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Abstract: Data-driven models, or metamodels, offer an efficient way to mimic the behaviour of
computation-intensive simulators. Subsequently, the usage of such computationally cheap meta-
models is indispensable in the design of contemporary antenna structures where computation-
intensive simulations are often performed in a large scale. Although metamodels offer sufficient
flexibility and speed, they often suffer from an exponential growth of required training samples
as the dimensionality of the problem increases. In order to alleviate this issue, a Gaussian pro-
cess based approach, known as Gradient Enhanced Kriging, is proposed in this work to achieve
cost-efficient modeling of antenna structures. The Gradient Enhanced Kriging approach incor-
porates adjoint-based sensitivity data in addition to function data obtained from electromagnetic
simulations. The approach is illustrated using a dielectric resonator and an ultra-wideband antenna
structures. The method demonstrates significant accuracy improvement with less number of train-
ing samples over the Ordinary Kriging approach which utilises function data only. The discussed
technique has been favorably compared with Ordinary Kriging in terms of computational cost.

1. Introduction

Despite continual evolution of resources which make contemporary computing powerful, the math-
ematical and the computational complexities of physics-based simulation codes have grown phe-
nomenally in recent years. For example, a full-wave electromagnetic (EM) analysis allows for
accurate evaluation of antenna structures as well as for taking into account various environmental
factors such as the presence of connectors, housing, installation fixtures, etc. EM simulation tools
are therefore major design tools of contemporary antenna engineering [1]. However, high-fidelity
EM analysis with fine mesh resolution of the structure at hand can be computationally very expen-
sive. Consequently, carrying out design tasks that require repetitive runs of high-fidelity computer
simulations, such as parametric optimization, sensitivity analysis, design space exploration, may
be impractical or even prohibitive. In all such constantly evolving and technically challenging en-
vironments, the usage of metamodels (also known as surrogate models, replacement models, or
response surface models) can significantly improve the efficiency of design processes while reduc-
ing the program cost (in terms of computational time and resources) considerably.

The goal of metamodeling is to mimic the behaviour of a computationally expensive simulator
as accurately as possible by running a carefully designed set of high-fidelity simulations which can
yield maximum information about the problem at hand with minimal computational effort [17].
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Thus, a metamodeling approach is referred to as a technique that uses the sampled data to create
a computationally cheap model which can predict the output of an expensive computer code at
untried points in the design space. Various metamodeling techniques have been developed over the
years which are applied to expedite computationally expensive tasks such as multi-disciplinary de-
sign and optimization of aircraft wing geometries, robustness- and/or reliability-based optimization
of antenna structures, sensitivity analysis, etc. For example, implementation of low-cost antenna
models is possible using various approximation techniques such as polynomial regression [2],
radial basis function interpolation [3], Kriging [4, 5] support vector regression [6–9], fuzzy sys-
tems [10,11], multidimensional Cauchy approximation [12], or artificial neural networks [13–16],
etc. A common problem associated with most of the metamodeling approaches is the fact that they
demand for a high model setup cost: in order to ensure usable accuracy a large number of training
sample points is necessary, which quickly grows with the dimensionality of the design space (a
problem often referred to as the curse of dimensionality) [2, 17, 18]. As a result, approximation
techniques are mostly suitable for creating multiple-use library models but not so much to build
surrogates for, say, one-time optimization of a specific antenna structure. An overview of the most
commonly used metamodelling techniques is provided in [19], [20] and [21].

Physics-based surrogate modeling is another way of creating fast and usable-accuracy replace-
ment models. Perhaps the most popular type of technique of this kind is space mapping (SM)
[22–25], where the surrogate is constructed by means of suitable correction of an underlying low-
fidelity (or so-called coarse) model. The bottleneck of space mapping in terms of antenna mod-
eling is the lack of fast coarse models, because low-fidelity antenna representations are normally
obtained through coarse-discretization EM simulations, the cost of which cannot be neglected.
Another issue with SM is fixed number of extractable parameters which limits the model flexibil-
ity. This particular difficulty can be alleviated, to some extent by SM enhancement through fuzzy
systems [26], radial-basis functions [23], or Kriging [27]. The problem of excessive number of
training samples necessary to establish a reliable surrogate can be partially addressed by model-
ing methods that rely on appropriately extracted response features (e.g., shape-preserving response
prediction [28], or feature-based modeling [29], however, these methods impose relatively strong
assumptions on the response shapes of the structures under consideration so their applicability is
limited to certain types of devices [29]. Another possibility is variable-fidelity modeling, where
data of various degrees of accuracy are blended together using, e.g., co-Kriging [30, 31] or space
mapping [32, 33]. Acquiring function (or response) data of various degrees of accuracy is more
popular in areas where the computational cost of high-fidelity simulations is dominant such as
full-wave EM analysis, computational fluid dynamics (CFD) and finite element (FE) analysis. For
example, a set of EM or CFD methods with varying degrees of accuracy and complexity (circuit
schematic simulations, Maxwell equations, panel equations, Euler equations, and Navier-Stokes
equations) are frequently used to obtain data of varying fidelities. In addition, data of various
levels of accuracy can be obtained by executing simulations on various mesh resolutions or with
various convergence criteria. Various variable-fidelity metamodeling procedures have been re-
ported in [34–37].

In this paper, we propose Gradient-Enhanced Kriging (GEK) approach that allows for low-cost
modeling of antenna structures on a single PC machine. The cost reduction, in terms of the number
of training sample points, is achieved by exploiting gradient information from adjoint simulations
(currently, adjoint analyses are supported in a handful of commercial EM solvers such as CST or
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HFSS). The cost of obtaining additional gradient data may be noticeable compared to the cost of
obtaining a function response at the same sample point. For instance, various cases are recorded
where k-dimensional gradients can be estimated with adjoint analyses which consume (approxi-
mately) 10% of the computational cost required for obtaining function values at a single sample
point [40, 41]. We demonstrate that exploiting gradients of function values with respect to input
variables in the Kriging model leads to significant reduction in the number of training data without
degradation of the predictive power of the model. Our approach is illustrated using a dielectric
resonator and an ultra-wideband antenna structures, and compared to conventional Kriging inter-
polation that utilizes the function data only. Despite the increased simulation cost of the EM model
with sensitivity data, our method has been favorably compared with Ordinary Kriging in terms of
CPU-time required for data acquisition.

The remaining part of this paper is organised as follows. The mathematical formulations of
Kriging and GEK are elaborated in Section 2. Section 3 lists the test problems and the error
metrics used to assess the metamodel accuracy. Test results are presented and discussed in Section
4 which is further followed by the conclusions in Section 5.

2. Mathematical formulations of Kriging and Gradient Enhanced Kriging

Ordinary Kriging (OK) prediction ŷ(x∗) of an arbitrary function f(x) at a prediction (or untried)
point x∗ can be expressed as a summation of a constant trend function (µ) and a realization of a
stationary Gaussian random process:

ŷ(x∗) = µ̂+ψTΨ−1(y − tµ̂), (1)

where ψ is a vector of correlations between ns sample data points X = {x(1), ...,x(ns)}T and x∗;
Ψ is a ns x ns symmetric matrix of correlations between the sample data points; y is a vector of
function values and t is a vector of ones. The covariance structure of the sample data is captured
using Matérn 3

2
correlation function [42, 43] which can be expressed as,

ψ(d′) = (1 +
√
3c)exp

(
−
√
3c
)
, (2)

where c =
√∑k

p=1 θpd
′2
p , d′ = |xip − xjp| and k is the dimensionality of the problem. Gradient

Enhanced Kriging is considered as a multi-data extension to Kriging. GEK incorporates cheaply
available gradient data in addition to function data while building surrogate models. The mathe-
matical formulation of GEK is same as Kriging except the following variations:

• correlation matrix in GEK (Ψ̇) becomes a (k+1)ns× (k+1)ns symmetric block matrix and
now contains the correlations of both response and gradient observations between the sample
data points. It can be expressed as,
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; (3)

• correlation vector in GEK (ψ̇) contains correlation of both response and gradient observations
between X = {x(1), ...,x(ns)}T and x∗, and can be expressed as,

ψ̇ =

(
ψT ,

(
∂ψ

∂x1

)T

, ...,

(
∂ψ

∂xk

)T
)T

; (4)

• vector y in GEK contains both the response and the gradient values, and can be expressed as,

ẏ =

(
yT ,

(
∂y

∂x1

)T

, ...,

(
∂y

∂xk

)T
)T

; (5)

• vector t in GEK contains ns ones followed by k × ns additional zeros, and can be expressed
as,

t =
(
11, ...1ns , 0ns+1, ..., 0(k+1)ns

)T
. (6)

Hence, Equation 1 for GEK becomes,

ŷ(x∗) = ˆ̇µ+ ψ̇
T
Ψ̇−1(ẏ − f ˆ̇µ). (7)

The trend function is calculated using least squares method as,

ˆ̇µ = (tT Ψ̇−1t)−1tT Ψ̇−1ẏ. (8)

The maximum likelihood estimate of the hyper-parameters (θ) of the correlation function is
estimated by maximizing the concentrated ln-likelihood function

φ =
−(k + 1)ns ln(σ̂

2)− ln|Ψ̇|
2

, (9)

where

σ̂2 =
(ẏ − t ˆ̇µ)T Ψ̇−1(ẏ − t ˆ̇µ)

(k + 1)ns

(10)

is the estimated GEK variance.
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3. Surrogate Modeling of Antenna Structures

Let f(x) be an EM-simulated antenna structure, where x is a vector of geometry parameters,
whereas f is a vector-valued response, e.g., reflection coefficient versus frequency. In practice,
we assume that f(x) = [f(x, ω1)f(x, ω2)...f(x, ωm)]

T , i.e., the model is evaluated at a discrete
set of frequencies ωk, k = 1, ...,m. The high-fidelity EM simulations of the antenna structure
are computationally very expensive. The goal of the surrogate modeling process is to construct a
cheaper representation of f that is valid in the interval l ≤ x ≤ u, where l and u are the lower and
the upper bounds for the geometry parameters, respectively.

3.1. Suspended Dielectric Resonator Antenna

Consider a suspended dielectric resonator antenna (DRA) shown in Figure 1 [37]. The structure
is composed of a dielectric resonator (εr = 10 and tanδ = 0.0001) suspended over the ground
plane on the two Teflon slabs with relative permittivity and loss tangent of 2.1 and 0.001, respec-
tively. The antenna is fed through the ground plane slot. The substrate material is Rogers RO4003
(εr = 3.38, tanδ = 0.0027 and h = 0.5 mm). The DRA is covered by polycarbonate housing
(εr = 2.8 and tanδ = 0.01).
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Fig. 1. The suspended dielectric resonator antenna.
(a) 3D design visualization
(b) Top view
(c) Front view

3.1.1. Case I: The vector of antenna parameters is: x = [ac us ws ys g1]
T , whereas the dimen-

sions dx = dy = dz = 1, ax = 8.06, ay = 14.24, az = 9.25, by = 5.87, dzb = 2, bx = 2,
and cx = 6.5 remain fixed. The unit for all parameters is mm. The design variable space for the
antenna parameters is defined by the following lower and upper bounds: l = [0.5 1.4 8 2.4 1.2]T

and u = [0.5 2.1 12 3.6 1.8]T . The EM model of the structure is implemented in Ansys HFSS
and simulated using its frequency domain solver [38]. The antenna model consists of about 8,500
tetrahedral mesh cells and its average simulation time on a on a dual Xeon E5540 machine with
6 GB RAM is 454 s. For comparison purposes, the EM model of the antenna that does not pro-
vide sensitivity information has been also prepared and discretized using the same mesh setup. Its
average evaluation time is 141 s.
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3.1.2. Case II: Here, the considered DRA structure is described by a nine variable vector: x =
[ax ay az ac us ws ys g1 by]

T . Parameters dx = dy = dz = 1, dzb = 2, bx = 2, and cx = 6.5 are
fixed. The design bounds of the parameter space are l = [7 14 9 −0.5 2.3 8 2.4 3.0 0.35]T and
u = [8 15 10 0.5 3.0 12 3.6 3.6 0.4]T . The EM models of the antenna (with and without derivative
information) are the same as for Case I. The average simulation time of the model that provides
sensitivity information is 459 s. For the second model, the simulation time is the same as in Case
I.

3.2. Ultra-wideband Antenna

Our second design example is a planar ultra-wideband (UWB) monopole antenna shown in Fig.
2 [1]. The structure consists of two trapezoids and a rectangle stacked together into a radiator. It is
fed through 50 Ohm microstrip line. The antenna is implemented on a 0.762 mm thick Taconic RF-
35 dielectric substrate (εr = 3.5 and tanδ = 0.0018). The geometry of the structure is represented
by a vector x = [a2 a3 b1 b2 b3]

T , whereas parameters a1 = 9, l = 8.5, d = 0.6, w = 20, w0 = 1.7,
remain fixed. The unit for all dimensions is mm. The design variable space is defined by the
following lower and upper bounds: l = [17 17 4 4 4]T and u = [26 26 10 10 10]T . The antenna
is implemented in Ansys HFSS. The simulation time of the EM model that provides sensitivity
information is 592 s, whereas the evaluation time of the model without sensitivity data is 172s.
Both consist of about 15,000 tetrahedral mesh cells.

(a) (b)

a
2

a
1

a
2

b
3

a
3

b
2

d

l

w

b
1

GND
w

0

Fig. 2. The ultra-wideband Antenna.
(a) 3D visualization
(b) Geometry with highlighted parameters

3.3. Error Metrics

Two error metrics, Normalized Root Mean Square Error (NRMSE) and Relative Average Absolute
Error (RAAE), are used to assess the accuracy of the surrogate models on a validation data set of
np uniformly distributed pseudorandom points. The error metrics are expressed as,

NRMSE =

√∑np
i=1(yit−ŷi)

2

np

max(yt)−min(yt)
(11)
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and

RAAE =

∑np

i=1 (y
i
t − ŷi)

2

std(yt)np

, (12)

where yt is the vector of true response values, ŷ is the vector of predicted response values and std
stands for standard deviation. NRMSE and RAAE show the overall surrogate modeling accuracy
and their values approach zero as the overall surrogate model accuracy increases.

4. Numerical Results

Two different methods were considered to model the reflection coefficient of various types of an-
tennas utilized in this work: OK method which incorporates the function values of the reflection
coefficient only and the GEK method which incorporates the additional adjoint-gradient values of
the reflection coefficient. Since the reflection coefficient results in a vector of values at any given
sample point, multiple OK and GEK models were constructed to model the whole reflection char-
acteristic |S11| versus frequency. Figures 3 through 5 compare the actual reflection characteristic
|S11| versus frequency to its OK and GEK approximations. GEK requires only half (or even less)
of the training sample points demanded by OK to accurately approximate the actual |S11| curve
(Figures 3-5 and Table 1). GEK benefits from the additional gradient data which allow the model
to accurately capture the covariance structure of the training data [35, 36]. This is achieved by the
fact that the GEK model is forced to interpolate both the function and the gradient values at the
training samples whereas OK interpolates the function values only. Moreover, it is also important
to note that GEK models exhibit an accuracy level which is never reached by OK models for the
given number of training sample points (Figure 6). Additionally, the fact that OK approximations
which are trained with more than 50% (or even more) additional training samples do not overlay
the accurate GEK approximations confirms the same (Figures 3-5).

Table 1 shows the percentage of reduction in training samples achieved by GEK over OK while
providing equally (or more) accurate approximations. It can be observed that GEK is more efficient
when the number of training samples is less. This particular feature of GEK can be very useful to
use GEK-based surrogate models to expedite routine activities such as design space exploration,
sensitivity analysis, robustness based optimization, etc. Moreover, although the percentage of re-
duction in training samples gradually reduces as the training data increase, the results in Table 1
confirm the earlier perception that the GEK models achieve more accurate approximations than
OK models for the given number of training samples. Similar facts can be extracted from the
results of Table 3 which show the evolution of rate of accuracy improvement achieved by GEK
over OK for a range of number of training samples. The reason for gradient data to become less
advantageous at higher training data is the intuitive fact that the function value is more informative
than a gradient value. The effect of incorporating partial set of gradients (only in three geometrical
dimensions of the suspended dielectric resonator antenna (Case I) - ac us ws) in Figure 6 confirms
the same conjecture. The advantage of incorporating additional gradient data in GEK is overshad-
owed by the incorporation of more function data in OK (for 120 and more samples in Figure 6 (d)).

As it can be seen from Sections 3.1 and 3.2 the evaluation cost of the EM antenna model that
provides sensitivity information is noticeably higher compared to the simulation cost of the model
that returns only the function response. On the other hand, the results collected in Table 3 indicate
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that the GEK model with similar RAAE can be constructed using a limited number of samples
compared to OK. For the considered design cases, computational savings from construction of
GEK model are from 20% to over 40% with respect to OK. Consequently, utilization of the EM
antenna model which provides sensitivity information is justified despite of its increased evaluation
cost with respect to the model that only returns the reflection response. It should be noted that the
memory consumption of HFSS solver is similar regardless the selected EM model (with or without
sensitivity data). For the DRA structure (cf. Section 3.1) typical memory usage is below 280 MB,
whereas evaluation of the UWB antenna (cf. Section 3.2) requires about 350 MB of RAM.
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Fig. 3. DRA (Case I): Prediction of f(x) at random test points. OK incorporates only the response
data whereas GEK incorporates gradient data in addition to the response data.
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Fig. 4. DRA (Case II): Prediction of f(x) at random test points. OK incorporates only the response
data whereas GEK incorporates gradient data in addition to the response data.
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Fig. 5. UWB: Prediction of f(x) at random test points. OK incorporates only the response data
whereas GEK incorporates gradient data in addition to the response data.
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Fig. 6. Evolution of NRMSE on a validation data set of np test points for a varying number
of training sample points. OK incorporates only the response data wheres GEK incorporates
gradient data in addition to the response data.
(a) DRA (Case I)
(b) DRA (Case II)
(c) UWB
(d) DRA (Case I) - GEK incorporates additional gradient data in the direction of three geometric
variables only
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Table 1 Reduction in number of training samples with GEK based on normalized root mean square error (NRMSE)
on a validation data set of np points.

Example Model Number of NRMSE Percentage of Reduction in
Training Samples (%) Training Samples

OK 200 10.2 —
DRA GEK 60 11.3 70%
(Case I) GEK 80 10.7 60%
(np = 90) GEK 100 10.3 50%

OK 400 5.56 —
DRA GEK 40 6.00 90%
(Case II) GEK 80 5.56 80%
(np = 100) GEK 120 5.75 70%

OK 140 15.7 —
UWB GEK 60 15.2 57%
(np = 50) GEK 80 14.8 43%

GEK 100 14.5 26%

Table 2 Efficiency of GEK over OK based on relative average absolute error (RAAE) on a validation data set of np

points.

Number of
Example Training OK GEK

Samples
RAAE % of Accuracy RAAE % of Accuracy
(%) Improvement of OK (%) Improvement of

GEK over OK
20 13.2 — 5.9 55%
40 8.4 37% 5.8 56%

DRA 60 6.8 48% 4.8 64%
(Case I) 80 5.9 55% 4.7 65%
(np = 90) 100 5.6 57% 4.5 66%

40 53.8 — 2.7 95%
80 6.6 88% 2.5 95.3%

DRA 120 5.0 90% 2.6 95.2%
(Case II) 160 4.6 91% 2.5 95.3%
(np = 100) 200 2.8 95% 2.4 95.2%

20 13.2 — 7.5 43%
40 11.3 14% 7.2 45%

UWB 60 8.5 35% 6.5 49%
(np = 50) 80 8.4 36% 6.6 50%

100 8.0 40% 6.4 51%
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Table 3 Comparison of GEK and OK in terms of model preparation cost.

Example Model Number of Samples RAAE (%) Cost# [h] Cost reduction
DRA OK 80 5.9 3.13 –
(Case I) GEK 20 5.9 2.52 20%
DRA OK 200 2.8 7.83 –
(Case II) GEK 40 2.7 5.10 35%
UWB OK 120 7.6 5.73 –

GEK 20 7.5 3.28 43%
# The cost of model identification and validation is excluded

5. Conclusions

In this work, a cost-efficient surrogate modeling of antenna structures on a single PC machine using
Gradient-Enhanced Kriging has been demonstrated. This approach is applied to various antenna
structures. Utilization of additional sensitivity data significantly reduces the number of training
samples required to set up a fast and reliable surrogate model which can be used in routine activ-
ities such as design space exploration. Additionally, Gradient-Enhanced Kriging results in highly
accurate approximations at any given amount of sample data than the conventional approach that
only relies on the function data. The additional sensitivity data acquisition cost can be significantly
reduced by taking advantage of adjoint sensitivities that allow for obtaining the gradients at extra
computational cost. The Gradient-Enhanced Kriging method has been favorably compared with
Ordinary Kriging in terms of the CPU-time required for data acquisition. Our further work will
focus on application of the method for antenna arrays.
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