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Abstract

Navigation through the web, colloquially known as “surfing”, is one of the main ac-
tivities of users during web interaction. When users follow a navigation trail they often
tend to get disoriented in terms of the goals of their original query and thus the discovery
of typical user trails could be useful in providing navigation assistance. Herein we give
a theoretical underpinning of user navigation in terms of the entropy of an underlying
Markov chain modelling the web topology. We present a novel method for online incre-
mental computation of the entropy and a large deviation result regarding the length of a
trail to realise the said entropy. We provide an error analysis for our estimation of the en-
tropy in terms of the divergence between the empirical and actual probabilities. We then
indicate applications of our algorithm in the area of web data mining. Finally, we present
an extension of our technique to higher-order Markov chains by a suitable reduction of a
higher-order Markov chain model to a first-order one.

Key words. Web user navigation, Web data mining, navigation problem, Markov chain,
entropy

1 Introduction

The World-Wide-Web (known as the web) has become a ubiquitous tool, used in day-to-day
work, to find information and conduct business, and it is growing at an exponential rate. The
activity of searching for information consists of the cycle: (i) submitting a query to a search
engine, (ii) selecting a page for browsing from the returned list of pages, and (iii) navigating,
i.e. link following. We concentrate on the navigation process where the user forms trails
of pages through the database graph, starting from a page chosen from the search engine’s
result list. The central concept of a trail, which describes some logical association amongst its
pages, is based on Bush’s visionary idea [Bus45] (see [Ore91]). During the navigation process
users often tend to “get lost in hyperspace” [Nie90] meaning that when following links users
tend to become disoriented in terms of the goals of their original query and the relevance
to the query of the information they are currently browsing; we refer to this problem as the
navigation problem [LL02b].

Our previous work on hypertext involved the formalisation of an underlying model, moti-
vated by the navigation problem just mentioned [LL99a, LL99b]. In this model a hypertext
database consists of an information repository, which stores the contents of the database in
the form of pages, and a directed graph describing the structure of the database; the nodes
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of the directed graph are the pages in the repository and the arcs of the directed graph are
the links. We call a set of trails in the database graph a web view. To accommodate for the
stochastic nature of navigation we represent each page by a state and we associate proba-
bilities with the links, resulting in a Markov chain model. The probabilities can have two
separate interpretations: firstly denoting the frequencies that users traversed links, taking
into account the time users spend at the destination page, and secondly the weighted rele-
vance the user attaches to a link given a particular query. Using these interpretations we
have devised data mining algorithms for constructing a web view of the user’s navigation
behaviour patterns [BL00] and have also devised adaptive algorithms for constructing a web
view based on automating the navigation process according to the user’s query [ZL99].

Following from the above work we present a model for web user navigation based on
the entropy of a finite ergodic Markov chain [KS60]. In this model, each user navigation
session can be viewed as a trail through an ergodic Markov chain such that as soon as
one session is completed a new one can be started at any state with nonzero probability
according to an empirical initial distribution. Over a period of time we assume that the
empirical distribution of the Markov chain probabilities stabilises in accordance with the
actual transition probabilities. The entropy of the Markov chain is central to this approach,
since once the empirical distribution stabilises, the entropy of a typical trail is “close” to
the entropy of the Markov chain as a consequence of the Asymptotic Equipartition Property
(AEP) [CT91]. Such a typical trail can be seen to represent the user’s navigation behaviour
over a period of time. Herein we concentrate on the analysis of an iterative method for
computing this entropy by considering a long navigation session, which can be viewed as the
concatenation of shorter sessions each starting from a predetermined “home page”.

The main results of the paper are twofold. Firstly, we obtain a large deviation result
for the length of a trail through a Markov chain needed to compute its entropy in terms of
the mean waiting and recurrence times between states. Secondly, we formalise an iterative
online algorithm for computing the entropy of a Markov chain, which is shown to converge
to the true entropy from below. Moreover, we provide an error analysis for this algorithm in
terms of the relative entropy between the empirical and actual transition probabilities, which
is shown to be a chi-squared statistic.

Being able to compute the entropy of a Markov chain representing the part of the web
navigated by a user or a group of users allows us to compute the probability of a typical trail
(see Section 2), enabling us to mine such trails employing usage mining techniques similar
to those presented in [BL00]. Moreover, knowledge of the entropy of a typical trail and the
stationary distribution of the underlying Markov chain can be used to personalise ranking
algorithms, such as Google’s PageRank [PBMW98], for individual users or groups of users.

Although the Markov chain assumption is somewhat controversial, it is justifiable as a first
attempt to obtain analytic results to aid our understanding of the navigation problem. The
recent empirical results of Pirolli and Pitkow [PP99], based on web log data that summarise
user navigation sessions, support our initial choice of a (first-order) Markov chain model as
opposed to a higher-order Markov chain model, for two reasons. Firstly, navigation sessions
are typically short, i.e. they do not tend to exhibit long range dependencies. In this context
Huberman et al. [HPPL98] have suggested a “universal law of surfing”, backed-up by evidence
from web log data, which predicts that typical trails are short. Secondly, the experimental
results of Pirolli and Pitkow [PP99] suggest that a first-order Markov chain model is substan-
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tially more stable over a period of time than higher-order Markov chain models and is thus
more reliable. However, higher-order Markov chains can be reduced to first-order Markov
chains by aggregating states [Bil61] and therefore the techniques we present herein extend to
higher-order Markov chain models. In fact, we extend our basic technique to higher-order
Markov chains of bounded order utilising dynamic Markov modelling [CH87, BM89, TR93],
which is an adaptive context modelling method in which a finite-state model is built dynam-
ically.

The rest of the paper is organised as follows. In Section 2 we give the necessary prelim-
inaries regarding ergodic Markov chains. In Section 3 we obtain a large deviation result for
the length of a trail through a Markov chain needed to compute its entropy. In Section 4 we
present an algorithm for computing incrementally the entropy of a Markov chain from a trail
induced by a random walk and analyse its convergence properties. In Section 5 we analyse
the performance of this algorithm by deriving an error term for it in terms of the relative
entropy between the empirical and actual transition probabilities. In Section 6 we discuss
applications of our algorithm in the area of web data mining [KB00]. In Section 7 we present
an extension of our technique to higher-order Markov chains. Finally, in Section 8 we give
our concluding remarks.

2 Ergodic Markov chains

Herein we present results on Markov chains which are needed to develop the main contribution.
We first show that viewing the home page as the starting point of all user navigation sessions
leads to an ergodic Markov chain, which is central to our approach. We then formalise the
notion of the entropy of such a Markov chain and explain the AEP. The rest of the section
presents some technical results needed for the estimates we derive in later sections.

An ergodic Markov chain, M = (G, P ), is a finite Markov chain which is aperiodic and
irreducible [Fel68] (such a Markov chain is called regular in [KS60]); we will often refer to an
ergodic Markov chain simply as a Markov chain. In particular, G = (N, E) is its underlying
finite directed graph; the nodes in N are called states, the cardinality of N is n, and the
cardinality of E is called the size of G. (At times we refer to the set N as the state space of
M.) In addition, the probabilities Pij associated with arcs (or links) (si, sj) ∈ E are called
transition probabilities, and the probabilities Pi associated with states si ∈ N are called initial
probabilities. We note that, since the Markov chain is ergodic, for some m > 0 we have that
for all i, j, Pm

ij > 0.

As an example, consider the following transition probability matrix of an irreducible
Markov chain M1 with four states s0 to s3, where s0 represents the user’s home page, whose
initial probability is one.

M1 s0 s1 s2 s3

s0 0 0.3 0.5 0.2
s1 0.4 0 0 0.6
s2 0 0.9 0 0.1
s3 0.5 0 0.5 0

The induced Markov chain summarises the navigation statistics of a user through s1, s2

and s3. After eliminating the home page s0, which we consider to be an artificial starting

3



point, we get the ergodic Markov chain M2 with the following transition matrix and the
initial probability vector, 〈0.3, 0.5, 0.2〉.

M2 s1 s2 s3

s1 0.12 0.2 0.68
s2 0.9 0 0.1
s3 0.15 0.75 0.1

In general, assume that we are given an irreducible Markov chain (which may or may not
be aperiodic) having a distinguished starting state, s0, whose initial probability is one, and
such that all the probabilities P0i, with i > 0, are positive (assume P00 = 0). We can then
eliminate s0 via the state reduction technique of Sonin [Son99] to obtain an ergodic Markov
chain modelling the user’s behaviour.

A trail in M is a sequence
T = s1, s2, . . . , st

of states in N such that (si, si+1) ∈ E, i ∈ {1, . . . , t− 1}, where t is the length of T .
The probability p(T ) of a trail T of length t in M is given by

p(T ) = Pk1Pk1k2Pk2k3 · · ·Pkt−1kt , (1)

where k1, k2, . . . , kt is a permutation of 1, 2, . . . , k.

It is well known that an ergodic Markov chain has a stationary distribution, π, satisfying

πP = π,

such that
lim

m→∞Pm = Q,

where each row of Q is identical to the stationary distribution π, which is positive.
It can be verified that for the ergodic Markov chain M2 above, we have

π = 〈0.37246, 0.311512, 0.316027〉.

The entropy of a Markov chain [Khi57, CT91] is given by

H(M) = −
n∑

i=1

n∑

j=1

πiPij log Pij , (2)

where as usual logarithms are taken to the base 2 and by convention log 0 = 0 and log 0/0 = 0.
It can be verified that for the ergodic Markov chain M2 above, we have

H(M2) = 0.929797.

The following result dates back to Shannon [Sha48] (see [Khi57] for a lucid proof).

Theorem 2.1

H(M) = lim
t→∞

− log p(T )
t

(almost surely), (3)

where T is a trail in M of length t. 2
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We will call a trail T typical if its entropy − log p(T )/t is “close” to H(M). The AEP,
already mentioned in Section 1, asserts that all typical trails have the same probability, given
by

p(T ) ≈ 2−tH(M). (4)

By the AEP the sum of the probabilities of all the typical trails can be made as “close”
to one as we like by increasing t.

The next proposition, where Rij is a random variable giving the recurrence time of the
transition from state si to state sj in one step, follows from Theorem 2 in [Kac47] (see
[WZW98]).

Proposition 2.2 The mean recurrence time for Rij , denoted by E(Rij), is given by

E(Rij) =
1

πiPij
. 2 (5)

As in Section 4.3 of Kemeny and Snell [KS60] (cf. [LL02a]), let

Z = (zij) =
(
I − (P − E Diag(π))

)−1

be the fundamental matrix for the ergodic Markov chain with transition matrix P , where E
is the matrix whose elements are all one and Diag(π) is a diagonal matrix whose diagonal
elements are the components of the stationary distribution π. (Note that Q = EDiag(π).)

The next proposition follows from Proposition 2.2 and the results of Section 4.4 in [KS60].
Let Wij be a random variable giving an upper bound on the waiting time for the transition
from state si to state sj to first occur in one step; we define the expectation of Wij to be
equal to the maximum mean time it takes to get to state sj plus the mean recurrence time
of the transition from state si to state sj in one step.

Proposition 2.3 Let E(Wij) denote the mean waiting time for Wij . Then,

E(Wij) =
zjj −mink zkj

πj
+

1
πiPij

, (6)

where

zkj = δkj +
∞∑

m=1

(Pm
kj − πj),

with δkj being the Kronecker delta and j, k ∈ {1, . . . , n}. 2

Let β be the minimum natural number such that for all i, j, P β
ij > 0 (see Section 8.5 in

[HJ85] for various upper bounds on β, which is known as the index of primitivity). It follows
that

|zij |≤ β +
∞∑

m=0

|P β+m
ij − πj | . (7)

Now, let 1/η be given by
1
η

= min
i,j

P β
ij ≤

1
n

.

The next lemma gives us a rough idea of how large zij can be, independently of i and j.
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Lemma 2.4 An upper bound on |zij | is given by

|zij |≤ β + η.

Proof. The result follows immediately, since by a standard coupling argument (see Fact 10 in
[Ros95]) we can deduce from (7) that

|zij |≤ β +
∞∑

m=0

(
1− 1

η

)m

. 2

We note that
zjj − zij

πj
,

is the mean waiting time for the first occurrence of sj starting from si. Moreover, the inter-
pretation of zjj − zij is the difference (in the limit) between the mean number of visits to
state sj starting from sj and the mean number of visits to state sj starting from si. As a
final remark we note that by Lemma 2.4

|zjj − zij |=|1− δij +
∞∑

m=1

(Pm
jj − Pm

ij ) |≤ 2(β + η). (8)

Define a tour of G to be a trail in M which contains all the states in N and such that
the first and last states of the trail are the same. The following result is easily obtainable,
where the mean waiting time for a tour is the mean waiting time to get to the first state of
the tour, say si, plus the mean waiting time to get to each consecutive state in the tour and
then back to si.

Proposition 2.5 The minimum mean waiting time for a tour of G, denoted by W (G), is
given by

W (G) = min
i1,i2,...,in


zi1i1 −mink zki1

πi1

+
n∑

j=2

zijij − zi(j−1)ij

πij

+
zi1i1 − zini1

πi1




≤ (n + 1)2η(β + η), (9)

where i1, i2, . . . , in is a permutation of 1, 2, . . . , n. 2

3 A large deviation result for Markov chains

By Theorem 2.1 we can compute the entropy of a Markov chain by computing the probability
of a “long” random walk (trail) through the navigation space. In order to get an estimate
on the length of such a trail we derive an inequality which yields the probability of a large
deviation of the empirical probability from the corresponding stationary probability. We
use the method of bounded differences directly [McD89] (for Hoeffding’s seminal paper see
[Hoe63]) rather than relying on the eigenvalue gap as in [Gil98], where it is additionally
assumed that the Markov chain is reversible.
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Let T be a trail of length t and Fk denote the prefix of length k of T , with k ∈ {0, 1, . . . , t};
by convention F0 is the empty sequence. Moreover, let mi,j(k) (or simply mi,j whenever k = t)
be the number of transitions from si to sj in Fk.

We observe that, by the law of large numbers for ergodic Markov chains, mi,j/t converges
to πiPij as t tends to infinity. Moreover, by Khinchin’s proof of Theorem 2.1 [Khi57] once
mi,j/t is “close” to πiPij , for all i, j ∈ {1, . . . , n}, the trail T becomes typical. By collecting
the trail statistics, i.e. mi,j and mi, where mi is the number of visits to state si in T , we
can compute H(M) on using (2), noting again that by the law of large numbers mi,j/mi

converges to Pij as t tends to infinity.

On using Hoeffding’s inequality and the method of bounded differences, we now obtain an
upper bound on the length t of a trail T ; the length is needed to compute the entropy given
by (3). Define a martingale Y0, Y1, . . . , Yt, with

Yk = E(mi,j(k) | Fk),

where k ∈ {0, 1, . . . , t}, viewing T as a sequence of random variables generated by a simulation
of M (cf. Example 12.2.20 in [GS92]). Theorem 6.7 in [McD89] then implies that

p

(∣∣∣∣
mi,j

t
− πiPij

∣∣∣∣ ≥ ε

)
≤ 2 exp

(
−ε2

2tC2

)
, (10)

where ε > 0 and for all k ∈ {1, . . . , t}, |Yk − Yk−1 |≤ C.

We now derive a value for C, which is one plus the number of transitions that can be
packed into a sequence of states whose length is the mean waiting time for Wij . Define

mi,j(k, t) = mi,j(t)−mi,j(k),

where 0 ≤ k ≤ t, i.e. the number of transitions from si to sj in the suffix of T starting from
the kth state. Thus, where 1 ≤ k ≤ t, we have

|Yk − Yk−1| = |[mi,j(k) + E(mi,j(k, t) | Fk)]− [mi,j(k − 1) + E(mi,j(k − 1, t) | Fk−1)]|
≤ 1 +

E(Wij)
E(Rij)

,

since we can bound E(mi,j(k, t) | Fk) above and below by

(t− k)− E(Wij)
E(Rij)

≤ E(mi,j(k, t) | Fk) ≤ (t− k)
E(Rij)

.

Thus on using (8) and Propositions 2.2 and 2.3 we can rewrite (10) as

p

(∣∣∣∣
mi,j

t
− πiPij

∣∣∣∣ ≥ ε

)
≤ 2 exp

(
−ε2

2t(2 + 2Pijη(β + η))2

)
, (11)

since
E(Wij)
E(Rij)

= 1 +
πiPij(zjj −mink zkj)

πj
≤ 1 + 2Pijη(β + η).

Finally, in order to obtain an estimate of the trail length for computing H(M), we multiply
our estimate of t by the size of G. Given ε and p, our estimate of t, for a given pair (i, j), can
be derived from (11).
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4 Computing the entropy of a Markov chain

A straightforward method for computing the entropy of a Markov chain, when P is given, is
to compute the stationary distribution π and then to use (2) to compute H(M).

In the case when we do not have P readily available we cannot use this straightforward
method. Moreover, the size of G and the complexity of determining π may prevent us from
such a computation of the entropy. An incremental method for computing the entropy arises
from (3) simply by navigating through the state space, where the transitions occur according
to the underlying probabilities, and then collecting the trail statistics. We will show that
with such a method the empirical entropy converges to the true entropy from below, i.e. the
empirical entropy increases monotonically until it converges to the true entropy.

We assume that a function random({Pi}) is available which returns an initial state dis-
tributed according to the initial probabilities {Pi}, and a function random(si, {Pij}) is avail-
able which returns a state adjacent to si distributed according to the transition probabilities
{Pij}, where i, j ∈ {1, . . . , n}. We now give the pseudo-code of an algorithm, designated
ENTROPY({mi}, {mi,j}), which returns an estimate of the entropy of the Markov chain M;
for brevity in the algorithm we overload the index k of a state sk so that it refers both to
the kth state in the trail induced by the random walk and also to the kth state in N . In
the algorithm {mi} and {mi,j} are variables indicating, respectively, the number of visits to
si and the number of transitions from si to sj so far, where i, j ∈ {1, . . . , n}. Moreover,
CONVERGED is a Boolean variable which is assumed to be initially false.

Algorithm 1 (ENTROPY({mi}, {mi,j}))
1. begin
2. H, {mi}, {mi,j}, k := 0;
3. s1 := random({Pi});
4. while not CONVERGED do
5. k := k + 1;
6. sk+1 := random(sk, {Pkj});
7. H := H + (mk,(k+1) + 1) log((mk,(k+1) + 1)/(mk + 1))−mk,(k+1) log(mk,(k+1)/mk);
8. for all j 6= (k + 1) do
9. H := H + mk,j log(mk/(mk + 1));
10. end for
11. mk := mk + 1;
12. mk,(k+1) := mk,(k+1) + 1;
13. end while
14. return −H/k;
15. end.

Regarding the convergence criterion, it is possible to use (11) in order to obtain an upper
bound on the number of iterations, say t, of the while loop beginning at line 4 and ending at
line 13, so that the empirical entropy −H/t returned by the algorithm is as “close” to H(M)
as we wish in the sense of almost sure convergence; in this case, we say that t is large enough
and write −H/t ≈ H(M).
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The next theorem, which states the correctness of Algorithm 1, follows from the fact that

−H/t = −
n∑

i=1

n∑

j=1

mi,j

t
log

mi,j

mi
. (12)

Theorem 4.1 Assume that t is large enough. Then the value −H/t returned by Algorithm 1
correctly approximates H(M), i.e. −H/t ≈ H(M). 2

We observe that the space complexity of Algorithm 1 is linear space in the size of G
regardless of the length t of a typical trail. On the other hand, the time complexity of
Algorithm 1 is O(t log |G |), where |G | denotes the size of G, assuming that a binary search
can be performed on G to find a given state.

In the following let Hk denote the value of H in Algorithm 1 after k ≥ 0 executions of the
while loop beginning at line 4 and ending at line 13. The next theorem implies that −H/t
converges to H(M) from below, where t is the final value of k.

Theorem 4.2 Hk+1 ≤ Hk.

Proof. Suppose that at line 6 of Algorithm 1 a transition occurred from state si to state sj

and that the number of states outgoing from si is m, with m ≥ 1; m = 0 is not possible
since M is ergodic. If m = 1, then the result is immediate since Hk+1 = Hk due to the fact
that mi,j = mi. So assume that m > 1 and that the transition that occurred at line 6 of
Algorithm 1 was from si to sm.

Let Xj denote mi,j , for j ∈ {1, . . . , m}, and X denote mi. It is sufficient to show that

m−1∑

j=1

Xj log
Xj

1 + X
+ (1 + Xm) log

1 + Xm

1 + X
<

m−1∑

j=1

Xj log
Xj

X
+ Xm log

Xm

X
. (13)

(Note that we demonstrate strict inequality and that we omit to divide the left and right
hand sides of (13), respectively, by k + 1 and k.) On substituting

X −
m−1∑

j=1

Xj for Xm

into (13), it remains to show, after some algebraic manipulation, that

(1 + X −
m−1∑

j=1

Xj) log(1 + X −
m−1∑

j=1

Xj)− (1 + X) log(1 + X) <

(X −
m−1∑

j=1

Xj) log(X −
m−1∑

j=1

Xj)−X log X. (14)

On a further substitution of

X −
m−1∑

j=1

Xj for αX
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into (14) for some α, with 0 < α < 1, we need to establish that

(1 + αX) log(1 + αX)− (1 + X) log(1 + X) < αX log αX −X log X. (15)

The result now follows since (15) can be transformed into

αX log
(

1 +
1

αX

)
+ log(1 + αX) < X log

(
1 +

1
X

)
+ log(1 + X) (16)

and x log(1 + 1/x) is strictly monotonically increasing for all x > 0, since its derivative is
positive for all x > 0. 2

We observe that the difference

(1 + X) log(1 + X)−X log X

pertaining to the decrease of mi,j/mi due to the increase in mi, where j 6= m, is greater than
the difference

(1 + αX) log(1 + αX)− αX log αX

pertaining to the increase of mi,m/mi due to the increase in both mi and mi,m. All other
empirical probabilities, mh,j/mh, with h 6= i, remain unchanged due to the increase in mi. We
further note that all empirical probabilities, mh/k, with h 6= i, decrease due to the increase
in k, apart from mi/k which increases; this fact does not influence Algorithm 1, since Hk is
divided by k only before exiting from the algorithm.

Building on Theorem 4.2 we can detect the per-state convergence of the empirical entropy
to the true entropy by examining the rate of change indicated by (15). It is important to note
that when X, i.e. mi, is large enough then α is approximately equal to Pim, written α ≈ Pim.
Let us now assume that we fix α > 0 at a level which is a lower bound estimate of Pim. On
using the fact that

lim
X→∞

log
(

1 +
1

αX

)αX

= log e

we can approximate (16) by

0 < log
(

1 + X

1 + αX

)
≈ log

(
1
α

)

when X is sufficiently large, noting that (1 + X)/(1 + αX) converges from below to 1/α.

So, on considering an error ε > 0 and letting

log
(

1 + X

1 + αX

)
= log

(
1
α

)
− ε

we can estimate X to obtain
X =

1− α2ε

α(2ε − 1)
, (17)

with the constraint that log(1/α) > ε. As an example, if we let ε = 1 then our estimate of X
is given by

X =
1
α
− 2.

We emphasise that the estimate of X is per-state, so in order to obtain an estimate of t,
i.e. an estimate on the number of times the while loop in Algorithm 1 should be executed,
we need to multiply our estimate of X by the expected number of steps of a tour of all the
states in the Markov chain. A lower bound for this expectation is he number of states of the
Markov chain, i.e. n, and an upper bound is given by (9).

10



5 Error analysis

We next proceed to analyse the performance of computing the entropy given the empirical
transition probabilities; to this end we derive the distance of the empirical entropy from the
true entropy of the subtrail generated so far by the random walk. This distance can be viewed
as the error.

Let p(T ) be as in (1). Then the entropy of T , denoted by H(T ), is given by

H(T ) =
− log p(T )

t
=
− log Pk1

t
−

n∑

i=1

n∑

j=1

mi,j

t
log Pij .

Let the error, denoted by E , be the difference between the entropy of T and the empirical
entropy given by (12). It can be verified that

E =
− log Pk1

t
+

1
t

n∑

i=1

n∑

j=1

mi,j log
mi,j

miPij
, (18)

where the second term in the error is the relative entropy (or divergence) between the empirical
transition probabilities {mi,j/mi} and the actual transition probabilities {Pij}; thus E ≥ 0,
since the relative entropy is non-negative [CT91].

By Corollary 5.2 in [McD89] (see [Hoe63])

p

(∣∣∣∣
mi,j

mi
− Pij

∣∣∣∣ ≥ δ

)
≤ 2 exp

(
−2δ2mi

)
,

with 0 < δ < 1. In particular, when

mi =
⌈
ln 2k

2δ2

⌉
,

where ln stands for the natural logarithm, the probability of a deviation greater than or equal
to δ is less than or equal to 1/k. So, when k is sufficiently large and δ is sufficiently close to
zero, (18) can be rewritten as

E ≈ O

(
1
t

)
+

1
t

n∑

i=1

n∑

j=1

mi,j log


 mi,j/mi

(mi,j/mi)±O
(

1√
mi

)

 , (19)

assuming that for all i, j ∈ {1, . . . , n}, mi,j/mi > δ, since

δ ≈
√

ln 2k

2mi
= O

(
1√
mi

)
.

We observe that t is, in general, much larger than
√

mi, since t =
∑n

i=1 mi, and thus, in
general, the first error term vanishes much faster than the second error term.

As a closing remark we note that in the absence of any additional prior knowledge about
the actual transition probabilities, the empirical entropy provides the maximum likelihood
estimate of the true entropy. Moreover, the relative entropy is asymptotically chi-squared
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with n2 − n − q degrees of freedom, where q is the number of Pij with Pij = 0 [Bil61] (cf.
[Mil55]); that is,

2
n∑

i=1

n∑

j=1

mi,j log
mi,j

miPij
≈

n∑

i=1

n∑

j=1

(mi,j −miPij)2

miPij
.

Thus the expected value of the error, i.e. the bias of our estimate of H(T ), is given by

E(E) =
−2 log Pk1 + n2 − n− q

2t
.

6 Applications in web data mining

Herein we mention applications of our results in two subareas of web data mining [KB00].
The first subarea is that of web usage mining [CPY98, SKS98, BL00], which makes use of
web log data to discover behavioural patterns in one or more users navigation history. In this
context we also mention [HPPL98] wherein, backed-up by evidence from web log data, it was
shown that navigation behaviour gives rise to regular statistical patterns and in particular
to a power-law distribution. Further evidence to this effect was demonstrated in [LBL01],
wherein a power-law distribuion was derived from a Markov chain model similar to the one
assumed in this paper.

The online incremental algorithm that we have presented can be used to compute the
Markov chain transition probabilities and the probability of a typical navigation trail, which
is related to the entropy via (4). This incremental approach to computing the entropy is
consonant with the way users surf the web and the manner in which web log data is collected.
One possibility is to incorporate our results into existing web usage algorithms such as the
one described in [BL00], so that typical trails can be mined.

The second subarea is that of web structure mining [CGP98, PBMW98, CDK+99, HHMN99],
which involves the discovery of linkage patterns in the structure of the web graph that can be
used to improve the ranking of web pages. This approach originates from the area of citation
analysis [PN76, Gel78], whose aim is to measure the influence of research in a given subfield
using citation data; see also [Lar96], where co-citation analysis is used to cluster related web
pages.

The stationary distribution π of the Markov chain computed from the user navigation log
data indicates the relative weighting of the pages according to the user’s preferance. (We
note that, once Algorithm 1 has converged, π can be returned as a byproduct.) This is a
form of page ranking, which could be weighted into search engine results to improve the
relevance of answers to the user or a group of users, and can be viewed as an extension of
Google’s PageRank [PBMW98]. Currently search engine results do not take into account the
preferences of an individual user or a group of users, so it is worth incorporating data mining
results into the page ranking component of a search engine.

7 Extension to higher-order Markov chains

Although we have argued in the introduction that a (first-order) Markov chain model is a good
starting point for developing a theory of user navigation patterns, it is only an approximation
and therefore a non-parametric model for entropy estimation along the lines proposed in
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[KASW98, WZW98] should be considered. One of the problems, however, in using the Wyner-
Ziv approach in the context of the web is that navigation sessions are typically short and
therefore it is probably better to fit a ν-order Markov chain model, for some ν ≥ 1, to the
data. This can be done by using the techniques described in [Cha73, MGZ89], or by using an
adaptive context modelling technique [Ris86, BWC89]. In our case fitting a ν-order Markov
chain model is not practical due to the size of the model, i.e. O(nν), since, in general, we
expect only few transitions to have non-zero probability. So, we propose instead a technique
based on dynamic Markov modelling [CH87, BM89, TR93], which is an adaptive context
modelling technique in which a finite-state model is built dynamically.

Hereafter we describe an extension to Algorithm 1 realising the said technique; we refer
to this extension as Algorithm 1e, and indicate how the results of the previous sections are
affected.

We first set a limit, say V ≥ 2, on the order ν of the Markov chain model, which is
based on the expected length of a navigation session starting and ending at the user’s home
page. We then invoke Algorithm 1 V − 1 times, for ν = 1, 2, . . . , V − 1, where, additionally,
at each step we maintain second-order probabilities relative to the current ν-order Markov
chain model, and at the end of each step we add states to the current model if the second-
order probabilities are sufficiently different from the current first-order probabilities, thereby
extending the order of the current Markov chain model.

We now outline Algorithm 1e. As before we represent each page by a state but we extend
the mapping from states to pages to be a many-to-one mapping rather than a one-to-one
mapping, i.e. a page may now be associated with several states; let us denote this mapping
by ρ.

We utilise the operation of cloning [CH87], whereby a state, say sk, is duplicated on the
basis of a link (si, sk), subject to the condition that there is another link (sh, sk), with sh

being a distinct state from si. Specifically, we create a new state su, with ρ(su) = ρ(sk), and
modify the link structure of the underlying graph of the Markov chain model as follows:

1) remove the link (si, sk) and add the link (si, su), and

2) for every link (sk, sj) we add the link (su, sj).

It is evident that cloning preserves the deterministic nature of the finite-state model
induced by the underlying graph of the Markov chain model.

We now introduce new notation to capture second-order probabilities. We denote the
probability of a transition from sk to sj (i.e. associated with the link (sk, sj)), given that the
previous transition that occurred was from si to sk (i.e. associated with the link (si, sk)), by
Pi,kj . As before the probability of a transition from sk to sj is denoted by Pkj .

Assume that we are currently at the νth iteration of Algorithm 1e. Then in addition to
the Pkj statistics we also temporarily store the Pi,kj statistics, whenever Pi,kj > 0. That is,

Pi,kj =
mi,k,j

mk,j
,

where mi,k,j is the transition count indicating the number of transitions from sk to sj given
that the previous transition that occurred was from si to sk. The criterion for the convergence
of the current iteration of Algorithm 1e is the accuracy of the estimations, {mi,k,j/mk,j}, of
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the current second-order probabilities, i.e. convergence occurs when they are close enough
to the true probabilities Pi,kj . (This can be measured by using Hoeffding’s inequality as in
Section 5.)

At the end of the νth iteration of Algorithm 1e we clone all states that satisfy the following
condition with respect to a transition going into them. A state sk is cloned on the basis of a
transition (si, sk) if

Pi,kj − 1
Lk

> γk,

for some state sj and for some 0 < γk < 1, where Lk is the number of states going into state
sk, i.e. the number of links of the form (sh, sk) for some state sh. That is, sk is cloned if there
is sufficient evidence that the transition from sk to sj is not independent of the transition
from si to sk. (We observe that if there are m states going into state sk, then sk is cloned at
most m− 1 times.)

After cloning a state the transition counts are modified as follows: where sk is the state
cloned on the basis of si, the newly added state is su, and old mk and old mk,j denote the
values of mk and mk,j prior to the cloning operation taking place, namely

1) mk =
∑

h mh,k, where the sum is over links (sh, sk) (note that after cloning h 6= i),

2) mu = mi,k,

3) mk,j = (mk/old mk) old mk,j , for every link (sk, sj), and

4) mu,j = (mu/old mk) old mk,j , for every link (su, sj).

We close this section with the following remarks:

(i) The entropy decreases after cloning takes place at the end of each iteration of Algo-
rithm 1e, since we are moving to a higher-order Markov chain model [CT91]. Thus
during an iteration the empirical entropy increases according to Theorem 4.2 but it is
strictly less than the value returned by the previous iteration of Algorithm 1e due to
the cloning. When Algorithm 1e terminates the empirical entropy has converged to its
V -order true entropy within the accuracy we have specified via the γk parameters.

(ii) The parameters γk can be used to control the level of cloning, i.e. the lower γk is for a
given state sk the more cloning takes place. Overall if the parameters γk are high then
we expect the final model to be closer to the first-order model, and correspondingly if
the parameters γk are low then we expect the final model to be closer to the V -order
Markov chain model.

(iii) The results from previous sections are still valid with reference to Algorithm 1e, since
each iteration of the algorithm is not affected by the {Pi,kj} statistics, which are addi-
tional parameters used only for cloning purposes and then discarded prior to the next
iteration.
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8 Concluding Remarks

We have presented a Markov chain model for analysing user navigation patterns through the
web, which is based on the computation of the information contained in a typical navigation
trail. We have constructed an online algorithm that computes the empirical entropy of such a
Markov chain by simulating a user’s random walk through the web; this algorithm converges
from below to the true entropy (Theorem 4.2). We have also provided mechanisms for esti-
mating the required length of the said navigation trail so that the empirical entropy returned
by our algorithm is sufficiently close to the true entropy. In addition, we have indicated how
our algorithm can be incorporated into web data mining algorithms to improve the quality of
their output. Finally, we have presented an extension of our basic technique that deals with
higher-order Markov chains of bounded order. Our theoretical investigation paves the way
for experimentation with web log data, based on a sound statistical methodology.

Acknowledgements. The authors would like to thank the referees for their constructive
comments, which improved the presentation of the results.
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