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Abstract 

Computer games with complex virtual worlds, which are populated by artifi- 
cial characters and creatures, are the most visible application of artificial intelli- 

gence techniques. 1n recent years game development has been fuelled by dramatic 

advances in computer graphics hardware which have led to a rise in the quality 
of real-time computer graphics and increased realism in computer games. As 

a result of these developments video games are gaining acceptance and cultural 
significance as a form of art and popular culture. 

An important factor for the attainment of realism in games is the artificially 
intelligent behaviour displayed by the virtual entities that populate the games' 

virtual worlds. It is our firm belief that to further improve the behaviour of vir- 
tual entities, game Al development will have to mirror the advances achieved in 

game graphics. A major contributing factor for these advancements has been the 

advent of programmable shaders for real-time graphics, which in turn has been 

significantly simplified by the introduction of higher level programming languages 

for the creation of shaders. This has demonstrated that a good system can be 

vastly improved by the addition of a programming language. 

This thesis presents a similar (syntactic) approach to the definition of the 
behaviour of virtual entities in computer games. We introduce the term be- 

haviour definition language (BDL), describing a programming language for the 

definition of game entity behaviour. We specify the requirements for this type of 
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programming language, which are applied to the development and implementa- 

tion of several behaviour definition languages, culminating in the design of a new 
gaine-genre independent behaviour definition (scripting) language. This exten- 
sion programming language includes several game Al techniques within a single 
unified system, allowing the use of different methods of behaviour definition. 

A subset of the language (itself a BDL) was implemented as a proof of concept 
of this design, providing a framework for the syntactic definition of the behaviour 

of virtual entities in computer games. 
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Author's Note 

I write this at the end of a long journey. For lack of a better word to describe 
it., the work behind this thesis, as well as the thesis itself has been a journey of 
discovery, not invention; and while the map is now a lot less empty than it was 
before (back in 2001), there are still areas of "Terra Incognita" where there be 
dragons. 

Computer games have fascinated me ever since I first came into contact with 
computers. My interest in computer programming then grew out of a desire to 

understand the inner workings of games, so that I could modify and create games 
by myself. Learning to program taught me that programming languages are a 
powerful tool through which a computer can be made to do almost anything. 
The CGAL animation system that 1 was introduced to during my undergraduate 

studies proved this, as it provided the means to create moving images through the 

power of programming. Graphics alone, however, do not make a game - there is 

also the artificially intelligent behaviour of NPCs (Non-Player Characters) within 
the games. 

The majority of NPCs that we (game programmers) send into battle are 
doomed to suffer a dreadful fate. It is quite obvious that the main cause of an 
NPC`s death is the often bloody confrontation with a human player's avatar. 
The moral implications of this virtual carnage aside, the question we must ask is 

whether we have done the best we can in preparing these artificial warriors for 

battle. The truth is, I do not know. I hope though, that the work described in 

this thesis will provide a glimmer of hope to NPCs everywhere - not that it will 

really improve their chances of survival... I am a bad loser and I would hate to 

see them win. I am content as long as they lose convincingly. 
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Chapter 1 

Introduction 

Computer games have come a long way since the days of Spacewar' [Fleming 

2007]. 1n recent years interactive video games have greatly gained in prominence, 
and with video games gaining acceptance and cultural significance as a form of 
art and popular culture, games are now more visible than ever. 

Modern computer games aim to immerse the player in a virtual game world 
by placing him in an interesting and challenging setting that he can interact with, 

which clearly distinguishes games from other entertainment media. They allow 
the player to become the narrator and sometimes even the protagonist - either 

as his virtual self or by assuming the identity of an established character - and 
tell his own story. 

This growth in the popularity of games has been driven by significant advances 
in game technology, and as a consequence virtual game worlds have become in- 

creasingly realistic over the years. Modern games usually employ 3D animated 

graphics (and 3D sound effects) to provide players with the illusion of realism. 
A major contributing factor to this end has been a steep rise in the quality of 

real-time computer graphics, fuelled by dramatic advances in computer graphics 
hardware. 

Whereas once the limitations of the available hardware required ad-hoc solu- 
tions, i. e. the development of a new, tailor-made renderer for almost every game, 

i-Spacewar is the first computer game that can be considered the ancestor of modern video 

games. Created in 1962 at MIT using a DAC PDP-1 computer, it featured two player- controlled 

spaceships in a deadly duel. 
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now standardised APIs and functionality for high-end graphics have made the 
creation of multiple-title, reusable game engines possible. 

The stage that graphics have now arrived at leaves little room for significant 
developments ill this field that could lead to all overall improvement of computer 
games. Furthermore, it is easily recognisable that graphical realism alone does 

not necessarily make the experience of playing a game realistic. As a direct 

consequence of this the games industry needs to find other avenues to further 
improve quality and to distinguish their games. Graphics aside, another very 
important factor for the attainment of realism in computer games is the behaviour 

of the characters and creatures that populate the virtual game environments. 
This becomes blatantly obvious if the behaviour of computer controlled Non- 

Player Characters (NPCs) [Olsen 1991] does not "feel right", effectively destroying 

the illusion of realism. 
NPCs are virtual entities inhabiting the game world, whose perception and 

actions within the game are controlled by a computer program. The behaviour 

displayed by the NPCs is usually generated with the aid of "artificial intelligence" 
(Al) algorithms and techniques. The improvement of game Al therefore provides 

an avenue to achieving the goal of an overall improvement of computer games 
that is certain to become increasingly important. 

There is no single, common method for the implementation of a game charac- 
ter Al. The life-like behaviour of the NPCs that populate the virtual game worlds 

often requires the combined use of several techniques determined by the desired 

effect. This kind of artificially intelligent entity is commonly referred to as an 

autonomous agent2. 
Despite the importance of a good NPC Al in games, over the past decade 

there have been few changes to the techniques employed by the game developers. 

While there exist a multitude of possibilities for creating a game character AI, 

only a relatively small subset of tried and tested methods are used, usually to 

create a project-specific Al solution for that game's virtual entities. 

2An agent is a program that has the ability to perceive and to (re-)act. An autonomous 

agent is a program that has the ability to control itself. Its actions are derived from an analysis 

of the agent's situation and environment based on its knowledge and experience. 
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1.1 Aims 

Until recently, the artificially intelligent behaviour for NPCs was almost al- 

ways hard-coded into the game itself, i. e. the source code for the Al forms an 
intrinsic part of the game program, and only works for the particular game it 

was created for. The behaviour of NPCs in games is therefore not easily reusable 
for other game productions, and generally impossible to transfer to other game 
genres. 

The shift towards data-driven architectures has partially addressed this issue, 

and the introduction of Al middle-ware now allows a certain degree of reusability, 
however, the use of ad-hoc solutions for each individual game is still prevalent 

among game developers. 

A comparison between our initial observations on the development of graphics 
in games, especially the move from individual approaches to more standardised 

methods, and recent developments in NPC Al development allow us to draw 

certain parallels: 
The introduction of programmable GPUs (Graphical Processing Units) and 

therefore the advent of programmable shaders for real-time graphical applications 
in recent years [Lindholm et al. 2001] has shown that with relatively little effort, 

great advances in the graphical quality of computer games can be achieved. Fur- 

thermore, the successive introduction of higher level programming languages for 

the creation of these shaders [Mark et al. 2003] has demonstrated that even better 

graphical quality for games is attainable by providing more powerful tools to the 

developers. 

It is our firm belief that to achieve further improvements in the quality of 

computer games a similar approach will have to be taken for the creation of the 

artificially intelligent characters that populate the virtual worlds of computer 

games, i. e. the creation of a high-level programmable system for defining NPC 

behaviours is the logical next step. 

1.1 Aims 

There are a lot of different AI techniques that are suitable for computer games 

and our motivation is not the exploration of new Al techniques. In light of the 

game industry's trend to embrace data-driven design, however. one of the main 
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1.2 Contribution 

challenges is to efficiently define the behaviour of artificially intelligent characters 
by placing these definitions in external game assets that are not hard-coded into 
the game program itself. 

In that respect, one of the main objectives of our research was the design of an 
extendable and preferably modular system which will simplify the interface that 
allows the creation of virtual entities in computer games that are able to interact 
with each other and the virtual environment that they inhabit, effectively tying 
together the available Al techniques. 

This interface should take the form of a behaviour definition language, pro- 
viding a syntax-driven approach to the definition of Al behaviours for the virtual 
entities in computer games. A program written in this behaviour definition lan- 

guage would therefore become an external asset for the data-driven architecture 
of the game in which it is used. 

This would provide the first step towards the development of a unified software 
package for creating life-like NPCs in computer games, just as there are software 
packages for the creation of other game assets like, for instance, three-dimensional 

animated artwork for games. 

1.2 Contribution 

The focus and main contribution of this thesis is the design and implementation 

of a behaviour definition language for virtual entities, suitable for application to 
NPCs in computer games. 

1n particular, this work covers the following aspects: 

9 An investigation of flexible architectures and different interface implemen- 

tations that enable the exposure of behaviour definition capability to com- 

puter game engines, making the creation of reusable behaviours for virtual 

entities possible. 

9 The development and implementation of several behaviour definition lan- 

guages for virtual entities, evaluating different approaches and implemen- 

tations. 

4 



1.3 Thesis overview 

Dependent on the results of the above, the design and prototype implemen- 

tation of a game-genre independent behaviour definition language, exposing 
different methods of behaviour definition, including the definition of virtual 
entities as well as elements of their environment that they can interact with, 
through a unified software interface that will allow existing software to be 

extended to use this system for behaviour definition. 

1.3 Thesis overview 
This thesis is divided in three parts. 
Part 1, starting with the chapter following this introduction, examines the ap- 

plication of artificial intelligence techniques and scripting systems in computer 

games, showing how those different subject areas are directly related to our work. 
In particular, chapter 2 focuses on Al in general, and especially Al in computer 

games, offering an insight into the use of artificially intelligent entities in com- 

puter games and further elaborating some of the points made in this introduction. 

It reviews common techniques, details problems faced by game Al and consid- 

ers possible solutions. The discussion pays particular attention to classical Al 

techniques that are permeating into computer game AI and highlights the most 

promising game Al methods. 
Chapter 3 discusses data-driven architectures for computer games, focussing on 

the manifestation of the data-driven design philosophy in the use of scripting 

languages. 

Part 2 explores the general requirements for the design of behaviour definition 

languages for use in computer games as well as existing approaches to behaviour 

definition using syntactic methods. 
Chapter 4 reviews common approaches to the implementation of NPCs in com- 

puter games, noting how these game Al techniques are usually applied to satisfy 

the demands placed on the Al by modern computer games. 

Chapter 5 examines requirements and design principles for the creation of be- 

haviour definition languages. It also explains the considerations and ideas that 
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1.3 Thesis overview 

have directly influenced our work, including educational mini-languages and ded- 

icated Al (scripting) languages that fit into the category of behaviour definition 

languages. 

In light of these, chapter 6 provides an overview of scripting systems and script- 
ing languages with a specific focus on existing solutions using generic embeddable 

scripting languages for use in computer games. 
Following this. some of the behaviour definition languages that have been created 
in the course of our work are discussed in chapter 7, which includes the ZBL/O 

programming language that we developed for inclusion in a book on game devel- 

opment [Zerbst et al. 2003]. 

Part 3 charts the design and implementation of the behaviour definition sys- 

tem which lies at the core of our solution, the AvDL language and its SEAL 

subset. 
Chapter 8 provides a brief overview of AvDL, the Avatar Description Language, 

while the topic of chapter 9 is the SEAL subset of AvDL which enables the sys- 

tem to make use of the most promising game Al techniques introduced in chapter 

2. 
Chapter 10 describes the design of the SEAL/AvDL Virtual Machine which 

executes SEAL/AvDL programs, as well as the implementation of the interface 

to the virtual machine that allows it to be embedded within a host application. 

Finally, chapter 11 provides a discussion of our system, integrating it with the 

findings of part 2, followed by the presentation of conclusions on this thesis in 

chapter 12. 

The main body of the thesis is followed with several appendices that contain 

additional information on the syntax and usage of the behaviour definition lan- 

guages that were created as part of this research project. 
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Game Al 
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Chapter 2 

Intelligent Non-Player 
Characters 

One of the earliest developments since the appearance of computer games has been 
the introduction of Al to provide human players with a challenging, involving and 

- most importantly - with a --fun" experience. The first games with computer 
controlled players started using Al related techniques for the creation of believable 

adversaries or enemies to compete with or fight against the human player if no 
real human opponent was available to take its place. Depending on whether 
these Al players were tactical opponents in classical board-games or monsters in 

role-playing games or arcade games, the methods used for creating the Al were 
different, but their purpose was ultimately the same - to create intelligent NPCs 

that are life-like opponents for the human player. 

2.1 Artificial Intelligence in Computer Games 

When we refer to Al in computer games, that which we refer to is not truly 
AT - at least not in the traditional sense of the term. The techniques applied to 

computer games are usually a mixture of Al related methods whose main concern 
is the creation of a believable illusion of intelligence. 
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2.1 Artificial Intelligence in Computer Games 

2.1.1 Artificial Intelligence 

Al is one of the oldest branches of computer science, almost as old as computer 
science itself, although it took some time for the field to be recognized as such. 
Research in artificial intelligence even existed a very long time before the term 
-artificial intelligence" was first used, with roots going as far back as ancient 
Greece when philosophers (Socrates, Plato, Aristotle) discussed the way in which 
the human mind functions and how intelligent decisions are made [Anderson 
2003a]. The study of what we now call Al is very much rooted in the study of 
philosophy and the quest for the understanding of the human mind and body. 
The term "artificial intelligence" for this field of research was coined in 1956 when 
a number of researchers interested in the study of intelligence and neural networks 
took part in a workshop (Dartmouth Conference) organised by John McCarthy 
[1955]. Since this early research there have been numerous attempts towards the 

creation of Al, often depending on whatever definition of the term Al was used. 
Each distinct interpretation of the term "artificial intelligence" is associated with 
different approaches to creating Al. In turn. each of those approaches is more or 
less suitable for the different areas of AI research. Independent of the definition of 
Al used, however, the problem they all try to solve and their ultimate goal is the 

understanding and creation of intelligent programs. The dictionary definition for 

ctartificial intelligence" is "the study of the modelling of human mental functions 

by computer programs" [Collins 2001a]. A closer look at this branch of computer 

science, however, shows that this description is far less than accurate. Al is not 

necessarily confined to the simulation of methods that are biologically accurate or 
biologically possible [McCarthy 2007]. A different definition for Al for instance is 

the ability "to solve problems that would require intelligence if solved by humans" 

[Johnson and Wiles 2001], or the ability of a system to adapt to its environment 
through learning. 

There are many who question if Al can ever reach a level of intelligence that 

could be compared to that of a human, and while not everyone thinks of human- 

level intelligence as a goal for the development of Al, human-level Al is especially 
interesting for games as it promises a human-like opponent for the human player. 
An early measurement for the presence of a kind of human-like intelligence that 
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2.1 Artificial Intelligence in Computer Games 

would comply with these aims is the Turing test' [Turing 1950]. If a program 
manages to pass the Turing test, i. e. manages to convince a human that it 
is human (and therefore intelligent) itself, that program should be considered 
somewhat intelligent. John Searle's "Chinese Room argument" [Searle 1980], 
however, suggests that the Turing test is overrated and alone would not be enough 
to allow judgement of the artificial intelligence of a computer program. It states 
that just by following a set of rules regarding a language one does not even 
understand (Chinese in the case of his argument), one might be able to pass the 
Turing test in that language which would mean that the Turing test itself could 
not be used as a measure for intelligence or understanding. A further argument 
against the Turing test is that during the experiment the interrogator knows 
that he is participating in a game, resulting in his anticipation and expectations 
generating some form of bias in which the interrogator's imagination makes him 

perceive intelligence where there is none. 
This classical Al goal, aiming for human-like intelligence, is still far away from 

reaching a solution despite many advances in technology and half a century of 
research. The fact that an increasing number of the Al techniques developed 
towards this goal are "spilling over" into computer game Al might suggest that 
in the future the ability of NPCs to project the illusion of life-like behaviour will 
increase substantially. However, it cannot automatically be taken as an indicator 
for these Al techniques' suitability or success, as long as the question of Al itself 

remains unanswered. 

'The Turing test, also known as the imitation game, can be explained in simple terms. 
It requires a set-up of a closed room containing a human test person (the interrogator) at a 
computer terminal running a chat program, which has two connections. One connection is to a 
second hunian operated ternihial in a, different room and the second connection is to a computer 
running an intelligent program which pretends to be a human (chatterbot). The interrogator 

now has to decide which of the two chat partners is human and which one is the chatterbot. If 

the chatterbot manages to convince the interrogator that it is human, then it has passed the 
Turing test. 
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2.1 Artificial Intelligence in Computer Games 

2.1.2 Smoke and Mirrors (Game AI) 
The problem that Al in computer games tries to address is a different one, since 
here its aim is not the creation of actual intelligence, but rather the illusion of 
intelligence [Scott 2002b]. The behaviour of NPCs only needs to be believable 
to convey the presence of intelligence and to immerse the human player in the 
game world. As this means that very little real reasoning is involved, some might 
argue, that the term "artificial instincts" might be a better description for the 
level of intelligence that is found there, mainly due to its reactive nature. In the 
light of some games, the acronym AS for the term "artificial stupidity" might be 

even more appropriate. 
As a rule of thumb one can say that the creation of a simple Al for a computer 

game is a relatively easy task, as the human brain is easily fooled. With very 
little effort, an observer can be convinced of the --intelligent actions" of a fairly 
basic NPC, as long as these actions appear plausible, in a very similar way to the 
ccuncanny valley" phenomenon encountered in the study of the effect of humanoid 

robots on human observers [MacDorman 2005; Hayward 2007]. The effect of a 
complex Al, on the other hand, is actually quite invisible and will hardly be recog- 

nised as such, suggesting that the concept of "less is more" can be applied to Al 

in computer games. Its main requirement for creating the illusion of intelligence 

is perception management, i. e. the organisation and evaluation of incoming data 

from the Al entity's environment. This perception management mostly takes the 
form of acting upon sensor information but also includes communication between 

or coordination of Al entities in environments which are inhabited by multiple 
NPCs which may have to act co-operatively. 

The problems encountered by an Al entity in a game are a combination of the 

virtual "real-world problems" that face a human game player, as well as various 

problems that are specific to the various techniques that were used to build the 

Al. In many cases game Al is deterministic, using rule-based systems which allow 

game designers to exert a high level of control over the NPCs' behaviour, but 

while most game Al solutions are provided by a small number of tried and tested 

methods, a convergence of techniques from a wide range of different fields can be 

found in computer game Al. These include but are not limited to: 
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Traditional (academic) Al [McCarthy 2007], as described above (see Section 
2.1.1). 

--Artificial Life" (AL), the study of "inulti-agent systems that attempt to 
apply some of the universal properties of living systems to Al agents in 

virtual worlds" [Tozour 2002b], which includes some machine intelligence 
techniques related to emergent behaviours like flocking [Reynolds 1987] and 
evolutionary techniques like Genetic Algorithms (GA) or Genetic Program- 

ming (GP) [Koza 1992], both of which are automated techniques that pro- 
duce algorithms by using a process that parallels evolution through natural 
selection, i. e. a simulation of life. 

9 Robotics, especially the cognitive robotics techniques that allow a robot to 

orient itself and navigate in the world. 

o Empirical observation of behaviour. Much information on behaviour can be 

acquired through the study of nature. The science of ethology, the biological 

study of behaviour, provides valuable insight into the behaviour of animals 
[Roberts 1971], some of which can directly be applied to the creation of 
life-like NPCs in computer games. 

A game Al is usually comprised of an amalgamation of possible solutions for 

each of the combined problems from the different fields. The exact combination 

required for a solution depends on the role assigned to the Al in the game and 

subsequently the behaviour which a human player might expect from that type 

of virtual entity. 

2.2 The Roles and Requirements of Al in Com- 

puter Games 

To gain an understanding of what is expected of an artificial character in com- 

puter games one needs to look at how over time NPCs have evolved into the Al 

entities that one can encounter in modern computer games. The artificial entities 

populating the virtual worlds of computer games will typically take on one of the 

following roles [Laird and van Lent 2001; Glasser and Soh 2004]: 
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The human player's (tactical) enemy (unit or individual). This is the origi- 
nal Al role in computer games. While the most challenging opponent for a 
human player is another human being, human opponents are not always 
available, which was especially true before the proliferation of personal 
computer networks and networked multi-player games, requiring the use 
of good Al enemies instead. Starting with the 'intelligent' monster in the 

game "Hunt the Wumpus" [Yob 1975] to the enemy NPCs in modern first 

person shooter (FPS') games, Al controlled entities have been used as the 

core method for providing the challenge for the human player. 

9 The human player's partner (team-mate). This kind of Al entity is closely 
linked to the rise of the team-based networked multi-player game. In the 

early 1990s the development of the internet and improvements and cost 

reductions in networking technology which led to the widespread introduc- 

tion of local area networks (LANs) made the creation of games in which 

multiple players could engage over a network connection possible [Falise 

2000]. While in the first of these multi-player games all of the players were 

opponents, it did not take long, however, for different ways of playing than 

just fighting against each other over a network to emerge. The co-operation 

of some players and the subsequent team formation (referred to as clans) 
have led to games in which large teams engage each other competitively. 
The overwhelming success of the team-based multi-player games that were 

created in reaction to this development prompted game developers to at- 

tempt to generate the same kind of sensation and experience in single-player 

games. Artificial team-mates that act in league with the player (collabora- 

tive NPCs) have evolved as a direct result of this trend [Kushner 2002]. 

The supporting character (incidental), a character that enriches the virtual 

game world without actively having to contribute to the plot of the game. 

2An FPS or First Person Shooter game is an action video game in which the player experi- 

ences the gameplay from the viewpoint of the protagonist. This type of game usually involves 

the exploration of some sort of building complex and frequent skirmishes with other players 

or NPCs. Falise [2000] presents a study of the FPS game genre, providing an overview of its 

history. 
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The resources that have become available to games as computers have be- 

come more powerful have been the addition of background characters and 
creatures. Just as in a film, --extras" such as flocks of birds in the virtual sky 
above or people going about their business in the background of the action, 
generate a sense of reality which deepens the player's immersion within the 

game world of games that are continuously growing more complex. In the 
literature this kind of neutral synthetic entity is sometimes referred to as a 
Non-Player Character (NPQ [Siem 2006], in that case meaning a character 
that does not act like a player (human or computer controlled). We prefer 
the meaning of NPC to include any kind of virtual entity that is not human- 

player controlled [Yue and de Byl 2006], making the support character a 
kind of ambient NPC [Cutimitsu et al. 2006]. 

The strategic opponent. an artificial entity often encountered as the human 

player's adversary in real-time strategy (RTS') games [Scott 2002a]. Dif- 

ferent from other intelligent characters, this kind of NPC does not usually 
have a single avatar within the game world but instead is represented by 

a variety of smaller units under its control. Its tasks within the game in- 

clude research and resource management, unit construction and training, 

as well as combat control. The responsibility for carrying out these tasks 

is normally divided among a number of interrelated Al subsystems which 

are under overall control of the strategic Al player. The strategic opponent 
NPC is therefore one of the most complex Al entities found in modern com- 

puter games. Path planning and decisions making, comprising of terrain 

analysis and strategic reasoning, are carried out on a much higher level than 

found in normal NPCs. A number of RTS games therefore share a number 

of features with real-life military simulations [Atkin et al. 19991. However, 

while at first sight the RTS AI does seem to be very different from the FPS 

game NPC, many of its underlying concepts are the same. 

3An RTS or Real-Time Strategy game is a strategy game which is not played round-base 

but in real-time, i. e. all of a player's units and his opponents have to be directed/make choices 

on the fly, while all action takes place simultaneously. 
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The observer (commentator, tutor or director), an often omniscient entity 
that provides narrative commentary of the human player's actions and in 

some cases attempts to guide the human player or NPCs towards the com- 
pletion of his tasks within the game world [Forbus and Hinrichs 20061. A 

recent incarnation of this type of entity are the "intelligent" cameras found 
in some games that aim to focus the human player's view of the game world 
onto important events [Kharkar 20041. 

The actions of an NPC are governed by its "behavioural model". This defines 
how the game character reacts to any input it receives from its environment. 
The interpretation of these inputs depends on the way that this information is 

exposed to the Al entity and its domain knowledge, i. e. the NPC's perception 
and understanding of the virtual world it occupies. It is common for games to 

use high-level inputs that carry a lot of implied information, which can result 
in believably intelligent behaviour even if only a very simple and basic decision 

making process is used [Welsh and Pisan 2005], provided that the NPC has the 

required domain knowledge. 

2.2.1 The NPC World Interface 

Providing this domain knowledge is important and can be problematic. An NPUs 

Al needs to be able to clearly map - or anchor - the NPC`s environment to its 

understanding of this environment. Coradeschi and Saffiotti [19991 discuss this 

"anchoring" problem in the context of autonomous robotics in real environments. 
They especially stress uncertainty as being the main difficulty in matching real-life 

sensor data to the symbolic representation of knowledge by the Al. Fortunately 

this problem is a lot less prevalent in the completely self-contained, virtual en- 

vironment of a computer game world. Through a game s world interface the 

incoming sensor data can be controlled to a much higher degree than real-life sen- 

sor data, considerably simplifying the matching of sensor information to stored 

knowledge, which in many cases can be directly mapped to one another. The 

process of providing this knowledge in the first place. however, still remains quite 

complex and there are different possible solutions: 
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1. All associations can be explicitly defined. This is the simplest method but 

also the least feasible if the Al resides in a large and complex environment, 
as the amount of data that would have to be provided would be too large. 
This approach only works in very small or simple scenarios. 

2. Associations can be generated. For this various techniques can be used. 
One way to achieve this would be to employ some kind of learning tech- 

nique like reinforcement learning which has been successfully implemented 
in commercial computer games [Johnson and Wiles 2001]. Another possi- 
bility would be the use of emergent behaviour techniques like evolutionary 

algorithms. 

3. The environment can be annotated (see Section 2.3.4.4). An annotated 

environment with smart objects holds all the information necessary for the 
NPC to interact with it. As a result the NPC can be less complex which 

not only benefits the development process but also makes the NPC's Al 

-infiiiitel-ýr extensible" [Orkin 2002], making this method for simplifying the 
11 

creation of intelligent NPC behaviour a promising game Al technique [Rabin 

2004]. 

2.2.2 Al in Real-Time Computer Games 

A major difficulty facing the developers of a computer game Al is the requirement 
for the NPCs to work in real-time, i. e. concurrently with the human player's 

interaction with the virtual world and without the dedicated "thinking" cycle 

for decision making which is available to Al entities in round-based games. The 

Al has to be made to work so that to the human player it looks like the NPCs 

are making decisions as they play along. Resource restrictions are an important 

factor as even at the current rate of advances in computing power, there are still 

limits to memory and processor (CPU - central processing unit) capabilities and 

this automatically excludes a number of Al techniques from being used in games, 

as it would be unacceptable for an NPC to spend minutes of game-time with 

decision making. 
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Another problem, which is closely related to this real-time requirement for 

game AT, is the fact that the AT has to share the computer's processing resources 
with the rest of the game which will include graphics, input processing, sound 
processing and synchronisation issues arising from networking. In early computer 
games, AT was given very little importance and was therefore allocated only little 

processor time. Only after the development of graphics accelerators in the mid- 
1990s, when more and more elements of the graphics pipeline were redirected onto 
dedicated graphics hardware, AT acquired a higher priority and with it additional 
resources. At first CPU budgets for AT exploded and a number of games spent 
up to 30% of their processor time doing AT calculations, but this has now levelled 

off at about 10% of CPU time [Woodcock 2001]. 
The exact range of problems that an NPC within a computer game has to solve 

depends on the context in which it exists and the virtual environment in which the 

game takes place. The tasks which need to be solved in most modern computer 

games and to which the intelligent actions of NPCs are usually restricted to (by 

convention rather than technology) are [Anderson 2003a]: 

e decision making 

9 path finding (planning) 

9 steering (motion control) 

2.2.2.1 Human-like NPC Intelligence 

Until recently the unique selling point for many video games used to be the quality 

of graphics and the number of polygons that could be displayed simultaneously 

on screen. The realisation that graphical realism alone does not make a good 

computer game has replaced this development trend with a drive to improve the 

complexity and therefore the believability of the artificial characters that populate 

the virtual game worlds. NPC behaviour that appears natural adds more life-like 

qualities to the NPC and makes it seem more realistic. As a crucial factor for 

the success and popular acceptance of a computer game this has now become 

more important than ever. Laird and van Lent [2000] argue that the intelligence 

displayed by NPCs in computer games will ultimately have to reach a human level 
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at some point in the future, to keep entertaining human plavers. To achieve this, 
NPC Al will have to become scalable, i. e. less restrictive and less deterministic 

than current implementations allow for. Attempting to realise this with current 
hardware however still results in a number of real-time performance problems. 
The decision cycle of human-like NPCs can be decomposed into three steps that 

are constantly executed [van Lent et al. 1999; Wright and 'Marshall 2000]: 

sense/perceive (accept information about the environment - sensor infor- 

mation) 

2. think (evaluate perceived information & plan appropriate actions) 

3. act (execute the planned actions) 

Van Lent and Laird [1999] suggest that a system for the creation of this kind of 
NPC would therefore consist of three components: 

1. An inference machine which would constantly execute the NPC decision 

cycle. This would have an internal memory for remembering goals, which 
is one of the necessary preconditions for human-like behaviour. lts require- 

ments would be: 

9 to use reactive agents 

9 to be context specific 

9 to be flexible 

9 to be realistic 

9 to be easy to develop 

2. A world interface to the underlying game engine which should mimic the 

human player's interface as closely as possible, i. e. provide the NPC with 

all the information (or a representation thereof) that is provided to human 

players, i. e. audio & visual data, and the controls that allow the NPC to 

interact with its environment in a similar fashion to the human player. 
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IA knowledge base, to provide the NPCs with the necessary domain knowl- 
edge, allowing the NPC to correctly interpret its situation in the game world 
and therefore to make meaningful decisions to inform its actions. 

Their rule-based Soar (State, Operator And Result) agent architecture imple- 
ments such an inference machine. Soar was originally developed as a cognitive 
architecture for building realistic Al entities with strong military applications. 
In recent years it has also been used to create NPCs for various FPS games'. 
For example, Soar agents created for the FPS game Quake2 have the ability to 
anticipate a human player's actions and to adjust their actions accordingly to 
counter the human player's moves [Laird 2001]. In these games the Soar engine 
which provides the NPC's run-time environment uses a network connection to 
communicate with a plug-in 5 to the game engine. This plug-in only provides an 
interface between the Soar engine which runs remotely with the game engine into 

which it is plugged in. 

2.2.2.2 NPC Complexity vs. NPC Performance 

The use of the Soar architecture for computer games is not an ideal one. Soar 

controlled NPCs are so computationally expensive that it would be very hard for 

more than one NPC to run on a single computer at the same time. The focus 

of research into games using this architecture has mainly been on the cognitive 
capabilities of Soar NPCs by adding learning and some prediction methods to the 

system to improve the NPCs themselves. While this has certainly made them ap- 

pear more realistic, it has largely ignored the real-time requirement of computer 

games, making the Soar architecture unsuitable for general deployment in com- 

puter games. Khoo and Zubek [2002] argue that the Soar approach to achieving 
human-like intelligence for NPCs is over-ambitious and that similar results could 
be achieved by using a combination of more conventional and inexpensive NPC 

creation techniques. Observation of FPS game players has shown that the per- 

ception of NPC intelligence and skill is determined by reaction (decision) time 

4 http: //www. soargames. org 
5A plug-in is an external software module which is not part of a program but which can 

interface with the program to provide it with additional functionality. Plug-ins are often im- 

plemented as dynamically linked libraries which a program can load during run-time. 
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and aiming accuracy [Laird and Duchi 20011. This automatically disqualifies the 
use of complex - and therefore slow - reasoning algorithms, which is why Khoo 
and Zubek suggest that a behaviour-based approach from robotics would be more 
suitable. One result of their work is a successful NPC called "Groo" which was 
created for the FPS game Half-Life. It interfaces with the Half-Life game engine 
through a plug-in using the FlexBot [Khoo et al. 20021 plug-in AP1 (application 

programming interface 6) 
- The control program for the Groo game-bot itself is 

written in the GRL programming language [Horswill 2000] (see Chapter 5, Sec- 
tion 5.1.1.2) from robotics which in turn is compiled into native C++ source code 
for use with FlexBot. A further development of NPCs using this technology is 
the Half-Life game-bot Ledgewalker [Khoo et al. 2002] which confronts human 

players with an effective opponent NPC with many qualities which are perceived 
to be human-like. 

2.3 Game Al Techniques - The State of the In- 
dustry 

Just like computer games have come a long way, so have the Al techniques that 

are employed within those games, many of which are derived from traditional Al 

methods. Some of the more proven and successful techniques have changed little 

over time and those techniques are almost always the first choice of developers 

when they need to implement Al in their games. However, since the early 1990s 

an increasing number of novel ideas and methods for game Al have filtered into 
the game development process [Sweetser 20031. The greatest changes in the use of 
Al in games however have involved the selection of AI to solve different problems 

rather than the choice of Al techniques. 

6An application programming interface (API) provides the programmer with an interface to 

a group of related functions that are usually located within a library of functions. The interface 

in this case is the description of data types, return types and formal parameters to functions 

and methods (if object orientation is used). 
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2.3.1 Rule Based Techniques 

Rule-based techniques are the oldest and most commonly found Al methods used 
in computer games. They can be implemented with relatively little effort and they 
provide a robust and reliable solution to a wide range of problems but are often 
used for decision making. 

Finite State Machines 

Finite state machines (FSMs) are the most commonly used type of Al used in 

games [Fu and Houlette 20041. They arrange the behaviour of the NPC in logical 

states - defining one state per possible NPC behaviour - of which only one, the 
NPCs behaviour at that point in time, is active at any one time. A state is a 
Boolean value which is either active or inactive - ýon' or -off. When the current 
behaviour needs to be changed to a different behaviour, for example a transition 
from a guarding stance to an attack on the closest opponent, the FSM will switch 
between the states. It is relatively simple to program a very stable FSM that may 
not be very sophisticated but that "will get the job done". The main drawback 

of FS'Ms is that they can become very complex and hard to maintain, while on 
the other hand the behaviour resulting from a too simple FSM can easily become 

predictable. To overcome this problem sometimes hierarchical FS. Ms are used. 
These are FSMs where each state can itself be an FSM. 

2.3.1.2 Fuzzy State Machines 

Fuzzy state machines (FuSMs) are a permutation of FSMs which uses fuzzy logic 

instead of Boolean logic [McCusky 2000]. As a result states in FuSMs are not 
limited to existing in one of the two states 'on" or 'off' but they can hold an 
intermediate value. This means that at any one time more than one state may 
be active and to some degree be on and off. While this makes the construction 
of FuSMs slightly more complicated than the creation of an FSM the existence 

of simultaneously active states greatly reduces the predictability of the resulting 
behaviour. lt also dramatically reduces the complexity of the state machine, as a 

wider range of different behaviours can be encoded with fewer states. FuSMs are 
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a relatively new game Al technique that can be used in almost all of the areas in 

which FSMs are usually found. 

2.3.2 Knowledge Based Techniques 

Knowledge based techniques are rarely used on their own when it comes to game 
Al, but they are often used as subsystems of game Al. This would include terrain 

analysis techniques within strategy games such as influence mapping [Tozour 

2001] which allow a strategic Al in a war-game to assess the current situation, to 

identify choke points for ambushes [Higgins 2002b] or to position its troops on the 

virtual battlefield. Related to this are the search strategies that are frequently 

used for path finding for NPCs in a wide range of games. 

2.3.2.1 Al Planning 

Considered a promising game Al technique [Rabin 2004], planning in games is 

often performed by using a search algorithm on a knowledge base, representing an 
NPC's domain knowledge. In computer games, this has mainly been implemented 

as a method for path finding to facilitate NPC navigation in virtual game worlds, 
but recent developments aim to apply planning to NPC decision making. While 

there exist many search methods for path finding, such as Dijkstra's algorithm 
[Dijkstra 19591, for path planning in games the algorithm of choice is the A* 

algorithm [Stout 2000] (see Chapter 4, Section 4.3.3) which is optimal, i. e. proven 

to find the optimal path in a weighted graph if an optimal solution exists [Dechter 

and Pearl 1985]. 

More general planners use a notation based on the representation of initial 

and goal states and the operators or actions required to reach the goals, as is the 

case with the pioneering STRIPS (STanford Research Institute Problem Solver) 

program and language which has provided a template for many modern Al plan- 

ning systems [Russel and Norvig 1995]. Planning can be a complex and time- 

consuming task that may not be fully computable within the time available in 

the update-cycle of a real-time computer game, requiring the computation to be 

"staggered" [Evans 2001], i. e. distributed over several update-cycles to spread 

the workload of the CPU. This process, known as time-slicing, usually involves 
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the careful management of Al processes that need "to be dynamically suspended 
and reactivated" [Wright and Marshall 2000], which can be achieved using multi- 
tasking techniques usually associated with operating systems. 

2.3.2.2 Goal-Oriented Techniques and Goal-Oriented Action Plan- 

ning 

Goal-directed behaviour is one of the simplest forms of nondeterministic be- 
haviour. A goal is the end-state of a set of goal-directed actions. Dybsand 
describes it as a technique in which an NPC "will execute a series of actions 

... that attempt to accomplish a specific objective or goal" [Dybsand 2004]. 
Goal-oriented techniques have only recently been introduced into computer game 
development and so far, goal-oriented methods for creating NPC behaviour are 
employed in only a small, but steadily growing number of commercial games. 
In its simplest form, goal-orientation can be implemented by determining a goal 
with an embedded action sequence for an NPC. This action sequence, the NPC's 

plan, will then be executed by the NPC to satisfy the goal [Orkin 2004a]. Solu- 

tions that allow for more diverse NPC behaviour can improve this by selecting 

an appropriate plan from a pre-computed "plan library" [Evans 2001] instead of 
using a built-in plan. 

More complex solutions use plans that are computed dynamically, i. e. -on the 
fly", as is the case with Coal-Oriented Action Planning (GOAP) [Orkin 2004a]. 

In GOAP the sequence of actions that the system needs to perform to reach its 

end-state or goal is generated in real-time by using a planning heuristic on a set 

of known values which need to exist within the NPC's domain knowledge. To 

achieve this in his implementation of GOAP, Orkin [2004b] separates the actions 

and goals. implicitly integrating preconditions and effects that define the planner's 

search space, placing the decision making process into the domain of the planner 

and therefore relieving the designer of the need to micro-manage game logic. 

In GOAP the representation of the search space can be augmented by asso- 

ciating costs with actions that can satisfy goals, turning the NPC's knowledge 

base into a weighted graph, allowing the use of path planning algorithms such 

as A* that find the shortest path within a graph as the planning algorithm for 

the NPC's high-level behaviour [Orkin 2006]. This has the additional benefit of 
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greater code re-use as the planning method for high-level decision making, as well 
as path planning is the same and can therefore be executed by the same code 
module [Orkin 2004b] if the representations of the search space are kept identical. 

2.3.3 Machine Learning and Emergent Behaviour 

Recently the use Al techniques that involve machine learning in games to achieve 
emergent behaviour has become more frequent and surprisingly effective [Graepel 

et al. 2004]. The implementation of systems that "learn to play good" can be done 

without too much effort; however, their unpredict ability makes them unsuitable 
for many games. The danger with learning algorithms is always that instead of 
making the Al seem smarter by behaving clever, it could in fact learn to behave 

more stupidly by misinterpreting its inputs. To prevent this from happening the 
NPCs need to be trained to act in a desirable manner by the game's developers. 
This learning is usually done before the game itself is published, often using 

automated off-line calculations, with the commercial product then only using the 
locked-in, previously learned behaviour, while the learning itself is disabled. 

2.3.3.1 Artificial Neural Networks (ANNs) 

Neural networks are used to emulate the functionality of human and animal 
brains. In an artificial neural network the neurons are modelled using intercon- 

nected nodes that are able to make new connections, which allows the network to 

learn and improve itself. Using a neural network can enable games to adapt to the 

way that the player plays by updating itself during gameplay. As such they have 

been used in strategy games but they have also been successfully implemented 

in adventure games or action games, allowing artificial entities to improve their 

skills in line with the human player's performance. 

2.3.3.2 Decision Trees 

Decision trees that grow as they learn new information are another machine learn- 

ing method that is used in computer games. They are one of the most reliable and 

robust learning methods available and usually the preferred choice if a game Al 

requires to predict future outcomes or classify situations. When it is generated the 
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decision tree will store situations and their outcomes within its nodes, allowing it 
to "remember" the best course of action in case a similar situation is encountered 
in the future. In games, they have been generated using reinforcement- learning 
(gathered from the human player's reactions to NPC behaviour). 

2.3.3.3 Evolutionary Techniques 

Evolutionary techniques are the least often used machine intelligence methods 
used in computer games. In these techniques a basic initial set of problem solv- 
ing strategies for NPCs is usually evolved over time using a range of selection 
methods as well as random mutations, which are then evaluated until an optimal 
solution is found. While these solutions are usually very robust and reliable it 

can take a long time for a program to reach the desired level of competence which 
makes evolutionary techniques unsuitable for most real-time games. Neverthe- 
less a number of games have made use of evolutionary techniques like genetic 

algorithms (GA) and genetic programming (GP) that have been used for evolv- 
ing agents for a number of games, including arcade games [Anderson 2002]. GP 

has so far been applied exp erinient ally to a number of different computer game 

scenarios. Among these are classic video games like Pac Man [Koza 1994] or 
Tetris [Siegel and Chaffee 1996]. In these experiments game playing behaviour 

has been evolved in modified game environments. Most of the game versions 

used have been round-based, i. e. the computation of actions in the game are 

performed while the game itself is paused. Gameplay resumes only after those 

computations have finished. and only lasts until the pre-calculated actions have 

been executed. This is in contrast to real-time games in which all actions have to 

be calculated "on the fly". One of the few attempts to apply CP to a real-time 

game (RoboCup Soccer) is documented by Luke [Luke et al. 1998; Luke 1998]. 

The methods employed for that experiment bear some similarities to our own 

experiments [Anderson 2002]' (see Chapter 7, Section 7.1). 

2.3.4 Extensible NPC Intelligence 

A recent trend in computer games is to make them extensible by allowing users to 

modify them to their needs, one of the main areas for doing so being the definition 
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of game Al. There are several methods with different levels of complexity that 
can be used to achieve this. 

2.3.4.1 Parameter Tweaking 

The simplest way for modifying Al behaviour is by modifying the rules that are 
used internally by the game Al. This is usually done by setting internal program 
parameters that determine the behaviour of NPCs to given values. There are a 

number of games that employ this technique - some games even have graphical 

user interfaces to make this as simple as possible. Other games employ very 

simple initialisation scripts (see scripting systems below) to achieve this effect 
[Tapper 2003]. 

2.3.4.2 Plug-In Interfaces 

As mentioned above (see Section 2.2.2.1), some games contain software interfaces 

that can be used for writing plug-ins that can change the Al of NPCs in the 

game [Laird 2001], effectively allowing parts of the games to be reprogrammed. 
For this purpose, some games even have complex SDKs (software development 

kits) to simplify the modification of the game behaviour. 

2.3.4.3 Scripting Systems 

Many new games contain complex scripting systems (see Chapter 6) that allow 

the game Al to be defined or extended. Through scripting, game modification 

without the need for the program source code to be recompiled, a task that can 

be accomplished by a game designer alone, becomes possible. This enables the 

introduction of "parallel development", which means that the programmers" time 

is freed up as they no longer need to concern themselves with design elements 

which designers can now manipulate themselves with scripts [Huebner 1997]. 

A type of scripting language which is domain specific to the creation of NPC 

intelligence is the behaviour definition language [Anderson 2004] (see Chapter 

5). As their name suggests, behaviour definition languages are used to define 

the behaviour of virtual characters - often in the form of programs running on 
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a virtual machine 7 which interfaces with the character controls within the game 
engine. 

2.3.4.4 Annotated Environments 

A number of games now use annotated environments ("Smart Terrain") to sim- 
plify the simulation of intelligent behaviour. If the environment of the NPC holds 

all the information necessary for the NPC to interact with it, the NPC can be 
less complex which allows for the rapid development of game scenarios [Cornwell 

et al. 20031. This use of "annotated" objects [Doyle 1999] to make up the virtual 
game world greatly benefits the development process and also makes the NPC's 
Al highly extensible. The idea of annotated environments is based on the theory 

of affordance (or affordance theory) that was developed in the fields of psychology 

and visual perception. Affordance theory states that the makeup and shape of 

objects contains suggestions about their usage. A real world example would be a 

mug whose handle "affords" to be gripped to pick up the mug. Transferred into 

the context of a computer game, this means that the objects in the virtual world 

contain all of the information that an NPC will need to be able to use them, effec- 
tively making the environment "smart". In the game "The Sims" these "Smart 

Objects" [Peters et al. 2003] were used for behaviour selection to great effect. 
This means that most of the Al is not actually programmed into the Sims char- 

acters but into their environment. An object will broadcast information about 
itself to the entities in its proximity, including all instructions that are necessary 
to enable meaningful interaction between the NPC and the object [Forbus and 
Wright 2001]. 

2.3.5 Hybrid Techniques - Agents, Animats and Avatars 

The literature often refers to computer game NPCs as agents. Although the term 

agent is used frequently, there is no single definition for it, but generally speaking 

an intelligent agent is "anything that can be viewed as perceiving its environment 

7A virtual machine (VM) is a program that emulates the functionality of a whole computer 

system. It provides applications with a level of abstraction above the actual hardware (and the 

operating system) of the computer. 
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through sensors and acting upon that environment through effectors"' [Russel and 
Norvig 1995]. As the choice of terminology shows, a substantial amount of re- 
search using the concept of agents has been carried out in robotics, however in 

terms of software agents or --softbots" this means a program (module) which is 

able to collect information about its surroundings and evaluate this data using 

whatever Al method seems appropriate, resulting in a plan of action which it will 
then carry out - in effect a decision-making entity. The agents that are referred 
to most often in the context of computer games are autonomous agents [Nareyek 

2000]. Autonomous agents are agents that are self contained, i. e. agents that base 

their actions upon the information that they are able to gather themselves and 
their own knowledge. They do not have inputs that allow for external control but 

they are perceiving, "thinking" and acting by themselves. Using this definition 

one can clearly see that almost all NPCs in modern computer games can qualify 

as agents. This can be taken further by transforming the autonomous agents 
into embodied systems, i. e. virtual beings that interact with their environments 

using their bodies which take the place of abstract sensors or effectors. These 

truly autonomous NPCs are called animats [Champandard 2004]. The definition 

of animats is very close to what might be regarded as the ideal NPC, as it is a 
believable virtual entity. However, we think that to describe this kind of entity 

that could be considered the ultimate NPC a different term should be used. The 

dictionary definition for the word avatar is "the manifestation of a deity ... in 

human, superhuman, or animal form" [Collins 2001b]. This meaning has been 

transferred - mainly in multi-player computer games - onto the visual representa- 

tions of the players within the virtual environments of such games. However, we 

strongly believe that the meaning of the term avatar in the context of computer 

games should be expanded to also include virtual characters or virtual creatures 

which can interact with other avatars and the virtual environment they populate. 

We come to this belief because in a number of NIMOGs (Massive Multi-player 

Online Games), the human player's avatars will sometimes interact with very 

human-like NPCs that behave similarly to other players' avatars. The bound- 

aries between player and NPC are effectively blurred and - depending on the 

realism of the performance of the NPC - it may be hard to distinguish between 

human player and NPC. This kind of avatar could be called a most human-like 
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NPC. Therefore in the context of computer games an alternative definition of the 
word avatar is: "an intelligent entity playing a part in a game". 

2.3.6 Al Middleware and Dedicated Hardware 
While most game Al solutions are proprietary there are several game Al tech- 
niques that are frequently used in a variety of games. Consequently there have 
been a number of attempts to create game Al SDKs for generic solutions to these 
common problems [Fairclough et al. 2001]. So far this kind of middleware has 
followed rather than led the development of game Al. Mainstream games apply 
innovative designs a long time before they appear in middleware solutions. As a 
result these SDKs have found limited acceptance in the games industry [Skibak 

and Stahl 2002] and although there is a growing market within the game devel- 

opment community, Al middleware is still looked at with a considerable amount 
of suspicion [Dybsand 2003] with only a few solutions finding widespread use. 

The Al middleware solutions that are currently available are not necessarily 
bound to the field of computer games and as a result the Al techniques they 
implement differ from product to product. Some have originally been created as 
3rd party extensions to 3D animation software; others were developed for mil- 
itary simulation purposes. The interfaces that they provide vary greatly from 

code centric APIs for programmers to complex GUIs (graphical user interface) 
for designers. As such each system is relatively task-specific which makes these 

systems useful for some tasks but unable to carry out others. The greatest prob- 
lem faced by the creators of the middleware is a lack of standard interfaces. Game 
Al interface standardisation would provide common ground for developers and 

middleware based on those interfaces should find easier acceptance from the in- 

dustry. To that end the 1GDA Al lnterface Standards Committee is currently 

attempting to formalise the use of game Al [Nareyek et al. 2005]. 

Some game Al researchers are convinced that at some point in the future 

dedicated hardware for game Al, co-processors similar to the GPUs that have 

revolutionised graphics in computer games, will become available [Funge 1999]. 

The main hindrance for this type of hardware is the lack of a market, as chances 

are that the only use for this specialised and therefore expensive kind of hardware 
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would be computer games. The target audience for this kind of equipment would 
be hard-core game players, who make up only a fraction of the total number 
of computer game players, making the investment of time and resources in the 

research and development of dedicated hardware for games largely uneconomi- 
cal. However that does not mean that there won't be any hardware solution for 

computer game Al. Using GPGPU (general purpose CPU) computation tech- 

niques, some Al calculations are already carried out outside the main processor 

and on GPUs instead [Erra et al. 20041. Furthermore, only recently co-processors 
for physics and dynamics simulation [Hegde 20051 for use with games were in- 

troduced, providing further computing power that could be used for Al calcu- 
lations themselves or to free up CPU resources for Al. Finally, the introduction 

of multiple-core CPUs provides developers with what amounts to a generic pro- 

grammable co-processor that could be adaptable to a number of different prob- 
lems, including Al, physics and graphics, as can be seen in recent games console 
developments [Reynolds 2006]. 

30 



Chapter 3 

Data-Driven Architecture in 
Computer Games 

Data-driven design takes program modularisation and code-reusability to its ex- 
tremes. It is the logical progression from separating out task-specific functional- 
ities into distinct AP1s and the use of common application frameworks to speed 
up program development. 

3.1 Data-Driven Design 

In software development, in general, the use of a data-driven architecture usually 
means the distinction of an application's core components from application spe- 
cific code. The former are code elements that may be reused unchanged in other 
applications, whereas the latter indicates code or data that is unique to the indi- 

vidual application. This implies an abstraction of the application's internal logic 
from the data which is used to define the application's behaviour [Rabin 2000c], 

separating the definition of the application's make-up from the application's core 
functionality, which becomes effectively "policy free". 

Being "policy free" means that while the application's core provides function- 

ality which entails only the means for the creation of an application, i. e. the 
building blocks from which a comprehensive application can be constructed, it 

does not, however provide the application's functionality itself. In simple terms, 

it provides the "how to do", but not the "what to do" 
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3.2 Data-Driven Design in Computer Games 

Engine 
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application 
specific 

code 

Engine Modules 
(input, renderer etc. ) 

Resource 
Manager 

Game Assets 

Figure 3.1: A typical game engine. 

If the application is a computer game, a data-driven architecture results in 

games driven by a game engine [BinSubaih et al. 2007] (see Figure 3.1). This 

allows developers to make a clear distinction between engine (code) and game 

code, the former being the core elements that may be shared among several 
distinct games and the latter being the code that is unique to the specific game. 
As most of the game specific logic is no longer an intrinsic part of the core source 

code, in general a data-driven game engine is highly reusable and believed to be 

cost efficient [Danc 20061, enjoying a relatively long shelf-life. 
There are different layers of abstraction that define the make-up of the data 

part of data-driven games, but borders between these layers are not strictly de- 

fined and vary depending on the individual implementation. In its simplest form, 
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the game specific data can take the form of source code which can be linked with 
the game engine core. A higher level of abstraction on the other end of the scale 
is to store this data as an external game asset. Game assets are those elements of 
a game that are loaded into the game engine at run-time to provide the content 
of the game, including elements which are created by designers and artists like 
3D models, textures and animation or sounds and music. 

The Achilles heel of this high level of data-driven design in any computer 
application is the fact that an outsourcing of product specific data into an external 

asset can allow malicious users to effectively hijack the system by modifying those 

external resources or by replacing them with their own resources. This however 

can be easily prevented if the application properly verifies the integrity of its 

external resources before they are used. In the case of computer games, sometimes 

the modification of external assets can even be desirable, which is evident in the 

many extensible games that allow users to make their own modifications (see 

Section 3.2.1). 

In game development data-driven design is often understood as a way to em- 

power artists and designers to independently modify game logic without a pro- 

grammer*s help or intervention [Wilson 2002], requiring this to be accomplished 

without the need to recompile parts of the game program's source code. The 

methods used to achieve this are the same ones that also allow external game 

modification. 

3.2.1 Game Extensibility and Modification 

Over the past decade there have been many games that have been created in a way 

that allows the players to directly modify the games. This "modding" of games 
[Wallis 2007] goes from the simple extension and addition to existing games up 

to the creation of completely new games. This has been supported by the games 

industry through the publication of the same tools used by the game designers for 

the creation of the games themselves. By exposing the end-user, i. e. the players. 

to the tools allowing them to extend and modify the games themselves and by 

assisting them with any game modifications they intend to make. the developers 

add value to a game and dramatically increase its shelf-life. To simplify this, 
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some games provide extensive software interfaces into the game engine. allowing 
parts of the games to be reprogrammed by direct manipulation of the game code 
or through plug-ins, however, the method by which the extensibility of most 
modern games is realised is by the use of more or less complex scripting systems 
(see Section 3.2.2 and Chapter 6). 

3.2.2 Scripting and Data-Driven Design in Computer 
Games 

A scripting systern in which the script has complete control over the behaviour 

of the application that it is embedded in is the ultimate implementation of a 
data-driven design. 

Varanese [Varanese 2003] explains and discusses in detail how scripting is 

used in combination with computer games and how scripting systems can be 

embedded within computer games. Scripting can be used to issue commands 
to the game engine, such as loading of objects, textures and levels, but also for 

much more complicated tasks like playing animated cut-scenes, directing camera 
movements or triggering events inside the game worlds. It removes a large part 

of the - previously hard-coded - internal game logic from the game engine and 
transforms it into a game asset. Scripts themselves can be used to direct the 

application of these assets to the game, effectively modifying the behaviour of 
the game engine and the game itself without the need for the game source code 
to be recompiled. With scripts themselves being game content, this means that 

the game engine only provides a shell, i. e. a protected "sandbox" environment 
for scripts within the game engine. Scripts operate within this "sandbox" with 
the scripts creating the game and its environment without being able to adversely 

affect the running of the game engine itself. 

A number of games have built-in dedicated scripting languages, like Quake 

which includes a scripting language called QuakeC [Simpson 2002] or Unreal 

which has a scripting system called UnrealScript [BinSubaih et al. 2007], both 

allowing extensdve modification of the games through scripting alone. Other 

games use existing scripting systems that have been modified according to the 
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game's requirements. A much more in-depth discussion of scripting languages 

and games is presented in chapter 6. 

35 



Chapter 4 

Common Approaches to the 
Implementation of NPCs 

NPCs are a significant factor in the playability of computer games, i. e. if the 
NPCs do not perform (act) as expected, the player's enjoyment of the game suf- 
fers. It therefore does not come as a surprise that with the intention to avoid 
unnecessary risks in NPC development, game developers have a tendency to em- 
ploy proven solutions to the challenges faced by NPCs. These solutions typically 
include methods such as NPC behaviour definition using FSMs and the use of 
the A* algorithm for path planning [Orkin 2004b]. 

4.1 General NPC Implementation 

Combs and Ardoint [20041 state that a popular method for the implementation 

of game Al is the use of an "environment-based programming style", i. e. the 

creation of the virtual game world followed by the association of AI code with 
the game world and the entities that exist in it. This means that the NPC intelli- 

gence is built around and is intrinsically linked to the virtual game environment. 
This type of NPC intelligence can be created using -traditional" methods for "de- 

cision making", "path finding" (planning) and "steering" (motion control). As 

mentioned before (see Chapter 2, Section 2.2.2), these are the tasks that are car- 

ried out by NPCs in most modern computer games and to which. by convention 

rather than technology, the actions of NPCs are usually restricted. In terms of the 

36 



4.1 General NPC Implementation 

Figure 4.1: Typical entity class hierarchy in a computer game. 

"percei N, e-think- act cycle" (see Chapter 2, Section 2.2.2.1) of human-like NPCs 

some of these tasks closely mirror those that have to be performed by human 

players, i. e. both NPCs and humans need to perceive the environment, process 
that information and act on it. The human player usually visually perceives the 

virtual world through the computer's screen, while the NPC is anchored in the 

virtual environment, perceiving it through sensor functions. The human player's 

thinking is mirrored in the NPC's decision making and path planning. The ac- 

tions of human players as well as NPCs both directly affect the virtual world, so 

the obvious solution is to use the same interface for both, allowing them to share 

some of the required functionality. In games that are programmed using object 

orientation in the C++ programming language this can be achieved by deriving 

both, NPC as well as human player controls from the same base class (see Figure 

4.1). This mechanism aims to allow human players and NPCs to compete on an 

even playing field. This is important to preserve the player's suspension of dis- 

belief and create an enjoyable experience, as the player's enjoyment of the game 

would suffer if NPCs appeared to be too "stupid" or if they displayed superhuman 

competence at playing the game. 
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4.2 Decision Making 
Of the three common NPC tasks, "decision making" most strongly implies the use n, 
of intelligence. In the case of the human player this usually means the evaluation 
of the visual information, received as input from the computer screen. which 
will determine the player's actions and which needs to be emulated by the NPC. 
The creation of a seemingly intelligent and therefore believable NPC requires the 
formulation of rules to govern the NPC`s behaviour, allowing the NPC to perceive 
and interact with its environment. To formalise this, Funge [1999] applies the 
following equation: 

behaviour = (domain) knowledge + instruction 

Funge*s definition of --instruction" encompas6es pre-defined rule based be- 
haviour for NPCs (see Chapter 2, Section 2.3.1). His definition of "domain 
knowledge" includes information that allows an NPC to take reasonable deci- 

sions. such as axioms describing cause and effect of actions that allow NPCs to 
develop action plans to achieve nondeterministic, goal-directed behaviour. This 

combines deterministic and nondeterministic behaviour methods to create seem- 
ingly intelligent NPCs that can dynamically decide on actions but who also always 
ha%-e a fall-back position in case the NPC's plan fails. Funge's definitions can be 

extended, however, if one assumes the NPCs behaviour to be mainly reactive. i. e. 
directed by events that occur in the virtual world. 1n this case one could refer to 
the NPC`s behaviour as instinctive behaviour. Approached from this ethological 

point of view, we have defined the domain knowledge of an 'NPC as follows [Zerbst 

et al. 2003]: 

(domain) knowledge = instincts + perception 

The instincts are the rules that define the NPC's reactions to stimuli (sensor 

data) from its environment, making them effectively low-level instructions for 

the NPC. They are directly dependent on actual perception of the virtual game 

world at a given moment in time, i. e. the inputs received from the NPCs sensors, 

and combined with the latter these rules provide the NPC*s domain knowledge. 

While the game is running this domain knowledge is evaluated during the NPC's 
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decision making process and then augmented -with the pre-defined instructions to 
produce the NPC's actual behaviour. 

Funge's equation is inclusive, allowing for rule-based techniques, as well as 
knowledge-based and machine intelligence methods. Only a small minority of 
games perform decision making by employing machine intelligence techniques, 
such as neural networks that have been trained to select appropriate reactions for 

situations that arise in the game world. For these on-line learning has usually been 
disabled as this method's outcome is hard to predict and may therefore have a 
negative impact on the "game experience" if NPCs learn undesirable behaviours. 
Consequently in most commercial games decision making is implemented using 
more or less complex finite state machines. 

4.2.1 Implementation of Finite State Machines for NPC 
Behaviour 

FS-Ms in game development are more flexible than the formal definition for de- 

terministic FS-Ms in computer science that usually have only single states follow 

one another, whereas the loose definition in games allow each ,, -, tate to have seN. -- 
eral possible follow states. In game FS-Ms each state is usually associated with 
a specific behaviour and an XPC's actions are often implemented by linking be- 

haviours with pre-defined animation cycles for the NPC that allow it to enact the 

selected behaviour [Orkin 2006]. 
A typical scenario found in many computer games that would use an FSM 

involves N PCs on patrol, guarding an area in the virtual game world. These 

_NPCs will follow a pre-defined path on their patrol and react to disturbances 

caused by other NPCs or human players entering the area they are guarding. 
1 This type of scenario could just as well exist in RPGs as in FPS or RTS games, 

making it a suitable model for further examination. An example state machine 
for this game scenario could hold the states -patrolling', 'challenging intruder' 

'An RPG or Role Playing Game belongs to a computer game genre that has been derived 

from traditional paper-based games and board games like the popular "Dungeons and Dragons". 

In these games the player usually controls a hero character or a party of hero characters and 

needs to solve a series of quests within a fantasy setting. 
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and 'attacking intruder' (see Figure 4.2). The first of these states is the NPCs 
default state for the 'patrol' behaviour that is executed by the NPC when no 
other entity is within its patrol area. The second state is entered when an entity 
enters the NPCs patrol area, resulting in the execution of the 'challenge intruder' 
behaviour. If that entity is identified as friendly. the NPC reverts back to the 
'patrolling' state; however, if the entity is identified as hostile, the third state is 
entered and the 'attack intruder' behaviour is executed. 

intruder detected 

patrolling 

intruder friendly 

intruder dead 

challenging 
intruder 

attacking 
intruder 

Figure 4.2: Finite State Machine for a typical NPC. 

intruder 
hostile 

In its simplest form the implementation of a finite state machine in a computer 

game will take the form of a multiple selection in which each case represents one 

of the states of the FSM. This is then evaluated once during each execution cycle 
for this NPC to determine if the current state needs to change or to execute any 

actions that need to be performed for the current state. The FSM for the game 
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scenario described above could then be implemented as follows: 

enum fpatrolling, chal 1 eng ing-i nt ruder, attack ing-int ruder I state; 

switch(state) 
f 

case patrolling: 
if (intruder 

-detected0) state = chal 1 eng ing-int ruder; 
/* execute 'patrolling' behaviour */ 

break; 

case chal 1 eng ing-i nt ruder: 
if (intruder 

-hostileM state = at tack ing-int ruder; 
else if (intruder 

-friendly0) state = patrolling; 
/* execute 'challenging-Mtruder' behaviour 

break; 

case att acking-int ruder: 
if(intruder-deado) state = patrolling; 
/* execute 'attack intruder" behaviour */ 

break; 
I 

If implemented in CIC++ as above, this code can be problematic due to 
the peculiarities of the mechanics of the multiple selection available in CIC++ 
(, switch' statement) in which there is a fall-through between the different cases. 
This makes the implementation error prone, as easily missed logical errors can 

cause unwanted side effects. For instance, oinitting a single 'break' instruction 

between cases that then lead to unexpected results are hard to debug, as they are 

syntactically correct. An alternative to this type of implementation would use a 

series of nested dyadic (if-else) selections as the listing below demonstrates: 
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if(state==patrolling) 
I 

if (intruder 
-detected0) state = challenging-intruder; 

/* execute 'patrolling' behaviour */ 

I 

else if (st ate ==chal 1 enging-int ruder) 
I 

if (intruder 
-hostileM state = att acking-int ruder; 

else if (intruder 
-friendlyM state = patrolling; 

/* execute 'challengMg-Mtruder' behamour */ 

I 

else if (state==attacking-intruder) 

I 

if(intruder-deado) state = patrolling; 
/* execute "attack intruder' behamour */ 

I 

While using these dyadic selections would avoid the problems caused by un- 

wanted fall-throughs, possible errors here would be the accidental use of a monadic 

selection, effectively breaking the structure of the FSM by possibly allowing sev- 

eral states to be entered or even the wrong states to be evaluated during a single 

execution cycle. The creation of an FSM using this type of dyadic selections can 
be simplified using a macro-based language (see Chapter 6, Section 6.1) [Rabin 

2002b], which also prevents the introduction of errors into the FSM definition 

which may otherwise be hard to debug. Using this FSM language, the implemen- 

tation of the above FSM would be easier to maintain and take the following form: 

BeginStateMachine 

State(patrolling) 

OnUpdate 
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if(intruder-detectedo) state = chal 1 eng ing-int ruder; 
I*execute "patrol ling' behav iour */ 

State (challenging-intruder) 

OnUpdate 

if (intruder 
-hostile()) state = attack ing-int ruder; 

else if(intruder-friendlyo) state = patrolling; 
/* execute 'challenging-Mtruder' behamour */ 

State(attacking-intruder) 

OnUpdate 
if(intruder-deado) state = patrolling; 

execute 'attack intruder' behamour 

EndStateMachine 

4.2.2 Alternative FSM Implementations 

Similar functionality can be achieved through object oriented methods using a 

state class. Whatever method is used, however, a problem that remains is that 

this type of FSXI implementation may not scale well, i. e. it can easily grow to 

a size that will leave it in a confusing and therefore unmaintainable state. One 

possible solution to this problem is the use of a hierarchical state machine that 

breaks up complex states into a set of smaller ones that can be combined, allowing 

the creation of large and complex FSMs. 

An alternative to these hard-coded solutions is the use of data-driven FS_NIs 

that only require a relatively small amount of code with the actual data contained 

in external assets. This allows the use of specialist tools for the construction and 

maintenance of the state machine (see Chapter 6, Section 6.3.4). 
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4.3 Path Finding 

4.3 Path Finding 

After decision making, the next task for NPCs is "path finding". i. e. the identifi- 
cation of a tra; %-elable route between the NPCs current position and its destination 
in the virtual world. In the context of the above patrolling NPC example (see 
Section 4.2.1), this could mean the planning of a path between the waypoints 
that the NPC needs to visit during its patrol as well as the generation of a path 
for intercepting intruders that enter the NPC's patrol area. 

A path finding priority is usually the discovery of the shortest or most cost- 
efficient path from the NPCs current position to its desired destination. A re- 
quirement for achieving this is the calculation or estimation of the cost involved 
in travelling the path which is dependent on the application, i. e. there is no 
prescribed method for calculating this cost. Consequently, an ,y path finding im- 

plementation in a game will have to be provided with a suitable cost evaluation 
method. 

4.3.1 Evaluating the Cost of Tý-avel 

The most obvious measure for calculating the cost of travel is the distance between 

start point and destination. Other conceivable influences on the cost of travel are 

surface properties that could influence the NPC's progrcss while moving across 
the terrain [Stout 20001, such as surface type, texture, consistency or condition. 
These surface properties can be used to simulate the effects that forces, such as 
friction, would have on the cost of travel. From these considerations the following 

equation can be derived: 

PS +PD ID-SI x2 

In the above equation, c is the cost of travel; S and D are position vectors 

encoding start and destination positions respectively. The value ps is a modifier 

encoding the start surface property and the modifier value PD encodes the des- 

tination surface property. Consequently the cost of travel is the product of the 

distance between start and destination, i. e. the length of the vector spanning 
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from start to end point, with the arithmetic average of the sum of the surface 
property modifiers of the start and end points. 

Additional data that could be taken into account are height differences in the 

virtual world's topography, i. e. upwards or downwards sloping of the terrain, 

which could be used to generate an additional weight value to be factored into 
the cost calculation. Travelling down a slope should reduce the cost of travel, 

whereas travelling up a rise in the terrain should increase the cost, resulting in 

the equation shown below: 

PS + PD 
c=ID Slx-xh 

2 
The modifier value h in this equation is supposed to act as a weight encoding 

the height difference from start to destination. This is to provide an upwards or 
downwards correction of the cost of travel depending on the presence of a slope 
in the terrain's topography. For this the value h is defined as follows: 

hI+ 
Du - Sv 

5x ID, - SvI 

The result of this is a plausible cost equation that can be used for path plan- 

ning in computer games. 

4.3.2 Virtual World Representation 

The virtual world in which NPCs, as well as player characters reside needs to 

exist in a form that can be perceived and processed by the NPCs. ln many 

modern computer games large portions of the virtual game world are represented 

as a graph, i. e. as a set of interconnected nodes that encode the area which 

the NPC can traverse. These nodes are sometimes generated from a so-called 
"Navigation Mesh" [Snook 2000], "a set of convex polygons that describe the 

'walkable' surface of a 3D environment" [Tozour 2002a]. This can be derived 

from the world's actual geometry by simplifying it to form a mesh that encodes 

the world"s geometric extremes. 
The minimum information required for a node in a graph that defines the 

search space for path finding are the node's position in the virtual world, as well 
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as its connections to other nodes. This can then be augmented with additional 
data, such as information regarding the world's surface properties at the node's 
position. NN'lithin a computer game, the node information would usually be stored 
inside a record data structure. 

An implementation of a node record encoding the node's position as a point 
in space given by its Cartesian co-ordinates, annotated with an additional value 
that holds information about the surface properties and storing the node's con- 

nections as a null-terminated array of links to neighbouring nodes, could take the 
following form: 

struct node 
I 

double 

double 

double 

double 

struct 

X; 

Y; 

z; 

P; 

node **neighbours; 

A cost function using the above cost equation (see Section 4.3.1), using the 

straight-line distance between two nodes and taking into account surface prop- 

erties, as well as the virtual world map's topography, could be written as shown 

below: 

double cost(node *s, node *d) 
I 

double h 1.0; 

double x (d->x s->x)*(d->x s->x); 

double y (d->y s->y)*(d->y s->y); 

double z (d->z s->z)*(d->z s->z); 

double c= sqrt(x+y+z); 

c *= (s->p+d->p)/2.0; 

h += (d->y - s->y) / (5.0*fabs(d->y - s->y)); 
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C *= h; 

return c; 
I 

The encoding of the virtual world that uses a graph of nodes using a data 
structure, such as the above node record structure, as well as the provision of a 
cost of travel function, such as the function shown above, are the requirements 
for the implementation of path finding in the virtual world. To then search the 
virtual world for the shortest path between two locations within it, a planning 
algorithm must be applied to the information provided in the graph. 

4.3.3 Planning the Path 

The most popular path planning algorithm used in modern computer games is 
the A* algorithm [Matthews 2002] (see also Chapter 2, Section 2.3.2.1) ,a gener- 
alisation of Dijkstra's algorithm [Dijkstra 1959], which is guaranteed to find the 
lea, st costly path if such a solution exists within the search space. 

A* perforins an iterative best first search of its search space using ýi heuristic 
based on three functions: 

g(x), named "goal", i. e. the actual cost involved in reaching the current 
node from the start node 

h(x), named "heuristic", i. e. an estimated distance to the destination node 
from the current node that should be an underestimate of the actual cost 
for the algorithm to find the optimal solution [Dechter and Pearl 1985] 

3. f (x), named "fitness", i. e. the sum of the functions g(x) and h(x), resulting 
in an estimated cost for the path from the start node to the destination node 

Beginning with the start node, the results of the evaluation of these functions 

informs the selection of the next node from the search space to be examined. To 

achieve this, the algorithm requires additional information to that stored within 
the nodes of the graph that defines its search space, i. e. fitness, goal and heuristic 

values as well as links to the actual node data structure, as well as the parent node: 
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struct pathnode 
I 

node *mapnode; 
double fitness; 

double goal; 
double heuristic; 

pathnode *parent; 

1; 

node within the graph 
sum of the goal and heuristlic values 
cost of travel up to current node 
eshmated cost of travel to destmation 

parent node within the path 

The planning algorithm (see Appendix A for an A* sample implementation) 

returns a list storing the nodes of the path from start node to destination node, 
which can then be used as waypoints by the NPC. 

4.4 Steering 

Once a path from the NPC's position to its destination in the virtual world has 
been discovered, the final task that an NPC needs to accomplish is to move to its 
destination in a believable manner. This is achieved using "steering", i. e. naviga- 
tion and motion control. This incorporates several methods of varying complexity, 

ranging from totally random movement via exploratory terrain traversal in un- 
known environments, which is unplanned as there is no known destination, to 

the rigid following of a given path. "Path following" is a "steering behaviour" 
[Reynolds 1999] that involves following a pre-planned path through the virtual 

entity's environment. These generated paths are frequently unsuitable for cre- 

ating believable NPC motion, a common problem that stems from the fact that 

paths in virtual environments usually take the form of straight line segments 

connecting the nodes that make up the path. The simplest solution for creating 

smooth appearing movement along the path over time is the application of an 
interpolating parametric curve (spline) through the path's nodes [Rabin 2000a] 

and to follow the resulting curve rather than straight lines between the nodes. 
lmprovements that can be made to generate better believable NPC movement 

are the addition of other steering behaviours, such as "local steering" methods 
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[Tomlinson 2004] that facilitate (dynamic) obstacle avoidance, allowing the NPC 
to exist in a dynamic, changing environment without the need to constantIv re- 
evaluate its planned path. These Iocal steering" methods also include emergent 
behaviour methods such as flocking [Reynolds 1987] (see also Chapter 2. Section 
2.1.2), which are useful in situations when pre-computed plans do not exist or 
fail due to unforeseen changes to the virtual environment. 

4.5 Construction of an NPC 

The typical techniques for implementing NPCs described in this chapter are com- 
monplace in most computer games and can be employed to construct NPCs with 
or without the use of a data-driven architecture (see Chapter 3), which could tie 
together the individual components that make up the NPC. 

As stated above (see Section 4-1), in a game application the code performing 
the implementation of NPCs usually shares a lot of code with that of human 

players' avatars. Code elements that are often identical for both (NPC and human 

player's avatar) are the methods that encode effectors for actions that can be 

carried out by both. 

Methods that are usually unique to the NPC object are the sensor functions 

that enable it to perceive the virtual world. A method that NPC and human 

player's aý-atar have in common, however, is an 'update' method which updates 
the entity's state and position in the virtual world and which is usually called 
for each update cycle of the application (once every frame). 1n addition to the 
instructions found in the 'update' method of a human player's avatar, an NPC 

object*s 'update' method usually also incorporates the NPC's perceive-think-act 

cycle". 
In most game applications the "decision making" process is unique for each 

NPC type and sometimes even for each NPC in the game. Decision making code 
that can incorporate FS'-\Is such as those described above (see Section 4.2.1) and 

which may include the initiation of the execution of actions (equivalent to the 

human player's input to an avatar) is either placed inside the 'update' method for 

each NPC object or within a separate method which is called from the -update' 

method. 
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Path planning, which is generally initiated during the "decision making" pro- 
cess for NPCs (but is also used for indirectly controlled avatars of human players), 
is usually implemented as a generic method which is identical for all NPCs (fre- 

quently implemented within a top-level class), whereas cost calculations may vary 
from NPC to NPC as different types of NPC might be influenced by the virtual 

world's terrain and its properties in different ways, requiring each NPC to supply 
their own cost of travel function to the planner. A further reason for decoupling 

the cost calculation from the planner is that some NPC implementations will keep 

the planning method even more generic, allowing it to be used for other purposes 
than just path finding [Higgins 2002a] (see also Chapter 2, Section 2.3.2.2). Fi- 

nally, "steering" is a mostly generic task that is usually identical for all NPCs 

and therefore usually implemented as a method within a top-level class, unless 

steering behaviours that are specific to a type of NPC are used. which would 

require the NPC object to supply their own steering methods. 
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Syntactic Behaviour Definition 
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Chapter 5 

NPC Behaviour Definition 
Languages for Computer Games 

While the use of scripting in games can mean simple manipulation of the ap- 
pearance of the virtual game environment, one of the main areas in which games 
allow niodifications of this kind is in the behaviour of the game Al. Furthermore, 

the use of scripting is also the most common method by which the Al behaviour 

of a game is extended or modified. In fact, one of the features that people have 

come to expect when it comes to FPS games is the provision of a scriptable in- 

terface for controlling NPCs. In the context of NPCs, simple data-driven design 

in which the behaviour of the Al entities in a game depend on the interpretation 

of an external game resource (i. e. a script program) effectively bridges the gap 
between hard-coded Al and fully scripted NPCs. 

5.1 Behaviour Definition Languages 

We define the term Behaviour Definition Language (BDL) - not to be confused 

with the term "Behaviour Description Language" [Bertrand and Augeraud 19991 - 
to be a programming language used for the definition of game character behaviour 

(in the ethological sense of the word), often found in the form of programs running 

on a virtual machine which interfaces with the character controls within the game 

engine. Thus the task of BDLs is to facilitate the application oriented creation of 
believable virtual entities that inhabit game worlds. While behaviour definition 
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languages are domain specific to the creation of NPC intelligence, they are often 
more than just a Domain-Specific Language (DSL) [West 2007] for game Al. Mally 
behaviour definition languages maintain the flexibility of traditional programming 
languages while at the same time offering powerful Al functions and operators. 

As the purpose of BDLs is to facilitate the definition of artificially intelligent 
behaviour, it may be beneficial for the design of such languages to utilise elements 
and concepts found in Al languages (see Section 5.1.1). BDLs also bear some 
considerable resemblance to the educational mini-languages [Anderson 20041 that 
have found use in computer science education for decades [Brusilovsky ct al. 1997] 
(see Section 5.3.3). These mini-languages usually provide a task-specific set of 
instructions and (sensor) queries which allow users to take control of virtual 
entities or actors, acting within a micro world, similar to a BDL, controlling an 
NPC that inhabits a virtual game world. 

1.1 Al Languages 

There exist a number of languages that were designed with Al applications in 

mind, some of which could be categorised as behaviour definition languages. but 

most of these languages are unsuitable for direct application to NPC behaviour 
definition in computer games. Some rule-based Al languages provide hybrid pro- 
gramming methodologies that combine elements of logic programming languages 
(from traditional Al research) and the more commonly used imperative implemen- 

tation languages [Wright and -Marshall 2000]. These implementation languages 

provide the most often used means for NPC behaviour definition in computer 

games, and even in the simplest form they can be used successfully in that capac- 
ity. One example for this is the use of the AWK [Aho et al. 1979] based GANNK 

(Gnu AWK), a simple scripting language, which has been used as an Al problem 

solving language to great success, in some situations attaining better results than 

those achieved with traditional Al languages [Loui 19961. 

Programming languages that have been developed especially to solve problems 
in the development of Al, such as LISP [McCarthy 1959] or logic languages such 

as Prolog, which use a declarative paradigm for the definition of a search space 
in which a solution for the problem may be found rather than an algorithm that 
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describes the solution to the problem [Colmerauer and Roussel 1993], are too 
different from the C-like procedural languages, which allow a simple mapping 
from the way that algorithms would be expressed in natural languages to the 

programs. The use of these Al programming languages would be considerably 

more difficult for a non-programmer to learn than the use of a procedural language 

and consequently complicate the definition of the behaviour of virtual entities. 
However, this does not mean that it is impossible to use these Al program- 

ming languages in the context of computer games. We have used a LISP based 

language (GP Asteroids Script) for defining the behaviour of an artificial player 
in an arcade game [Anderson 2002] (see Chapter 7, Section 7.1), and another 
LISP based language, Tapir [King et al. 2002], has been used to define Al enti- 
ties in war-games. The target user group for Tapir, however, is a programmer 

who understands the difficulties of agent control, thus making it unsuitable for 

non-programmers. Tapir is nonetheless one example for the number of Al specific 
languages that can be used to solve the kind of problems faced by NPCs in com- 

puter games. Some of these languages have their origins in the field of cognitive 

robotics, a selection of which is presented below, and one of the attributes that 

many of them share is the concept of "Action Languages" [Gelfond and Lifschitz 

1998]. Gelfond and Lifschitz describe action languages as a formalized method 
for describing the cause and effect of actions within an environment, a domain 

that robotics shares with Al entities in a virtual game world. They differen- 

tiate between two distinct categories of action languages that can also be seen 

as individual components that can be combined into a unified action language 

[Lifschitz 1997]. Those two components are action description languages, used to 

express the rules that define state transition systems (a category that is matched 

by several logic programming languages), and action query languages, which can 

be used to express "properties of paths in a given transition system" [Lifschitz 

19971. 
The "classical" Al languages, i. e. those that are not concerned with NPCs in 

computer games, can often be found among (but are not restricted to) constraint 

logic languages and cognitive modelling languages for goal-oriented systems (a 

recent development of which are the high level behaviour representation languages 
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that aim to simplify access to intelligent systems and make them easier to use 
and comprehend [Ritter et al. 20061). 

Other Al languages that can be applied to NPC creation are agent oriented 
languages ýHuget 2002], as most Al entities in computer games can be classified 

as agent programs. Agent oriented languages often bear similarities to object ori- 

ented languages [DeLoach 19991 and programs developed using these languages 

can often be represented by a visual abstraction, allowing the use of meta lan- 

guages like UML to be used for defining the agents (see Chapter 6, Section 6.3.4). 

This can considerably simplify the Al entity development process and makes this 

kind of language ideal for the definition of NPC behaviour in computer games. 
While many of these languages are used to direct the behaviour of artificial 

entities, i. e. robots (physical and virtual), not all conform to our definition of 
behaviour definition languages. Instead they are modelling languages that aim 

to indirectly describe human-like behaviour to be realised by an underlying ar- 

chitecture, rather than the behaviour definition (programming) languages that 

describe an algorithm that creates the illusion of human-like behaviour. While 

the effect i-nay be similar, the methods used to generate the entities' behaviour 

are vastly different. Behaviour definition languages provide direct control of the 

behaviour, whereas in the case of modelling languages, the behaviour is emergent 

and beyond the developer's immediate control. 

5.1.1.1 GOLOG -A Cognitive Robot Control Language 

GOLOG (alGOL in LOGic) [Levesque et al. 1997] is an action language devel- 

oped by the cognitive robotics group at the University of Toronto for the purpose 

of behaviour definition for robots. While GOLOG is at its core a logic program- 

ming language that is based on the situation calculus [Levesque et al. 19981, it 

explicitly provides high-level control operations for robots that allow the defi- 

nition of action sequences for execution by the robot, as well as program flow 

control structures, such as sequence, selection and iteration which are more remi- 

niscent of imperative programming languages, allowing a blend between logic and 

imperative programming styles. 
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The lack of immediate feedback and low-level control in GOLOG which does 
not provide any fault tolerance or means to handle run-time errors has prompted 
the development of the -execution and monitoring system" GOLEX [Hdhnel et al. 
1998]. COLEX is a companion system for GOLOG which resides in-between the 
high-level GOLOG and low level control software, extending GOLOG with the 
means for implementing simple interaction and sensing in GOLOG programs. 

GRL -A Language for Robots and Game-Bots 

The -Generic Robot Language" (GRL) is a functional language for the definition 

of behaviour-based systems [Horswill 2000], which is an extension to the high-level 

programming language Scheme [Steele and Gabriel 1993], a functional language 

that is itself based on LISP [McCarthy 19591. The language itself, extendable 
through macros, only exposes (makes accessible) a sub-set of its host language, 

requiring the use of GRL for most tasks and restricting the use of Scheme program 
code to the definition of signal sources as well as the expression of some form of 
FSMs. 

GRL was originally developed to write control programs in behaviour-based 

robotics. defining robot behaviours at a relatively low level at the expense of 
the expressiveness that could be achieved with a language such as GOLOG (see 

above), however the resulting performance gain, combined with the functional- 

ity provided by GRL, lends itself perfectly to the definition of game character 
behaviour. For this, the language provides the means to implement and eas- 
ily combine higher level operators, allowing the creation of concise yet powerful 
behaviour definition programs. 

The entities controlled by GRL programs reside in an event driven environ- 

ment which needs to be provided by the underlying architecture, with GRL pro- 

grams continuously processing the signals they receive. The language is not bound 

to a specific robot architecture and can output programs for use with a variety of 

systems, one type of which are programs in the UnrealScript language that can 
be used to control NPC behaviour. 

The use of GRL in conjunction with FlexBot [Khoo and Zubek 2002], a soft- 

ware development kit for game-bots (NPCs) for the commercial game Half-Life, 
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has shown the system's capability to enable the parallel existence of a large num- 
ber of very convincing NPCs within a typical game environment. The game-bots 
resulting from the application of this approach (see Chapter 2, Section 2.2.2.2) 
have complex state machines at the heart of their behaviour which are of a similar 
kind to those that have previously been defined manually for NPC behaviour in 
commercial computer games. 

5.1.1.3 CML - Cognitive Modelling for Animation 

John Funge*s Cognitive XIodeling Language CML [Funge 1998] is a high level 
behaviour definition language for Al entities in computer games and computer 
animation. Funge created CML to provide an intuitive method for creating vir- 
tual entities that have the ability to interact with the virtual world that they 
inhabit. CML is related to the programming language GOLOG [Funge 1999] (see 
Section 5.1.1.1 above) in so far as like GOLOG it is based on the situation calculus 
[Levesque et al. 1998]. CML, however, was designed with computer games and 
computer animation in mind. CML aims to strike a balance between cognitive 
modelling and deterministic methods by providing means to use both, employ- 
ing deterministic techniques as fall-backs for the nondeterministic methods. CML 

uses the situation calculus to provide the NPCs with the necessary domain knowl- 

edge to help them understand their environment and their own situation within 
that environment by defining preconditions and by expressing the effects that 
NPC actions will result in within the game world. This description can then be 

interpreted as the desired behaviour by a run-time system. The situation calculus 
is used to define a world by describing world states and the possible combinations 

of actions that can lead to the creation of these states which is a similar concept 
to that of the action languages described above (Section 5.1.1). The precise re- 
lationship between the situation calculus and action languages and methods for 

translating expressions from one to the other are described by Giunchiglia and 
Lifschitz [Giunchiglia and Lifschitz 1999]. The syntax of CML is based on the 

mathematical notation of the situation calculus but is held close to the English 

language to simplify program development. 
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Soar and Related Systems 

Soar (see Chapter 2, Section 2.2.2.1) is a software toolkit used in Al research. It 
includes an Al programming language as well as an architectural framework for 

creating autonomous agents with human-like cognitive abilities. The Al language 

allows the description of production rules that are stored in a knowledge base in 

the memory of the Soar framework. The production rules map conditions (states) 

to actions and the knowledge base of productions provides a search space from 

which the behaviour of an artificial entity can be selected. An agent using this 
framework gathers world state information (from sensor data) as its inputs and 

searches the productions in its knowledge base for the most appropriate action 

which is then passed as output to the environment. If no appropriate solution is 

found in the search space, i. e. if the agent cannot decide what to do, a machine 
learning mechanism in Soar attempts to develop an alternative solution through 

the automatic generation of additional productions. 
Soar programs themselves provide a relatively low-level of abstraction, i. e. 

the Soar language cannot really be counted as a high-level BDL if compared to 

other Al languages. The real power of the system lies in its architecture, which 

is targetable by higher level Al programming languages such as the high level 

behaviour representation language Herbal [Cohen et al. 20051. 

5.2 Requirements for Behaviour Definition Lan- 

guages 

The design of a programming language for the definition of artificial behaviour 

as an extension to a specific game or genre of computer games (for example 

First Person Shooter games) is relatively simple if only deterministic behaviour 

is involved. For instance, the first prototype for our ZBL/O behaviour definition 

system [Anderson 2004] (see Chapter 7. Section 7.2) - an educational tool lor 

learning how to syntactically define NPC behaviour in FPS (First Person Shooter) 

games [Zerbst et al. 2003] - was developed over a period of little more than a 

fortnight (from conception to first use) - 
In effect such a language does little more 

than provide a function binding interface to a game engine for the creation of 
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rule based systems. The game engine itself does all the work while the script 
program only ties together the different game engine components that provide 
the NPCs -, ý-ith functionality. Unfortunately the specialisation for a single genre 

greatly restricts the reusability of such systems and they are usually proprietary 
to a specific product or range of products. 

5.2.1 Language Requirements 

A systern that controls the behaviour of autonomous agents in a virtual game 

world usually exists on two levels [Anderson 2004]. The higher level is a behaviour 

definition (scripting) language that often resembles a traditional programming 
language, Nvhereas the lower level is the corresponding run-time engine which 
interfaces Nvith the game (see Section 5.2.2). The former, i. e. the BDL, needs 

to achieve a number of objectives. Some of these objectives are conflicting, so 

compromises will need to be found. For computer game developers to benefit from 

a BDL, it has to be designed to be intuitive (see Section 5.3.1), i. e. the language 

must be easy to learn and possibly easier to use than traditional programming 
languages. One way this could be achieved would be by making the language as 

similar to a natural language as possible, as suggested by Funge [1998]. It is our 

belief. however, that a close resemblance of a behaviour definition programming 
language to a natural language may easily prove counterproductive (see Section 

5.3.2). NN, e are also convinced that the notion that a traditional programming 

language may be too complex for non-programmers to use is wrong. A much 

more practical approach would be to base a BDL on an existing production 

language (see Section 5.3.4). Furthermore, a BDL should not only be intuitive, 

but it should also be kept as generic as possible to be useful for the creation of 

computer games of different genres. While the generation of simple deterministic 

behaviour for NPCs may be suitable to some games, other games may require 

their entities to have goal-directed behaviour. Consequently, both of these Al 

methods will need to be accommodated by the language. 

Among all possible programming language features, we have identified the 

following to be especially useful for BDLs: 
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a state machine data type (finite and possibly also fuzzy - see Chapter 2, 
Section 2.3.1) 

9 entity annotation and smart environments (see Chapter 2, Section 2.3.3.4) 

goal-orientation specific data types and operators (see Chapter 2, Section 
2.3.2.2) 

simple object orientation (because an NPC entity is analogous to an object 
[DeLoach 1999]) 

A programming language for the definition of NPC behaviour should therefore 
incorporate as many of these elements as possible while avoiding any impediment 

of the system's ability to direct NPCs in real-time games. While some of these 
features, such as special operators, can be addressed by direct integration into the 
BDL, others might preferably be implemented as functions of a standard function 
library to accompany the BDL and not within the confines of the core language 
itself. Similar to the C/C++ programming languages, the use of intrinsic func- 

tions within the definition of the BDL that would be liard-coded into the run-time 
system should ideally be avoided, i. e. the language core as such should not pro- 
vide the system with any specific functionality. Instead, all functionality for the 
AI definition with the BDL should be provided through external functions which 
would be implemented as libraries for optional inclusion into programs. The 

minimum functionality for defining artificially intelligent NPCs using the BDL 

should be provided in the form of a standard library containing standard func- 

tions and compound data types. The functions provided by this standard library 

must enable a user to define an Al entity's domain knowledge, i. e. to anchor 
the NPC's perception of its virtual environment to its understanding of that en- 

vironment. For the benefit of upwards compatibility to future developments, a 

standard library should also provide the BDL with interfaces to frequently used 

game Al functions as defined in the findings of the IGDA Al Standards Commit- 

tee [Nareyek et al. 2004], once those interface definitions have been published. 
All additional functions that do not directly aid the definition of NPC behaviour 

but which may be useful for NPC program development should not be part of 

60 



5.2 Requirements for Behaviour Definition Languages 

the BDL's standard library itself. Instead those functions should be incorporated 
into a secondary set of utility libraries. 

5.2.2 Run-Time System Requirements 

The low-level run-time element of the behaviour definition system should be a 

scripting system, i. e. a specialised embeddable program module to execute BDL 

programs within the host game engine. The benefit of this is that the game 

application itself does not have to be recompiled for the changes to the game*s 
NPCs to take effect. The run-tinie system could take the form of an interpreter 

which translates and executes BDL scripts during run-time. Preferably it will 
be a virtual machine, executing programs that have previously been translated 

into intermediate code, targeting the virtual machine. This translation could 
be done by a compiler that could be implemented externally or as an internal 

ahead-of-time (AOT) compiler or possibly even as an internal OTF (on-the-fly) 

compiler. Both forms of scripting system provide the same benefits to a game, 

as both allow the alteration of NPC behaviour by modifying a script program. 
Code contained within a BDL's libraries (see Section 5.2.1), however, should not 
be bytecode for the system's virtual machine or code written in the BDL, but 

bytecode of the native environment of the run-time system's host application for 

dynamic loading and execution by the virtual machine or interpreter. 

The requirements for the run-time system therefore are: 

implementation as an embeddable module or as a plug-in for the host ap- 

plication 

independence of BDL programs from the rest of the application (to prevent 

run-time instabilities) and pre-emptive program termination if the environ- 

ment changes beyond expected limits 

e as small an overhead as possible for the execution of BDL programs 

e platform independence (to the highest possible degree) 

V_ 
For an application's run-time stability it is very important that the virtual ma- 

chine that executes a BDL's programs does so independently from the application 
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into which it is embedded, so it will be impossible to crash the application by 
executing an erroneous BDL program. 1n the case of an erroneous BDL pro- 
gram being run the virtual machine should be allowed to degrade gracefully, i. e. 
it should have the capability to detect the error and to stop execution of the 
program without interfering with its host application. 

While it would be desirable for the run-time system to notify the host appli- 
cation of any errors that have occurred, it still must be able to act independently 

without requiring the host application to select the next operation. This will have 
to be addressed by the run-time system's API, the interface that will allow the 
host program access to the run-time system. This API will also need to be able 
to map the data and functionality of the host application to the corresponding 
structures within the run-time system. 

5.3 Behaviour Definition Language Design 

We believe that a behaviour definition programming language for an NPC defi- 

nition system needs to be designed according to the requirements laid out in the 
previous section if it is to cater for the needs of modern computer game devel- 

opment. For the creation of a language which is easy to understand and easy 
to employ by users - the people who will write programs in that programming 
language -a number of additional language design related issues need to be taken 
into consideration. Foremost of these is the understanding of the intended user 
base, i. e. the system's target audience. This would be game developers, but not 
restricted to programmers alone. Another contributing factor is what type of lan- 

guage the BDL is going to be. Strictly speaking a BDL in our definition could be 

called a scripting language, as its programs are not compiled into native machine 
code but are executed within a run-time module which is embedded within an 

otherwise independent game engine. Consequently the BDL should be considered 

an extension language, combining the flexibility of a production language with 
the power of a task-dedicated scripting system. The restrictions imposed on users 
by the structure of such a BDL need to be reduced to a minimum and must not 
interfere with the user's task - instead they need to be harnessed in a way that 

can empower the uscr. An example of how this could be achieved is the use of 
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strongly typed data combined with a reduction of possible data types. While 
this would slightly reduce the choice available to the user, it would also eliminate 
possible sources for errors and mistakes. 

5.3.1 Design Principles 

A BDL that is supposed to be used by non-programmers as well as by program- 
mers needs to be designed accordingly: It is likely that for some game designers 
the BDL will be the first programming language that they encounter so it is only 
logical that it should embrace some of the methods used for introductory pro- 
gramming languages. In the context of those requirements McIver and Conway 
[1996] have identified seven "deadly sins" and design principles and their poten- 
tial problems and benefits. They argue that a language which has too many 
different features ("more is more*') or too few features ("less is more") or which 
contains too many syntactical "false friends" ("grammatical traps", "violation of 
expectation", "excessive cleverness") would make it very hard for users with little 

programming experience to comprehend the language and to understand what a 

program does. For the same reason they consider "backwards compatibility" to a 

similar existing language a hindrance as the prior knowledge of the previous lan- 

guage would only benefit those who already know how to program. Programming 

languages that are supposed to be used by novice programmers need to have a 
WYSIWYG' character with program source code being able to deliver expected 

results. McIver and Conway conclude that the ideas they present can only be 

taken as a guide - not a general solution - and that ultimately the success of the 

language design can only be measured through user feedback. 

Stroustrup [1991] lists five principles that apply to the design of any program- 

ming language, and that consequently also apply to the design of a behaviour 

definition language. These principles can best be described as: 

1. Consistency, i. e. the clean integration of features. 

1WYSIWYG stands for "what you see is what you get", a computer aided design (CAD) 

paradigm which implies that the output received from the design application will be identical 

to the final result. In the context of programming languages it is used in terms of predictability, 
describing syntactic features that closely map to the results of their execution. 
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2. Modularity, i. e. the possibility of combining existing features to achieve 
new functionality. 

3. Simplicity, i. e. the omission of features for special cases. 

4. Performance- neutrality, i. e. the omission of a language feature in a program 
should not affect the performance of said program. 

5. Logical disjunction of features, i. e. the language should allow the existence 
of programs that do not employ all of the language's features. 

A BDL should facilitate object orient ed-programming [Stroustrup 1991], as "this 

paradigm closely reflects the structure of systems 'in the real world"' [Wirth 20061, 
but, as Wirth notes, it does so as an extension to the traditional programming 
techniques found in structured programming. Object orientation needs to be 

regarded as a double edged sword, however, as the additional complexity the 

object oriented paradigm presents may be overwhelming for novice programmers 
[Beaubouef and Mason 2005]. Some of the features and mechanisms of modern 
object oriented languages such as multiple inheritance, polymorphism and excep- 
tion handling should be avoided or possibly hidden from novice users within a 

separate access layer to the BDL. This is because they are often confusing for 

novice programmers as from their "point of view it is simply a case of gratuitous 

complexity" [Warren 2001]. 

5.3.2 Resemblance to Natural Languages 

We have mentioned before (see Section 5.2.1) that there are arguments in favour 

of the resemblance of a programming language to a natural language as this may 
help non-programmers to understand it and use it. Attempts have been made 
to make existing languages more similar to natural languages by adding various 

qualifiers and modifiers to keywords and identifiers [Herriot 1977]. Herriot argues 

that the replacement of abstract structures in programming languages by - among 

others - adjectives and prepositions to more closely resemble the English language 

would allow "the program to be its own comments". Some of the presented 

concepts such as the use of contextual modifiers to allow instances to use the 
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same identifier as the type definition may be worth further consideration for 
enhancing the readability of programs. However, most of the changes to the 
structure of programming languages proposed by Herriot would be mainly of a 
cosmetic nature and while they would make programs easier to read, they would 
also make programs much harder to write. Using keywords that result in semantic 
changes in certain usage situations would make the construction of a compiler 
for that language much more complicated as it would have to compile context 
sensitive programs. This is because natural languages are context sensitive and 
contain too many ambiguities which require additional specification to clarify 
problems and to resolve these ambiguities. We think that the additional effort 
required to do this would negate all the benefits gained from the use of a natural 
language structure in the first place. 

The addition of more keywords would also make the use of the language 

much more error prone. Moreover, linking a programming language's structure 
intrinsically to a specific natural language would make it much more difficult 
for non-native speakers of the natural language to write meaningful computer 
programs, while it would become practically impossible for programmers who do 

not know the natural language to write programs at all. Providing multi-language 

versions of a programming language is undesirable, as the language would have to 
be modified according to the structure of each of the supported natural languages. 

Consequently, while natural languages as such may be easy to learn, we believe 

that their usage would not only make it quite hard to effectively use the language 

to define NPC behaviour but it would also greatly complicate the overall structure 

of the system. As a result the computational cost could easily become too large 

to make this feasible for real-time computer games. 

5.3.3 Resemblance to Educational Programming 

Languages 

Some of the most successful introductory programming languages used for the 

teaching of computer programming employ the "Karel the Robot" paradigm [An- 

derson and McLoughlin 2006] which relies on the use of a mini-language that 

provides a small number of instructions and which allow users to take control of 
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virtual entities, acting within a micro world. The aim for all of these languages 
is to motivate students to take up programming and to provide them with an en- 
joyable experience at the same time. The "Karel the Robot" paradigm is named 
after the very successful "Karel the Robot" program [Pattis 1981], which is one 
of the widest known computer science teaching tools and has had considerable 

success. Untch [1990] describes Karel as "essentially a programmable cursor that 

can inove across the flat world" of a 2D grid with obstacles (walls) that cannot 
be passed and objects (beepers) that can be placed in or removed from the micro 

world, providing a game-like setting for the task of computer programming. 
The use of computer games as the environment for mini-language programmed 

virtual entities is not a new idea. Apart from the purely educational systems such 

as "Karel the Robot" there are several examples of games that provide interaction 

through this paradigm - most of which are available on-line (on the World Wide 

Web), such as Robocode [Li 20021 or the full 3D action game GUN-TACTYX 

[Boselli 2004]. In these games the human player interaction is limited to the 

programming of the entities that "play" the games. The similarity between the 

control languages in these "programming games" and educational mini-languages 

clearly shows the correlation of the mini-languages to BDLs for NPCs in com- 

puter games [Brom et al. 2006]. The instructions found in the games' control 
languages as well as in the educational mini-languages are usually a set of actions 

to be taken by the virtual entities - effectively NPCs - in the virtual environment, 

as well as a set of (sensor) queries, providing information about the immediate 

surroundings of the virtual entities in the micro world they inhabit. This micro 

world provides a graphical representation of the algorithms used in the programs 

controlling the virtual entities and their position and orientation within the vir- 

tual world visualise the current state of the program. This is especially useful for 

the educational mini-languages as many problems faced by novice programmers 

can possibly be traced back to an inadequate understanding of program state 

[Dann et al. 2000]. Among the educational programming languages that use this 

method of program state visualisation we can usually distinguish between lan- 

guages that are specially developed to be a teaching tool rather than a language 

applicable to solving practical problems -a design decision which is often reflected 

in the choice of an uncommon but possibly more intuitive syntax - and languages 
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which are directly based on existing production programming languages, provid- 
ing a more or less complete subset of the "parent" language's syntax, such as our 
own C-Sheep language with its virtual world of "The Meadow" [Anderson and 
McLoughlin 2006]. 

5.3.4 Resemblance to Production Programming 
Languages 

Closely related to these educational programming languages is the Pascal pro- 
gramming language which was meant to be both applicable to real world pro- 
gramming problems but also suitable for the teaching of computer science and 
programming [Wirth 1993]. For this reason it does not come as a great surprise 
that many educational "toy- languages", "Karel the Robot" for example (see Sec- 
tion 5.3.3), are based on the syntax of the Pascal programming language. A BDL 

could therefore be based on a mini-language related production language such as 
Pascal or a derivative thereof, as is the case with our own ZBL/O [Zerbst et al. 
2003] behaviour definition language (see Chapter 7, Section 7.2). Another possi- 
bility would be to base a BDL on the C/C++ family of programming languages 

which includes the popular implementation programming languages C, C++, 

Java and more recently the language C#, as well as the scripting languages Perl 

and JavaScript. One might argue that this approach would complicate the us- 

age of the language. especially if the behaviour definition system is intended to 
be easily accessible to programmers and non-programmers alike, but we strongly 
believe that this can be achieved if the system is based on a language which is 

similar to CIC++. Evidence for this can be found in the film effects industry 

where many artists have been using complex scripting systems for many years and 

recently the GPU developer NVlDIA [Mark et al. 2003] has shown with the Cg 

shader language that artists and shader writers, who may be non- programmers, 

can understand and effectively use C like programming languages. A further con- 
tributing factor for the consideration of a CIC++ like language is the flexibility 

provided by languages of the C/C++ family which is a necessary precondition 
for a successful BDL. 
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5.3.5 Scripting System Design 

As explained above, an important part of the process of designing a programming 
language for novice programmers is the analysis of how many non-programmers 
who are exposed to a programming language go about using this language. Poiker 
[2002] explains how novice programmers write programs employing a mixture of 
"copy and paste, ' 2 with "trial and error". This stresses the need for extensive 
debugging support and good language documentation to help users identify and 

solve problems with their source code, as well as the necessity of a collection 

of properly annotated (commented) sample source code which can be used as a 
template by novice programmers. This comes on top of the language features 

themselves which should include a case insensitive syntax, with an orthogonal 

structure and strongly typed data types. Tozour notes in "the perils of Al script- 
ing" [Tozour 2002c], that the scripting language design pitfalls which are most 
destructive to gameplay are: 

*a lack of language maturity, i. e. a design which is untried and untested and 

may not really be suitable for the task for which it is used 

9 missing develOPment tools and an unsuitable interface which would compli- 

cate system usage, program implementation and debugging 

9 bad real-time performance of the runtime environment of the scripting sys- 

tem 

predictability of scripted events and behaviour through lack of randomiza- 

tion 

If the intended user base for the language is carefully considered and if the lan- 

guage is properly designed, then those pitfalls could be easily avoidable, as Brock- 

ington and Darrah [20021 point out. Their experience has clearly shown that every 

scripting system will be used for purposes unforeseen by the system's designers 

and users will tend to bend the system close to its breaking point. Such a system 

therefore has to be as flexible and extensible as possible while at the same time 

2 "Copy and paste" is a programming technique in which users copy existing code which has 

usually been proven to work to reuse it in other places with minor modifications. 
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being robust and maintaining run-time stability to avoid the kind of catastrophic 
failure which could disrupt the game engine beyond the point of recoverability. 
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Chapter 6 

Scripting Languages and 
Computer Games 

The games industry is now actively making computer games extensible by allow- 
ing the players, to modify the games according to their needs and likes (see Figure 

6.1). The method by which this is most often achieved is by using a scripting lan- 

guage. Many developers use well established existing generic scripting systems or 

permutations of these systems (modified according to the game's requirements) 
to add scripting facilities to their game. Other games have proprietary purpose- 
built scripting languages that are dedicated to a single game or game engine. 
Examples for these scripting languages are QuakeC [Simpson 2002], found in the 

game "Quake", UnrealScript [BinSubaih et al. 20071, used in games based on the 

Unreal engine and Scrit [Bilas 2002], the language used in the game "Dungeon 

Siege". 

6.1 Scripting Languages and Scripting Systems 

The Oxford Reference Online defines a scripting language as "a programming 

language that can be used to write programs to control an application or class of 

applications, typically interpreted" [OUP 2002]. This is only one of many different 

definitions for scripting languages and this very broad definition encompasses a 

vast range of programming languages which is - unfortunately - not very helpful. 
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Are there any truly good reasons to build an Extensible A] into your game? 

029% 

M 23% 

41* 
Absolutelyl 

* Sure! 

* Maybe. 

* No wayl 

* Neverl 

* Other. 

Figure 6.1: Computer game extensibility reasons poll (source: GameAi. com). 

When it comes to games, some consider scripting a method for prescribing 

specific events and behaviour [Sweetser and Wiles 2005], -very much like a film 

script which cannot be altered. We however refer to the terms scripting language 

and scripting system when we describe a system using a programming language 

which allows the modification of program logic without the need to recompile the 

application (game engine) source code. 
Scripting languages are used to provide a control interface for combining dif- 

ferent components into a single whole, which is why they are also "referred to 

as glue languages or system integration languages" [Ousterhout 1998]. They are 
'meant to be easy to program in" [Kerninghan and Van Wyk 1998], often at the 

expense of run-time performance. As such, scripting languages provide an addi- 
tional layer of abstraction on top of components (or programs) usually written 
in a high-level programming language. This abstraction, combined with the fact 

that modern scripting languages such as Perl [Schwartz 1992] have a lot in com- 

mon with traditional system programming and implementation languages such 
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as C and C++, makes scripting languages a form of VHL (Very High Level) 

programming languages [Bezroukov 2006]. 
Scripting systems have a wide range of applications and can appear in many 

different forms. depending on the area of application. Some of the simplest script- 
ing systems are the sophisticated command-line interpreters related to UNIX 

shells such as Ksh [Korn 1994], their main task being to tie together external 
programs into a unified construct. Their scope can be greatly enlarged through 
the use of file processing languages such as AWK [Aho et al. 1979], which form the 

next higher level of scripting system. Different from these standalone systems are 
integrated scripting systems such as MEL (Maya Embedded Language) [Gould 

2002] that control a single application from the inside, often requiring very little 

overhead from the application's side for executing scripts, although this is not 
the case with MEL (see above). Embedded scripting languages are often found 

in applications for use by non-programmers, i. e. in programming terms "less- 

skilled personnel" [Wilcox 2007] or "semiprogrammers" [Harmon 20051 for whom 

programming is not an intrinsic part of their j ob- description. They include DSLs 

[West 20071 that can also take the form of macro-based languages that are em- 
bedded within an implementation language to be actually translated into native 

code and linked with its host application [Rabin 2002b], which is a technique 

considered to be a good use of preprocessor macros [Kernighan and Pike 1999; 

Rabin 2002a] - 
While many scripting languages are interpreted, this is not generally the case. 

Immediate interpretation of scripts which are directly analysed and executed 

statement by statement is an expensive operation. To achieve a better perfor- 

mance it makes sense to compile script programs, however, not into a frozen 

executable in native machine code, but rather into an intermediate form for ex- 

ecution within a virtual machine. Scripts that are not interpreted directly but 

pre-compiled into intermediate interpreter code, running on a virtual machine, 

can attain considerable performance improvements over those that are interpreted 

statement by statement, while also preventing some otherwise hard to detect run- 

time errors by catching them during script compilation. If that compilation hap- 

pens to be performed on-the-fly, i. e. if the compiler is integrated into the virtual 

machine as a kind of script preprocessing step, this process is hidden from the 
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script programmer, providing the illusion that the script is directly interpreted. 
This is a, technique employed by some of the more advanced scripting languages 

with features that are very close to those of popular implementation languages, 

showing that they can be a viable alternative to those very same "conventional" 

programming languages [Prechelt 20031. 

6.1.1 A Brief (and incomplete) History of Scripting Lan- 

guages 

Appearing towards the end of the 1960s to early 1970s, the earliest scripting 
languages were command-based languages that provided more powerful versions 

of the then common syntax driven user interfaces, allowing operations such as 
batch processing [Schneider and Nierstrasz 1999]. They allowed for a much more 

efficient use of the then available file processing filter programs that were capable 

of interpreting regular expressions, themselves simple languages. The expressive- 

ness of these command-line interpreters was greatly extended with the creation 

of UNIX shells and the introduction of the pipe which presented a simple method 
for combining several filter programs [Korn 1994]. This truly showed scripting 

systems to be an alternative to implementation programming languages, as the 

combination of existing programs into a different application through scripting al- 
lowed the use of a higher level of abstraction, greatly reducing the effort required 
for solving complex problems [Schaffer and Wolf 1991]. This recognition of the 

usefulness of scripting led to developments to programs such as the pattern-action 
language Awk in the late 1970s. 

The mid-1980s saw the development of Perl, a language designed to unite the 

functionality of Awk and the UNIX shell within a single program. 
Among the most popular scripting systems in the early to mid-1990s apart 

from the shell were the languages Awk, Perl and TCL [Kerninghan and Van Wyk 

1998; Prechelt 2003], TCL being one of the first embedded scripting languages 

[Korn 1994] that did not work as an independent command interpreter but had to 

be integrated with a host application. The need for ever more powerful scripting 

systems at about the same time led to the creation of systems such as Python, 

then Lua, soon joined by JavaScript, a development of the emergence of the 
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world-wide web (WWW), and then the language Ruby, the latter being one of 
the few programming languages developed in the far east (Japan) jerusalemschy 
et al. 20071. 

The late 1990s and the 2000s have seen the rise of the generic embedded script- 
ing language, the more successful of which often have a small memory footprint. 
At the forefront of this trend resides the scripting language Lua (see Section 
6.2.1), leading some to refer to the 2000s as "the decade of Lua" [Harmon 2005]. 

6.1.2 Comparative Analysis and Classification of Script- 
ing Systems in Games 

Just as the term '*scripting" has different interpretations, there are different types 
of scripting systems, each working differently and not all of them are suitable for 

use in computer games. Our classification of the various types of scripting systems 
is restricted to those found in modern computer games and does not attempt to 
be complete but rather means to serve as a guide for distinguishing between 
different script types. The various types of scripting systems in games are: 
STI - INITIALISATION SCRIPTS: 

STI initialisation scripts are the simplest form of scripting system [Tapper 
2003]. During program runtime scripts of this type are usually only executed once, 
at program start-up, while the application is initialising. In most cases this type 

of script is used only to set internal program parameters to the values given in 
the script which is why they are also known as "property scripts" [Sherrod 2007]. 
This is the way we have used this type of script to initialise the application in our 
evaluation of genetic programming generated computer game players [Anderson 

2002]. Initialisation scripts are often nothing more but lists of value declarations, 

usually interpreted directly and sometimes using additional syntactic elements 
to make scripts easier to read and edit. This semi-declarative behaviour places 
initialisation scripts among the DSL family of small programming languages [van 

Deursen et al. 2000]. 
ST2 - TRIGGER-ONLY INDUCED SCRIPTS: 

In event based scripting systems the occurrence of an event within the game 
triggers the execution of a script or part of a script. This means that scripts do not 
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run in a pre-defined order but rather when a specific situation in the game-world 
has occurred. This category of scripting systems also includes rule-based scripting 
systems which call be used for the definition of domain knowledge in expert 
systems, an example of which are intelligent NPCs in many computer games. 
Commercial computer games that use this kind of scripting system are Bioware's 
Role-Playing Games "Neverwinter Nights" and "Baldur"s Cate". Among the 
event based scripting systems there are two sub-types: 
Ma - EVENT HANDLER SCRIPTS: 

The simpler sub-type of scripting systems in this category uses events that are 
built into its host game engine as predefined events. Here scripts only define the 
event handlers and possibly additional conditions that may influence the trigger 
mechanism. Events are triggered and event handlers are called from the game 
engine itself, when the events occur. 
ST2b - EVENT ORIENTED SCRIPTS: 

The second sub-type are more sophisticated scripting systems that follow the 
concept of "Action Languages" as described by Gelfond and Lifschitz [19981 (see 
Chapter 5, Section 5.1.1). Their scripts first define the triggers and the situations 
in which they should act on events in addition to the event handlers themselves. 
These trigger-definitions will usually be executed during the initialisation of the 
scripting system so that these events can be generated by the game engine if 

all necessary preconditions are met. Once per execution cycle of the script, in 

many games once every frame, the conditions for triggering events will be checked 
against the current game-state, i. e. the in-game situation, and if these conditions 
evaluate as true they will induce the execution of the event handler. The exam- 
ination of the game-state can happen through active polling of event data from 

the game engine. Alternatively events can be triggered from within other events 
or posted as messages to the scripting system by the host game engine. 
ST3 - SCRIPTS WHICH RUN LIKE A TRADITIONAL COMPUTER PROGRAM: 

Finally there are the scripting systems that are modelled on "traditional" 

procedural, functional or object oriented programming languages that would im- 

mediately appear familiar to most programmers. Here we can identify two sub- 
types: 
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ST3a - 
LOOPING SCRIPTS: 

ST3a scripts will be executed repeatedly to (re-)evaluate the current situation 
within the game, i. e. they will restart execution from the beginning of the script, 
once the end of the script has been reached. Effectively, scriDts of this tvDe 
are used to describe a single (high- frequency) control loop. This is the type of 
script that was generated in our evaluation of genetic programming for computer 
generated game players [Anderson 20021 (see Chapter 7, Section 7.1). If run once 
only at program start-up, scripts of this type are also suitable for use in similar 
environments as scripts of type STI. 
ST3b - REGULAR SCRIPTS: 

Scripts of this type will execute once only, i. e. they will run from start to 
finish, concurrently with the host application. Consequently any kind of repeating 
operation to be executed by the scripting system will have to be implemented as 
a looping operation within the script itself. An example for this is our mini- 
language like behaviour definition system ZBL/O [Anderson 2004] which we will 
refer to later in this thesis (see Chapter 7, Section 7.2). 

6.1.3 Improving Game Design Through the Addition of a 
Scripting System 

In game development, scripting languages are used within the games themselves 
(by embedding them within the game engines) or in the tools used for game 
development - usually in situations where the use of an implementation language 

such as C++ would be inappropriate [Campbell 2006]. A fairly recent poll at the 

game development website www. gamedev. net - the site is frequented by many 

game development professionals, as well as amateur developers - suggests that 

nearly 75% of game engines in development include some form of support for game 

modifications through scripting systems (see Figure 6.2). Robert Huebner's case 

study of how scripting support was implemented in the FPS game "Jedi Knight: 

Dark Forces"' details the development process of a proprietary language called 
COG for use by the designers of the game [Huebner 1997]. COG uses a syntax 

that is loosely based on the syntax of the C programming language [Kerninghan 
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Which language do you use for scripting in your game engine? 
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01 made my own (custom ýanguage) 

0 Lua 

0C (with co-roubnes) 

ci Python 

" Other 

" Lisp 

0 Parl 

Cl Ruby 

" TO 

" My engine doesn't ham scripting 

Figure 6.2: Computer game scripting poll (source: GameDev. net). 

and Ritchie 1988]. The approach to the design of the language was to use the 
definition for the C prograinining language as a starting point and to reduce it 

until only the desired features were left. Huebner notes that this allowed for a 
rapid design and implementation of the core scripting system. Similar to C the 

power of COG does not lie within the core language itself, but within its external 
functions. These library functions are directly implemented as native functions 

within the game engine itself and then hooked up to the virtual machine as 

callback functions. This means that none of the COG library functions executes 

within the virtual machine of the scripting system but on the computer's CPU, 

saving a lot of processing time. The virtual machine in the game engine has a 

stack-based architecture and uses an integrated parser for on-the-fly compilation 

of COG scripts. 
Huebner clearly identifies the benefits of using a scripting system: 

The complexity of the core game engine is reduced as elements of the game 
logic are taken out of the engine and put into scripts instead. 
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The stability of the core game engine is enhanced as a less complex engine 
design will have fewer vulnerabilities and bugs. 

"Parallel development" becomes possible, which means that the program- 
mers' time is freed up as they no longer need to concern themselves with de- 
sign elements which designers can now manipulate themselves with scripts. 

Designers are empowered and given the opportunity to realize more aspects 
of their designs - this is especially true when the virtual machine can do just- 
in-time (JIV) compilation of scripts and when the script editor is integrated 

with the level editor. 

He also lists a number of possible weak points that need to be taken into account 
to guarantee the safety of the scripting environment: 

Direct access to game engine variables should be avoided as this could se- 
riously disrupt the engine. A script must not be able to crash the game 
engine. 

9 Run-time debugging of scripts must be catered for. If possible source-level 
debugging should be made available. 

Huebner concludes that the design was so successful that designers managed 
to generate scenarios which would have appeared inconceivable and very hard 

to realize if it had not been for the COG scripting system. He explains that 

the similarity of COG to the programming language C not only simplified the 
development of the language but it also made it easier to learn and understand for 

the designers - non-programmers - who used COG for the creation of the game. 
A wide range of documentation and introductory tutorials for the programming 
language C are available from many on-line and off-line sources and as experience 
from numerous productions suggests non-programmers can easily be expected to 

understand and to learn how to effectively use C-like programming languages. 

This has had a significant impact on the structure of the scripting systems used 

'JIT or Just-In-Time compilation is an interpretation method in which program source- 

code is first compiled and then immediately afterwards executed by an interpreter or a virtual 

machine. 
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Which is your favourite embeddable scripting language? 
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Figure 6.3: Embeddable scripting language poll (source: GameDev. net). 

by game developers. Although scripting has been used in game development for 

quite a long time [Given 2002], access to those scripts has usually been limited to 
the game developers, and only in recent years the power to modify games has been 

opened up to the end users, i. e. the game players. Whereas originally the scripting 

systems were only used in-house by a game's programmers and designers who had 

direct access to the programmers in case of any difficulties with the system arose, 

now they have to be developed to a point where they could potentially be "let 

loose" on the general public where mainly non-programmers would use them to 

modify the game. 

6.2 Frequently Used Scripting Languages in 

Games 

Whereas only a few years ago the majority of scripting solutions used in computer 

games were proprietary languages (see Figure 6.2), the trend has now shifted 
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towards the use of generic scripting solutions of which some have been designed 
explicitly for use in computer games (see Figure 6.3). This becomes evident in 
a recent survey of scripting languages in computer games [Garces 2006] which 
focuses on the languages Lua, Python, AngelScript and GameMonkey Script, 
presented below, all of which are embeddable languages that have been used 
in commercial games. This does not, however, mean that the development of 
proprietary scripting solutions should be avoided at all costs, as Wilcox notes 
that despite the effort and development overhead involved in the creation of a 
new scripting system "you are not reinventing the wheel. You are creating a way 
to concisely express your thoughts in a new language" [Wilcox 2007]. 

6.2.1 The Lua Extension Language 

The scripting language Lua is currently the language of choice for building the 
scripting solutions in many computer games (see Figure 6.3). lt is a generic 
programming language that was originally designed to be used to extend programs 
by adding various scriptable features, which is why the creators of Lua have 
dubbed it an "extensible extension language" jerusalemschy et al. 1996]. Lua has 

aC API, making it easy to embed in C/C++ based applications and Lua is also 
easy to learn which makes it ideal for game development environments in which 
non-programmers may be required to write some scripts [Harmon 2005]. The Lua 
development environment consists of a compiler which can create bytecode as well 
as an interactive interpreter which allows execution of singular Lua statements. 
The latter is especially useful for script development as it is a means of generating 
immediate feedback to a Lua statement which can be tested without full scripts 
having to be written and compiled. 

The Lua run-time environment is embeddable into applications as a portable 
C library. This library contains a virtual machine, as well as a version of the Lua 

compiler, allowing on-the-fly compilation of Lua scripts that can then immedi- 

ately be interpreted by the application into which Lua is embedded in without 
the need of the scripts to exist in pre-compiled form. If scripts that have been 

pre-compiled into bytecode are used instead, the run-time environment can be 
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embedded without the compiler component, reducing its already very small foot- 
print. As of Lua version 5.0 a register-based architecture is used for the virtual 
machine of the Lua run-time environment, which had originally started as a stack- 
based abstract machine. This is used to improve program performance, as well 
as compile-time program optimisation, making Lua one of the few register-based 
virtual machines used in scripting systems Jerusalemschy et al. 2005]. 

Lua is a procedural language which has borrowed features and syntactical el- 
ements from a number of existing programming languages. Syntactical influences 
stem from main-stream languages like C/C++ and there are syntactical similar- 
ities to elements of the Pascal based programming language Modula. Another 
language that influenced Lua not syntactically, but semantically, is the functional 

programming language Scheme [lerusalemschy et al. 2007]. One of the more in- 
teresting features of Lua is the ability of functions to return multiple values which 
allows for the creation of powerful scripts for complex situations. Lua uses dy- 

namic typing, i. e. there is no strong typing of variables and only individual values 
have a data type. Apart from strings there is only one numeric data type which 
can take floating point values as well as integer values which greatly simplifies 
the language. The most powerful and useful aspect of Lua however is the use of 
tables, a dynamic form of associative array inspired by AWK [Aho et al. 1979] and 
Perl [Schwartz 1992], however implemented in a different, less restrictive manner 
Jerusalemschy et al. 2007]. These tables, while very useful by themselves, can 
also form the basis for much more complex compound data types and even allow 
the emulation of object orientation. 

The language features provided by Lua can simplify the creation of solutions to 

various problems in the developnient of computer games, which is why it does not 

come as a surprise that since its first conception Lua has been used extensively in 

computer games development, being embedded in a large number of best-selling 

computer games. 
One of the first commercial game developers to adopt Lua were Lucas Arts, 

a pioneer of the use of scripting in games [Huebner 1997; Given 2002], who 

used Lua as the scripting language of their GR1ME system for the game "Grim 

Fandango" [Mogilefsky 1999]. Other early adopters of Lua in game development 

are the company Bioware who used Lua in their action adventure game "MDK2" 
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[Brockington and Darrah 2002]. and Relic Entertainment. who make extensive 
use of Lua scripting in their games, using a Lua-based system dubbed SCAR 
(Scripting at Relic) [Rel 2003]. 

6.2.2 AngelScript 

AngelScript or the "Angel Code Scripting Library" is an embedded scripting lan- 

guage, designed with graphics applications and computer games in mind. Like 
Lua, AngelScript is an extension language, but whereas Lua was designed as an 
extension language for the C-subset of the C++ language ("clean C" Jerusalem- 

schy et al. 20071), i. e. C and C++, AngelScript was designed mainly for embed- 
ding in C++, although it has separate C bindings. AngelScript is object oriented 
but in its current implementation does not yet allow inheritance, although this 

can be emulated with the system [Shay 2004]. The major differences to similar 

scripting systems are type safety, i. e. variables that are strongly typed, and the 

use of native C++ calling conventions for functions in AngelScript which simpli- 
fies the integration of scripts with C++ programs, as proxy (wrapper) functions 

are not required [Garces 2006]. 

6.2.3 GameMonkey Script 

Another scripting language with C-like syntax, developed specifically for com- 

puter games, is the language GameMonkey script [Sherrod 2007]. Unlike the 

OpenSource AngelScript library, GameMonkey Script started life as a propri- 

etary closed-source language which was later open-sourced. GameMonkey script 

was created for use with C++, but does not provide an object oriented language 

itself. In a similar manner to Lua, however, tables can be used to emulate object 

oriented functionality [Garces 2006]. 

6.2.4 Python 

Python is a powerful and feature rich scripting language that also allows some 

object orientation. lt is a general purpose language that can be used as a stand- 

alone command interpreter but it has also been used as an embedded scripting 
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environment for various computer graphics applications and also a number of 
games and game engines [Dawson 2002]. While the language syntax may be 

considered unusual as it only allows grouping of command sequences into blocks 

through code indentation, it has an easy to use API which simplifies the embed- 
ding of Python into applications, although this is not as easy to do as with the 

other embedded languages mentioned here [Garces 2006]. 

6.2.5 Other Scripting Systems Based on Generic 

Languages 

Other than these popular choices for scripting languages in games, there exist 

a number of less frequently used but mature scripting languages which can be 

embedded in computer game engines. Most of these languages are generic, i. e. not 

specialised for specific tasks [Varanese 2003]. Generic languages of this type that 

are frequently mentioned in the context of game development are the languages 

Tcl and Ruby. Other languages used with games are the object oriented language 

Squirrel or the language JavaScript (standardised as ECMAscri pt2 - ECMA- 

262) which has its origins in web-browsers but has since found a wide range of 

applications (often embedded through the SpiderMonkey system). An example 
for this use of ECMAscript is the ActionScript language, which is used in the 

scripting system found in Adobe's Flash multimedia authoring system, which 

can also be used for game development [Baba et al. 2007]. 

The Tcl/Tk scripting system is one of the oldest embeddable scripting sys- 

tems. The "Tool Command Language" at its core is possibly one of the easiest 

to learn scripting languages. One of its greatest strengths is the high-level of 

functionality provided by the Tcl API for embedding Tcl in applications which 

is why Tcl has also been used to add scripting to game engines. 

Ruby is an interpreted object oriented scripting language which is slowly gain- 

ing a following among a number of game development teams. Ruby is a relatively 

new scripting language but it already has a fairly large user community. The com- 

mercial quality OpenSource game engine "Nebula Device" has Ruby support (as 

well as support for Tcl/Tk, Lua, Python and even Java). 

2http: //www. ecmascript. org/ 
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6.3 Scripting Tools for Game Designers 

As more and more developers add scripting systems to their games, the need 
for tools to aid in the development of these scripts has become apparent. Conse- 

quently many game developers have created utility programs to answer this need. 
These tools range from simple text editors that have been extended to provide 
syntax highlighting for the scripting language to complex CASE (computer aided 
software engineering) applications that allow an intuitive design approach to the 

generation of scripts. 

6.3.1 Scripting Tools in Popular Computer Games 
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Figure 6.4: BloWare's Aurora Toolkit. 

Computer games that can be modified by their user community enjoy great 

popularity. As a result some of the most advanced script development aids for 
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extending games can be found in exactly those computer games. These tools are 
now included in many game releases, effectively making them additional game 
content [Kane 2007]. One of the largest development communities exists for the 
Unreal game engine. Not only has this engine been used in a large number of 
commercially successful games, but the extensibility of these games has resulted 
in the production of many additional modifications to these games by the play- 
ers. This has been made possible to a large extent through UnrealEd, the main 
content generation application for games using the Unreal engine. UnrealEd is 

not only used for designing the virtual environment of the game worlds but it 

also contains an IDE (integrated development environment) for UnrealScript, the 

scripting language used by the Unreal engine [BinSubaih et al. 2007]. A simi- 
lar tool to UnrealEd is the Aurora Toolkit which is the game editing toolkit of 
the RPG "Neverwinter Nights". It not only provides methods for building the 

game environment and placing objects and NPCs for game extensions but also 
the means for defining the actions of NPCs and the conversations that a player 
can have with the NPCs using various scripting tools which are embedded within 
the toolkit (see Figure 6.4). While both of these systems considerably simplify 
the creation of scripts for their respective games, their use still requires some 
knowledge of programming. 

6.3.2 Dedicated Al Definition Systems for NPCs 

We have now reached a point in the trend towards the use of data-driven definition 

of the artificially intelligent behaviour displayed by game characters where the 

major part of NPCs in currently available computer games is no longer hard-coded 

into the game program itself. One reason for this is that developers have realized 
that enabling players to modify the games themselves adds value to a game and 
dramatically adds to its shelf-life (see Figures 6.1 and 6.5). Now the question 

arises how this extensibility can be achieved which is especially important if it 

comes to the modification of the NPC behaviour in those extensible games. 
If a hard-coded AI description is undesirable, one solution to the generation of 

NPC behaviour from a data-driven behaviour definition is the creation of project- 

specific proprietary software tools that provide features such as automated FSM 
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Should players be allowed to modify a game's AR 
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Figure 6.5: Computer game Al extensibility poll (source: GameAi. com) 

(Finite State Machine) generation [Jacobs 2005]. While most of these applica- 
tions are created in-house, a number of 3rd party developers have attempted to 

create more generic systems which are not bound to specific projects. Games 

can settle for these commercially available middleware systems [Dybsand 2003; 
Kruzewski 2006] or alternatively they can use a scripting language of some sort 
(established or proprietary). A scripting system might seem an ideal solution for 

the complexity of the problem but there is not one single method by which the 
behaviour of artificially intelligent characters is created and therefore a solution 
found for one game is not easily transferable to other computer game productions. 
This is especially true when it comes to the scripting of NPC behaviour as some 

of the different kinds of scripting systems which are used in conjunction with Al 

in games are quite generic and are not exclusively used for scripting the Al, but 

also for other tasks within the game. 
There are some dedicated Al scripting systems that have been used in a 

number of games and animation systems. In most cases they have been highly 

speciallsed for specific genres of computer games or kinds of behaviour that is 
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generated by the system. This greatly restricts the reusability of such systems 
and they are usually proprietary to a spec, fic product or range of products. 

6.3.3 Programming Solutions that Modify NPC 
Behaviour 

The design of a proprietary behaviour definition (scripting) language and run-time 
system for the definition of artificial behaviour as ail extension to a specific game 
or genre of computer games (for example FPS games) is relatively straightforward 
and simple if only deterministic behaviour is involved. To illustrate this one can 
take the first prototype for the ZFX bot language (ZBL/O - see Chapter 7, Section 
7.2) which was developed by the author of this thesis to demonstrate syntactic 
NPC behaviour definition, and which was completed over a period of little more 
than a fortnight (from conception to first use) [Spirig et al. 2003]. 

In effect such a language can take the form of a DSL which needs to do 

little more than provide a function binding interface to a game engine, allowing 
the creation of simple rule based systems. In situations like this the game engine 
itself does all the work while the script only ties together the different game engine 

components that provide the NPCs with functionality. This is especially true in 

simple cases where the sole use of scripts is the initial configuration of otherwise 
hard-coded NPC behaviours using initialisation scripts of type STI (see Section 

6.1.2) [Tapper 2003]. The most complex scripting solutions are programs that 

use high-level abstract descriptions to define complex behaviours. Languages of 
types ST2 or ST3 are a lot better suited to the definition of complex behaviours 

than scripting languages of type STI. The development of this type of system 
from scratch can take considerably longer, so a good solution might be to base 

this behaviour definition language on an existing Al language (see Chapter 5, 

Section 5.1-1) or to use a generic embeddable scripting language. 

6.3.4 Visual Script and NPC Generation 

Although non-programmers can cope perfectly with writing programs in a script- 

ing language, one approach to simplifying script generation for designers is the 
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Figure 6.6: Stottler Henke's SimBionic middlewarc. 

use of tools with a graphical user interface (GUI) that provides designers with an 
intuitive tool for designing NPC behaviour [Snavely 2006] and presents a visual 

representation of the script that will be generated [Houlette et al. 2001]. A WYSI- 

WYG paradigm is especially useful for taking a complex behaviour description 

in natural language, such as one found in a design document, and transferring 

it into a form that can be visualised and interpreted by a run-time system for 

controlling NPCs [Houlette et al. 2003]. Through the provision of a small set 

of hierarchically connectable graphical elements the rapid construction of expert 

systems for this task by an expert of the domain who needs no understanding of 

programming becomes possible. Carlisle [2002] proposed the implementation of 

a GUI-based design tool for the definition of state machines. Gill [20041 uses the 
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diagramming software Visio to design state machines, storing the results using 
the XiML (extensible) mark-up language which is then used as input in a game 
engine. Jacobs [2005] describes a similar system which allows the use of a UML 
(Unified Modelling Language) design tool to create the visual representation of 
a state machine which is then translated into code useable in the game engine. 
Snavely [Snavely 2004] proposes to use a spreadsheet program, such as the office 
application Excel to define a fuzzy state machine to create intelligent behaviour 
that can be translated into a useable form for a game engine. While the reduc- 
tion in development time achieved through the use of these tools is already a 
significant improvement, the greatest benefit to the game development process is 
the fact that non-programmers are able to create significant parts of the game, 
allowing for parallel development [Fu et al. 2003]. 

The challenge for any system that allows for the creation of Al entities is the 

suitability of the resulting NPCs for commercial computer games. Whereas only 
a few years ago many game developers would have considered such systems to be 

impossible to create, a number of products - some academic and some commer- 

cial - have proven the doubters wrong. To tackle the creation of Al scripts in the 
RPG "Neverwinter Nights" researchers at the University of Alberta developed the 

tool ScriptEase [McNaughton et al. 2003]. ScriptEase is a visual programming 

application that specializes in generating scripts for RPGs. Unlike the more com- 
fortable to use "point &click" 3 graphical front-ends that generate the NPC code 
from flow diagrams, ScriptEase provides a inenu and dialog-based user interface 

for the definition of NPC behaviours. A similar dialog-based scripting method 

using context-sensitive menus is used in the educational system Alice [Kelleher 

2006] to simplify script programming. A different approach to the development 

of Al characters for "Neverwinter Nights" was taken by the developers of the 

freely available BrainFrameNWN Editor, which is a specialised version of the vi- 

sual authoring tool used in the commercial Al middleware system SimBionic (see 

Figure 6.6). The BrainFrame Editor is used to graphically create flow diagrams 

of a hierarchical representation of NPC behaviours [Fu and Houlette 20021. This 

3, ýpoint &click" describes a type of user interface which is mouse-driven, i. e. the mouse 

pointer is used to select objects, while clicking the mouse buttons manipulates the selected 

objects. 
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representation is then used to generate the necessary data for the run-time sys- 
tem used by the game engine or in the case of the BrainFrameNWN for the code 
generation in NWScript. Finally, the concepts of iconic programming [Calloni 

and Bagert 19951 need to be mentioned as they could be used to create a hybrid 

representation of the two approaches described above, combining a visual con- 
trol flow representation with a graphical representation of programming language 
instructions. 

6.4 Systems for Syntactic Behaviour Definition 

We are not aware of any existing single, common method for the implementation 

of a game character Al. Existing solutions usually require the combined use of 

several techniques. A better solution would instead provide a smooth integra- 

tion of the behaviour definition system into game applications within a unified 

architecture that provides a combination of all of the different components for 

creating NPCs. Further improvements in the quality of computer games are likely 

to have to adopt a syntactic approach for the creation of the artificially intelligent 

characters that populate the virtual worlds of computer games. This is likely to 

take the form of a high-level programmable system for defining NPC behaviours. 

We have defined the term "Behaviour Definition Language" (BDL) to describe 

such a high-level programming language and we have set out the criteria that 

need to be met by a syntactic behaviour definition system to be a BDL. We have 

also described several systems for NPC behaviour definition, many of which fulfil 

several of the criteria for BDLs, but to our knowledge so far there exists no sys- 

tem that fulfils all of them. The first step towards a unified software package for 

creating life-like NPCs in computer games is the creation of a BDL as a system 

for syntactic behaviour definition, the development of which is the subject of the 

following chapters of this thesis. 
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Chapter 7 

The Development of Three 
Behaviour Definition Languages 

The previous chapter provided an overview of scripting systems and scripting 
languages with a special focus on the use of generic embeddable scripting lan- 

guages in computer games. In this chapter we discuss three behaviour definition 
languages that we have created in the course of our work. 

7.1 GP Asteroids Script 

GP Asteroids Script is the result of a series of experiments for using evolutionary 

computing techniques for evolving an artificial player, capable of competing in 

the popular arcade game "Asteroids"'. A detailed description of our experiments 

'The classic arcade game Asteroids is based on attack and evasion which is a concept that 
is common to most action oriented video games. In Asteroids the player's spacecraft flies 

through a two-dimensional field of moving asteroids. The player has to avoid colliding with 
the "asteroids" to prevent his space ship's destruction. At the same time he has to destroy 

the asteroids to win and progress to the next level of the game. To achieve this, the player 

can shoot at asteroids. If hit, a large asteroid will break up into two medium sized asteroids 

which in turn can each be split into two small asteroids. Shooting down an asteroid increases 

the player's score. The player has a. pre-defined number of lives. A collision with an asteroid 
destroys his spacecraft. In our implementation of the game the players only means of defence 

is to use a protective shield, which protects the player from destruction during collisions with 

asteroids by granting temporary invulnerability while it is active. Using shields or firing the 

gun will drain the player's energy which is replenished over time. The game ends when the 
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and results using this system is presented in [Anderson 2002]. In our version of 
Asteroids the player indirectly interfaces with the game through a Lisp [McCarthy 
1959] like behaviour definition (scripting) language which implements a number 
of sensors and controls, which are identical to a human player's controls if he 
were directly interacting with the space ship (see Appendix B for a description 
of the language). The script program which controls the player entity is created 
through off-line evolution, based on the agent's proficiency at playing the game. 
The space ship's controls are used as output of the evolved program, whereas 
the space ship's sensors, which reflect the current state of the game, are used 
as input to the evolved program. GP Asteroids Script is a scripting language of 
the Looping Script type (ST3a - see Chapter 6, Section 6.1.2) 

1. 
i. e. the complete 

script is evaluated as a whole for every update cycle of the game, i. e. once every 
frame. 

The run-time system used to evolve GP Asteroids Script programs, as well as 
execute them, is a version of Sarafopoulos's "gp interface" library [Sarafopoulos 
2001], extended with the player specific instructions for controlling the space 
ship. Of these instructions most are used to set and query the player entity's 
states (in the game) which are implemented through an FSM. Only a few of the 
instructions can be used to immediately trigger actions for execution during the 
current update cycle of the game. 

7.1.1 The GP Asteroids Script Programming Language 

GP Asteroids Script is a small functional programming language with only 23 

unique instructions (excluding operators and constants - see Table 7.1). The 
language was designed for a variation of genetic programming (GP) [Koza 19921 

that is "strongly typed", as introduced by Montana [1995], which allows for the 

use of different data types. The language has two data types, one for Boolean 

values which can take on the truth values 'TRUE' or 'FALSE', and a typeless 
data type which is used for procedures that do not return any data. For this three 

player has lost all of his lives. The aim of the game is to stay alive as long as possible and to 

gain the highest score during that period. 
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constants (two Boolean: 'TRUE', 'FALSE' and one typeless: 'void') are defined. 

which can be used with the language's control structures. 
These program flow control structures are implemented as non-terminal func- 

tions for: 

9a dyadic (if-else) selection 

9a comparison (if-equals) 

9a sequence of two instructions 

This small set of control structures is augmented by four simple Boolean operators 
(AND, OR, XOR and NOT) which are implemented as non-terminal functions 

of the language. 

The player entity's sensors and controls make up the terminal set of the lan- 

guage's functions. The former, i. e. the sensor queries for the space ship, are 
implemented as a set of Boolean functions, whereas the latter, i. e. the controls 
for the space ship, are implemented as a set of action procedures which enable 
the player entity to switch its current state. The functions available to retrieve 
the space ship's sensor states return information regarding 

9 the current level of the space ship's energy 

9 the state of the ship's movement (forward and turning motion) 

9 the approximate positions of targets (asteroids) in relation to the player's 

position 

The actions available to the player are 

9 setting a state for turning (left, right, not) 

setting acceleration (on, off) or deceleration (automatically reset for each 

frame) 

9 setting the state of the shields (on, off) 

9 firing a single bullet 

These functions give sufficient control to scripts, allowing the construction of 

simple player entities that can play the game. 
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sensor functions 

(targetAhead) 
(targetLocked) 
(proximityAlert) 
(impactAlert) 
(hasEnergy) 
(plentyEnergy) 
(hasShields) 
(lookingAhead) 
(isMoving) 
(accelerating) 
(isTýirning) 

action functions 

(setThrust) 
(noThrust) 
(decelerate) 
(setShields) 
(noShields) 
(rightTurn) 
(leftTurn) 
(norDirn) 
(fire) 

control structures 
(if-true) 
(if-equal) 
(sequence) 

Table 7.1: CP Asteroids Script functions. 
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7.1.1.1 Automatically Defined Functions and Super-Actions 

In a separate set of experiments we used a modified version of CP Asteroids Script 
that allows the use of up to three so-called automatically defined functions (ADFs) 

with some additional syntactic constraints to the structure of script programs. 
All of the ADFs are defined as terminal functions that return void and take no 
parameters, each of which is allowed to contain all of the available functions, 

procedures and control structures. The constraint to the program structure is 
that the result-producing branch (RPB) which contains the main program script 
only allows the use of the control structures (see Table 7.1) and the three ADFs. 

This modified version of the GP Asteroids Script language is tailored to fit the 

requirements of the game at the expense of choice of instructions for the program- 
mer of the player program. The goal of the game Asteroids is to maximise the 

player's score, usually by destroying all asteroids as quickly as possible, and a pre- 
condition for the destruction of all asteroids is the player's survival. This analysis 
of the problem-space leads to the identification of three distinctive, yet partially 
conflicting objectives from which separate behaviours can be extrapolated: 

destroying a target which is in the player's range and line of fire - aggressive 
behaviour 

9 seeking out and finding targets in the shortest possible time - hunting be- 

haviour 

9 avoiding collisions with asteroids - defensive/ evasive behaviour 

This leads to the identification of the three possible ADFs - 'Aggression' for 

aggressive behaviour, 'Defence' for defensive behaviour and 'Target Acquisition' 

for hunting behaviour. Each of the three objectives is associated with a different 

ADF. The use of segregated branches of the parse tree for achieving multiple 

objectives as described by Reynolds [1994] was the inspiration for the use of ADFs 

to find a solution that successfully completes the three conflicting objectives of 

the Asteroids game. To ensure that each of these three ADFs evolves in a way 

that will satisfy its assigned objective, the fitness evaluation of individual players 

is distributed using task specific fitness functions during program evolution, i. e. 
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the GP system uses a separate fitness function for each ADF which evaluates 
the fitness of that ADF for its assigned task. It was necessary to impose the 
syntactic constraint of only allowing ADFs and program flow control structures 
in the RPB, as early experiments showed that allowing the use of all instructions 
in the RPB can lead to functions and procedures in the RPB cancelling out the 
results generated by the ADFs. 

For testing purposes an additional set of three super-actions, each equivalent 
to one of the three ADFs ('fireAtWill' for aggressive behaviour, 'seek' for hunting 
behaviour and 'autoprotect' for defensive behaviour) were added to the instruc- 
tion set of the language, to be used instead of the ADFs. A successful player 
using a GP Asteroids Script program written with these super-actions would be 
the following: 

(sequence 

fireAtWill 
(sequence 

autoprotect 

seek) ) 

This program executes the three possible super-actions in sequence. Each 

of the actions includes a conditional evaluation of the current game state which 
determines if the super-action is executed, making the super-actions a kind of 

state and the whole program some kind of finite state machine description. 

7.1.2 Designing Artificial Players Using GP Asteroids 
Script 

To illustrate the usage of GP Asteroids Script the program below shows how 

a player script would look. The version of the language used here is the one 

using automatically defined functions (see Section 7.1.1.1 above). This means 

that from the top-level function, player scripts are only allowed to use the pro- 

grani flow control structures and to call the three automatically defined functions 

('ADF-l', 'ADF-2' and 'ADF-3') for aggressive, defensive and hunting behaviour. 
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The main function for a successful player would call all of the ADFs in sequence: 

(sequence 

ADF-1 

(sequence 

ADF-2 

ADF-3)) 

Assuming, that the first ADF defines aggressive behaviour (equivalent to the 

'fireAtWill' super-action), the controlled entity should fire its weapon if it has 

sufficient energy to power its gun and if it has a target in its sights. A possible 

'ADF-I' description could therefore be written as shown below: 

(if-true 
(AND 

plentyEnergy 
targetLocked) 

fire 

void) 

The second ADF (assumed to be equivalent to the 'autoprotect' super-action) 

should prevent the player entity from being hit by asteroids. This can be achieved 

by activating the player entity's shields if an asteroid is about to impact with the 

space ship and deactivating the shields to conserve energy if there is no immi- 

nent danger. As an additional defensive measure the player entity should also 

move away from its current position. The resulting 'ADF-2' would look as follows: 

(if-true 
impactAlert 
(sequence 

setShields 
setThrust) 
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noShields) 

The most complicated function (equivalent to the 'seek' super-action) is the 

third ADF IADF_3', displaying hunting behaviour: 

(if-true 

proximityAlert 
(sequence 

(if-true 

isMoving 
(if-true 

impactAlert 

(sequence 

noTurn 
decelerate) 

(sequence 

decelerate 

noThrust)) 

void) 
(sequence 

(if-true 
(AND 

(NOT 

targetLocked) 
(NOT 

impactAlert)) 

rightl'urn 

noTurn) 
(if-true 

impactAlert)) 

(if-true 

plentyEnergy 
fire 
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void) 
void))) 

(sequence 

(if-true 
targetLocked 

void 
leftT'urn) 

setThrust)) 

The listing above shows a possible method for target acquisition in the hunting 
behaviour. Here the first action of the player entity is to check if an asteroid is 

close by ('proximityAlert'). If not, the player entity either accelerates towards 

a target, if one is in front of it, or it rotates to the left, if there is no target in 

sight. If an asteroid is close by and the player entity is moving, it stops turning 

and slows down, if there is a threat of impact or just decelerates if the space ship 
is not directly threatened. lf there is no asteroid in sight at this point, the space 
ship rotates to the right, however if an asteroid is within the player entity's sights 
and it has enough energy, it, will open fire. 

7.1.3 Concluding Remarks on GP Asteroids Script 

While the experiments to automatically generate an artificial player capable of 

playing asteroids were successful [Anderson 2002], the usefulness of this system for 

creating NPCs as such is questionable. From a game development standpoint, the 

system is very restrictive, i. e. not easily extensible, as all extensions would have 

to be added directly to the source code of the system. The absence of a looping 

control structure works only because the whole of the program is evaluated for 

every update cycle, but as a behaviour definition language GP Asteroids Script is 

effectively incomplete. Furthermore, the language's existing instruction set limits 

the system to use in games of a small sub-genre of arcade action games, namely 

2D space shooters with 360 degree of freedom of movement, i. e. games such as 

Asteroids, "Computer Space" or "Space War". 
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\Vc do not believe that systems of this type, using a Lisp-based scripting 
language, scale well. While it is easy to write programs using GP Asteroids Script, 
they quickly reach a state in which they are too complex to be easily deciphered 
(see code listings in Section 7.1.2). This is due to the recursive syntax of the Lisp- 
like language, and while it would be possible to add additional instructions for 
sensor inputs and actions to make the language more versatile, script programs 
themselves could easily grow to a point where they are unmaintainable, due to a 
lack of visually recognisable structure. 

7.2 FPS NPC Behaviour Definition Language 
ZBL/O 

The embedded Regular Script type (ST3b -see Chapter 6, Section 6.1.2) be- 
haviour definition (scripting) language ZBL/0' (effectively pronounced -'Sybil- 
Zero" 3) is a problem- oriented third generation programming language. ZBL/O is 
a simple to learn, simple to understand and simple to embed scripting language 
for defining the behaviour of NPCs in real-time FPS computer games, which are 
sometimes also referred to as bots or game-bots. As such, we developed ZBL/O 

as the scripting system for the creation of computer controlled opponents for the 
FPS game Pandora's Legacy [Zerbst et al. 2003]. The ZBL/O scripting system 
consists of a compiler for game-bot programs (NPCs) that have been written in 
the ZBL/O language and a robust virtual machine that can be integrated into 

any game engine. 
ZBL/O is much smaller, more restrictive and far less extensible than many 

other scripting systems, i. e. the language is dedicated to only one genre of com- 
puter games and the virtual entities that populate them. Following the example 
of mini-languages found in computer science education [Brusilovsky et al. 19971, 

the ZBL/O language is based on a traditional programming language which has 

been reduced to the simplest features to make the system easily accessible for 

2 http: //zblO. zfx. info 
3 The acronym ZBL/O is pronounced using American English pronunciation of the letters Z 

(zi) B (bi) and L (1) and the number 0 (zero). The resulting word is pronounced similarly to 

the female first name Sybil. 
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programmers and non-programmers alike. The syntax of the ZBL/O language 
is influenced mainly by the PL/O model language [Wirth 1986] and therefore 
bears some resemblance to the high-level procedural programming language Pas- 

cal [Wirth 19931 with some additional influences for syntactical constructs that 

resemble the programming language C [Kerninghan and Ritchie 1988]. Unlike C, 

however. ZBL/O is case- insensitive , i. e. the differences between lower-case and 

capital letters are ignored and all instructions and identifiers can be written in 

lower-case, upper-case or a combination thereof. Comments used in ZBL/O are 
line-comments, similar to those found in C++, rather than the block comments 
found in languages such as C or Pascal. 

7.2.1 The Design and Development of ZBL/O 

ZBL/0, the ZFX' Bot Language, was developed towards the goal of creating 

a simple method for adding NPCs for computer games and provides an open 

standard for that aforementioned purpose. The design of the ZBL/O language and 

system was guided by the aim to create a tool for learning how to syntactically 
define NPC behaviour in FPS (First Person Shooter) games which we used as a 

reference system to illustrate the development of game-bots in the context of a 
book on computer game development [Zerbst et al. 2003]. 

The requirements for the ZBL/O scripting system were straightforward: 

9 The system was to be used to define NPC behaviour as an extension to 

computer games of the FPS genre written in C++. 

9 The NPCs defined by the language only needed to support deterministic 

behaviour. 

No complex data types or control structures needed to be implemented as 

the system was supposed to be used to demonstrate general concepts of 

NPC behaviour scripting. 

4 "ZFX -- 3D Entertainment" (http: //www. zfx. info) is a German language on-line commu- 

nity dedicated to the development of computer games. 

101 



7.2 FPS NPC Behaviour Definition Language ZBL/O 

Consequently the development of the system from conception to first use was 
achieved in a very short period of time: The first fully working prototype for 
the ZBL/O system for example was completed over a period of little more than a 
fortnight [Anderson 20041. 

The starting point for the definition of NPC functionality that the system 
was supposed to be able to describe were the NPC control functions found in GP 
Asteroids Script (see above). The choice of functions was furthermore informed 
by an examination of common player controls in FPS games in order to mirror 
the functionality exposed to human players in FPS games within the scripting 
language's set of functions. This instruction set was refined during the develop- 

ment, reflecting discussions with Spirig et al. [2003', (personal communication). 
To simplify the structure of the ZBL/O system the instructions for NPCs were 
added to the language as intrinsic functions. The function identifiers themselves 

were selected to be self explanatory for easy understanding. The core language 

was augmented with additional syntactical elements similar to those found in 
C/C++, such as the use of parentheses to encapsulate conditional expressions 
in selection statements and loops, to simplify the process of writing ZBL/O pro- 

grams for programmers that are experienced in C/C++ [Spirig et al. 2003]. The 

use of these additional syntactical elements was made optional, i. e. they can be 

used in programs but they can also be safely omitted from programs. 
One of the goals was to find a simple way of embedding the ZBL/O system 

into game engines written in the C++ programming language, currently the most 

common choice of language for computer game development. An important part 

of the embedding process is the binding of script functionality to functions defined 

in the host application, i. e. the game engine. If the programming language for 

the system had been C, the obvious choice for this would have been the use of 
function-pointers (pointer variables that can hold the address of a function) to 

create callback functionS5 for the function bindings. The method chosen, however, 

was to make use of the object oriented features of C++ and to achieve the function 

5Callback functions are functions which are not explicitly called but instead are invoked 

implicitly by the program, i. e. control over the sequence of functions called is removed from the 

control of the user (the programmer). Callback functions are usually used as event handlers 

that need to be "registered" with the calling application so it knows which callbacks to use. 
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bindings through polymorphism. Game-bot objects are derived from an abstract 
base class (through inheritance) which can then be passed to the virtual machine. 
User errors caused by the omission of methods that need to be implemented are 
prevented by the rigid structure of this function binding interface which only 
provides declarations and places the burden of the implementation onto the host 

application. The virtual machine knows the game-bot functions in the abstract 
base class which are equivalent to the functions of the ZBL/O language and can 

call them if they are invoked by a ZBL/O program, so all that is required of 
the programmer is to realise the NPC's functionality in the game engine is to 

implement the methods in the game-bot class that was derived from the abstract 
base class described above. 

The first stcp towards the implementation of the ZBL/O system was the cre- 

ation of a first detailed specification of the ZBL/O language which was followed 

with the creation of a series of prototypes for the language's compiler and virtual 

machine which then underwent a series of step-wise refinements. ZBL/O is defined 

using an LL(I) grammar (see Appendix Q. Programs that are compiled with the 

ZBL/O toolkit are parsed using a recursive descent parser followed by generation 

of bytecode for the system's virtual machine. The compiler and the virtual ma- 

chine were progressively refined until their capabilities and the specification of the 

language appeared to be suitable for the task at hand, i. e. simple enough to use 

for novice users, but powerful enough to be deployable in real-world applications. 

7.2.2 The ZBL/O Programming Language 

As a behaviour definition language that resembles educational mini-languages, 
ZBL/O provides a task specific set of instructions and queries which allow the 

programmer to take control of virtual entities acting within a micro world. In the 

case of ZBL/O the virtual entities are NPCs and the micro worlds they inhabit 

are the virtual environments of FPS games which is reflected in the functions and 

procedures of the language (see Section 7.2.1 above). 
The current version of the ZBL/O language only supports a limited set of 

control structures (simple iteration, condition/ alternative and sequence) and the 
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alive 
blocked 
duck 

f ront 
j ump 
i ump-up 
object-ahead 
right 
step 
target-ahead 
turn 

armour 

crawl 
f ace 
health 
jump-back 
lef t 

obstacle 
rnd 
strafe-left 
target-alive 
turn-left 

back 

danger 

f ind 

idle 

jump-lef t 

memorize 

owns 
spawn 
strafe-right 
target-armour 
turn-right 

backstep 

die 

fire 

initialize 

jump-right 

object 

respawn 

spawned 
target 

target-health 

using 
use 

Table 7.2: ZBL/O intrinsic functions. 

definition of simple procedures and functions, however in those user-defined func- 

tions there is no language support for function parameters. 1nstead function 

parameters have to be emulated through the use of global variables in the be- 
haviour definition program. Every user-defined function in ZBL/O can have local 

sub-routines, i. e. functions with local scope. There is only one variable data type 
in ZBL/O which can be used to store numerical values (integer as well as floating 

point), which is automatically used as the return type for functions. User-defined 

functions always implicitly return the value '1', unless a different value is explic- 
itly returned. 

The function set for controlling game-bots is intrinsic to the ZBL/O scripting 
language, i. e. built into the language (see Table 7.2). As a result the use of func- 

tions does not have to be enabled by means of inclusion of a library of functions. 

This intrinsic function set consists of 45 functions representing actions and sensor 

queries that can be performed by an NPC in FPS games, such as turning towards 

an opponent, moving in a specified direction or firing a weapon (see Appendix 

C for a detailed description). The functions of ZBL/O can be sorted into three 

distinct categories: 

1. housekeeping (game-bot management) functions 
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'), 

sensor query functions 

3. action control functions 

Of these, the housekeeping functions of ZBL/O include those that govern the ini- 
tialisation of game-bots as well as any functions that directly impact the existence 
of NPCs in the virtual game world, such as the querying of world state informa- 
tion that is not sensor information but might prompt a game-bot to change its 
behaviour. 

The ZBL/O sensor query functions provide a behaviour definition program 
with the information an NPC perceives about itself and its environment. This 
data allows the game-bot to orient itself in that virtual environment. 

The final set of ZBL/O functions includes the action control functions. These 
include the functions to control a game-bot, allowing it to interact with its envi- 
ronment within the virtual game world. 

7.2.3 ZBL/O Virtual Machine 

The ZBL/O virtual machine is a kind of parallel stack-oriented machine, written in 

platform independent ANSI C++. It allows the creation of several simultaneously 

running processes with each game-bot process running in its own, self-contained, 

micro-thread [Dawson 20011, each of which has its own stack to keep different 

programs separate. In addition to the stacks themselves the registers for each 

process (program counter, program instruction register, base address register and 

stack register) are encapsulated with each stack to provide a separate entity. The 

virtual machine uses pre-emptive multi-tasking with round-robin 6 scheduling to 

execute loaded processes during its run cycle. This means that whereas game-bot 

processes are executed sequentially in the embedded virtual machine, from the 

outside, i. e. the host application, the virtual machine appears to execute several 

programs in parallel. The ZBL/O virtual machine is a self-contained module and 

6 Round-robin is one of the oldest and simplest scheduling algorithms [Tanenbaum 2001], 

used in many multi-tasking systems. All of the running processes are held in a circular queue 
(the end of the queue loops back to its start), which is executed sequentially by the processor. 

Each process receives a slice of the processor's execution cycle after which control will be 

switched to the next process in the queue. 
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accessible from the host application solely through a fixed library interface, the 
ZBL-AP1. It has a fault tolerant design, i. e. run-time errors caused by programs 

running on the virtual machine, such as stack overflows or stack underflows. are 

recognised and result in the graceful degradation of the virtual machine. In effect 
this means that as soon as an error occurs, the game-bot program is terminated 

without affecting the execution of the virtual machine within its host application 
itself. 

7.2.3.1 ZBL/O Virtual Machine Instruction Set 

The instruction set of the ZBL/O virtual machine is that of a typical stack machine 

and not dissimilar from of P-code [Pemberton and Daniels 19821 (itself not too far 

removed from commercially available stack-based microprocessors). The original 

public release version of the ZBL/O virtual machine (version 1.1, including a 

toolkit consisting of compiler, assembler and disassembler) [Zerbst et al. 20031 

has a total of 33 instructions, although only 25 of these can actually be found 

in the bytecode generated by the ZBL/O compiler, whereas the others allow for 

the creation of hand-optimised game-bot programs with higher code density. Of 

these 33 instructions, 5 are data instructions, 15 are arithmetic instructions, 4 

are logic instructions and 9 are program flow control instructions (see Appendix 

C). 
The intrinsic functions of ZBL/0, while implemented in the virtual machine, 

are not treated as virtual machine instruction but invoked as operands of a 'call' 

flow control instruction for executing a user-defined function. 

An extended version of the virtual machine (version 1.2) used in our research 

[Anderson 2004] has added two additional instructions (one ffow control instruc- 

tion and one data instruction), allowing the extension of the system through 

plug-ins (see Section 7.2.5). 

7.2.4 Extending a Game Engine with ZBL/O 

If a virtual game world is to be populated with NPCs controlled by ZBL/O pro- 

grams, this requires the ZBL/O virtual machine to be embedded in the game 
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engine, as well as the definition of a game-bot object that implements the intrin- 

sic functions of ZBL/O (and the provision of a suitable ZBL/O game-bot program 
for the NPC). NPCs developed using ZBL/O are purely reactive, i. e. their actions 
are direct reactions to an external stimulus such as a change in their perceived 
environment. In order to define the behaviour of an NPC, its domain knowledge, 

consisting of available sensor data and any information provided by the program- 
mer within the behaviour definition program, needs to be combined with the 

controls that are available to the NPC, the latter being the ZBL/O functions that 

execute game-bot actions. The behaviour of the game-bots that is perceived as 
intelligent therefore emerges from the combination of ZBL/O command sequences 
in the ZBL/O programs and the implementation of the functions of ZBL/O within 
the host application. 

The ZBL/O virtual machine itself uses a predefined set of functions as an 
interface for communication with its host application. This allows it to execute 
the ZBL/O functions that have been implemented within the host. The interface 

between the host application and the ZBL/O virtual machine is the ZBL-AP1 

(see Section 7.2.4.1). The AP1 takes the shape of a C++ interface for simple 
integration of the ZBL/O system into other applications. 

This interface to the ZBL/O virtual machine provides game engines with the 

ability to associate NPC functionality with in-game functions for actions which 

would be expected to be performed by a player of these games, therefore allowing 

NPCs to compete with human players on a level playing field. Once a ZBL/O 

program has been loaded into the virtual machine only a single function-call to 

the AP1 is required in every execution cycle (usually a graphical frame) of the 

host application to execute the game-bot programs. The simplicity of the system 

lies in the fact that none of the game-bot functions are provided by the ZBL/O 

system as such. Instead they need to be implemented within the game engine 

the host application - and mapped to the corresponding intrinsic function 

identifier in ZBL/O. The game engine itself does all the work while the script 

only ties together the different game engine components that provide the NPCs 

with functionality. 
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Figure -,. I: The interface between ZBL/O virtual machine and host application. 

7.2.4.1 The ZBL-API 

The ZBL-API consists of two components (see Figure 7.1): 

the gaine-bot interface for defining the functionality of the game-bots within 
the virtual game world 

2. the virtual machine interface for the execution of ZBL/O bot programs 

within the game engine 

The core of the ZBL-API is part of the game-bot interface for the definition 

of gaine-bots, which is defined as an abstract base class (zblbot) which greatly 

simplifies the implementation of game-bots within Cý-+ based game engines. 

The function bindings between the host application and game-bots running on the 

ZBL/O virtual machine are realised using the multiple-inheritance functionality of 
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int zb-checkBlocked(int); void zb-doCrawl(void); 
int zb-checkDanger(void); void zb-doDie (void) ; 

void zb-doDuck(void); int zb-doFace(int); 

void zb-doFind(int); void zb-doFire (void) 

int zb-mdfFront(void); double zb-checkHealth(void); 
int zb-checkIdle(void); void zb-doInitialize(double, 

double, double); 

void zb-doJump(void); void zb-doJumpBack(void); 

void zb-doJumpLeft(void); void zb-doJumpRight(void); 

void zb-doJumpUp(void); int zb-mdf Left (void) ; 

void zb-doMemorize(int); int zb-mdf Obj e ct (void); 

int zb-checkObjectAhead(void); int zb-checkObstacle(void); 

int zb-checkOwns(int); void zb-doRespawn(void); 

int zb-mdfRight(void); void zb-doSpawn(void); 

int zb-checkSpawned(void); void zb-doStep(void); 

void zb-doStrafeLeft(void); void zb-doStrafeRight(void); 

int zb-mdfTarget(void); int zb-checkTargetAhead(void); 

int zb-checkTargetAlive(void); double zb-checkTargetArmour(void); 

double zb-checkTargetHealth(void); void zb-doTurn(double); 

void zb-doTurnLeft(void); void zb-doTurnRight(void); 

void zb-doUse(int); int zb-checkUsing(void); 

Table 7.3: Game-bot interface methods of the ZBL-API (class zblbot). 

the C++ programming language [Stroustrup 1997]. A game-bot class from which 

NPCs can be instantiated is created by inheriting player functionality from the 

game-bot interface of the ZBL-API and a player-class in the application which 

should provide game-bots with the same level of control that a human player 

would have. An implementation of the abstract functions from the game-bot 

interface then allows ZBL/O programs in the virtual machine to control a game- 

bot character in the application. The game-bot interface of the ZBL-API consists 

of 44 methods (for prototypes see Table 7.3). These methods map directly to the 

standard functions of the ZBL/O scripting language. The exact implementation 

of these methods depends on the host application into which the game-bots are 

supposed to be integrated. Consequently the implementation will vary from game 

engine to game engine. 
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Apart from these methods, the abstract game-bot interface class contains a 
number of additional attributes and methods which themselves are not part of 
the bot interface but which are nevertheless important for the correct execution of 
game-bot programs. They are used in the implementation of the methods of the 
game-bot interface that map to ZBL/O functions whenever that function causes 
a game-bot to begin an action which may take some time (more than a single 
virtual machine execution cycle) to finish and if the execution of subsequent in- 
structions to the game-bot should be suspended while the action has not finished, 
such as an animated movement that may be executed over several frames. This 
blocking of processes in the virtual machine is similar to the yield operation for 

coroutines found in the language Lua jerusalemschy et al. 2007]. This is achieved 
through the zblbot class attribute 'zb-busy' which holds the blocked state of a 
game-bot and determines if a bot process is active or suspended within the vir- 
tual machine while it is waiting for an earlier action to finish. To prevent errors 
caused by unintended manipulation of the 'zb-busy' flag. direct access to this 

attribute of the zblbot class should be avoided, which is why the class provides 
three methods for this task. The current blocked state of a game-bot can be 

queried using the 'zb-getBusy' method. The 'zb-setBusy" method suspends the 

execution of a bot program by setting the blocked state of an active game-bot 
to be true. To continue program execution and to reactivate a blocked game-bot 
the -zb-unSetBusy" method must be called, i. e. it is essential to unblock the bot 

process to end the suspension of the execution of the bot program once the game- 
bot no longer needs to be blocked. Usuallythis would be done when an action 
that required the blocked state of the game-bot to be set to true has finished. If 

the programmer implementing the game-bot fails to do so, this omission will not 

only retain the suspension of the bot process. effectively breaking the program, 
but it may also lead to a time wasting overhead within the virtual machine due 

to unnecessary switching between game-bot processes. If that should happen and 

a suspended game-bot has not been reactivated for some considerable time, sug- 

gesting that there is a problem with the implementation of the NPC functionality, 

the ZBL/O virtual machine will handle this situation as a run-time error and the 

offending bot process will be stopped. 
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double zbl-getVersion(void); 

char *zbl-getVersionString(void); 
int zbl-addProcess(char *filename, zblbot *bot); 

void zbl-removeProcess(int pID); 
int zbl-replaceProcess(int pID, char *filename); 

void zbl-resetProcess(int pID); 
int zbl-replaceBot(int pID, zblbot *bot); 

void zbl-setPriority(int pID, int pr); 
int zbl-run(void); 
int zbl-getErrors(void); 

zbl-error-t zbl-nextError(void); 

zbl-error-t zbl-peekError(void); 

Table 7.4: Virtual machine interface methods of the ZBL-API (class zbl-vm). 

The second component of the ZBL-API is the virtual machine interface that 

provides 12 methods (for prototypes see Table 7.4) that allow the loading and ex- 

ecution of ZBL/O programs in the virtual machine. Embedding the ZBL/O virtual 

machine into a game engine using the methods of the virtual machine interface is 

relatively simple. Apart from the instantiation of the virtual machine by creating 

an object of the virtual machine class (zbl-vm), all a minimum implementation 

for a game-bot requires is the creation of a "process" for the virtual entity on the 

virtual machine (using the method 'zbl-addProcess'), as well as an invocation of 

the scheduler for every update cycle (by calling the scheduling method 'zbl-run'). 

7.2.4.2 Using the ZBL-API 

Given a game-bot class as defined below (gameBot), inheriting from the ZBL- 

API's bot interface as well as a player class (gamePlayer), providing the game-bot 

with the functionality available to a human player, any object that is created as 

an instance of this derived class is an NPC that can be used by the ZBL/O virtual 

machine. 
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#include <zblbot. h> 

class gameBot : public gamePlayer, public zblbot 
I 

1; 

For an instance of this game-bot to be controlled by a ZBL/O program, the 
ZBL/O virtual machine needs to be instantiated: 

#include <zblvm. h> 

I 

zbl-vm myVirtualMachine; znstance of the ZBLIO VM 

gameBot myGameBot; instance of a game-bot 

The ZBL/O game-bot program that is to be executed by the virtual machine 
has to be loaded into the virtual machine and must be mapped to the game-bot 

object for the NPC (using the 'zbl-addProcess - method of the virtual machine). 

myVirtualMachine. zbl-addProcess ("botprogram. zbp", 
&myGameBot); 

Once this set-up of the virtual machine has been completed, the 'zbl-run' 

method of the virtual machine should be called once during every update-cycle 
(once per rendered frame) of the host game engine. This method processes the 

process list within the virtual machine and executes the ZBL/O game-bot pro- 

grams. 
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myVirtualMachine - zbl-run () ; 

I 

Figure 7.2: A ZBL/O gamc-bot patrolling a warehouse. 

This is all that would be required for embedding the ZBL/O virtual machine 
into a game engine. Any additional operations, such as querying of virtual ma- 

chine run-time errors or more complex process management are optional, i. e. not 

required for adding ZBL/O to a game engine. 
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7.2-4.3 Designing a Simple ZBL/O Game-Bot 

To demonstrate the usage of ZBL/O we can look at the development through 
step-wis, e refinement, of a simple -NPC that patrols a warehouse (see Figure 71-2). 
Written in ZBL/O a simple version of the program would look as follows: 

while alive do 

if blocked front then 

# 180 degree htrn 
turn-left; 
turn-left; 

else 
step; 

The above is a short, simple program, storing the whole of the NPC behaviour 
definition within a single routine. If it were any more complex, a bot-program 

written like this would quickly grow to a size that would make it unmaintainable. 
To prevent this it makes sense to provide the script with some structure and to 
break the program up into separate functions as shown in the next iteration of 
the program: 

function turn180; 

# 180 degree turn 

turn-left; 

turn-left; 
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function patrol; 

if blocked front =0 then # if path in front is blocked 
turn180; 

else 
step; 

while alive do 

patrol; 

turn around 
turn around 

otherwise 

This version of the program shows the use of functions in ZBL/0, the names 
of which (turnI80, patrol) were chosen to be self-explanatory. An NPC controlled 
by the above script will patrol the area of the virtual game world in which it has 
been placed. If it encounters an obstacle it will turn around using a left turn 

and return to its starting point on the same path. While this behaviour might 
be acceptable for an incidental that paces an area up and down, it would make 
little sense for a game-bot that is supposed to hold watch and guard an area. In 

the latter situation the NPC should ensure that its back is always covered and 
turned away from any danger, i. e. preferably it should keep its back to a wall 

when turning to prevent being ambushed from behind. 

An improvement to the turnI80 function, solving this problem, should ensure 
that a scripted NPC only turns in a given direction if it does not expose its back 

in the process: 

function turnl80; 

f 
if ! blocked left then # if no wall to the left 

f 
turn-left; 

turn around left 
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turn-left; 
I; 

else # otherwise 
I 

turn-right; 
turn-right; 

1; 
1; 

# turn around rtght 

The resulting NPC will patrol an area in the game world as long as it is 
ccalive" , however it will mostly ignore its environment, except for obstacles in its 

path. It would be unable to sense an opponent and therefore unable to defend 

itself against attack. To rectify this, the behaviour definition program needs to 
be extended by a conditional selection in the main program that only allows the 
NPC to continue its patrol if there is no danger nearby. For the final iteration of 
this program the game-bot should switch from patrol into skirmish mode in the 

case of looming danger: 

# main programfor the combat bot 
f 

while alive do 

f 
if ! danger front then # if no enemy in stght 

patrol; # patrol the pertmeter 

else # if enemy nearby 

skirmish; # attack! 

1; 
I. 

The above listing shows the modified main function of the behaviour defini- 

tion script. lf there is no danger, the game-bot follows its patrolling behaviour 

by calling the function 'patrol", however if there is danger, the NPC enters com- 

bat behaviour by calling the 'skirmish' function which executes a simple attack 
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pattern: 

function skirmish; 
# JuTictl*on ski't-wash. - azm, at target and attack 

if target-ahead then # if clear sight of target 

fire; # fire salvo I 
fire; # fire salvo . 0 
fire; # fire salvo 3 

step; # advance 

else # otherwise 

if ! blocked front then # if the path is clear 

face-target; # turn towards / aim at target 
if target-alive then # still breathing? 

fire; # fire once 

step; # advance 
fire; #fire another shot. 

else # otherwise 

step; # step forward 

1; 
else # if no clear shot 

backstep; # retreat one step 
}; 

}' 

Once this script has been compiled using the ZBL/O compiler, the resulting 

game-bot is a fully functional NPC, able to defend itself against approaching 
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enemies, that could be used as a "guard" character in a computer game. 

7.2.5 ZBL/O Extensions 

We have used the ZBL/O system as a test-bed for interfacing behaviour-definition 

systems with computer games. The primary development was that of a plug- 
in architecture that was implemented to deliver a partial solution to problems 
caused by the lack of extensibility of the core ZBL/O system. This plug-in system 
provides the mechanisms for adding additional functions and constants to the 

virtual machine, which could be extended to add additional operators as well. 
Plug-ins are loaded into the ZBL/O compiler, as well as the virtual machine. To 

use plug-ins, the ZBL/O language has been expanded by an additional statement 
for loading a specific plug-in for use. If this statement is used in a ZBL/O program, 
the compiler loads the plug-in and queries it for a list of the identifiers of functions 

and constants contained within, so they are known to the compiler and can be 

used in the ZBL/O program. Any calls to the plug-in's functions are then stored 
in the program's bytecode as some sort of position independent code, relative 
to the plug-in used. For this the bytecode representation has been extended 
to optionally store information on used plug-ins. This information is then used 

when the program is loaded by the ZBL/O virtual machine which then loads these 

plug-ins into the virtual machine. When called from the game-bot program, the 

virtual machine passes control of the stack of the game-bot process to the plug-in 

with a request to execute the appropriate function in the plug-in. We believe that 

this method for extending the ZBL/O virtual machine is a feature that provides 

a useful mechanism for adding extensibility to any behaviour definition system. 

Apart from the additional virtual machine instructions for using the plug- 

ins, the main change to ZBL/O system was the extension of the functionality of 

the virtual machine and consequently additions to the virtual machine interface, 

adding not only methods for dealing with the plug-in extensions, but also utility 

functions to help with debugging ZBL/O programs, such as the facility to create a 

pretty printed stack dump for running bot processes. Other changes have involved 

a modification of the scheduler to achieve dynamic load balancing of the virtual 

machine. 
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7.2.6 Concluding Remarks on ZBL/O 

Figure 7.3: ZBL/O game-bots in a "light-cycle race" 

ZBL/O [Anderson 2003b] is a very simple scripting language for the definition 

of NPCs (tactical opponents, incidentals, team-mates and even observers - see 
Chapter 2, Section 2.2) in the virtual worlds of FPS or possibly third person 

perspective action games. The ZBL/O system consists of a compiler for game-bot 

programs (the very NPCs) written in the ZBL/O language and a robust virtual 

machine that can be embedded into any C++ based game engine. 
While its purpose is that of a behaviour definition language. the ZBL/O script- 

ing language does not really conform to the requirements for behaviour definition 

languages that we have identified (see Chapter 5, Section 5.2.1). ZBL/O does 

not have any Al specific data types or operators and it is a strictly procedural 
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programming language without any object orientation. The syntax and structure 
of ZBL/0, however, allow for the creation of state machines in a similar manner 
to those, defined in any generic programming language, such as C. Nevertheless, 
the ZBL/O virtual machine matches several of the requirements for a behaviour 
definition run-time system, i. e. it provides a platform independent embeddable 
module (so far implemented under Windows and Linux), a small execution over- 
head and a high degree of run-time stability. 

If the ZBL/O system is used, the seemingly intelligent behaviour of NPCs is 
not generated by ZBL/O as such: the functionality of ZBL/O is not implemented 
within the ZBL/O scripting engine. The simplicity of the system lies in the fact 
that none of the language's functions are provided by the language as such but 
must instead be implemented within the game engine and mapped to the corre- 
sponding function identifier (name) in ZBL/O. This means that the functionality 

of ZBL/O is entirely dependent on the implementation of the host application. A 

positive side effect to this is the ability of the system to transcend its limitations 
by allowing it to be adapted to games of different game genres (see Figure 7-3), 
however therein lies also the weakest point of the ZBL/O system as any NPC 

script, no matter how well designed, cannot perform well if the NPC related 
functions of the game engine do not work well. On the other hand, this system 
allows the designer to create effective NPCs through the combination of a range 
of relatively simple functions. 

As such, we have used the ZBL/O system to explore various system archi- 
tectures for integrating virtual machines into applications - simple games and 
more complex game engines - that allow scripts to be executed and interpreted 
in real-time. 

We have identified several other parts of the ZBL/O system that have shown 

weaknesses in the original design concept which we intend to address with our 

current and future work. For instance the lack of extensibility provided by the 

method in which function bindings are implemented in ZBL/O has convinced us 
that a different approach will have to be used for more generic behaviour definition 

systems. While the method used makes it very easy for the virtual machine to 

execute functions within the host application it also limits the extensibility of 

the ZBL/O system and the use of intrinsic functions results in the main cause of 
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inflexibility of the ZBL/O system, as the type and number of the functions that 
can be registered with the virtual machine is fixed by the ZBL-API. Related to 
that we believe that an implementation using external libraries to provide the core 
language with functionality would have made the system much more extensible 
and flexible. 

7.3 Educational Programming Language 
C-Sheep 

C-Sheep 
program 

vm 

source 
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ýCompilei 

Byte- 
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Figure 7.4: Components of the C-Sheep system. 

Inspired in part by existing educational mini-languages (toy languages) used in 

teaching [Brusilovsky et al. 1997], as well as our own ZBL/O behaviour definition 

language (see Section 7.2 above), we have developed C-Sheep, a Regular Script 

type (ST3b - see Chapter 6, Section 6.1-2) behaviour definition language, as 

a teaching tool for computer science education and the introductory computer 

programming sequence, using a state of the art rendering engine, usually found 
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in entertainment systems, to motivate students to spend more time programming 
(see Figure 7.4) [Anderson and McLoughlin 2007]. 

Most traditional mini-languages are now severely outdated [Anderson and 
McLoughlin 20061 and consequently fail to maintain the interest of students. The 
C-Sheep system aims to address this issue by enhancing the teaching tool with 
the visual gimmickry of modern computer games, which allows programs to pro- 
vide instant visualisation of algorithms in a visually appealing, game-like virtual 
environment. This environment, called "The Meadow", provides a game world 
inhabited by an NPC-like virtual entity, namely a sheep that can be controlled 
by C-Sheep programs. The system as such consists of a compiler for entity pro- 
grams written in the C-Sheep programming language which are translated into 
bytecode for a virtual machine that has been embedded in "The Meadow" virtual 
world. The C-Sheep programming language was closely modelled on the proce- 
dural language C [Kerninghan and Ritchie 1988], making the C-Sheep system an 

educational tool for teaching the basics of the C programming language as well 

as the basic computer science principles encountered in structured programming. 
Its instructions allow users to control the actions performed by the sheep entity 

and to query changes in the virtual world. The system itself is still very much 

work in progress and an integrated development environment with an on-the fly 

compiler is being implemented at the time of writing. 

7.3.1 The C-Sheep Programming Language 

With only eight reserved words and about half of the operators available in ANSI 

C, the C-Sheep programming language is a small, yet fully compatible subset of 

the ANSI C programming language (see Figure 7-5), i. e. programs written in C- 

Sheep should be compilable on any ANSI C compiler. Through the provision of a 

"companion library" that mirrors the C-Sheep instructions for the sheep entity in 

the virtual machine, it is even possible to compile frozen executables of C-Sheep 

programs using an off-the-shelf ANSI C compiler. 
The design of the C-Sheep subset of C was guided by some of the introduc- 

tory language design principles proposed by [McIver and Conway 1996], with 
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the provision of a set of non-overlapping language features to prevent "informa- 
tion overload" among programming novices considered as especially important. 
C-Sheep implements the C control structures that are required for teaching the 
basic computer science principles encountered in structured programming, these 
being the (unconditional) sequence, conditional statements and loops [B61im and 
Jacopini 1966]. 1n terms of syntax, these control structures are the block, if and 
if-else alternatives, as well as while and do-while loops. Additional control struc- 
tures such as the counting for-loop, the multiple-selection switch-statement or 
the ternary selection operator ý?: ' were omitted from the language's syntax to 
minimise any confusion that these overlapping control structures could cause for 

a novice programmer. 
In addition to the predefined sheep control instructions in the standard li- 

braries (see Section 7.3.1.1 below), C-Sheep also allows the definition of sub- 
routines - like functions in C, first level order functions - which can be called 
recursively. As is the case with C functions, functions in C-Sheep can return 
values of the available variable data types (unless declared as 'void', i. e. typeless) 

and receive parameters. 
C-Sheep variables are strongly typed and can either be integers of the type 

cint' or real numbers of the type 'float'. These can be declared globally within 
the body of a C-Sheep program or locally at the start of functions and blocks 

of C-Sheep code. Constant values in C-Sheep programs can be defined using 
the *define' directive as used in C programming language preprocessors, but 

unlike the text-substituted symbolic constants this would create in C, constants 
in C-Sheep are real constant values, with the benefit of type-safety. The language 

allows the definition of C-style constant strings (characters between opening and 

closing quotation marks) for printing, whose contents are not variable and cannot 
be changed during program run-time, however they can be used as format strings 
that can be used to create variable output. 

The C-Sheep Standard Libraries 

The C-Sheep standard libraries (see Table 7.5) provide a number of general pur- 

pose functions and sheep-specific functions (functions for controlling sheep entities 
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void abort(void); 
int rand(void); 

f loat sqrt (f loat) ; 

void printf(char*,... ); 

void pause(void); 

void step(void); 

void turn-left(void); 
int blocked(int); 

float query(void); 

void exit(int); 

void initialise(int, int); 

void backstep(void); 

void turn-right (void); 

int found(int) 

Table 7.5: C-Sheep standard functions. 

in the virtual environment). The latter are reminiscent of the intrinsic functions 

of the ZBL/O scripting language, but whereas in the case of ZBL/O the program- 

ming language was designed specifically as an educational tool with the definition 

of NPC (Non-Player Character) behaviour in First Person Shooter (FPS) games 
in mind [Zerbst et al. 20031, the C-Sheep language only required basic control 

of the virtual entity's movements. This is why only a few of ZBL/0s functions 

and procedures remain present in some form in the C-Sheep language. The in- 

structions of C-Sheep reflect those available in other educational languages, such 

as "Karel the Robot" [Pattis 1981], i. e. "sheep functions" for controlling the 

sheep (by exposing sensor information and instructions for the sheep entity) in 

the virtual world, declared in the language's 'sheep. h' header file. Some of these 

sheep-specific instructions allow the querying of states in the virtual world, such 

as the current state of the weather. These world states can be altered interactively 

by the user (while C-Sheep programs are running in "The Meadow"), adding a 

separate layer of interactivity to the learning game. By instigating a state change 

in the virtual environment, the user can cause different sections of C-Sheep pro- 

grams to be executed, allowing experimentation with different behaviours of the 

sheep entity from within the same C-Sheep program. 

The general purpose function set implemented in the C-Sheep system provides 

several general purpose functions and associated symbolic constants found in the 
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ANSI C standard libraries, declared in the 'stdlib. h" standard header file. In a 
similar manner, C-Shcep's maths function 'sqrt" for calculating the square root 
of a given value is taken from the -'lnath. h' standard header file of the ANSI C 
standard libraries and the string output function *printf* which behaves similar 
to the one defined in the 'stdio. h' standard header file of the ANSI C standard 
libraries, i. e. taking a (format) string as its first paraineter, followed by a list of 
optional values for printing. 

To access the C-Sheep library functions, C-Sheep programs must include the 
headers containing the function prototypes. This is done only to introduce novice 
programmers to the concept of code modularisation and libraries, i. e. all of the 
functions are disguised as library functions and C-Sheep programs must contain 
an include statement to (supposedly) parse the function prototypes in order to 
be able to call the functions, while internally these functions are actually intrinsic 
to the virtual machine. 

7.3.2 The C-Sheep Virtual Machine 

The virtual machine used in the engine is an improvement on the latest version 

of the ZBL/O virtual machine [Anderson 2004] (see Section 7.2 above) without 
the experimental plug-in architecture, i. e. the virtual machine uses a parallel 

stack-based architecture and allows more than one program to run simultaneously 
through multi-tasking, although in the current implementation of the system usu- 

ally only one virtual entity inhabits the game world. The virtual machine retains 
full backwards compatibility to bytecode compiled from programs created using 

the ZBL/O core language, i. e. all of the instructions of the ZBL/O virtual machine 

exist in the virtual machine for C-Sheep programs. This can easily be demon- 

strated with ZBL/O programs that can be executed within the virtual machine, 

in which case the NPC controlled by the ZBL/O program in "The Nleadow" is the 

sheep entity (see Table 7.6). Character strings for output (see 'printf" function 

in Section 7.3.1.1 above) are located at the end of bytecode executable files. To 

allow for their output, the virtual machine stores them in constant sized memory 

segments that are separate from the code segments and the stacks of processes, 

from where the programs can access them. 
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ZBL/O 

var 
f 

Y=J; 

while y=1 do 
I 

if blocked front =0 then 
I 

step; 
I; 

else 
I 

turn-right; 

1; 
1; 

I. 

C-Sheep 

#include<sheep. h> 

maino 
I 

while(l) 
f 

if (! blocked (FRONT)) 

step 0; 

else 
turn-right 

return 0; 

Table 7.6: A simple C-Sheep program in comparison to an equivalent program 
written in ZBL/O: if the path of the sheep entity is blocked, it will turn right, 
otherwise it will take a step forward. 

The virtual machine of the C-Sheep system provides additional intrinsic func- 

tions mirroring the C-Sheep standard libraries' general purpose functions, maths 
functions and those sheep-specific functions that have no equivalent in ZBL/O. 

The intrinsic functions of the ZBL/O language that do not have an equivalent to 

the functions found in the C-Sheep standard library are present in the virtual 

machine, but do not have any functionality associated with them, i. e. calling 
them will have no effect on the sheep entity inhabiting -The Meadow". 
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program call: 

preprocessor Id nt 
directive 

variable 

NEWLINE 

declaration 

function alternative: 
declarabon I 

II::: ýI I:: kx II I'll'' ý17 
QJI ý2, 

preprocessor-directive: 

#include Filename loop: 

#define Ident Number 
while rond"-- 

variable-declaration: 

int Ident conditlon: 

float 

parameters: 

reladon: 

block: 

statement variable 
dtamUon 

return 
statement 

statement 

retum-staternent 

call 

expression: 

term 

term: 

factor 

factor. 

ca 

-f Ident 

Number 

NJ NJ 
NEWLINE terminal symbol: the operating system's newline symbol (typically a combination of 

line-feed and carriage-return control characters) 

Ident standard identifer (first character inust be a letter, followed by a sequence of characters 

that may be letters, digits or the '-' symbol, ending with a whitespace) 

Number numerical value that can be any integer or the decimal representation of a real number 

Rename constant string encoding a C-st. vlu header file filenaille (*. h) 

Figure 7.5: C-Sheep Syntax. 
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7.3.2.1 C-Sheep Virtual Machine Instruction Set 

While the C-Sheep virtual machine's ZBL/O subset is identical to the 33 in- 
structions of the ZBL/O virtual machine"s instruction set, some of the subset's 
instructions can take additional parameters that are C-Sheep specific and that 
are currently only generated by the C-Sheep compiler. This becomes obvious in 
instruction sequences that deal with function parameters for user-defined func- 
tions which needed to be integrated into the virtual machine while still allowing 
ZBL/O programs to run, although function parameters did not exist in ZBL/O. 
The virtual machine as such has a total of 41 instructions, providing major im- 

provements over ZBL/O as the instruction set of the virtual machine includes 
instructions related to the use of constant character strings, as well as facilities 
for the use of pointers and for the creation of aggregate data types (arrays and 
record structures). While much of this is unused as it exceeds the requirements 
of the C-Sheep C language subset, the provision of this rich feature set provides 

upwards compatibility to possible future revisions of the system, as well as source 
language independence. 

The C-Sheep language contains several data types for numerical values, how- 

ever, this is not reflected in the virtual machine's instructions, but rather emulated 
by the compiler, whereas internally actually only one type is used, as is the case 

with ZBL/O. 

7.3.3 Concluding Remarks on C-Sheep 

While not strictly speaking a behaviour definition language according to our 
definition (see Chapter 5, Section 5.1), because despite its presence in a game-like 

environment the virtual entity controlled by C-Sheep programs is not a classical 

NPC (see Chapter 2, Section 2.2), C-Sheep nevertheless has a lot in common with 

other behaviour definition languages. This is mainly due to the C-Sheep run-time 

system, which is shared to a large extent with our ZBL/O behaviour definition 

system (see Section 7.2 above) - 
C-Sheep is a mini-language- like programming language for computer science 

education with a run-time system embedded within a state-of the art 3D computer 

game-like virtual environment. 
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A feature in which C-Sheep differs from other educational systems that aim to 
provide an environment with minimal complexity, is that C-Sheep allows the dec- 
laration and use of variables, which some educators might consider undesirable, 
as this increases the complexity of the language. There are, however, problems 
with variable free languages that can occur at the moment of transition to a 
real-world system, as identified by Uiitch [1990]. If an educational programming 
language has variables, the migration to a real-world language can be delayed and 
the transition to the real-world system will come as less of a shock to students, 
or as Untch says, "the students always add to their stock of knowledge and never 
need to relearn (or unlearn) something" [Untch 1990]. Other possible benefits 
to the inclusion of variables in an educational language are that they allow the 
learner to track object's histories (as non-visual states), i. e. as counters [Dann 

et al. 20001. 
The C-Sheep system, including the C-Sheep programming language and "The 

Meadow" virtual environment are ongoing projects, and continue to be developed 
further. In its current implementation, the language's compiler is kept separate 
from the run-time system (although an integrated on-the-fly compiler is in devel- 

opment). This is where the system differs from the more integrated development 

environments of other educational systems. While this use of an external compiler 
slightly complicates the use of the system it also creates greater flexibility by free- 

ing "The Meadow" from being bound to the C-Sheep language (source language 

independence), making it targetable by compilers for different languages, i. e. a 
Java based J-Sheep or Pascal based P-Sheep could be created with relatively little 

effort. 
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Chapter 8 

NPC Behaviour Definition 
Language AvDL 

The main body of our work consists of the development of a behaviour definition 
(programming) language for the creation of believable NPC intelligence [Anderson 

2005a]. This Avatar Description Language (AvDL) provides the core of a generic, 

modular and easily extendable system for the definition of believable intelligent 

game character behaviour. Since its original conception, the language specifica- 
tion for AvDL has undergone a series of step-wise refinements, some of which 

are detailed in the discussion of language features and syntactical elements below 

(see Section 8.2), whereas some are discussed later in this thesis (see Chapters 9 

and 11). 
This embeddable Regular Script type (ST3b) scripting language, a substan- 

tial subset of which we have already implemented (see Chapter 9), provides for 

the definition of deterministic, as well as goal-directed behaviours, allowing the 

system to be used for different purposes and with a wide range of computer game 

related applications. 
Like most currently available scripting systems, the AvDL run-time environ- 

ment employs a stack-based architecture (see Chapter 10) and while the AvDL's 

primary purpose is the definition of NPC behaviour, the system's large degree of 

flexibility and extensibility does not necessarily limit it to this task. 
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8.1 Towards a Better System for Defining Com- 

puter Game Al - Rationale for the AvDL 
Scripting Language 

Over the past decade we have seen that the development of sophisticated 3D 
modelling and animation programs have given rise to new methods and increased 

realism in film, animation and computer games. This and more powerful hardware 
have led computer games to evolve from existing in two dimensions only into the 
third dimension, spawning a range of new computer game genres. 

However, whereas computers get faster, unfortunately programmers them- 

selves do not. The use of a generic system for the definition of NPC behaviour 

would speed up the development of computer controlled NPCs, simplifying the 

game development process and resulting in a reduction of the workload of game 
programmers. Additionally, the improvement of the game development process 
through close integration of this system with the tools and libraries that are 
already used for creating computer games, such as level editors or 3D content 

creation applications, would be highly desirable. While making it easier for a 

game production team to meet its budgetary constraints, such a system would 

also make game development more cost effective by allowing parallel development, 

i. e. the creation of NPCs independent from the main game source code. 
We believe that the introduction of this type of generic behaviour definition 

system would be able to contribute to the continuing evolution of computer games 

and open up new avenues for greater realism within the virtual game worlds. 
The development of the AvDL behaviour definition system has been guided 

through the understanding of current computer game Al techniques (see Chapters 

2 and 4) and their application to modern computer games. The insights that we 
have gained during our review of the available literature and the design of our 

experimental ZBL/O scripting system (see Chapter 7, Section 7.2) have greatly 

influenced our design approach towards our system for defining NPC behaviour. 

Compared to existing Al middleware systems our solution should allow for a much 

si-noother integration of the behaviour definition system into game applications as 

it provides a combination of all of the different components for creating NPCs (see 
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also Chapter 4, Section 4.1) within a unified architecture that binds these modules 
together. Consequently the need for users to change between different APIs and 
applications to achieve their goals will be greatly reduced. This also means that 
there should be considerably fewer restrictions imposed by compatibility problems 
between different systems. 

8.2 The AvDL Programming Language 

AvDL is a universally applicable extension programming language for the defi- 

nition of artificial behaviour for virtual entities, i. e. creatures and characters, in 

computer games and potentially in computer animation. AvDL is defined using 
an LL(1) grammar (see Appendix D). AvDL programs are executed in a virtual 
machine that can be integrated into any game engine. 

AvDL is not bound to a single genre of computer game or NPC. To maximise 
the language's potential for NPC behaviour definition it allows for different pro- 
gramming styles, i. e. AvDL supports the object oriented programming paradigm 
but also allows the creation of procedural programs as well as event based pro- 
gramming (see also Chapter 6, Section 6.1.2). 

For this. the language provides various means for defining NPC program flow 

and some NPC Al related data types and operators. 
The system's flexible structure allows for high extensibility, therefore making 

AvDL usable for a wide variety of different tasks. This makes AvDL a lot more 

similar to an implementation language than to what is often considered a scripting 
language (see also Chapter 6) which will become more apparent when the exact 
features of AvDL are examined in detail. 

The syntax and semantics of AvDL inherit much from the C [Kerninghan and 
Ritchie 1988] family of programming languages and are largely based on those 

of the C++ programming language as described by Stroustrup [19971. As such, 
AvDL program source code largely resembles programs written in the C/C++ 

family of languages. It has to be noted, however, that some fundamental elements 

of the core language (detailed below in Section 8.2.1) are different from their 

counterparts in CIC++: 

133 



8.2 The AvDL Programming Language 

9 The language only includes a single numeric data type, the scalar data type. 

9 The language has three different kinds of array types. 

9 There are a number of additional game Al related data types. 

9 AvDL does not use unions and enumerated data types. 

9 In AvDL pointers are not used and addresses cannot be accessed, i. e. there 
is no direct memory access mechanism. 

* Classes provide the only means to create record structures in AvDL, i. e. 
there are no 'struct' records. 

9 There is no data hiding in AvDL classes. 

9 In AvDL there is no multiple inheritance of classes. 

9 The language does not support function inlining. 

9 All function parameters in AvDL are passed by reference unless specified 

otherwise. 

9 The AvDL specification adds several (program flow) control structures to 

the common C/C++ control structures. 

The AvDL system provides mechanisms that allow NPC behaviour definition 

through the creation of an annotated world (see Chapter 2, Section 2.3.4.4). 

This feature is described in detail in the discussion of the SEAL (Simple Entity 

Annotation Language) subset of AvDL which uses entity annotation as its main 

method of behaviour definition (see Chapter 9). 

Despite the danger of leading to confusion, AvDL retains most of the more ab- 

stract elements of CIC++, such as C/C++-style iterations and selection, which 

may not be easy to understand by novice programmers. Some additional macro- 

like syntactic synonyms (aliases) which can be substituted either by a prepro- 

cessor or by the compiler itself are integrated into the language specification as 

alternative means for expressing NPC programs. This should present novice pro- 

grammers with several simpler and easier to read alternative notations without 
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the language having to sacrifice its similarity to its C/C++-Iike syntax. All vari- 
able data types in AvDL are auto- initialising. This means that a variable that 
is declared will initially be provided with a default value unless otherwise speci- 
fied by the AvDL program. This not only simplifies the declaration process but 

also removes one of the major shortfalls of common implementation languages as 
errors caused by uninitialised values are often hard to identify and debug. The 

presence of auto-initialisation helps to avoid this type of error within AvDL pro- 
grams. Furthermore, inspired by the CIC++ programming languages, variables 
in AvDL are strongly typed, a feature in which the language differs from many 
other scripting languages. 

AvDL handles object orientation in a manner that is similar to C++, how- 

ever, there are a number of notable differences, especially the introduction of 
implicit classes (see Section 8.2.1.1). In addition to its handling of object orien- 
tation, AvDL also differs from languages such as C and C++ through its data 

types. The definition of AvDL includes a number of specialised data types (see 

below) that do not exist in the definition of the C/C++ family of programming 
languages. Furthermore, in addition to these data types, AvDL also provides 

several control structures that have no equivalent in the C/C++ family of lan- 

guages but which have proven useful in other programming languages, such as 

a conditional alternative that allows the specification of an additional separate 

condition ('elsif'). 

8.2.1 The Syntax of AvDL 

AvDL programs are meant to encode complete NPCs and as such each program 

needs to be declared as an 'entity' (see Figure 8.1) in which the NPC's program 

is encapsulated (in a similar manner to C++ namespaces). The identifier used to 

name the entity is then used to mark the AvDL program's entry point from which 

execution will commence using a syntactical notation inspired by the C++ class 

constructor. This provides a more consistent approach to defining the program 

entry point than found in CIC++ which use a function called "main", as here 

there is no need to use reserved identifiers. Apart from this, as mentioned before, 

the syntax of AvDL is very similar to the syntax of the C++ programming 
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entity-declaration: 

entityH Ident 
function ýf -block 

declaration 

class 
declaration 

state 
declaration 

goal 
declaration 

action 
declaration 

even 
declaratiton 

variable 
declaration 

entity ýýýýbloýck 
Ident 

Figure 8.1: Syntax for declaring an 'entity' object. 

language. This influence of the C++ programming language on AvDL is not 
only visible in AvDL's implementation of classes and inheritance (see Section 

8.2.1.1), but is also evident in the definition of functions in AvDL programs 

which is very similar to that of functions written in the ANSI C++ programming 
language. As is the case in C++, the forward declaration of functions in AvDL 

also uses prototypes in the form of function heads. A function has a name (its 

identifier), a return data type and a list of formal parameters. If the return data 

type is omitted during function declaration (or definition), the AvDL compiler 

will assume that the return data type is the typeless 'void'. Similarly, the omission 

of parameters in a function declaration will default to an empty parameter list 

presumption which is equivalent to declaring a 'void' parameter list. 

Scoping in AvDL, defining where within a program's source code it is legal 

for the program to access data or to call a function and where these are visible, is 
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array-declaration: 

type type variable 
qualifier H primitive H Ident 

-ý& 

inte 
va 

Pueer 

I Ident I 

Figure 8.2: Declaration and use of arrays in AvDL. 

handled in a manner that is very similar to C/C++, i. e. constants and variables 
that are defined globally can be accessed from anywhere in an AvDL program, 
while constants and variables that are defined locally within a block can only be 

accessed from inside this block. The scope of a function in AvDL extends from 
directly below the place of the function declaration within the current module 
(NPC program source code file) until the end of the file. While in the C program- 
ming language it is possible to declare a function locally by placing its prototype 
within the body (the definition) of another function, it is not possible to do this 
in AvDL. The reason for this restriction is that the (prototype) declaration of a 
function within a different function, which would be disjunct from its definition, 

as this would have to be located below the function it was declared in, would 
break not only the consistency, but also the simplicity design principles for BDLs 
(see Chapter 5, Section 5.3.1). The AvDL specification also does not allow the 

nesting of function definitions as would be possible in programming languages 

related to Pascal, such as ZBL/O (see Chapter 7, Section 7.2). 

There is only one non-specific numeric data type in the AvDL that can take 
floating point values as well as integer values, which is the 'scalar' data type. This 

means that there is no differentiation in the way that AvDL handles the 'short', 

'int', 'long', 'float' or 'double' data types found in C/C++. Instead, a number of 

aliases, implemented as synonyms in the preprocessor of the AvDL compiler, will 

allow for variables to be declared using the familiar CIC++ numerical data types, 

thus eliminating the need for a specific casting operator for type conversions. 
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Nevertheless, variables in AvDL are strongly-typed as type-safety is impor- 
tant to prevent programming errors when it comes to user-defined functions with 
formal parameters. 

Unless explicitly initialised to a different value. the AvDL virtual machine 
auto-initialisation will default all numeric variables to the value '0" (zero) while 
some of the game AI specific data types (discussed below) are auto-initialised to 
the value 'NULL'. 

There is a separate data type for Boolean values only, the 'bool' data type. 
Variables of this type can take the values 'true', implemented as a preprocessor 
alias mapped to the value 'I', or 'false", a preprocessor alias mapped to the value 
, 01. 

Variables of the 'scalar' data type may also hold Boolean values which can be 

achieved if the data held in a scalar variable is assigned to a Boolean variable. 
In this case the data is automatically downcast and all non-zero values are inter- 

preted as 'true'. Boolean variables are auto- initialised to the value 'false' by the 
AvDL virtual machine. 

AvDL programs allow for groups of variables of the same type to be stored 
in variables of an aggregate data type. For this AvDL provides three different 

kinds of arrays (see Figure 8.2): static (fixed-size) arrays, dynamic arrays and 

associative arrays. 
Some of the differences between these data structures are transparent to the 

user, i. e. syntactically there is little difference iii their usage, as access to array 

elements is always granted by using the subscript operator. The usage of these 

data structures manly differs in the declaration of the data structures and in 

the method by which array elements are addressed, i. e. through a numerical 

index (starting at index '0' for the first element as is the case in the C/C++ 

programming languages) or an associative value: 

9 Static arrays in AvDL are variables of any AvDL data type that have been 

declared using the 11 subscript operator with a size (of array) indicator as 

their suffix. As such they are almost identical to arrays in C, however, 

unless the elements of an AvDL static array are manually initialised during 

the array's declaration, they will be auto-initialised to the value '0' (zero). 
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Dynamic arrays in AvDL are variables of any AvDL data type that have 
been declared using the [] subscript operator without a size (of array) indi- 
cator which are subsequently given a size using the 'new' operator. After its 
declaration, a dynamic array is by default pre-initialised to the empty value 
'NULL'. The memory that has been allocated for dynamic arrays using the 
cnewl operator must be released eventually, using the 'delete' operator. Un- 
like in C++ the 'delete' operator in AvDL does not need to be succeeded 
by the subscript [] symbol as a requirement for freeing memory that has 
been allocated to arrays of data. The use of the 'new' and 'delete' operators 
in AvDL is restricted to dynamic arrays. 

Associative arrays, inspired by Perl [Schwartz 19921, are variables of any 
AvDL data type that have been declared using the [] subscript operator 
without a size (of array) indicator. Associations are created dynamically as 
soon as they are used for the first time. Internally each new association is 

given an increasing index value. 

The specification of AvDL does not include pointers, i. e. it is not possible to 
directly access memory blocks within the address space of AvDL programs or the 

addresses to data held in the memory of the AvDL virtual machine. There are 

several reasons for this omission of pointers, first among which is the observation 
that the understanding of pointers (or rather a lack thereof) frequently provides 

one of the main stumbling blocks for novice programmers and therefore would 

unnecessarily complicate the language. Another reason, which is possibly more 
important, stems from the system's mechanism for object annotation (see Chap- 

ters 9 and 10). This allows access to program segments of entities controlled by 

AvDL programs other than the currently executing one, and if direct memory 

access were allowed, its effects could seriously disrupt program flow and desta- 

bilise the run-time environment. Consequently, and thus unlike the C or C++ 

programming languages, AvDL provides no mechanisms for pointer arithmetic or 

access to data held in arrays without the use of the subscript operator. 

AvDL retains the (program flow) control structures of the C/C++ family of 

languages, i. e. all of the familiar iterations and selections work in an identical 

manner to their CIC++ equivalents. The conditional 'if, 'if'-'else" and 'switch' 
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statements are not the only selections available in AvDL. These control structures 
are complemented by an additional type of conditional alternative that allows 
the specification of a second, separate condition ('if '-'elsif '-'else' and 'if'-'elsif'), 

as well as two further multiple alternatives, 'select' statements, the first of which 
is almost identical to 'switch' statements except for the fact that its cases do 

not contain fall-troughs. The second 'select' statement allows the selection of 
not only single alternatives but also ranges of values to identify the statement 
that is to be executed. ln addition to the 'while', 'do'-'while' and 'for' loops, the 
AvDL specification also implements three further iterations, i. e. a foot controlled 
6 repeat'-'until" loop (as found in Pascal), a 'do'-'forever' continuous loop and a 
looping control structure for accessing array elements ('foreach'-'of') that cycles 
through arrays (static, dynamic and associative), allowing each array element to 

be processed in turn. 

Object Orientation in AvDL 

Object orientation (00) in AvDL resembles 00 in C++ and Java with some 
features being closer to Java than C++ and several features different to both C++ 

and Java. The data structure that allows 00 in AvDL is the 'class' compound 
data structure which is identical to the above two languages. Classes in AvDL 

are used to describe objects (in the sense of object orientation) as well as record 

structures (in the ANSI C 'struct' sense). AvDL's equivalent to the top-level 

class found in Java programs is the 'entity' object (see Section 8.2.1). 

Unlike classes in C++, classes in AvDL do not support mechanisms of data 

hiding that would restrict access to their attributes (data members) and methods 
(member functions). This means that all methods and all attributes of a class are 

public (in the C++ sense). There is no equivalent to protected or private class 

components as found in C++. Within the scope of an instance of an AvDL class, 

the AvDL program has full access to all attributes and methods defined by the 

class. By default all classes in AvDL have one implicit attribute -a reference to 

the current instance of the class - that can be accessed through the 'this' object. 

The 'this' object reference is also a hidden parameter which is implicitly passed 

to all methods of the class as the first parameter of the method. 
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There is no function inlining in AvDL, i. e. unlike in the C++ programming 
language there is no support for inline functions in AvDL. The main implication 
of this is that although the methods of a class are declared within the class 
description, the methods themselves must be defined below the class definition 
itself. The decision to omit function inlining was made for reasons of language 
simplicity, i. e. to avoid confusion through allowing too many different methods 
for defining an object's methods and to impose a strict distinction between class 
declaration and definition of its functionality. 

AvDL implements the concept of implicit class definitions that allows for class 
definitions to be stored within external files. We believe this will benefit AvDL 
program modularity and encourage the use of parallel development. 

The file containing an implicit class definition inust either be a valid AvDL 

source code file containing only the class definition (any other code will be ig- 

nored) in source code form or alternatively a pre-compiled class definition (similar 

to pre-compiled classes in the Java programming language) as bytecode for the 

virtual machine. The name of this file must be stated at the declaration of the 
implicit class. Like Java, AvDL does not support multiple inheritance. As a 

consequence of this an object's class in AvDL can only be derived from a single 

class using Java's 'extends' statement (also allowing the ": public" notation from 

C++ as an alternative). Currently there are no plans to allow inheritance from 

implicitly defined classes that have been pre-compiled. 
The current specification of AvDL does not support function overloading or 

function overriding. While these features provide very powerful mechanisms in 

the languages that include them, we believe that they would be beyond the scope 

of AvDL which is only supposed to provide a behaviour definition extension 
language to computer game applications, adding an additional layer of complexity 

that would outweigh any benefits gained by the inclusion of these features in the 

language specification. 

8.2.1.2 M-iggers and Event Based Programming in AvDL 

The language specification includes an 'event' data type (see Figure 8.3) to allow 

NPC programs to react to named events (using the given identifier) i. e. AvDL 
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event-declaration: 

ev! ýý Ident instruction 
- Wý No list [-BIC; 

i nstructi on- list: 

block I 

Figure 8.3: Syntax for declaring an event with event-handler (instruction list). 

is effectively useable as a Trigger-Only Induced Script type (M) scripting lan- 

guage. if the situation demands this. For events defined in the host application 
the event registration is exposed (made accessible) through the run-time API (see 
Chapter 10, Section 10.4). The declaration of the 'event' requires the definition 

of an AvDL instruction list, i. e. an event handler that will be triggered once an 
event occurs. 

In addition to the event handler, a second mechanism to enable NPC programs 
to react to events exists in the form of scalar and Boolean AvDL variables that 
have been declared using the 'triggered' type qualifier for a given event which will 
be set to the value 'I' or 'true' when that event occurs. 

Filially, the current specification of the language introduces a 'trigger' operator 
for spawning events from within NPC programs. Events that have been triggered 

this way are spawned globally throughout the run-time environment unless they 

are addressed directly towards a specific entity. The operator returns a Boolean 

value to report success ('true') or failure ('false') of triggering the event. This 

functionality could have been exposed through a function from a standard library 

or alternatively through a special statement for program flow control, similar to 
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statements such as 'break' or 'return', but the use of an operator for this purpose 
is much more consistent with the structure and makeup of the AvDL. 

8.2.1.3 A Data Type for State Machines 

tsm-declaration: 

Figure 8A Syntax for FSM declaration. 

As we have already stated (see Chapter 2, Section 2.3.1.1), FSMs provide a 
tried and tested mechanism which has proved suitable for many kinds of com- 
puter game AI which makes them by far the most used Al technology in modern 

computer games [Anderson 2003a] as they allow for the simple definition of deter- 

ministic behaviour. For this the AvDL specification provides a 'state' data type 

that allows the definition of state machines (finite as well as fuzzy) which can also 
be used to express the structure of hierarchical state machines [Fu and Houlette 

2004], i. e. each state can also be a complete state machine. Each state can only 
have a single instance which is automatically created when a state is declared, i. e. 

any variables that are declared of a state are references to this state instance. Of 

these two 'state' types the finite state machine type (the default state machine 

type) is included in the specification of the SEAL subset of the AvDL scripting 
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language (see Chapter 9, Section 9.3). The implementation of this type within 
the virtual machine of the AvDL system is described in detail later in this thesis 
(see Chapter 10, Section 10.2.3). 

8.2.1.3.1 Finite State Machines inAvDL The 'state" data structure defin- 
ing a state machine bears some similarities to the 'union' data type found in the 
C programming language, as at any one time only one state within it will be fully 

active. It also shares elements with the definition of a 'class' data structure, as 
its members are declared within the structure similar to an object's methods and 
defined outside of the structure itself. It is the default 'state' data type in AvDL, 

so it can be declared with or without the presence of the 'finite' type qualifier. 
Members of the state structure can be used as identifiers for states in a similar 

manner to the named constants of C enumerated data types (also addressable as 

members of their parent state structure in case of name conflicts). Each state 

within a state construct, i. e. each state structure member, needs to be provided 

with a follow-up (next) state to declare which state the current state will change 
into during an automatic state transition (see Figure 8.4), i. e. a state transition 

that occurs when all of the instructions for the current state have been executed. 
If the value 'NULL' is used as a transition target, the state machine will terminate 

automatically when this transition occurs. 
These state structure members can be of different types: 

1. A reference to an instance of another state machine structure (referenced 

through its identifier), effectively providing an alias for addressing that state 

and allowing that state's transition target to be overridden. 

2. An action (see Section 8.2.1.5), i. e. a function in the host application, which 

in this case should not return any data and be parameterless, as this would 

be ignored by the FSM- 

3. An AvDL function (similar to a method in a class), which must be a typeless 

function with an empty parameter list. 

4. A labelled AvDL expression, addressable through the label. 
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Independent of their actual types, these structure members will always be treated 
as states by the FSM. 

Inspired by the syntax for the 'entity' object's entry point as well as the 
C++ constructor, the instructions associated with the state of the 'state' data 
type itself need to be placed within a special method (member function) of the 
state structure, the state's body, marked by the identifier used to name the state 
structure. The declaration of this method includes the state's transition target 
(follow-up state), which defaults to the value 'NULL' if this transition target is 
omitted. The 'state' structure in AvDL allows for the definition of two further 

specialised methods, 'onentry' and 'onexit", the former of which will be executed 
before the state"s body is entered, whereas the latter is executed when a state's 
body is exited due to a state transition. These two functions are not unlike the 

constructor (method which is invoked when an object is created) and destructor 
(method which is executed when an object is destroyed) of an object oriented 
class. If these functions are not explicitly declared within a state structure and 
defined among the state's members, default methods (defined within the AvDL 

run-time system) will automatically be used instead. 
Until an initial state within a state machine has been set, it will hold the 

empty value 'NULL", so before a state machine starts its execution it needs to 
be initialised and set to an initial state. This is done using the unary 'setstate' 

operator which returns a reference to the state instance that is set or to the 
instance of the parent state structure if the set state is not a state data structure. 
The 'setstate' operator can be used to set any state or state member to be the 

currently active state. In case of name conflicts. state members can be addressed 

as members of their parent state. The status of an FSM structure or structure 

member can be queried and is always a Boolean value, showing if a state is 

currently active ('true') or inactive ('false'). 

Once the initial state has been set, the state machine will start its execution, 
diverting program flow to the state machine until it terminates, i. e. until it takes 

on the empty value 'NULL'. While a state machine is running, the 'setstate' 

operator can be employed from within the state machine to force a transition to 

any state (or state member) that has been declared in the program or to terminate 

the state machine by using 'NULL' as its operand. Finally, the currently set 
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state can be queried using the 'getstate' operator which returns a reference to the 
currently active state (or state member), or 'NULL' if no state machine is active. 

fusm-declaration: 

Figure 8.5: Syntax for FuSM declaration. 

8.2.1.3.2 Fuzzy State Machines in AvDL The finite state machine type 

was one the first special types to be included in the AvDL specification and its 

makeup and functionality have changed little since this first specification, whereas 
in the case of the fuzzy state machine (FuSM) type the data type described here 
is still untried and tentative, however, syntactically it is the most likely candidate 
for inclusion in the system (see Figure 8.5). 

Structures of the FuSM 'state' data type in AvDL are declared with the 'fuzzy' 

type qualifier. For the declaration of state structure members for a fuzzy state 

machine, instead of a transition target an optional weight value for the (member) 

state (capped between the scalar values '0.0', the default value for weight decla- 

rations, and '1.0') can be provided. They, too, can be used as identifiers for states 
in a similar manner to the named constants of C enumerated data types, but the 

data types of members in FuSMs are restricted to being a reference to an instance 

of another fuzzy state machine structure (referenced through its identifier), or a 
data member (variable) of the scalar data type (capped between the values '0.0' 

and '1.0'), i. e. FuSM structures in AvDL do not have member functions, such as 

the methods in the FSM data structure. 
Until an initial state within a fuzzy state machine has been set, just like its 

FSM equivalent it will hold the empty value 'NULL". An FuSM is activated using 
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the unary 'setstate' operator which returns a reference to the state instance, and 
which in case of a fuzzy state structure member optionally allows the specification 
of a weight value for the state (capped between the scalar values '0.0' and '1.0, 
the default value in 'setstate' operations). Here, too, the 'setstate' operator will 
return a reference to the instance of the parent state structure if the set state is 

not a state data structure. 
The status of an FuSM structure or structure member can be queried and is 

always a scalar value, showing the degree of activity of the state. If queried, by 
default a fuzzy state structure will return the accumulated value of its members 
as a scalar value (that may be larger than the value '1.0'). This is also true if the 

queried state structure is a member of another structure, however, it will return 
the value that it has been set to in its parent structure if it is addressed through 
this parent state structure, as it may be a member of several state structures in 

each of which it may have been given a different fuzzy weight value. 
The 'setstate' operator can be used to modify the value of a state member"s 

weight relative to its existing value by augmenting the specification of the weight 

with a sign. If this is the case, the modified weight of the state member will 
be automatically capped between the scalar values '0.0' and '1.0', i. e. no state 

member can grow or shrink to a weight value smaller than '0.0' or larger than 

'1.0'. For FuSMs the AvDL specification provides no equivalent to the 'getstate' 

operator used with FSMs, as more than one state can be active at any one time. 

This shows that, while having a large degree of syntactic similarity with the 

FSM type, the FuSM type works entirely different from the FSM, i. e. FuSMs 

exist as a sort of record data structure but they do not hold code that executes. 
The main difficulty when it comes to the definition of an FuSM is that in game 

development there appears to be little consensus as to what a fuzzy state machine 

is and how it works with definitions varying between the formal computer science 

understanding of the term to methods involving probability and random selection 

between states [Champandard 2004]. The semantics for the FuSM data type 

have not been finalised in the current specification of the language, however, the 

semantics of the different FuSM definitions are all expressible through the FuSM 

syntax described here. These different possible approaches are further discussed 

later in this thesis (see Chapter 11, Section 11.2-3). 
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8.2-1.4 A Data Type for Goal- Orientation 

goal-declaration: 

goal )--ol Ident 

priority ý_r. (: Dý goal definition 

i expression I 

goal-definition: 

label H expression 

label 
Ident 

-_)4-jx--pression 

Figure 8.6: Syntax for declaring a goal. 

Goal-directed behaviour is one of the simplest forms of nondeterministic be- 
haviour. A goal is the end-state of a set of goal-directed actions. The path that 
the system needs to take to reach this end-state is generated by using a planning 
heuristic on a set of known values which need to be conveyed to the Al module 
beforehand. The generation of this sequence of actions that will lead to the de- 

sired goal is called goal-oriented action planning [Orkin 2004a] (see also Chapter 

2, Section 2.3-2.2). 

In AvDL goal-directed behaviour can be attained through the use of the lan- 

guage's 'goal" data type (see Figure 8.6). Unlike the 'state' data type, this data 

structure does not form a part of the SEAL subset of AvDL, i. e. the current 

system prototype does not yet incorporate all of the data structures that goal 

orientation would require for it to be fully implemented for use in the system's 

run-time environment (see Chapter 10, Section 10.3). The makeup and function- 

ality of this 'goal' data type has been inspired by the planning mechanisms of 

the behaviour definition language CML (Funge 19991 (see also Chapter 5, Section 

5.1.1-3), as well as Orkin's description of GOAP [Orkin 2004a]. 
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The combined set of goals that have been declared within an NPC program 
make up the search space from which action plans can be generated. An instance 
of a goal data structure holds implicit data members which contain an action plan 
and a reference to the current state of the goal (in relation to that action plan). 
Until an action plan for a goal exists, the goal state will have the queryable value 
'NULL'. Once an appropriate action plan has been generated, the goal's status 
will be set to the Boolean value 'false' until the goal state has been reached, 
resulting in the goal's status being set to the Boolean value 'true'. 

In its simplest form, a goal is defined as a single variable of the 'goal' data 
type, optionally at a set priority or weight for the planner (by default set to 
'Iff), which has been assigned an expression defining the exact preconditions 
that have to be satisfied for the goal itself to be reached. Priorities (weights) 

are given higher values as their importance shrinks, e. g. a value of 'I. 0' has a 
higher priority than a value of '3.5'. The reason for assigning lower values to 
higher priorities is that informed search methods, which are commonly employed 
to generate plans in goal-oriented systems, "typically use some estimated measure 

... and try to minimize it" [Russel and Norvig 1995]. 
The second method of using the 'goal' type requires the declaration of the 

goal as a compound data structure with optional priority (default value 'Iff), 

simplifying the declaration of goals with several preconditions. Each of the struc- 
ture's members is a precondition (or sub-goal) which needs to be satisfied for the 

goal to be reached, allowing AvDL programs to use composite tasks as described 

by Dybsand [2004]. 
All 'goal' structure members can be used as identifiers in a similar manner to 

the named constants created in C enumerated data types. They take the form 

of labelled AvDL expressions which can optionally be supplied with a priority or 

weight (by default set to '1.0') which will be taken into account by the planner 

and which must evaluate as true for the goal to be reached. 
An alternative interpretation of the goal structure would have been to use 

priorities to convey preference knowledge during planning, providing a weighting 

only to sub-goals contained within the structure instead of the goal itself, with 

only the reachable condition with the highest possible priority required to be sat- 

isfied while its sibling goals (precondit ions) would have been considered optional. 
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However, the employment of this alternative goal structure would unnecessarily 
complicate the plan generation in the run-time environment, e. g. it could prevent 
the use of a standard planning algorithm, such as A*, for the planning process. 

The AvDL specification defines a number of specialized operators for goal- 
oriented action planning. The operator for the creation of the action plan itself 
is the 'plan' operator which directly operates on goals, generating a plan from 
all valid goals in the NPC program. The syntax of this unary operator is similar 
to the 'new - operator in the C++ and Java programming languages, and as such 
also similar to the 'new' operator of AvDL. If the generation of a plan has been 
successful, the operator will return an instance of the goal as its result. If the 
planner is unable to find a suitable plan for this goal, the empty value 'NULL' 
is returned. By default the plan operator in the AvDL virtual machine will be 
expected to use A* planning (see Chapter 4, Section 4.3.3) as the underlying 
planner, thus implementing the GOAP technique suggested by Orkin [20061. To 

allow for greater custornisation, the run-time AP1 will provide a planner interface 
to enable different planning methods to be implemented by the NPC program 
developer. 

As soon as a plan for a goal has been generated the goal variable's status, as 
well as the status for all of the nodes in the plan's action sequence will be set to 
hold the Boolean value 'false' and the plan will start executing. The expressions 
that define a goal's preconditions may contain any function calls or actions (see 

Section 8.2-1-5) that may need to be executed to meet the precondition. These will 

automatically be evaluated while the action plan executes. The unary operator 
'reached' can then be used for testing a goal for completion (i. e. testing the goal 

state). This operator is required for querying the status of a goal's plan, as strong 
typing of data types prevents direct access to variables of the goal data type. 

While the action plan is still being executed, the 'reached' operator will continue 
to return the value 'false'. If a goal has been reached (by all preconditions or 

sub-goals having been fulfilled), its status will change and the 'reached' operator 

will return the Boolean value 'true' as its result. If the situation in the NPC's 

virtual environment changes in a way that an action plan becomes invalid, i. e. if 

it is no longer possible for the NPC to reach its goal, the goals status will change 
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and the 'reached' operator will result in the value 'NULL', usually requiring a 
new plan to be generated. 

8.2.1.5 Mechanisms for Accessing the Host Application from AvDL 

NPC programs can be enabled to directly call functions that are defined within the 
run-time environment's host application. These function bindings are created by 
using the AvDL data type 'action', not to be confused with actions in GOAP (see 
Section 8.2.1.4), which maps AvDL actions to functions in the host application. 
Functions that are mapped to actions within AvDL programs need to be declared 
to the AvDL virtual machine by the host application through API calls to the 
run-time environment (see Chapter 10, Section 10.4). By default, functions that 
have been registered in this way are then bound to the action whose identifier 
corresponds with the name of the function. Alternatively the name of the function 

can be associated with the action through a string which is given as a parameter. 
If the mapped function in the host application expects parameters, these can be 
declared similarly to the declaration of formal parameters in a function prototype. 

Actions are auto-initialised to the value 'NULL' which they will hold until the 
first time the action is executed. Any data returned by the function in the host 

application is stored within the action data type for retrieval in the NPC program. 
If the function in the host program does not return any data to the action it will 
default to the value 'true'. Actions that are needed within an AvDL object only 
(see Section 8.2.1-1) must be declared as members of that object. Actions that 
have been declared in an AvDL object are bound to the corresponding functions 

as soon as the constructor for that object is called during program execution. All 

of these function bindings are released when the destructor for the last instance of 
this class is called during program execution. Actions that have been declared in 

an FSM structure are bound to the corresponding functions as soon as the state 

machine is initialised for the first time. These function bindings are released when 
the NPC program terminates. 

Actions that execute functions in the host application are not the only mech- 

anism by which NPC programs can interact with their host. Data in the host 

application can be bound to scalar and Boolean AvDL variables in NPC programs 
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by using the 'volatile" variable attribute. The 'volatile' attribute is used in the C 
and C++ programming languages to mark data that is influenced by processes 
which are external to the current program. Similarly by making a variable in an 
AvDL program 'volatile' it can be mapped to a variable in the host application 
through the API of the run-time environment by using the identifier given to the 
variable when it was registered with the API. 

8.3 Using AvDL to Create NPCs 

The use of AvDL for defining the behaviour of a virtual entity is quite straight- 
forward. The NPC as a whole is encapsulated within an 'entity' object that 

explicitly provides ail entry point for code execution, effectively the main NPC 

program. This entity object contains the various data structures that define the 
behaviour of the virtual entity. 

This can be through the use of popular game Al methods, such as the defi- 

nition of finite state machines that will control the NPC, or the use of a trigger 

system that defines a reactive, event based NPC. Alternatively, newer techniques, 

such as GOAP can be used to create an NPC with nondeterministic behaviour. 

8.3.1 An AvDL FSM Example 

The earlier example for a typical FSM in games (see Chapter 4, Section 4.2.1) 

described an NPC on patrol, carrying out guard duty. The FSM in the example 

consisted of the states 'patrolling", 'challenging intruder' and 'attacking intruder' 

(see Figure 4.2). Assuming that the sensor inputs for that program were im- 

plemented through sensor variables of the NPC in the host application that are 

mapped through the 'volatile' type qualifier, the structure of a possible version 

of this program would look as follows in AvDL: 

entity guard 
f 

volatile bool intruder-detected; 

volatile bool intruder-hostile; 
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volatile bool intruder-f riendly; 
volatile bool intruder-dead; 

state patrolling 
I 

patrollingo, chal 1 eng ing-int ruder; 
1; 

patrolling: : patrollingo 

do 

f 
if (intruder-detected) 

setstate chal 1 eng ing-int ruder; 
/* execute 'patroffing' behav? *Iour */ 

I forever; 
I 

state chal 1 eng ing-int ruder 
f 

challengine-int ruder(), patrollingo; 

1; 

chal 1 eng i ng-int ruder: : chal 1 eng ing-int ruder 
I 

while(! intruder-f ri endly) 
f 

if (intruder-hostile) 

setstate attacking-intruder; 
/* execute 'challenpng-Mtruder' behaviour 

I 
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I 

state attacking-intruder 
f 

attacking-int ruder(), patrolling; 

1; 

attacking-intruder: : attacking -intruder 
I 

while(! intruder-dead) 
f 

/* execute 'attack intruder' behaviour */ 

I 

I 

state fsm 

fSm 

f sm: : fsm 

setstate patrolling; 

guard 

setstate fsm; 
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In this example, each state, including the FSM itself, is represented by its 

own state data structure. The makeup of the state structure in AvDL allows an 

alternative expression of the same NPC program in which all states are stored 

within the same state machine structure: 

entity guard 
I 

volatile bool intruder 
-det e ct ed; 

volatile bool intruder-hostile; 

volatile bool intruder -f ri endly; 

volatile bool intruder-dead; 

state fsm 
f 

patrollingo, chal 1 eng ing -intruder; 
challenging-intrudero, patrollingo; 

attacking-intrudero, patrolling; 
fsm () , NULL; 

1; 

f sm: : patrolling 
I 

do 
I 

if (intruder 
-det e ct ed) 

setstate chal 1 eng ing-int ruder; 
/* execute 'patrolling' behaviour */ 

I forever; 
I 

f sm: : chal 1 eng ing-int ruder 

f 
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while(! intruder-f riendly) 
f 

if Unt ruder -ho st i1 e) 

setstate at tack ing-int ruder; 
/* execute 'challenging-tntruder' behamour 

I 

I 

f sm: : at tack ing-int ruder 
f 

while(! intruder-dead) 
f 

/* execute 'attack intruder' behaviour */ 

f sm: fsm 

setstate patrolling; 

guard 

setstate fsm; 
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8.3.2 An AvDL Trigger System Example 

If AvDL is used as a Trigger-Only Induced Script type (M) scripting language 

using an event based programming style that same scenario could be represented 

as shown below: 

entity guard 
I 

scalar behaviour = 

event intruder-detected behaviour = 1; 1; 

event intruder-hostile behaviour = 2; 

event intruder-friendly behaviour = 0; 

event intruder-dead I behaviour = 0; 1; 

guard 

do 
I 

select (behaviour) 

f 

case 0: 
/* execute 'patrolling' behaviour 

case 1: 
/* execute 'challenging-Intruder' behamour 

case 2: 
/* execute 'attack intruder' behaviour 

I 

forever; 
I 
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1; 

8.3.3 A Nondeterministic NPC Example 

A similar program can be expressed using GOAP. Again, assuming that the 
NPC's sensor inputs are variables that have been mapped through the 'volatile' 
type qualifier, a nondeterministic solution for this scenario could look as follows: 

entity guard 
I 

volatile bool intruder-detected; 

volatile bool intruder-hostile; 

volatile bool intruder 
-f ri endly; 

volatile bool intruder-dead; 

bool attack -intruder() 
f 

while(! intruder-dead) 
I 

/* execute 'attack intruder' behamour 

I 

return true 
I 

goal enemy-killed = attack-intrudero; 

bool challengeo 
I 

enemy-killed defended; 

while (! int ruder _f ri endly) 
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I 

if Untruder-ho st 1 le) 
f 

while (reached (def ended) ==NULL) 
I 

defended = plan enemy-killed; 
I 

return true; 
I 

/* execute 'challengZng-Zntruder' behavilour 

I 

return true; 
I 

goal handle-intruder = challengeo; 

goal protect = reached (handle 
-intruder); 

guard 
I 

protect defend-objective; 

do 
f 

if (intruder-detected) 

I 

while (reached (def end-objective) ==NULL) 
I 

def end-objective = plan protect; 

/* execute 'patrolling' behamour 
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I forever; 
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Chapter 9 

The Simple EntitY Annotation 
Language 

SEAL, the Simple Entity Annotation Language [Anderson 2005b] is part of the 
AvDL system (see Chapter 8) for the definition of believably intelligent game 
character behaviour. As a BDL coupled with the concept of "Smart Terrain", as 
described by Forbus and Wright [20011, SEAL presents a promising combination 
of _NPC behaviour definition techniques. Combining rule-based systems with 
affordance theory, the embeddable Regular Script type (ST3b) scripting language 
SEAL provides a unified approach to the definition of virtual entities within one 
behaviour definition language for virtual entities as well as the "smart", objects 
that the entities can interact with. 

9.1 SEAL within AvDL 

SEAL is a 100% compatible subset of the AvDL scripting language, effectively 

making SEAL a module of the AvDL system. This means that SEAL programs 

are source code compatible with AvDL, i. e. valid SEAL source code is automat- 
ically valid AvDL source code and should compile on an AvDL compiler. 

The language's syntax is defined as a reduced version of the AvDL syntax, also 

using an LL(I) grammar (see appendix E). The language is kept much simpler 

than AvDL through the omission of some of the more complex features of AvDL 
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(see Section 9.3 below), but remains sufficient for the creation of rich virtual 
environments, populated by virtual entities that interact with the game world. 

If an NPC program that encodes a virtual entity in an annotated world re- 
quires the use of features that are not incorporated within SEAL, the more com- 
plex AvDL should be used to express the NPC program. 

9.2 Entity Annotation for NPC Behaviour 
Definition 

SEAL is a BDL that is dedicated to the creation of NPCs that inhabit an an- 
notated world. The mechanism for creating annotated worlds (see Chapter 2, 
Section 2.3-4.4) that we refer to using the term "Annotated Entities" has been 
described using various names, such as "Smart Terrain" [Cass 2002], "Smart 
Objects" [Peters et al. 2003; Orkin 2006] and "Annotated Environment" [Doyle 
2002], all of which are generally interchangeable and mostly used with very sim- 
ilar meanings, although slight differences in their exact interpretation sometimes 
remain. A common aspect to all of the implementations that utilise this mech- 
anism is the indirect approach to the creation of believable intelligent entities. 
Such intelligent entities that inhabit the virtual world do not have the knowl- 

edge that would enable them to interact with other objects of the world that 

can be interacted with, but these objects themselves have the knowledge as to 
how other virtual entities can interact with them. These objects broadcast in- 
formation about themselves (including the instructions on how to use them) to 
NPCs in their vicinity, which can then use this information for interaction with 
those objects, making the objects "smart". NPCs only passively interact with 

objects, meaning that effectively the objects interact with themselves through 

the mediation of the entities that appear to use them. It is possible to provide 

extensive domain knowledge to NPCs by annotating not only objects but also 
the environment itself, literally using "Smart Terrain", and passing information 

to the NPCs about the virtual world in which they exist. 
A beneficial side effect of this is that the complexity of the entities is neutral 

to the extent of the domain knowledge that is available for the NPCs' use, i. e. 
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the virtual entities themselves can not only be kept relatively simple. but they do 
not need to be changed at all to be able to make use of additional knowledge. If 
all annotated objects use the same interface to provide knowledge to NPCs then 
there is no limit to the scalability of the system, i. e. the abilities of NPCs can 
practically be extended indefinitely despite a very low impact on the system's 
overall performance. 

9.2.1 Affordance and Annotations 

Affordance theory Cornwell et al. 2003] has its roots in psychology and the study 
of (visual) perception (see also Chapter 2, Section 2.3.4.4). Affordance itself is 

an abstract concept, the implementation of which is greatly simplified by anno- 
tations that work like labels containing instructions which provide an explicit 
interpretation of affordances. The relationship between affordance and annota- 
tion becomes clear when one examines the following example of a button that 

needs to be pressed to activate some sort of device: affordance in this case is the 

shape of the pressable button that -affords" to be pushed, whereas an appropriate 

annotation in this scenario would be a label on the button reading "press here", 

explicitly inviting a user to push the button. 

9.2.2 Implementing Smart Environments 

Annotations have been employed in several different types of applications in order 
to achieve different effects. Annotations have proven popular for the animation of 

virtual actors in computer animation, facilitating animation selection [Lee et al. 
2006], i. e. the choice of appropriate animation sequences that fit the environ- 

ment. Other uses of annotations include the storage of tactical information in 

the environment for war games and military simulations [Darken 2007], which is 

implemented as sensory annotations to direct the virtual entities' perception of 

their environment. 
Probably the most common form of annotations found in computer games 

affects behaviour selection. often in combination with animation selection [Orkin 

20061, i. e. the NPC's behaviour and its visual representation (animation) are 

influenced by the annotated objects that it uses. Here the annotated objects 
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actually have embedded instructions that are executed by the NPCs that attempt 
to use these objects. If this type of annotation is used, then annotations of the 
environment itself are implemented through invisible objects that the NPCs can 
interact with. 

The NPCs that inhabit these annotated worlds can be built utilising a rule- 
based system often based on simple FSMs in combination with a knowledge 
interface based on a trigger system that allows the NPCs to "use" knowledge 
(instructions) for handling the annotated objects. The interaction protocol em- 
ployed to facilitate the communication between an NPC and a "smart" object 
needs to enable the object to "advertise" its features to the NPCs and then al- 
low the NPCs to request from the object relevant instructions (annotations) on 
its usage [Macedonia 2000]. This communication between annotated object and 
NPC can be achieved using techniques related to messaging [Harmon 20041. 

In the extremely popular computer game "The Sims" [Kornrumpf 2005] a very 
similar method to the one described above is used to enable NPCs to interact 

with objects in the game world. Object annotations are implemented as scripts in 
the proprietary SimAntics programming language [Macedonia 2000]. In addition 
to this, Forbus and Wright [2001] state that in "The Sims" all game entities, 
objects as well as NPCs, are implemented as scripts that are executed in their 

own threads within a multitasking virtual machine. They explain that once an 
NPC's decision making tasks it to "use" an object which advertises a feature 

that will satisfy the NPCs needs, the NPC will execute the appropriate function 

provided by the object within its own thread. This is a similar mechanism for 

implementing entity annotations to the one that is available in the SEAL scripting 

system. 

9.3 The Syntax of SEAL 

The SEAL subset of AvDL is restricted to the syntactic features of AvDL that 

are considered essential and useful for the creation of virtual entities existing in 

annotated environments, i. e. the SEAL specifications only incorporate a fraction 

of the data types and data structures found in AvDL. 
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entity-declaration: 

entity Y-1 Ident 
function ý[ -block 

declaration 

state 
declaration 

action 
declaration 

event 
declaration 

variable 
declaration 

entity ýo(ý-ý-ock 
Ident 

Figure 9.1: Syntax for declaring an 'entity' object. 

As is the case with AvDL programs, a SEAL program is meant to encode a 
complete virtual entity and as such needs to declare itself as an 'entity' (see Figure 
9.1). The handling of functions in SEAL is almost identical to the handling of 
functions in AvDL with the exception that the language specification for SEAL 

does not include forward declaration, i. e. there are no function prototypes for the 
forward declaration of functions in SEAL. The only primitive data type in SEAL 

is the scalar type which encodes any (binary) logical or numerical value. SEAL 

does not incorporate a separate Boolean data type or support type aliases or the 

traditional aggregate data types found in AvDL, i. e. arrays, structures or classes. 
SEAL therefore does not support object orientation, making the structure of 
SEAL programs more closely resemble the programming language C [Kerninghan 

and Ritchie 1988] than C++ [Stroustrup 1997]. The absence of a Boolean data 

type means that any values in SEAL that would be Boolean values in AvDL are 

scalar values set to either '1' for true or '0' for false values. 
The most complex of AvDL`s types remaining in SEAL is the 'state' structure, 

limited to the creation of finite state machines (see Figure 9.2), i. e. SEAL does not 
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fsm-declaration: 

Figure 9.2: Syntax for FSM declaration. 

support fuzzy state machines and therefore does not recognise the type qualifiers 
'finite' or 'fuzzy', as all state machines are assumed to be FSMs. For use with 
6 state' data structures the operators 'getstatc' for retrieving the currently set state 

and 'setstate" for setting the current state are also present in the specification for 

SEAL (see Figure 9-3), the latter operator reduced to the syntax required by 

FSMs, i. e. without allowing the specification of a weight value for the state. 
SEAL uses AvDL's 'action' type (see Figure 9.4) to enable programs to di- 

rectly call functions that are defined within the host application. The working 

of this type in SEAL is unchanged to that in AvDL, i. e. variables of the action 
type provide function bindings that map SEAL actions to functions in the host 

application, enabling NPC programs to directly call functions that are defined 

within the run-time environment's host application. As with AvDL actions, by 

default, mapped functions are bound to the action whose identifier corresponds 

with the name of the function used in its registration with the virtual machine, 

using the run-time environment's API (see Chapter 10, Section 10.4). 

Finally, the SEAL specification also includes AvDL's 'event' type, which is 

used to define event handlers that can be triggered by events that occur in the 
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seal-operators: 

setstatDte -Td state 
Ident 

member 
- 
Dý 

Ident 

member 
Ident 

getstate 

trigger event 
Ident 

scalar 

variable 
Ident 

Figure 9.3: SEAL specific operators. 

host application. These events can be registered with the run-time environment 
through the run-time API, allowing NPC programs to react to named events 
using the identifier provided at the registration of the event. SEAL also allows 
the use of AvDL's 'triggered' type qualifier for binding scalar variables to events, 

and also inherits AvDL's 'trigger' operator (see Figure 9.3) for spawning events 
f-- trom within NPC programs. 

9.3.1 Entity Annotation with SEAL 

All of the entities in the game world, i. e. NPCs as well as inanimate objects that 

can be interacted with, are defined as scripts. These are SEAL programs that 

are executed by a virtual machine (the system's run-time environment) which 
interfaces with the game engine that hosts the virtual world. The use of the 
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action-declarallon: 

action )--r*l Idenl 

I datatype I 

i StdngLiteral I 

d 

Figure 9.4: Syntax for 'action' declaration. 

SEAL system provides annotations of objects with an identical representation 
to that of knowledge encoded within an NPCs rules, i. e. within the same type 

of program and using the same scripting language. In SEAL the environment 
itself can be annotated using intangible objects, i. e. objects that are invisible 

and cannot be directly interacted with but which are located within the virtual 
world and thus accessible to NPCs. 

The system's interaction protocol needs to allow objects to advertise their 

capabilities, followed by NPCs then initiating contact with objects that they 
intend to use and the objects finally to provide access to the desired features by 

exposing the relevant procedures to the NPCs for execution. 
SEAL's interaction protocol for annotated entities is implemented through a 

combination of system events in the run-time environment and a set of data type 

qualifiers that are part of the language specification, as well as several standard 
functions of the language (see Table 9.1). An annotated object is required to ad- 

vertise all of the functions that it provides for the use by other entities that share 
its virtual environment. In SEAL this is achieved through the use of the 'global" 

type qualifier at the definition of functions, which then marks these functions as 
"exported" for use by other entities. By default any SEAL entity that includes 

such exported functions will advertise the availability of these functions to all 

entities within the virtual world that it can interact with. The use of the SEAL 

standard function 'setSilent' within an entity causes advertising of the entity's 
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Return Type Function Parameters Description 
Name 

scalar getEntity scalar This function takes the unique ID 

of an exported function as its pa- 
rameter and returns the ID of the 

entity that exported the function. 
scalar getGlobal constant This function takes the name of 

string an exported function as its pa- 
rameter and returns the ID of 
a matching exported function if 
it exists or 'NULL' if it cannot 
find a match. If called from an 
event handler, only the entity that 

caused the event to be spawned 
will be searched for a matching 
exported function. 

void setBroadcast This function asks the run-time 
environment to advertise an en- 
tity's exported functions. 

void setSilent This function asks the run-time 
environment to stop advertising 
an entity's exported functions. 

Table 9.1: SEAL standard functions for use with annotated entities. 

exported functions within the run-time environment to be suspended. This sus- 

pension can be revoked through the use of the 'setBroadcast' standard function 

which requests the run-time system to resume the advertisement of the entity's 

exported functions. 

NPCs are notified about objects that export functions through a system event 

that the host application must define in the run-time environment through API 

calls. The SEAL system is kept as generic as possible and the run-time envi- 

ronment does not provide a pre-defined event identifier for this purpose, as not 

every identifier may be appropriate for every host application, consequently an 
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acceptable identifier must be provided to the run-tinie environment. All NPC 
that is intended to use annotated objects needs to define an event handler for the 
event that alerts it to the presence of a suitable object. The event is triggered 
as soon as an annotated entity broadcasts its availability to the NPC. It makes 
little sense to trigger this event for all annotated entities at all times, so the host 

application needs to determine if an object is eligible for consideration by an 
NPCI i. e. to decide if an NPC is able to "read" an object's advertisements. To 

enable this, an appropriate condition, such as the Euclidean distance between the 
NPC and the annotated entity, associated with the event needs to be declared 
to the SEAL virtual machine by the host application, which is achieved through 
API calls to the run-time environment (see Chapter 10, Section 10.4). The sys- 
tein allows separate events with different conditions to be declared, providing a 
versatile environment for complex interaction between annotated entities. 

Once an NPC has been notified of the availability of annotated objects, it 

needs to retrieve references to the object"s exported functions that it requires to 

use. The use of a regular scalar variable as a function's identifier in a function call 
is always assumed to be a request to execute an exported function. For this, the 
SEAL standard function 'getClobal', which takes a string naming the exported 
function as its only parameter, returns a scalar value that identifies the exported 
function from the entity that triggered the notification event. If no corresponding 
function is found in this annotated entity, the 'getGlobal' function returns the 

empty value 'NULL' instead. 
A method that allows some limited communication between entities is the 

targeted use of the 'trigger' operator for spawning events in other entities. To 

directly address the annotated entity that contains an exported function, its 

identity within the run-time environment can be queried using the 'getEntity' 

standard function, the result of which can then be used to message the entity. 

9.4 Using SEAL to Create NPCs 

To demonstrate the usage of SEAL we can look at a typical scenario found in 

many computer games that includes the use of an object in the virtual world by 

an NPC, from which the workings of the system should become apparent. 
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This scenario is a combat simulation where an NPC has been assigned a 
base defence role to prevent an enemy from overrunning a friendly base. The 

defences of this base include turret-like gun emplacements that are implemented 

as annotated entities and which can be manned by human players or NPCs. 

The approach of an enemy could be signalled to the NPC through an event 
'enemy-detected', which would have to be registered with the host application and 
for which the NPC would need to provide an event handler. Assuming that the 

runtime-system event notifying NPCs about unmanned emplacements is named 
'unused' and associated with the notification condition that the NPC is posi- 

tioned next to the gun-turret, the structure of a program describing a defender 

NPC could look as follows in SEAL: 

entity defender 
I 

scalar manGun = NULL; 

event unused f manGun = getGlobal("usell); 1; 

state fsm 
I 

patrolling NULL; 

defending patrolling 
fsm () , NULL; 

1; 

event enemy-detected I setstate f sm: : defending; 1; 

f sm: : patrolling 
f 

while(l) 

/* execute 'patroffing' behamour 
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} 
} 

fsm:: defending 
f 

if (manGun NULL) /* if gun-turret avatlable 
I 

manGun /* man gun turret 

I 

else 
I 

/* execute default defence behaviour 

} 
} 

f sm: : fsm 

f 
setstate patrolling; 

I 

defender 

setstate fsm; 

The above program shows the sections of the NPC behaviour definition that 

are relevant to the use of annotated gun emplacement entities. If the 

ýenemy_detected' event is triggered, the defender NPC is set to execute the 'de- 

fending' state. If an available gun emplacement has been found beforehand, i. e. 

if the 'manGun' variable has been successfully mapped to the gun-turret's 'use' 
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function and does not hold the empty value 'NULL', the NPC will call the ex- 
ported 'manGun' function to use the gun emplacement. In this example, the 
script defining the gun-turret exports its 'use' function for use by other entities, 
which includes the declaration of an action 'fire' that maps the function to fire 
the turret's gun and allows it to be fired from within the exported function: 

entity turret 
I 

global void useo 
I 

action fireo ; /* achon to fire the gun */ 

fireO 

turret 0 

If the above entity scripts were used, there could be conflicts between several 

NPC programs that could compete to simultaneously use the same gun emplace- 

ment. To prevent this it makes sense to provide the NPCs with a means to lock 

the gun-turret entity while it is being used, which can be accomplished by request- 

ing the annotated object to stop advertising its functions. This communication 

with the gun emplacement can be implemented by triggering events within the 

annotated objects, which requires the events 'lock' and 'unlock' to be registered 

with the host application. The refined NPC program could then be written as 

follows: 
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entity defender 
I 

scalar manGun; 
scalar turret; 

scalar gunAvailable = 0; 

event unused 

manGun. = getGlobal(Ifusell); 
if(manGun! =NULL) 

turret=getEntity (manGun) 

gunAvailable 1; 

trigger lock turret; 

fsm:: defending 
I 

if (gunAvailable) /* if gun-turret avatlable 
f 

manGuno; /* man gun turret 

trigger unlock @ turret; 

gunAvailable = 0; 

I 

else 
I 

/* execute default defence behamour 

I 
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I 

1; 

To make use of these improvements the turret entity needs to define event 
handlers for the 'lock' and 'unlock' events, as shown below: 

entity turret 
I 

event lock t setSilent () ; 1; /* suspend adverhStng */ 

event unlock I setBroadcast(); 1; /* resume adverNSMg */ 

1; 
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Chapter 10 

ImPlementation of NPC 
Programs on the System's 
Run-Time Environment 

The previous two chapters provided an overview of the AvDL scripting language 
(see Chapter 8) and its SEAL subset (see Chapter 9) and discussed the features 

of these two languages. This chapter presents the design of the SEAL/AvDL run- 
time environment, i. e. the virtual machine for executing programs that encode 
virtual entities, as well as the implementation of the system prototype and the 
interface to the virtual machine that allows it to be embedded within a host 

application. 
The virtual machine of the system prototype, while based on the SEAL spec- 

ification, makes provision for a large proportion of the features described in the 
AvDL specification, such as the implementation of the system's extension archi- 
tecture which itself is not part of the SEAL specification. 

The current prototype system includes an assembler that is capable of gen- 

erating bytecode programs that utilise all of the features that have been imple- 

mented in the virtual machine, allowing the use of "hand-translated" programs 
in the absence of a working compiler for the system. Some details regarding the 

translation of features of the SEAL and AvDL into instructions for the run-time 

environment are presented below. 
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10.1 Virtual Machine Architecture 

Figure 10.1: Organisation of the system prototype's virtual machine. 

10.1 Virtual Machine Architecture 

The architecture of the system is based on our ZBL/O [Anderson 2004] and C- 

Sheep [Anderson and McLoughlin 2006] virtual machines (see Figure 10.1). At its 

core the system's virtual machine has a parallel stack machine, which, with the 

exception of the extension architecture, is written in platform independent ANSI 

C++. Similar to its predecessors the system's prototype allows the creation of 

several simultaneously running processes, but unlike the earlier virtual machines 

that held all data within a single object, here each process is a separate object, 
keeping different programs separate from each other. 

The virtual machine object provides the API for integrating the system in its 
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Figure 10.2: Organisation of an entity's process in the system prototype. 

host application, as well as the system's virtual processor and an architecture for 

managing extensions to the system and communication between processes, but 

all data required by the processes themselves is kept safely encapsulated within 

the process objects. 
A process object provides a separate entity, embedding its own stack, registers 

(program counter, program instruction register, base address register and stack 

register) and code segments, resulting in each entity effectively providing a self- 

contained micro-thread [Dawson 2001] in the virtual machine (see Figure 10.2). 

Inspired by the architecture of the 8Ox86 processor family [Link 1995], data 

entries on a process's stack can be split into a high-segment and a low-segment 

that can be addressed separately, each of which has half of the bit-width of a 

data entry. This allows each data entry to hold not only single values but also 
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value pairs, a side effect of which is that NPC programs require fewer stack access 
operations. These value pairs are mainly used as parameters and return values for 
intrinsic functions of the virtual machine. A further use of this mechanism is the 
implementation of the value 'NULL' which utilises a value pair, placing the value 
'-l' in the high-segment as well as the low-segment of variables to distinguish the 
empty value 'NULL' from the numeric value V. 

Each process can hold several code segments, allowing functions that can 
be exported for use by other entities to reside within segregated areas of their 
parent entity's process, i. e. in a separate code segment. Furthermore, a stack of 
references to code segments, the top of which is used as the currently active code 
segment, is maintained by each process. These references are not restricted to 
the process in which they are stored, allowing code segments to be shared among 
and to be accessed simultaneously by several NPC programs. As they are stored 
in separate code segments, a simple overriding mechanism allows functions to be 

replaced by different functions while the system is running, provided that the 
function is not being called at the time. The system prototype contains hooks for 

the future integration of an AOT (ahead-of-time) compiler which will allow NPC 

programs to be compiled just before they are loaded into the virtual machine. 
This will eventually also allow functions within these programs to be replaced 
interactively during run-time by utilising parts of this compiler as a type of OTF 

(on-the-fly) compiler. 
The system's virtual machine is a self-contained module and accessible by a 

host application solely through AP1 calls (see Section 10.4). From the outside, 
i. e. to the host application, several processes appear to run simultaneously on 

the virtual machine, whereas actually NPC programs are executed sequentially. 
The mechanism that allows the virtual machine to execute several NPC programs 

that are seemingly running in parallel is pre-emptive multi-tasking combined with 

round-robin scheduling. The virtual machine's execution cycle itself proceeds in 

two stages, the first of which is the event handling cycle. During this stage all 

events from previous execution cycles that have not been handled, as well as 

those that have been triggered during the preceding execution cycle of the vir- 

tual machine, are acted upon and the event handlers within each of the loaded 

processes are executed (see Section 10.2.2). To prevent synchronisation conflicts, 
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if any events for a process remain unhandled during the virtual machine's execu- 
tion cycle, the corresponding process will be blocked until all events have been 

processed in a subsequent execution cycle of the virtual machine. 
Once all events have been processed, then the second stage of the virtual 

machine's execution cycle (i. e. its regular run cycle) commences. This executes 
the instructions found in the currently active code segment which is referenced 
at the top of the process's code segment stack. 

Following the example of its predecessor systems, the design of the virtual 
machine is inherently fault tolerant. Run-time errors, resulting from illegal mem- 
ory access operations within NPC programs or program instabilities caused by 
faulty interactions between NPC programs, will only result in the termination of 
the offending processes without affecting other programs running on the virtual 

machine or the operation (i. e. functioning) of the virtual machine itself. Thus , 
like its predecessor system, the virtual machine should degrade gracefully. 

10.1.1 Virtual Machine Instruction Set 

The instruction set of the system's virtual machine is an extended version of the 

C-Sheep virtual machine's instruction set (see Chapter 7, Section 7.3.2.1). Similar 

to the way in which the C-Sheep system works, all numerical data values that are 
handled by the prototype system are of the same data type, leaving distinctions 

between types and the maintenance of type-safety aside as an issue to be dealt 

with by a compiler. 
The instructions of the prototype system fall into several categories (see also 

Appendix F). The first of these is process control, including instructions that 

direct program flow and memory management, which also forms part of the tasks 

of the second category that includes instructions for data handling, i. e. access to 

variables and memory addresses. The third category is made up of instructions 

for the use of functions, including intrinsic system functions, extension functions 

(see Section 10.1.2) and user-defined functions. The penultimate two categories 

are comparisons and operators, facilitating the processing and manipulation of 

data on the process's stack. In addition to these categories, op-codes for memory 

manipulation instructions to access a heap for dynamic allocation of data storage 
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Function Name Description 

executeCallback System function that executes a callback function. 
getExported System function that retrieves a reference to an exported func- 

tion whose location is unknown. 
getFuncAddr System function that retrieves a reference to an exported func- 

tion from a known entity process. 
retrievePID System function that retrieves the process ID of the current 

entity process. 
setBroadcast System function that asks the virtual machine to advertise the 

process's exported functions. 

setSilent System function that asks the virtual machine to stop advertis- 
ing the process's exported functions. 

spawnEvent System function that allows an entity process to trigger an event 
in the virtual machine. 

stateM-ansition System function that sets a process flag to trigger a state tran- 

sition at the execution of the next instruction. 

Table 10.1: lntrinsic system functions of the prototype's virtual machine. 

have been reserved within the system, but have not been implemented for the 

current prototype (see Chapter 12, Section 12.3), as they are not required for 

programs that adhere to the SEAL specification. 
Other than virtual machine instructions, the system prototype also provides 

several low-level system functions that are directives to the virtual machine which 

are implemented as intrinsic functions of the system (see Table 10.1). 

10.1.2 Extension Architecture 

The extension architecture of the AvDL system is directly based on the extension 

architecture of the ZBL/O virtual machine (version 1.2) that allows the extension 

of the system through plug-ins [Anderson 20041 (see also Chapter 7, Section 7.2.5). 

These plug-ins (extension libraries) themselves are implemented as shared objects 

(libraries) that can be dynamically loaded during program run-time. 
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Each plug-in contains the definition of a class for the extension which it in- 
herits from an extension class that is part of the system's API. The derived class 
that makes up the plug-in must implement a set of interface methods that allow 
the virtual machine or other system components, such as a compiler, access to 
the extension library. The first of these methods returns the number of useable 
functions contained in the extension library. Analogous to this method, there are 
also methods for retrieving the number of constant values and operators, pro- 
vided by the plug-in, for use in NPC programs. Other methods can be used to 
obtain the signatures (return type, identifier and formal parameters) of functions 

provided by the plug-in, as well as the identifiers and values of constants. New 

operators that are provided by plug-ins are treated very much like a special case 
of an extension function. 

10.1.2.1 Extending the Language at Compile-Time 

The process that enables a compiler to process programs that utilise extension 
libraries is straightforward. When compiling NPC programs, the compiler first 

needs to load in any extension libraries that are requested by the program that is 
being compiled, which the program can achieve by using the languages 'import' 

statement. Each extension library is then assigned an ID by the compiler which 
identifies the plug-in within the NPC program. This value is stored within the 

compiled bytecode of the NPC program with a reference to the file-name of the 

plug-in. The next step that a compiler then takes is to determine the number of 
functions provided by the plug-in, after which it can query and then add each of 
these functions to its identifier table, allowing the compiler to verify the syntax 

of function calls to extension functions. This step is then repeated for constants 

and operators that are contained in the extension library. 

During code generation, function calls to functions in the plug-in are stored 

in the NPC program bytecode with a reference to the extension library ID value 

and the index value that identifies the extension function itself within the plug-in. 
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10.1.2.2 Extending the System at Run-Time 

Plug-ins are managed centrally within the system's virtual machine. When a 
compiled NPC program is loaded into the virtual machine, the virtual machine 
also dynamically loads in all previously unloaded extension libraries that are 
required by the NPC process (plug-ins that are referenced in the program). If 

the virtual machine fails to find and load all of the plug-ins that a program 
requests, then the NPC program itself will not load and the NPC process will 

not be created. If the virtual machine succeeds in loading the plug-ins or finds 

them among already loaded plug-ins, then the plug-in ID values that were stored 

within the NPC program's bytecode are mapped to the actual plug-in ID values 
that are used within the virtual machine. 

During the NPC program execution all extension library calls are then redi- 

rected to the plug-in whose mapped value corresponds to the ID from the compiled 
bytecode program. This is achieved by executing the 'call extension function' 

instruction, which grants the extension library access to the process's stack, ref- 

erencing the plug-in ID as well as the index value that identifies the extension 
function inside the plug-in. 

10.2 Implementation of the System Prototype's 

Features 

The system prototype and its virtual machine described here implement the fea- 

tures described in the specification of the SEAL BDL (see Appendix E). The 

implementation of data types and data structures that are not commonly repre- 

sented in implementation programming languages, i. e. features that are specific 

to SEAL and AvDL, is detailed below. 

10.2.1 Implementation of Actions 

Actions, i. e. functions that exist within the host application that can be invoked 

from within NPC programs, are effectively callback functions which in the current 

version of the system prototype are implemented in the system's AP1 through the 
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use of an abstract base class (callback) from which classes can be derived that 
contain the actual functions that the actions are supposed to be mapped to. 

The definition of callback functions that are placed within these derived classes 
must be accompanied with tile definition of tile derived object's method 'execute', 
which is used to redirect action callbacks to the relevant functions in the host 
application. While this mechanism imposes some restrictions on the creation of 
callback functions, it is an improvement on the realisation of interaction between 
scripts running in the virtual machine with the system's host application that 
was employed in the ZBL/O system [Zerbst et al. 2003). In the ZBL/O system, 
extensibility was limited by the necessity to use intrinsic functions. The type and 
number of intrinsic functions that could be registered with the virtual machine 
had been established by the system's API (see Chapter 7, Section 7.3.6), leaving 

no room for the introduction of additional functions. 
The system prototype provides API functions for the registration of these 

callback functions with the virtual machine, allowing the association of the names 
of actions with the corresponding object that was derived from the 'callback' 

class. For this, the virtual machine provides two levels of access to actions that 

are maintained in separate lists of callback functions. The lower level of access 
to callbacks is managed by the virtual entities' processes themselves, allowing 
actions to be registered directly with a specific process. The higher level resides 

within the virtual machine itself, allowing callbacks to be registered globally with 
the run-time environment and providing a fall-back to "default" actions if no 

appropriate callback has been registered with a process. 
The invocation of actions is translated to a call to the intrinsic system function 

'executeCallback' that first attempts to find a corresponding callback within the 

list of callbacks, which are registered with the current process. If no appropriate 

callback can be selected, a callback that fits the action will be sought from the 

virtual machine itself, resulting in a run-time error if the virtual machine fails to 

find a callback associated with the action. If a callback is correctly identified, an 

intermediate call-stack data record is created and filled with the action's parame- 

ters (retrieved from the process's stack) using the signature (i. e. return type and 

formal parameters) that the callback function was registered with. The callback 

function is then executed and if the action is expected to return data to its caller, 
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then the call-stack record is augmented with the action's return value which is 
subsequently placed onto the process's stack. 

10.2.2 Implementation of Events 

Events are registered globally within the virtual machine through the run-time 
environment's AP1 that provides a unique ID for every event that is added to 
the virtual machine. Each NPC process also maintains a list of events that it 

can handle or spawn, which is automatically generated when an NPC program 
is loaded. This event list maps the process's internal representation of events to 
the unique IDs of events that are registered with the virtual machine. Within the 
NPC process, a variable data entry of global scope is created at the bottom of 
the process's stack for every event handler or event that the process can trigger, 

allowing the use of the event name as a variable identifier in NPC programs. This 

data entry holds a value pair. In its high-segment it holds the unique event ID 

within the virtual machine and in its low-segment the process ID that caused the 

triggering of the event or alternatively the value '-I', if the event was spawned by 

the system. 

10.2.2.1 Event Handlers 

In a similar manner to exported functions (see Section 10.1), an NPC program's 

event handlers are stored in code segments that are separate from the rest of the 

program. This is reflected in the NPC program bytecode, where event handlers 

are enclosed with the 'mark handler start' and 'mark handler end' virtual machine 

instructions. The former of these instructions is never interpreted by the virtual 

machine while a loaded NPC process is running, as it is only used while the 

program is loaded to instruct the virtual machine to provide a separate code 

segment for the event handler. 

The data held within each NPC process includes a queue data structure for all 

events that the process can handle which have occurred and that have not yet been 

handled. During the event handling cycle of the virtual machine's execution cycle, 

each data entry of this queue is retrieved and processed (i. e. the event handler 

that each event is associated with is invoked, handling the event). For this the 

185 



10.2 Implementation of the System Prototype's Features 

virtual machine pushes a reference to the code segment, which corresponds to the 
event handler, onto the top of the process's code segment stack. This operation 
makes the event handler the currently active code segment for execution. An NPC 
program's event handlers are executed asynchronously, i. e. separate from the rest 
of the program, making them similar to coroutines. As such, the first instruction 
in every event handler creates a block activation record on the process's stack 
before any other instructions are processed. The 'mark handler end' virtual 
inachine instruction, which is the final instruction of every event handler, cleans 
up the stack and if there is an unhandled event left in the event queue it replaces 
the code segment of the current event handler on the code segment stack with 
the event handler of the next unhandled event. If no more events remain in the 

event queue, the code segment stack is reset to the last active code segment used 
by the NPC program, allowing the process to resume its execution during the 

regular run cycle of the virtual machine's execution cycle. 

10-2.2.2 Event 'trigger' Operator 

The -trigger' operator for setting off events is implemented as a sequence of data 

handling instructions that load the event data entry and optionally the ID of the 

event's target process onto the current process's stack, followed by the invocation 

of the 'spawnEvent' intrinsic system function. 

10.2.2.3 'triggered' Variables 

Like the event data entries themselves, and similarly to variables that have been 

declared using the 'volatile' type qualifier, variables that are declared as 'trig- 

gered" by an event have their memory allocated at the start of the program's 

execution. Consequently they are also stored at the bottom of the stack, so that 

the run-time environment is aware of their location on the stack, allowing it to 

update them when an associated event occurs. Reading data from this type of 

variable will alter the variable's content to the value '0' or 'false', as once the vari- 

able has been read the event will be considered as having been handled, requiring 

the variable to be reset. 
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10-2.3 Implementation of FSMs 

The most popular data structure used for the creation of intelligent NPCs is the 
finite state machine (see Chapter 8, Section 8.2.1-3.1), which is part of the SEAL 

specification, as well as the AvDL specification. NPC programs that include 
FSMs require the creation of two data entries at the bottom of the process stack 
at program start. The first of these data entries, which is given an initial value 
of 'NULL', references the current state that the program's state machine finds 
itself in, whereas the second data entry holds a reference to the next state that 
the program's state machine is expected to transition into. 

The data entry for the current state is used for querying the status of FSM 

structures or structure members, i. e. for determining if a state is currently active 
or inactive. This type of query operation is not implemented using any special 
operators or system functions, but instead it is translated to a sequence of regular 
virtual machine instructions that simply compares the current state to the state 
that is being queried. 

10.2.3.1 FSM Specific Operators 

A call to the 'setstate' operator is mapped to an implicit function call to an 

unnamed function, which holds a sequence of virtual machine instructions that 
first change the next state data entry to the new transition target and then call 
the 'stateTransition' intrinsic system function that will trigger the state transition 

at the start of the execution of the next instruction during the regular run cycle 

of the process. In the implementation of our prototype virtual machine, the 

data returned by this unnamed function (the 'setstate' operator's return value) 

is simply a constant value referencing the state that is being set. 
Querying the currently active state, by using the 'getstate' operator, is trans- 

lated to a simple data handling instruction that loads the content of the data 

entry which references the current state of the FSM. 

10.2.3.2 Program Flow in FSM Structures 

The result of the translation of FSMs to the system's virtual machine instructions 

(see Appendix F) bears some similarity to the structure of a sub-program or 
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subroutine that has been translated into instructions for the virtual machine. 
As program flow is diverted to the state machine until it terminates, all state 
structures within an entity program are handled as if they were part of a single 
function, i. e. program flow between states is not nested (as would be the case with 
functions), but sequential (i. e. states are executed one after the other and a new 
state is only entered after the previous state has finished execution). Furthermore, 

whereas in the SEAL or AvDL source code a state structure's special methods 
(entry, exit and state body methods) have the appearance of functions (in terms 
of virtual machine instructions), they actually translate into regular branching of 
program flow using jump instructions (inspired by code expansion results of the 
macro-based state machine language proposed by Rabin [2002b]). 

Every SEAL or AvDL program that utiliscs FSMs includes a sequence of 
instructions to which program flow is diverted after a state transition has been 
triggered. In this case, if the current state data entry holds the value 'NULL' 
(1-e. if there is no active state), then before the program flow diversion occurs 
a block activation record (which is similar to that found in functions) is created 
on the process's stack to ensure that the process can be restored to its original 
state when the execution of the FSM finishes. After the block activation record 
has been created, the program will jump to the first instruction of the newly set 

state's entry method. If there is an active state, however (i. e. if the current state 
data entry holds a reference to a state that has been set), the program will jump 

to the first instruction of the current state's exit method to start the transition 

to the newly set state. 
If the transition target of a state holds the value 'NULL', a sequence of in- 

structions that are an implicit part of every state's exit method will remove the 

state machine's block activation record. As a result, the virtual entity's process 

program flow will return to the statement that was being executed just before 

the state machine was first initialised (i. e. when the 'setstate' operator was first 

used to activate the FSM). If a different target state has been set, then program 

flow will branch to the next state's entry method instead. 

Once an entry method has been entered, first the current state and the next 

state data entries are set to the new current state (i. e. the previous state's transi- 

tion target) and the new current state's pre-defined transition target respectively, 
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before an), other instructions of an explicitly defined entry method are processed. 
The last instruction of every entry method will always be a jump to the first 
instruction of the state's main method, i. e. the state's body. 

The final instruction of every state's body calls the 'stateTrallsition' intrinsic 
system function, triggering the FSM's transition to the state referenced in the 
next state data entry at the start of the execution of the next instruction. 

Within a state machine structure, the structure's members are treated sim- 
ilarly to state structures and are mapped to sequences of instructions that re- 
flect those encoding the state structures themselves, Member functions of state 
structures are translated to a regular function call embedded within the implicit 
entry and exit methods. That same mechanism, of using implicit entry and exit 
methods, is used for a state's labelled expressions and 'action' members of state 
structures. 

10.2.4 Implementation of Entity Annotation 

Like event handlers that need to be executed separate from the rest of the entity 
programs that they are defined in (see Section 10-2.2), exported functions are 
stored in separate code segments within an entity's process. This separation 
allows other entity programs to access them (see Chapter 9, Section 9.3.1). Within 

entity program bytecode, functions that are marked as exported with the 'global' 

type qualifier are enclosed with the 'mark exported start' and 'mark exported end' 
virtual machine instructions. The 'mark exported start' instruction is only used 
when a program is loaded to direct the virtual machine to provide a separate code 

segment for the function and therefore it is an instruction that is never interpreted 

by the virtual machine while a loaded NPC process is running. Whereas most of 
the instructions used in exported functions are identical to the instructions used 

elsewhere in entity programs, exported functions use the 'return from exported" 
instruction when returning to their caller instead of the regular return instruction. 

The 'mark exported end' instruction is the last instruction in every exported 
function and will return program flow to its caller if the function does not include 

a separate return instruction. 
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Most of the standard functions that are used for entity annotation are mapped 
to intrinsic functions of our prototype system as they are directly interacting with 
the run-time environment, while a few standard functions are implemented as se- 
quences of regular virtual machine instructions. Within the NPC program that 
uses an entity's exported functions, the SEAL/AvDL standard function 'get- 
Global' is used to obtain a reference to an exported function. 

This process is implemented by first loading the exported function's name (as 
a constant string) and the 1D of the process that exports the function onto the 
stack and then by calling the 'getFuncAddr' intrinsic system function that returns 
either a value pair of process ID and code segment index, which references the 
exported function, or the value NULL if no such function exists. This resulting 
value can then be stored in a scalar variable that can subsequently be used as an 
identifier for the exported function. 

The 'getEntity' standard function that retrieves the ID of a process that ad- 
vertises an exported function, however, is not mapped to an intrinsic function. 
Instead, it is translated into a simple data handling instruction that retrieves the 
low-segment containing the process 1D from the scalar value that references the 

exported function. 

The system also makes provision for using an exported function whose parent 
process is unknown -a mechanism that is used for the 'getGlobal' standard 
function of the AvDL or SEAL systems if the function is invoked within the 

main program code, rather than an event handler. In that case the 'getExported' 

intrinsic system function is called. This function will search all exported functions 

that are known to the system for the first function that matches the requested 
identifier and returns a reference to the function as a scalar value, optionally 

allowing the specification of the requested function's signature (i. e. its return 
type and formal parameters)- 

Once a reference to an exported function is available, it can be used to execute 

the exported function. For this to happen, if the exported function expects 

parameters. then first all of the function's parameters need to be loaded onto 

the stack, after which the variable that references the exported function must 

be loaded onto the stack. Subsequently the instruction to execute an exported 

function is invoked, which will push a reference to the code segment that holds 
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the exported function onto the process's code segment stack. This will make the 

exported function's code segment the currently active code segment for execution 
which will direct program flow to the instructions of the exported function. If 

during the execution of the instructions of the exported function no invocation of 
the 'return from exported' instruction is encountered, then eventually the 'mark 

exported end' instruction, which is the last instruction in the code segment of 

every exported function, will be executed. Like the 'return from exported' virtual 

machine instruction it will remove the exported function's code segment from the 

code segment stack and restore the last active code segment used by the NPC 

program at the top of the process's code segment stack, allowing the process to 

resume its regular execution. 

10.3 Considerations for Extension to Full AvDL 

Specification 

The system prototype presented here was designed to implement the features 

described in the SEAL specification. Consequently the prototype does not make 

explicit provision for object orientation, which is mainly a compiler issue ýsee 

Chapter 12, Section 12.3), as the virtual machine's instruction set should already 

be capable of handling programs that utilise features that are beyond the SEAL 

specification and that are actually part of the AvDL specification, such as object 

oriented AvDL programs (see Table 10.2). 

The same is mostly true for the implementation of arrays, i. e. statically 

allocated arrays could already be implemented on the existing prototype. Dy- 

namically allocated arrays, including associative arrays, however, would require 

the implementation of the memory manipulation instructions for which op-codes 

have already been reserved (see Section 10.1.1). 
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AvDL source code instructions 

class object 
I 

scalar datal; 

scalar data2; 

objecto; 

scalar method(void); 

1; 

object: : object() // cop, structor 
f 

datal=5; 

dat a2=2.5 
I 

scalar object:: method (void) 

scalar retval; 

retval = datal+data2; 

return retval; 

Constructor: 

isa 3 
ldc 5 
ldc 0 
lod 0 -1 
add 
sta 
ldc 2.5 
ldc 1 
lod 0 -1 
add 
sta 
ret 

Method "method": 

isa 4 

ldc 0 
lod 0 -1 
add 
lf a 
ldc 0 

lod 0 -1 
add 
lfa 

add 
str 0 3 

lod 0 3 

ret 1 $1 

# load value for datal 
# load offset for datal 
# retrieve "this" pointer 

add offset to address 
# store data to address 
# load value for data2 
// load offset for data2 
# retrieve "this" pointer 
# add offset to address 
# store data to address 

// load offset for datal 
# retrieve "this" pointer 
# add offset to address 
# load datal 
// load offset for data2 
# retrZeve "this" pointer 
# add offset to address 
# load data2 
# add datal and data2 

# store in retval 
# load retval 
# return retval 

Table 10.2: Translation example for an AvDL class. 
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10-3.1 Considerations for FuSM Implementation 

An implementation of the tentative FuSM type described in the AvDL specifica- 
tion (see Chapter 8, Section 8.2.1.3.2) could take the form of a sort of globally 
accessible record data structure on a process's stack. This data structure could 
hold as its first entry a reference to the state itself (i. e. the weight value of the 
fuzzy state structure itself), followed by entries for the data members of the state 
structure. 

The -setstate' operator for defining the degree of activity of fuzzy states would 
be translated to simple data handling instructions, capping the state values be- 

tween '0.0' and '1.0' and storing the result within the data entries that correspond 
to the states that are set on the process's stack. 

Similar to the querying of states in FSMs, the querying of a state's value in 
FuSMs is not implemented using any special operators or system functions but 

instead it is translated to the simple retrieval of the data stored in the state 

record's data entry on the process's stack. 
As the mapping of these data entries to their corresponding states is a trans- 

lation issue that would need to be addressed by a compiler for AvDL programs, 
the implementation of this type of FuSM would not require the extension of the 

virtual machine with additional instructions or intrinsic system functions, but 

could be realised with the features of the current system prototype. 

10.3.2 Considerations for Goal Implementation 

The implementation of goal-oriented action planning using the method described 

by Orkin [2004a] would require the extension of the system's process data struc- 

ture to include a list of goal nodes that would need to contain the goal's priority 

(weight) value as well as a means for storing links to other goal nodes. 

During the loading of an entity program, each goal defined in the process's 

entity program would then be added to this list of goals, defining the search space 

for a planner that would be invoked by the use of AvDL's 'plan' operator. This 

planner itself would be implemented as a dedicated search method, provided to 

the virtual machine and utilising the A* algorithm as presented earlier in this 
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thesis (see Chapter 4, Section 4.3.3). complemented with a different cost function 
based on the priority values assigned to each goal. 

In addition to the implementation of the planner itself, the run-time environ- 
ment"s AP1 could also be provided with a means to allow the registration of an 
alternative search function with the virtual machine, i. e. a planner interface to 

allow for greater custornisation by enabling the host application's developer to 
implement a custom planning method. 

This could be achieved by using a mechanism based on the implementation 

of callback functions (see Section 10.2.1) for this planner interface, similar to the 

way in which comparisons in search and sort functions are implemented in the C 

programming language's standard library [Prinz and Crawford 2006]. 

10.4 Interfacing a Host Application with the 

System 

The prototype's run-time system can be integrated into a host application that 

creates a virtual world that can be inhabited by virtual entities, i. e. typically a 

game engine. For this the system's virtual machine, which manages entities that 

have been defined by programs written in AvDL or SEAL, provides an API that 

allows the host application to access the run-time environment. 

10.4.1 The System API 

calFback 
+ <<Ab&act>> asajeo: bod 

ý+<Za "__ vm" 
+ tct>>> 

entity callswcý_t 

- oo: irt=-1 + geftands (irdw: ccnat irt) d3be 

+ gstFID(): irt + qdPj*xr4, A uB: ocrat doudO Wd 

+ mp[)(FID : ocnd kt) : Wd + sdpAomXx4 us: ccnst icat) : Wd 
+ md; avXxd us: ccnst irt) : vdd 
+ qdRdixrýWua: caW dw): %dd 

Figure 10.3: The classes of the run-time environment's API. 
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The API of the prototype system's run-time environment is made up from 
several classes (see Figure 10.3) that provide methods for loading, executing and 
influencing virtual entity programs in the virtual machine. 

The purpose of some of these classes is to facilitate the definition of callback 
functions and the binding of virtual entities in the virtual world of the host 
application to their corresponding entity processes that are running on the virtual 
machine, using the multiple-inheritance functionality of the C++ programming 
language [Stroustrup 1997]. A virtual entity class from which the entities that 
populate the host application can be instantiated and that is to be associated with 
a SEAL or AvDL program must be derived from the API's 'entity' base class. Any 

class that includes functions that are supposed to be used as callback functions for 
the virtual machine needs to inherit from the API's abstract 'callback' class and 
must implement the derived class's 'execute' method. Within this method, the 

callback's call-stack can be accessed through methods of the API's 'callstack-t' 

class. 
Other classes of the API provide the management architecture for extension 

libraries, as well as templates for the creation of extensions (see Section 10.1.2). 

The API's main point of access, however, is the virtual machine object itself, 

as it contains the functions that are essential for the operation of the run-time 

environment. This object is an instance to a class that employs the singleton 
(design) pattern [Boer 2000], i. e. an object of which only a single instance can 

exist and which is accessible solely through the method 'Instance'. 

The API contains different types of interface methods (see Appendix F) that 

allow the host application to interact with the system prototype's run-time envi- 

ronment. First of these are the methods that allow the initialisation of the virtual 

machine and the setting up of virtual entities, including the loading of entity pro- 

grams, the registration of events and the registration of callback functions. This 

also includes the registration of special events, such as the export notification 

event and its associated callback function that is used to determine if a process is 

eligible to be notified about the availability of another entity's exported functions. 

This type of method also includes the main scheduling method (named 'run) that 

should be invoked for every update cycle of the host application, which is usually 

once for every rendered frame. 
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Another type of method are the virtual machine's housekeeping functions that 
provide non-essential functionality, which are limited to the identification of the 
system's version in the current prototype. 

Then there are API methods that allow the host application to influence 

running entity processes, including among others the triggering of events in the 

virtual machine, which can be achieved by using the 'spawnEvent' method, as 
well as methods for altering a process's priority in the virtual machine, which 
can be useful if the host application attempts to implement some sort of entity 
level-of-detail (LOD) operations [Brockington 20021. 

This last type of API method also includes the API method 'setValue', which 
is used to alter the content of variables that have been marked with the 'volatile' 

type qualifier in SEAL and AvDL programs. Within the run-time environment 
these variables are stored in data entries on the bottom of a process's stack, 

similar to global variables, despite the fact that their scope, which is managed by 

the language's translator, is not global. This provides the host application with 

a mechanism to directly affect the execution of running NPC programs. 
Embedding the system prototype's virtual machine into a host application 

using the methods of the run-time environment's AP1 is uncomplicated and just 

as simple as the integration of the ZBL/O virtual machine into a game engine 
(see Chapter 7, Section 7.2.4.2). After the instantiation of the virtual machine 
by retrieving an instance of the virtual machine object, the minimum requirement 
for the creation of a virtual entity is the creation of an entity process on the virtual 

machine, the association of that process with an object that resides in the virtual 

world and the invocation of the scheduler for every update cycle. 

10.4.2 Using the System API 

The integration of the prototype system into a host application requires the cre- 

ation of virtual entities and the instantiation of the virtual machine with which 

these entities can then be registered, as shown in the following example. 

lf an entity process is supposed to be associated with an entity object that 

resides in the host environment, then that object's class must be inherited from 

the system API's 'entity' class. Any object that is created as an instance of 
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this derived class is a virtual entity that can be used by the system prototype's 
virtual machine. If this class requires an entity program to access some of its 
functionality, the class describing the virtual entity must also inherit from the 
APF's 'callback' class, as shown in the class given below (npc). 

#include "entity. h" 
#include "callback. h" 

class npc : public svm:: entity, public svm:: callback 
f 

public: 
bool execute Unt method, svm: : callstack-t &callstack) 

1; 

For an instance of this virtual entity to be associated with an NPC process, 
the system's virtual machine needs to be instantiated. 

#include "vm. h" 

svm: : vm *virtualMachine = NULL; // pomter to the virtual machine 

I 

// retrieve an instance of the virtual machine 

virtualMachine = svm: : vm: : Instanceo; 

After the creation of an instance of the virtual machine, the next step is the 

registration of any events that entity programs need to be notified about. 
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// repster the event 7' event" 
virtualMachine->registerEvent ("event"); 

If there are callback functions that need to be accessible to all entity pro- 

cesses, such as default actions that act as fall-backs (see Section 10.2.1), they 

should be registered with the virtual machine after the registration of the events. 
If not, then the next step is to load in the entity programs to create the entities' 

processes on the virtual machine and then to associate these processes with the 

entity objects in the host application. 

// create an entity object "'gameBot" based on the npc class 

npc gameBot; 

// create a process that runs the "entity. sbp" program 
int proc=virtualMachine->addProgram ("entity. sbp"); 

// associate the entity object with the entity process 

virtualMachine- >registerEntity (pro c, &gameBot) 

Afterwards, any process-specific callback functions, such as those included in 

the definition of the entity object, need to be registered for the entity process. 

register the first callback function "cbI 

(no parameters or return value) 

virtualMachine ->registerCallback (pro c, &gameBot, 1, %bl"Jalse, O); 

regtster the second callback function "cb2" 

(three parameters and a return value) 

virtualMachine->registerCallback 
(pro c, &gameBot, 2, "cb2", true, 3); 
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I 

Once the set-up of the entity programs and the virtual machine has been 

completed, the 'run' method of the run-time environment's API should be called 
once during every update-cycle of the host application, which is usually once per 
rendered frame. This method then performs the execution cycle of the virtual 
machine, first handling all events that have occurred and then executing the en- 
tity programs themselves. 

virtualMachine->run () ; 

The API makes provision for additional operations, such as querying and 
handling of virtual machine run-time errors, however these are not essential for 

integrating the system prototype's virtual machine into a host application. 
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Chapter 11 

Analysis of the System 

AvDL is a comprehensive scripting language for the definition of virtual entities 
that populate the virtual worlds of computer games, i. e. NPCs (tactical oppo- 
nents, incidentals, team-mates and even observers - see Chapter 2, Section 2.2) 

as well as objects that the NPCs can interact with. The AvDL system pro- 

vides a synthesis of the functionality of a wide range of different technologies 

that are used in the development of virtual entities in modern computer games. 
The system supports different concepts, such as deterministic behaviour as well 

as goal-oriented behaviour and the means for the creation of annotated entities. 
All of these are exposed through a consistent language and combined within a 

single unified system that is generic, i. e. not limited to a single type or genre of 

computer game. The syntax and structure of AvDL attempts to accommodate 

novice programmers as well as those who already have some experience with the 

programming languages CIC++ or Java. Furthermore, in all likelihood due to 

its similarity to these popular production languages, the system also provides the 

means for much wider use of AvDL, possibly even in a more generic scripting 

role. 

11.1 Meeting of Criteria 

The design of AvDL and its SEAL subset was directed and informed by the 

requirements that we believe have to be met by a BDL for virtual entities in 

computer games (see Chapter 5, Section 5.2). In contrast to the ZBL/O scripting 
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language (see Chapter 7, Section 7.2) that was our first attempt to create a 
(procedural) BDL, which does not fully conform to all of these demands, we 
believe that the requirements that we identified earlier are met by AvDL, and in 
part also by AvDL's SEAL subset. 

11.1.1 Language Requirements 

To be useful as a BDL for the creation of virtual entities in computer games 
of different genres. the language needs to satisfy several criteria (see Chapter 5, 
Section 5.2.1). One of the requirements for the specification of a BDL was to 
keep the language generic, a possible solution to which is to base the BDL on an 
existing production language. Being based on the C++ [Stroustrup 19971 and C 
[Kerninghan and Ritchie 1988] programming languages, both scripting languages 
(AvDL and SEAL) fulfil this requirement. 

A simple examination of the types of virtual entities found in modern com- 
puter games shows that while the generation of simple deterministic behaviour for 
NPCs is sufficient for some games, other games attempt to increase the believabil- 
ity of their entities by making them display goal-directed behaviour. A generic 
BDL for use in games will therefore have to accommodate both of these game Al 

methods. This directly leads to the demand for the inclusion of a state machine 
data type, as FSMs are one of the most frequently used game Al techniques. 
AvDL and SEAL both include a state type that allows for simple state machines 
to be defined using basic instructions and data structures of the language itself 

without the need for any libraries to extend the capabilities of the system. The 

provision of goal-orientation specific data types and operators is another BDL 

requirement that has been met by the AvDL specification. 
A further requirement was to keep the BDL simple, i. e. to avoid overload- 

ing the language with too many features. This can be achieved by refraining 
from the use of intrinsic functions that are hard-coded into the BDL's run-time 

system, and by allowing additional functionality to be provided through an ex- 

ternal library of functions. After all, "a language cannot support everything, but 

conceivably, a large set of libraries could" [Stroustrup 2005]. Unlike the ZBL/O 

behaviour definition system, AvDL and SEAL have reduced the system's reliance 
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on intrinsic functions to a bare minimum, with only a handful of intrinsic func- 

tions being integrated with the virtual machine. These functions do not provide 
any complex operations but are low-level system functions that allow entity pro- 
grams to directly access the run-time environment. Entity programs can acquire 
additional functionality through callbacks of the 'action' type, and in the case of 
AvDL through plug-ins for the system's extension architecture. 

A BDL for modern computer games needs to support entity annotation and 

smart environments, as a behaviour definition system which implements this 

promising technique provides a powerful means for simplifying the creation of 
intelligent NPC behaviour. The facilities for this are included with AvDL as 

well as its SEAL subset and, as its name implies, the SEAL subset of AvDL was 

especially designed with the creation of annotated virtual entities in mind. 
The creation of programs for the definition of virtual entities would benefit 

from the additional level of abstraction offered by an object oriented approach, 

which is why simple object orientation is another requirement for the specification 

of BDLs. AvDL satisfies this demand for object orientation with the inclusion of 

its 'class' data type, which makes AvDL a language that has all of the features 

of a BDL, conforming to the requirements that we identified in chapter 5. 

The SEAL subset of AvDL may only be a procedural programming language 

that does not have any object oriented data structures, however, through its FSM 

and event types it does have game Al specific data types, as well as the operators 

associated with these types. SEAL can be used to define virtual entities and to 

annotate them for deployment in smart environments. So, while it is not strictly 

speaking a BDL according to our definition, as it does not fulfil all criteria, SEAL 

should still be classified as a BDL, as it satisfies most of them. 

11.1.2 Run-Time System Requirements 

As the purpose of run-time system's virtual machine is to form the core of a 

behaviour definition system, it also needs to fulfil certain criteria (see Chapter 

5, Section 5.2-2). To allow a host application to be extended with the behaviour 

definition system, it should be implemented as a separate module that is either 

embeddable or that can be accessed as a plug-in. By being implemented as a 
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library that is accessible solely through its AP1, i. e. an embeddable module, our 
system prototype does exactly that. 

This separation into its own module is a precondition for the requirement to 
keep the execution of BDL programs apart from the rest of the application. It 
would be highly undesirable if any mistakes in an entity program, which would 
result in run-time errors on the virtual machine, could destabilise the host ap- 
plication itself and thus lead to program failure. However, a sufficient degree 
of run-time stability can be attained by monitoring the execution of entity pro- 
grams and pre-emptively terminating these if errors that could cause run-time 
instabilities occur. 

The architecture of our prototype's virtual machine maintains the indepen- 
dence of BDL programs from the run-time system's host application. Running 

entity programs are stopped by the virtual machine when they fail, leading to the 

graceful degradation of the run-time environment without aff(-,, ctiiig the running 
of the host application. 

The run-time environment should have as small an overhead as possible for 
the execution of BDL programs. One way that this aim can be achieved is for 

the virtual machine to use pre-compiled bytecode rather than to interpret the 
BDL itself at run-time. This is the exact strategy used in our system prototype's 
virtual machine that is based on the ZBL/O virtual machine (see Chapter 7, 
Section 7.2.3), which has what we believe is a small execution overhead. 

The final criterion for the BDL's run-time environment is platform indepen- 

dence, as many games are now simultaneously published for several platforms. 
This criterion is met by our prototype system, which provides a portable virtual 

machine that has so far been implemented for the Microsoft Windows operating 

system. 
As a platform independent and robust virtual machine that can be embedded 

into any C++ based host application, our system prototype fulfils all of the 

identified requirements for a behaviour definition system's run-time environment. 
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11.2 Features of the Avatar Description 
Language 

AvDL was developed with the goal of providing a unified method for defining the 
behaviour of virtual entities in computer games and provides a simple syntac- 
tic mechanism for the aforementioned purpose. The design of the language was 
guided by the aim to make this mechanism accessible to programmers, as well as 
game designers who may only have a limited knowledge of computer program- 
ming. The language is in itself consistent, with different features of the language 
being exposed to the programmer using similar syntactical elements, e. g. the use 
of the '(V (at) symbol to precede the definition of weight values for fuzzy states 
as well as goals (see Chapter 8, Section 8.2.1). 

The starting point for the specification of the language was the C++ program- 
ming language. A significant modification to C++ was the introduction of the 

entity type that encapsulates AvDL and SEAL programs, which also provides 
the BDL program's entry point. This was inspired by the structure of Pascal 

programs [Wirth 1993] that are encapsulated by the 'program' keyword and the 

definition of the program's main routine. "A Pascal program has the form of a 

procedure declaration" [Wirth 1973] that allows the declaration and definition 

of subroutines, data structures and variables which are used by the program in- 

between the declaration of the program and the definition of its entry function. 

This seemed to be a more logical solution for providing the program's entry point 

than those used by C/C++ and Java, i. e. the requirement to define an entry 
function with a pre-determilied (reserved) identifier, such as "main". 

11.2.1 Object Orientation 

Object orientation was integrated into the AvDL specification from the very 

beginning, however, it has been considered less important than several other of 

the language's features and thus not been given as much attention as the game 

Al specific data types. The definition of object oriented classes in AvDL is a 

simplification of object orientation in C++, based on C++ 'struct' records. 
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Object orientation as such is independent of the virtual machine, i. e. it im- 
poses no special requirements regarding architecture and make-up on the run-time 
environment. Instead the implementation of object orientation is a compiler issue, 
as object oriented classes can be broken down into a procedural code represen- 
tation [Blunden 2002], which in turn can be targeted at the system prototype's 
instruction set. 

11-2.2 FSM Type 

The finite state machine type found in AvDL., as well as in SEAL., is probably 
the most important data type of these languages. FSMs are the cornerstone of 
most game Al implementations and no BDL would be complete without a means 
for defining FSMs. 

FSMs could have been implemented as a special data structure within the 

process objects of the system prototype's virtual machine, accompanied by a set of 
dedicated virtual machine instructions and intrinsic system functions. However, 

this sort of integration of features would have unnecessarily bloated the virtual 

machine. Instead, FSMs in AvDL and SEAL work through a combination of the 
FSM structure's decomposition into basic instructions of the virtual machine and 
the addition of a switch within each process object that is activated when a state 
transition is triggered. We believe that this is a more elegant solution than the 

addition of a separate state data structure to the virtual machine. 

11.2.3 FuSM Type 

Although the exact makeup and functionality of this data type is not finalised in 

the AvDL specification, the data type and the semantics described in this thesis 

(see Chapter 8, Section 8.2.1.3.2) are the most likely candidate for inclusion 

in the final system. This is a minimalist approach in which the FuSM is only 

used to maintain the fuzzy states and to manage access to their values. Unlike 

the system's FSMs, the FuSMs do not have program flow diverted to the state 

machine. On the one hand the management effort for an FuSM is smaller than 

that of an FSM, as there are no transitions, which in turn means that for the 

state machine itself, fewer instructions are needed in the virtual machine. On the, 
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other hand, the burden of providing an interpretation of the FuSM is put on the 
programmer, which may result in more complex entity programs. 

A different fuzzy state interpretation from the above, and one that is fre- 
quently applied in game Al development, is that of behaviour competition, which 
results in the choice of the state that has the highest value or a random selection 
if that value is simultaneously held by several fuzzy states. Despite the differ- 
ent semantics, the syntax of the above type of FuSM could be utilised virtually 
unchanged for the behaviour competition FuSM, if an FuSM equivalent to the 
FSM's 'getstate' operator were added to the language specification. Currently 
no decision has been reached regarding the final semantics of the FuSM data 
structure; however, this issue will have to be addressed for the extension of the 
systein towards the implementation of the full AvDL specification (see Chapter 
12, Section 12.3). 

11.2.4 Goal Data Type 

Of all of AvDL's data types the goal data type did evolve the most during the 
development of the language specification, being the last data type to be finalised 

apart from the tentative fuzzy state machine type (see Section 11.2-3). Goal- 

orientation is increasingly employed for the definition of the behaviour of virtual 
entities in computer games. Earlier versions of the goal type were a lot more 
deterministic, requiring the programmer to provide each goal with the instructions 

that would need to be executed to reach the goal, making this type appear like 

an inverted FSM. This goal type also did not include the provision of weights 
for goals. This type, which could hardly be called a goal type, would have been 

far more restrictive than the data structure that is described in this thesis. We 

believe that the approach presented by Orkin [2004a] provides the most promising 

solution to goal-orientation in games and the final specification of the goal data 

type was influenced by this method. 

11.2.5 Entity Annotation 

Our system prototype provides a working mechanism and interaction protocol 

that allows entities to be annotated and other entities to utilise these annota- 
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tions (exported functions), However, the specifications of AvDL and SEAL do 
not include contingencies for synchronisation problems that may arise if several 
processes attempt to simultaneously access the same annotated entity. In entity 
programs this potential problem has been partially addressed by switching off 
the advertising of exported functions as soon as one process initiates the entity 
annotation interaction protocol (see Chapter 9, Section 9.3.1), effectively locking 
access to the annotated entity's exported functions. Depending on the implemen- 
tation of the entity program this can serve as a simple mechanism for deadlock 
[Tanenbaum 2001] prevention, as once an entity stops advertising its exported 
functions no other entity can query the code segments of these functions, effec- 
tively denying access to all entities except the one that requested the annotated 
entity's "silence". 

The languages' specifications also do not consider situations in which an ex- 
ported function attempts to change data in its parent process's memory while 
being executed from a different process, which could seriously disrupt the work- 
ing of the system if this occurred in combination with several processes accessing 
the exported function, as mentioned above. 

A solution to these potential problems could take the form of additional safety 
features that are built into the system's virtual machine, modifications to the lan- 

guage specification or a combination thereof. This issue will have to be addressed 
by future implementations of the system (see Chapter 12, Section 12.3). 

11.3 Concluding Remarks on AvDL and its 

SEAL Subset 

AvDL and SEAL provide a framework for the definition of the behaviour of virtual 

entities, and while both languages provide data structures that greatly simplify 
the construction of these virtual entities, their seemingly intelligent behaviour 

is not generated by the BDLs as such. The purpose of the BDLs is to manage 

and tie together the functionality of the virtual entities, which is provided to 

the behaviour definition system by the host application. This means that the 
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functionality of AvDL and SEAL programs is entirely dependent on the imple- 

mentation of the virtual entities that they control within their host application. 
The resulting system is compact and highly extensible. It is our firm belief that 

the AvDL system matches the requirements for a behaviour definition run-time 

system, making it sufficient for defining and controlling the majority of artificial 

entity types that can be found in current computer games. 
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Chapter 12 

Conclusion 

12.1 Summary of Contributions 

Our exploration of behaviour definition for virtual entities in computer games has 

yielded several contributions to knowledge. 

12.1.1 Syntactic Behaviour Definition for Virtual Entities 

The principal contribution of this thesis is the definition of Behaviour Definition 

Languages (BDLs), illustrated with the design of the AvDL behaviour definition 

scripting language. AvDL is a new extensible behaviour definition language for 

virtual entities, developed to conforin to our definition of BDLs, which we believe 

to be suitable for application to NPCs in computer games. Its design was aided 
by the creation of several other BDLs for virtual entities, namely ZBL/O and 
AvDL's SEAL subset, and to a certain degree the GP Asteroids Script language 

and the C-Sheep mini-language, the development and implementation of which 
involved an evaluation of different approaches and implementations. 

12.1.2 Classification of BDLs and Scripting Systems in 

Computer Games 

Secondary contributions include a comprehensive investigation of scripting lan- 

guages in computer game development, which led to the proposal of a simple 
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classification of scripting systems in games. as well as a detailed examination 
of programming language requirements and design principles in support of our 
definition of the term behaviour definition language (BDL). For this we also car- 
ried out a comprehensive survey of the use of artificial intelligence techniques 
currently used in computer games [Anderson 2003a] (see also Chapters 2 and 4). 

12.1.3 Implementation of a Prototype Behaviour Defini- 
tion System 

In order to test a number of hypotheses relating to the AvDL behaviour defi- 
nition language we designed and implemented the ZBL/O scripting system. In 

particular. we used this system as a test bed for different approaches to the im- 

plementation of the interface that enables the exposure of behaviour definition 

capability to computer game engines, to make the creation of reusable behaviours 
for virtual entities possible. Progressive refinement of this system's virtual ma- 
chine has led to the implementation of our system prototype for AvDL's SEAL 

subset which allows deterministic behaviour definition using FSMs as well as the 

more einergent behaviour definition that is the result of the use of smart terrain 

and annotated objects, the procedural definition of which Doyle [2004] in the con- 
clusion of his thesis suggests to be a promising avenue for future investigation. 

Our game-genre independent embeddable behaviour definition system exposes 
different methods of behaviour definition, including the definition of virtual enti- 
ties, as well as elements of their environment that they can interact with, through 

a single software interface providing a framework for the creation of NPCs in vir- 
tual (game) worlds. 

12.2 Discussion 

language is what gives humans enormous leverage over the universe" [Wilcox 

20071. Analogous to this, scripting languages in games, which provide control over 

the behaviour of the application, give the programmer "enormous leverage" over 

the game's virtual reality, and in the case of BDLs, over the virtual entities that 

inhabit the game world. The aim of our research has been to create a generic 
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Al behaviour definition system for computer games. which employs a syntactic 
solution to the problem of behaviour definition. The focus of our work has been 
to gain a sufficient understanding of the game development process and the use of 
artificial intelligence techniques in computer games to bring us closer to achieving 
this goal. 

Fuelled by the improvements to graphical realism in games and the growing 
demand for content to enrich the virtual worlds, the games industry has recently 
experienced a drive towards automated content generation [Nareyek 2007], which 
is usually approached using procedural techniques. Syntactic behaviour defini- 
tion, i. e. the use of a (scripting) language to procedurally program the behaviour 

of virtual entities, is consequently a step in the right direction. While we are con- 
vinced of the usefulness of the BDLs that we created in the course of our work, 
programming language evaluation is not a trivial task and "often, the choice 
of programming language comes down to aesthetic issues, which are necessarily 
subjective", as Horswill [2000] poignantly states. 

Our behaviour definition (scripting) system design builds oil our understand- 
ing of the evolution of scripting languages from the early command-line inter- 

preters to modern embedded systems, as well as common game AI techniques. 
A common denominator of many of these systems is the need to balance perfor- 

iiiance (execution speed) and flexibility, which are conflicting objectives. Judging 

from the performance of its predecessors (ZBL/O and C-Sheep), which used very 

similar virtual machines, we believe the execution speed of our system to be ade- 

quate for most situations. Furthermore, thanks to the language's extensible and 

mostly generic nature, which grants it a lot of flexibility, programs that are writ- 

ten in the AvDL behaviour definition scripting language should scale well to the 

demands of game developers. 

"Onc characterization of progress in programming languages and tools 

has been regular increases in abstraction level - or the conceptual size 

of software designers building blocks" [Garlan and Shaw 1994]. 

This is reflected in the data structures of AvDL and SEAL, such as the goal 

and state types that provide bigger "building blocks" for operations that could 

be decomposed into simpler instructions and constructs of the scripting language, 
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Nvhich would acliie\-e the saine effect but require a lot more effort by the program- 
mer and result in a lot more source code. It should be noted that the instruction 
set of the system prototype's virtual machine was finalised after these language 
features had been decided upon, however, not all of these features were made 
accessible through dedicated instructions or intrinsic system functions. Instead, 
during the design of our prototype system the virtual machine instructions that 
encode these more abstract data structures were generated by adapting results 
of the compilation of sequences of the language's regular types and instructions 
emulating the abstract types. This is achieved by using a modified version of the 
C-Sheep compiler [Anderson and McLoughlin 2006], which targets a predeces- 
sor of the system prototype's virtual machine that shares a large proportion of 
its instruction set with the system prototype's virtual machine. This means that 
various game Al specific data structures of the language are effectively mapped to 
the existing instruction set of the virtual machine. In hindsight, the decision not 
to implement AvDL's features by simply adding appropriate data structures to 
the virtual machine and exposing access to them through special virtual machine 
instructions was arguably the most important choice regarding the architecture 
of the virtual machine. Many of the instructions incorporated into the virtual 
machine closely mirror machine instructions that are built into existing hardware, 

which means that in the future it may be possible to compile AvDL programs into 

native code using a true OTF compiler (see Section 12.3.2), which in turn could 
boost the performance of the behaviour definition system. This. however, would 

not be a possibility if a different approach to the design of the virtual machine 

and its instruction set had been followed. 

We believe that our system prototype has all of the characteristics of a modern 

scripting system for game development and that, although not yet complete, it 

is already usable. However, ultimately a field trial may need to be conducted 

when the first full prototype that completely implements the AvDL specification 
is ready for deployment to verify the suitability of the language for computer 

game development. 
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12.3 Future Work 

A by-product of our exploration of behaviour definition systems is the C-Sbeep 
project, a system for the teaching of introductory computer science and program- 
ming which is work in progress and continues to evolve. Future versions of the 
C-Sheep system should benefit from some of the conclusions arrived at during 
the course of our research and the work presented in this thesis. This work itself 
is continually evolving and we endeavour to improve the system's prototype, as 
we believe that additional work is necessary before the system is mature enough 
for being incorporated into a game engine. 

An obvious starting point is the extension of our system prototype to imple- 

inent the full AvDL specification. In addition to this we have already begun to 
implement a recursive descent compiler for AvDL`s SEAL subset which we plan to 
integrate with the system and which will eventually lead to the provision of a full 

compiler for AvDL programs that implements all features of the AvDL specifica- 
tion. The integration of this compiler into the run-time system first as an AOT 

compiler for the compilation of entity programs at process initialisation within 
the virtual machine, and then as a type of OTF compiler for the replacement 

of existing functions during program run-time, possibly allowing the creation of 

self-modifying virtual entities, would bring the system closer to completion and 
increase its usefulness for game development. 

In addition to the completion of the system we have also identified several 
lines of investigation which we intend to follow. 

12.3.1 Language Additions 

While the AvDL language includes all of the features that we consider necessary 
for BDLs, the system could benefit from the exploration of the integration of 

additional features, such as history- augmented inputs as described by Blow [2002], 

which would allow AvDL programs to provide virtual entities with a memory of 

their actions. These would be very useful for implementing machine learning 

functionality, greatly increasing the flexibility of the system. 

A further useful technique for game Al behaviour definition, which we plan to 

evaluate for possible inclusion into the AvDL system, is messaging [Rabin 2000b]. 
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This would allow communication between virtual entities beyond the capabilities 
of the current system which relies on the triggering of simple events as its only 
means of communication. 

We are also considering to investigate the feasibility of an expansion of the 
AvDL specification to support "plot scripts" (as opposed to conventional pro- 
grams) to allow for the better application of our system to story-driven computer 
games. This kind of script is often found in interactive drama [Magerko 20061 - 
a new genre of digital entertainment - where it is used to author the plot of the 
game. 

In addition to the possible introduction of these new language features, we 
also plan to review the effectiveness of the current specification of the language. 
Whereas a certain degree of redundancy in the definition of a programming lan- 

guage undoubtedly increases the flexibility of the language by allowing various 
tasks to be carried out using different methods, as is the case with AvDL (see 

appendix D), an unwanted side effect can be that this may make it a lot more 

complicated to read and to understand programs that have been written in this 
language. Consequently it would be prudent to re-evaluate some of AvDL's dupli- 

cate features after field trials of the system have been conducted and to stream- 
line the language specification by removing or redesigning features that cause 

unnecessary confusion. 
Finally, we plan to complete the language specification with an expansion of 

the standard function library for the AvDL scripting language, possibly through 

the use of a plug-in for the system's extension architecture. In addition to the 

functions for the use of annotated entities, this AvDL standard library should 

provide standard functions and define appropriate compound data types for solv- 

ing a variety of game Al tasks. These functions should ideally adhere to the 

standards suggested by the IGDA Al Interface Standards Committee [Narcyck 

et al. 2004]. This should then allow the generation of Al entities for a wide range 

of different computer games, making AvDL a truly generic behaviour definition 

system for NPCS. 
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12-3.2 Run-Time System 

Apart from general optimisation of the system's virtual machine, a useful ex- 
tension to the run-time system would be the addition of support for run-time 
debugging. 

A further direction that should be explored is the virtual machine architecture 
itself. While stack architectures are the most common virtual machine architec- 
ture [Davis et al. 2003], a register based approach may be more efficient [Shi et al. 
2005] and also provide more opportunities for bytecode optimisation. While this 

would also have implications on code generation for the system's compiler, those 

would be minor, as code generation for stack architectures can be adapted for 

register allocation with relatively little effort [Wirth 1996]. 
As the prototype system's instruction set resembles the instructions found 

in real microprocessors, the virtual machine could also be enhanced by the in- 

tegration of an OTF compiler for translating virtual machine instructions into 

native machine code, which should provide a significant increase to the run-time 

system's performance. 

12.3.3 System API 

Linked to the improvements to the run-time system are enhancements to the 

system's AP1. The AvDL API is an integral part of the AvDL virtual machine 

as it provides the interface that allows host applications to access the virtual 

machine and in turn provides AvDL programs running on the virtual machine 

with access to data and functions that are defined within the host application. 
The versatility of the behaviour definition system could be substantially im- 

proved by allowing access to plug-ins of the system's virtual machine through 

the API. As a side effect, this could provide a partial solution to the definition 

of a plug-in based standard library for the AvDL system, considering that the 

host application would probably require a means for providing information to this 

library. 

A final avenue for exploration is the implementation of the BDL's 'action' 

type for which our system prototype employs callback objects, an approach that 

may be too inflexible for computer game development. An alternative function 
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binding method could involve the use of functors or possibly a template-based 

approach. 

216 



Appendices 

217 



Appendix A 

A* Sample Implementation 

Chapter 4 examined common approaches to the implementation of Al in computer 
games. This appendix presents an implementation of the A* algorithm, which 
is the most frequently used path planning algorithm in game development (see 
Chapter 2, Section 2.3.2.1 and Chapter 4, Section 4.3). Here it is implemented 

as a C++ function, utilising the C++ STL (Standard Template Library). 

A. 1 Dependencies 

The presented implementation depends on the definition of several data structures 

and functions. These are a node structure, containing positional information 

(see Chapter 4, Section 4.3.2), a pathnode structure, extending the node by 

heuristic information used by A* (see Chapter 4, Section 4.3.3), and a function 

for estimating the cost of travel (see Chapter 4, Section 4.3.2). For the reader's 

convenience these dependencies are repeated below: 

A. 1.1 Node 

struct node 

double x; 

double y; 

double z; 
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double 

struct node **neighbours; 

1; 

A. 1.2 Pathnode 

struct pathnode 
I 

node *mapnode; node withm the graph 
double fitness; sum of the goal and heurtshc values 
double goal; cost of travel up to current node 
double heuristic; eshmated cost of travel to destMation 

pathnode *parent; parent node within the path 

1; 

A. 1.3 Cost of Tý-avel 

double cost(node *s, node *d) 
I 

double h=1.0; 

double x= (d->x - s->x)*(d->x - s->x); 

double y= (d->y - s->y)*(d->y - s->y); 

double z= (d->z - s->z)*(d->z - s->z); 

double c= sqrt(x+y+z); 

c *= (s->p+d->p)/2.0; 

h += (d->y - s->y) / (5.0*fabs(d->y - s->y)); 

c *= h 

return c; 
I 

219 



A-2 A* Function 

A. 2 A* Function 

Given the above node data structures and cost function (see Section A-1 above), 
a function implementing A* path planning could be written as shown below: 

std: : list<node*> aStar(node *start, node *goal) 
f 

std: : list<pathnode*> open-list; 

std: : list<pathnode*> closed-list; 

pathnode *P=new pathnode; // start node 
P->mapnode=start; 

P->goal=O; 

P->heuristic= cost (start, goal); 
P->f itness=P. goal+P. heuristic; 

P->parent=NULL; 

open-list. push-back(P) add start node to open Itst 

while(! open-list -empty()) 
f 

std: : list <pathnode*>: : iterator n=open-list. begino; 

Pathnode *B=n; // best node Zn open hSt 

for(int i=O; i<(int)open-list. sizeo; i++, n++) 
f 

if (n->f itness<B->f itness) B=n; // select best node 
I 

open-list. remove (B) rernove best node froTn open hst 

if (B->mapnode==goal) success - path discovered 

f 

std: : list <node*>path; 

while (B! =NULL) // construct path by retractng to start 

I 

path. push-front (B->mapnode) 

B=B->parent; 
I 
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while(! open-list emptyo) //clean, up 
I 

pathnode *temp=open-list. front(); 

delete temp; 

open-l ist. pop-front (); 
I 

while(! closed-list. emptyo) //cleanup 

f 

pathnode *temp=closed-list. front(); 

delete temp; 

closed-list. pop-front () ; 
I 

return path; 

now process all of the best node's ltnks 

for (int i=O; B->mapnode->neighbours [i] ! =NULL; i++) 

f 

node *Cmapnode=B->mapnode->neighbours [i] 

double g=B->goal+cost(B->mapnode, Cmapnode); 

double h=cost(Cmapnode, goal); 
double f=g+h; 

bool f oundC=false; 

n=Open-list. begino; 

for(int j=O; j< (int)open-list. sizeo; j++, n++) 

f 

if (n->mapnode==Cmapnode) //if in open ltst 

I 

foundC=true; 

if (g<n->goal) // better path found 

f 

n->goal=g; 
n->heuristic=h; 

n->f itness=f ; 
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n->parent=B; 

if (! f oundC) 
I 

n=closed-list. begin(); 
for(int j=O; j< Unt) closed-list. sizeO ; j++, n++) 
f 

if (n->mapnode==Cmapnode) // if in open. list 

f 

foundC=true; 

if (g<n->goal) // better path found 

I 

n->goal=g; 

n->heuristic=h; 
n->f itness=f 

n->parent=B; 
I 

I 

if (! f oundC) // C has never been processed 
f 

pathnode *C=new pathnode; 

C. mapnode=Cmapnode; 
C. goal=g; 
C. heuristic=h; 

C. fitness=f; 

C. parent=B; 

open-list. push-back(C); // add C to open list 

I 

I 
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closed-list . push-back (B) ; // add node B to closed 1W 
I 

while(! closed-list. emptyo) //cleanup 
I 

pathnode *temp=closed-list. front(); 

delete temp; 

closed-list. pop-fronto; 
I 

return std: : list<node*> no path could be found 
I 

The data returned by the above function is a (C++ STL) list storing the 

nodes of the path from start node to destination node for use by the NPC- 
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GP Asteroids Script 

This appendix presents the syntax and functions of the GP Asteroids Script lan- 
gua, ge discussed in Chapter 7 (Section 7.1) of this thesis, which we developed in 
our investigation of genetic programming for NPC behaviour definition [Anderson 
2002]. 
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GP Asteroids Script is a LISP like scripting language for the definition of 
player behaviour for virtual entities competing in the classic arcade game Aster- 

oids. 

There are three versions of the scripting language. 

1. A basic version. 

2. A version with additional "aut oinatic ally defined functions" (ADFs) that 
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also incorporates several syntactic constraints on the program's "result pro- 
ducing branch" (RPB). 

3. A version that adds several "super actions" to the basic version of the 
language. 

B. 1 Original Language Definition 

program: 

statement: 

statement 

-E-condition 

-sequence 

action 

void 

t: = 

boolean: 

operator 

-ý(TRUE)- 

operator: 

condition: 

rue if t -12! boolean statement statement 

if equal boolean boolean statement 

sequence: 

query: 

ýtargetAheadý 

targetLocked 

accellerating 

-(haSEnergýor)- 

ChasSchields) 

ismoving), - 

4ýýlpaCtýAlert 

proximityAlert 

action: 

emergencyStop 
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B. 2 GP Asteroids Script with ADFs 
program- rpb condibon: 

rpb statement if crue bool--- ment 

ifequal boolean boolean rpbstatement 

rpb statement: 

- -0-j rpb_statement 

=rpco, =nditon 

=rpse. =quence 

adf action: 

I 
B- 

adt 

boolean: 

query 

operator: 

AND boolean boolean 

queryi 

tarcietAhead 

sequence: 

conditon: 

if- r-ýe statement t. tem. nt 

if equal boolean boolean statement 

statement: 

rpb_sequence: 

, 
LargetLocked 

accelleratinc 

-(-hasEne-rgy-ý- 

h -as-S 
C-h-1 

-el ds 

lcck-naA-eaj 

CV1fl9J_ 

sTurn i 

acA1 art 

cr, Dx--- :,. "Aler- 

action: 

note: "ADF-1", -'ADF-2" and --ADF-3" are identifiers for calling each of the three possible 

automatically defined functions in GP Asteroids Script, programs. 
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B-3 GP Asteroids Script with Super Actions 
program: 

-F--sta-te-me-nt 

statement: 

statement 

condition 

I sequence I 
L ------ 

-a-c t -io n- 

super 
action 

sequence: 

boolean: 

operator 

query 

TR5i) 

operator: 

AND)- ý boolean boolean 

DR ýbooleaýn 

Eo: ýýýboý=olean 

NOT boolean 

condition: 

if true -1 
2! boolean statement statement 

if equal boolean boolean statement 

query: 

targetAheadj- 

targetLocked) 

accellerating, 

-P(hasEnergy - 

ChasSchields)- 

lookingAhead) 

-(-, Sm-ol--l. -g)- 

-(i: -s 

(impactAle rt)- 

? roximityAlert 

action: 

-(setThrustý- 

--*(noThrust 

Shields, 

-noS-h -2--ý 
eld3 

-(rightTurn)- 

----irn. T. rn)- 

emergencyStop 

f ire 

super-action: 

f ireAtWill 
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BA GP Asteroids Script Functions 

B. 4-1 Sensor Functions 

The language's sensor functions all return a Boolean value. 

(targetAhead) 
TRUE if an asteroid is within the player's field of view, else FALSE. 

(targetLocked) 

TRUE if an asteroid is in the player's direct line of fire, else FALSE. 

(proximityAlert) 

TRUE if an asteroid is in the player's proximity (within 12 units from the player), 

else FALSE. 

OmpactAlert) 

TRUE if the player is about to collide with an asteroid (asteroid is within 3 units 
from the player), else FALSE. 

(hasEnergy) 

TRUE if the player has energy left, else FALSE. 

(plentyEnergy) 

TRUE if the player has enough energy for firing more than four shots, else FALSE. 

(hasShields) 
TRUE if the player's shields are raised, else FALSE. 

GookingAhead) 
TRUE if the player's direction of movement is identical to the player's heading, 

else FALSE 
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(isMoving) 

TRUE if the player is moving, else FALSE. 

(accelerating) 

TRUE if the player has active thrusters, else FALSE. 

(isl'urning) 

TRUE if the player is turning, else FALSE. 

B. 4.2 Action Functions 

Action functions are commands (procedures) that do not return a value. 

(setThrust) 
Activates the player entity .s thrusters. 

(noThrust) 
Deactivates the player entity's thrusters. 

(decelerate) 
Reduces the player entity's speed. 

(setShields) 
Raises the player entity's shields. 

(noShields) 
Lowers the player entity"s shields. 

(rightTurn) 
Sets the player entity to turn clockwise. 
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Oeftlýirn) 
Sets the player entity to turn anti-clockwise. 

(nol'urn) 
Sets the player entity to stop turning. 

(fire) 
Fires a single projectile. 

B. 4.2.1 Super Actions 

(autoprotect) 

Automatically raises the player entity's shields and activates its thrusters if an 

asteroid gets too close. 

(seek) 
Moves the player entity across the screen in search of a target. 

(fireAtWill) 
Makes the player entity automatically fire projectiles at asteroids that are in its 

line of fire. 

B. 4.3 Control Structures 

The language's control structures direct prograin flow. 

(if-true b v1 v2) 

If the Boolean function b returns TRUE the void procedure vI is executed, else 

if b returns FALSE the void procedure v2 is executed. 

(if-equal bl b2 v) 

lf the return values of the Boolean functions bI and b2 are identical the void 
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procedure c is exccuted. 

(sequence vl v2) 
Executes the two void (action) functions vl and v2 one after the other. 
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Appendix C 

The ZBL/O Programming 
Language 

This appendix describes in detail the ZBL/O behaviour definition system that we 
developed for the game engine described in Zerbst et al [2003], as discussed in 
Chapter 7 (Section 71.2) of this thesis. 

CA Game-Bot Scripting Language 

ZBL/O is a simple scripting language for the definition of artificial behaviour 

for virtual entities in computer games (game-bots). There is only one variable 
data type in ZBL/O which can be used to store integer values as well as floating 

point values. The functions for controlling game-bots are intrinsic to the ZBL/O 

scripting language, i. e. they are built into the language and do not have to be 

activated by means of inclusion of a standard library of functions. Functions 

can be user-defined, but function parameters in user-defined functions are not 

supported by the language and have to be emulated through the use of global 

variables. The command syntax of ZBL/O is similar to that of related procedural 

languages such as C by Kernighan and Ritchie [1988], Pascal by Wirth [1993] or 

PL/O by Wirth [19861. Each instruction in ZBL/O is terminated with a semicolon 
('; '). Programs in ZBL/O are terminated with a full stop The ZBL/O 

language is not case-sensitive. 
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C. 1.1 Core Functionality 

const do else function if 

return then uses var while 

Table C. I: ZBL/O reserved words. 

ZBL/O has a very small set of core instructions for implementing structural 
program elements and functions (see Table C-1). 

LOADING OF EXTENSIONS: 

Extension libraries are loaded at the start of the program above all declara- 

tions using the 'uses' keyword, followed by one or more identifiers (separated by 

commas) that must match the name of the extension(s). 
uses <identifier> 

or 
uses <identifier>, <identifier> 

Example: 

uses printLib; 

COMMENTS: 

The ZBL/O scripting language has only line-comments, i. e. there are no block- 

comments. Line-comments are marked with the'#' (hash) character (ASCII 35). 

Any character following the line-comment symbol until the next new line (sym- 

bol) will be ignored by the compiler. 

OPERATORS: 

The operators available in ZBL/O are standard arithmetic and logical opera- 

tors (see Table C. 2). 
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Priority Symbol Description 

1 1 logical negation 
2 raise to power 
3 division 

multiplication 
% modulo 

4 + addition 
subtraction 

5 equality comparison 
<> non-equality comparison 
< less-than comparison 
<= less-or-equal comparison 
> more-than comarison 
>= more-or-equal comparison 

6 & logical AND 
logical OR 

7 value assignment 

Table C. 2: ZBL/O operator precedence. 

BLOCKS: 

Blocks of statements can be created by inserting statements between opening 
braces and closing braces (J'). For blocks that enclose functions, constants, 

variables and functions with a local scope can be defined above the block. Blocks 

themselves are treated like statements and must be followed by a semicolon. 

Example: 
f 

statementl; 
statement2; 
statement3; 

1; 
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CO'NSTANT DEFINITION: 

Constants are defined above a block or globally using the 'const' keyword, 
followed by one or more constants (separated by commas). 
const <identifier> = <value>; 
or 
const <identifier> = <value>, <identifier> = <value>; 

Example: 

const false = 0, true = 1; 

VARIABLE DECLARATION AND DEFINITION: 

Variables are declared (and can be defined) above a block or globally using 
the -var' keyword, followed by one or more variables (separated by commas). 
var <identifier>; 

or 
var <identifier> = <value>; 

or 
var <identifier>, <identifier>; 

or 

var <identifier> = <value>, <identifier> = <value>; 

Example: 

var x= 10, Y; 

FUNCTION DEFINITION: 

Functions are defined as a block of statements following the 'function" key- 

word. 
function <identifier>; <block>; 

Example: 

function turn-away; 
f 

turn-left; 
turn-left; 
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1; 

By default the value returned by functions is I (one). If any other value is 
to be returned this has to be done using the 'return' statement. 
return; 
or 
return <value>; 

Example: 

function false; 

return 0; 

Using the 'return ' statement will exit the function. If no return value is pro- 
vided. the default return value I (one) will be returned. 

Example: 

function true; 
I 

return; 

1; 

Functions are called by using the function's identifier (name) followed by a semi- 
colon. Recursions are possible. Functions can be nested, so the definition of local 
functions with a limited scope is possible. 

CONDITIONAL STATEMENTS: 

There is one conditional statement in the ZBL/O scripting language which 
allows for one optional alternative. The statement consists of the 'if' keyword 

followed by a conditional expression and the 'then' keyword followed by a state- 

ment. Alternatives can be expressed by following the above with the 'else*' key- 

word followed by the alternative statement. 
if <expression> then <statement>; 
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or 
if <expression> then <statement> else <statement>; 

ITERATIONS (Loops): 

The only iterative construct in the ZBL/O scripting language is the head- 
controlled loop. The statement consists of the 'while' keyword followed by a 
conditional expression and the 'do' keyword followed by a block. 
while <expression> do <block>; 

Example: 

#a simulated for loop 
i=O; 

while i<10 do 
f 

i=i+l; 

1; 

C. 1.2 ZBL/O Function Set 

ZBL/O has a very small set of powerful (partially context-sensitive) core instruc- 

tions. This section describes these ZBL/O standard functions and their usage. 
Each ZBL/O function is presented together with the corresponding function pro- 
totype of the ZBL-API's game-bot interface. 

HOUSEKEEPING FUNCTIONS: 

The language's housekeeping functions include instructions that directly con- 
trol the existence of a game-bot within the virtual world, as well as receptors 
that provide world-state information that cannot be perceived by the game-bot's 

regular sensors. 

ZBL/O: danger 
ZBL-API: int zb-checkDanger (void); 

Returns the value I if an enemy entity is close to the game-bot (sets an internal 

game-bot state)- 
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ZBL/O: die 
ZBL-API: void zb-doDie(void); 
Kills the game-bot. 

ZBL/O: find <object> 
ZBL-API: void zb-doFind(int); 
Nlakes the game-bot follow a path to the memorized location of <object> (see 
'memorize') - should set an internal "path-following" game-bot state. 

ZBL/O: idle 
ZBL-API: int zb-checkIdle (void); 
Returns the value I if no path is being followed and there is no danger (sets an 
internal game-bot state). 

ZBL/O: initialize <xpos>, <ypos> E, <zpos>l 
ZBL-API: void zb-do Initialize (double, double, double); 
Initialises the game-bot at the given coordinates (in 2D or optionally 3D) in the 

virtual world (dependent on the implementation of the host application). This 

function should be the first function invoked by a game-bot after program start 
(see also function 'spawn')- 

ZBL/O: memorize <object> 
ZBL-AP1: void zb-doMeinorize(int); 
Mernorises the location of an <object> (should be stored in a location list) - for 

use with the 'find' function. 

ZBL/O: respawn 
ZBL-APl: void zb-doRe spawn (void); 

Resets the game-bot program and restarts it from its beginning. 

ZBL/O: spawn 
ZBL-API: void zb-doSpawn (void); 

1nitialises the game-bot at random level co-ordinates (implementation depen- 

dent). Can be used as an alternative to the function 'initialize'. 
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ZBL/O: spawned 
ZBL-API: int zb-checkSpawned (void); 
Returns the number of respawns of the game-bot. 

MODIFIER FUNCTIONS: 

The invocation of several ZBL/O functions requires the provision of additional 
information to direct their run-time behaviour. This is achieved using so-called 
modifiers, which are functions that alter the behaviour of other functions that 
they are combined with. 

ZBL/O: back 
ZBL-AP1: int zb-mdf Back (void); 
For use with the 'blocked" function - returns the value I if true (path blocked to 
the back) 

, or 0 if false. 

ZBL/O: f ront 
ZBL-API: int zb-mdf Front (void); 
For use with the 'blocked' function - returns the value I if true (path blocked to 
the front), or 0 if false. 

ZBL/O: lef t 
ZBL-API: int zb-mdf Left (void); 
For use with the 'blocked' function - returns the value I if true (path blocked to 
the left) 

, or 0 if false. 

ZBL/O: obj ect 
ZBL-API: int zb-mdf Object (void); 

For use with the 'face' function - selects the closest object to the game-bot and 

returns the object's ID. 

ZBL/O: right 
ZBL-API: int zb-mdf Right (void); 

For use with the 'blocked' function - returns the value I if true (path blocked to 

the right) , or 0 if false. 
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ZBL/O: target 
ZBL-API: int zb-mdf Target (void); 
For use with the 'face' function - selects the closest target entity to the game-bot 
and returns the target*s ID. 

C ONTROL- FUNCTIONS: 

Control functions allow the game-bot to navigate the virtual world and to 
interact with its environment. As some of these actions might not execute im- 

inediately, such as animations that are performed over a specific duration, the 

execution of the game-bot process may have to be halted for that duration. This 

is achieved by calling the game-bot interface's 'zb-setBusy" method within the 
implementation of the game-bot in the host application. It is imperative that 
busy processes are resunied after the execution of the action has finished. This 

is done using the method 'zb-unSetBusy. 

ZBL/O: backstep 
ZBL-API: void zb-doBackstep (void); 

Makes the game-bot move I unit backward. 

ZBL/O: crawl 
ZBL-API: void zb-doCrawl (void); 

Makes the game-bot move 1 unit forward while ducked. 

ZBL/O: duck 
ZBL-API: void zb-doDuck (void); 

Makes the game-bot duck down. 

ZBL/O: face <modifier> 

ZBL-API: int zb-doFace(int); 
Turns the game-bot towards the selected <inodifier> (target or object) - returns 

the ID returned by the i-nodifier function. 

ZBL/O: f ire 
ZBL-API: void zb-doFire (void); 
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'Makes the gaine-bot fire the currently selected weapon, 

ZBL/O: j UMP 
ZBL-API: void zb-doJump (void); 
Makes the game-bot jump I unit forward. 

ZBL/O: jump-back 
ZBL-API: void zb-doJumpBack (void); 
Makes the game-bot jump I unit back. 

ZBL/O: j ump-lef t 
ZBL-API: void zb-doJumpLef t (void); 
Nlakes the game-bot jump I unit to the left. 

ZBL/O: jump-right 
ZBL-API: void zb-doJumpRight (void); 
Makes the game-bot jump I unit to the right. 

ZBL/O: j UMP -up 
ZBL-API: void zb-doJumpUp (void); 

Makes the game-bot jump up on the spot. 

ZBL/O: step 
ZBL-API: void zb-doStep (void); 

Makes the game-bot move 1 unit forward. 

ZBL/O: strafe-left 
ZBL-API: void zb-doStraf eLef t (void); 

Makes the game-bot move I unit to the left. 

ZBL/O: strafe-right 
ZBL-API: void zb-doStraf eRight (void); 

Makes the game-bot move 1 unit to the right. 
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ZBL/O: turn <angle> 
ZBL-API: void zb-doTurn (double); 
Turn the game-bot by <angle> degrees. 

ZBL/O: turn-left 
ZBL-API: void zb-doTurnLef t (void); 
Turns the game-bot by 90 degrees to the left (counter-clockwise). 

ZBL/O: turn-right 
ZBL-API: void zb-doTurnRight (void); 
Turn the game-bot by 90 degrees to the right (clockwise). 

ZBL/O: use <object> 
ZBL-API: void zb-doUse(int); 
Make <object> the currently selected object of the game-bot. 

SE. NSOR-F]U--N'CTIONS: 

Sensor functions are used to provide a game-bot with information about itself 

and its environment. This information allows the game-bots to navigate and act 
in the virtual world. 

ZBL/O: alive 
ZBL-API: int zb-checkAlive (void); 

Returns the value 1 if the game-bot is alive. 

ZBL/O: armour 
ZBL-AP1: double zb-checkArmour (void); 

Returns the armour of the game-bot. 

ZBL/O: blocked <modifier> 

ZBL-API: int zb-checkBlocked(int); 
Returns the return value of the <modifier> function. 

ZBL/O: health 
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ZBL-API: double zb-checkHealth (void); 
Returns the health of the game-bot. 

ZBL/O: obj ect-ahead 
ZBL-API: int zb-checkObj ectAhead (void); 
Returns the value I if the game-bot is facing an object. 

ZBL/O: obstacle 
ZBL-API: int zb-checkObstacle (void); 
Returns the ID of an obstacle directly in front of the game-bot or the value 0 if 

no obstacle is directly in front of the game-bot. 

ZBL/O: owns <object> 
ZBL-API: int zb-checkOwns(int); 
Returns the value I if the game-bot has <object> in its inventory. 

ZBL/O: target-ahead 
ZBL-API: int zb-checkTargetAhead (void); 

Returns the value I if the game-bot is facing a target entity. 

ZBL/O: target-alive 
ZBL-API: int zb-checkTargetAlive (void); 

Returns the value I if the nearest detectable target entity is alive. 

ZBL/O: target-armour 
ZBL-API: double zb-checkTargetArmour (void); 

Returns the armour (value) of the nearest target entity. 

ZBL/O: target-health 
ZBL-API: double zb-checkTargetHealth (void); 

Returns the health (value) of the nearest target entity. 

ZBL/O: using 
ZBL-API: int zb-checkUsing (void); 
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Returns the ID of the object currently used by the game-bot. 

OTHER FUNCTIONS: 

ZBL/O: rnd <limit> 
This function is defined within the virtual machine itself, so there is no cor- 
responding function for the game-bot interface of the ZBL-API. The function 
returns a random number between the values 0 and the given <limit>. 

C. 2 Virtual Machine Interface of the ZBL-API 
The integration of game-bots into host applications is enabled by the ZBL/O vir- 
tual machine which is controlled by the methods of the virtual machine interface 

of the ZBL-API. 

double zbl-getVersion(void); 

char *zbl-getVersionString(void); 
These methods return version information about the virtual machine as a version 

number or a string (that holds the version number) respectively. This can be 

used to verify compatibility between the virtual machine and compiled ZBL/O 

programs. 

int zbl-addProcess(char *filename, zblbot *bot); 

This method adds a game-bot to the ZBL/O virtual machine. For this it receives 
two parameters, the first of which is the file name of a compiled game-bot pro- 

gram and the second is the memory address of the game-bot object (derived from 

the game-bot interface class) representing the entity that is to be controlled by 

the program. The 'zbl-addProcess' method returns the process ID of the newly 

added game-bot process. 

void zbl-removeProcess(int pID); 

This method removes the game-bot process with the given process ID from the 

virtual machine. 
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void zbl-replaceProcess(int pID, char *filename); 
This method replaces the program running in the game-bot process with the 
given process ID with the compiled game-bot program whose filename is given 
(see also method 'zbl-addProcess'). 

void zbl-replaceBot(int pID, zblbot *bot); 
This method replaces the game-bot object associated with the given game-bot 
process ID with the given game-bot object (see also method 'zbl-addProcess"). 

void zbl-resetProcess(int pID); 
This method resets the game-bot process with the given ID to its initial state 
and restarts the game-bot program. The method's effect is similar to that of an 
invocation of the ZBL/O function 'respawn'. 

void zbl-setPriority(int pID, int priority); 
This method sets the execution priority for the game-bot process with the given 

process ID to the given value. 

int zbl-getPriority(int pID); 
This method returns the execution priority of the game-bot process with the 

given process ID. 

void zbl-getExtensions(int pID); 
This method returns the number of extensions loaded by the game-bot process 

with the given process 1D. 

int zbl-getActiveProcesses(int pID); 

This method returns the number of active game-bot processes in the virtual ma- 

chine. 

int zbl-run(void); 

This method is the most important method of the ZBL-APFs virtual machine 

interface. It incorporates the virtual machine's scheduling mechanism for the ex- 
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ecution of game-bot processes. The 'zbl-run' method must be invoked once for 
every update-cycle of the host application (usually once per frame) 

- 

C. 2.1 Error Handling 

Attribute Description 

int error; The error's ID. 

int process; Process ID of game-bot that experienced the error. 

address-t instruction; The index of instruction that caused the error. 

address-t stack; The stack address that experienced the error. 

char description [1281 Character string that holds a description of the error. 

Table C. 3: Public attributes of the 'zbl-crror-t' type. 

The virtual machine interface of the ZBL-API also includes the definition of 
the record structure 'zbl-error-t' (see Table C. 3) that can be used for reporting 

run-time errors that occur in game-bot processes of the virtual machine. In addi- 
tion to this data structure, the ZBL-API also includes a set of functions for error 

handling that can be used with this data structure. 

int zbl-getErrors(void); 
This method returns the number of unqueried run-time errors that have been 

recorded in the virtual machine's error list. 

void zbl-resetOnError(int pID); 

This method toggles a flag in the game-bot process with the given process ID 

that will trigger the process's reset on the occurrence of a run-time error (see also 

method 'zbl-rcsct Process'). 

zbl-error-t zbl-nextError (void); 

zbl-error-t zbl-peekError (void); 

These methods allow querying of run-time errors in the virtual machine. For this 

they retrieve the next error from the virtual machine's error list and return them 
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as ýi structure of the 'zbl-crror-t" record type. While 'zbl-nextError' then removes 
the error from the virtual machine's error list, lzbl-pcekError' leaves the error list 
untouched. 

C. 3 ZBL/O Syntax 

C-3.1 Core Functionality 

program: 

ock 

usage 
declaration 

usage-ded a ration: 

dentifier; 

block: 

constant 
r0 deccolarattaions 

variable 
declarations 

functiop 
declarat on 

-4 statement 

constant-decla rations: 

Identifier 
_________ 

0'- 
va ria ble-decla rations: 

var Identifier 
Number 

fun ctio n -ded a ration: 
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statement: 

assignment 
statement 

-14Q 

-j compo-u-n-d-ý 
L statement F 

-[;; 
Q 

_J--w-hil-e--l I tatement F 

-EAQ 

cornrnanTý 
function 

assignment-statement: 

identif ier expression 

face 
ret 

function 

call-statement: 

le:::: : i: r::: ý Identifier 

expression 

I 

compound-statement: 

statement return 
statement 

if-statement: 

conditional 
................ 

_Tý 1111" then s atement 
expression I ill, 
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while-statement: 

io 
conditional statemen expr! s ion ýssion 

-st at 

for-statement: 

for EEH 
expression 

H-(ý--T-ýýýýstýatement 

downto 

for-expression: 

Numb r LýýIdentifier= 

2xpreisssio :: n::: 

ý 

conditional-expression: 

boolean 
expression 

boolean-expression: 

relational 
eI xpression 

& relational 
expressý 

relation al-expression: 

I expression I 

I expression I 
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expression: top-level: 

i Identifier I 

I Number I 

boolean 
expression 

call 
statement 

term: 

factor: 

primary 

primary: 

top 
level 

rnd 
function 

identifier: 

Number: 

Digit 

Letter any of the 26 letters of the alphabet (capital or lower case) 

Digit any digit from '0' to '9' 
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C. 3.2 Intrinsic Functions 
command-function: 

unction 

_j 
find 

fý. nction 

initialize 
function 

function 

----L F-respawn 
function 

----I spawn 
function 

backstep 
function 

F crawl -1 
I function 

r-d uc 77 
'I function I 

function 

function 

F-ju--P1 function 

step 
function 

function 

F-tu-rr--ý 
I function 

f--Us-e-l 
1 function I 

die-function: 

find-function: 

object 

-Cf--, -D--DI ý 

spawn-function: 

memorize-function: 

bject 
--Cme-worize "ý D 10 

respawn-function: 

backstep-function: 

crawl-function: 

duck-function: 

face-function: 

-(EEE)TCobjEeEcE)-F 

fire-function: 

jump-function: 

step-function: 

strafe-function: 

strafeleft 

strafe right 

turn-function: 

rn. primary 

turn-left 

turn_Eriqht 

use-function: 

bject CUSDe-[ý 
ID 

initialize-function: 

initialize expression 
expression 
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state-function: object-funcbon: 

-*(Zýb-]ect 
-ahead)-- 

function 

function 

alive 
function 

function 

blocked 
function 

function 

object 
function 

function 

F-ow-n-s-ý 
function 

T-Tý-19---t -7 
function 

ng 
fuunscition 

danger-function: 

idle-function: 

spawned-function: 

alive-funcbon: 

armour-function: 

blocked-fumfion: 

blocked back 

health-function: 

obstacle-funcbon: 

-(-o-bstac-leý- 

owns-function: 

ýF----L 
object 

ID 

target-function: 

targetahea 

t -arg-et-a-1 i-ve-)- 

-(Tta-rget -armo-ur-ý- 

'-(-tar-g -et-he-a 1-t Th)- 

using-funcbon: 

md-function: 

-(---d 
top D-f Xlevj- 

object-ID: 

top 
-4 'i 

ýý 
evel 
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Appendix D 

The AvDL Scripting Language 

In Chapter 8 of this thesis we introduced the Avatar Description Language 
(AvDL) which we developed in our investigation of behaviour definition lan- 

guages. AvDL is a scripting language that provides mechanisms for behaviour 
definition for virtual entities in computer games. This appendix presents a de- 

tailed description and reference of the syntax and functions of AvDL. 

import ... 
// loading of extensions 

entity <name> 
f 

... 
// declaration of types and variables 

// definition of functions and methods 

<name>() // program entry function 
I 

1; 
1; 

Table D. I: Basic structure of an AvDL program. 
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D. 1 Programming in AvDL 
Every AvDL entity program must declare itself as an 'entity' object which en- 
capsulates the program (in a similar manner to C++ namespaces). The entry 
point of an AvDL program from which it will begin program execution is the 
entity object's main method, which is always the final function defined within 
an entity object (unlike other functions it is terminated with a semicolon). The 

entity's, main method is calways given the same identifier as, the entity object itself 
(see Table D. 1). 

Core Functionality 

action bool break byte case class const 

continue default delete do double else elsif 

entity event exit extends finite float for 

foreach forever from fuzzy getstate global goal 

if import int long new of onentry 

onexit plan public reached repeat return scalar 

select setstate short state switch to trigger 

triggered typedef unsigned until uses while void 

volatile 

Table D. 2: AvDL reserved words. 

The command syntax of AvDL is based on the C [Kerninghan and Ritchie 

1988] and C++ [Stroustrup 1997] programming languages (see Table D. 2). All 

statements in AvDL need to be terminated with a semicolon (; "). 

LOADING OF EXTENSIONS: 

Extension libraries are loaded at the start of the program above the entity's 

definition using the 'import' keyword (or its 'uses" synonym), followed by one 

or more identifiers (separated by commas) that must match the name(s) of the 

extension(s). 
import <identifier> f, <identifier>l 
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COMMENTS: 

Comments can be considered a basic component of modern programming lan- 
guages. The AvDL scripting language allows the use of line-comments, as well as 
block-comments. Line-comments are marked with the'//' (double forward slash) 
character sequence that is also used for line comments in the C++ programming 
language. Any character following the line-comment character sequence until the 
next new line will be ignored. 

Example: 
// this is a line comment 

or 
scalar x=1; // and so is this 

Block-comments are marked with the two character sequences '/*' to open a 
comment and '*/' to close a comment. The text encapsulated between these two 

symbols will be ignored by the compiler. These block-comments can span across 
more than a single line of source code, i. e. if a comment is opened in one line of 

code and closed in another line of code, all text in between will be commented out. 

Example: 
/* a simple block comment 

or 
/* a block comment spanning 

across three lines of 

source code */ 

D. 1.2 AvDL Data Types 

All variable data types in AvDL are auto-initialising, i. e. unless variables are 

initialised explicitly when they are declared, variables will be given a default 

value. For numerical data types that default value is '0*' (zero), while other types 

will automatically be initialised to the empty value 'NULL. 

Variables that use AvDL's types can be declared (and defined) at the top 
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of a block or globally using the desired type, followed by one or more variable identifiers (separated by commas). 

AN-DL allows users to declare their own data type, effectively an alias type, 
using the 'typedef' statement. 

Example: 

typedef scalar real; // make "real" an alias for "scalar" 

Scope in AvDL is handled similar to CIC++: constants and variables that 
are defined globally (outside of a class or function) can be accessed from anywhere 
in the AvDL program, whereas constants and variables that are defined locally 
within a block can only be accessed from inside that block. 

TYPELESs DATA: 

AvDL provides a typeless data type 'void' which is identical to the typeless 
'void' found in C/C++. It is an "empty" (non numeric) data type which requires 
no storage. The main use of this type is as the return type for functions that do 

not return any values (procedures), as well as the definition of empty parameter 
lists for functions. 

Atomic Data Types 

Variables of the atomic data types can be supplied with additional information 

in the form of type qualifiers that determine the access mode of the variables. 

If the 'const' type qualifier is used when a variable is declared, that variable 
must be initialised, after which its value can no longer be altered, effectively inak- 
ing this variable a constant value. 

Example: 

const scalar five=5; // create a constant named "five" 

The use of the 'global' type qualifier for the definition of a function return 
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type marks the function as "exported" for use by other entities. This is the means 
by which an entity's functions are advertised, making it an annotated entity. 

Example: 

global void exported(void) // advertise "exported" 

statemento; // execute "statement" 

1; 

The 'triggered" (-'of') type qualifier is used for binding scalar and Boolean 

variables to events. AvDL variables that have been declared using the 'triggered' 
type qualifier for a given event will be set to the value * I' or 'true' when that 

event occurs. 

Example: 

triggered ev of scalar trg; // "trg" is bound to event "ev" 

The 'volatile' type qualifier is used in the C and C++ programming lan- 

guages to mark data that is influenced by processes which are external to the 

current program. In AvDL the 'volatile' variable attribute is used to bind data 

in the host application to scalar and Boolean AvDL variables in entity programs. 
Variables that are 'volatile' in AvDL can be mapped to variables in the host 

application. 

Example: 

volatile scalar var; // I'var" is externally accessible 

NUMERICAL VALUES: 

AvDL has a single numeric data type that can take floating point values as 

well as integer values, which is the 'scalar' data type. A number of aliases for 

the 'scalar' type allow the use of the more commonly known ordinal and floating 

point data types found in C/C++. 
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Example: 

scalar var; create variable I'var" Unitialised to 0) 
scalar o=S, r=0.5; two variables, one ordinal and one real 
int ordinal=5; 'lint" alias for "scalar" 
float real=0.5; "float" alias for "scalar" 

BOOLEAN VALUES: 

AvDL has a data type for Boolean values. Variables of the *bool" data type 
can take the values 'true" (mapped to the value T) or 'false' (mapped to the 
value '0*). Boolean values are by default auto-initialised to the value 'false'. 

REFERENCES: 

In AvDL there are no pointers to variables. Instead one can create references 

- like references in C++ - to address a variable. A reference to a variable is 

similar to having a second identifier for the same variable. References are de- 

clared by preceding the variable identifier with the '&' (ampersand) symbol. A 

reference must be initialised during its declaration (if it is not used as a function 

parameter) and cannot be changed (redirected to a different variable) during the 
lifetime of its identifier. 

Example: 

scalar var = 1; 

scalar &ref = var; // "ref " is a reference to I'var" 

FUNCTION BINDINGS: 

Functions that are defined within the host application can be mapped to the 

AvDL 'action* data type. If an 'action' is declared with an identifier only, the 

AvDL virtual machine will expect the same identifier to be used for the func- 

tion in the host application which is mapped to the AvDL action. If a name is 

explicitly provided during the action declaration, that "name" is expected to be 

the identifier used for the function in the host application. If the function in the 

host application expects parameters, the action can be declared using an optional 

parameter list. 

action <identifier>U<parameters>)1; 
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or 
action <identifier> (<name> [, <parameters>] ); 

Example: 

action func; // bind function "func" 

D. I. 2.2 Data Structures 

Apart from the basic data types that are part of the A-vDL scripting language, 
AvDL allows users to use more complex data structures, some of which are de- 
rived from the atomic data types. 

ARRAYS: 

Arrays are the simplest form of aggregate data type, able to hold a number 
of data elements of the type that they are derived from (all array elements have 
the same data type). In the current AvDL specification, all types of arrays are 
restricted to a single dimension. There are three types of arrays in AvDL: static 
arrays, dynamic arrays and associative arrays. 

The index value for the first field in static and dynamic A-'-DL arrays is V. 
Fields in associative arrays are not usually addressed using numbers. but use 
named indices (associations) instead. 

Static arrays in AvDL are defined in a similar manner to arrays in C. These 

arrays are variables of any AvDL data type that have been declared using the 

subscript operator ('[]') with a size (of array) indicator as their suffix. The ele- 

ments stored in an array's fields are by default auto-initialised to the value V. 

Example: 

scalar array [51 a static array with 5 fields 

Dynamic arrays in AvDL are variables of any AvDL data type that have been 

declared using the subscript operator (ý [I") without a size indicator and which are 

then given a size using the 'new' operator (see section C. 1.3). Dynamic arrays are 

by default auto-initialised to the empty value 'NULL' when they are first created. 
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Example: 

scalar dynamicArray // dynamic array, pre-initialised to "NULL" 
dynamicArray new scalar[51; // allocate 5 fields 

The memory that has been allocated for dynamic arrays using the 'new' op- 
erator must be freed again, using AvDL's 'delete" operator. Unlike the 'delete' 
operator in C++, the AvDL operator does not require the use of the subscript 
operator to free dynamically allocated arrays. 

Example: 

delete dynamicArray; // delete and reset to "NULL" 

Associative arrays in AvDL are variables of any AvDL data type that have 
been declared using the subscript operator (ý[]*'), i. e. their declaration is identical 
to that of regular dynamic arrays in AvDL. Associations are created dynamically 

as soon as they are used in the source code for the first time. Externally associa- 
tions are identifiers that are used as indices for array fields. Internally each new 
association is given an increasing index value. Associative arrays are by default 

auto- initialised to the empty value -NULL' when they are first created. Fields in 

associative arrays that are created but not assigned an element to hold are by 

default auto- initialised to the value '0. 

Example: 

scalar associativeArray[I pre-initialised to "NULL" 

associativeArray[first] = 5; first field set to 5 

associativeArray[second]; second field created 

associativeArray[second] = 3; // second field set to 3 

CLASS STRUCTURE: 

In AvDL data structures of the type 'class' are used for the definition of 

objects (in the sense of object orientation) as well as records. A class definition 

defines a new data type, instances of which can be used as variables. 
Class structures have two different types of members, attributes and meth- 

ods. Attributes are member variables of a class, whereas methods are member 
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functions of the class. Like classes in C++, AvDL classes allow the definition of 
a class constructor and a class destructor, both of which are special methods that 
are invoked respectively when an object is instantiated or destroyed. 

There are no inline functions, i. e. although methods are declared within the 
class definition they have to be defined below the class definition itself. 
class <identifier> 
I 

<type> <attribute>; // declare a data member 
<type> <method>(<parameters>); // function member 

<class ID>(); // constructor declaration 
- <class ID>(); // destructor declaration 

1; 

All classes have one implicit attribute, which is a reference to the current 
instance of itself, which can be accessed through the use of the 'this' object. The 
-this' object is also a hidden parameter which is implicitly passed to all methods 
of the class. 

Classes are also AvDL`s implementation of the record aggregate data struc- 
ture, if they only define attributes but no methods. In that case classes are used 
to group variables consisting of a combination of types together in a single en- 
tity which can then be referred to through a single identifier, i. e. the class's name. 

Finally, AvDL also allows the use of an implicit class, i. e. a class definition 

that is stored within ail external file. The file containing an implicit class defini- 

tion must either be an AvDL source code file containing only the class definition 

or alternatively a pre-compiled class definition as bytecode for the virtual ma- 

chine. Once loaded the implicit class can be used like any other class. 
class <identifier> = "<filename>"; 

EVENT TYPE: 

The 'event' data structure is linked to events occurring in the AvDL system's 

virtual machine. It provides an event handler for the current entity program and 
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cis such requires the definition of an AvDL instruction list (in a block of instruc- 
tions) that will be executed once the event it has been defined for occurs. 
event <identifier> <block>; 

Example: 

event X // event handler f or event "X" 
f 

statementl(); // execute "statementl" 
statement2(); // execute "statement2" 

1; 

FINITE STATE MACHINE STRUCTURE: 

State machines are a tried and tested Al technology which has been proven 
suitable for many kinds of computer games. They are the most used Al technology 

in computer games as they allow for simple definition of deterministic behaviour. 
The AvDL 'state' data structure allows the definition of state machines in 

A-, -DL entity programs. To create a finite state machine it should be declared with 
the 'finite' state qualifier, but this may be omitted as finite state machines are 
the default state machine type in AvDL. The declaration of finite state machines 
in AvDL shares elements with the definition of a 'class" data structure, as its 

members are declared within the structure similar to an object's methods and 
then defined outside of the structure itself. 

A finite state structure has up to three specialised function members. These 

methods are an entry function ('onentry), an exit function ('onexit") and the 

state's body (sharing its identifier with the state structure itself). Of these meth- 

ods only the state's body must be defined. while the entry and exit functions are 

optional. The state's body should be provided with a transition target, marking 

the current state structures follow state. If no transition target is provided, the 

value 'NULL' will be used by default, which will terminate the execution of the 

state machine when the state transition occurs. 
Other members of a state structure will always be treated as states by the 

FSM (independent of their actual types). 

Each state in a state structure needs to be provided with a "next" state (tran- 

sition target) to declare which state the currently active state will change into 
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-when it finishes. 
[finite] state <identifier> 
f 

<type> <identifier>[()], <transition>; // state 

<onentry>(); entry function 
<onexit>(); exit function 
<identifier> [, <transition>]; // state body 

1; 

The finite ýstate' structure is similar to unions in C, as at any one time only 
one state within it will be fully active. Its members can also can be used as 
identifiers for states in a similar nianner to the named constants of C enumerated 
data types. 

FUZZY STATE MACHINE STRUCTURE: 

Structures of the fuzzy 'state' data type in AvDL are declared with the 
'fuzzy' type qualifier. The fuzzy state structure is similar to a record data struc- 
ture, as it holds several data members. These members can either be scalar values 
or references to other fuzzy state structures, each of which can be provided with 

an optional weight. Like the data members of a finite state structure the members 

of fuzzy state structures can be used as identifiers for states in a similar manner 
to the named constants of C enumerated data types. 
fuzzy state <identif ier> 
I 

<type> <identifier> [@<weight>]; // state 

1; 

GOALDATATYPE: 

AvDL provides the data type 'goal' for goal-oriented behaviour. There are 

two ways in which this data type can be used. In its simplest form, a goal is de- 

fined as a single variable of the -goal" type that has been assigned an expression 

defining the preconditions that have to be satisfied for the goal to be reached. 

263 



D. 1 Programming in AvDL 

goal <identifier> = <expression>; 

Optionally a priority (weight value) for the planner can be set for the goal. If 
no priority is explicitly set, it will by default be set to the value TO". 

goal <identifier> @ <priority> = <expression>; 
Example: 

goal trueX = (x==true); 

or 
goal trueX @ 1.0 = (x==true); 

The second method uses the 'goal' type as a compound data structure group- 
ing several data members, each being a separate named precondition for the 

satisfaction of the goal. These named preconditions are effectively sub-goals of 
the goal structure. 
goal <identifier> 
f 

<precondition>: <expression>; 
<precondition>: <expression>; 

1; 

The 'goal' structure as well as each of its member preconditions can optionally 
be supplied with a priority for the planner (by default set to '1.0'). 

goal <identifier> 0 <priority> 
I 

<precondition> @ <priority>: 

<precondition> @ <priority>: 

<expression>; 
<expression>; 

1; 
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Priority Symbol Description 

1 subscript 

member access 
2 plan plan generation 

reached goal state query 
setstate state access 
getstate state query 
trigger event trigger 

3 logical negation 
+ positive 

begative 

length/size 

++ increment 

decrement 

new allocate memory 
delete free memory 

4 division 

multiplication 
% modulo 

5 + addition 

subtraction 
6 equality comparison 

I= non-equality comparison 

< less-than comparison 

<= less-or-equal compar ison 

> more-than comarison 

>= more-or-equal compar ison 

7 && logical AND 

logical OR 

8 value assignment 

compound assignment (division) 

compound assignment (multiplication) 

compound assignment (modulo) 

+= compound assignment (addition) 

compound assignment (subtraction) 

9 concatenation 

Table D. 3: AvDL operator precedence. 
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D. 1.3 Operators 

Other than the standard arithmetic and logical operators (see Table D. 3), AvDL 
also provides a number of special operators for use with its game Al data struc- 
tures. 

o new 
The operator 'new' is used for allocating memory for dynamic arrays. 

o delete 
The operator 'delete' is used for freeing allocated memory from dynamic 

arrays. 

9 setstate 
For FSMs the 'setstate' operator is used to set any state or state member 
to be the currently active state, triggering a state transition. ln FuSMs it is 

used to set state members, optionally allowing the specification of a weight 
value for the state member. 

getstate 
The operator 'getstate' returns a reference to the currently active FSM 

state, effectively allowing the currently set state to be queried. 

* trigger 
The operator 'trigger' is used for spawning events from within entity pro- 

grams. Events can optionally be addressed directly towards a specific entity. 

9 reached 
The operator 'reached' is used for testing a goal for completion, i. e. for 

testing the goal state. 

plan 
The operator 'plan' directly operates on goals, generating a plan from all 

valid goals in an entity program. 

D. 1.4 Control Structures 

Blocks containing sequences of statements in AvDL are similar to blocks in the 

CIC++ programming languages. They can be created by inserting the statement 
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sequence between opening braces ('f') and closing braces ('I'). 

Example: 
f 

statementl(); 
statement2(); 
statement3(); 

I 

Selections 

AvDL contains all of the conditional statements found in the C/C++ program- 
ming languages, as well as a number of additional selection methods. Within any 
expression in a selection, a value of '0*' (zero) will be interpreted as 'false' (condi- 

tion not satisfied), while any other value will be interpreted as 'true' (condition 

satisfied). 

SIMPLE SELECTIONS: 

The if statement is used to determine whether or not a particular func- 

tion, expression or control structure is to be executed. It can be used to express 

monadic (one-alternative) or dyadic selections. In the latter case an else clause 

can be used in combination with the 'if' to provide two alternatives. 
if(<expression>) <block/statement; > 

or 
if(<exPression>) 

<block/statement; > 

else 
<block/statement; > 

Example: 

if(b==true) statementl(); 

or 
if(b==true) 

st at ement 1 () ; 

else 
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statement2(); 

MULTIPLE SELECTIONS: 

AN, -DL includes a more complex if statement in the form of the elsif state- 
ment which provides a further condition, allowing the expression of selections 
with up to three alternatives (if used with 'else'). 
if(<exPression>) 

<block/statement; > 

elsif(<expression>) 

<block/statement; > 

or 
if(<expression>) 

<block/statement; > 

elsif(<expression>) 
<block/statement; > 

else 
<block/statement; > 

Example: 

if(b==true) 

st at ement 1 

elsif(b==false) 

st at ement2 

or 
if(X<S) 

st at ement 1 

elsif(x>S) 

statement2(); 

else 

statement3(); 

For multiple condition switching the switch statement with case clauses 

is used. A 'default' clause can be added to address conditions which are not 
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explicitly covered by a 'case'. 
The values marking a 'case' must be constant values, i. e. they must not 

be variables. If a value and the selection expression in the 'switch' statement 
match, all instructions following that particular case clause will be executed un- 
til the end of the structure is reached, i. e. there is a fall-through after every 
case. If no values match any of the given cases then any instruction following the 
'default' keyword will be executed. If no values match the given cases and there 
is no default given inside the switch structure, the whole switch structure will be 
ignored and program execution will resume below the structure. 
switch(<expression>) 
I 

case <constant>: <statement>; 

[def ault: <statement>j 
I 

An alternative multiple condition that does not have fall-throughs is the select 
statement if it is used with case clauses. This 'select' statement is identical 

to the switch statement in all aspects except that instructions following a case 
clause will be executed only until the start of the next case clause, i. e. there is 

no fall-through after every case. 
select(<expression>) 

case <constant>: <statement>; 

[default: <statement>j 
I 

AvDL includes a second type of 'select' statement that allows the multiple 

selection of ranges of values to identify the statement that is to be executed. 

select <variable> from 
f 

<constant> [to <constant>] : <statement>; 
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I 

D. 1.4.2 Iterations 

AvDL provides several alternative loop statements, several of which are head- 

controlled loops, while others are fo ot- controlled. Within any expression in a 
loop, a value of '0' (zero) will be interpreted as 'false', while any other value will 
be interpreted as 'true'. 

HEAD-CONTROLLED Loops: 

The simplest form of iteration in AvDL programs is the basic while loop as 
found in C. It consists of the 'while' keyword followed by a conditional expression 

and a block or a single statement. 
while(<expression>) <block/statement; > 

Example: 
// a simple counter 
i=O; 

while(i<10) 

or 
i=O; 

while(i<10) 
i++; 

A bounded iteration - effectively a more complex version of the while loop - 
for use in operations that require a known number of iterative steps is the for 

loop. This loop is controlled by three expressions, the second of which is the 

termination condition of the loop, controlling the iteration. The first and third 

expressions are optional, providing a means for loop initialisation and adjustment 

respectively. 
for(<exprl> ; <expr2> ; <expr3>) <block/statement; > 
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Example: 
// a simple counter 
for(i=O; i<10; i++) 

The final head-controlled loop is the foreach loop for use with arrays. This 
loop iterates through all fields of ail array ý, which is especially useful for associa- 
tive arrays that inay have ail unknown nuinber of fields. 
foreach(<variable> of <array>) <block/statement; > 

Example: 

scalar aArray[]; // associative aray 
scalar i; // counter variable 

foreach(i of aArray) 
// iterate through "aArray" 

aArray[il=l; 

FoOT-CONTROLLED Loops: 

The repetitive do-while loop in AvDL is identical to the foot-controlled loop 
in C/C++. This loop checks its exit condition at the end of the structure. The 

contained instructions are executed at least once and a new cycle is only entered 
if the exit condition evaluates as true. Only if the exit condition evaluates as 
false will the loop be exited. The exit condition must be terminated (using the 

terminator symbol '; '). 

do <block/statement; > while(<expression>); 

Example: 
// a simple foot-controlled counter 
i=O; 

do 
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I while(i<10); 

AvDL provides a second repetitive loop, the foot-controlled repeat-until 
loop. This loop also checks its exit condition at the end of the structure. The 
contained instructions are executed at least once and a new cycle is only entered 
if the exit condition evaluates as false. Only if the exit condition evaluates as 
true will the loop be exited, i. e. it repeats until the exit condition is met. The 

exit condition must be terminated (using the terminator symbol '; "). 

repeat <block/statement; > until(<expression>); 

Example: 
// a simple foot-controlled counter 
i=O; 

repeat 
I 

i=i+l; 
I until(i==10); 

AvDL also includes a continuous (never ending) loop, the do-forever loop. 

This has an entrance but no exit and thus does not check for any exit conditions. 
It keeps cycling through all the instructions contained within until the program 
is terminated. 
do <block/statement; > forever; 

Example: 

do 
f 

statemento; 
forever; 

The use of this iterative structure is equivalent to the use of a while loop 

whose conditional expression always evaluates as true. 

Example: 
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while (1) 
f 

st at ement () ; 
I 

D. 1.5 Commands & Functions 

In some instances it may be necessary to jump out of one of the program flow 

control structures or to ignore some of the statements within a control structure. 
For this AvDL provides several special statements. 

The 'break" statement is used if one wants to completely jump out of a 
loop or a switch/select construct. 

Example: 

salar i=O; 
do // loop for 10 iterations 
I 

i=i+l; 

if(i==10) break; 

I forever; 

The 'continue' statement is used if one wants jump to the next execution 

of a loop without executing the following instructions within the loop first. 

Invoking the 'continue' statement effectively jumps straight into the next 
iteration of the loop. 

Example: 

salar i=O; 

while(i<=10) // loop for 10 iterations 

continue; // next iteration 

i=i-1; //never executed 
I 
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Programs can be terminated at any time using the 'exit' statement. Invok- 
ing 'exit' ends program execution and returns the program's exit status to 
the AvDL virtual machine. This exit status can be given explicitly as an 
expression. If it is omitted., a successful exit status is returned by default. 
exit; 

or 
exit <expression>; 

Example: 

void function(void) 
f 

exit; 
I 

FUNCTIONS & METHODS: 

Functions in AvDL programs are defined much like functions in C programs. 
A function has a name (its identifier) a return data type and (optionally) a list 

of parameters. The function identifier must not start with a digit. Like C, AvDL 

allows the forward declaration of functions using prototypes. 1n function proto- 
types only the return data type of the function and the data types of parameters 

need to be stated - identifiers for the parameters only have to be used in the 

actual function definitions. 

It is not possible to declare a function locally, i. e. within the definition of 

another function. 
The forward declaration of the methods of compound data structures is the 

declaration of the methods within their parent data structure. The definition of 
the methods usually happens below the definition of the parent data structure 
but is otherwise nearly identical to the definition of a regular function. 

The scope of a function is anywhere below the declaration of the function 

within the program source code file in which the function has been declared. 

Functions do not have to be forward declared, i. e. the declaration and defini- 

tion of a function can be carried out in a single step. 

<return type> <identifier>(<parameters>) <block> 
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Example: 

void function(void) 
f 

I 

The scope of local variables that are declared inside of a function is restricted 
to that function, i. e. they are known to the AvDL run-time system exclusively 
within that function. Outside the function they are invalid. 

Functions can be jumped out of and values can be returned from within a 
function to the next higher level using the 'return" statement. 
return; 

or 
return <expression>; 

Example: 

void function(void) 
f 

return; 
I 

Returned values or variables have to be of the same type as the return data 

type of the function. Variables that receive a return value from a function have 

to be of the same data type as the function's return data type. 

Example: 

scalar function(void) 

return 1; 
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D. 1.6 Object Orientation 
Object orientation in AvDL is similar but not identical to object orientation 
in programming languages like C++ and Java. The data structure for object 
orientation in AvDL is the 'class' data structure. Unlike classes in C++, classes 
in AvDL have no mechanism for data hiding, i. e. all methods (member functions) 

and attributes (data members) of a class are publicly accessible. 

D. 1.7 AvDL Standard Functions 

The current Version of AvDL has a very small number of standard functions 

which are used in conjunction with the annotation of virtual entities. 

scalar getEntity (scalar) 

This function takes the unique ID of an exported function as its parameter and 

returns the ID of the entity that exported the function. 

scalar getGlobal (constant string) 
This function takes the name of an exported function as its parameter and re- 

turns the ID of a matching exported function if it exists or 'NULL' if it cannot 
find a match. If called from an event handler, only the entity that caused the 

event to be spawned will be searched for a matching exported function. 

void setBroadcast (void) 
This function asks the run-time environment to advertise an entity's exported 

functions. 

void setSilent (void) 
This function asks the run-time environment to stop advertising an entity's ex- 

ported functions. 
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D. 2 AvDL Syntax 

D-2 AvDL Syntax 
Ident: 

I Letter I 
I Letter I 

I Digit I 

program: 

I extensions I 

forward 
declaration 

I declaration I 

E Iden type ýýedef :: ]ý 
primitive 

entity 
declaration-ýD- 

extensions: 

forward-decla ration: 

class Ident 

function 
prototype 

T! w T--*, 

en tity-decla ration: 

entity)-ý Ident 
declaration 

program 
entry 

Letter any of the 26 letters of the alphabet (capital or lower case) 
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D. 2 AvDL Syntax 

declaration: 

program-entry: 

............ b Iderili block 

function-prototype: 

returntype H Ident 

clatatype 
list 

function-declaration: 

returntype 1, q Ident 

parameter functio list 
IdenF - 

class method 
Ident Ident 

define 
de 

I 

constructor 

I 

define-de-constructor: 
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D. 2 AvDL Syntax 

datatype-list: 

datatype I 

datatype 

-- 
ýIent 

datatype -1 

parameter-list: 

at 

class-declaration: 

class ýý Ident class 
definition 

class 
ýen d. s Ident 

p pub ublic 

I StringLiteral I 

class-definition: 

variable 
declaration 

function 
prototype 

class 
constructorý 

class 
destructor 

class-constructor: 

9 class 
Ident 

1_0ýýý 

class-destructor: 

1: 5 
IcE rit 
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state-decla ration: 

fsm 
declaration 

fuzzy fusm 
declaration 

fsm-declaration: 

fusm-decla ration: 

state )-H Ident 
Ident ý-ý scalar 

numb ir 
state 
It 

ý 

detnt 

state-constructor: 

ry() 

state-destructor: 

t() 

D. 2 AvDL Syntax 
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D. 2 AvDL Syntax 

state-body: 

state 
Ident 

ý0-0- 

goal-decla ration: 

goal H Ident 

ýT. Oý goal 
definition 

I expression I 

goal-definition: 

action-declaration: 

actj. Q 

action-list: 

event-declaration: 

G event Ident instruct 
EHD-ý ý0- 

instruction-list: 
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D. 2 AvDL Syntax 

variable-decla ration: 

datatyp -- variabl ,II listý-ý&- 

returntype: 

void 

globalj)-ý ( --- T 4 tTpe 
p rimitive rimitive 

UserType I 

datatype: 

type-qualifier: 

volati 

; v-e T-ýC. 
f triggered list list 

global 

event-list: 

-, ýýeýnýlý Hldentýý 

type-primitive: 

scalar 

AliasType 

bool 
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D. 2 AvDL Syntax 

AliasType: 

byte 

unsigned ýo, (-s-hort 

ýin 

Cl 
(Ln 

j 

f1 
. 
Loat 

double 

UserType: 

variable: 

array: 

I DecLiteral I 

I HexLiteral I 

association I 

variable-list: 

abI 
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D. 2 AvDL Syntax 

statement: 

if 
statement 

label 

vaTria_b_Ie___j_ H 
declaration 

normal 
statement it 

normal-statement: 

E loop 
control 

alternatives 

block 

expression 

s ci 
tmt 
pecial 

xpr sio 

I 

! 

stsapt ement 

special-statement: 

block: 

'°TemeEI° 

loop-control: 

head 
controlled 

I 

loop 

I 

foot 
controlled 

i 

loop 

I 
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D. 2 AvDL Syntax 

head-controlled-loop: 

while expression 

expression 

expression 

foreach variable 
Ident 

HCO 

foot-controlled-loop: 

S do statement forever 

do statement while 

rep7eatstatemeFntunt i1 

ff-statement: 

elsif-construct: 

--m esif 

then-statement: 

alternatives: 

I expression I 

expression -1 statement j 

then 
else statement statement 

elsif 

ýtemenl expression -m-Lstýa 
then 

else tm 
t en 

ý-ýstathýement 

expression 
then I then F-01 

statement 
ý(jHDý 

statement 

normal 
I Statement 

4 

then 
statement 

variable 
Ident 
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D. 2 AvDL Syntax 

cases: 

case) , o- Ident I. ý: )--ý statement 

I DecLiteral I 

default ýý( : ýý statement 

selections: 

I statement I I number I 

number I*-( to 

expression: 

assignment 

op 

assignment-op: 

logOR-op: 

logAND 
op TII 

logAND-op: 

equals 
op T 

&& 
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D. 2 AvDL Syntax 

equals-op: 

relation-op: 

addsub-op: 

muldiv 
op 

I 

muldiv-op: 
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D. 2 AvDL Syntax 

other-ops: 

memory-ops: 

new 
type 

primitive 

sign: 

17 

avdl-ops: 
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D. 2 AvDL Syntax 

rval: 

expression 

function 
call 

j action 
call 

association 

-F -Iva-I--I 

initial-val: 

expression 

number 

Ival 

function-call: 

function 
Ident 

I 

variable method 
Ident 

ý-f--O---Tý 
Ident 

expression I 

aftribute 
Ident 

I 

action-call: 

action 

variable 
[dent 

-exp-ression 
Ident 

j 

attribute 
Ident 

Ival: 

Ident 

priority: 

--*ýnum-be-r 

289 



D. 2 AvDL Syntax 

number: 

ecLiteral 

HexLiteral TM 
=Ioat=Literal 

ý-ýBool =Literal 

label: 

E abel 
I den -0- den]t 

association: 

entity-ldent: 

attribute-ldent: 

class-Ident: 

function-ldent: 

action-Ident: 

goal-ldent: 
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D. 2 AvDL Syntax 

state-ldent: 

event-Ident: 

label-Ident: 

-F- I 
-de n7t 

member-Ident: 

-1dent 

method-ldent: 

transition-Ident: 

-f- -Id-en-t-ýý 

variable-ldent: 

--*F-lde-nt 

StringLiteral: 

-(D-ýýý 
BoolLiteral: 

Tw, ---", 
DecLiteral: 

-Tý 
Any any printable ASCII character except 
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D. 2 AvDL Syntax 

HexLiteral: 

FloatLiteral: 

Digit Dig it 

Digit any digit from '0' to '9' 
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Appendix E 

The SEAL Scripting Language 

This appendix presents the syntax of the SEAL scripting language that was de- 
scribed in Chapter 9 of this thesis. SEAL (Simple Entity Annotation Language) 

is a procedural scripting language for the definition of behaviour for virtual en- 
tities in computer games and the annotation of objects for use by these virtual 
entities. The language is a subset of AvDL (see Appendix D) that implements a 
substantial number of AvDL's features, the most significant of which are: 

1. A finite state machine (FSM) data structure. 

2. An event (trigger) data type. 

3. Entity annotation. 

The command syntax of SEAL is loosely based oil the procedural production 
language C [Kerninghan and Ritchie 1988] (see Table E. 1). 

action break case 
default do else 

exit for getstate 

of onentry onexit 

scalar setstate state 

triggered until while 

const continue 

entity event 

global if 

repeat return 

switch trigger 

void volatile 

Table E. 1: SEAL reserved words. 
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E. 1 SEAL Syntax 

E. 1 SEAL Syntax 

program: 

entiýý -declar-ati-on 

entity-declaration: 

entity Ident 
declaration 

program 
entry 

declaration: 

program-entry: 

............. ............ . ......... .. 

I( block Ident 
I 

f unction-ded aration: 

ý _j 
function I 

ataýpe It Ident 
parameter 

tt 
state member list 
dent Ident 

parameter-list: 

-1, -! 
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state-ded a ration: 

state-constructor: 

state-destructor: 

state-body: 

........... 

action-decla ration: 

aciýon 
iction list 1-0- 

E. 1 SEAL Syntax 
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E. 1 SEAL Syntax 

action-list: 

event-declaration: 

event Ident instruction 
list 

instruction-list: 

-1IH 
vadable-declaration: 

datatype -F-varia-ble--] list 

datatype: 

type type 
qualifier primitive 

void 

event-list: 

Ident 

I 
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E. 1 SEAL Syntax 

type-primitive: 

variable: 

-, =den: t: 

variable-list: 

statement: 

statement 

variable 
declaration 

normal 
statement 

normal-statement: 

special-statement: 
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E. 1 SEAL Syntax 

block: 

-1ý1 1ý 1ý1-- 

loop-control: 

head-controlled-loop: 

while 

f 'Ir 

expression F-- 

expres!! ýý 

)--F-expression 

I expression I 

foot-controlled -loop: 

do statement while 

reýp]t statement until 

if-statement: 

then-statement: 

expression I 

then 
statement 

j expression I 

then stat=ement statement 

j th then <ý, hen expression tm nt 
_lstateme 

statement 

normai 
I statement 

alternatives: 

switch --- r-e 
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E-1 SEAL Syntax 

cases: 

expression: 

assignment 
OP 

assignment-op: 

logOR-op: 

logAND 
op T 
11 

F 

logAND-op: 

equals 
op 

equals-op: 

relation 
op 
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E. 1 SEAL Syntax 

relation-op: 

addsub-op: 

muldiv-op: 

other-ops: 
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E. 1 SEAL Syntax 

seal-ops: 

! Ets:, ýtate state 
Ident 

member D-ý 
Ident 

member 
Ident 

I 

getstate 

ýri 
gg 
ýer event 

Ident 

num !b ýr 

variable 
Ident 

I rval I 

rval: 

expression 

r 

function 
call 

j action 
I call 

-*F -Iva-71 

initial-val: 

expression 

number 

function-call: 

function ( -Cýýexpression Ident 
D-0 

action-call: 

t 
ý on: c": 
Iden 
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E. 1 SEAL Syntax 

Ival: 

number: 

DecLiteral 

HexLiteral 

FloatELiteral 

'Lit r 

Ident: 

label: 

labell 
Ident L 

label-ldent: 

member-ldent: 

entity-ldent: 

--or- 
-Ide-nt --ý- 

function-ldent: 

action-ldent: 

-Ident 
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E. 1 SEAL Syntax 

event-Ident: 

-[- Ide-n-týý 

state-Ident: 

transition-Ident: 

-1- 1 -de, -n 

variable-Ident: 

-[- -ld -en-t-1---e 

StringLiteral: 

DecLiteral: 

lg, t 

HexLiteral: 

FloatLiteral: 

Digit 

-ti-'°--r1 
Diijj 

Letter any of the 26 letters of the alphabet (capital or lower case) 
Digit any digit from '0' to '9' 
Any any printable ASCII character except 
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Appendix F 

SEAL/AvDL System Prototype 

Chapter 10 provided a discussion of the system prototype that implements the 
functionality of the SEAL subset of AvDL (see Chapter 9), as well as several 
additional features of AvDL that are not part of SEAL, such as AvDL's extension 
architecture. This appendix lists the system prototype's instruction set, several 
translation examples to demonstrate how the system is supposed to work, and 
a selection of API functions that show how the system can be integrated into a 
game engine. 

F. 1 Virtual Machine Instructions 

The system prototype's virtual machine instructions, listed by their mnemonics. 

F. 1.1 Process Control Instructions 

NOP - no operation 
Placeholder instruction that does nothing. 

SRT - start 
Marks the entry point of the program. 

STP - stoP 
Ends program execution. 
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F. 1 Virtual Machine Instructions 

XIT - exit 
Exit command that reads the program's exit status from the process's stack. 

HLD - hold process 
Suspends the process until it is explicitly (re-)started by the virtual machine. 

RST - reset 
Resets the process to its initial state. 

ISA - increment stack address 
Increments the stack address register. 

CLT - clear TOS (top of stack) 
Removes the topmost element from the process's stack. 

DSA - decrement stack address 
Decrements the stack address register. 

JMP - jump 
Unconditional jump to a different instruction. 

JPF - jump (if) false 

Conditional jump to a different instruction. 

ADM - allocate dynamic memory 
Not yet implemented, reserved for future use. 

FDM - free dynamic memory 
Not yet implemented, reserved for future use. 

F. 1.2 Data Handling Instructions 

LDC - load constant value 
Loads a constant value onto the process's stack. 
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F-1 Virtual Machine Instructions 

LOD - load variable 
Loads the contents of a variable onto the process's stack. 

LEX - load external (variable) 
Not yet implemented. 

STR - store variable 
Stores the contents of the topmost entry on the process's stack into a variable. 

LVA - load variable address 
Retrieves a "pointer" to a variable. 

LFA - load (data) from address 
Dereference "pointer" and load data from the address onto the process's stack. 

STA - store (data) to address 
Dereference "pointer" and store data from the stack to the address. 

LCS - load constant string 
Loads a constant string into the process's memory. 

LPA - load function address 
Get a function "pointer". Not yet implemented - reserved for future use. 

LDH - load high (segment) 

Load high-segment value from variable onto the process's stack. 

LDL - load low (segment) 

Load low-segment value from variable onto the process's stack. 

SRH - store high (segment) 

Stores the contents of the topmost entry on the process's stack into the high- 

segment of a variable. 
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F. 1 Virtual Machine Instructions 

SRL - store low (segment) 
Stores the contents of the topmost entry on the process's stack into the low- 
segment of a variable. 

F. 1.3 Function Handling Instructions 

MES - mark exported (function) start 
M7 arks the start of an exported function code segment. 

MEE - mark exported (function) end 
Marks the end of an exported function code segment. 

CSF - call system function 
Execute an intrinsic system function. 

CUF - call user function 
Calls a user-defined function. 

CLX - call locally exported (function) 

Calls a user-defined exported function within the current process. 

CRX - call remote exported (function) 

Calls a user-defined exported function that resides in a different process. 

CEF - call extension function 
Calls a function in an extension library. 

BAR - block activation record 
Creates a block activation record on the current process's stack. 

RET - return 
Returns prograin flow to the caller of the current function. 
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F-1 Virtual Machine Instructions 

RFE - return from exported (function) 
Returns program flow to the caller of the current exported function. 

MHS - mark (event) handler start 
Marks the start of an event handler code segment. 

NIHE - mark (event) handler end 
Marks the end of an event handler code segment. 

F. 1.4 Comparisons 

All comparisons compare the two topmost values on the stack and replace them 

with the result of the comparison. 

EQU - equal 
Compare if two values are equal. 

NEQ - not equal 
Compare if two values are not equal. 

LES - less 
Compare if the first value is less than the second value. 

LEQ - less (or) equal 
Compare if the first value is less than or equal to the second value. 

GTR - greater 
Compare if the first value is greater than the second value. 

GEQ - greater (or) equal 
Compare if the first value is greater than or equal to the second value. 
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F-1 Virtual Machine Instructions 

F-1.5 Operators 

All operations remove the operands from the stack and store the result on the 
stack. 

NEG - negation 
Unary arithmetic negation. 

POW - power 
Raises the first operand to the power of the second operand. 

DIV - division 
Arithmetic division. 

MUL - multiplication 
Arithmetic multiplication. 

MOD - modulo 
Results in the remainder of an arithmetic division (modulo). 

ADD - add 
Arithmetic addition. 

SUB - subtract 
Arithmetic subtraction. 

INC - increment 
Unary arithmetic increment by 1.0. 

DEC - decrement 
Unary arithmetic decrement by 1.0. 

XOR - exclusive or 
Logical exclusive "or" 
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F. 1 Virtual Machine Instructions 

IOR - inclusive or 
Logical inclusive "or" 

AND - and 
Logical "and" 

NOT - not 
Unary logical negation. 

PEQ - plus equals 
Increment of a data value by the operand. 

TEQ - times equals 
Multiplication of a data value by the operand. 

MEQ - minus equals 
Decrement of a data value by the operand. 

DEQ - div equals 
Division of a data value by the operand. 

REQ - remainder equals 
Modulo of a data value divided by the operand. 

ODD - odd 
Unary test if a value is odd (or even). 

XOP - extension operator 
Apply extension operator. Not yet implemented - reserved for future use. 
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F. 2 Intrinsic System Functions 

F. I. 6 Heap Operations 

These are not yet implemented, but reserved for future use. 

LFH - load from heap 
Loads the contents of a data entry from the heap onto the process's stack. 

STH - store to heap 
Stores the contents of the topmost entry on the process's stack into data entry 
on the heap. 

LHA - load heap address 
Load a "pointer" to an address on the heap. 

LAH - load (from) address (on) heap 
Dereference "pointer" and load data from the address on the heap onto the pro- 
cess's stack. 

SAH - store (to) address (on) heap 
Dereference "pointer" and store data from the stack to the address on the heap. 

F. 2 Intrinsic System Functions 

executeCallback 
System function that executes a callback function. 

getExported 
System function that retrieves a reference to an exported function whose location 

is unknown. 

geffuncAddr 
System function that retrieves a reference to an exported function from a known 

entity process. 
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F. 3 FSM Translation Example 

retrievePID 
System function that retrieves the process 1D of the current entity process. 

setBroadcast 
System function that asks the virtual machine to advertise the process's exported 
functions. 

setSilent 
System function that asks the virtual machine to stop advertising the process's 

exported functions. 

spawnEvent 
System function that allows an entity process to trigger an event in the virtual 

machine. 

stateM-ansition 
System function that sets a process flag to trigger a state transition at the exe- 

cution of the next instruction. 

F-3 FSM Translation Example 

AvDL/SEAL source code 

action armo; 

virtual machine instructions 

setstate operator: 
isa 3# Zmplicit set state function 

lod 0 -1 # get parameter (next state) 

action unarmo; 

action attacko; 

triggered scalar of enemyDetected; 

str 14# set next state 

csf stateTransition # system function 

lod 0 -1 # get parameter (next state) 

ret 1 $1 # end function, return value 
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F-3 FSM Translation Example 

state guarding 
I 

guarding () ; 

1; 

state defending 

I 

onentryo; 

onexito; 
defendingo, guarding; 

guarding: : guarding 

do 

I 

if(enemyDetected) 

setstate defending; 

I forever; 
I 

finite state machine: 

initialisation 

ldc 1# onentry 

str 03 // flow target 

ldc NULL 

lod 13# current state 

neq # true (NULL) if FSM initialisation 

jpf +10 # else run 
ldc 100 # guarding 

lod 14# next state 

neq 

jpf +10 # initialise to "guarding" 

ldc 200 # defending 

lod 14# next state 

neq 

jpf +49 # initialtse to "defending" 

jmp +88 

FSM structure 
ldc 100 # guarding 

lod 13# current state 

equ 

jpf +40 # current state %s not "guarding" 

state "guarding" 
ldc 1# onentry 

lod 03 // flow taT-get 

equ 

jpf +9 

entry function (guarding) 

lod 14# next state 

str 13# current state 

ldc NULL # transition target 
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F. 3 FSM Translation Example 

str 1 4# oext state 

ldc 2 # next: "guarding" body 

str 0 3# flow tar9ct 

j mp -14 # continue 

j mp +27 # never happens 

ldc 2 # "guarding" body? 

lod 0 3 // flow target 

equ 

jpf +12 

state body (guarding) 

ldc 1# whZle(l) 

jPf +6 # never happens 

lod 18# "enemyDetected" 

jPf +3 

ldc 200 

Cuf 12 $1 # call set state function 

j mp -6 # loop back (while) 

ldc 3# onexit 

str 03# set next event 

j mp -29 # continue 

j mp +12 #never happens 

ldc 3# onexit? 

lod 03 // flow target 

equ 

j pf +8 

exit function (guarding) 

lod 14# next state 

ldc NULL 

neq 

jpf +3 

lod 14# next state 

Cuf 12 $1 # call set state function 

j mp +46 

j mp +43 
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F. 3 FSM Tý-anslation Example 

ldc 200 # defending 

lod 13# current state 

defending:: onentryo 
I 

arm () ; 
I 

def ending: : defending 

I 

attacko; 
I 

equ 

jpf +39 # current state is not "defending" 

state "defending" 
ldc 1# onentry 

lod 03# flow target 

equ 

jpf +11 

entry function (defending) 
lod 14# next state 

str 13# current state 

ldc 100 # transition target 

str 14# next state 

lcs "arm" 

csf executeCallback # system function 

ldc 2# next: "defending" body 

str 03 // flow target 

jMP -59 # continue 

jMP +25 # never happens 

ldc 2# "defending"' body? 

lod 03 #flow target 

equ 

pf +7 

state body (defending) 

lcs "attack" 

csf executeCallback #system, function 

ldc 3# onextt 

str 03 // flow target 

jmp -69 # continue 

jmp +15 # never happens 

ldc 3# onexit 
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FA API Functions (Selection) 

lod 03 // flow target 

defending:: onexito 
I 

unarmo; 
I 

equ 

jpf +11 

exit function (defending) 
lcs "unarm" 

csf executeCallback # system function 

lod 14# next state 

ldc NULL 

neq 

j pf +3 

lod 14# next state 

cuf 12 $1 # call set state function 

jmp +3 

cleanup 
jmp +2 # terminate FSM 

jmp -86 # loop back 

ret # return to main program 

FA API Functions (Selection) 

The AP1 of the system prototype's run-time environment (selection). 

FAI Virtual Machine Control Rinctions 

vm* Instance(void); 
Returns a reference to the virtual machine. 

int addProgram(std:: string name); 

Loads a SEAL bytecode program into a new entity process. Returns the ID of 

the new process. 

bool registerEntity(int pID, entity *ve); 
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FA API Functions (Selection) 

Register an object that was derived from the entity type with a process of the 
given ID. 

bool registerCallback(<4 variations>); 
Register a callback function that may be part of an entity object with the virtual 
machine or a given process, stating the name and ID of the callback function, 

whether it returns a value and the number of its formal parameters. 

bool registerEvent(std:: string name); 
Register an event with the given name with the virtual machine. Returns the ID 

of the event. 

bool run(void); 
Execute the virtual machine's execution cycle. 

F. 4.2 Process Interaction Functions 

int getActiveProcesses(void); 
Returns the number of currently active entity processes. 

int getPriority(int pID); 
Returns the priority of the process with the given 1D. 

void setPriority(int pID, int pr); 
Sets the priority of the process with the given ID to the stated value. 

bool isSuspended(int pID); 
Determines if the process with the given ID has been suspended. 

void spawnEvent (<several variations>); 

Triggers the event with the given ID or name. Optionally allows the specification 

of a target process. 

bool setValue (<several variations>); 
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F. 4 API Functions (Selection 

Set a named variable in an entity process to the given value. Optionally allows 
the specification of a target process. 

F. 4.3 Housekeeping Functions 

double getVersion(void); 
Return the version (number) of the virtual machine. 

double getRevisionNo(void); 
Return the revision (build) number of the virtual machine. 
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Glossary 

AOT An AOT or Ahead-Of-Time compiler in a virtual machine is a compiler that 
first compiles a whole program into an intermediate form before it is executed 
by the virtual machine. 

API An API or Application Programming Interface provides the programmer with an 
interface to a group of related functions that are usually located within a library 

of functions. The interface in this case is the description of data types, return 
types and formal parameters to functions and methods (if object orientation is 

used). 
BDL A BDL or Bchaviour Definitlon Language is a programming language used for 

the definition of game character behaviour. It facilitates the application oriented 
creation of believable virtual entities that inhabit game worlds. 

DSL A DSL or Domain Specific Language is a, programming language specia, lised for 

the purpose of solving problems in a specific application domain. 

FPS An FPS or First Person Shooter game is an action video game in which the 

player experiences the gameplay from the viewpoint of the protagonist. This 

type of game usually involves the exploration of some sort of building complex 

and frequent skirmishes with other players or NPCs. Falise [2000] presents a 

study of the FPS game genre, providing an overview of its history. 

FSM An FSM or Finite State Machine is a data structure that provides the most 

commonly used means for creating game Al [Fu and Houlette 20041. In games, 
FSNIs allow the definition of Boolean states of which only one will be active at 

any one time. Each state may have several possible follow states. 

FuSM An FuSM or Fuzzy State Machine is a permutation of an FSM which uses fuzzy 

logic instead of Boolean logic [McCusky 2000]. 
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GOAP GOAP or Goal-Oriented Action Planning is a goal oriented Al technique [Orkin 
2004a] for use with virtual entities in which the sequence of actions that the 
system needs to perform to reach its end-state or goal is generated in real-time 
by using a planning heuristic on a set of known values which need to exist within 
the virtual entitys domain knowledge. 

GP GP or Genetic Programming is an automated technique which produces algo- 
rithms by using a process that parallels evolution through natural selection, i. e. 
a simulation of life [Koza 1992]. 

GPU A GPU or Graphics Processing Unit is a co-processor with dedicated instructions 
for computer graphics operations. GPUs provide the functionality for modern 
computer graphics cards. 

NPC An NPC or Non-Player Character is a virtual entity inhabiting the game world, 
whose perception and actions within the game are controlled by a computer 
program. The behaviour displayed by an NPCs is usually generated with the 
aid of "artificial intelligence" algorithms and techniques. 

OTF An OTF or On-The-Fly compiler in a virtual machine is a compiler that compiles 
each instruction of a program immediately before it is executed by the virtual 
machine. The compilation target can be an intermediate form for use by the 

virtual machine or native machine code of the host platform. 
RPG An RPG or Role Playing Game belongs to a computer game genre that has been 

derived from traditional paper-based games and board games like the popular 
"Dungeons and Dragons". In these games the player usually controls a hero 

character or a party of hero characters and needs to solve a series of quests 

within a fantasy setting. 
RTS An RTS or Real-Time Strategy game is a strategy game which is not played 

round-based but in real-time, i. e. all of a player's units and his opponents have to 

be directed/make choices on the fly, while all action takes place simultaneously. 

SDK An SDK or Softwaxe Development Kit is a comprehensive set of domain specific 

programs, libraries and manuals that provides a software developer with all the 

required data and information for developing programs in the SDK's domain. 

VM A VM or Virtual Machine is a program that emulates the functionality of a whole 

computer system. It provides applications with a level of abstraction above the 

actual hardware (and the operating system) of the computer. 
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