the neural netd@rlextracting vertical as well as shear forcedain
controlled experimental conditions. The resultsrfrearious combinations of these parameters have
been compared and discussed.

2. Experimental Setup and Loading Conditions

The setup used for this experiment is shown in Eiy/ertical load was applied by directly placimg t
weights over the indenter disc set over the phastiel sensor plate while the shear force was applie
by pulling the disc over a pulley using weights mected to a nylon cord as shown in the figure. The
optical setup used in this experiment included gitali camera (Olympus, SP500) with high image
resolution of 6M, a cold cathode fluorescent tuBEKL) as a light source and a plane polariscope
constructed using linear polariser [10]. The phiatstic material used was PS-4 of 3mm thickness
with suitable coatings and adhesives [11, 12].

Weights
Pulley (vertical load)
Indenter
Nylon thread Scanner
, Photoelastic
Weights Plate

Figure 1. Experimental Setup for vertical and shealoading



Figure 2 shows fringe patterns developed on thiaseiiof the photoelastic plate due to vertical and
shear forces applied by the specifically desigmekmter. The vertical force deforms the material an
fringes propagate radially from point of applicatiof load in a symmetrical way. The fringe patterns
appear concentric circles of different colours undiite light. When shear force is introduced in
conjunction with the vertical force the fringe eitts smear in direction of application of forceisTh
appreciable shift in the fringe pattern can be athgeously exploited for shear force sensing.

ML
Figure 2: Fringe pattern generated on a photoelagtisensing plate due to (a) vertical force (b) duet
combined vertical and shear forces. The effect ohear force results in appreciable shift in the imag that
can be exploited for developing a shear force senso

3. Fringe Characteristics

As stated earlier that it is not straightforwarcetdract load information from the fringe patteenhe

a neural network based approach was used for ndiored information [9]. In the current work to
extract vertical as well as shear forces image® wezorded at various combination of these foroes t
train the neural network. Table 1 shows a parhefrange of vertical and shear forces applied en th
material for this experiment. The vertical load vilmsremented in steps of 100g starting from 5009
(excluding the weight of indenter) and the sheadlwas incremented in steps of 200g. The limiting
value of shear at a particular vertical load wapeexnentally determined by estimating the co-
efficient of friction between the two contactingfaces.

Table 1: Applied Vertical loads with a range of Shar loads

Vertical force (N) 8.68 9.66 | 10.64 11.62 ..... . 21.43 22.42 23.4
Shear force (N) 1.47 147 | 147 | 1.47 1.47 1.47 1.47
3.43 3.43 | 3.43| 343 3.43 3.43 3.43
5.39 539 | 539 | 5.39 5.39 5.39 5.39
7.35 735| 7.35| 7.35 7.35 7.35 7.35
9.32 | 9.32 9.32 9.32 9.32

11.28 11.28 11.28

13.24 13.24 13.24

15.20 15.20 15.20
17.16 17.16 17.16
19.13




The error in loading was minimised by measuringdtemeter of the circular fringe by repeating
the experiment several times. For ease of impleatient this was achieved by converting the images
to HSV plane (this ensures that the original colofmrmation does not change with change in fringe
gradient or slight variation in light intensity) disegmenting it to measure the diameter of thermaist
fringe by the developed algorithm [13]. The meadudtiameter for 9 sets of experiments was averaged
to get as an ideal diameter (the fringe diametegsrepresented in pixels and for each experiment).
The percentage error for all the measured diametassevaluated against the known diameter. The
average percentage error for all the vertical Idad® experiments was found to be 2.557%. Thus the
calculated error in input data would affect theusacy of results by a minimum of 2.557% as this
much error has been added in the input at the oirseitably. The various factors that may have
contributed to this error include unsymmetricalnge patterns due to uneven load transfer,
unsymmetrical design of weights and disorientatibthe indenter while shear force was applied.

3.1 Response to Vertical Force

As discussed earlier the fringe patterns pan oettduncrease in the vertical load. Figure 3 shthes
influence of increasing vertical load on the diagnetf fringe patterns, this was obtained from 9
repeated experiments. Every point plotted in eaata dine is average measured diameter from 9
experiments. It is evident that the plot of avethgemeter has significant differences. This means
that using just one geometric parameter in deteatiain of load from the fringe patterns may not be a
reliable method.
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Figure 3: Influence of Vertical load on measured dimeter of fringe patterns

4. Data Conditioning and Analysis

The fringe data acquired in the form of images waed for training and testing of the neural
networks. Since an entire image cannot be usesmd due to high input dimensionality, it was
necessary to condition the data and optimise timeionality of input being fed to the network [14]
A large number of parameters were extracted froenftimge images that were used as input to the
network. A region of interest (ROI) was selecte¢@mpassing fringe patterns and the following
parameters were extracted (i) Mean pixel inten@ifyMedian pixel value (iii) Standard deviatiorv]i
Kurtosis (v) Skewness of data (vi) Horizontal radiforizontal stretch in fringe from point of load
(vii) Vertical radius- vertical stretch in fringedim point of load (viii) Pixel area of segmented IRO



(ix) Intensity information from region of interesthese parameters were fed in combination and
individually to reach to an optimal input for netikdraining. Principal component analysis (PCA)
was used as data reduction technique [15]. Siadgirig data is limited by the number of experiments
it was important to narrow down to an optimal disienality through PCA whilst maintaining subtle
differences in fringe patterns under consecutieel$o

4.1 Data Analyses using Statistical Parameters

The input training data used for the network wasved from statistical analysis performed on the

acquired images. Each image was stacked down tadndl planes and intensity data from only one

plane was used for statistical analysis. Sinceethgerno considerable difference between fringe
patterns in different planes (R, G & B), the plaméh highest contrast was considered for analysis.
Different statistical parameters, kurtosis, skewsn@sean pixel intensity, standard deviation, median
were extracted and fed as input to neural netwtwrksap the shear force. Figure 4 shows the optimal
results that were achieved using statistical pat@®es input to the network with 23 random test
images.

20 :
¥
18} ¥ 1

i --- Actual force %
161 . /\'}.—Determined forc%
\ }

Determined shear focrce (N)

1 1 1

0 5 10 15 20 25
Randomly chosen test images
Figure 4: Determined Shear force using statisticgparameters
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The figure shows the actual shear force compar#uetdetermined shear force at different vertical
load values. The average percentage error foung3eest images was 13.15% and for the entire load
range (112 test images) was 13.45%. The resultinsat were reasonable to continue using neural
networks for force determination but were not aaturenough. As can be seen from the figure, for
some test images the error is too high due to fiegerfit input data and training patterns. Many luf t
statistical parameters like mean pixel intensitd atandard deviation did not show much variation
with change in load values.

4.2 Data Analyses using Geometrical Parameters

As shear force smear the image in the directioforaie thus measuring geometrical parameters could
be a better approach that could lead to meaningfsllts. The measured parameters included
segmented area from hue plane and radius measubedh horizontal and vertical axis since they are
controlled by different forces. Horizontal radiusity influenced mostly by the vertical load, wharea
vertical radius is influenced by the shear load clvhstretches the fringe patterns in direction of
application of load starting from point of loadinbhe results showed that the percentage error was
8.15 % for 23 test images and 11.4 % for entirgeanf loading (112 images). The results obtained
were better than what were achieved with statistiaeameters, since the geometrical parameters were



influenced more significantly with the change irado However, the accuracy desired was not
achieved and thus combined statistical and geoorddita was tried for training the network.

4.3 Combined Statistical and Geometric Parameters

Since the encouraging results were obtained usatgtical and geometric data, it was envisagetl tha
error would reduce if the training data was comBiffrem the two. Thus a network was constructed
and trained with combined statistical and geomelaita. The results improved dramatically by almost
4% as the total averaged percentage error fornheegange was found to be 8.43% and 7.229% for
23 test images. To move a step further in an attdm@chieve higher accuracy the network was
trained with intensity data extracted from load g@s. However, the results gave an average error of
19% for the entire range and 13.3% for 23 test #mathus a lower accuracy compared to the
previously fed input of statistical or geometrigalues. This obviously is not a better combinatibn
fringe parameters for load determination. The reasby intensity data came out with such a low
accuracy was that the input fed as intensity froemall region of interest would not be as relevant
and crisp as features extracted from geometricdl satistical parameters. To improve results the
entire image was considered for extracting inptiteathan just a region of interest or line of ret,

this however marginally improved the error by 5.99%0the cost of high dimensionality of the
network [14].

5. Modified Strategy

The determination of shear force through differapproaches like statistical parameters, geometric
parameters and intensity data did provide cleaicatidn for implementation of neural networks but
the results desired were still not very accuratenddified approach was adopted in order to improve
the accuracy and efficiency of the system. A nekweas used to determine the vertical force from
image data using intensity information and for de¢ermination of shear force the data was fed to a
second network as a combination of previously tegparameters and the vertical force was
determined by the first network.

5.1 Determination of Vertical Force

In order to analyse the fringe patterns as acdyrate possible both vertical and shear forces were
determined from the same fringe patterns. This aidlo be the actual situation when using this
technique for sensing applications. A network tdifrom the intensity data extracted from image
was tested for optimal results for vertical foratetmination. Since the desired numbers of targets
were considerably fewer compared to the shear fdiee network was trained efficiently and it
required less computational time. Figure 5 showsréisults obtained for the determination of veltica
load from fringe patterns.
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The averaged percentage error for 128 test imagssfound to be 0.67%, thus giving an accurate
value of the applied vertical load. The resultsesppd stepped up in the plot because at eachalertic
load different shear loads were applied (Tableli)absence of shear load the graph would be a
straight line for each vertical load. The vertitadd determined from the network can now be
combined with other input parameters (statistigabmetric, intensity) and fed to a new network for
determination of shear load.

5.2 Statistical and Geometric Parameters with Verticgld Input

The network was trained with combined statistical geometric parameters as input but an additional
input parameter, the determined vertical load, agded as another relevant input. Figure 6 shows the
results obtained from the trained network testesl @3 test images. The error was reduced drasticall
from averaged 8% to 5.37% for the entire rangeafiland 3.86% for the 23 test images as shown in
the plot.
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Figure 6: Determined Shear force using statisticageometric and vertical input

5.3 Intensity Data with Vertical Input

The determined vertical force input was added &dbnditioned intensity data. The results obtained
improved slightly from 5.1% error to 5.08% but thetwork dimension increased. This option was not
considered viable. The addition of determined ealtiorce as input improved the results signifigant
for the network trained with statistical and geamcat parameters and the error reduced dramatically
(8% to 5%). However, for the network trained withteinsity data there was no significant
improvement in results (5.1% to 5%) with additiomgbut of vertical force. This was because the
intensity input was extracted by considering theremmage, thus it represented the whole image and
addition of similar image data (vertical force) wadikely to change the results. On the other hand
input of the vertical force to statistical and gexric parameters was found to improve the errdt as
complemented the whole image. However, the netfextkwith intensity data from entire image also
gave comparable results to this, thus the netwaiked with entire intensity data was considered to
be optimal and efficient.

6. Conclusions

This paper focused on analysing the fringe pattelntained under vertical and shear loads in omler t

determine the load characteristics. Various stiesewere adopted to refine the results by taking
various image parameters for implementation. Sarcénage has enormous data in itself it cannot be



used as a whole for training neural networks of enatk size. Thus a range of data were extracted
from the images including statistical, geometrigensity and fed as training data. A mix of input
parameters were also tried to achieve the besibp@gsetwork with desired accuracy. The accurate
results in determination of shear force from fringgterns were found in two networks, one trained
with the combination of statistical and geometrargmeters with determined vertical force and
second trained with intensity data from entire imdgoth networks gave comparable results of 5.37%
and 5.1% error respectively, however, the later fwaad to be the right network as it represented th
image better. The training of network in this cages easy and required no feature extraction or
specific processing of data. Therefore the latéwark was chosen to be a better choice due to most
relevant input to the network with high tolerance.
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