
 A lightweight state-machine for validating use case descriptions

John Kanyaru and Keith Phalp
School of Design, Engineering and Computing, Bournemouth University, UK

(jkanyaru, kphalp)@bournemouth.ac.uk

Abstract

This paper presents a tool to provide an enaction
capability for use case descriptions. Use cases have
wide industry acceptance and are well suited for
constructing initial approximations of the intended
behaviour. However, use case descriptions are still
relatively immature with respect to precise syntax
and semantics. Hence, despite promising work on
providing writing guidelines, rigorous validation of
use case descriptions requires further support.

One approach to supporting validation is to use
enaction. Indeed, enactable models have been used
extensively within process modelling to clarify
understanding of descriptions.

Given the importance of requirements validation,
such automated support promises significant benefits.
However, the need to produce formal descriptions, to
drive enaction, is often seen as a barrier to the take-
up of such technologies. That is, developers have
traditionally been reluctant to increase the
proportion of effort devoted to requirements
activities. Our approach involves the development of
a lightweight state-machine, which obviates any need
to create intermediate formal descriptions, thereby
maintaining the simple nature of the use case
description.

Hence, this 'lightweight' approach, which provides
an enaction capability ‘for minimal effort’, increases
the likelihood of industrial take-up.

1. Introduction
 The software engineering community has long
understood the importance of stakeholder
involvement in validation of requirements and
specifications [1, 2, 3]. Tool support may help to
bridge the communication gap between engineers and
customers, by providing appropriate models to
enhance shared understanding. This paper focuses on
providing tool support to enhance the validation of
use case specifications.
 Use cases have gained widespread adoption mainly
due to their presentation (with natural language) of

system behaviour from the viewpoint of its users. In
particular, the use case description details the
interaction of users (actors) with the proposed system.
This viewpoint is crucial, especially when validating
the adequacy of the specification. However, UML use
cases have several shortcomings that curtail their
expressiveness in specifying behaviour. Whereas the
use of natural language makes use cases easy to
construct and understand, it is also a weakness, since
natural language specifications can be ambiguous.
The UML specification of the use case does not offer
any guidelines for writing use case descriptions [4, 5].
Whereas authoring guidelines are a crucial issue for
use cases, our focus is the inability of use cases to
describe state-dependent requirements. There are no
provisions in the UML specification for describing
interdependencies amongst use case events. Indeed,
the UML specification (see [6]) states that every use
case should express a sequence of interactions that
are independent of any other use case. That is, use
cases specifying the same system must not
communicate or have associations with one another.
UML however, describes three types of relationships
between use cases: Generalization, <<include>> and
<<extend>>. Generalization relates general use cases
to special-case ones. Both <<include>> and
<<extend>> imply the existence of use cases
describing functions which are not necessarily
complete and do require communication between the
base use case and the included/extending use cases.
Included use cases can be used to handle exceptions
that might result in unrealistic computations.
<<extend>> on the other hand means that the
extending use case is inserted, at a designated
extension point, if a particular condition is true. It is
clear that the property of independence of use cases
cannot hold where decomposition of a system is
crucial to its understanding. UML does not model
interactions between actors, that is, communication
and any associations between actors in a use case or
across use cases are not allowed. Intra-use case

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Bournemouth University Research Online

https://core.ac.uk/display/75135?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

dependencies such as “event E requires that event Q
has been previously executed” cannot be expressed in
UML. Moreover, inter-use case dependencies such as
“use case A requires that use case X has been
previously executed” cannot be formally expressed in
UML. In reality, however, use cases and use case
elements do interact. Indeed, other authors have noted
that the independence rule is often flouted in
industrial practice [2].

 This paper presents an approach for creating
behavioural descriptions of a system with state-based
use cases. An extended structure of the use case
description is proposed. This extension allows
inclusion of both intra-use case and inter-use case
dependencies, whilst also incorporating actor
interactions. Simply put, the contributions of the
paper are threefold. First, we describe a structure
suited to authoring state-based use case descriptions
that exhibit inter-relationships amongst constituent
elements. Second, we provide a sound animation
mechanism, which supports the authoring and
prototyping of descriptions written in the proposed
structure. Third, we provide support for grammar-
check based on (the CP) rules to enhance writing of
intuitive and comprehensible descriptions. Thus, we
provide the basis for a common approach to use case
authoring and animation so desirable during the early
stages of requirements and specification.

2. Extended structure and adopted
approach
 The UML semantics of the use case suggest that the
dynamic requirements of a system as a whole can be
wholly expressed with use cases alone [6]; that each
use case specifies services rendered to its users and
the service is a complete sequence. This implies that
after its performance, the use case in general will be
in a state in which the sequence can be initiated again.
However, the UML-inspired Rational Unified Process
(RUP) models requirements as use cases without
allowing for any intra-use case or inter-use case state
variables. This is clearly contradictory and
insufficient for systems where states play an
important role in controlling crucial interactions.
Thus, in order to express use case interaction issues,
one must be able to define states that can be accessed
and modified by use case elements. The UML use
case allows for only two states global to the whole
use case, that is, the condition that is true of the
system before the use case starts (precondition) and
the condition that is true of the system after the use
case finishes execution (post-condition) [7, 8]. This

means that states for each event are ignored, by
presuming that the event dependencies are linear.
Furthermore, the two global states do not show
contextual states of actors as they interact to execute
the various use case events.

 To address the above shortcomings we re-define the
use case structure to allow for inclusion of state-based
information pertaining to each constituent event. We
explain our new structure as follows: a global
precondition for a use case is the state of the system
(or that of one of the actors) before the use case starts
to execute. A global post-condition is the state of the
system (or that of one of the actors) after the use case
executes. Each use case event has a pre-condition and
a post-condition. An event pre-condition is a
condition that must be true of that event or the
triggering actor before the event is triggered, and an
event’s post-condition is a condition that is true of the
triggering actor or the event after the event is
undertaken. Thus, when an actor triggers an event, the
actor moves from a certain pre-state to a certain post-
state. If the event affects the state of another actor,
then the affected actor also changes state in its own
specific way. The passive actor is termed secondary
actor while the triggering actor is termed primary
actor. By allowing for state changes of both primary
and secondary actors, we support the description of
interactions between system users where such
interactions exist. Thus, our approach is premised on
including state information in use case descriptions,
while keeping the use case notation simple. By
adopting this approach, the work borrows heavily
from the process modelling community where
business processes are modelled using state-based
descriptions of work processes (e.g. [9]). In short, our
resultant use case description incorporates state-based
information to enable rigorous validation of
stakeholder expectations. A benefit of our approach is
that there is no need to use any intermediate formal
grammar for describing the states and interactions.

3. Describing software behaviour with
stateless use cases
 A use case is a partial story describing a
circumstance of system usage and how the system
behaves while serving its external users. Stakeholders
can write their own partial stories thereby
contributing their own view of the desired behaviour
to those of other stakeholders.

 Determining an accurate behaviour of the system
must involve scrutinizing the validity of each use case

event in relation to others. This leads to the question:
How should a set of use case events be related? What
is the underlying semantics of the relating element? In
other words, regardless of whether a use case is a
generalization of another use case, is extended by or
inserted into another use case, relating events local to
a use case is crucial to determining the behaviour that
would lead to the execution of successive events in
the use case and any other related use cases. These
issues are not considered at all in the use case
diagram or stateless textual use case specifications.

 For instance, consider a situation where an
academic registrar interacts with lecturers who
volunteer for courses to teach. Suppose that the
registrar is also involved with students who choose
the courses they wish to study. Moreover, the
registrar has to prepare the list of courses that
students can choose from. Thus, there are three actors
involved (registrar, lecturer, and student) each
undertaking a task suited to their needs or role.

Below is a use case diagram depicting the above
situation:

Registrar

Student

prepare course list

choose course to study

Lecturer

Volunteer for course

Figure 1: Course registration use case
diagram

Figure 1 above is visually appealing to both the users
and engineers as it depicts high-level real world needs
of the three external users. The problem with the use
case diagram generally is that it does not detail how
the various elements relate with one another [10]. For
example, in Figure 1 above, we cannot tell how the
actions of the lecturer affect those of the student or
registrar or vice versa. It is important for example for
the registrar to know when they can prepare the
course list, or indeed for students to know when it is
right for them to choose the courses they wish to
study. In other words, actors in use case must be
aware of each other’s context of actions to be able to
proceed with events that interest them. Behavioural
descriptions of systems normally involve determining
how the system’s constituent elements interact. In use
case modelling terms, these elements are actors

(system users) and the use cases. However, this is not
possible in the UML use case model as it is not
possible for the system (or part of it) to access the
internal state of an actor. When modelling the
behaviour expected of a system, it is important that a
rich description is made, including interaction
between actors [11]. For instance, engineers,
customers and users must be able to determine and
model possible behaviours of the lecturer depending
on the actions of the student or registrar. However,
UML cannot model such rich interactions because it
forbids associations between actors. Indeed, [5]
argues that the use case diagram is not expressive
enough and should not be used on its own to describe
software behaviour. This is a correct assessment;
however, we observe that the nature of the textual use
case suggested in [5] does not give any detail
regarding the determination of interaction issues. For
example, a textual specification depicting Figure 1
above is:
1. Lecturer volunteers for course
2. Registrar prepares course list
3. Student chooses course to study

If the domain is familiar and the problem is simple,
then it might be easy to outline the sequence of events
in a scenario like the one above. However, most
software projects are complex and involve many
interacting participants whose interaction patterns
might vary. Stakeholders often find it hard to
articulate their views clearly and sometimes need
different combinations of tests to validate their
understanding. It, therefore, becomes unclear whether
the third event is dependent on the first, the second,
neither or both. That is, can a student choose a course
before any lecturer volunteers to teach it?
Additionally, is it might be illogical for lecturers to
volunteer for courses after students have made their
choices? It is in such circumstances that knowing
merely the actors and the events might not help solve
the problem. Developers need further information to
enable the teasing out of problem domain issues that
will help clarify the interdependencies amongst use
case elements.

The following section outlines our approach.
Examples are used to demonstrate how the approach
works.

4. Relating use case elements with states
4.1 Semantics of states
 Our model assumes that states are crucial properties
of actors, which determine whether the actor may

invoke (or participate in) an event. This means that
for an actor to be able to invoke an event, it must be
in a state matching that event’s precondition, and
after the event is successful, the actor changes state to
the post-condition of that event. In other words, the
textual use case specification is comprised of one
central theme, the event, which in turn is accessible to
the triggering actor (primary actor) and secondary
(passive) actor. [Note that for simplicity we describe
interaction between two actors, but the principle
holds for any number]. A state based use case
description need not be written in time-order as it
mimics a state-machine whose order of event
execution depends on the states of invoked and
available events. Thus, default ordering of events is
not presumed, as the order of execution is based
solely on states. We have developed an application,
called Educator, to help in authoring use case
descriptions in this fashion. (An early version of the
tool is described in [12]). Educator has functionality
for including states and their amendment, to allow for
testing of different combinations of possible
behaviours. Stakeholders with differing views on the
desirable behaviour can brainstorm on what they
think is acceptable before any attempt on a working
model is made.

 Consider the course registration description in
section 3 above. A state-based description of that
scenario can be explained as follows: before the
lecturer volunteers for any course, the lecturer is at an
initial state, and after the lecturer has volunteered for
the course they wish to teach, the lecturer is in the
state courses agreed. This means that the lecturer has
agreed with the registrar on some courses that the
lecturer will teach. This implies that the registrar is
involved in the lecturer’s volunteering to teach some
courses. We might suppose that the registrar is also at
some initial state before reaching the courses agreed
state with the lecturer. After this, the registrar can
now prepare the list of courses available, so that
students can choose the courses to study based on
what is available. Thus, the registrar moves from
courses agreed state to list done state. The student
would have been at some initial state and will have to
know that the course list is done so they also arrive at
the list done state. In the end, the student can choose
the courses they wish to study, thus, the student
moves from list done state to courses chosen state.

The following shows the above description edited in
our application:

Figure 2: Course registration state-based
description

Users can now animate the above description to view
the various state changes of the actors as they perform
their respective events. For instance the first
animation window is:

Figure 3: First animation window (registrar is
secondary actor)

Figure 3 shows the lecturer in an initial state; ready to
volunteer for courses to teach, and the registrar in the
initial state. If this is not the desired behaviour, that
is, if say it is the student who interacts with the
lecturer when the lecturer is about to volunteer for
course, then the description should be edited so that
the student is the secondary actor for the first
available event.

Figure 4: Student as secondary actor for first
event

The first animation window shows that the student
(not the registrar) is at initial state this time.

Figure 5: Student is now at initial (not the
registrar)

It could be that after completing the animation, the
users decide that the next available event is that the
student will choose courses to study. To do this, the
user simply changes the states of that event
accordingly, that is, the precondition of the student’s
event will be matched with the post-condition of the
lecturer’s event. This is the essence of the tool usage.
Author descriptions, animate them to clarify
stakeholder expectations and revise the description
(by changing states, rewriting events or adding new
actors or states) to match the expectations of system
stakeholders. The states represent conditions that are
true of the respective actors for their respective
contextual events. Ultimately, states are problem-
domain specific rather than impositions of any
programming language.

4.2 Adopted syntax
[13] observe that since use cases are written in natural
language, their quality depends on disciplined use of
natural language. Some researchers (e.g. [4, 5, 14])
have suggested grammatical structures to be followed
for disciplined writing of use case descriptions.

[5] argues that a use case event should be simple and
suggests the format:
Subject… verb… direct object … prepositional
phrase.
For example, the first event in the use case
constructed earlier would be “the lecturer volunteers
for course”. This format is similar to that suggested in
[4] and we adopt it in our approach because it is
simple and intuitive.

 A recent study by [4] resulted in seven use case
authoring rules, termed CP rules. These rules are an
improvement of those of [14]. The main problem with
most of the guidelines is their lack of automated
support. We have incorporated some of the CP rules
in our application to enforce authoring of
comprehensible descriptions. For example, the first
CP rule requires each use case sentence to appear on
its own numbered line and we have supported this in
our application (see Figure 2 for example). The
second CP rule demands that the author should avoid
the use of pronouns (e.g. he, she, and it). We support
this by allowing the user to construct a working
dictionary that contains disallowed words:

Figure 6: An example list of disallowed words

If the user writes a sentence that has any of the un-
allowed words, then the application notifies the user
of that and provides an option to re-write the
sentence.

CP rule 6 requires that all verbs be in present tense
format. We have provided functionality to check that
users do not use words in the past tense. For instance,
if the user writes the first event as “lecturer
volunteered for course”, the application reports the
possible tense usage.

Figure 7: Feedback on CP rule 6

This is enforced by use of an inbuilt checker of words
that are in past tense. Since some words could appear
to be in past tense, we have provided the functionality
of constructing a dictionary of allowed words to
ensure such words do not appear to flout CP rule 6
when used in the description:

Figure 8: An example list of allowed words

The section below outlines our experiences on testing
our approach and the animation environment with a
group of MSc (Software Engineering) students.

5. Experiences so far
 As indicated earlier, the aim of our animation tool
is to aid the participation of both the customer and the
requirements engineer in the validation process. An
additional objective is to ensure the language used in
making descriptions is as easy for customers as it is
for the engineers. We avoid the use of formal
grammars such as process-algebraic instantiations.
When customers and general users participate in
requirements validation tasks, the requirements
engineer can easily show them the implications of the
behaviour contained in the authored use case
descriptions. Ultimately, participation of the customer
is paramount and the increased understanding on the
part of both parties has been the major strength of
enactable process models [9, 15].

 The animation tool was given to Masters students
for use in software engineering projects. The students
had experience on use cases via previous lectures and
had been exposed to state-based use case descriptions
and process models. We also discussed and
demonstrated to the students how the tool works
before leaving them to use it on their assignments.
The eventual feedback was gathered with the help of
structured questions. The general thrust of the
questions was twofold:
1) To determine whether the tool was easy to use.
2) To determine whether the tool helped users with
the clarification of the requirements for their software
engineering projects.

During the gathering of the feedback, the authors
were able to see demonstrations of the students use

case descriptions edited and animated with the tool.
Half of the students found the tool easy to use
whereas the other half did not find it easy enough.
However, all the students agreed that it was better
using the tool for authoring and animation rather than
use a notepad or typical word processor. Half of the
students strongly agreed that using the tool for
animating use case descriptions caused them to think
a lot more about the appropriate behaviour of the
final software for their projects and that they revised
their descriptions over and over again to correct and
test different implied behaviours. The other half of
the students agreed the animation support helped
them test their requirements before embarking on
successive development efforts.

5.1 Further work

Thus far, the research has succeeded in defining an
alternative approach to behavioural modelling with
use cases. The supporting application works
efficiently for use cases and their constituent
elements. Alternative paths for the use cases are also
taken care of where users might need to define
alternative paths for accomplishing their tasks with
the help of the system. We have resolved the issue of
intra-use case relationships and tests undertaken
indicate positive results. An industrial case study is
also planned. Currently, we are working on
supporting inter-use case relationships to ensure
distinct use case descriptions can be associated where
execution of one use case might impact or require the
execution of another use case by the same or different
actor.

Additionally, we intend to provide initial
approximations of resultant classes based on edited
use cases. We argue that once engineers have
validated descriptions with other stakeholders, it is
possible that the engineers can take a first-cut analysis
of the description to derive classes for subsequent
design. Our initial attempt on this is based on the
UML concept that many actors form classes, this
way, we provide functionality to name classes based
on actors, and assign class properties based on actors’
states and performed events.

5.2. Related work
 Requirements Engineering (RE) research focused
on use cases has been growing tremendously since the
OMG standardised UML in 1997. This is not
surprising given that the specification of appropriate
system behaviour is the focal point of RE and use
cases are the part of the UML that are solely geared
to behavioural specification.

 Interests in use case-oriented research have
followed two distinct routes. Researchers have
investigated use case structural issues pertaining to
their authoring (e.g. [4], [5], and [14]); and have
focussed on providing automated support for
behavioural modelling (e.g. [16], [17], and [18]).

 The central argument in the first group of
researchers is that writing comprehensible use case
descriptions is crucial to understanding the
expectations of the stakeholders ([19]and [20]). The
problem is that the UML does not give any guidance
on how to write effective use cases [5] and it is left to
the author to write descriptions in their own desired
way. It is apparent that many engineers and customers
may write ambiguous or incomprehensible
descriptions if no writing guidelines are followed.
The work of [14], and [4] which suggest various use
case construction guidelines could be beneficial if
adopted by industry. We argue that most of the
guidelines suggested should be supported by an
automated authoring application to enforce them (we
are supporting some of the CP rules guidelines
suggested by [4]); otherwise it will be difficult to
advance them for use in practice.

 The concept of augmenting textual descriptions
with formality, execution and animation has gripped
research and industry for well over a decade. [18]
outlines an approach termed play-in/play-out where
executable scenarios of system usage are played-in by
users by help of a graphical user interface of the
intended system. The scenarios are captured as
message sequence charts (MSCs). The play-out
process constructs a working model based on the
scenarios played-in by users. In other words, the
developer constructs a dummy interface of the
application, lets users play with it (while MSC
construction proceeds behind the scenes).
Consequently, users get a view of their actions from a
generated working model via the play-out process.
Simply put, the engineer makes users execute their
own use cases as if it was indeed a working system.

[17] describes executable use cases for a pervasive
health care system based on three tiers. The first tier
consists of informal descriptions of the elicited
requirements and the relevant parts of the problem
domain. This is done with the UML-style use cases.
The second tier is a formal model providing
execution capability of the descriptions made in the
first tier. Various modelling languages (e.g. UML

statecharts, activity diagrams, or even a programming
language) can be used in this tier. The central theme
for any language chosen for this tier is that it should
be able to model states and the actions that can be
performed in each state. This being largely a technical
tier, it is a preserve for developers. The third tier is a
graphical representation of the second tier to enable
users to animate the formal model to clarify whether
the model meets their expectations.

[16] describes an approach for verifying the
behaviour of concurrent systems by using scenario-
based state-machines that produce a combination of
all possible behaviours of the designed system
components. This can be viewed as more of a
verification effort rather than validation as the focus
is on testing whether inter-component
communications match the derivative specification.
The scenarios showing the communications (or
apparent behaviour) are constructed using a dialect of
process algebra called Finite Sequential process
(FSP) and the written scenarios can be animated in a
tailor made application called Labelled Transition
System Analyser (LTSA).

[9] describes RolEnact, a tool for creating and
enacting state-based business process descriptions.
The descriptions are created using a formal language,
Enact which is expressive enough to model roles,
their states and the processes they take part in. [15]
describes a graphical approach based on pi-calculus
to make graphical models of software systems. The
aim is to reduce the effort on the part of modellers
when creating and reasoning about the behaviour
exhibited by the models.

 The above approaches are similar to ours in one
important aspect, that is, the quest to involve
customers in the validation of software requirements.
However, a fundamental difference exists between
our approach and these others. The LTSA three-tier
model and the play-in/play-out approaches take a
formal approach to modelling behaviour from natural
language use cases with formal languages. The states
of the resulting description are based upon the
implementation bias of the deployed formal
languages. Hence end users have relatively little
involvement in creation or identification of flaws in
such descriptions. On the other hand, our lightweight
state machine is simple enough to allow a greater
variety of stakeholders to be involved in production
and validation of the description. Thus, users
themselves are capable of identifying appropriate

states because of their apparent knowledge of the
problem area. In doing this, we do not detach the
description making process.

6. Conclusion

The specification of software behaviour is a
complex task prone to subtle errors that can have
serious ramifications. Behaviour modelling has
proved to be successful in helping tease out and
correct flaws in design artefacts; however, it has not
had similar success in requirements specification. The
two main reasons for this are as follows: firstly,
constructing models for behavioural analysis remains
a difficult undertaking requiring considerable
expertise. Secondly, the validation benefits appear at
the end of the (often lengthy) construction effort, and
users often have little involvement in the construction
of models.

The approach described in this paper, together
with the supporting tool, demonstrates that it is
feasible to produce enactable models of use case
descriptions without delving into any formal
specification techniques. That is, we produce
behavioural models of use cases that are amenable to
automated analysis for clarifying stakeholder
expectations. The essence of obviating any need to
create intermediate formal descriptions is to maintain
the simple nature of the use case description. The
supporting application enables the prototyping of
state-based descriptions thus providing an early ‘feel’
of what stakeholders would get from the resulting
software.

In our view, seamless development starting from
the early stages of requirements elaboration should
involve general users and customers. Hence, the tool
allows for rigorous validation of use case
descriptions, whilst still maintaining crucial user
involvement.

7. References

1. Sutcliffe A and N. Maiden. Use of Domain Knowledge for Requirements Validation. in Proceedings of

IFIP WG 8.1 Conference on Information System Development Process. 1993: Elsevier Science Publishers.
2. Pfleeger, S., Software engineering: theory and practice. 2nd edition ed. 2001: Prentice Hall.
3. Leonhardt U, et al. Decentralised process enactment in a multi-perspective development environment. in

Proceedings of the 17th international conference on Software engineering. 1995. Seattle, Washington,
United States: ACM Press.

4. Phalp, K. and K. Cox. Supporting Communicability with Use Case Guidelines: An Empirical Study. in 6th
International Conference on Empirical Assessment and Evaluation in Software Engineering. 2002. Keele
University, Staffordshire, UK.

5. Cockburn, A., Writing effective Use cases. 2001: Addison-Wesley.
6. OMG, Unified Modelling Language Specification version 1.5. 2002, OMG; http://www.omg.org.
7. Stevens, P. and R. Pooley, Using UML:Software Engineering with objects and components. 2000: Addison

Wesley.
8. Scheneider, G. and J.P. Winters, APPLYING USE CASES: A Practical Guide. 1998, Reading: Addison-

Wesley.
9. Phalp, K., et al., RolEnact: role-based enactable models of business processes. Information and software

Technology journal, 1998.
10. Chonoles J. M and J.A. Schardt, UML 2 For Dummies. 2003: Wiley Publishing, Inc.
11. Jackson, M., Problem Frames: Analyzing and structuring software development problems. 2001: Addison-

Wesley.
12. Phalp, K. and K. Cox. Using Enactable Models to Enhance Use Case Descriptions, in International

Workshop on Software Process Simulation Modelling (in conjunction with ICSE 2003). 2003. Portland,
USA.

13. Kulak, D. and E. Guiney, Use Cases:Requirements in Context. 2000: Addison-Wesley.
14. Rolland C and B. Achour, Guiding The Construction of Textual Use Case Specifications. 1998, CREWS

Report Series.
15. Walters, R.J. A Graphically Based Language for Constructing, Executing and Analysing Models of

Software Systems. in 26th Annual International Computer Software and Applications Conference. 2002.
Oxford, England.

16. Kramer J., J. Magee, and S. Uchitel, Synthesis of Behavioural Models from Scenarios. IEEE Transactions
on Software Engineering, 2003. 29(2).

17. Jorgensen B. J and C.Bossen, Executable Use Cases: Requirements for a Pervasive Health Care System.
IEEE Software, 2004.

18. Harel D., H. Kugler, and R. Marelly, The Play-in/Play-out Approach and Tool: Specifying and Executing
Behavioral Requirements. The Israeli workshop on programming languages and Development
Environments; Haifa, Israeli., 2002.

19. Cox, K., Heuristics for Use Case Descriptions, PhD Thesis, in School of Design, Engineering &
Computing. 2002, Bournemouth University, UK.

20. Glinz, M. Improving the Quality of Requirements with Scenarios. in Second World Congress on Software
Quality. 2000. Yokohama.

