
Test Set Generation almost for Free
using a Run-Time FPGA Reconfiguration Technique

Alexandra Kourfali
Department of Electronics and Information Systems

Ghent University
Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium

Email: alexandra.kourfali@ugent.be

Dirk Stroobandt
Department of Electronics and Information Systems

Ghent University
Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium

Email: dirk.stroobandt@ugent.be

Abstract—The most important step in the final testing of
fabricated ASICs or the functional testing of ASIC and FPGA
designs is the generation of a complete test set that is able to
find the possible errors in the design. Automatic Test Pattern
Generation (ATPG) is often done by fault simulation which is
very time-consuming. Speed-ups in this process can be achieved
by emulating the design on an FPGA and using the actual
speed of the hardware implementation to run proposed tests.
However, faults then have to be actually built in into the design,
which induces area overhead as (part of) the design has to be
duplicated to introduce both a faulty and a correct design. The
area overhead can be mitigated by run-time reconfiguring the
design, at the expense of large reconfiguration time overheads.
In this paper, we leverage the parameterised reconfiguration of
FPGAs to create an efficient Automatic Test Pattern Generator
with very low overhead in both area and time. Experimental
results demonstrate the practicality of the new technique as,
compared to conventional tools, we obtain speedups of up to
3 orders of magnitude, 8X area reduction, and no increase in
critical path delay.

Keywords-Test set generation; Fault Emulation; FPGA Re-
configuration; Parameterised Configurations

I. INTRODUCTION

Ensuring a design’s functional correctness is very crucial
in current technologies. Integrated circuits are becoming
more and more susceptible to errors as manufacturing prob-
lems are easier to occur, due to the constant decrease of
CMOS feature sizes. One of the biggest challenges for
today’s ASIC design teams is the complexity of testing.
A design’s functional correctness is tested, under possible
technological deviations.

Meanwhile, Field Programmable Gate Arrays (FPGAs)
have become widely used, instead of ASICs, for a digital
circuit’s implementation. FPGAs are ICs that are produced
in such a way that they can be reprogrammed or reconfigured
multiple times after being manufactured. By configuring an
FPGA, the user can change the functionality of the device
and make it behave like any digital system. With the use
of FPGAs the time-to-market is reduced because of their
flexibility. Moreover, FPGAs are often used as prototypes
(first actual chip) or simply as an implementation which
can be rapidly tested, while the design can still be changed

before the final ASIC implementation (this is called FPGA
emulation).

In testing a design (after fabrication or FPGA implemen-
tation), the crucial point is having the right test set which
should be small enough but also have enough tests to cover
most of the possible errors. Within automatic test pattern
generation fault simulation is important. The main reason
to use fault simulation is that one cannot test all input
combinations so one has to drastically limit the total number
of input combinations. In order to be sure that this limited set
covers all (or most) possible errors, we need to guess what
errors may occur and therefore we need fault simulation.
However, due to necessary sequential computations, the
time needed for fault simulation is prohibitively large. The
FPGA’s reconfigurability can be used to detect if a design
will function properly. This procedure is known as (FPGA-
based) fault emulation and has proven more efficient than
software-based methods. Therefore, reconfiguration itself
can be used to expedite the ATPG process, with often an
impact on area and time. Reducing these is the main focus
of this paper.

Traditionally, the functionality of an FPGA circuit is rep-
resented by the bitstream that specifies the FPGA’s internal
logic and routing configuration. We produce an intermediate
bitstream that represents all the bits as Boolean functions
of parameters that describe the behaviour of faults. The
proposed methodology allows the FPGA to be reconfigured
during runtime very efficiently based only on the evaluation
of these Boolean functions in order to reconfigure and
create a test set. The advantage of this technique is that
there is minimal area and runtime overhead during the
creation of the test set and it needs no iterative executions of
the computationally intensive design re-synthesis, mapping,
placement and routing.

At a high level, our approach works as follows. In order
to create a new test set generator, the tool works in two
stages: the offline stage and the online stage. The first stage
creates a new design that has a selected fault model injected
in the initial design. Then, this fault model is mapped to
abstract logic and routing resources of the FPGA, in a way

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/74756933?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

that doesn’t occupy extra space. During the online stage,
the FPGA is reconfigured multiple times to apply each time
a new fault. This dynamic mapping in the abstract logic
and routing resources, boosts reconfigurability and thus, the
ATPG. As compared with other fault emulation methods, we
achieve almost no area increase. We can control different
faults with the use of the dynamic specialisation of the
FPGA’s logic and routing resources. Finally, with the use
of this technique we observe that the critical path delay
also stays the same as in the initial design, before the fault
injection. Therefore, our ATPG method has no impact on the
original design and requires almost no additional overhead.

II. PREREQUISITES

A. Automatic Test Pattern Generation

Most ATPG methods rely on fault injection. Fault in-
jection can be realised either by fault simulation or fault
emulation. Fault simulation is based on the insertion of
a fault model into a Circuit Under Test (CUT), and the
simulation of the design under faulty conditions in order
to find a set of input values that can produce an error at
one of the outputs for that particular fault. While software-
based simulations offer results of good quality they are often
very impractical due to their limited speed and memory
consuming calculations. Furthermore, as the complexity of
integrated circuits continues to increase, consistent with
Moore’s Law, fault simulation becomes infeasible. In order
to overcome these limitations, circuit designers have turned
to FPGAs for the emulation of their complete systems. In
FPGA emulation, the faults are built in the hardware and
tests can be applied at actual hardware speeds, thus gaining
significantly in test set generation time. However, as all
faults need to be emulated in hardware, this induces a very
large area cost, unless the same hardware can be reused
to emulate different faults. This can be done in FPGAs, as
explained next.

B. FPGA architecture

An FPGA is a two-dimensional array of programmable
logic blocks with a routing network to connect the blocks.
SRAM memory cells can be programmed to describe the
truth tables of the logic blocks’ function, which are im-
plemented by the look-up tables (LUTs). For connecting
the logic blocks within the routing structure, again SRAM
cells drive the inputs of multiplexers. All these SRAM cells
together define the functionality of the FPGA and the bits
that are stored in these cells together form the FPGA’s
bitstream. The FPGA’s bitstream is used to program the
FPGA by shifting into the SRAMs a sequence of 0s and 1s.
Therefore both logic and routing infrastructure of the FPGA
are completely determined by the values of the bitstream.

To reduce the area needed to emulate all circuit faults in
the FPGA, the FPGA can be reconfigured multiple times in
order to create a test set. Every time tests for a new fault

Parameterised

Input

Parameterised

Configuration

Boolean Function

Evalutation

Specialised

Configuration

Parameter

values

Offline Stage

Online Stage

Figure 1. The two-stage tool flow of parameterized reconfiguration

need to be found, a time consuming re-synthesis of the logic
circuit (with new fault present) is required, which is often
prohibitive.

C. FPGA - based ATPG

We present the most common techniques for FPGA-based
fault emulation that try to avoid the large area or large
computation times needed for emulation based ATPG. There
are two basic methodologies, in order to create an FPGA-
based fault injection tool.

1) Reconfiguration based fault emulation, that modifies
directly the configuration bitstream of the design to
emulate faults. Fault emulation platforms can be used
such as JBits and [4], [5], but they cannot support
state-of-the-art FPGAs yet [3]. Direct bitstream ma-
nipulation has also been proposed to inject faults in
LUTs [11], however not all faults can be covered with
this technique. Also, changes to the HDL design have
been proposed, but this again requires recompilation
for every new fault injection (or one needs a lot
of memory to store all possible bitstreams for every
fault).

2) Circuit instrumentation based fault emulation tech-
niques modify the structural descriptions of a cir-
cuit by adding extra hardware for fault injection.
This avoids the time-consuming recompilations for
generating a new bitstream every time a new fault
needs to be injected [9], [10]. Injecting multiple faults
to avoid unnecessary recompilations has also been
proposed [8]. However, the size of the new design
is directly proportional to the hardware complexity of
the injector making the technique again infeasible for
large designs.

Both circuit instrumentation-based and reconfiguration
based approaches introduce specialisation overhead, which
is the extra resources and the extra time needed in order
to generate a test set for a specific design. Both tech-
niques, have their limitations, regarding their use in ATPG,

Design

(HDL)

Synthesis

(Odin)

Technology

Mapping

(ABC)

VPR

(pack,place,route)

FPGA

configuration

Design

(HDL)

Synthesis

(Odin)

Technology

Mapping

(TCONMap)

extended VPR

(TPACK, TPlace, TRoute)

parameterised

FPGA

configuration

apply new

fault

(a) Conventional process (VTR) (b) Proposed process

Parameterised

Fault Injection

Figure 2. The conventional VTR tool flow and the VTR-TCON extended
version for fault emulation

as was mentioned in Section II-B. Similar problems with
specialisation overhead are found in run-time reconfiguration
approaches in FPGAs outside of the field of ATPG. The
authors in [1] address the problems of specialisation over-
head by using the Parameterised Configuration technique
(PConf), that dynamically specialises the logic and routing
infrastructure of the FPGA, creating an implementation that
can be more cost efficient in terms of area and time. The
process is described in figure 1, where we can see the two-
stage tool flow starts from an HDL (Hardware Design Lan-
guange) description in which some less frequently varying
signals, called parameters, are selected and annotated. These
parameter signals will be assumed fixed for a certain time
so that the implementation can be optimized for the fixed
value. Then, when the parameter does change, the FPGA
is reconfigured to a new optimized implementation for a
different parameter value. This results in a bitstream that
now consists of multivalued boolean functions instead of just
bits. Then, at runtime these functions are rapidly evaluated
to result in a regular bitstream. Parameterised Configurations
enable the logic and routing infrastructure to be dynamically
reconfigured with very low overhead. We therefore aim to
eliminate the specialisation overhead during ATPG, with the
use of the PConf approach.

III. PARAMETERISED CONFIGURATIONS BASED ATPG

We propose to add a virtual multiplexer network that
inserts the right faults at the right place, instead of creating
a separate circuit for every fault. We implement this virtual
network through reconfiguration, limiting the amount of
extra resources needed. This is a routing problem, as during
the ATPG cycle the only aspects of the FPGA that have to
be reconfigured are the routing resources and specifically,
only the configuration cells for all the multiplexers in the
routing switch boxes and the connection boxes.

In Figure 2 we show a traditional FPGA tool-flow (a) and
the parameterised configurations flow (b), that uses runtime
reconfiguration. In order to create a test set, traditionally the

initial design is injected with a single fault and synthesised,
mapped, placed and routed on the target FPGA device. Then,
a bitstream is generated that can be programmed into the
FPGA. Normally, if a fault is observed by a different output
value than the correct one, the test set is stored and then the
device is reconfigured for another fault. Therefore, for each
possible fault, the device needs to be reconfigured. The pro-
cess is repeated until a test set is created for a large enough
set of faults. At this point, we can observe that this process
requires significantly long time. In order to reduce the time,
a method can be used that creates multiple instantiations
of the same design, each one implemented with different
faults. This technique doesn’t need the time consuming
reconfigurations, however, it introduces area overhead and
makes it practically impossible to be used for large designs.

In order to use the parameterised reconfiguration tool flow
for our ATPG solution, we have designed a two-stage flow
similar to the one in figure 1. Our tool, during the offline
part uses fault injection with a new (instrumentation-based)
technique and adds faults to each possible fault location,
creating the virtual multiplexer network. So, our tool starts
from a netlist and modifies it, by virtually adding extra
hardware that represents a new fault. However, as every
fault is annotated as a parameter, say for example fault
X, the tool creates a generic bitstream (the PConf) that
represents all circuit changes needed for every specific fault
in a single bitstream, reducing the online changes needed to
reflect a new fault to a simple Boolean function evaluation
and a reconfiguration of the FPGA for the obtained new
bitstream. This parameterized boolean bitstream can be
rapidly evaluated for a specific fault automatically with the
parameterised configurations tool flow. The design is never
recompiled, only reconfigured.

A. The offline tool flow

In more detail, the new design (including all faults as
parameters) has to pass all the typical compilation steps,
namely synthesis, technology mapping, packing, placement
and routing, similar to the tool flow shown in Figure 2(a).
However, in our approach, the design has to pass each of the
above steps only once. This computationally intensive stage
is the offline stage of the tool flow. This section describes
mostly the changes needed in each step of the offline part.

1) Synthesis: The design can originally be described in
various HDLs, such as VHDL/Verilog. The synthesis step
can be performed by any tool that is able to extract a BLIF
format. At this point the design is ready for fault injection.

2) Parameterised Fault Injection: In this work, the tech-
nique focuses on ATPG and we assume that the injected fault
set is either optimised, or it can be optimized by existing
techniques such as fault dropping and fault collapsing. The
fault model that is used (single stuck-at fault model) is
widely applied within the testing community and an easy-
to-implement method in order to introduce faulty behaviour

Original line

Sel Fault on/off

Fault Point

Parameter

sa0/sa1

LUT

D Q

clk

Parameter

Figure 3. Fault Emulation with parameterised fault injection

in the circuit. However, our methodology is not limited to
this model alone.

The faults are added into the design at every possible
fault location in such a way that after the new modifications,
the new description remains synthesizable. The solution is
to add multiplexers into each fault point to introduce a
logic one or zero in order to mimic such fault, as shown
in Figure 3. Our tool reads the netlist and locates all
the possible fault checkpoints, i.e. locations where faults
need to be inserted. The selection signals are annotated
as parameters, as they will change (but less frequently
than the other signals) depending on the type of fault and
whether or not the fault should be injected. In our approach,
we basically add logic (multiplexers) without adding more
LUTs because they are depending only on parameters and
can hence be implemented in the reconfiguration resources.
So we basically have almost the same size as for the
original circuit but now for an extended circuit with all faults
injected.

3) TCON Technology Mapping: During technology map-
ping, the parameterized Boolean network generated by the
synthesis step is not directly mapped onto the resource
primitives available in the target FPGA architecture, but
intermediately on abstract primitives that introduce and
allow the reconfigurability of the logic and routing resources.

4) TPaR: Next, the Tunable Place and Route tool (TPAR)
places and routes the netlist and performs packing, place-
ment and routing with the algorithms TPack, TPlace and
TRoute. These algorithms can enable routing of circuits
where their routing resources can be reused during the fault
emulation and drastically reduce the area usage. At the
end of the computationally intensive offline stage the TPaR
creates a PConf, a virtual intermediate FPGA configuration
in which the bits are Boolean functions of the parameters.

B. The online tool flow: Test set generation cycle

Fast test set generation is essential. It is faster to generate
random test inputs and select a viable test by emulation,
than to effectively search for a test that detects the fault

in simulation. So, we use a Linear Feedback Shift Register
(LFSR) to generate random input vectors. Both the initial
circuit output and the fault-injected one have to be compared
(with a XOR gate) for every different input set. If a fault is
detected (by a difference in both output vectors) the input
vector is stored as a test vector that detects the specific fault
at hand. If the required fault coverage is not yet achieved,
a new fault is chosen and the FPGA is reconfigured to
match the new fault. The stored vectors form the test set.
Details about its flow are shown in Figure 4. The exact
details of how the reconfiguration is done during the online
part of the tool flow is out of scope of this paper. We
have not yet implemented this part, but the overhead of
the reconfiguration for every fault is comparable but always
smaller than the overhead we would have in the traditional
reconfiguration based fault emulation, as we have less bits to
reconfigure than in the original case. However, the big gains
of our method lie in the offline part (which in other cases
would also be online and very time-consuming or produce
a circuit with a very large area).

Golden
Reference

Circuit

CUT

Output

Output
Comparator

FPGA
Reconfiguration

Coverage
achieved?

Input
Generator

No

Outputs
differ?

Store
Test Set

No

apply new fault

Store
Test

Vector

Yes

0

1

0

0

1

0

1

0

Yes

Figure 4. The online tool Flow

C. Implementing the new ATPG tool flow

We adapted the VTR tool (a standard FPGA tool flow) [7]
in such way, that it can be used as an automatic tool that
injects faults into a design and produces a boolean bitstream
(a bitstream that contains Boolean functions depending on
the fault parameters). The VPR tool (part of VTR) has been
extended so that it can support the parameterised configura-
tions tool flow. The new version is able to reconfigure the
FPGA’s logic and routing resources. For this purpose, new
modules have been created that can support the new design
(with the injected faults).

Figure 2 shows the original VTR flow, as well as the
adapted version. As mentioned in Section III-A, synthesis
doesn’t need to be modified. Then, a new step is added in
the flow, fault injection. Afterwards, TCONMap is executed,
which is integrated into a version of the original mapping
tool [2]. The output file now is used as an input for VPR.

Golden Conventional Proposed(1) Proposed(2) Proposed(3)
24 237 50 41 25
39 346 133 106 45
124 861 302 253 126
137 869 337 289 144
129 1049 220 210 130
148 1027 400 334 153
149 1010 408 343 153

Table I
AREA RESULTS IN #LUTS: THE FIRST COLUMN IS FOR THE FAULT-FREE

DESIGN, THE OTHER COLUMNS CONTAIN ALL THE FAULTS. FOR THE
PROPOSED METHOD, WE DISTINGUISH MAPPING WITH PARAMETERISED

CONFIGURATION OF (1) LOGIC, (2) LOGIC & ROUTING, (3) LOGIC &
ROUTING WHERE SAF IS A PARAMETER AS WELL.

Figure 2 (b) shows all the stages from Verilog to a boolean
bitstream representing faults depending on parameters.

IV. EXPERIMENTAL STUDY

This section presents the time overhead and the area
impact of the proposed method. We have used synthesised
MCNC benchmarks for our experiments. Despite the fact
that we have used small benchmarks, we will also discuss
the scaling behaviour and show that we can have interesting
results also for larger designs. Since our tool follows the
flow of VTR, it targets theoretical architectures. However,
the results are representative for designs implemented in the
LUT-based configurable logic of commercial FPGAs as well.
In our experimental setup, our tool adds MUXs that can
introduce stuck-at fault logic in all possible fault locations,
as was described in Section III-A. Each MUX now describes
one possible fault at one specific location. For each fault,
the FPGA is reconfigured only once, but the FPGA is used
multiple times to run all tests until one test is found that
detects the fault. After that, the FPGA is reconfigured for a
new fault.

A. Area usage

For our experiments, we compared the area of the fault
injected circuit to the reference (fault-free) design. Four
possible structures are evaluated. The first proposed structure
is a normal MUX implementation (without any dynamic
reconfiguration), mapped with a conventional mapper. The
second structure is an implementation, where only the logic
(functional) resources are dynamically reconfigured. The
third approach is a structure where we reconfigure both logic
and routing resources and finally, a fourth approach, where
the stuck-at fault signal was also identified as an infrequently
varying input, alongside dynamic reconfiguration of logic
and routing resources. All these approaches are compared
in Table I, with the initial, fault-free design (golden).

In the first approach, the lack of dynamic reconfiguration
causes a massive area overhead (8 times more area), making
this approach infeasible for large designs (as the extra area
needed is proportional to the number of faults). A step

#LUTs Golden Proposed Conventional
24 3 3 20
39 3 3 14
124 5 5 25
137 5 5 25
129 10 10 61
148 3 3 18
149 3 3 18

Table II
DEPTH COMPARISON BETWEEN THE INITIAL CIRCUIT AND THE FAULT
INJECTED VERSION MAPPED WITH 6-INPUT LUTS, WITH PROPOSED

MAPPER AND THE CONVENTIONAL ONE (ABC), RESPECTIVELY.

forward is mapping of the design with dynamic recon-
figuration of its logic resources only (second approach).
Here, we can see an area reduction compared to VTR’s
conventional mapper (up to a factor of 4.7). However, there
is still a significant area overhead, compared to the golden
circuit. The next approach applies dynamic reconfiguration
of the FPGA’s logic and routing resources, reducing the area
even more. Finally, the last approach, builds upon approach
3. Now, the stuck-at fault signal is also annotated as a
parameter. This results in the minimal area overhead, (needs
up to 8 times less LUTs than the conventional method, and
is only 3% larger than the initial design). Moreover, the
problem can scale very well, making the technique feasible
for larger designs.

B. Critical Path Delay

Our mapper reduces the critical path delay of the added
functionality for the faults by reducing the number of lookup
tables and the routing infrastructure on the critical path.
From Table II, we can observe that the logic depth (inversely
related to clock speed) of the design remains constant after
the fault injection and the use of our mapper. This is very
different from the conventional fault injection technique that
introduces MUXs also in the critical path. In fact, the logic
depth decreases with a factor of 5 to 8 in our ATPG method,
compared to the conventional method.

C. Timing Impact Estimation

The conventional approach as described above has a
prohibitive area overhead for large designs. However, as
no reconfiguration is needed, it does not have any recon-
figuration time overhead. In this section we discuss the
reconfiguration time overhead of our method.

The runtime overhead depends on the number of times the
emulator needs to be reconfigured and on the reconfiguration
overhead, the time to evaluate the PConf and to reconfigure
the bits that changed. The frequency of reconfiguration
depends on the ATPG method. It needs to be reconfigured
when a new fault needs to be activated. Therefore, the time
overhead can be expressed as the single specialization time
(for specializing the FPGA once) multiplied by the number
of times a new fault will be activated. For large designs, a

lot of random tests are needed on average before a fault is
detected. As long as the time needed for the evaluation of all
these tests is significantly larger than the single specialisation
time, our technique will have a relatively low time overhead.
The single specialization time depends on the evaluation
time and the time required for reconfiguration.

The evaluation time is needed to evaluate the Boolean
functions in the parameterized configuration produced by the
offline generic stage of the TCON tool flow. The time needed
for one parameterised reconfiguration is highly dependent on
the complexity of the boolean function, and needs maximum
50 µs. Thus, each parameterised configuration can be 3
orders of magnitude faster than a full reconfiguration, which
is typically 176 milliseconds for a Xilinx Virtex-5 FPGA.
Also, assuming the FPGA design runs at 400 MHz (which is
quite fast for an FPGA implementation) and the test vector
generation loop in figure 4 can be executed in 4 clock ticks
(which requires a fully pipelined design), the 50 µs overhead
corresponds with the time needed to perform 5000 tests on
the FPGA fabric. This is a reasonable number for large
designs. So for larger designs, the overhead becomes smaller
relative to the test set generation time.

Besides the methods that have area overhead but no
reconfiguration overhead, there is also a common technique
that does not have an area overhead but requires execution
of the entire tool flow online [6]. In this case, bitstream
manipulations are performed on the fly, which takes a lot
of time. Since they have to reconfigure the entire chip for
every different fault, they would need 176 ms + 169.738
ms for each bitstream manipulation. Comparing this number
with our online tool flow that takes 176 ms + 50 µs we
are about twice as fast. However, the online time needed is
only 50 µs in our case and thus orders of magnitude faster.
This shows that the proposed method can introduce minimal
time overhead as well. Also, our tool flow automatically
produces the bitstream from simple additions to the HDL
code, without the need for low-level bitstream manipulations
to be done by the designer (as in the other approach).

V. CONCLUSIONS AND FUTURE WORK

Fault emulation provides numerous advantages over fault
simulation techniques, but, up to now, at a considerable cost.
This paper proposes a new technique, where a test set can
be generated efficiently (with minimal area overhead and
minimal time overhead at the same time) and thus enhance
the time consuming testing procedure during the design
flow. Moreover, first experimental results demonstrate the
feasibility of the approach, as it obtains an area and delay
reduction of a factor of 8, and operates within 3 orders of
magnitude faster, compared to conventional methods. Vari-
ous extensions to this work are planned, such as applying
a wider range of fault models, different FPGA architectures
and larger designs.

VI. ACKNOWLEDGEMENTS

The first author is sponsored by IWT, Agency for Inno-
vation through Science and Technology in Flanders.

REFERENCES

[1] Elias Vansteenkiste, Brahim Al Farisi, Karel Bruneel, and
Dirk Stroobandt. TPAR: Place and route tools for the
dynamic reconfiguration of the FPGA’s interconnect network.
Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, 33(3):370–383, 2014.

[2] Karel Heyse, Karel Bruneel, and Dirk Stroobandt. Mapping
logic to reconfigurable fpga routing. In Field Programmable
Logic and Applications (FPL), 2012 22nd International Con-
ference on, pages 315–321. IEEE, 2012.

[3] Lörinc Antoni, Régis Leveugle, and Béla Fehér. Us-
ing run-time reconfiguration for fault injection applications.
Instrumentation and Measurement, IEEE Transactions on,
52(5):1468–1473, 2003.

[4] C. Lopez-Ongil, L. Entrena, M. Garcia-Valderas, M. Portela,
M.A. Aguirre, J. Tombs, V. Baena, and F. Munoz. A
unified environment for fault injection at any design level
based on emulation. Nuclear Science, IEEE Transactions on,
54(4):946–950, Aug 2007.

[5] L. Sterpone and M. Violante. A new partial reconfiguration-
based fault-injection system to evaluate seu effects in sram-
based fpgas. Nuclear Science, IEEE Transactions on,
54(4):965–970, Aug 2007.

[6] Mojtaba Ebrahimi, Abbas Mohammadi, Alireza Ejlali, and
Seyed Ghassem Miremadi. A fast, flexible, and easy-to-
develop fpga-based fault injection technique. Microelectron-
ics Reliability, (0):–, 2014.

[7] Jason Luu, Jeffrey Goeders, Michael Wainberg, Andrew
Somerville, Thien Yu, Konstantin Nasartschuk, Jonathan
Rose, and Vaughn Betz. Vtr 7.0: Next generation architecture
and cad system for fpgas. ACM Trans. Reconfigurable
Technol. Syst., 7(2):6:1–6:30, July 2014.

[8] Kwang-Ting Cheng, Shi-Yu Huang, and Wei-Jin Dai. Fault
emulation: A new methodology for fault grading. Computer-
Aided Design of Integrated Circuits and Systems, IEEE Trans-
actions on, 18(10):1487–1495, Oct 1999.

[9] P. Civera, L. Macchiarulo, M. Rebaudengo, M. Sonza Reorda,
and M. Violante. An fpga-based approach for speeding-
up fault injection campaigns on safety-critical circuits. J.
Electron. Test., 18(3):261–271, June 2002.

[10] L. Entrena, M. Garcia-Valderas, R. Fernandez-Cardenal,
A Lindoso, M. Portela, and C. Lopez-Ongil. Soft error sensi-
tivity evaluation of microprocessors by multilevel emulation-
based fault injection. Computers, IEEE Transactions on,
61(3):313–322, March 2012.

[11] Abı́lio Parreira, JP Teixeira, and Marcelino Santos. A novel
approach to fpga-based hardware fault modeling and simula-
tion. In Design and Diagnostics of Electronic Circuits and
Syst. Workshop, pages 17–24, 2003.

