
A Method for Incorporating User Modelling

Paul de Vrieze, Patrick van Bommel, and Theo van der Weide

Nijmegen Institute for Computing and Information Sciences
Radboud University

The Netherlands
{pauldv,pvb,tvdw}@cs.ru.nl

Abstract. In this paper a method is presented for adding user modelling
to existing software systems. The method consists of seven steps that
lead from initial analysis to the definition and evaluation of the elements
needed for the adaptive behaviour.

Further the concept of an adaptation element is introduced. Such an
adaptation element can be used to determine the impact of personalisa-
tions.

1 Introduction

The area of user modelling is becoming more and more popular in the recent
years [1], [2], [3], [15]. Much of this research focuses on the different ways that
programs can be adapted to users. For example in [13] the authors experiment
with the adaptation of a hypermedia presentation based on a model of the user’s
cognitive abilities. Or in [14] the authors focus on using user modelling in web
advertising.

In other works [5], [6], [16], authors have proposed systems for adaptivity.
These systems however are often limited in their range of application [7] or the
need to reduce complexity for authors [4].

Our current work mainly focuses on the ways in which user modelling can
be integrated into computer applications. In this we do not limit ourself to
specific strategies as for example in [12] In earlier work [8], [9] we have looked at
the general properties of adaptive systems (with which we mean systems using
user modelling), described an implementation of these ideas [11], and provided
a generic model for adaptivity (GAM) [10]. In this paper we continue on this
venue by looking at an analysis method for adding user adaptivity to an existing
system.

The main concept in our method is the concept of a personalisation. A per-
sonalisation is a way in which the system can be changed to adapt to a user. If
for example the system fills in your name at appropriate places, then that is a
personalisation. In our work we focus on those personalisations that are based
on dynamically deduced user models.

Our analysis method will be illustrated based on a case. The case is set in
the context of an email reader. The main focus is on a particular feature of this

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Bournemouth University Research Online

https://core.ac.uk/display/74843?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


mail reader: a wizard that helps users in creating filtering rules for automatically
sorting email messages.

To make the case more tangible a user called Joe is introduced. Joe is a
rather happy user of the email application, who until now manually organises
all his read emails into appropriate folders. The purpose of the case is to make
Joe even more happy by offering user modelling.

Today Joe has just read an email from the linux-kernel mailing list, and wants
to sort it into the “linux-kernel” mail folder. As this list is a high volume list that
has hundreds of messages per day, he decides to use the new wizard to create
a rule to automatically sort the linux-kernel messages into the linux-kernel mail
folder.

In the paper we will first discuss the seven steps of the method in section 2
(The steps go from section 2.1 to 2.7. After that section 3 discusses the results
of the method for the case, and we conclude in section 4

2 A Method for Incorporating User Modelling

The method consists of seven stages (see fig. 1): (1) analysis of the initial state,
(2) finding possible personalisations, (3) the identification of the questions about
the user needed to determine these personalisations, (4) determining the needed
attributes for the user model, (5) selection of the events needed to maintain
this user model, (6) in the sixth stage the results of the second to the fifth
step are combined in an adaptation graph, which is then cleaned of infeasible
personalisations. (7) finally for those personalisations that have multiple possible
implementations, the best implementation is selected.

Our method is based on our view of user modelling as described in [10] and
[8]. In this view user modelling consists of two parts, push and pull modelling.
Push modelling is that part that updates the user model (from left to right),
while pull modelling is the part that queries the user model (from right to left).
These parts are regarded as equally important in the user modelling process.
Their processing is decoupled by the user model which basically is a persistent
storage facility.

Stage 1
Analysis

Stage 2
Personalisations

Stage 3
Questions

Stage 4
User properties

Stage 5
Events

Stage 6
Pruning

Stage 7
Evaluation

Fig. 1. The method



The focus of the method is the identification and selection of complete adap-
tation elements. An adaptation element is a set of elements that can achieve a
personalisation. If an adaptation element is self-sustaining given the events it
defines, it is called a complete adaptation element. The algorithms to determine
complete adaptation elements are described in section 2.6.

2.1 Analysis of the initial state

The first stage of our method consists of the analysis of the system as it exists
without user modelling. This helps to understand the system itself and to find
the main points where a user may benefit from user modelling.

One appropriate way to look at the mail wizard case is to use the concept of
goals. Here the assumption is that a user has a goal that he wants to achieve with
the use of the wizard. For Joe the goal is to create a filter that will automatically
filter all the linux-kernel mails to the linux-kernel folder.

The email filter wizard presents itself as a set of screens. At every screen the
user needs to make a particular choice. This choice then leads to a new screen,
but different choices can lead to different screens. When the screens are such
seen as nodes, and the transitions between the screens as edges, the wizard can
be seen as a graph. Before the analysis the assumption is that user modelling
can help the user to find the most appropriate path through this graph.

The first step taken in the analysis of the case is to identify all paths that can
be taken through the dialog, and to make up the goal a user might have taking
that path. In this analysis the cases where the dialog is ended prematurely are
not considered. (See also fig. 2)

The following paths and likely goals have been identified:

Main Screen

Mailing list
main

Rule Eval

Direct input

Filter on
person

filter by
example

Direct input

Automatic
by examples

Automatic
list filter
creation

Direct Rule
Input

Manual
Input

Filter on
group

Fig. 2. A conversation model

– Main screen → Mailing-list filter → Direct input of list → Rule evaluation
The goal of this path can be to make a rule for a mailing list for which the
user (1) knows how to filter on and (2) wants to specify the rule manually.



– Main screen → Mailing-list filter → Automatic Mailing list detection → Rule
evaluation
The user goal could be to make a rule for some mailing list based on example
mails from that list.

– Main screen → Filter on person → Automatic sender → Rule evaluation
The user wants to create a filter based on the sender of messages, and wants
the rule to be created based on an example message.

– Main screen → Filter on person → Manual sender → Rule evaluation
In this path the goal of the user may be to create a filter based on the sender
of messages, but wants to specify it manually.

– Main screen → Filter on group → Filter by examples → Rule Overview
Possibly the user wants to filter on a group of senders/receivers based on a
selection of emails that denote the group.

– Main screen → Filter on group → Filter direct group → Rule Overview
The user’s goal is to manually specify a group that he wants to filter on.

– Main screen → Direct Rule Input → Rule evaluation
In this path the user wants to manually specify a rule.

When looking at these paths, a number of observations can be made:

1. There are multiple ways to achieve the same results. For example using
manual or automatic rule creation.

2. There are multiple user goals, over different paths that lead to the same
results.

3. There is a level of correspondence between goals and paths. Paths are how-
ever also influenced by external factors. For example when automatic rule
creation fails, the user will need to use a manual approach, even when his
goal is to do it automatically.

The above observations lead to an increased understanding of the possible ways
to use user modelling in this system.

2.2 Finding personalisations

After the analysis of the original situation, it is necessary to look at possible
ways in which the wizard can be personalised. In order not to reject options
at an early stage, the feasibility of coming up with the needed data must not
be considered for candidate personalisations. The feasibility is considered in the
sixth, pruning, stage.

In the example case we can regard the personalisation to be perfect when all
the user needs to do is to click the next button. The following two personalisation
options can be identified. As first option the most likely transition or option can
be offered as default. Many systems already have a static way to do this, but the
aim in user modelling is to do this dynamically, based on the user model. The
system could for example offer the creation of a mailing list rule as the default.

The second personalisation option is to have a way in which most options
are already preselected for the user. The system might for example deduce that
the likeliest example message is the last read message.



2.3 Finding the questions need to be answered

After determining what can be personalised according to the user model, the
next step is to determine the information that is required to perform these
personalisations. To that end, appropriate about the user must be determined.

A way to determine which screen the user will most likely visit next is to
look at the user’s goal. Having determined which paths lead to which goals, the
most likely next transition can be determined. The question that needs to be
answered to do this is: “What is most likely the goal of the user?” (likelyGoal)

To determine the most probable rules in a screen, the question asked can
be: “What filter rules does the user most likely want to create given the current
position in the dialog?” (probableRules) The answer in Joe’s case should include
a number of rules for moving messages to the linux-kernel folder.

To determine other options like the default example mail, the question that
needs to be answered is: “Which message does the user want to use as example?”
(exampleMessage) A good candidate answer is probably the last message the user
watched.

2.4 Finding the user properties needed to answer the questions

Knowing the questions about the user that must be answered, the fourth step
is to determine how these questions can be answered. In this step it is assumed
that all desired general knowledge of the user is contained in the user model. The
algorithms that answer the questions must translate this general knowledge into
specific answers. As a side-product of determining the algorithms, the needed
user properties are determined.

A plausible way to determine the most likely goal of the user, is to determine
the probability distribution of all goals, and select the goal with the highest
probability. There are three factors that influence this probability distribution,
namely the frequency of occurrence of each goal in history (the history property),
the current position in the dialog (a parameter from the system), and third those
rules that the user is most likely to want to create (the probableRules property).

To determine the most likely rules given the current state, the user model
must contain a list of likely rules (again the probableRules property), and filter
them according to the current position in the dialog.

For answering the question what message must be used as example, the most
straightforward heuristic is to choose the last viewed message. This means that
the last viewed message must be recorded in the user model (the lastMessage
property).

Concluding this analysis there are three elements that must be contained in
the user model: A history of previous goals of the user, a list of likely rules, and
the last viewed message.

2.5 The events to record

Having determined the required elements of the user model, the next step is to
determine how these user properties can be determined. All things that happen



in the application can be seen as events. The heuristics to translate these events
into a changed user model determine the events that need to be recorded.

The most simple heuristic in our case is the heuristic to determine the last
viewed message. We can simply update the user model each time a message
is viewed. To do this we need that a mailViewed event is passed to the user
modelling system, with the viewed email message as a parameter.

A little more complex is the history of previous user goals. To maintain such
a history it is necessary to react to the successful completion of the wizard by
recording the user’s goal. The hard part here is to determine the user’s goal
based on the interaction history. A way to circumvent this is to assume that
goals have a one to one correspondence to the followed path. This also solves the
problem of determine the most likely next transition given a goal and a current
state.

To record the last path of the user, it is however necessary not only to record
the result of the wizard, but also the path followed. To this end, the user mod-
elling system must record every transition, and the completion or cancellation
of the wizard. We also need to introduce a new temporary property in the user
model to record the path as it is followed. At the end of the wizard this property
is reset, and at a successful completion the path is added to the history.

Third to maintain a list of likely rules, the mailViewed event can be reused.
Based on the email a set of rules can be developed that creates candidate rules
and their chances. The resulting candidate rules (one message can result in
multiple candidate rules) are then recorded in the user model. Assuming that
newer rules have a higher likelihood, a timestamp must be recorded with the
rules. In the querying of the candidate rules, this timestamp is used to adjust
the probabilities.

Summarising the following events need to be recorded: the viewing of a mes-
sage, the transitions in the wizard, the completion or cancelling of the wizard.

2.6 Pruning

The sixth step in our method for adding user modelling behaviour is to review
the results of the previous four steps. In this step we will remove all user model
properties, user questions and personalisations that need information that can
not be determined.

Looking at the results of the previous steps a directed labelled graph (see fig.
3) can be created. We call this graph the adaptation graph. The nodes of this
graph are events, user model properties, user questions and personalisations. The
edges and their labels are formed by the heuristics or algorithms that transform
between them. The directions are determined by the prerequisiteness relation.
For example in our case there is an edge from the lastMessage user model property
to the mailViewed event.

A formal definition of the adaptation graph is given in Definition 1

Definition 1. Let E be the set of all events, U be the set of all user model prop-
erties, Q be the set of all question prototypes, and P be the set of personalisations,



mailViewed

dialogFinished

dialogTransition

dialogCancelled

lastMessage

history

currentPath

currentRules

exampleMessage

likelyGoal

probableRules

exampleMessage

nextScreen

likelyRule

Events(E) User Properties(U) Questions(Q) Personalisations(P)

Fig. 3. The adaptation graph

then the set N of nodes of the adaptation graph is defined as:

N = E ∪ U ∪Q ∪ P

The set A of arcs of an adaptation graph is restricted to:

A ⊂ P×Q ∪Q× (Q ∪ U) ∪ U× (Q ∪ U ∪ E)

Further two functions begin and end are defined that return the starting and end
points of the arcs respectively.

This graph (fig. 3) can now be used to determine adaptation elements. This
process works as follows: for each personalisation consider the arcs starting in
that personalisation. The subgraph that is reachable from such an arc is an
adaptation element. So there is an adaptation element for each edge out of a
personalisation.

The algorithm for determining the adaptation elements is implemented by
the getAdaptationElements function as follows:
1: function: getAdaptationElements → P(P(A))
2: X = ∅
3: for all p ∈ P do
4: for all a ∈ A ∧ begin(a) = p do
5: X = X ∪ {closure(a, ∅)}
6: end for
7: end for
8: return X
9: end function

10: function: closure(a ∈ A, s ∈ P(A)) → P(A)
11: if a ∈ s then
12: return ∅
13: else
14: r = {a}
15: for all a′ ∈ A ∧ end(a) = begin(a′) do
16: r = r ∪ closure(a′, r ∪ s)
17: end for



18: return r
19: end if
20: end function

This recursive function returns a set of subgraphs of the adaptation graph.
Every outgoing arc from every personalisation signifies one adaptation element.
The closure function returns the transitive closure for these arcs such that the
returned arcs form an adaptation element.

An adaptation element can either be complete or incomplete. An adaptation
element is complete when all leaf nodes are events, and there are no further
sinks. The algorithm for determining completeness of an adaptation element is
defined by the function complete1 as follows:
1: function: complete1(p ∈ P) → boolean
2: return complete2(p, {p})
3: end function

4: function: complete2(n ∈ N, v ∈ P(N)) → boolean
5: if n ∈ E then
6: return true
7: else
8: S = {a ∈ A|begin(a) = n ∧ end(a) 6∈ s}
9: if S = ∅ then

10: return false
11: else
12: b = true
13: for all a ∈ S do
14: b = b ∧ complete(end(a), v ∪ {end(a)})
15: end for
16: return b
17: end if
18: end if
19: end function

The complete1 function initialises the complete2 function that performs the actual
work. The recursive complete2 function determines for every outgoing arc from
a node whether the nodes reachable from this arc are complete. Event nodes are
allways complete. When a node has no outgoing arcs, or only outgoing arcs that
have allready been seen, it is incomplete if it is no event node.

Pruning consists of leaving only that part of the full graph that is part of
complete adaptive elements. The result is that only those personalisations needed
for at least one personalisation are left.

In our case there are no sinks in the adaptation graph, so all parts are re-
tained. There are three complete adaptive elements. One element the next screen
personalisation, and two elements for the default option personalisation.



2.7 Selection

In the seventh and last stage the final adaptive elements are selected. The first
step is to select the best adaptive element for each personalisation. There is a
catch however, as is exemplified by our case, it is possible that the adaptive
elements for one personalisation are different. The solution is to split the per-
sonalisation up. As a result in our case we now have three personalisations with
each one adaptive element.

3 A Demonstration

As a result of our method in the previous section we have identified three adap-
tation elements in the case. As step 7 in section 2.7 has ensured that each
personalisation is accomplished by only one adaptation element, we will address
each adaptation element by the personalisation it accomplishes.

In this section we will discuss how the adaptation elements are used in a
system, illustrating it along the lines of the email wizard case.

Help previous next cancel

Message folder:

Create a filter rule - create by example

Linux-kernel

Select message:

Stelian Pop - [PATCH 0/5] Sonyp

C Hellwich - [PATCH] remove de

M Geithe - 2.6.10-rc1-bk4 and ke

Pavel Machek - [Proposal]Anoth

A Morton - [PATCH] [swsusp] pri

H Lambrechts - Kernel 2.6.10-rc1

Jens Axboe - hddtemp hangs wit

Li Shaohua - Re: [ACPI] [Propos

Filter on [Mail-Followup-To]

Filter on [To: lkml@joe.net]

Filter on [To: *@vger.kernel.org]

Filter on [List-ID: linux-kernel.vge

Filter on [Cc: *@vger.kernel.org]

Filter on [List-Post]

Filter on [Reply to]

Rule:

Fig. 4. The third screen in the filter wizard

An adaptation element has two points of interaction with the system: the
events, and the personalisations. For example when fig. 4 is displayed to the
user, the system will have generated a dialogTransition event. This event has
caused the currentPath property of the user model to be updated.

Besides this event, there are also two personalisations that are used in the
dialog: the exampleMessage, and the likelyRule personalisation. The next screen
personalisation is however not used as we can see from fig. 2 that there is only
one transition from this screen.

This leads to the observation that this screen involves all three adaptation
elements. The nextScreen adaptation element is however only used to update the
user model, while the likelyRule and exampleMessage adaptation elements were
only used for personalisations. We can also see that for this dialog the adaptation
elements are completely independent as the dialogTransition event is not a part
of the likelyRule and exampleMessage adaptation elements.



4 Conclusion

In this paper we have presented a method that can be used to extend legacy
systems for user modelling. This method has seven steps that go from the ini-
tial analysis to the selection and evaluation of personalisation options. As the
method does not presume special properties of the legacy system, it is generally
applicable. The method is, with little change also appropriate for newly designed
systems, as only step 1 needs to be adjusted for such systems.

As a side-effect of the method we have introduced the concepts of adapta-
tion graph and adaptation element. An adaptation graph represents the various
parts involved with user modelling such as: events, user properties, questions,
personalisations, and their relationships. Adaptation elements the are smallest
self-sustaining subgraphs of an adaptation graph starting at personalisations.
If an adaptation element can be actually accomplished within the adaptation
graph, then the element is complete. Complete adaptation elements are used for
the selection of the personalisations of the system.

In furture work we will apply our method to other kinds of systems, such
as information retrieval and adaptive hypermedia. Further we hope to create
a formal framework for user modelling systems that allows for analysis of the
properties of these systems.

References

1. ACM. The adaptive web. Special Issue of Communications of the ACM, 45(5),
May 2002.

2. ACM. Attentive user interfaces. Special Issue of Communications of the ACM,
46(3):30–72, March 2003.

3. A. Aiken, J.M. Hellerstein, and J. Widom. Static analysis techniques for predict-
ing behavior of active database rules. ACM Transactions on Database systems,
20(1):3–41, 1995.

4. P. Brusilovsky, E. Schwarz, and G. Weber. A tool for developing adaptive electronic
textbooks on the world wide web. In proceedings of World Conference of the
WWW, Internet and Intranet, pages 64–69, San Franciso, CA, USA, October 1996.

5. Peter Brusilovsky. Methods and techniques of adaptive hypermedia. User Modeling
and User-Adapted Interaction, 6(2-3):87–129, 1996.

6. Peter Brusilovsky. Adaptive hypermedia. User Modeling and User Adapted Inter-
action, 11(1-2):87–110, 2001.

7. Paul de Bra, Geert-Jan Houben, and Hongjing Wu. Aham: A dexter-based refer-
ence model for adaptive hypermedia. In Proceedings of the ACM Conference on
Hypertext and Hypermedia, pages 147–156, Darmstadt, Germany, 1999.

8. Paul de Vrieze, Patrick van Bommel, Jakob Klok, and Theo van der Weide. Towards
a two-dimensional framework for user models. In Proceedings of the MAWIS03
workshop attached to the OOIS03 conference, Geneva, 09 2003.

9. Paul de Vrieze, Patrick van Bommel, Jakob Klok, and Theo van der Weide. Adap-
tation in multimedia systems. Multimedia Tools and Applications, 2004. to appear.

10. Paul de Vrieze, Patrick van Bommel, and Theo van der Weide. A generic adaptive
model in adaptive hypermedia. Lecture Notes in Computer Science, 3137:344–347,
August 2004.



11. Paul de Vrieze, Patrick van Bommel, and Theo van der Weide. A generic engine
for user model based adaptation. In Proceedings of the User Interfaces for All
workshop, 2004.

12. Josef Fink and Alfred Kobsa. User modeling in personalized city tours. Artificial
Intelligence Review, 18(1):33–74, 2002.

13. Halima Habieb-Mammar and Franck Tarpin-Bernard. Cumaph: Cognitive user
modeling for adaptive presentation of hyper-documents. an experimental study.
Lecture Notes in Computer Science, 3137:136–145, August 2004.

14. Przemyslaw Kazienko and Michal Adamski. Personalized web advertising method.
Lecture Notes in Computer Science, 3137:146–155, August 2004.

15. Alfred Kobsa. Generic user modeling systems. User Modeling and User-Adapted
Interaction, 11(1-2):49–63, 2001.

16. Hongjing Wu. A reference Architecture for Adaptive Hypermedia Applications. PhD
thesis, Technical University of Eindhoven, November 2002. isbn: 90-386-0572-2.


