
Using enactable models to
enhance use case descriptions

‘Banging on about enaction again’

Keith Phalp
Presentation to the ESERG Workshop, July 2003

Bournemouth University, UK

C
O

R
E

M
etadata, citation and sim

ilar papers at core.ac.uk

P
rovided by B

ournem
outh U

niversity R
esearch O

nline

https://core.ac.uk/display/75128?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Supporting Use Cases
Our (group) context

• Elicitation. Process models, Use Cases and
interfaces.

• Writing: Using writing rules, guidelines or templates.
• Assessing Quality.
• Comprehension: Questions and interrogation
• Validation and evolution

– Dependencies and enaction. TOOL SUPPORT.
• Moving towards design.

– Teasing out (hidden) issues.
– Use case driven processes. Construction & validation

Research Rationale / agenda

• Use Case Descriptions do not have good
tool support.

• Validation of descriptions has always been
less easy than UML suggest.

• Enaction provides an excellent opportunity
to validate descriptions.

• Enaction also enables consideration of later
design issues.

Two sporting use cases
1. The match reached full-time
2. The referee blew his/her

whistle
3. The ball crossed the goal-

line
4. The goal was not given

Alternatives
4. The goal was given

1. The match reached full-
time

2. The referee blew his/her
whistle

3. The ball crossed the goal-
line

4. The goal was given

Alternatives
4. The goal was not given

Validation & Context. Someone who ‘knows the the game’.

Real agenda

• With many process models (say with RolEnact)
users are able to play with behaviour.
– Lots of arguments about increased understanding,

validation etc...

• Wouldn’t that be handy for specifications (as use
cases)
– it’s the old exectuable spec argument again (its so 80s).

• So my analogy is that of RolEnact, which I’ve
talked about lots before,
– (so will show examples - where I’m coming from).

Divisional Director

new project approved

start new project manager

Agree TOR for project

Agree TOR and delegate

Obtain estimate

Give plan to designer

deliver design

start new designer

write TOR for designer

prepare a plan

produce project debrief report

carry out design
quality check

produce design

design OK?no yes

Designer

Project Manager

prepare an estimate

choose a method

Role
Activity
Diagram
(standard)

initial

start new project manager

Agree TOR for project

Agree TOR and delegate

Obtain estimate

Give plan to designer

deliver design

start new designers

write TOR for designer

prepare a plan

produce project debrief report

carry out design quality check

produce design

design OK?
no

yes

Divisional
Director

Designer

Project
Manager

prepare an estimatechoose a method

project manager started

initial

initial TOR agreed

designers started

TOR written

delegated

initial

delegated

method chosen

Agree TOR and delegate

delegated

estimate prepared

estimate sent estimate received

plan prepared

plan received

able to design

design produced

checking complete

design delivered

Designer
Estimator

initial

plan sent

ready to design

RAD with
states

Example
RolEnact code

Interaction Role1.Interaction
Me(before1  after1)
Role2(before2 after2)

End

before1

after1

interaction

before2

after2

Role1 Role2

Interaction Designer.deliver_design
me(accepted_design  design_sent)
Project_Manager(plan_sent  design_received)

End

An example enaction?

Experiences with Enaction

• Student experience:
– Can write RolEnact equivalent to use case

description and validate with enaction
• helps tease out issues..

– Role Activity Diagrams, RolEnact, Use Cases as part of
a method

• strong combination as a requirements validation mechanism

• Industrial experience:
– Programming to enact each Use Case seen an

unwelcome overhead. Not feasible for industrial
application.

Use Case Enaction Tool(s)

• The prototype includes:
– Pre- and post-conditions for each Use Case
– Text editing capability for standalone Use Case
– Default dependency capability and Branch

dependencies (alternative / exceptions)
– Enaction of the Use Case
– Scenario generation of the path selected during

enaction
– Grammar enforcement capability

Previous version: Use Case
Editor

Example Enaction

Problems

• Abbreviated dependency mechanism only
makes sense at system level / single actor.

• Strength (point) of enaction lost.
• Not helpful for considering AND, where

two precondition on two or more actors.
– Note AND implicit in an interaction.

• Currently revising interface.

Revised interface plan

Actor name Event pre post Actor name pre post
Keith gives pen has pen no pen Mathenge no pen has pen
Mathenge gives pen has pen no pen Keith no pen has pen

Actor name Event pre post Actor name pre post
Driver drives to ticket machine initial at machine
Driver presses the ticket button at machine ticket requested Ticket Machine initial ticket requested
Ticket Machine dispenses ticket ticket requested ticket dispensed
Driver takes ticket ticket requested ticket taken Ticket Machine ticket dispensed ticket taken

Me Actor 2

Me Actor 2

• See example?

Also for future Construction

• Levels of Usage
– Advanced usage (detailed dependency

selection) versus basic user.
• Multiple use cases

– Depicting dependencies and enaction across use
cases (via include and extend relationships)

• Further flexibility in editing the description
– e.g., ability to re-order events simply.

Advantages of Tool Support: well
here’s hoping

• Use Cases dependency examination offers
insights into:
– the problem domain, the requirements and later

in subsequent design
– and is important to requirements validation.

• Enaction thus provides this dependency
scrutiny at ‘minimum’ effort for clients.

Some Issues for tool support
• Does the increased capability offered by dependencies enhance

or overcomplicate descriptions?
• Will the inclusion of use case writing guidelines restrict the

flexibility offered by enaction?
• Does the template approach to structuring use cases fit more

naturally with tool support?
• Will requirements volatility make dependency mapping

unmanageable?
• Do users really require models that consider dependencies

across use cases, or does the restriction to consideration within a
use case provide a partitioning of understanding?

	Using enactable models to enhance use case descriptions��‘Banging on about enaction again’
	Supporting Use Cases�Our (group) context
	Research Rationale / agenda
	Two sporting use cases
	Real agenda
	Role Activity Diagram�(standard)
	RAD with states
	Example RolEnact code
	An example enaction?
	Experiences with Enaction
	Use Case Enaction Tool(s)
	Previous version: Use Case Editor
	Example Enaction
	Problems
	Revised interface plan
	Also for future Construction
	Advantages of Tool Support: well here’s hoping
	Some Issues for tool support

