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  SCOPE XV 

RNA interference (RNAi) has been heralded as promising in entomological studies; in both 

research, as a gene knockdown tool, and for practical applications such as pest control and 

pollinator therapeutics. Unfortunately, the optimism of the early days has been tempered 

because of large variability in RNAi efficiency and efficacy over the different insect species. Some 

insects, such as most beetles, show a great RNA efficiency, even without optimization, whereas 

other insects, such as most lepidopteran species, do not.  

Various reasons for the variability in RNAi efficiency in insects can be identified. We have selected 

two processes to focus on, each within an appropriate model system. The first factor is situated at 

the beginning of the RNAi process at whole body level: the uptake mechanisms for double 

stranded RNA (dsRNA), the trigger of RNAi. DsRNA uptake from the midgut lumen is imperative 

for many RNAi applications as feeding is the most practical way of dsRNA delivery. We chose to 

examine this in the Colorado potato beetle, which has an exceptionally efficient RNAi response. 

The second factor is located downstream of this process. After the dsRNA enters the cell, the core 

RNAi pathway exerts its function. Viruses present in the cytoplasm, whether chronic infections or 

not, may influence this pathway in various ways, for example by encoding viral suppressors of 

RNAi (VSRs). For this factor, the bumblebee was chosen as test environment, as there is 

considerable knowledge available on viral infections and antiviral immunity in bees.  

In Chapter I, a brief overview of the current knowledge on RNAi in entomology is given and the 

factors that can affect RNAi efficiency are listed. The two selected factors, dsRNA uptake 

mechanisms and viral suppressors of RNAi, are described in detail. Additionally, the two model 

systems, the Colorado potato beetle Leptinotarsa decemlineata and the bumblebee Bombus 

terrestris, are discussed. 

Chapter II is an intermezzo which describes the contributions that were made to the genome 

annotation projects for both the Colorado potato beetle and the bumblebee. The presence of the 

RNAi core genes is assessed in both species and some remarkable observations are mentioned. 

The first selected factor, dsRNA uptake in the Colorado potato beetle, is the subject of Chapter III. 

From literature, two pathways are known likely to be involved: Sid-1 transmembrane proteins and 

clathrin-dependent endocytosis. First, various genes, representative for these pathways, were 

identified. An RNAi-of-RNAi setup was devised to test the involvement of these genes. 

Additionally, the efficacy of one of the identified genes as a target for RNAi-based crop control 

was evaluated.  



 

XVI CHAPTER I  

To examine whether any of the known bumblebee viruses expresses a functional suppressor of 

RNAi, we have first attempted to identify a virus with a known suppressor, that can infect 

bumblebees. A likely candidate was Cricket paralysis virus, belonging to the same family as some 

bumblebee viruses. In Chapter IV, its infectious potential through both injection and feeding was 

evaluated using mortality scoring, RT-PCR and RT-qPCR. A tag-based negative strand-specific 

detection system was devised to confirm replication. As the results obtained here could have 

implications for wild bees, also natural infection-mimicking experiments and a limited prevalence 

screening were undertaken. 

Chapter V then examines whether a functional suppressor of RNAi is present in Israeli acute 

paralysis virus (IAPV), a well-known virus of bees, using a two-fold approach. In the IAPV genome, 

two regions were found which could encode for a small protein. Using high definition mass 

spectrometry, an attempt was made to confirm the presence of these viral proteins in the ovaries. 

The second approach made use of a functional RNAi assay, in which the effect of IAPV presence 

on the RNAi efficiency was assessed in different bumblebee tissues. Based on the information 

gained in Chapter IV, Cricket paralysis virus was used as a control. 

In Chapter V, an interesting contradiction was found where the ovaries have similar virus titers as 

the fat body, but show a profoundly different RNAi response. Also, it is known that IAPV presence 

can have sublethal effects on the reproduction potential of the bumblebee. Therefore, in Chapter 

VI, the dataset obtained in chapter V was further examined to gain insight in what is occurring in 

the ovaries during IAPV infection. Differentially expressed proteins were identified and examined 

using Gene Ontology information.  

Finally, in Chapter VII, we describe how the knowledge gained in this thesis fits within the broader 

scope of RNAi in insects. First, the implications of the results on dsRNA uptake and its links with 

the systemic properties of RNAi are evaluated, both for the Colorado potato beetle and other 

insects. The second part focuses on the various ways in which viral infections can influence the 

RNAi system of the host, especially in the context of eusociality and multivirus/multihost 

infections. For both factors, future perspectives, both on fundamental knowledge and on practical 

applications, are presented. 
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1.1 RNA interference 

The central dogma of molecular biology states that genetic information is coded in DNA, which is 

transcribed into messenger RNA, which is in turn translated to form effector molecules, the 

proteins. These processes are elegantly summarized in the statement: “DNA makes RNA and RNA 

makes protein” (Crick 1970). The advent of genome sequencing revealed that, even though the 

majority of the genome (70-90%) is transcribed, only 1-2% is protein coding (Birney et al. 2007). 

More and more evidence is emerging that RNA is not merely a messenger, but that non-coding 

RNAs (ncRNAs) can also act as an effector, resulting in a much more complex genetic 

programming than previously anticipated (excellently reviewed in Morris and Mattick 2014).  

 Classes of non-coding RNAs and RNA interference 1.1.1

It is unclear to what extent the many ncRNAs, detected using RNA sequencing, are truly 

functional, but so far multiple classes of ncRNAs with often regulatory biological functions have 

been identified. They are divided into two categories, small and long ncRNAs, depending on their 

size, with 200 nucleotides (nt) forming the boundary (Kashi et al. 2016). Some types of ncRNAS 

are present over all kingdoms, while others are unique to taxonomic groups. An overview of the 

classes of ncRNAs, identified in the human genome, is given in Figure 1. 

Several classes of small ncRNAS are indispensable for normal cell activity in eukaryotes: the 

ribosomal (rRNA) and transfer RNA (tRNA), necessary for protein translation, and the small 

nuclear RNA (snRNA) and small nucleolar RNA (snoRNA), involved in RNA biogenesis and 

maturation. Other classes are grouped together under the term RNA interference (RNAi), based 

on the fact that they exert their regulatory role through double stranded RNA (dsRNA) effectors 

and interfere with gene expression at the RNA level. The small RNAs linked to RNAi are the small 

interfering RNAs (siRNAs), microRNAs (miRNAs) and piwi-interacting RNAs (piRNAs), all of which 

are dsRNA molecules, 20-35 nt in length. Various other classes have been identified, often 

involved in developmental regulation (reviewed in Farazi et al. 2008).  

The situation for the long ncRNAS (lncRNAs) is more complex because of the large diversity in 

biogenesis, structure and function. They have been shown to be involved in epigenomic 

modification of chromatin, regulation of gene expression, mRNA transcription and translation, 

etc. (Kashi et al. 2016). Several links have been made between aberrant expression of lncRNAs 

and diseases in humans (Esteller 2011). Also in insects, reports are emerging of an abundance of 

(functional) lncRNAs (Brown et al. 2014; Jayakodi et al. 2015; Jenkins et al. 2015; Wu et al. 2016). 
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Figure 1. Current annotation for the human genome illustrating the complexity and abundance of non-
coding RNAs.  
Loci are divided in three different categories – protein coding, pseudogene and non-coding – according to 
version 22 of the GENCODE release (October 2014 freeze, GRCh38). Non-coding genes are further classified 
into long and small non-coding RNAs: lincRNA, long intergenic non-coding RNA; TEC, to be experimentally 
confirmed transcript; asRNA, antisense RNA; miRNA, microRNA; snRNA, small nuclear RNA; rRNA, ribosomal 
RNA; Mt. tRNA, tRNA located in the mitochondria genome; misc. RNA, miscellaneous other RNA; snoRNA, 
small nucleolar RNA; scaRNA, small Cajal body-specific RNA; sRNA, small non-coding RNA (adapted from 
Kashi et al. 2016). 

 Biological role of RNAi in insects 1.1.2

In the phenomenon of RNAi, gene expression is inhibited in a sequence-specific matter, often 

referred to as the ‘silencing’ of a gene. It was discovered in the nematode Caenorhabditis (C.) 

elegans (Fire et al. 1998) and its functionality has been shown to be conserved in a wide range of 

eukaryotic organisms, from unicellular protists, over plants and fungi, to animals (Fire 2007). As 

stated before, there are three types; siRNA-mediated, miRNA-mediated and piRNA-mediated 

RNAi, with as common denominator the interposition of a dsRNA molecule. The three classes can 

be roughly separated by the way in which they inhibit gene expression and their biological roles, 

but they are also intertwined by shared pathway components and biological functions. 

In vertebrates, antiviral immunity is based on the interferon response, which modulates various 

functions of the immune system (reduced translation in infected and neighboring cells, increased 

antigen presentation on specialized immune cells, etc.) after virus recognition. Invertebrates and 

plants do not possess an adaptive immune system, here antiviral immunity is achieved by siRNA-

mediated silencing (Li et al. 2002; Keene et al. 2004; van Rij et al. 2006). During viral replication, 
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dsRNA intermediates are produced which are recognized and trigger the RNAi pathway to form 

siRNAs, resulting in the destruction of the viral genomes.  

Next to its role in the antiviral immune response, which is a response to exogenous dsRNA, the 

siRNA pathway also plays a role in gene regulation and maintaining genomic integrity, through the 

use of endogenous siRNAs (endo-siRNAs) (Czech et al. 2008; Piatek and Werner 2014). These 

latter two functions are also covered by the other two classes, the miRNAs and piRNAs. The first 

miRNA was discovered in C. elegans (Lee et al. 1993; Wightman et al. 1993) and since then many 

more have been discovered (1100 confirmed in humans (Friedlander et al. 2014), 256 in the 

Drosophila (D.) melanogaster miRBase (Kozomara and Griffiths-Jones 2011) and 130 in the 

bumblebee Bombus terrestris (Sadd et al. 2015)). The majority of miRNAs are transcribed from 

intergenic regions and form a hairpin dsRNA structure due to internal nucleotide 

complementarity. After processing, a mature miRNA is obtained, which can target multiple 

mRNAs and as such, regulate whole sets of genes (Friedman et al. 2009). PiRNAs are likewise 

involved in gene regulation, but seem to be limited to germline cells and thus are important for 

development. All three types of small ncRNAs are also thought to maintain genomic integrity by 

protecting against transposable elements (reviewed in Malone and Hannon 2009).  

In this work we will be focusing on the siRNA system because of its biological role in antiviral 

immunity and its applications in pest control and insect therapeutics. These applications are 

based on the fact that the siRNA pathway reacts to exogenous dsRNA, and thus in vitro designed 

dsRNA can be used to manipulated gene expression or viral titers.  

 The siRNA pathway 1.1.3

A schematic overview of the siRNA pathway is given in Figure 2. The trigger of this pathway is long 

dsRNA, which is generated in the cell as an endo-siRNA or as an intermediate of viral replication, 

or taken up by the cell from its environment. This dsRNA is recognized by the endonuclease Dicer-

2 (Dcr-2) and processed into 21-25 nt long fragments (length is fixed within a species) having a 

two-nucleotide overhang at the 3’ end, called siRNAs (Bernstein et al. 2001). Aided by the cofactor 

R2D2 (Liu et al. 2003), these fragments are then transferred onto the RNA-induced silencing 

complex (RISC), a protein complex with Argonaute-2 (Ago-2) as its main functional component 

(Meister et al. 2004). Subsequently, the RISC is activated by removing the passenger strand so 

that the guide strand, carrying the sequence complementary to the target, becomes accessible. 

Then, this single-stranded RNA (still encompassed in the RISC complex) can locate target 
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messenger RNA (mRNA) in the cytoplasm by complementary base pairing and bring about its 

cleavage, after which the mRNA fragments are degraded (Hammond et al. 2000). 

 

Figure 2. The RNA interference pathway. 
Double-stranded RNA (dsRNA), introduced exogenously or produced as an endo-siRNA or intermediary of 
viral replication, is being cleaved by Dicer-2 into siRNAs. These associate with Argonaute-2 (Ago2) and 
guide the RISC complex to complementary (messenger) RNA, which is subsequently cleaved and degraded 
(adapted from Kanasty et al. 2013). 

 Environmental / systemic RNAi 1.1.4

The aforementioned pathway describes the siRNA pathway at a cellular level, but in most 

organisms RNAi is not restricted to one cell, which greatly contributes to its effectiveness. On one 

hand, exogenous dsRNA can be incorporated into the cytoplasm by taking up dsRNA from the 

environment, a feature named environmental RNAi (Whangbo and Hunter 2008). On the other 

hand, the RNAi signal can be spread throughout the body, eliciting an RNAi response in tissues 

that had no direct contact with the original dsRNA (Jose and Hunter 2007). The signal molecule of 

this process, named systemic RNAi, is thought to be the long dsRNA or a fragment of it. This 

hypothesis is based on the fact that, after feeding dsRNA to the Colorado potato beetle, dsRNA 

fragments were detected throughout the body, with a size comparable to that of the original 
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dsRNA and significantly longer than the 21-25 nt fragments expected for siRNAs (Ivashuta et al. 

2015). This feature is essential in antiviral immunity in insects and plants as peripheral host tissues 

can be immuno-primed awaiting the spread of the virus throughout the body (Saleh et al. 2009; 

Karlikow et al. 2014). 

 Applications of RNAi in entomology 1.1.5

One of the most important characteristics of RNAi is its sequence specificity, which allows for 

precise targeting of certain genes. The various applications of RNAi in insect studies can be 

divided into three major categories: 

 RNAi as a research tool: Because of its specificity and easy application, RNAi is a useful tool 

in functional genomics. Silencing a gene of interest reduces the corresponding protein 

levels, resulting in a disturbed function. Effects can be evaluated by mortality scoring, 

observing behavioral/phenotypic/metabolic differences, immunochemical staining, RT-

qPCR analysis of affected genes, western-blotting to follow protein expression, etc.  

 RNAi as a crop protection strategy: Targeting particular essential genes can lead to 

(sub)lethal effects in insects as their protein levels are (sometimes greatly) reduced. In 

applications, the dsRNA would have to be applied through transgenic plants or by spraying 

dsRNA or dsRNA-producing inactivated bacteria or viruses onto the crops, and hence taken 

up through the digestive system of the insect (Baum et al. 2007; Mao et al. 2007).  

 RNAi as a therapeutic: Viral pathogens pose a substantial threat to beneficial insects such as 

bees which provide invaluable pollination services. DsRNA targeting viral sequences can be 

administered through the food to domesticated honeybees and bumblebees and help them 

resist a viral attack (Maori et al. 2009; Hunter et al. 2010; Piot et al. 2015). 

 Problematic RNAi efficiency 1.1.6

RNAi is a promising tool in many research and product development areas, but its widespread use 

is hindered by the large variability that is seen across and within insect species. In general, RNAi is 

very efficient in Coleoptera and Orthoptera, but is less so for some, but not all, hymenopteran, 

dipteran, hemipteran and lepidopteran species. Various explanations have been suggested for the 

observed differences between different experimental setups within one species and between 

species: 
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 Factors inherent to the experimental setup: life stage, siRNA or dsRNA, dsRNA length, 

delivery method, dose, target gene (region, protein turnover,…), evaluation timepoint, 

examined tissue, etc. 

 Factors inherent to the insect species: dsRNA degradation in the saliva/midgut (Yue and 

Genersch 2005; Christiaens et al. 2014; Wynant et al. 2014c), dsRNA sequestering in the 

hemolymph (Wynant et al. 2014a), different (efficiencies of the) dsRNA uptake mechanisms 

(Chapter III), absence/presence of  RNAi core genes (Chapter II), absence/presence of 

systemic and/or environmental RNAi, expression levels of RNAi core genes, etc. 

 Factors inherent to the insect individual: nutritional status, immunological status, viral 

infections triggering enhanced systemic properties (Saleh et al. 2009), virus-produced 

suppressors of RNAi (Chapter V), etc.   

In this work, two factors (fully underlined) were examined for their ability to affect RNAi 

efficiency. They were selected because they represent two different levels of influence. DsRNA 

uptake mechanisms might explain why RNAi works well in some species, but not in others. On the 

contrary, viral infections exert their influence on an individual/colony/strain level and might 

explain why some successful RNAi experiments cannot be repeated in other research groups. 

These two factors will be discussed in detail in the following sections because of their importance 

for this work. Also some other factors will be mentioned throughout this thesis: the first dotted 

underlined factor was partly covered through genome annotation collaborations, the second will 

make a short appearance when examining the virus-produced suppressors of RNAi because of 

their connectedness. 
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1.2 dsRNA uptake mechanisms 

In most entomological RNAi applications, the dsRNA is administered extracellularly: to the gut 

lumen after feeding, to the hemocoel after micro-injection or to the growth medium in the case 

of cell lines. Therefore, it is necessary that the cells are able to take up the dsRNA from the 

environment by themselves. The first dsRNA uptake mechanism was described in the nematode 

C. elegans where four systemic RNAi-deficient (sid) genes were found, named sid-1, sid-2, sid-3 

and sid-5 (Winston et al. 2002; Hinas et al. 2012; Jose et al. 2012). In insects only homologs for 

sid-1 were found, and not in all insects, as the model insect D. melanogaster does not have any. 

However, in this insect, receptor-mediated clathrin-dependent endocytosis has been found 

responsible for dsRNA uptake (Saleh et al. 2006; Ulvila et al. 2006). Since those discoveries, 

experiments examining dsRNA uptake mechanisms have been performed in many insects, 

providing seemingly contradictory results about the role of these two pathways. This topic will be 

further discussed in Chapter III. 

 Sid-1-like transmembrane proteins 1.2.1

The Sid-1-like proteins are 11 transmembrane domain-containing channel proteins (Figure 3A) 

that, in insects, are present in all examined tissues during all developmental stages (Tian et al. 

2009; Bansal and Michel 2013). In C. elegans, this protein is responsible for dsRNA import into 

cells (Winston et al. 2002), but not necessary for the export of the systemic silencing signal (Jose 

et al. 2009). In the nematode’s apical intestinal membrane, dsRNA uptake seems to occur through 

a collaboration between Sid-1 and Sid-2, whereas in the other tissues Sid-2 is absent and Sid-1 

functions independently (Winston et al. 2007; McEwan et al. 2012). In insects the number of sid-1 

homologs, often called sid-1-like (sil) genes, is variable among different species. An overview of 

the number of homologs and what is known about their involvement is given in Table 4 in Chapter 

III. 

 Receptor-mediated clathrin-dependent endocytosis 1.2.2

Receptor-mediated clathrin-dependent endocytosis is a targeted form of endocytosis, initiated 

when extracellular macromolecules are recognized by a receptor. Aided by the adaptor complex 

AP2, this recognition recruits clathrin triskelia to the receptor. The term triskelion derives from 

the fact that a clathrin molecule consist of 3 branches, each containing a heavy chain and a light 

chain, which allow different clathrin molecules to assemble into a cage-like structure around the 

budding vesicle. After invagination of the vesicle, about 50-100 nm in size, it is pinched of the 

plasma membrane by dynamin. In the cytoplasm, the vesicle, containing multiple receptors and 
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the bound macromolecules, releases its clathrin triskelia and becomes an endosome. Here, the 

contents can be released into the cytoplasm, or fuse with the lysosome for digestion of the 

macromolecules (Figure 3B) (Grant  and Sato 2006). 

This process has an essential role in neurotransmission, signal transduction and nutrient uptake in 

eukaryotes. The endocytic pathway is also exploited by toxins, viruses and bacteria to enter the 

cell (McMahon and Boucrot 2011). It has been discovered to be involved in dsRNA uptake in the 

Drosophila S2 cell line as multiple genes, either connected directly to endocytosis, involved in 

cellular trafficking of the endocytic vesicles or the release of dsRNA from the endosome, were 

deemed indispensable for dsRNA uptake. In the same experiments two scavenger receptors of 

dsRNA, Eater and SR-CI, were identified (Saleh et al. 2006; Ulvila et al. 2006). 

 
Figure 3. Schematic overview of the two cellular double-stranded RNA (dsRNA) uptake mechanisms 
discussed in this thesis. 
Panel A: the Sid-1(-like) proteins form transmembrane channels through the plasma membrane through 
which dsRNA can be taken up passively (image by Mariana Ruiz Villareal, released into the public domain). 
Panel B: dsRNA is recognized by a receptor which recruits clathrin to form an invaginated vesicle coated by 
clathrin molecules. This vesicle is then released into the cytoplasm (Grant and Sato 2006). 
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1.3 Viral suppressors of RNAi 

To overcome the powerful antiviral response of the RNAi pathway, viruses have evolved a wide 

range of suppression mechanisms. If they are mediated by virus-encoded proteins, those are 

grouped under the term viral suppressors of RNAi (VSRs). An interesting feature is that most VSRs 

retain their suppressor function when expressed in a cross-kingdom system (e.g. insect VSR in 

plant systems and vice versa (Li et al. 2002; Lakatos et al. 2004; Guo and Lu 2013)), indicating they 

are targeting conserved parts of the RNAi pathway and do not need any host factors. Indeed, 

many VSRs exert their function by binding dsRNA and/or siRNAs and sequestering them from Dcr-

2 and Ago-2. Despite their small size, many VSRs seem to be multifunctional: they are able to 

affect the RNAi pathway in distinct ways and even interfere with other antiviral immune systems 

and hormone signaling of the host (reviewed in Csorba et al. 2015). This mechanistic diversity, 

coupled with their unrelated sequence and structure, indicates that they have evolved 

independently within and across kingdoms. In plant viruses, many more VSRs have been identified 

than in invertebrate viruses, possibly because until now, more effort has been placed in 

identifying VSRs in plants than in insects (Csorba et al. 2015).  

 VRSs in plant viruses 1.3.1

The RNAi pathway in plants, often referred to as post-transcriptional gene silencing (PTGS) 

instead of RNAi, is based on the same two protein families as in insects, the Dicers and the 

Argonautes, but the number of these proteins is different with each protein having slightly 

different functionalities (reviewed in Seo et al. 2013). Even before the basics of the RNAi pathway 

were fully understood, viruses encoding small proteins that could interfere with the silencing 

process in plants had been described.  

In the Tobacco etch potyvirus, the in-frame P1/HC-Pro protein was found to promote movement 

of the viral particles within the plant and enhance its virulence by binding duplex siRNAs 

(Anandalakshmi et al. 1998; Kasschau and Carrington 1998; Lakatos et al. 2006). The 2b protein of 

various Cucumoviruses originates from a sub-genomic mRNA strand, a smaller viral mRNA strand 

which is the result of irregular transcription and is not encapsidated into new viral particles. This 

2b protein modulates virulence in multiple ways, including small RNA and Argonaute binding (Li et 

al. 1999; Csorba et al. 2015). At the moment, more than 50 different VSRs are known over many 

viral genera, some viruses even encoding more than one suppressor protein, prompting the 

suggestion that a VSR would be found in nearly all plant viruses, if examined sufficiently (Li and 

Ding 2006; Csorba et al. 2015).  
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 VSRs in insects 1.3.2

The first discovery of a VSR, encoded by an animal virus, was the B2 protein of Flock house virus, 

because of shared features with the Cucumovirus 2b protein. It is also located in the +1 reading 

frame of the carboxyterminal region of the RNA-dependent RNA polymerase and translated from 

a subgenomic mRNA strand (Figure 4A) (Li et al. 2002). It has been shown to bind both siRNAs and 

longer dsRNAs (Chao et al. 2005) and hinder siRNA biogenesis by associating with the PAZ domain 

of Dcr-2 (Singh et al. 2009), affecting the RNAi pathway at (at least) two distinct steps. As of yet, 

13 VSR proteins have been described in insect or arthropod-borne (arbo) viruses (Table 1). Parallel 

to plant viruses, relatedness might suggest a VSR at the same genomic location, but does not 

always guarantee identical functionality. Next to VSR proteins, in the listed arboviruses small 

subgenomic RNAs (sfRNAs) were found that were able to inhibit Dicer-activity (Schnettler et al. 

2012). However, their functionality has only been proven in human systems (their true hosts) and 

it is unclear whether they are also used to evade the invertebrate antiviral RNAi system during the 

non-pathogenic infection in insect vectors (Gammon and Mello 2015). 

 

Figure 4. Location of the viral suppressors of RNAi (VSRs) in the genome of Flock house virus and Cricket 
paralysis virus/Drosophila C virus.  
Panel A: The B2 protein of Flock house virus is translated from the subgenomic RNA-3 strand, situated in the 
+1 reading frame at the 3’ end of RNA-1. Panel B: In the Dicistroviridae, the 1A protein is located in frame at 
the 5’ end of the nonstructural protein in the single RNA strand. 

In light of the scope of this thesis, in the family of the Dicistroviridae, the 1A protein has been 

shown to be a functional suppressor encoded by Cricket paralysis virus (Nayak et al. 2010) and 

Drosophila C virus (van Rij et al. 2006). This VSR is located in the normal reading frame, at the 5’ 

end of the nonstructural polyprotein (Figure 4B). Interestingly, although closely related, their 1A 

sequences show very little sequence similarity and the resulting proteins have a different mode of 

action. These VSRs are discussed in detail in Chapter V. 
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1.4 Insects and viruses used in this work 

 Insect morphology 1.4.1

The insect body is divided into three parts: the head, the thorax and the abdomen. The thorax 

carries six legs and generally two pairs of wings, which might be modified for other functions such 

as protection, sound production, etc. whereas the abdomen contains most of the insect organs. 

The internal morphology is usually divided into five systems encompassing various organs as 

shown in Figure 5. Some typical characteristics (compared to other animal systems) are: 

 Insects have an open circulating system with hemolymph as body fluid, responsible for the 

direct transport of nutrients, salts, hormones, waste products and immune system 

components between organs and tissues. Fluid movement originates from peristaltic 

contractions in the dorsal vessel which push the hemolymph through the tube from the 

abdomen (dorsal vessel = heart) to the head (dorsal vessel = aorta) where it is released near 

the brain and moves through the body cavity back to the abdomen. Unlike mammalian 

systems, oxygen is delivered to the tissues by trachea which are connected to the 

environment by small openings, the spiracula. 

 The digestive system is divided into three parts: the fore-, mid- and hindgut. An important 

feature of the foregut is the crop where the food is temporarily stored before moving to 

the midgut where most of digestion takes place. The hindgut is the site of water 

reabsorption. At the transition of midgut and hindgut, Malpighian tubules are attached 

which absorb waste products from the hemolymph and transfer them to the hindgut. 

 The nervous system consists of a brain and two nerve cords along the thorax and abdomen 

with clusters of nerve cells, the ganglia, in each segment. These ganglia can operate 

independently from the brain to control activities within that segment. 

 The fat body (not depicted) is a loose tissue lining the integument of the abdomen and 

surrounding other organs. This organ is responsible for energy storage and homeostasis, 

detoxification processes and the production of hormones and other signaling molecules, 

including those belonging to several immune response pathways. 
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Figure 5. Internal morphology of insects (World Book Inc.). 

 The Colorado potato beetle 1.4.2

The Colorado potato beetle (CPB), Leptinotarsa decemlineata, is an important pest of solanaceous 

vegetables and easily recognizable by black stripes on a yellow-orange background running over 

the elytra (Boiteau and Le Blanc 1992). It belongs to the holometabolous order of the beetles, 

which harbors over 350000 described species (Malone and Hannon 2009). The most distinctive 

feature of this order is the hardening of the forewings into elytra which protect the hindwings 

when not in flight (Figure 6). 

 

 
 

 

 

 
 
 
 
 
 
 
 
Figure 6. The Colorado potato beetle (CPB). 
Upper left: adult CPB (photograph by Scott Bauer/Agricultural Research Service, USDA). Bottom left: CPB 
larvae (photograph by Ian Marsman). Right: CPB taxonomy, condensed (ITIS).  

 

Kingdom Animalia 

Phylum Arthropoda 

Class Insecta 

Order Coleoptera 

Family Chrysomelidae 

Genus Leptinotarsa 

Species L. decemlineata (Say, 1824) 
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1.4.2.1 Life cycle 

The life cycle of the CPB can be divided into seven stages: an egg, four larval, a pupal and an adult 

stage. At the end of spring, adult beetles start to emerge from the soil where they have been 

overwintering. They migrate to a host plant from the Solanaceae family and, after mating, the 

females deposit egg masses on the underside of the leaves (Boiteau and Le Blanc 1992). After four 

to ten days, the eggs hatch into the first larval stage. By subsequent moltings the larval instars 

complete the four stages, during which they feed vigorously off the host plant’s leaves. This takes 

about two to three weeks. At the end of the fourth stage, the larvae bury themselves in the soil to 

pupate. After five to ten days, the adults emerge which can either immediately produce a second 

generation or feed briefly, before entering a diapause in the soil. There can be multiple 

generations each year depending on the climate (Weber 2003).  

1.4.2.2 Economic impact and management strategies 

The CPB is native to Mexico and the southwest of the U.S. where it feeds on native Solanacea 

species. As the total area of potato crops (Solanum tuberosum) and intercontinental transport 

increased greatly during the 19th and 20th century, the beetle adapted to this new host plant 

(Casagrande 1987) and spread to all climatically favorable parts of Europe and Asia, currently 

covering about 16 million km2 (Weber 2003; EPPO 2015). It is the most important insect defoliator 

of potatoes as the economic injury level has been estimated at one to five larvae per plant, or 

even less (Senanayakei and Holliday 1990; Nouri-Ganbalani et al. 2010). It is classified as a 

quarantine pest in most regions, except North America, and a member of EPPO’s A2 quarantine 

list, so measures to limit the spreading of this pest are being undertaken (EPPO 2015).  

Once established, a number of strategies can be used in order to keep CPB population densities 

below the economic injury level. For many decades, chemical insecticides were the preferred 

method because they proved to be very effective, but soon it became clear that this beetle had an 

enormous potential to evolve new insecticide resistances (Alyokhin et al. 2008). This incited the 

search for alternative control methods such as crop rotation, biological control methods or 

transgenic Cry3A-expressing crops (Newleaf®, Monsanto). However, no biological control method 

has been found that is effective enough to compensate for its high rearing and handling costs and 

the Newleaf variety has been removed from the market out of public concern (Grafius and 

Douches 2008; Alyokhin 2009). Monsanto is developing an RNAi-based topical application 

targeting CPB, currently in phase II of their Biodirect R&D pipeline (Monsanto 2016). 
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 The buff-tailed bumblebee 1.4.3

The buff-tailed bumblebee, Bombus (B.) terrestris, belongs to the holometabolous order of the 

Hymenoptera which comprises over 150000 species (Sharkey 2007). It is considered a primitive 

eusocial species as its social organization is simpler than that of, for example, honeybees (Cardinal 

and Danforth 2011). The B. terrestris species complex can be distinguished from other 

bumblebees by two yellow bands of hairs (one at the front of the thorax and one at the front of 

the abdomen) and white-colored hairs on the final segments of the abdomen as shown in Figure 7 

(Prys-Jones and Corbet 2011). 

 

 

 

 

 

 

 

 
Figure 7. The buff-tailed bumblebee. 
Left: adult bumblebee (photograph by Vera Buhl). Right: buff-tailed bumblebee taxonomy, condensed (ITIS).  

1.4.3.1 Life cycle 

Like most bumblebee species, B. terrestris has an annual life cycle. At the end of winter, 

overwintering queens emerge from the soil and seek out a suitable underground nesting site.  A 

first batch of eggs is being laid within a lump of collected pollen and incubated by the queen by 

sitting on top of the pollen lump. There are four larval stages which are continuously fed by the 

queen with pollen and nectar and kept warm, until they pupate and the first workers emerge. 

These workers then take over foraging duties and the queen continues to lay worker-producing 

eggs. When the colony grows sufficiently large, the nest switches to the production of haploid 

males and daughter-queens. These queens build up fat reserves by foraging, during which they 

are approached by males. After mating, the new queens begin the search for a hibernation site 

(Goulson 2009).  

Kingdom Animalia 

Phylum Arthropoda 

Class Insecta 

Order Hymenoptera 

Family Apidae 

Genus Bombus 

Species B. terrestris (Latreille, 1802) 
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1.4.3.2 Economic importance and protection strategies 

B. terrestris is common in most of Europe, North Africa and the western part of Asia, where it 

provides an invaluable pollinator service (Goulson 2009). Since the 1990’s this species is also 

reared commercially to be used for the pollination of tomatoes, zucchinis and other greenhouse 

crops and in fruit orchards. This way, this species has been introduced in South America, New 

Zealand and East Asia (Velthuis 2002). The transport poses an opportunity for various pathogens, 

plaguing the bumblebee, such as the fungal Nosema species, the protozoan Crithidia and Apicystis 

species and various RNA viruses, belonging mainly to the families of the Dicistroviridae and 

Iflaviridae, to spread to new wild hosts (Meeus et al. 2011; Murray et al. 2013; Graystock et al. 

2014; Goulson et al. 2015).  

Since the end of the last century, reports of a declining pollinator abundance and biodiversity 

have emerged. In Europe, nearly 24% of all bumblebee (Bombus) species are threatened with 

extinction and 48% have a declining population trend, though not B. terrestris. The major driver of 

this deterioration is thought to be the changes in land use and agricultural practices, which have 

led - and will continue to do so - to a reduction in habitat and food availability (Nieto et al. 2014). 

Bees, imposed by these continuous and cumulative stress factors, are weakened immunologically, 

affecting their capacity for countering sudden disturbances, such as pathogen attacks (Goulson et 

al. 2015). Recently, import prohibitions and improved screening methods have been implemented 

to prevent pathogen spreading. Additionally, RNAi-based therapeutics, targeting the viral 

pathogens of honeybees, are being developed which can be used to eradicate viruses from reared 

honey- and bumblebees and prevent spillover to wild bees (Maori et al. 2009; Monsanto 2016). 

 The Dicistroviridae 1.4.4

The Dicistroviridae family, belonging to the order of the Picornavirales, together with the other 

bee-infecting family of the Iflaviridae, consists of 15 positive single-stranded RNA virus species 

infecting arthropods. The virions are icosahedral, non-enveloped and have a diameter of 

approximately 30 nm (Bonning and Johnson 2010). The phylogenetic relationship between the 

members of the three genera, Aparaviruses (5 species), Triatoviruses (5 species) and Cripaviruses 

(4 species), is given in Figure 8 (ICTV 2015).  
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Figure 8. Dicistroviridae morphology and phylogenetic organization 
Left: Dicistroviridae form icosahedral particles of about 30nm. Right: maximum likelihood phylogenetic tree 
showing the relations between the member species, classified into 3 genera. KBV, Kashmir bee virus; IAPV, 
Israeli acute paralysis virus; ABPV, Acute bee paralysis virus; SINV, Solenopsis invicta virus-1; TSV, Taura 
syndrome virus; CPV, Cricket paralysis virus; DCV, Drosophila C virus; ALPV, Aphid lethal paralysis virus; 
RhPV, Rhopalosiphum padi virus; HoCV, Homalodisca coagulata virus-1; BQCV, Black queen cell virus; HIPV, 
Himetobi P virus; TRV, Triatoma virus; PSIV, Plautia stali intestine virus (Echeverría et al. 2015). 

1.4.4.1 Genome structure  

The single genomic RNA strand (9000-11000 nt) consists of two open reading frames (ORFs), 

coding for a non-structural and a structural polyprotein, which are post-translationally cleaved 

into mature proteins (Figure 9) (Garrey et al. 2010). There are two internal ribosome entry site 

(IRES) elements which enable direct translation of the genomic RNA, one located in the 5’ UTR 

and one in the intergenic region between the two ORFs. A small virus genome-linked protein 

(VPg) is covalently linked to the 5’ end and the 3’ end is polyadenylated. The ORF1 encompasses 

the following coding domains: 1A, 2A, a helicase (HEL), one or more VPg’s, a 3C-like protease 

(PRO) and the RNA-dependent RNA polymerase (RdRp). The capsid proteins are encoded in ORF2 

in the following order: VP2, VP4, VP3 and VP1 (Bonning and Johnson 2010). 

 

Figure 9. Dicistroviridae genome organization (Welker et al. 2011). 
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1.4.4.2 Infection, replication cycle and pathology 

Dicistroviridae infection commonly results in a chronic infection having sublethal effects such as a 

reduced longevity and fecundity. But in response to stress, the infection can become acute, 

leading to paralysis and death (Maori et al. 2007; Chen et al. 2014; Meeus et al. 2014). However, 

when colony death is observed and is known to be have been caused by a paralysis virus, it is 

rarely accompanied by evidence of mass paralysis (Maori et al. 2007). One possible explanation is 

that rapid progression from paralysis to death prevents the accumulation of sufficient live 

paralytic adults for such effects to be noticed at the colony level (de Miranda et al. 2010). In 

bumblebees, the viruses are thought to be transmitted horizontally within nests as faeces of 

infected hosts serve as an infection source. In honeybees, horizontal transmission has been 

shown to occur also through the sharing of saliva, pollen and honey, during mating and during the 

sucking of the hemolymph by the Varroa destructor mite (Shen et al. 2005; Chen et al. 2006a; 

Chen et al. 2006b). Vertical transmission has also been suggested for various bee viruses of the 

Dicistro- and Iflaviridae (Chen et al. 2006b; Ravoet et al. 2015) 

For Drosophila C virus, the mechanistically best studied Dicistrovirus, cell entry has been shown to 

occur through clathrin–dependent endocytosis after recognition by a still-unknown receptor 

(Cherry and Perrimon 2004). After exiting the endocytic vesicle, the genome is released into the 

cytoplasm where it is translated by the host cell machinery to produce the non-structural proteins 

necessary for viral replication and new capsid proteins. Viral particles are assembled from the 

newly formed RNA genomes and capsid proteins. They can leave the cell early in the infection 

cycle, or be released when the cell lyses at the end of the infection (Bonning and Johnson 2010). 

1.4.4.3 Host defense mechanisms 

The first antimicrobial defense systems are the physical barriers formed by the perithropic 

membrane, the gut and the basal lamina. After the pathogen bypasses these barriers and enters 

the cell, the insect relies on innate immunity pathways to limit the spread of the virus in the body. 

After recognition of foreign molecules, called pathogen-associated molecular patterns (PAMPs), 

by pattern recognition receptors (PRRs), various antimicrobial immune responses are activated 

(Figure 10). Through a complex cascade, the NF-κB-related Toll and Imd pathways produce 

antimicrobial peptides (AMPs) which can kill fungi and bacteria (Lemaitre et al. 1997). 

Additionally, they induce factors which trigger phagocytosis, the production of reactive oxygen 

species and the melanization (prophenoloxidase) cascades (reviewed in Valanne et al. 2011). A 

third pathway is the JAK/Stat pathway, which produces factors involved in general stress 

response, hemocyte proliferation and phagocytosis (reviewed in Agaisse and Perrimon 2004). 
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As stated in section 1.1.2, the primary antiviral defense system in insects is the RNAi pathway, 

triggered by the presence of dsRNA replicative intermediates, which act as PAMPs. The receptor is 

still unknown, but it has been suggested Dcr-2 plays a role in this recognition (Flenniken and 

Andino 2013). Moreover, it has been shown that also non-specific dsRNA may trigger an antiviral 

response, possibly because Dcr-2 interacts with other (unknown) immune pathways (Flenniken 

and Andino 2013; Piot et al. 2015).  

In recent years, evidence for the involvement of the other immune pathways in the antiviral 

response has emerged (reviewed in Merkling and van Rij 2013). The strongest proof comes from 

the JAK/Stat pathway, where injection with Drosophila C virus leads to an upregulation of genes 

that encode for AMPs and proteins involved in the Jak/STAT pathway in Drosophila (Dostert et al. 

2005). Additionally, knockdown of various JAK/Stat genes in mosquitoes resulted in increased viral 

titers (Souza-Neto et al. 2009). For the NF-κB-related pathways the situation is more unclear as 

multiple studies show conflicting results (overview in Merkling and van Rij 2013). In some cases, 

viral infection caused AMP production or Toll/Imd-mutants showed enhanced viral infectivity, but 

not consistently over different cases/experiments. In any case, little is known about the 

downstream antiviral effectors of these pathways (Merkling and van Rij 2013). Interestingly, there 

seems to be a link between the JAK/Stat pathway and the RNAi pathway, as dsRNA recognition by 

Dicer-2 brings about the expression of Vago (Deddouche et al. 2008), which in turn activates the 

JAK/Stat pathway in mosquitoes (Paradkar et al. 2012). 
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Figure 10. Immune pathways in Drosophila melanogaster. 
The NF-κB-related Toll and Imd pathways respond to bacterial or fungal infections through a complex 
cascade to produce antimicrobial peptides such as drosomycin and diptericin. Additionaly, the Jak/Stat 
pathway responds to stress to produce various immune effectors. Dcr-2 recognizes viral dsRNA which leads 
to Vago upregulation (cross-link with the JAk/Stat pathway) and a triggering of the RNAi pathway to destroy 
viral genomic strands (Merkling and van Rij 2013).  
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1.4.4.4 Israeli acute paralysis virus and Cricket paralysis virus 

For this work, two members of the Dicistroviridae are of importance: Cricket paralysis virus (CrPV) 

and Israeli acute paralysis virus (IAPV), which is part of the very closely related Acute bee paralysis 

virus (ABPV) - Kashmir bee virus (KBV) - IAPV complex (de Miranda et al. 2010). Because of the 

recent discovery of IAPV and considering many of the primer sets are unable to distinguish 

between the species, it is likely that some of studies may have misdiagnosed IAPV as KBV or ABPV 

(Genersch and Aubert 2010). An overview of some important characteristics and how IAPV and 

CrPV differentiate from each other is given in Table 2. 

Table 2 Isolation, genomic sequencing, biophysical properties and biological characteristics of Israeli acute 
paralysis virus and Cricket paralysis virus (adapted from Bonning and Johnson 2010). 

Virus Genus Diameter 

(nm) 

Density 

(g/ml)
 a

 

Genome 

size (nt) 

Host range (number  

of species) 

Symptoms References 

IAPV Apara-

virus 

27 1.33 9487 Hymenoptera (2) 
b
 Paralysis, reduced 

longevity and 

fecundity 

(Blanchard et al. 

2008; Cox-Foster 

et al. 2007; Maori 

et al. 2007; Meeus 

et al. 2014 

CrPV Cripa- 

virus 

27 1.34 9185 Orthoptera (4) 

Diptera (4) 
c  

Hemiptera (2)
 c

 

Hymenoptera (2)
 c 

Lepidoptera (12)
 c 

 

Paralysis, reduced 

longevity and 

fecundity 

(Reinganum et al. 

1970; Reinganum 

1975; Scotti 1975; 

Plus et al. 1978; 

Manousis and 

Moore 1987; 

Anderson and 

Gibbs 1988; 

Johnson and 

Christian 1996; 

Wilson et al. 2000) 

a
 Buoyant density in cesium chloride 

b
 KBV has been shown to be naturally occurring in Apis cerana (Bailey et al. 1979) and Vespula germana 

(Anderson 1991) bringing the number of hymenopteran hosts to 4. 
c 

In natural populations CrPV has only been found in Orthoptera (except for a latent infection in Apis 

mellifera), all other observations concern lab populations or cell lines.  
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INTERMEZZO: RNAI CORE GENE ANNOTATION IN THE 

COLORADO POTATO BEETLE AND THE BUMBLEBEE 
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2.1 Introduction 

One factor to consider when looking at RNAi efficiency is the presence of the RNAi core genes. 

Although insects form a huge taxonomical group, little genome information is available. Nearly 

half of all described metazoan species are insects, and with over 1 million different species they 

are considered the most diverse group of organisms on Earth (Whiting 2002). Up until recently, 

only about 70 insect genomes had been sequenced and (partially) annotated, of which 48 

belonged to the order of Diptera. In the other orders such as the Coleoptera, comprising over 

350000 species, only a few model species had been sequenced. As a consequence, the genetic 

information available was, in all probability, inadequate when looking at non-model insects. For 

example, using genetic information from Tribolium (T.)  castaneum, the coleopteran model insect, 

to look at processes in the Colorado potato beetle (CPB) might be less relevant than transferring 

genetic information from the frog to the human situation as there are only about 60000 described 

vertebrate species (Baillie et al. 2004). 

In an attempt to increase our knowledge on genetic diversity in insects, the 5000 Arthropod 

Genomes Initiative (i5k) was started in 2012 (i5K Consortium 2013). The aim was to 1) organize 

the sequencing and analysis of the genomes of 5000 arthropod species and 2) grow a community 

around arthropod genomes that works towards improved sequencing, assembly, annotation, and 

data management standards. Insect species could be nominated based on various criteria: their 

ecological role, human impact, conservation needs, intriguing biology, etc. As of yet, 238 insect 

genomes are available at the NCBI website, and more sequencing and annotation projects are 

ongoing (i5K Consortium 2016). 

As part of the i5k initiative, genome projects were available for both species used in this work. A 

genome consortium was erected for the bumblebees Bombus terrestris (and Bombus impatiens) 

in 2012, nominated because of their invaluable pollination service. Although the honeybee 

genome was already available at the time (Weinstock et al. 2006), it was deemed necessary to 

attain the genome of these wild pollinators too. Comparisons could then be made concerning 

their different ecology, and insights could be gained on the genetics of social behavior (Sadd et al. 

2015). The CPB, Leptinotarsa decemlineata, was nominated because of its economic value as pest 

of potato crops. The genome project was started in 2014 and the publication is expected in 2017. 

In collaboration with the bumblebee and CPB genome consortia, we searched the genomes of 

both species for RNAi-related genes, based on a list obtained from the model species D. 
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melanogaster and the closely related Apis (A.) mellifera (for Bombus) and T. castaneum (for CPB), 

which both had a sequenced genome available. The RNAi core gene list consisted of the genes 

coding for proteins belonging to the Dicer and Argonaute families, as well as the dsRNA binding 

proteins which act as cofactors during the RNAi pathway. For the purpose of this thesis, also the 

sid-1-like genes were included in the analysis. The gene prediction models were examined and 

corrected when necessary, eventually resulting in a set of annotated core RNAi genes.  

2.2 Materials and methods 

A list of known insect RNAi core genes was established based on information from D. 

melanogaster (Adams et al. 2000; Saleh et al. 2006), A. mellifera  (Weinstock et al. 2006) and T. 

castaneum (Richards et al. 2008; Tomoyasu et al. 2008), as well as a CPB transcriptome study 

(Swevers et al. 2013a) (Supplementary Table 1). The corresponding protein sequences were 

obtained from the NCBI database and used as queries in the Hymenoptera Genome Database 

BLAST tool (for Bombus; Elsik et al. 2015) or the i5k BLAST workspace (for CPB; Poelchau et al. 

2015) using tblastn searches. From this, the scaffold on which the gene was located, was 

obtained. The Apollo JBrowse genome browser (Lee et al. 2013), integrated within the 

Hymenoptera Genome Database (for Bombus) or the i5k workspace (for CPB), provided a 

platform for gene model verification and editing. The predicted gene models were evaluated by 

aligning them to the corresponding D. melanogaster, A. mellifera or T. castaneum homologs (both 

on nucleotide and amino acid level) using Clustal Omega (Sievers et al. 2011) and comparing, 

among others, intron/exon structure and UTR length. Additionally, multiple RNAseq data sets, 

incorporated in the JBrowse program, allowed further refinement of the existing gene models. If 

one gene was divided over multiple scaffolds, attempts were made to construct an assembled 

gene model. 

2.3 Results and discussion 

In both Bombus species, all expected homologues for genes encoding the core RNAi machinery 

proteins were found. Amongst these proteins were the two Dicer and two Argonaute proteins 

that function in miRNA and siRNA pathways, homologues for the dsRNA binding proteins R2D2, 

Loquacious and Pasha, two additional Argonaute proteins belonging to the piwi-class (piRNA 

pathway) and the nuclear RNAse III enzyme Drosha, involved in the miRNA pathway (Table 3). In 

agreement with the results for A. mellifera, no third Argonaute protein involved in the RNAi 

pathway, called piwi, was observed.  
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Also in the CPB, all expected RNAi core genes were found, including R2D2 which had not be found 

in the CPB transcriptome (Swevers et al. 2013a). However, a striking observation was the 

apparent duplication of some siRNA core genes. The dcr-2a and dcr-2b coding DNA sequences 

(CDSs) showed 60% nucleotide identity to each other and 56% and 54% identity to the T. 

castaneum dcr-2 homolog, respectively. Also duplicate genes encoding for Argonaute-2 were 

found, which were labelled ago-2a and ago-2b. Unfortunately, the ago-2b gene model was 

incomplete due to gaps in the assembled genome sequence. Therefore, no identities could be 

calculated. A similar ago-2 duplication was also uncovered in T. castaneum, but in that species 

there was only one dcr-2 homolog. It would be interesting to determine whether these duplicates 

are functionally redundant or whether they have gained different functionalities during evolution, 

as the duplication might contribute to the RNAi effectiveness in these species (and Coleoptera in 

general if similar duplications are conserved within the order). It has been shown that all four 

genes were upregulated after dsRNA exposure, with both dcr-2 duplicates having a significantly 

higher, but similar to each other, upregulation compared to the two ago-2 duplicates (Guo et al. 

2015). A screening, which evaluated the involvement of various RNAi genes in the RNAi response 

in a CPB cell line, revealed a high dependency of the siRNA pathway on both ago-2 genes and the 

dcr-2a gene, but only a low dependency on dcr-2b (Yoon et al. 2016).  

Concerning the dsRNA uptake-related Sid-1-like proteins, only one sid-1-like homolog was found 

in Bombus, as was also the case in A. mellifera. In CPB, two sid-1-like homologs were observed. In 

both cases no homologs for the other SID proteins of C. elegans were found. A more detailed 

overview and discussion of the distribution of the Sid-1-like proteins in the different insect orders 

is given in Chapter III and Figure 14A.  

In general, there are key similarities between the different insect species and orders when looking 

at the RNAi core genes (Table 3). The Dicer, Argonaute and dsRNA binding protein families are 

universally present, but their number differs over the insect orders. A more thorough analysis 

over all sequenced insect genomes would shed more light on whether the duplications in the 

siRNA pathway of the two examined beetles or the expansion of the miRNA genes in the aphid A. 

pisum are conserved within their respective orders. But it is clear that within orders as large and 

diverse as for example the Coleoptera, no conclusions can be drawn on the presence of RNAi 

genes from species that are generally considered closely related, as was suggested in the 

introduction. 
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3.1 Introduction 

The RNAi phenomenon has become a useful research tool in entomology, especially in loss-of-

function studies, because of its easy application and high specificity. These same characteristics 

make RNAi also applicable in crop protection against herbivorous insects. A wide range of target 

organisms and genes has been described so far, but with a significant variability in RNAi efficiency. 

The RNAi event comprises two major steps: first, the dsRNA should be taken up by cells and then 

subsequently processed by the cellular core RNAi machinery, triggering the silencing of the target 

gene. This makes cellular uptake a key factor and while the core components and their role are 

already well known in several insects, still many questions remain concerning the dsRNA uptake 

pathways. Besides the presence of dsRNA degrading enzymes (Christiaens et al. 2014; Wynant et 

al. 2014c) and/or viral suppressors of RNAi (Li et al. 2002; van Rij et al. 2006; Nayak et al. 2010), 

another main suspect for explaining the variability in feeding experiments might be the dsRNA 

uptake efficiency in the insect digestive tract, presumably the midgut (Xiao et al. 2015). 

In invertebrates, two different dsRNA uptake systems have been described so far. On the one 

hand there are the SID transmembrane channel proteins which were discovered in C. elegans 

(Winston et al. 2002). Only for SID-1, homologous genes have been found in many, but not all, 

insects. For the other transmembrane proteins SID-2 and SID-5 (Hinas et al. 2012), and the 

tyrosine kinase SID-3 (Jose et al. 2012) no insect homologs have been reported as of yet. These 

SID proteins are necessary in the systemic RNAi response, for SID-1 and SID-2 it is thought to be 

through their involvement in dsRNA uptake from the C. elegans intestine (Winston et al. 2007). In 

D. melanogaster, no SID-1 homolog is present, but for this species dsRNA uptake by receptor-

dependent endocytosis has been demonstrated (Saleh et al. 2006; Ulvila et al. 2006).  

In the last few years, articles describing the involvement of one of these pathways in dsRNA 

uptake have emerged for several insect species, giving valuable information. However, it seems 

that there is still no consensus about which system is involved (overview in Table 4). The presence 

of sid-1 homologs does not necessarily mean that dsRNA uptake is performed by the resulting Sid-

1-like proteins. Some experiments indicate a need for sid-1-like genes only in feeding setups 

(Aronstein et al. 2006; Miyata et al. 2014; Li et al. 2015), but this hypothesis is contradicted by 

injection experiments in Nilaparvata lugens, which found a sid-1-like gene to be involved. (Xu et 

al. 2013). It is interesting to note that in two closely related coleopteran insects, T. castaneum (Tc) 

and Diabrotica virgifera (Dv), the former has three different sid-1-like genes which do not seem to 

be necessary for dsRNA uptake (Tomoyasu et al. 2008) whereas the latter only has two which are 
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both confirmed as being involved (Miyata et al. 2014). In most studies, only one pathway has 

been examined, thus preventing an in-depth evaluation of the distribution of the involvement of 

these pathways over the different insect families. 

This chapter will evaluate the involvement of both pathways in dsRNA uptake in the midgut 

through the use of an RNAi-of-RNAi reporter system in the Colorado potato beetle (CPB), 

Leptinotarsa decemlineata (Ld), an important crop pest which shows a robust RNAi response 

(Baum et al. 2007; Zhu et al. 2011; Zhou et al. 2013; Kong et al. 2014). This reporter system 

consists of two silencing events: the first, in which a target gene suspected to contribute to the 

RNAi response is silenced, followed by a second silencing event, in which a reporter gene is 

targeted. Changes in silencing efficiency of the reporter gene indicate the involvement of the 

target gene in the RNAi response (Dudley et al. 2002). As a reporter gene, α-amylase was chosen 

as it is expressed mainly in the digestive tract, is silenced easily and has not been associated with 

any form of cellular uptake (Graveley et al. 2011). To evaluate both pathways, we selected the sid-

1 homologs on the one hand, and the clathrin heavy chain (chc) that is playing a role in clathrin-

dependent endocytosis on the other hand. Moreover, since it is expected that the vacuolar H+ 

ATPase (V-ATPase) has an important role in the release of dsRNA contained in endocytic vesicles 

(Saleh et al. 2006), two proteins located in functionally different V-ATPase domains were 

targeted, the subunit A (Vha68) that is located in the peripheral domain (V1) and the subunit c 

(Vha16) in the integral domain (V0) (Beyenbach and Wieczorek 2006). Furthermore, a 

pharmacological inhibitor of clathrin- dependent endocytosis, chlorpromazine hydrochloride, was 

administered to see its effect on the RNAi efficiency and to confirm the involvement of the 

clathrin-dependent endocytosis in the cellular uptake of dsRNA. 
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3.2 Materials and methods 

 Insects 3.2.1

All stages of the CPB were maintained in standard rearing conditions of 25°C, 40% RH and 16:8h 

light:dark and were fed with fresh potato foliage (Solanum tuberosum cv. Bintje). Adult insects 

were kept in an insect rearing cage, and the eggs were collected manually and transferred to 

plastic dishes until the hatching of larvae. Neonate first instar larvae were used in the feeding 

assays and the experiments performed at standard rearing conditions. 

 Target and reporter gene selection 3.2.2

Nucleotide sequences for the target and reporter genes were obtained from a transcriptome 

database, derived from fourth instar larvae of the CPB, available in-house (Swevers et al. 2013a). 

Tblastn searches using T. castaneum homologs were used to find the corresponding CPB 

sequences. Primers were designed using Primer 3 (Koressaar and Remm 2007) and are shown in 

Table 5. The amplified sequences were verified using the LGC Genomics Sanger sequencing 

service (Berlin, Germany) and submitted to Genbank (alfa-amylase: KP273188; vha16: KP273189; 

vha68: KP273190; chc: KP273191; silA: KP273192; silC: KP273193). The primers for dsRNA 

synthesis of the laccase-2 fragment were found in literature (Yates 2014). 

 dsRNA synthesis 3.2.3

The dsRNA was prepared using the MEGAscript RNAi Kit (Life Technologies, Carlsbad, USA) 

according to the manufacturer’s specifications. The T7-DNA products used as dsRNA template 

were generated during a PCR reaction (5 cycles using an annealing temperature of 55°C followed 

by 25 cycles at 60°C) using cDNA of first-instar CPB larvae and the appropriate T7-primers. To 

correct for potential random effects of dsRNA on the host, a dsRNA sequence targeting green 

fluorescent protein (GFP) was used as a control. This protein was selected as it has no 

homologues in insects. For preparation of dsGFP, a linearized plasmid containing the GFP 

sequence was used as template. The dsRNA was eluted in 50µL hot nuclease-free water and after 

concentration measurement, stored at -20 °C. 
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 Feeding assays 3.2.4

In order to conduct the RNAi-of-RNAi experiments, a feeding assay for the delivery of dsRNA was 

developed. At day 0, 1 µL nuclease-free water containing 400 ng dsRNA of the target gene was 

dropped on a piece of potato leaf of approximately 4 mm2 and air-dried, after which neonate 

larvae, starved for 4 hours, were placed onto the leaf pieces. After total consumption of the leaf 

pieces, the larvae were placed in small insect rearing cages and fed daily with fresh potato leaves. 

Any larvae that had not completely eaten the leaf piece, were discarded from the experiment. At 

day 2, the larvae were fed, using the same method, with 400 ng dsRNA targeting the reporter 

gene. To assess the unaffected RNAi response, two different control groups were necessary, one 

in which 400 ng of dsGFP was used on both days 0 and 2, the other where 400 ng dsGFP was only 

used at day 0, but dsRNA against the reporter at day 2. At day 4, the larvae were dissected and 

the midguts placed into 350 µL of RLT buffer from the RNeasy Mini kit (Qiagen, Hilden, Germany) 

for RNA extraction. Each treatment consisted of 12 larvae. In the second chc experiment, which 

used the laccase-2 reporter, the time between the first dsRNA and second dsRNA application was 

reduced from 48 hours to 24 hours. For the chlorpromazine hydrochloride (CPZ; Sigma-Aldrich, St. 

Louis, USA) treatment a similar setup was used. At day 0, 1 µL CPZ solution (5 µg/µL in dH2O) was 

fed to the larvae and 6 hours later a second identical dose was applied, together with 400 ng 

dsRNA against the reporter. At day 2, the larvae were dissected and the midguts were processed 

as described before. 

In order to determine the LD50 when silencing chc, CPB larvae were fed with 10 different doses of 

dsRNA targeting chc using the same method: 400 ng, 100 ng, 25 ng, 5 ng, 1 ng, 0.75, 0.2 ng, 0.04 

ng and 0.008 ng per individual (15 larvae per treatment). Several doses of dsGFP were used as 

controls:  400 ng, 25 ng, 1 ng and 0.2 ng with each dsChc dose corresponding to a control dose 

which is either equal or the nearest higher dsGFP dose. Mortality was scored daily for 14 days and 

statistics were performed using SPSS Statistics 23.0 (Kaplan-Meier survival analysis; log rank test) 

and SigmaPlot 13 (4 parameter sigmoidal regression fitting). 

 RNA extraction, cDNA synthesis and RT-qPCR 3.2.5

Total RNA was extracted from three pooled midguts (resulting in four biological repeats) using the 

RNeasy Mini kit and treated with the Turbo DNA-free kit (Life Technologies). For cDNA synthesis, 

500 ng of RNA was used in each reaction, performed with SuperScript II Reverse Transcriptase 

(Life Technologies), according to the manufacturer’s specifications.  
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The RT-qPCR reactions were performed in duplicate in a C1000 Touch Thermal Cycler (Bio-Rad, 

Hercules, USA) using the GoTaq qPCR Master Mix (Promega, Madison, USA). Each reaction was 

composed of 1 μL of each primer (10 μM), 10 μL of GoTaq Master Mix and 8 μL of cDNA (diluted 

1:40). The amplification conditions were 95°C for 5 min followed by 40 cycles of 95°C for 30 s, and 

60°C for 60 s. The reference genes rp18 and arf1 were used for normalization of the data (Shi et 

al. 2013). The amplification efficiency of all primer sets was verified to be between 85 and 115% 

using ten-fold dilution standard curves. These were repeated for every separate experiment, in 

parallel with the samples. Additionally, the specificity of each primer set was evaluated using 

melting curves, ranging from 60°C to 95°C with 0.5°C degree steps. Any samples with a Cq value 

above 35, a delta Cq between replicates higher than 0.5, or an aberrant melting curve were 

discarded from the analysis. The results were analyzed using the qbase+ software (Biogazelle, 

Zwijnaarde, Belgium) and SPSS Statistics 23.0 (IBM Corp 2015). 

3.3 Results 

 Identification of target and reporter genes  3.3.1

Two full-length sid-1-like (sil) coding sequences were found in the CPB midgut transcriptome, Ld-

silA corresponding to Tc-silA (52.3% amino acid (AA) identity) and Dv-silA (63.9% AA identity) and 

Ld-silC corresponding to Tc-silC (62.9% AA identity) and Dv-SilC (66.9% AA identity). Both contain 

an aminoterminal extracellular domain, which is responsible for most of the variation, followed by 

11 transmembrane regions, as was also found for other sid-1 homologs (Supplementary Figure 1). 

In addition, the three target genes involved in endocytosis were identified in CPB. For chc only a 

partial sequence was obtained (40% AA coverage and 97% AA identity in respect to Tc-chc), 

whereas for vha16 a full-length sequence was attained with an 86.1% AA identity to Tc-Vha16. In 

the case of Vha68 a partial sequence covering approximately 67.0% of the T. castaneum homolog 

was found, showing 92.2% AA identity. 

As reporter gene, α-amylase was chosen as it is not linked to dsRNA uptake and it is expressed in 

the midgut. A full-length α-amylase sequence was found in CPB with a 66.6% AA identity to Tc-α-

amylase and 68.8% to Dv-α-amylase. In one case also laccase-2 was used as a reporter (75% AA 

identity to Tc-Laccase2) because of a possible link between α-amylase expression and food intake. 
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 Involvement of both sil genes in dsRNA uptake 3.3.2

As the expression levels of silA and silC in the dissected midguts remained similar to each other 

during the experiment (1.55 ± 0.33 and 1.24 ± 0.31, respectively, normalized to the reference 

genes), identical doses of dsRNA (400 ng) resulted in a silencing of 59% for silA and 66% for silC 

after 4 days. Compared to the control in which the RNAi response was unaffected, the silencing of 

silA and silC decreased the RNAi efficiency against the reporter gene slightly, though the 

difference was statistically significant. Rescue of the signal was higher in the case of silA (14.4% of 

the silencing was recovered; p = 0.0002; Figure 11A) than for silC where there was 3.4% rescue (p 

= 0.010; Figure 11B). Increasing the dose of dsRNA against silC from 400 ng to 600 ng resulted in a 

similar silC silencing (65%) but the rescue mounted to 8.1% (p = 0.041; Figure 11C). In an attempt 

to gain more information about the way the two sil genes function in relation to each other, the 

larvae were treated with dsRNA against both sil genes simultaneously. A recovery of 14.1% was 

seen (p = 0.035; Figure 11D).  

 

Figure 11. The two sil genes in the Colorado potato beetle are involved in dsRNA uptake in the midgut. 

L1 larvae were fed dsRNA against the target gene(s) and 2 days later, they were fed 400 ng dsAmylase. The 

effect of the treatment on the silencing of the reporter was evaluated 4 days after the start of the 

experiment using RT-qPCR. The columns represent the mean ± SEM, normalized to the amylase levels in the 

dsGFP + dsGFP control (n=12). Statistical analysis was performed using Student’s t-test (***: p < 0.001; *: p 

< 0.05). Treatment with 400 ng dsSilA resulted in a rescue of 14.4% of the silencing effect (A). In contrast, 

treatment with 400 ng (B) and 600 ng (C) dsSilC brought about 3.4% and 8.1% rescue respectively. 

Treatment with 400 ng dsSilA and 400 ng dsSilC simultaneously resulted in 14.1% rescue. Standard 

deviations of the baseline reporter level were: 0.35 (A), 0.15 (B), 0.26 (C) and 0.21 (D). 
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 Involvement of the endocytic pathway components in dsRNA uptake 3.3.3

Three different components of the endocytic pathway were considered as target genes:  two 

components of the vacuolar H+ ATPase complex (vha68 and vha16) and the clathrin heavy chain 

(chc). For vha68 (also known as subunit A), present in the extracellular V1 domain, no recovery of 

the reporter gene silencing was observed (p = 0.346; Figure 12A), even with a silencing of the 

vha68 gene of 96.5%. However, for vha16 (subunit c), in the transmembrane V0 domain, a rescue 

of 25.4% was detected at a vha16 silencing of 75% (p = 0.0016; Figure 12B).  

Unfortunately the effect of silencing chc on the RNAi response could not be evaluated using α-

amylase as a reporter, as disturbed feeding was observed from day 2 onwards, resulting in 

mortality starting around day 4. Lower doses of dsChc and shorter experiments delayed mortality, 

but the silencing of the reporter gene could not be assessed reliably as amylase expression levels 

are linked with food uptake. To further elucidate the involvement of endocytosis, the experiment 

in which chc was silenced was repeated but with a reporter that was not linked to food intake or 

metabolism in any way, laccase2. In this experiment, a chlorpromazine hydrochloride treatment 

was included and the total experiment duration was reduced, which made it possible to assess 

the effect of chc silencing on dsRNA uptake. For this reporter, silencing was less efficient (60% 

silencing) and showed more variability. A small rescue (p = 0.29) was seen in the case of dsChc 

treatment (which itself was silenced for 87%) and a larger, near complete rescue (p = 0.05) in the 

case of the chlorpromazine hydrochloride treatment (Figure 12C). 

 

Figure 12. The involvement of two components of the vacuolar H
+
 ATPase complex and the clathrin heavy 

chain in dsRNA uptake in the Colorado potato beetle midgut.  

L1 larvae were fed dsRNA against the target gene and 2 days later, they were fed 400 ng dsAmylase (A and 

B) or 400 ng dsLac2 (C). For the chlorpromazine hydrochloride treatment (CPZ), two doses of 5 µg CPZ were 

applied, one 6h before dsLac2 treatment, the other simultaneously. The effect of the treatment on the 

silencing of the reporter was evaluated 4 days after the start of the experiment using RT-qPCR. The columns 

represent the mean ± SEM, normalized to the amylase levels in the dsGFP + dsGFP control (n=12). Statistical 

analysis was performed using Student’s t-test (A and B) or ANOVA (C) (*: p < 0.05) . After treatment with 

400 ng dsVha68 (A), no rescue of the silencing effect was observed, whereas treatment with 400 ng 
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dsVha16 (B) resulted in a rescue of 37.5%. Treatment with 400ng dsChc led to a rescue of 50% and an 

almost complete rescue was observed in the case of the chlorpromazine hydrochloride treatment (C). 

Standard deviations of the baseline reporter level were 0.21 (A), 0.23 (B) and 0.11 (C). 

 Chc as a target for RNAi-based pest control 3.3.4

As section 3.3.3 revealed viability impairment caused by silencing of chc, different doses of dsChc 

were tested for their lethal potential. Using Kaplan Meier survival analysis, significant increases in 

mortality were found for all doses up until 0.2 ng per insect: (400ng: 100% mortality (p < 0.001); 

100ng: 80% (p = 0.001); 25: 100% (p < 0.001); 5 ng: 93% (p < 0.001); 1 ng: 87% (p < 0.001); 0.75: 

87% ng (p < 0.001); 0.2 ng: 85% (p = 0.001); 0.04 ng: 42% (p > 0.05) and 0.008 ng: 13% (p > 0.05). 

Using sigmoidal regression fitting (R2=0.92) the LD50 was determined to be 0.053 ng per 

individual. 

 

Figure 13. Sigmoidal regression fit for LD50 determination of dsRNA targeting clathrin heavy chain (dsChc) in 

Colorado potato beetle larvae. 

Mortality after 14 days was plotted for nine different concentrations of dsChc (n=15). For the sake of 

regression fitting, the doses are log10 transformed. A four-parameter sigmoidal curve was used, with 

constraints at the x-axis infinites of 0 and 100, resulting in the following equation: y=100/(1+e
 (1,27-x)/0.4885

) 

(R
2
=0.92). The resulting LD50 was 0.053 ng. 

  



 CHAPTER III 43 

3.4 Discussion 

Substantial efforts have been made in order to elucidate all features of the RNAi mechanism. 

However, the fundamental aspects related to dsRNA uptake in insect tissues continue to be 

unclear. With the findings of which pathways are involved in the different insect orders, better 

strategies of delivery could be applied, advancing the applicability of RNAi. 

In the CPB, two distinct sil genes were identified, as was also reported for D. virgifera (Miyata et 

al. 2014), belonging to the same family of the Chrysomelidae. In contrast, three sil genes were 

found in another coleopteran, T. castaneum (family Tenebrionidae). In most other insect orders 

only one sid-1 homolog was found. However, in some lepidopteran species, 3 distinct sid-1-like 

genes are present. The distribution of the number of sid-1-like genes over the different orders is 

illustrated in Figure 14A. It is remarkable that all species that deviate from the 1 sid-1-like gene 

formula, namely the Coleoptera, Lepidoptera and Diptera, form a monophyletic clade. This seems 

to suggest that the presence of multiple sid-1-like genes in Coleoptera and Lepidoptera is caused 

by gene duplication in their common ancestor, and were then lost again in Diptera. We also 

examined if the sid-2, sid-3 or sid-5 genes of C. elegans showed a similar domain structure to the 

sid-1-like genes, as convergent evolution could possibly explain the presence of multiple sid-1-like 

genes. However, these genes do not contain the typical 11-transmembrane domain barrel 

structure observed in the sid-1-like genes.  

Regarding the involvement of the sil-genes in dsRNA uptake (Table 4), for Coleoptera it has been 

demonstrated in D. virgifera (Miyata et al. 2014) and now in L. decemlineata. However, the sil-

genes’ involvement was discarded in T. castaneum (Tomoyasu et al. 2008). This might be 

connected to the number of sil genes present, but it is more likely that other factors are playing 

here. For example, the dsRNA application method has to be taken into account as testing in T. 

castaneum happened through injection instead of feeding. It is possible that uptake in the midgut 

occurs through a different pathway than in the hemocoel-surrounding tissues or that the 

contribution of each pathway to the process of dsRNA uptake depends on the tissues that are 

examined. The only other study in which a feeding delivery was used to confirm the role of the 

sid-1-like gene was conducted in A. mellifera. However, in that case no RNAi-of-RNAi experiment 

was performed and the authors’ conclusion was based on the upregulation of the sid-1-like gene 

after administration of dsRNA, a method which might be insufficient by itself (Aronstein et al. 

2006). In the case of injection, there is one study in which a Sid-1-like protein is confirmed as a 

dsRNA uptake mechanism, namely in Nilaparvata lugens (Xu et al. 2013).  
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In our experiments, silencing silA proved to be more effective than silC, even to the extent that 

the rescue corresponding to silC silencing is questionable at low doses. Here it is necessary to 

emphasize that the administration of dsRNA exerts only a partial silencing effect on the target 

gene. This way, the non-silenced fraction, the other sil-gene as well the endocytic pathway are 

still playing their role in dsRNA uptake. Furthermore, nothing is known on the half-life of the SID-

proteins, which could also play an important role. Unfortunately, gene knock-out cannot easily be 

achieved in CPB.  Nevertheless, there is an indication that the Sid-1-like proteins might contribute 

to dsRNA uptake in the midgut. Because of the low rescues, conclusions about the importance of 

both Sid-1-like proteins and whether they are functioning independently or not should be made 

with caution. 

It has been suggested that the insect’s sid-1-like genes show more similarity to C. elegans’ chup-1, 

previously named tag-130, than to Ce-sid-1 (Tomoyasu et al. 2008) and that many of the sid1-

homologues have been mislabeled (Valdes et al. 2012). This Chup-1 protein is thought to be 

involved in cholesterol uptake. A phylogenetic tree of all documented sid-1(-like) and chup-1 

sequences in both insects and nematodes (Figure 14B) indeed shows clustering of the chup-1 

genes within the clade of the insect sid-1-like genes whereas the nematode sid-1 genes constitute 

a separate clade. When looking at the hydrophobicity plots for some annotated coleopteran Sid-

1-like proteins, an 11 transmembrane-profile is visible, similar to the Ce-Sid-1 and Ce-Chup-1 

proteins. However, the hydrophobicity score of the 4th and 5th transmembrane region is less 

pronounced for Chup-1 than for the Sid-1-like proteins (Supplementary Figure 1). It is not 

unconceivable that in a common ancestor, one protein was responsible for both uptake functions 

and that in C. elegans gene duplicates have evolved in different directions, resulting in Sid-1 and 

Chup-1, while in insects the protein may have lost the function of cholesterol uptake. Additional 

experiments, in which the role of the insect Sid-1-like proteins in cholesterol uptake should be 

evaluated, are needed before we can rule on the loss of function or a potential dual role of these 

uptake genes.  As a conclusion, we can say that there is no clear-cut decision about the evolution 

of the sid-1-like genes in insects yet. However, there is ample evidence concerning the role of Sid-

1-like proteins in insects to dismiss the notion that this is a mere case of misidentification. More 

experiments need to be performed in other to assess a potential dual role of the Sid-1-like 

proteins in insects. 
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Figure 14. Phylogenetic trees showing sid-1 relationships in insects and nematodes.  

A) Phylogenetic tree showing the relationship between the insect orders for which information about sid-1 

homologs is known (basic tree adapted from Ishiwata et al. 2011). Branch length is not indicative for 

phylogenetic distance. The numbers indicate the number of sid-1-like genes reported in this species. *: the 

number is the result of unconfirmed transcriptome data; it cannot be ruled out that more sid-1 homologs 

are present. The orders for which more than one or no sid-1-like gene have been described, form a 

monophyletic clade (Coleoptera, Lepidoptera and Diptera).  

B) Phylogenetic tree showing the relationship between the different insect and nematode Sid-1(-like) and 

Chup-1 proteins. The tree was constructed using the Maximum Likelihood method (1000 bootstrap 

replications) in the MEGA5 software (Tamura et al. 2011) using a subset of sequences which was 

determined by the MaxAlign webtool (Gouveia-Oliveira et al. 2007). The percentage of trees in which the 

associated taxa clustered together is shown next to the branches and the tree was condensed with a cut-off 

value of 50%. Branch lengths are representative for the number of substitutions per site.  The nematode 

Chup-1 sequences cluster together within the insect Sid-1-like proteins whereas the nematode Sid-1 

proteins form a separate clade. Sid-1(-like) UniprotKB identifiers: Aedes aegypti: /; Anopheles gambiae: /; 

Drosophila melanogaster: /; Bombyx mori: A9CQK8, A9CQL3, A9CQL1; Danaus plexippus: G6D1P5, G6DBM3, 

G6D1B5; Spodoptera litura: V9VIE0, V9VLL3, V9VMZ4; Anoplophora glabripennis: V5G0U6; Dendroctonus 

ponderosae: U4U416, U4UCY0; Diabrotica virgifera: Miyata et al. 2014); Leptinotarsa decemlineata: 

KP273192, KP273193 (Genbank accession nrs.); Tribolium castaneum: A7YFV8, A7YFW0, A7YFW2; Atta 

cephalotes: W4WKL2; Acromyrmex echinatior: F4WVP0; Apis mellifera: XP_006565236 (Genbank accession 

nr.); Bombus terrestris: XP_003399893 (Genbank accession nr.); Camponotus floridanus: E2AJI6; 

Harpegnathos saltator: E2B9B2; Nasonia vitripennis: K7J510; Solenopsis invicta: E9I853; Pediculus humanus 

subsp. corporis: E0VXD3; Aphis glycines: M1G950; Acyrthosiphon pisum: J9K2U4; Bemisia tabaci: 

A0A059TD68; Nilaparvata lugens: D9MNS2; Locusta migratoria: K9LY69; Schistocerca gregaria: X2J861; 

Zootermopsis nevadensis: A0A067R6J9; Ancylostoma ceylanicum: A0A016VGN0; Caenorhabditis brenneri: 

G0MS59; Caenorhabditis briggsae: A8X6T8; Caenorhabditis elegans: Q9GZC8; Caenorhabditis remanei: 

E3LP17; Loa loa: E1FKD1; Haemonchus contortus: U6NXS9. Chup-1 UniprotKB identifiers: Caenorhabditis 

brenneri: G0NFF0; Caenorhabditis briggsae: A8XM97; Caenorhabditis elegans: Q9GYF0; Caenorhabditis 

remanei: E3NDW8; Trichuris suis: A0A085NGP1; Pristionchus pacificus: H3E6H1. 

In the case of endocytosis, the conclusion is much more straightforward. We confirmed the role 

of endocytosis through a substantial rescue when silencing chc and a near complete rescue when 

using a pharmacological inhibitor of endocytosis. As stated before, an RNAi event does not result 

in a complete inhibition of the process, whereas an inhibitor like chlorpromazine hydrochloride 

can have a strong effect as it operates on the protein level instead of the mRNA level, a difference 

that is also visible in our results. It is important to note that the choice of reporter gene needs to 

be deliberate as the silencing of chc can influence metabolic processes like α-amylase production 

and food uptake in this case. Silencing other components of the endocytic pathway did not cause 

impaired food intake and the resulting mortality, so it is probably not the endocytic process that is 

linked with amylase expression, but only its component chc, which is involved in other processes 

besides endocytosis. Mortality after chc silencing has also been reported in Schistocerca (S.) 

gregaria (Wynant et al. 2014b) and C. elegans (Saleh et al. 2006). In the former, adults were used, 

which might be less sensitive to lowered chc levels than the larval stages, so that adverse effects 

http://www.uniprot.org/uniprot/U4U416
http://www.uniprot.org/uniprot/U4UCY0
http://www.uniprot.org/uniprot/F4WVP0
http://www.uniprot.org/uniprot/E2AJI6
http://www.uniprot.org/uniprot/K7J510
http://www.uniprot.org/uniprot/E9I853
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on viability could be postponed long enough to finish the experiment. This lethality could make 

chc an interesting target for RNAi-mediated pest control. Indeed the low LD50 value of 0.053 ng 

dsChc per individual ranks among the lower doses reported in literature for coleopteran species 

(Table 6). Comparisons between a one-time administration and continuous dsRNA 

administrations are difficult. However, we have estimated the consumption of leaf material by the 

larvae to be approximately 0.9 g over the 14 days, which corresponds to a LC50 for dsChc of 0.06 

bbp, which is comparable to the best targets reported as of yet. 

Table 6. Overview of reported LC50 values for RNAi-mediated pest control in coleopteran species (adapted 
from Baum and Roberts 2014). 

Species Target gene Application method LC50 Reference 

Leptinotarsa 

decemlineata 

V-ATPase A, V-

ATPase E 

Artificial diet (continuously 

over 12-14 days) 

~10 ppb (Baum et al. 2007) 

Diabrotica 

virgifera virgifera 

Multiple (17) Artificial diet (continuously 

over 12-14 days) 

1-10 ppb (Baum et al. 2007) 

Snf7 Artificial diet (continuously 

over 12 days) 

4.3 ppb (Bolognesi et al. 2012) 

Diabrotica 

undecimpunctata 

howardii 

V-ATPASE A, V-

ATPase E, α-

tubulin 

Artificial diet (continuously 

over 12-14 days) 

~0.1 ppm (Baum et al. 2007) 

 Snf7 Artificial diet (continuously 

over 12 days) 

1.2 ppb (Bolognesi et al. 2012) 

Phyllotreta 

striolata 
 a

 

Arginine kinase Droplets on leaf tissue 

(every 3 days over 14 days) 

0.8 ppb (Zhao et al. 2008) 

Tribolium 

castaneum 

V-ATPase E Artificial diet (continuously 

over 7 days) 

2.5 ppm (Whyard et al. 2009) 

Cylas brunneus Multiple Artificial diet (continuously 

over 5 days) 

1-2 ppm (Christiaens et al. 2016) 

a
 This experiment was performed using adult beetles, in all other cases larvae were used. 

Silencing the A subunit (vha68) in the extracellular domain of the vacuolar H+ ATPase complex did 

not trigger any rescue of reporter gene silencing. On the other hand, for subunit c (vha16), 

localized in the integral domain, the rescue was high compared to the rescue noticed for the sil 

genes and comparable to the one observed when chc was silenced. A possible explanation for the 

negative results for Vha68 can be found in the distinct roles of the two subdomains. The integral 

V0 domain forms the proton-conducting pore, whereas the V1 domain is the site of the ATP 

hydrolysis, which can dissociate during Manduca sexta moulting (Sumner et al. 1995). Also the 

option that the RNAi-of-RNAi experiment was not sensitive enough should not be dismissed, as 

silencing the V1 subunit H in the S2 cell line showed a less pronounced effect on the RNAi 
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response than Vha16 (Saleh et al. 2006). The association between endocytosis and dsRNA uptake 

has also been reported in T. castaneum (Xiao et al. 2015) and S. gregaria (Wynant et al. 2014b) 

when the dsRNA was applied through injection into the hemocoel, and in the D. melanogaster S2 

cell line, where a sid-1-like gene is absent (Saleh et al. 2006; Ulvila et al. 2006).  

We now know that endocytosis is involved and that also the Sid-1-like proteins might play a role 

in taking up dsRNA from the midgut lumen into the surrounding cells, but concerning the relative 

contribution of each pathway to the whole dsRNA uptake event, we can only speculate. The larger 

RNAi rescue that is seen for the endocytosis-related genes (excluding vha68) points to a larger 

involvement of this pathway but the variability of the RNAi response of the reporter genes makes 

this difficult to assess. Additional experiments, ideally with an improved reporter system, are 

needed if we want to estimate (and maybe even quantify) the relative contribution of each 

pathway. Nevertheless, it is indisputable that, when performing dsRNA uptake experiments in 

other insect species, both pathways need to be examined so that a more complete view on the 

distribution of the pathways in different insect species and tissues can be obtained. Repeating this 

set of experiments through both injection and feeding of dsRNA could tell us if the (primary) 

dsRNA uptake mechanism is different in the insect midgut compared with the hemocoel-

surrounding tissues. This could give us a better understanding of the difficulties that are 

encountered when attempting to provoke an efficient RNAi response through feeding. This could 

in turn lead to progress toward the use of RNAi for selective insect pest control or/and increasing 

the resistance of beneficial insects against viral diseases.  
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4.1 Introduction 

Transport of domesticated honeybees and reared bumblebees has resulted in a global spread of 

different parasites and is considered as a substantial threat toward wild bee populations (Meeus 

et al. 2011; Goulson et al. 2015). Herein viruses serve a particular important role as they have a 

considerably broad host range (Wightman et al. 1993; Furst et al. 2014; Dolezal et al. 2016), and 

at least have the potency to inflict damage in numerous species. Viral screenings, host range 

determination and virulence studies in different bees have therefore become increasingly 

important. Viruses that are generally included in these screenings in bees mainly belong to two 

different families: the Dicistroviridae, which harbor, among others, Israeli acute paralysis virus 

(IAPV), Acute bee paralysis virus and Black queen cell virus and the Iflaviridae, with Deformed wing 

virus, Sacbrood virus, and Slow bee paralysis virus being the most important members. The list of 

viruses detected in pollinators is continuously expanding, due to the increased availability of 

metagenomic surveys, thereby prompting frequent updates to the list of viruses that are included 

in the screenings.  

A member of the Dicistroviridae with an exceptionally broad host range is Cricket paralysis virus 

(CrPV) (overview in Bonning and Johnson 2010). It has been discovered in lab colonies of the 

Australian field cricket (Reinganum et al. 1970). Since then it has been reported a few times in 

nature, but most of the information about its host range comes from artificial infections in the 

lab, where it was found to infect multiple species within the orders of the Diptera, Hemiptera, 

Hymenoptera, Lepidoptera and Orthoptera (Plus et al. 1978). An interesting observation came 

from Anderson and Gibbs who found latent CrPV infections when honeybee pupae were injected 

with buffer solutions and confirmed its presence by serological and ELISA tests (Anderson and 

Gibbs 1988). Please note that this CrPV identification was based on tests available at the time and 

thus misidentification due to cross-reactivity with related viruses cannot be excluded. 

To this day, this virus continues to be an interesting research subject because of its 

unconventional translation through two internal ribosome entry sites (IRES) and the presence of a 

suppressor of RNA interference (VSR), the principal antiviral defense system in insects. This latter 

feature, coupled with its broad host range, could make this virus a relevant threat to many 

insects, including pollinator species providing an invaluable ecosystem service. Here we focus on 

B. terrestris, as this wild bumblebee species is a key pollinator in the Palaearctic region. It is also 

reared commercially and is implicated in the spillover of parasites from reared toward wild bees 

(Kozomara and Griffiths-Jones 2011; Friedlander et al. 2014). The aim of this work was to evaluate 
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the pathogenicity of CrPV to B. terrestris, both through artificial infections (micro-injection) and 

infections that are more representative to the natural situation (oral-faecal transmission). Next to 

an increase in viral titers, replication of a positive-sense single-stranded RNA virus, such as CrPV, 

can also be confirmed by detecting the negative-sense RNA strand, which is generated during viral 

replication. In order to achieve this, the cDNA synthesis reaction is performed using a primer, 

complementary to the negative strand of the virus, instead of an oligodT or random hexamer 

primer. Strand-specific reverse transcription (RT)-PCR is prone to false positives, caused by self-

priming of the positive RNA strand, false priming on the positive strand or an incomplete 

inactivation of the reverse transcriptase. To avoid this, a non-viral tag can be added to the 5’ end 

of the negative strand-specific primer. In this work, a tag-based primer set was devised for CrPV. 

IAPV, a closely related and well-studied pathogen of bumblebees, was used to draw some 

comparisons concerning infectivity and viral loads in different tissues.  

4.2 Material and methods 

 Bumblebee rearing and infection methods 4.2.1

All experiments were performed using 5-to-10 day old B. terrestris workers, age fixed within each 

experiment, obtained from Biobest NV (Westerlo, Belgium). Several workers were collected from 

the colonies and verified to be free of IAPV, Acute bee paralysis virus (ABPV), Kashmir bee virus 

(KBV), Deformed wing virus (DWV) and Slow bee paralysis virus (SBPV) using RT-PCR (Sguazza et 

al. 2013). One or two workers were collected from each colony and randomly distributed over the 

microcolonies for the experiments. These microcolonies were placed in an incubator at 30°C, 60% 

relative humidity and in continuous darkness and fed with sugar water (50 w/v%, BIOGLUC®, 

Biobest NV) and gamma-irradiated pollen (Soc. Coop. Apihurdes, Pinofranqueado-Cáceres, Spain). 

Prior to injections, the bumblebees were sedated on ice in a plastic container for 5 minutes. A 

volume of 5 µL was used to inject the bumblebees through the abdominal intersegment 

membrane between the second and third segment using an Femtojet Microinjector (Eppendorf, 

Hamburg, Germany). For feeding experiments, bumblebees were placed individually in plastic 

containers in which a small cup with 40 µL feeding solution was placed. This solution consisted of 

20 µL sugar water and 20 µL of bumblebee faeces (infected by injection of 104 particles per 

individual). Only bumblebees that had completely consumed the solution were eligible for the 

experiment.  
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 Virus production  4.2.2

The initial CrPV inoculum used for virus production was provided by Dr. Eric Jan (Department of 

Biochemistry and Molecular Biology, University of British Columbia, Canada) and Dulce Cordeiro 

dos Santos (Department of Biology, KU Leuven, Belgium). The initial IAPV inoculum was provided 

by Joachim de Miranda (Department of Ecology, Swedish University of Agricultural Sciences, 

Sweden).  

CrPV was produced within the Schneider-2 (S2) cell line, which was tested to be negative for Flock 

house virus, D. melanogaster X virus, D. melanogaster American Nodavirus, D. melanogaster 

Totivirus and D. melanogaster Birnavirus (Wu et al. 2010). 40 µL of CrPV inoculum (106 

particles/µl) was used to infect 40.106 S2 cells and 15 hours later the resulting viral particles were 

obtained by repeated freezing and thawing in an ultrafreezer (-70°C) and subsequently applied to 

300.106 cells. 15 hours later the resulting viral suspension was cleared of cell debris by 

centrifuging twice: 15’ at 800g, followed by 30’ at 20000g. The viral suspension was cleaned 

further by ultracentrifuging 2h, at 4°C, at 100000g in a 15% sucrose gradient. The pellet was 

collected, resuspended in PBS and tested negative for IAPV, ABPV, KBV, DWV and SBPV using RT-

PCR (Sguazza et al. 2013). The suspension was also negative for Flock house virus, a typical 

contaminant of the S2 cell line, encoding a VSR. To evaluate whether other pathogenic entities or 

toxic compounds in the cell line could have any effect on bumblebees, a control suspension was 

included where the S2 cells underwent the same procedure, but without CrPV infection.  

IAPV was produced by injecting 160 virus-free bumblebees with 500 IAPV particles and waiting 

three days for the virus to amplify within the body. Then the bumblebees were crushed in 10 mM 

phosphate buffer (pH 7.0) supplemented with 0.02% diethyl dithiocarbamate. The suspension was 

centrifuged for 15’ at 800g and 4h at 100000g (4°C). The resulting pellet was resuspended in 6 ml 

demineralized water. Subsequent dilutions were made in phosphate buffered saline (PBS). 

Contamination of other common bumblebee viruses such as ABPV, SBPV, DWV, KBV, Chronic bee 

paralysis virus (CBPV), Varroa destructor virus-1 (VDV-1), Sacbrood virus (SBV) and Black queen 

cell virus (BQCV), was determined to be less than 0.1% of the IAPV level by RT-qPCR (Niu et al. 

2016b) and the stock tested negative for CrPV (determined by RT-PCR). 

For both viruses, the concentration of viral particles was estimated by transmission electron 

microscopy (CODA-CERVA, Brussels, Belgium). Alcian blue-treated grids were deposited on a 15 μl 

drop of solution for 10 minutes and rinsed two times with water. Afterwards, the grids were 

stained for 10 seconds on a drop of 2% uranyl acetate (Agar Scientific, Stansted, UK), blotted and 
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air-dried. The samples were imaged in bright field mode using a Tecnai Spirit TEM (FEI, Hillsboro, 

USA) with Biotwin lens configuration operating at 120 kV. Five micrographs were recorded per 

sample using a 4K x 4K CCD camera (Eagle, FEI) at a magnification of 30000 times.  

 RNA extraction, cDNA synthesis, RT-PCR, negative-strand-specific RT-PCR and RT-qPCR 4.2.3

The RNeasy Mini Kit (Qiagen) was used to isolate total RNA according to the manufacturer’s 

instructions, followed by DNAse treatment (Turbo DNA-free kit; Life Technologies). The only 

alteration from the original protocol was that for larger samples (whole abdomen or whole body), 

the volume of RLT buffer was increased to 1 ml. 500 ng of RNA was used in each cDNA synthesis 

reaction, with the SuperScript II Reverse Transcriptase Kit (Life Technologies) using an oligodT 

primer. The PCR reactions were performed in a Labcycler (SensoQuest, Göttingen, Germany) with 

the following protocol: 2 min at 94° C, 35 x (30 s at 94°C; 30 s at 56°C; 30 s at 72°C), 3 min at 72°C. 

1 µL of cDNA was added to each 25 µL PCR reaction containing 2.5 µL 10 PCR buffer, 1.5 mM 

MgCl2, 0.2 mM dNTP, 0.5 µM primers and 1.25 U Recombinant Taq DNA Polymerase (Life 

Technologies).  

For negative strand detection, instead of the oligodT primer, a CrPV-specific primer was designed 

using the primer3 software (Koressaar and Remm 2007) and fused to a tag at the 5’ end. Four 

different tags were selected from literature (Table 7) and tested in various cell lines and 

bumblebee samples for false positives. The cDNA synthesis protocol was altered slightly, with an 

increased temperature (50°C instead of 42°C) and shorter reaction time (30 minutes instead of 50 

minutes) to avoid mispriming. Residual primers were destroyed by adding 0.5µL Exonuclease I 

(Thermo Fisher Scientific, Waltham, USA) and incubating for 30 min at 37°C. The enzyme was 

inactivated at 70°C for 15 min. The cDNA was diluted 1:10 before use in PCR reactions at the 

conditions described above, but with the tag-primer (not fused to a viral sequence) replacing the 

F primer.  

The RT-qPCR reactions were performed using the same reaction mixture and amplification 

conditions as described in section 3.2.5, except that here the cDNA was diluted 1:40 or 1:100. As 

reference genes, 60S ribosomal protein L23 and ubiquitin were used for normalization of the data 

(Table 7; Niu et al. 2014). The same quality control restrictions relating to the Cq values, 

amplification efficiency and melting curves were used. The results were analyzed using the qbase+ 

software (Biogazelle) and SPSS Statistics 23.0 (IBM Corp 2015).  
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Table 7: List of primers used in Chapter IV. 

Name Sequence (5’-3’) Reference 

CrPV F TGTCAACCCGACGCTTACA This study 

CrPV R TGTATTCCTCTCCCCTCGCA This study 

Tag1-CrPV F AGCCTGCGCACCGTGGTGTCAACCCGACGCTTACA (Yue and Genersch 2005) 

Tag2-CrPV F GGCAGTATCGTGAATTCGATGCTGTCAACCCGACGCTTACA (Plaskon et al. 2009) 

Tag3-CrPV F GGCCGTCATGGTGGCGAATAATGTCAACCCGACGCTTACA (Vashist et al. 2012) 

Tag4-CrPV F TCGGAATCGCCTAGCTTTGTCAACCCGACGCTTACA (Celle et al. 2008) 
Tag3 GGCCGTCATGGTGGCGAATAA (Vashist et al. 2012) 
IAPV F CCATGCCTGGCGATTCAC (de Miranda et al. 2010) 

IAPV R CTGAATAATACTGTGCGTATC (de Miranda et al. 2010) 

Tag3-IAPV F GGCCGTCATGGTGGCGAATAACCATGCCTGGCGATTCAC (Vashist et al. 2012) 

rpl23_q F GGGAAAACCTGAACTTAGGAAAA (Niu et al. 2014) 

rpl23_q R ACCCTTTCATTTCTCCCTTGTTA (Niu et al. 2014) 

ubi_q F GGTATTTGGATGCCAGTGATTT (Niu et al. 2014) 

ubi_q R ATGGGCATTTCTACCCCTTTTA (Niu et al. 2014) 

In the tag-fused primers, the tags are underlined. IAPV: Israeli acute paralysis virus (EU436443.1); CrPV: 
Cricket paralysis virus (KP974707.1); rpl23: 60S ribosomal protein L23 (XM_003400707.2); ubi: polyubiquitin 
B (XM_003402262.2). 

 CrPV screening in bumblebees collected from nature 4.2.4

In total, 137 bumblebees (105 B. pascuorum, 16 B. lapidarius and 16 B. terrestris individuals) were 

collected from 18 study areas (50 ha each) in agricultural landscapes located across the middle 

and southern parts of the Netherlands. Bees were caught in a 2 m wide transect walk along center 

of the study areas, stored separately in containers and kept alive until they arrived at the lab. 

Here, the abdomens were crushed individually in RLT buffer and RNA extraction and cDNA 

synthesis was performed as described in 4.2.3, except that random hexamer primers were used in 

this case. For RT-PCR detection, the samples were pooled per five, according to species and 

sample location. 
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4.3 Results 

 Injection with CrPV causes mortality at high doses 4.3.1

Three different doses of CrPV (106, 104 and 102 particles per bumblebee) were injected into 

bumblebee female workers and male drones (only the highest dose for the latter) and mortality 

was scored (Figure 15). For the highest dose, mortality was nearly 100% for both males and 

females. At the intermediary dose of 104 particles per bee, 50% of the bees survived. RT-PCR 

detection using oligodT-generated cDNA and the non-tagged CrPV primer set confirmed CrPV 

presence in the fat body of those bumblebees (3 out of 4) that were still alive at day 14, after 

being injected with 104 particles. For the lower dose and both controls, no mortality was 

observed. The majority of mortality occurred in the window between 4 days post infection (dpi) 

and 7 dpi. Uncoordinated movements of the legs and paralysis symptoms were observed in the 24 

hours leading up to death. To rule out the possibility that a low contamination of IAPV in the CrPV 

stock solution was responsible for the paralysis symptoms and mortality, IAPV was confirmed to 

be absent in the infected bumblebees using PCR. 

 Tag-based negative strand RT-PCR detection in a wide host range 4.3.1

As CrPV is capable of infecting lab populations of many different insect orders, sometimes 

resulting in chronic asymptomatic infections, distinguishing between positive results caused by 

the original inoculation dose or by a real infection and thus viral replication is imperative. 

Therefore, a tag-based system was devised capable of detecting the negative strand of CrPV in 

many different orders. The four candidate tags were evaluated with the following criteria: 1) no 

false positives in any of the tested cell lines or bumblebee samples, 2) positive results in 

bumblebees infected with 106 particles 4 days after infection and 3) no positive results for a 

purified CrPV sample (only containing positive single stranded RNA) . 
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Figure 15. The survival percentage after injection of different doses of CrPV, scored daily.  
Statistical differences with the PBS control on an α= 0.05 level (Kaplan-Meier survival analysis, log rank test, 
in SPSS Statistics 23.0) are denoted by different letters at the end of the graph. Two controls were included, 
one where PBS was injected and one where a purified suspension from non-infected S2 cells was injected. 

As seen in Table 8, only Tag 3 gave a negative result in all the cases, except for the true positive 

bumblebee sample. Therefore, this tag was used to confirm CrPV replication. The negative result 

when testing the CrPV stock ensures that no false positive results are generated. This could occur 

because of primer misbinding or self-starting transcription, due to the positive ssRNA strand 

folding onto itself, when a large number of viral genome copies is present. 

Table 8: PCR results of tag-primer testing in different cell lines and bumblebee samples. 

 cf203 gutaw1 Bm5 Hi5 Sf9 S2 cpb tca 
bbee 
PBS 

bbee 
10

6
 

CrPV 
stock 

Tag 1 - - - - - + - - - / / 
Tag 2 - - - - - + - - - / / 
Tag 3 - - - - - - - - - + - 
Tag 4 + + + + + + + + + / / 

+: a band is visible after gel electrophoresis; -: no band is visible; /: not tested. Cf203: FPMI-CF-203 
(Sohi et al. 1993); Gutaw1: RP-HzGUT-AW1 (Goodman et al. 2004); Bm5 (Grace 1967) ; Hi5: BTI-Tn-
5B1-4 (Granados et al. 1994); Sf9: IPLB-SF-9 (Vaughn et al. 1977); S2: Schneider-2 (Schneider 1972); 
cpb: BCIRL-Lepd-SL1 (Long et al. 2002); tca: BCIRL-TcA-CLG1 (Goodman et al. 2012); bbee: 
bumblebee fat body. 
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 Injection with lower doses of CrPV or feeding with faeces of infected bees results in 4.3.2

chronic infections 

Using RT-qPCR analysis an increase in viral titers in the abdomen, 4 days after injection, was 

confirmed both in the case of 104 and 106 particles (Figure 16). In the case of 104 particles, the 

infecting dose could not be detected within 40 cycles, but after 4 days, in 4 out of the 7 

bumblebees tested, the viral titers were high enough to be detectable. The resulting titers after 4 

days were not very high as they fell in the range of the dose of 106 particles immediately after 

injection. However, for 106 particles, an over 11,000-fold increase was measured between day 0 

and day 4. These results, coupled with the mortality results, suggest an acute infection as a result 

of the higher infection dose, characterized by a considerably fast viral replication.  

The lower dose, however, can have multiple outcomes. As the dose of 104 particles per individual 

did not cause complete mortality, both the normal oligodT-based and the tag-based (for negative 

strand detection) RT-PCR detection were used to check for CrPV presence and replication in the 

surviving bumblebees. PCR detection using the regular CrPV primer set confirmed CrPV presence 

in the fat body (3 out of 4) of bumblebees injected with 104 particles that were still alive at day 14. 

Two of these positive samples showed negative strand amplification using the tag-based assay, 

confirming viral replication. This indicates that some bees experience a strong acute infection 

(and die) whereas in others, a chronic infection occurs, with lowered viral titers and replication. 

Mimicking a more natural method of infection, bumblebees were also fed with faeces of infected 

bumblebees. Here, positive results were obtained in fat body (3 of 4) and ovaries (2 of 4), 

confirming the spread of CrPV in the body. However, the negative strand detection could not 

confirm replication in these tissues. 
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Figure 16 Relative CrPV levels obtained by RT-qPCR, showing an increase in viral titers between day 0 and 
day 4, for both 10

6
 and 10

4
 injected particles.  

The columns represent the mean ± SEM of the relative virus levels, relative to the normalized level of the 
reference genes rpl23 and ubi. Statistical differences on an α= 0.05 level are denoted by different letters 
above the column (independent samples Kruskal-Wallis Test: test stat.=10.7956, df=2, p=0.0045). 10

4
 

particles could not be detected just after injection, but after 4 days it was detectable in 4 out of 7 
bumblebees. For 10

6
 particles, the increase was over 11,000-fold. 

 Negative strand detection for CrPV and IAPV in different tissues 4.3.3

A known bumblebee pathogen, closely related to CrPV and causing similar symptoms, is IAPV. The 

negative strand-specific assay was utilized to assess replication in four different tissues, brain, fat 

body, midgut and ovaries, and compare it to the viral titers, obtained by RT-qPCR, and this for 

both viruses. The negative strand of CrPV was detected in all tissues, but not consistently (Figure 

17A). Similar band intensities were observed in the fat body and to a lesser extent in the ovaries, 

whereas in brain and midgut there was only one bright band. In IAPV however, the intensities 

within one tissue were more equal (Figure 17B). Although the amount of RNA was normalized 

before cDNA synthesis, one should be careful when using this data for comparisons between 

tissues and between the different viruses. When comparing with the viral titers, obtained by RT-

qPCR on the same samples, no obvious agreement between the two datasets can be seen. In 

general, for IAPV higher viral titers correspond to a higher replication, except for the ovaries 

(Figure 17D). For CrPV there are more inconsistencies with relatively high viral titers 

corresponding with not so bright bands and vice versa (Figure 17C). However, no strong 

conclusions should be based on this data as the negative strand PCR is an endpoint PCR and some 

of the bands are saturated so information about their relative intensities is lost.   
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Figure 17. Negative strand detection by tag-based RT-PCR in different tissues (brain, fat body, midgut and 
ovaries) for CrPV (panel A) and IAPV (panel B).  
Equal amounts of RNA were used during cDNA synthesis so, at least, within tissue comparisons are possible. 
The size of the bands are 406 bpfor CrPV and 224 bp for IAPV. CrPV shows more variability within tissues 
than IAPV, with similar intensities only in the fat body and to a lesser extent in the ovaries. Panels C and D 
show the corresponding viral titers obtained by RT-qPCR. Every dot represents a sample and the colors 
denote the intensities of the bands of the negative-strand specific RT-PCR, with red: a bright, saturated 
band; yellow: medium intensity band, light green: only a faint band and dark green: no visible band.  
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4.4 Discussion  

From our data, it is clear that CrPV can infect bumblebees in artificial lab conditions using the 

robust microinjection method of infection. At high doses the symptoms and mortality were 

similar to those observed for CrPV in crickets (Reinganum et al. 1970) and IAPV in bees (Maori et 

al. 2007; Wang et al. 2016). Compared to IAPV, the lethal dose by injection was considerably 

larger (104 instead of only a few dozen of particles) and onset of mortality occurred at a slightly 

later time point (4 dpi instead of 3 dpi) (Niu et al. 2016b). When dropping to lower doses, it seems 

like some individuals could resist infection, either by preventing the establishment of the infection 

(negative RT-PCR results) or by keeping the viral titers low enough so there is only limited damage 

to the host tissues (positive RT-PCR results but no mortality). An important observation was that 

bumblebees could be infected by feeding with CrPV-containing faeces, suggesting CrPV could be 

transmitted between bees in natural conditions. However, whether the amount of CrPV particles 

present in these faeces mimics the CrPV loads, that could be present in nature, remains 

unexplored.  

The less uniform negative strand amplification within the different tissues for CrPV also suggests 

that a CrPV infection is not established as easily as an IAPV infection. Indeed, chronic infections 

after IAPV injection do not seem possible when even very low doses of IAPV (~20 particles;  Niu et 

al. 2016b) trigger an acute infection. Virus characteristics, such as their ability to enter the host 

cell, tissue tropism, production of viral suppressors of RNAi or other virulence factors could 

determine the replication potential. But this difference could also stem from host factors, 

concerning both immunity and physiology, allowing the CrPV infection to be kept under control.  

The tag-based negative strand detection developed here can be an important tool for 

distinguishing between positive RT-PCR results caused by the original inoculation dose and those 

caused by a true infection of CrPV. Moreover, it could also be useful for CrPV detection in samples 

from nature. Many solitary bees are small and dissection of separate tissues is not practical. 

Therefore, it is not possible to only examine tissues with no direct access to the environment, 

such as the fat body. In this case, detection of the negative strand in the whole body would 

confirm viral infection in these small pollinators. It would also be interesting to do a quantitative 

comparison of the replication occurring in the different tissues for both IAPV and CrPV, to track 

infection and replication over the tissues during the course of infection.  
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This study supports the idea that B. terrestris is an experimental host for CrPV and that this virus 

could be chronically present in nature in bees. As of yet, CrPV has been found as a latent infection 

once in the honeybee (Anderson and Gibbs 1988) but not in metagenomics surveys in bees (Cox-

Foster et al. 2007; Arrese and Soulages 2010; Ghosh et al. 2014). We screened a sample set of 

bumblebees (N = 137) collected in a geographically (N = 18) limited region (the Netherlands) for 

CrPV, but have not detected it. A broader screening of bees, especially in areas where CrPV is 

naturally found in cricket populations, would tell us more about its prevalence. Therefore, we 

would like recommend that CrPV would be incorporated in general screening programs. The 

validated tag-based test to assess replication of the virus can readily be used to exclude false 

positive results. 
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THE INTERACTION BETWEEN ISRAELI ACUTE PARALYSIS 

VIRUS AND THE RNA INTERFERENCE RESPONSE OF ITS 
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5.1 Introduction 

No domain of life is exempt from the threat of viruses (Nasir et al. 2014), which hijack the cellular 

metabolic pathways to produce the genomic material and proteins needed for their own 

replication (reviewed in Walsh and Mohr 2011). In order to counter these attacks, organisms have 

developed various defense mechanisms. As described in Chapter I, in plants, nematodes and 

arthropods this defense is carried out mainly by the RNAi pathway (Soosaar et al. 2005; Karlikow 

et al. 2014). This pathway is triggered by dsRNA intermediates that arise during the replication of 

RNA viruses (van Mierlo et al. 2010; Marques et al. 2013) and results in the destruction of the viral 

genomic RNA strands, thereby preventing the production of the associated viral proteins 

(reviewed in Obbard et al. 2009). If the RNAi mechanism acts systemically, a viral sequence-

specific signal can be spread to uninfected tissues, resulting in a, at least partially, protected 

status of these cells (Saleh et al. 2009).  

During evolution, viruses have not stood by idly while their hosts developed this RNAi defense 

mechanism. Viruses, known to encode viral suppressors of RNAi (VSRs), have been found in plants 

(reviewed in Burgyán and Havelda 2011) and insects (Li et al. 2002; van Rij et al. 2006; Nayak et al. 

2010; Schnettler et al. 2012; van Mierlo et al. 2012; van Cleef et al. 2014), the latter were listed in 

Table 1. These VSRs are often small proteins which exercise their function through various 

mechanisms such as dsRNA sequestering and Dcr-2 or Ago-2 binding. Within the Dicistroviridae, a 

166 AA long protein, called 1A, has been proven to be a functional VSR in both the Drosophila C 

virus (van Rij et al. 2006) and the Cricket paralysis virus (CrPV) (Nayak et al. 2010). Recently the 

presence of a similar 1A protein has been suggested in another member of the Dicistroviridae, 

Israeli acute paralysis virus (IAPV). The proof of its functionality was based on reduced virus titers 

after silencing the 1A region, compared to targeting the non-coding 5’ IRES region (Chen et al. 

2014), indicating the need of 1A for virulence. This method might be insufficient by itself, as 1A is 

a post-translation product and confounding effects like dsRNA target accessibility were not 

considered. Another small ORF, tentatively named orfX (or pog), has been predicted in IAPV and 

its close relatives but not in CrPV (Firth et al. 2009; Sabath et al. 2009), and the presence of the 

resulting protein has been confirmed for IAPV in honeybees (Ren et al. 2012) but not for 

Solenopsis invicta virus-1 (Valles and Sabath 2012). As of yet, no functionality has been attributed 

to this putative 94 AA protein. VSRs can be very potent in the inhibition of the RNAi mechanism 

and therefore important immunosuppressive virulence factors. The actual virulence of a virus, 

defined as the relative capacity to cause damage in a host, depends on the balance between the 
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power of the suppressor and the capacity of the RNAi mechanism of the host to limit the 

replication of the virus and hence, the production of this inhibitor.  

The aim of this study was to investigate to what extent IAPV can influence RNAi efficiency, and to 

which direction this balance will sway, in the bumblebee B. terrestris. This virus is known to pose 

an important health danger to pollinators such as honeybees and bumblebees (Cox-Foster et al. 

2007; Meeus et al. 2014) and is a target for RNAi-based antiviral therapeutics (Maori et al. 2009). 

As an extra control, CrPV, with its known VSR in Drosophila, was included. CrPV has not been 

reported as a problematic infection of the pollinator community and has a broad host range as it 

was reported to infect species within the insect orders of Heteroptera, Diptera, Lepidoptera and 

Hymenoptera, at least in experimental conditions (Plus et al. 1978; Chao et al. 1986; Anderson 

and Gibbs 1988). Within the concept of virus multi-host dynamics (Manley et al. 2015), the 

presence of VSRs can severely impact the virulence in different hosts, as the immunosuppressive 

capacity is dependent on the host immune strategies and their sensitivity towards VSRs. Also 

within the same host species, VSRs can influence the virulence of co-infecting viruses (Carrillo-

Tripp et al. 2016), an important feature now that multi-virus reports in pollinators are emerging 

(Chen et al. 2004; Wu  et al. 2015).  

In order to evaluate the effect of IAPV infection on RNAi efficiency in B. terrestris, we used a dual 

approach. First, a proteomic analysis was performed to confirm the translation of the VSR 1A and 

predicted orfX proteins using the data-independent acquisition method with high definition mass 

spectrometry (HDMSE). Second, the RNAi efficiency after IAPV and CrPV infection was 

determined. An assay was developed in which bumblebees were infected with a fixed amount of 

viral particles and after an incubation period injected with dsRNA targeting peptidylprolyl 

isomerase A (ppia), a gene known to remain stable during virus infection (Niu et al. 2014). 

Silencing levels were evaluated using RT-qPCR, along with expression levels of the RNAi core 

genes, dcr-2 and ago-2, and the systemic RNAi genes, ninaC, egghead and sid-1 (Saleh et al. 2009). 

5.2 Material and methods 

 Bumblebee rearing and injections 5.2.1

All experiments were performed using age fixed workers, obtained, reared and verified to be 

virus-free as described in section 4.2.1 The microinjections were performed as described in the 

same section, but here a volume of 5 µL was used for all virus solutions (and the appropriate 

controls), while dsRNA was injected in a volume of 20 µL.  
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 Virus production  5.2.2

IAPV was produced within B. terrestris pupae as discussed in detail in section 0. Subsequent 

dilutions of the stock were made in PBS. Contamination of other common bumblebee viruses such 

as ABPV, KBV, SBPV, CBPV, DWV, VDV-1, SBV and BQCV was determined to be less than 0.1% of 

the IAPV level by RT-qPCR (Niu et al. 2016b) and the stock was negative for CrPV (determined by 

RT-PCR). CrPV was produced within the Schneider-2 (S2) cell line as described in 0. The viral 

suspension tested negative for IAPV, ABPV, KBV, DWV and SBPV using RT-PCR (Sguazza et al. 

2013). The concentration of viral particles was estimated by transmission electron microscopy 

using a standard protocol for negative staining with Alcian blue and uranyl acetate as presented in 

0 (CODA-CERVA).  

 dsRNA synthesis 5.2.3

The dsRNA was prepared as described in section 3.2.3, using the appropriate T7-primers (Table 9) 

and bumblebee cDNA or a GFP fragment-containing plasmid as a template. 

 RNA extraction, cDNA synthesis and RT-qPCR 5.2.4

RNA was isolated using the RNeasy Mini Kit (Qiagen) according to the manufacturer’s instructions 

and treated with the Turbo DNA-free kit (Life Technologies). For cDNA synthesis, 500 ng RNA was 

used in each reaction, performed with the SuperScript II Reverse Transcriptase Kit (Life 

Technologies). The RT-qPCR reactions were performed as described in 4.2.3. The results were 

analyzed using qbase+ software (Biogazelle) and SPSS Statistics 23.0 (IBM Corp 2015). Reference 

gene stability was evaluated using the geNorm M value and the coefficient of variation on the 

normalized relative quantities (CV) values generated by the software. The thresholds for the M 

and CV values were set at 0.5 and 0.2 respectively for within-tissue comparisons and 1 and 0.5 for 

between-tissues comparisons (Hellemans et al. 2007). An overview of the primers used in this 

Chapter is given in Table 9. All primers were published (Niu et al. 2014) or designed using the 

primer3 software (Koressaar and Remm 2007). 

 RNAi efficiency experiments, RNAi gene expression levels and pre-infection experiments 5.2.1

In order to test the effect of viral presence on the RNAi efficiency, an assay was developed, 

containing three treatments. As a reporter gene the endogenous ppia was chosen as it remains 

stable in the presence of IAPV (Niu et al. 2014). Bumblebees belonging to the control group, with 

the purpose of determining the baseline ppia level, were injected with 5µL PBS and 24 hours later 

with 20 µg dsGFP (baseline control group) (You et al. 2010; Niu et al. 2016b). 
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Table 9. Overview of the primers used in Chapter V. 

Primer 

name 

Sequence (5’-3’) Length 

(bp) 

Eff (%) 

IAPV_q F CCATGCCTGGCGATTCAC 

203 97-102 
IAPV_q R CTGAATAATACTGTGCGTATC 

CrPV_q F AAACGCAAAAACAGCGAAAC 

110 103-104 
CrPV_q R CACATCAAGCACCAAAGCAT 

rpl23_q F GGGAAAACCTGAACTTAGGAAAA 

143 86-99 
rpl23_q R ACCCTTTCATTTCTCCCTTGTTA 

ubi_q F GGTATTTGGATGCCAGTGATTT 

129 94-96 
ubi_q R ATGGGCATTTCTACCCCTTTTA 

ppia_q F TCGTAATGGAGTTGAGGAGTGA 

132 84-94 
ppia_q R CTTGGCACATGAAGTTTGGAAT 

dcr-2_q F TGGTCAAAACATCAAGAACAACCA  

211 93-97 
dcr-2_q R GATCGGGGCCATACGAACAT 

ago-2_q F CCGAATGTGGACAATGCTTA 

181 95-102 
ago-2_q R AACGGGCAAAGGTGTGATTA 

sid-1_q F CGAGCCCATCAACGGTAGAA  

160 94-107 
sid-1_q R CGAGCCAAATCACAAACGGA 

ninaC_q F GCGAAACCATCTGGAGGATA 

112 91-106 
ninaC_q R ACTCTGTTAGCCGCATCGTT 

egghead_q F ACCGGAGGACTTAGTTGGAA 

122 93-97 
egghead_q R TGCGGAAAGGAAAGAAATGT 

GFP_T7 F TAATACGACTCACTATAGGGTACGGCGTGCAGTGCT 

495 / 
GFP_T7 R TAATACGACTCACTATAGGGTGATCGCGCTTCTCG 

ppia_T7 F TAATACGACTCACTATAGGGCACTGGTGGAAGGTCCATCT 

388 / 
ppia_T7 R TAATACGACTCACTATAGGGAAGGGAAAATGGTGATGATTAGAA 

RT-qPCR primers are denoted by a q in the primer name, dsRNA synthesis primers by a T7. bp: basepairs; 
Eff.: minimal and maximal amplification efficiencies over the different experiments. IAPV: Israeli acute 
paralysis virus (EU436443.1); CrPV: Cricket paralysis virus (KP974707.1); rpl23: 60S ribosomal protein L23 
(XM_003400707.2); ubi: polyubiquitin B (XM_003402262.2); ppia: peptidylprolyl isomerase A  
(XM_003402218.2); dcr-2: dicer-2 (XM_012307737.1); ago-2: argonaute-2 (XM_012312881.1); sid-1: 
systemic RNAi deficient 1-like (XM_012315164.1); ninaC: neither inactivation nor afterpotential C 
(XM_003393094.2); egghead: beta-1,4-mannosyltransferase egghead (XM_012321382); GFP: green 
fluorescent protein (M62654.1). 
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A second group was injected with 5µL PBS and 20 µg dsPPIA and used to assess the RNAi 

efficiency in absence of the virus (RNAi control group). The virus treatment consisted of a first 

injection of 500 IAPV or 106 CrPV particles, followed by an injection of 20 µg dsPPIA (virus 

treatment group).  

Because of a slower replication of CrPV, the time between virus infection and dsRNA treatment 

was extended to 48h and not longer to limit the effect of a bumblebee age difference. This way, 

there is an equal time between the end of the experiment and the onset of death for both viruses. 

Each group consisted of 7-9 individuals (n). Brain, fat body, midgut and ovaries were dissected 48 

hours after dsRNA treatment and stored separately in 350µL RLT buffer. In order to assess the 

expression levels of the RNAi genes 24 hours after IAPV treatment, a separate experiment was set 

up (n = 8-10). For the pre-infection experiments, similar timelines were used as in the RNAi 

efficiency assays. In a first experiment, injection with 500 particles of IAPV was followed by 

injection of 106 particles of CrPV 24h later (n = 9-10), in the other 106 particles of CrPV were 

injected and 48h later, 500 particles of IAPV (n = 11-15). Viral titers were analyzed using RT-qPCR 

48h after the second virus infection. 

All statistical analyses of RT-qPCR data were performed within SPSS version 23. For experiments 

that evaluated viral titers, non-parametric methods were used (Friedman/Wilcoxon signed rank 

tests for dependent samples, Mann Whitney U tests for independent samples). In the functional 

RNAi assay and the evaluation of the RNAi gene levels, the data was log2 transformed after which 

the data satisfied the normality and homoscedasticity assumptions for Analysis of Variance 

(ANOVA) and t-test testing (Hellemans et al. 2007).  

 HDMSE 5.2.2

3 days after being injected with 500 IAPV particles, 15 pairs of ovaries were collected from 

bumblebees. The ovaries were crushed in liquid nitrogen (pooled per three individuals) and two 

third of the resulting powder was stored at -80°C for mass spectrometry, while one third was 

dissolved in RLT buffer (RNeasy Mini Kit, Qiagen, Hilden, Germany). Infection was confirmed 

afterwards by RT-qPCR on the RLT-dissolved sample as described in 5.2.4. The powdered mass 

spectrometry samples (5 per treatment) were resuspended in 45 µL of 0.5M triethylammonium 

bicarbonate (TEABC; Sigma-Aldrich), supplemented with sodium dodecyl sulfate (SDS; 0.1 v/v%) 

and acetonitrile (ACN; 10 v/v%), in the presence of Halt Protease and Phosphatase Inhibitor 

Cocktail (Perbio Science, Erembodegem, Belgium) and 100 U of benzonase nuclease (Sigma-

Aldrich, St. Louis, USA) in a Eppendorf LoBind tube. After sonication on ice, the protein 
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concentration was determined using the Bradford assay (Bradford 1976). 2.5 µg of protein was 

reduced in 0.5 M TEABC by adding 1 µL 50 mM tris(2-carboxyethyl)phosphine (TCEP) and 

incubating for 30 minutes at 60°C, followed by alkylation using 10 mM methyl 

methanethiosulfonate  (MMTS) for 10 minutes at room temperature (RT). Digestion was 

performed in 1 mM CaCl2 by adding trypsin/lysC (25:1 protein/enzyme ratio; Promega, Madison, 

USA). The samples were placed overnight at 37°C and evaporated, after which they were 

resuspended in 0.1% formic acid. 100 ng of each peptide sample was spiked with 25 fmol Hi3 

standard and 25 fmol MSPD standard before injection. 

The peptides were separated using a nanoscale UPLC system (nanoAcquityUPLC, Waters, Milford, 

USA) coupled to a Synapt G2-Si mass spectrometer (Waters). Peptides were first trapped in 0.1% 

formic acid on a 180 µm x 20 mm C18 Trap column. Separation was performed on a HSS C18 1.8 

m, 100 m × 250 mm analytical column at a flow rate of 300 nL/min and a temperature of 45°C. As 

mobile phase A, a 0.1% formic acid with 4% dimethylsulfoxide (DMSO) in water solution was used 

and 80% ACN containing 0.1% formic acid constituted mobile phase B. Peptides were separated 

for 60 minutes at 1–40% solvent B and for 1 minute at 40-85% solvent B. 7 min of rinsing (85% 

solvent B) re-equilibrated the column to the initial conditions. Eluted peptides were analyzed in 

positive mode ESI-MS using High Definition MSE (HDMSE ) with a collision energy look up table as 

described in (Distler et al. 2014). The spectral acquisition time of low and elevated energy scans 

was 0.6 s over an m/z range of 50-2000. [Glu1]-Fibrinopeptide B was used for post-acquisition 

lock mass correction. 

Data analysis of the raw files obtained from the Synapt G2-Si was performed in Progenesis QI 

(Nonlinear Dynamics) version 2.0. Samples with an alignment score lower than 70% were 

discarded, resulting in three samples per treatment. Peptides with charges from two to five were 

retained following data normalization. For peptide identification, the following search criteria 

were set: trypsin as digestion enzyme, up to one missed cleavage allowed, fixed methylthio 

cysteine and variable methionine oxidation and deamidation at asparagine and glutamine. The 

optimal peak picking threshold for protein identification was determined by the PLGS Threshold 

Inspector. The data was searched by Protein Lynx Global SERVER 3.0.2 (Waters) with peptide 

tolerance and fragment tolerance set to auto. Protein identifications were obtained by searching 

a compiled database of UniProtKB/Swiss-Prot entries belonging to IAPV and all Bombus species 

supplemented with the cRAP database (laboratory proteins and dust/contact proteins) and 

sequences of spiked standard proteins, which was concatenated to a randomized decoy database. 

The false discovery rate (FDR) for protein identification in PLGS was set to 1% threshold. Only 
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proteins identified with at least two unique peptides were further considered for relative 

quantification (normalized to all proteins). For absolute quantification the Hi3 standard was used 

and only proteins with at least three unique peptides were included.  

5.3 Results 

 IAPV genome structure and HDMSE 5.3.1

An overview of the genome structure of the Dicistroviridae IAPV and CrPV is given in Figure 18 

and the HDMSE coverage is denoted by the darkness of the polyprotein sequences’ background. 

The coverage differed between the (poly)proteins; the 64 detected peptides covered 50% of the 

AA sequence of the structural polyprotein (48 peptides), whereas only 12% of the non-structural 

protein was detected (16 peptides). Within the orfX protein, none of the 7 predicted peptides (at 

least 6 AA long) after trypsin digestion were detected. The presence of 1A would be confirmed by 

detecting the Stop-Go translational cleavage at the NPG
▼  

P site, but the resulting non-tryptic 

CGDWDSILLLLSGDIEENPG peptide was not observed. 

 

 
 



 

72 CHAPTER V  

 
Figure 18. IAPV genome organization and HDMS

E
 coverage. 

The Dicistroviridae genome consists of two ORFs, coding for a non-structural and a structural polyprotein. 
The first stretch of amino acids (AA) in the former polyprotein, upstream from Stop-Go translational 
cleavage site NPG

▼
P, form the 1A protein (dotted). In IAPV the length of this protein is 126 AA, whereas in 

CrPV it is 166 AA. In the +1 frame of the 5’ end of the second ORF of IAPV the possible orfX (striped) was 
predicted (not present in CrPV). Start and stop nucleotide positions of the genome, the ORFs and the 1A 
and orfX CDSs are given in black for IAPV and grey for CrPV. (Poly)protein sequences are given and the 
location of the 1A protein is underlined. HDMS

E
 coverage is indicated by the darkness of the AA letter 

code’s background. Polyprotein length and HDMS
E
 coverage are given underneath the protein sequences.  

 Virus distribution in bumblebee tissues 5.3.2

Infections with IAPV and CrPV showed a similar relative distribution over the tissues, with higher 

viral titers in the fat body and for IAPV also in the ovaria, and lower viral titers in brain and midgut 

(Figure 19). However, there was a remarkably large variation within the tissues. Interesting to 

note is that the average viral titer of IAPV in the fat body was around 1400 times the normalized 

level of the reference genes rpl23 and ubi, whereas for CrPV it was only 16 times, even with an 

infection dose of only 500 particles of IAPV and 106 of CrPV. CrPV replication was confirmed by 

negative strand detection and showing a 11,000-fold increase in viral titers 4 days after infection 

compared to the input viral titer minutes after injection (see section 4.3.2).  

 

Figure 19. IAPV and CrPV tissue distribution in different bumblebee tissues. 
Seven bumblebees were injected with 500 particles of IAPV (panel A) or 10

6
 particles of CrPV (panel B)and 

the viral titers, after 72 hours or 96 hours respectively, were evaluated using RT-qPCR. The dots represent 
the individual viral titers (n=7), relative to the normalized level of the reference genes rpl23 and 
ubi. The error bars show the SEM on the mean. Statistical analysis was performed using the non-
parametric Friedman rank test as samples from the same individuals are not independent, 
resulting in significantly different viral titers over the tissues (IAPV: Q-stat.=13.29, p=0.001; CrPV: 
Q-stat.=10.92, p=0.003). Comparisons between treatments were made using Wilcoxon signed 
rank tests, none of which differed significantly on an α = 0.05 level after Bonferroni correction. In 
general, there was a considerably large variation within the tissues, but the higher viral titers 
were found in the fat body and ovaries for IAPV, and fat body for CrPV. 
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 RNAi efficiency in bumblebee tissues 5.3.3

In the ppia-targeting assays, the RNAi efficiency could be evaluated in both the absence and 

presence of the viruses. The expression levels of ppia in the RNAi control compared to the 

baseline control measure RNAi efficiency in a virus-free condition, whereas the levels in the virus 

treatment give an indication on how the virus influences the RNAi efficiency (Figure 20).  

In the ‘IAPV’ experiment, ANOVAs over the three treatments showed significant differences in 

ppia levels in the brain (F2,22=7.417, p=0.003), fat body (F2,20=29.317, p<0.001) and midgut 

(F2,22=11.218, p<0.001), but not in the ovaries (F2,22=0.788, ns). In the following sections the 

ovaries will not be discussed further. The other tissues will collectively be referred to as 

‘responsive tissues’. For the ‘CrPV’ experiment, the ppia levels in the fat body were also 

statistically different (F2,25=5.864, p=0.008). 

Different silencing efficiencies were observed between the selected bumblebee tissues after 48 

hours, in the absence of viruses (comparison between baseline control and RNAi control in Figure 

20). For both the ‘IAPV’ and the ‘CrPV’ experiment, the expression levels of ppia dropped 

significantly in the fat body (IAPV: p=0.002 (Tukey’s HSD); CrPV: p=0.011 (Tukey’s HSD)). However, 

the ppia levels dropped by 55% in the ‘IAPV’ experiment, whereas they only declined by 25% in 

the ‘CrPV’ experiment (note that there can be no effect of virus presence in this comparison). In 

the brain and midgut the ppia levels were slightly lowered, but there was too much biological 

variation in the IAPV experiment to confirm an RNAi event (F2,22=7.417, p>0.05 (Tukey’s HSD) and 

F2,22=11.218, p>0.05 (Tukey’s HSD) respectively). 
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Figure 20. RNAi efficiency in different bumblebee tissues, with and without IAPV or CrPV infection. 
Seven to nine bumblebees were treated with 20 µg dsPPIA (or dsGFP in the baseline control). In the virus 
treatment 500 particles of IAPV or 10

6
 particles of CrPV were administered 24 or 48 hours, respectively, 

beforehand. The effect of the treatment on the silencing of the reporter gene ppia was evaluated using RT-
qPCR 48 hours after dsRNA application. All data was normalized to the ppia levels in the baseline control. 
Statistical analysis was performed using Analysis of Variance on log2 transformed data with Tukey’s HSD for 
post-hoc comparisons between the treatments. The columns represent the treatment mean ± SEM (on a 
linear scale) and statistical differences on an α= 0.05 level are denoted by different letters above the 
column. Comparing the RNAi control (middle green) to the baseline control (dark green) represents the 
RNAi efficiency in the different tissues in the absence of viruses, with a significant RNAi event only 
happening in the fat body. IAPV virus treatment (light green) showed an increased silencing efficiency in 
brain, fat body and midgut, whereas CrPV treatment resulted in a diminished RNAi efficiency as the 
expression levels rise to a comparable level as in the baseline control. 

 Virus infection alters RNAi efficiency 5.3.4

When IAPV was administered 24 hours before the dsRNA treatment (virus treatment in Figure 

20), a significant silencing effect on the reporter gene ppia was noticed in all three tissues of brain 

(p=0.002 (Tukey’s HSD)), fat body (p<0.001 (Tukey’s HSD)) and midgut (p<0.001 (Tukey’s HSD)) 

compared to the baseline control, and in the case of the fat body and the midgut also a significant 

silencing compared to the RNAi control (p=0.001 (Tukey’s HSD) and p=0.013 (Tukey’s HSD) 

respectively).  
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The ppia levels in brain, fat body and midgut were lowered to 51%, 19% and 53% of their original 

levels, respectively. These results indicate an enhancement of the RNAi effect after IAPV infection 

in all tissues except for the unresponsive ovaries. 

In the case of CrPV only the fat body was analyzed as it was the only tissue showing a significant 

silencing effect without IAPV presence, which is necessary for confirming RNAi inhibition. The 

virus was administered to the bumblebees 48 hours before dsRNA treatment (instead of 24 hours 

for IAPV). This later time-point was chosen because injection of CrPV resulted in slower 

replication and later onset of mortality of the bees.  We have determined the onset of death to 

occur at 4 dpi and 5 dpi for IAPV and CrPV, respectively (see Niu et al. 2016b and 4.3.1), so this 

alteration promotes similar virus-host interactions at the moment of dsRNA treatment and RT-

qPCR evaluation. 48 hours after dsRNA treatment this resulted in a significant increase in ppia 

levels compared to the RNAi control (p=0.036 (Tukey’s HSD)). Moreover, no significant silencing 

could be observed compared to the baseline control (p>0.05 (Tukey’s HSD)), indicating that the 

RNAi system might have become impaired after CrPV infection.  

 Expression levels of genes involved in RNAi after virus infection 5.3.5

In order to assess whether the altered RNAi efficiency after virus infection is due to an 

upregulation of the genes involved in the RNAi pathway, the expression levels of dcr-2, ago-2, 

ninaC, egghead and sid-1 were evaluated 24 hours after IAPV infection (the moment the dsRNA is 

administered; virus injected compared to PBS injected) (Figure 21A) and at the endpoint of the 

assay (72 hours for IAPV and 96 hours for CrPV; virus treatment compared to RNAi control) 

(Figure 21B). 

First, the RNAi core genes, dcr-2 and ago-2, were assessed in all tissues 24 hours post IAPV 

infection (Figure 21A). A significant upregulation of dcr-2 was observed in the brain and midgut 

(t9.334=-2.572, p=0.029; t8.497=-2.275, p=0.05, respectively). A general linear model (GLM) analysis 

over the responsive tissues showed a significant effect on dcr-2 over the different tissues 

(F1=5.638, p=0.021). The expression of ago-2 was increased in midgut (t17=-4.432, p<0.001) and in 

the GLM (F1=6.356, p=0.015). At the endpoint of the assay (Figure 21B), a significant dcr-2 

upregulation was detected in the fat body (t14 = -2.314, p =0.036) and a similar, but more variable 

and not significant upregulation in the brain and midgut (t7.68 = -0.996, p>0.05 and t6.90= -

1.165, p>0.05, respectively). The GLM over the responsive tissues showed a significant effect of 

dcr-2 (F1=5.744, p=0.024). The expression levels of ago-2 remained unaltered in all tissues. 
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Figure 21. Fold change of selected RNAi genes upon IAPV or CrPV infection. 
The expression levels of the RNAi core genes dcr-2 and ago-2 and the systemic RNAi genes ninaC, egghead 
and sid-1 were evaluated at the moment of dsRNA application (panel A) and at the endpoint of the RNAi 
efficiency experiment (panel B) using RT-qPCR. Statistical analysis was performed using the Student’s t-test 
on log2 transformed data. For the general linear model (GLM) only the responsive tissues, brain, fat body 
and midgut, were used. The columns represent the mean ± SEM on a log2 scale, normalized to the control, 
and statistical differences on an α= 0.05 level are denoted by an asterisk (n=7-9). In the case of IAPV, dcr-2 
showed a significant upregulation in some tissues at both 24 and 72 hours, and also over all responsive 
tissues. However its fold change is considerably smaller than the 9-fold change of dcr-2 levels 96 hours after 
CrPV infection. Ago-2 expression levels were augmented in the midgut 24 hours after IAPV infection and 
over all responsive tissues, but no effect was seen at the assay endpoint. For IAPV, the systemic RNAi genes 
showed occasional alterations in expression levels, however over all responsive tissues the changes were 
not significant, whereas for CrPV, ninaC and sid-1 are significantly upregulated. 

When looking at the systemic RNAi genes ninaC, egghead and sid-1 in the fat body, only the 

former was upregulated (t14= -4.23, p=0.001). Therefore the expression levels of ninaC were also 

determined in the other tissues. However, ninaC was significantly downregulated in the brain 

(t12.10= 2.775, p=0.016) and no alteration was observed in the midgut (t14= -1.195, p>0.05) nor in 

the GLM over all responsive tissues (F1= 0.715, ns).  

For CrPV, there was a much more evident upregulation of the RNAi core genes dcr-2 and ago-2 in 

the fat body after 96 hours (t16=-16.056, p<0.001 and t16=-10.706, p<0.001, respectively), as well 

as the systemic RNAi genes ninaC and sid-1 (t16=-2.978, p=0.009 and t16=-2.931, p=0.010, 

respectively). The dcr-2 upregulation after CrPV infection is over 9-fold, whereas for IAPV over all 
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responsive tissues not even 2-fold. The expression levels of egghead remained unaltered (t10.032=-

0.195, p>0.05) (Figure 21B).  

 IAPV/CrPV levels after CrPV/IAPV pre-infection  5.3.6

In both cases, there is a clear decrease in viral titers in the fat body compared to the control after 

pre-infection with the other virus. Pre-infection with CrPV for 48 hours reduced the IAPV levels 

with 90% (Mann Whitney U = 6, p<0.0001, Figure 22A), whereas pre-infection with IAPV for 24 

hours reduced the CrPV levels with almost 99% (Mann Whitney U=2, p=0.0005, Figure 22B). 

Lower IAPV levels in Figure 22A are due to the evaluation occurring 48 hours post-infection, 

whereas in Figure 22B they are analyzed 72 hours post-infection.  

 

Figure 22. Virus levels of IAPV/CrPV after pre-infection with CrPV/IAPV. 
Bumblebees were either pre-infected with 10

6
 particles of CrPV and 48 hours later with 500 particles of 

IAPV (A) or pre-infected with 500 particles of IAPV and 24 hours later with 10
6
 particles of CrPV (B). The viral 

titers were analyzed 48 hours after the second viral infection using RT-qPCR. The dots represent the 
individual data points relative to the normalized level of the reference genes rpl23 and ubi, and 
the SEM of the mean is depicted by the error bars (n=10-15). Relevant statistical differences on an 
α= 0.05 level are denoted by asterisk (Mann-Whitney U test). 
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5.4 Discussion  

Virus presence has been argued to be associated with variability of RNAi efficiency within a 

species as it can have a dual interaction with the RNAi defense system (Swevers et al. 2013b). On 

one hand, the presence of viral dsRNA fragments activates the RNAi pathway, on the other hand 

VSRs can inhibit this powerful antiviral defense system. The RNAi defense potency, in turn, 

influences viral replication and may determine the survival chances of the host. In this work we 

examined whether the presence of an immunosuppressive virulence factor of IAPV can tip the 

scale towards one of these two opposites in the bumblebee.  

A first confirmation of the presence of a VSR in IAPV could come on a proteomic level, from the 

detection of VSR-specific peptides. The ovaries were selected for HDMSE analysis as they possess 

several characteristics that maximize the chance of finding small viral proteins. First, the viral 

titers in the ovaries were considerably high. Second, protein extraction from the fat body, with its 

similar high viral titers, is challenging, because of the high lipid content. Finally, the ovaries do not 

contain complex microbiota like the midgut does, which might confound the analysis. The HDMSE 

on IAPV-infected ovaries resulted in a coverage that is comparable to a similar setup for IAPV in A. 

mellifera (Michaud et al. 2014) with a higher coverage for the structural polyprotein than the non-

structural polyprotein. In order to confirm the presence of the 1A VSR, one specific peptide with 

the alternative Stop-Go translational cleavage (Wang et al. 2012) needed to be detected. This was 

not the case, but the lower presence of the corresponding polyprotein or peptide characteristics 

like the isoelectric point or peptide length could have impeded detection. The same reasons might 

also explain why no peptides belonging to the possible out-of-frame protein orfX were found, but 

in this case there are multiple peptides that theoretically should be detectable. 

From the HDMSE result, by itself, it is not possible to confirm with any certainty the absence of 

these putative VSR proteins in IAPV-infected cells. But, if they are present and functional, they 

should suppress the RNAi efficiency. The fact that this was not seen during the functional RNAi 

assay, leads to the conclusion that, even if the 1A or orfX proteins are produced in the cell during 

IAPV infection, and even if they are functional VSRs, they are not able to inhibit the RNAi system. 

It could be that their functionality is being outweighed by the RNAi system or that the RNAi 

system of bumblebees is insensitive towards the VSRs of IAPV. 

Not only could the predicted VSR of IAPV not suppress the RNAi efficiency in B. terrestris, but also 

an enhancement of the RNAi activity was observed. The fact that a diminished RNAi effect is seen 

using the same setup for CrPV ensures the efficacy of the ppia assay. An argument could be made 
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that the difference between the experiments could be explained by the longer incubation of CrPV. 

We believe it was appropriate to extend the viral pre-infection duration because of the lower 

virulence of CrPV while a 24 hour age difference between the bumblebees will probably not affect 

their capacity for RNAi. More important is the question of how this IAPV-induced enhancement of 

RNAi activity can be explained.  

A first explanation could be that virus infection causes the ppia levels to drop because of a 

disturbed cellular machinery. However, we collected ample evidence that this is not the case 

(Supplementary Figure 2). Another reason could be that the upregulation of the RNAi core genes 

that is sometimes seen after viral infection in insects (Xu et al. 2012; Galbraith et al. 2015; Niu et 

al. 2016b) could make this pathway more potent. We noticed a slight (~2-fold) upregulation of 

dcr-2 after IAPV infection in some tissues which also showed an increased RNAi efficiency. In 

contrast, for CrPV a notably larger upregulation (~9-fold) was seen. It seems that this upregulation 

of dcr-2 does not determine the outcome of RNAi pathway, possibly because the VSR 1A is acting 

on Ago-2, a component downstream of Dcr-2 (Nayak et al. 2010). Interestingly, we have 

previously shown that dcr-2 silencing does not increase IAPV replication in bumblebees, possibly 

because of a too robust replication of IAPV (Niu et al. 2016b). Third, host response to IAPV 

infection could enhance the systemic properties of the RNAi system, facilitating the spread of the 

silencing signal and resulting in an increased silencing efficiency. This argument seems less 

adequate as for IAPV, nothing really stood out (except some changes in ninaC expression but they 

are variable over the different tissues). Again for CrPV more significant positive fold changes are 

noticed (i.e. ninaC and sid-1 in the fat body). The fact that an upregulation of ninaC was also seen 

in the fat body after IAPV treatment might indicate a role of the fat body in triggering a systemic 

RNAi response, but additional experiments are needed before any conclusions can be drawn on 

this. The exact mechanism behind the IAPV-induced RNAi efficiency remains inconclusive, possibly 

one or more genes that drive RNAi efficiency fell out of our selection or a still unknown RNAi 

signal-spreading mechanism is activated by the presence of IAPV. 

The viral influence on the RNAi machinery, a key immune response against viral infections, has 

great implication for host-virus dynamics. It is important to repeat that IAPV is a known pathogen 

of various pollinating hymenopterans (Cox-Foster et al. 2007; Meeus et al. 2014), whereas CrPV 

has been detected once in honeybees (Anderson and Gibbs 1988) and appears to infect 

bumblebees, but seems to have a wide experimental host range outside of the pollinators (Plus et 

al. 1978; Chao et al. 1986). The tissue distribution pattern of the two viruses IAPV and CrPV is 

remarkably similar with both having the highest viral titers in fat body, and considerably large 
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variation between individuals. In mosquitoes, the fat body has been suggested to be the primary 

amplifying tissue for the positive ssRNA viruses West Nile Virus (Girard et al. 2004) and Dengue 

virus (Salazar et al. 2007), where it is thought to be the intermediate station between the primary 

infection in the midgut and the spreading towards the other tissues. Like others have noted 

before, this is remarkable as the fat body is also considered a particularly immunocapable tissue 

(Gillespie et al. 1997) and we have observed this to be a tissue exhibiting a significant RNAi 

response. Although IAPV induced the antiviral defense system, IAPV reached 100-fold higher viral 

titers starting from a 2000-fold lower injection dose. This could indicate that RNAi potency is not 

the primary determining factor in viral infectivity. Cell entry and manipulation of the host cell’s 

protein synthesis or other immune pathways could be more decisive for explaining viral 

replication dynamics, especially since IAPV has adapted to infect bees, so it could have evolved 

mechanisms for evading the immune response other than the suppression of RNAi. Also it should 

be taken into account that the method, by which the viral titers were determined, does not 

measure viral activity. Therefore, the difference in viral doses administered may not accurately 

reflect the difference in infectious particles.  

Our findings are also interesting in the light of RNAi-therapeutics development and the use of 

RNAi as a research tool in functional genomics. The RNAi efficiency in the absence of a virus varies 

between the different tissues examined, with a significant silencing effect only occurring in the fat 

body and the ovaries which are unresponsive. It is conceivable that the virus could evade the 

therapeutic in tissues which are insensitive to RNAi, such as the ovaries which showed relatively 

high viral titers in this study. Variations in RNAi efficiency over insect tissues have also been found 

in Anopheles gambiae with salivary glands that are refractory to conventional RNAi (Boisson et al. 

2006) and in many lepidopterans for which RNAi experiments are generally more successful in the 

hemocoel-surrounding tissues and less in the epidermal tissues (overview in (Terenius et al. 

2011)). An insensitivity to RNAi in the ovaria, as observed here, was also seen in S. gregaria 

(Wynant et al. 2012), in the honeybee A. mellifera after siRNA injection (Jarosch and Moritz 2011), 

and attributed to a lack of dsRNA uptake in this tissue in Locusta migratoria (Ren et al. 2014). It 

needs to be noted that the dsRNA was delivered by injection and had direct access to most tissues 

through the hemolymph, therefore bypassing the midgut barrier. The results also affirm the need 

for an evaluation on tissue-level instead of whole body-level in similar experiments as both viral 

titers and RNAi efficiency differ considerably between tissues. 

An interesting question emerging from these results is the functionality of the CrPV 1A in 

bumblebees, a hymenopteran species, which was previously shown to be active in the dipteran 
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Drosophila (Nayak et al. 2010). Although there is a statistically significant reduction in RNAi 

efficiency, the fact that the RNAi effect in absence of the virus is not that large prevents a 

confirmation about its functionality within the bumblebee. As a single bee host is often infected 

with multiple viruses, VSRs could lead toward competitive or synergistic effects. Pre-infection with 

a VSR-coding virus, such as CrPV, could facilitate subsequent infection and colonization, while an 

infection of IAPV would make it more difficult for other viruses to co-infect as the RNAi system 

becomes more efficient. Carrillo-Tripp et al. showed that pre-treatment with CrPV-1A could 

induce cytopathogenic effects of Deformed wing virus, persistently present in the AmE-711 cell 

line (Carrillo-Tripp et al. 2016). Our results show a large reduction in viral titers after pre-infection 

with the other virus. In the case of IAPV pre-infection this could be the result of a combination of 

an enhanced RNAi machinery and competition for the same host resources. IAPV, under normal 

circumstances, replicates extremely efficiently in bumblebees. For CrPV, however, this similar 

reduction of IAPV titers suggests that the VSR functionality, which was dubious in the RNAi assays, 

is not relevant. The mere presence of CrPV, and its saturation of the translational machinery, 

limits IAPV replication. It would be interesting to examine how this pre-infection with CrPV 

influences IAPV virulence in natural infections. As a conclusion we can state that there is a 

complex interaction between viruses and the RNAi defense mechanism of the insect host. 

Therefore, VSR functionality cannot be inferred from virus relatedness and needs to be taken into 

account when looking at virulence and multi-virus/multi-host dynamics. 

 





 

 

 

 

 

 

 

 

 

 

6 CHAPTER VI:  

PROTEOMIC ANALYSIS OF ISRAELI ACUTE PARALYSIS 

VIRUS-INFECTED OVARIES OF BOMBUS TERRESTRIS 

WORKERS 

 

 

 

 

 

 

 

 

  



 

84 CHAPTER VI  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parts of this chapter were submitted for publication: 

Cappelle, K., Smagghe, G., Dhaenens, M., Deforce, D., and Meeus, I. High definition mass 

spectrometry reveals proteostatic and metabolic changes after Israeli acute paralysis virus 

infection in Bombus terrestris worker ovaries. 

K. Cappelle and I. Meeus conceived and designed the experiments; K. Cappelle performed the 

experiments and analyzed the data. M. Dhaenens aided in the design, implementation, analysis 

and reporting of the mass spectrometry part of this study. The manuscript was written by K. 

Cappelle and revised by M. Dhaenens, I. Meeus and G. Smagghe. 



 CHAPTER VI 85 

6.1 Introduction 

Bumblebees can be infected by various bee viruses, mainly belonging to two families: the 

Dicistroviridae and the Iflaviridae. The study object of this chapter is IAPV , which typically causes 

asymptomatic covert infections in bees, which under certain (stress) conditions convert into overt 

infections, characterized by paralysis followed by death. Although no obvious symptoms are seen 

with covert infections, they can have an impact on colony survival because of sublethal effects 

such as a reduced fecundity (Meeus et al. 2014).  

Viruses, being obligate parasites, use the cellular machinery of the host to replicate and spread 

within the host body and to other individuals. The most obvious target for take-over is the 

translational system of the host, which is used for the production of viral proteins. But also other 

cellular pathways can be affected by single stranded RNA viruses, such as membrane vesicle 

trafficking, other (protein) transport systems, lipid biogenesis and various antiviral factors 

(Colpitts et al. 2011; Vashist et al. 2012; Ryabov et al. 2016). Aside from viral products directly 

interfering with the cellular machinery and steering it towards enhance viral replication, this 

replication on itself also has its impact on cell signaling and the metabolic state of the cell because 

of saturation of the cellular pathways. The extent of these disturbances determines the virulence 

of a specific virus, but it is counteracted by the host’s antiviral immune response. 

During viral replication dsRNA intermediates trigger the RNAi defense pathway and upregulation 

of the RNAi core genes dcr-2 and ago-2 after virus infection, and more specifically after IAPV 

infection in bumblebees, has been reported (Niu et al. 2016b). However, in an exploratory 

experiment we observed a disparity between relatively high IAPV titers in the ovaries, but a 

limited antiviral RNAi immune response. In identical experiments in the fat body, there was an 

upregulation of dcr-2 and ago-2. Aside from RNAi, alternative immune pathways might play a 

role, therefore a non-targeted proteomic examination of the ovaries after viral infection could be 

interesting. In this work, we set forward to study how IAPV (direct or indirectly) alters the 

metabolic and immunological status of the ovaries. For this, a proteomic dataset of IAPV-infected 

ovaries was compared with non-infected controls using data-independent high definition mass 

spectrometry (HDMSE). Differentially expressed proteins were identified and analyzed using Gene 

Ontology (GO) information and possible regulators of the observed changes were further 

examined using RT-qPCR. 
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6.2 Material and methods 

 Bumblebee rearing and virus production 6.2.1

The bumblebees were obtained, maintained and injected with 500 particles of IAPV as mentioned 

in section 5.2.1. The IAPV suspension was produced as described in detail in section 4.2.2. 

 HDMSE experimental setup 6.2.2

The detailed protocol is described in section 5.2.2. In brief, the ovaries of IAPV-infected 

bumblebees were crushed in liquid nitrogen (pooled per three individuals) and two third of the 

resulting powder was stored at -80°C for mass spectrometry, while one third was dissolved in RLT 

buffer for confirmation of infection. The powdered samples were resuspended in TEABC, 

supplemented with SDS and ACN, in the presence of Halt Protease and Phosphatase Inhibitor 

Cocktail and 100 U of benzonase nuclease. After sonication on ice, the protein concentration was 

determined using the Bradford assay. 2.5 µg of protein was reduced using TCEP and alkylated by 

adding MMTS. Digestion was performed in 1 mM CaCl2 by adding trypsin/lysC. The samples were 

evaporated overnight at 37°C and resuspended in 0.1% formic acid. 100 ng of each peptide 

sample was spiked with 25 fmol Hi3 standard and 25 fmol MSPD standard before injection. 

The peptides were separated using a nanoscale UPLC system (nanoAcquityUPLC, Waters, Milford, 

USA) coupled to a Synapt G2-Si mass spectrometer (Waters) as described in 5.2.2. Eluted peptides 

were analyzed in positive mode ESI-MS using High Definition MSE (HDMSE ) with a collision energy 

look up table as described in (Distler et al. 2014). The spectral acquisition time of low and 

elevated energy scans was 0.6 s over an m/z range of 50-2000. [Glu1]-Fibrinopeptide B was used 

for post-acquisition lock mass correction. 

 HDMSE data analysis 6.2.3

Data analysis of the raw files obtained from the Synapt G2-Si was performed in Progenesis QI 

(Nonlinear Dynamics) version 2.0. Samples with an alignment score lower than 70% were 

discarded, resulting in three samples per treatment. Peptides with charges from two to five were 

retained following data normalization. For peptide identification, the following search criteria 

were set: trypsin as digestion enzyme, up to one missed cleavage allowed, fixed methylthio 

cysteine and variable methionine oxidation and deamidation at asparagine and glutamine. The 

optimal peak picking threshold for protein identification was determined by the PLGS Threshold 

Inspector. The data was searched by Protein Lynx Global SERVER 3.0.2 (Waters) with peptide 

tolerance and fragment tolerance set to auto. Protein identifications were obtained by searching 
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a compiled database of UniProtKB/Swiss-Prot entries belonging to IAPV and all Bombus species 

supplemented with the cRAP database (laboratory proteins and dust/contact proteins) and 

sequences of spiked standard proteins, which was concatenated to a randomized decoy database. 

The false discovery rate (FDR) for protein identification in PLGS was set to 1% threshold. Only 

proteins identified with at least two unique peptides were further considered for relative 

quantification (normalized to all proteins). For absolute quantification the Hi3 standard was used 

and only proteins with at least three unique peptides were included.  

The list of proteins with differential expression levels (ANOVA p-value<0.05) obtained from 

Progenesis QI was used for GO enrichment analysis using the Blast2GO software (Conesa et al. 

2005). As no GO information was available for any Bombus species, the sequences were blasted 

to a local A. mellifera Uniprot database (Weinstock et al. 2006) and subsequently mapped with 

their GO terms using standard Blast2GO settings. For GO term enrichment analysis Fisher’s exact 

test (as implemented in the Blast2GO software) with an FDR of 0.1 was used using the A. mellifera 

Uniprot database as reference set. GO enriched graphs were produced within the Blast2GO 

software, the heat map using R (standard parameters; scaling by row) (R Development Core Team 

2016) .  

 Metabolism and immunity gene expression levels 6.2.4

Bumblebees (10 per treatment) were injected with 500 particles of IAPV (in 5 µL) or PBS and fat 

body, ovaries and brain were dissected after 72 hours in RLT buffer. RNA was isolated using the 

RNeasy Mini Kit (Qiagen) and treated with the Turbo DNA-free kit (Life Technologies). Then, 500 

ng of RNA was used in each cDNA synthesis reaction, performed with the SuperScript II Reverse 

Transcriptase Kit (Life Technologies) using an oligodT primer. All RT-qPCR reactions were carried 

out as described in section 4.2.3 using the primers listed in Table 10. The results were analyzed 

using qbase+ software (Biogazelle, Zwijnaarde, Belgium) and SPSS Statistics 23.0 (IBM Corp 2015).. 

Statistical differences were calculated using log2-transformed data and the Benjamini-Hochberg 

correction method for multiple comparison at an FDR of 0.05. 
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Table 10. List of primers used in Chapter VI. 

Primer 
name 

Sequence (5’ – 3’) Length (bp) Eff. (%) 

IAPV F CCATGCCTGGCGATTCAC 
203 102 

IAPV R CTGAATAATACTGTGCGTATC 

rpl23 F GGGAAAACCTGAACTTAGGAAAA 
143 96 

rpl23 R ACCCTTTCATTTCTCCCTTGTTA 

ubi F GGTATTTGGATGCCAGTGATTT 
129 96 

ubi R ATGGGCATTTCTACCCCTTTTA 

ilp-1 F CGCTCCTCGACACGGTTAAT 
116 92 

ilp-1 R CGGCTCGTTGTAACCTCGAT 

ilp-2 F GCAAATCGATTATACGCGCTCA 
105 106 

ilp-2 R TCCATGTATGTTCCGCTGCT 

ago-2 F CCGAATGTGGACAATGCTTA 
181 90 

ago-2 R AACGGGCAAAGGTGTGATTA 

dcr-2 F TGGTCAAAACATCAAGAACAACCA  
211 90 

dcr-2 R GATCGGGGCCATACGAACAT 

bp: basepairs; Eff.: amplification efficiency; IAPV: Israeli acute paralysis virus (EU436443.1); rpl23: 60S 
ribosomal protein L23 (XM_003400707.2); ubi: polyubiquitin B (XM_003402262.2); ilp-1: insulin-like peptide 
1 (XM_012310891.1); ilp-2: insulin-like peptide 2 (XM_003400730.2); ago-2: argonaute-2 
(XM_012312881.1); dcr-2: dicer-2 (XM_012307737.1). 

6.3 Results 

 Disturbed immune response in IAPV-infected ovaries 6.3.1

Although IAPV levels were statistically different in the fat body and ovaries three days after IAPV 

infection (general linear model; F1,7=13.074, p=0.009), their levels were still comparable (Figure 

23A). However, the immune response was considerably divergent. In the fat body there was an 

upregulation of the key components of the RNAi pathway, ago-2 and dcr-2 (t16=-6.241; p BH 

adj.<0.001 and t9.5=-3.656; p BH adj.=0.009, respectively) (Figure 23B). In the ovaries none of the 

selected immune genes was upregulated (Figure 23C). This inactivity of the ovaries was examined 

further on protein level using HDMSE. 
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Figure 23. Expression levels of IAPV (panel A) and two core RNAi genes in fat body (panel B) and ovaries 
(panel C) three days after IAPV infection, evaluated using RT-qPCR. 
Statistical analysis was performed as follows: Panel A) a general linear model (GLM) with tissues as fixed 
and the individual bumblebees as random factors, no statistical difference was found. Columns represent 
the mean ± SEM, the dots the individual data points, normalized to the reference genes rpl23 and ubi. Panel 
B and C) Student’s t-tests on log2 transformed data. The columns represent the mean ± SEM, normalized to 
the control (depicted by their SEM on the left of the corresponding column), and statistical differences on 
an FDR=0.05 level (Benjamini and Hochberg correction) are denoted by an asterisk (n=8-10).  

 HDMSE overall statistics 6.3.2

For proteomic analysis, IAPV-infected ovaries three days after infection were used. After run 

alignment, a total number of 43522 features was obtained, of which 13468 could be assigned to 

peptide ions (including singly charged, in-source decay ions). These belonged to 1400 distinct 

quantifiable proteins, 1020 of which had at least two unique peptides, and 701 which had at least 

three unique peptides. The absolute quantity of the structural polyprotein of IAPV in the infected 

samples was determined to be about 200 fmol, with absolute quantities of the histone H3 around 

3000 fmol. As histone quantities can be used as stable proteomic rulers (2-4% of the total MS 

signal; Plaskon et al. 2009), the fraction of viral proteins is ensured to be low enough to allow for 

an accurate normalization over all proteins.  

In the ovaries after IAPV infection, 56 proteins were differentially expressed (ANOVA p-value < 

0.05): 11 were upregulated, whereas 42 were downregulated. Focusing only on these 

differentially expressed proteins, principal component analysis (samples as cases and relative 

protein quantities as variables) shows a clear clustering of the samples and the proteins (Figure 

24). An overview of the differentially expressed proteins, their peptide counts, fold change and A. 

mellifera ortholog is given in Supplementary Table 2.  
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Figure 24. Progenesis QI output for the differentially expressed proteins in IAPV-infected ovaries. 
A: Biplot of a principal component analysis on 56 differentially expressed proteins (ANOVA p < 0.05) (blue: 
IAPV-infected samples, purple: control samples, red: differentially expressed). B: The expression profiles of 
these differentially expressed as depicted by the Progenesis QI software.  

 GO enrichment analysis 6.3.3

Of the 11 upregulated proteins, 10 were successfully blasted onto the A. mellifera proteome, and 

8 of them could be annotated with GO terms (Supplementary Table 2). GO term analysis (Fisher’s 

exact test, FDR<0.1) revealed two enriched GO terms corresponding to the same two sequences: 

positive regulation of response to stimulus (GO:0048584; biological process; FDR=0.093) and 

regulation of response to stress (GO:0080134; biological process; FDR=0.087) (Supplementary 

Figure 3). 

For the downregulated proteins: 36 were blasted to an A. mellifera ortholog, and all of them were 

mapped successfully with their GO terms (Supplementary Table 2). GO term analysis (Fisher’s 

exact test, FDR=0.1) resulted in 30 enriched GO terms over the three GO domains (cellular 

component, molecular function and biological process; Supplementary Figure 4-6), which could be 

reduced to 5 most specific terms: ribosome (GO:0005840; cellular component; FDR=0.047), 

glycolytic process (GO:0006096; biological process; FDR=0.051), glyceraldehyde-3-phosphate 

dehydrogenase (NAD+) (phosphorylating) activity (GO:0004365; molecular function, FDR=0.047), 

A 

B 
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nucleotide binding (GO:0000166; molecular function; FDR=0.081) and structural constituent of 

ribosome (GO:0003735, molecular function, FDR=0.081)  

When the differentially expressed were arranged according to function in a heat map (Figure 25), 

a clear pattern arises: reduced ribosomal constituents, proteasome activity, nucleotide binding 

(more specifically RNA processing) and metabolic activity. Noteworthy are some enzymes that are 

directly involved in energy metabolism. Three glycolytic enzymes were downregulated, which 

catalyze the 2nd (glucosamine-6-phosphate isomerase), 6th (glyceraldehyde-3-phosphate 

dehydrogenase) and 9th step (enolase) of the pathway. An additional downregulated enzyme is 

involved in fatty acid beta oxidation: acyl CoA dehydrogenase. A schematic representation of 

where these enzymes fit in the energy metabolism is given in Figure 26.  

 Insulin-like peptide expression levels 6.3.1

Because of the remarkable downregulation of some proteins involved in energy generation in the 

ovaries, possible regulators of these systems were further examined using RT-qPCR in both fat 

body and ovaries. Two insulin-like peptide (ilp) genes were found in B. terrestris, based on their 

homology to their A. mellifera counterparts (ilp-1: XM_012310891.1; ilp-2: XM_003400730.2). 

Three days after IAPV infection, a clear upregulation for ilp-1 and ilp-2 in the fat body (t16=-5.148; 

p BH adj.<0.001 and t16=-3.521; p BH adj.=0.007, respectively) could be observed, but also a seemingly 

larger (non-significant) upregulation of ilp-2 in the ovaries (t15=-2.942; p BH adj.=0.055) (Figure 27).  
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Figure 25. Heat map showing the differentially expressed proteins after IAPV infection in the rows and the 
different treatments in the columns.  
The colors denote relative abundance with green meaning highly expressed and red lowly expressed.  
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Figure 26. Schematic overview of the energy metabolism pathways. 
Glycolysis and fatty acid beta oxidation deliver acetyl coenzyme A to the citric acid cycle, which produces, 
among others, the electron carriers NADH and FADH2 which are converted into energy. Except for most 
steps of the glycolysis all reactions occur in the mitochondria of the cells. Enzymes found downregulated in 
IAPV-infected ovaries are denoted in lighter blue. 

 

 

Figure 27. Expression levels of the insulin-like peptide genes in fat body (dark grey) and ovaries (light grey) 
three days after IAPV infection, evaluated using RT-qPCR. 
Statistical analysis was performed using the Student’s t-test on log2 transformed data. The columns 
represent the mean ± SEM, normalized to the control (depicted by their SEM on the left of the 
corresponding column), and statistical differences on an FDR=0.05 level (Benjamini and Hochberg 
correction) are denoted by an asterisk (n=8-10).  
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6.4 Discussion  

There are numerous ways to examine the effects that viruses can have on their host, from simple 

phenotypic evaluations to complex interaction studies between viruses, hosts and their 

environment. Alterations in the wide range of biological processes in the cell are most often 

explored at the RNA level, either by transcriptome sequencing or, if available, by using 

microarrays. Rarely proteomic approaches are used, even though protein levels are a better 

approximation for protein activity than their intermediary mRNAs. The advent of more powerful 

and sensitive data-independent acquisition (DIA) mass spectrometry now allows us to assess 

changes in the proteome in an untargeted manner. This is illustrated here by the quantification of 

1400 distinct proteins in bumblebee ovaries, together surfacing a clear pattern of downregulation 

of general ovarian cell activity upon IAPV infection. 

More specifically, the differentially expressed proteins found in this study point towards a 

dysregulated protein homeostasis. The production of a functional protein comprises of multiple 

steps: transcription, mRNA splicing and processing, transport to the cytoplasm, translation, 

protein folding and proteolysis of expendable or erroneous proteins. We observed a 

downregulation of a set of ribosomal proteins, along with proteins involved in splicing and protein 

degradation. A disruption of proteostasis was also observed in the head of honeybee pupae after 

IAPV infection, but with variable outcomes concerning up- and downregulation (Michaud et al. 

2014), while in the ova of Rice Stripe virus-infected small brown planthoppers, an upregulation of 

translational processes was seen (Liu et al. 2016). The disruption in proteostasis could be 

explained in two ways: 1) the virus is trying to hijack the cellular translational system by 

manipulating certain ribosomal proteins and simultaneously hinder the translation of the host 

proteins by affecting mRNA maturation or 2) the host is attempting to limit viral protein 

production by halting its own translation. This latter option is especially alluring, as in most 

bumblebee workers the ovaries are functionally redundant. Indeed, workers do not contribute to 

the production of diploid workers or daughter queens (gynes). Only after the colony switch point, 

when the queens starts the production of drones and gynes, some workers compete with the 

queen and start to lay eggs developing into drones. It looks that not investing in ovary 

development, when infected by viruses, is a good strategy to prevent viral spreading. Vertical 

transmission of IAPV in bumblebees has not been shown yet, but various bee viruses are thought 

to be transmitted from queens to their eggs in honeybees (Chen et al. 2005; Ravoet et al. 2015). 

Whether virus infection indeed arrests ovary development in worker bees needs to be confirmed.  
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Next to protein homeostasis, energy metabolism seems to be affected by IAPV treatment as three 

glycolysis and one beta oxidation enzyme are downregulated. This would result in less acetyl CoA 

being generated, leading to reduced ATP production by oxidative phosphorylation. A 

downregulation of metabolic energy metabolism was also seen in IAPV-infected adult honeybees 

using microarray analysis (Chen et al. 2014). It is somewhat surprising as in many eukaryotic virus 

infections the core energy generating pathways are often activated to provide more resources 

(Celle et al. 2008). This deactivation could represent a strategy of the bumblebee to limit virus 

replication in a tissue which is redundant, as stated before. Additionally, resources would be 

conserved and could be put to use in tissues that actively combat the viral invasion, such as the 

fat body, which is responsible for the production of various humoral immune factors. In the ova of 

Rice Stripe virus-infected small brown planthoppers, a similar downregulation of metabolic 

processes was observed, along with various proteins involved in mitosis and growth and 

development (Liu et al. 2016). 

The reduced metabolic activity in the ovaries is not a consequence of an overall systemic 

cessation of essential metabolic and immunogenic systems as a result of IAPV infection. In the fat 

body, the RT-qPCR data showed a clear activation of the RNAi pathway. Additionally, the ILPs 

were upregulated in the fat body (and to a lesser extent also in the ovaries). Similar to the 

situation in mammals, insect ILPs regulate circulating sugar levels and the balance between 

energy storage and mobilization, but their physiological role may be somewhat different. In some 

studies, the endpoints of ILP activation are analogous to those seen in mammals, with lowered 

hemolymph sugar levels and increased carbohydrate storage molecules (Zhang et al. 2009; Morris 

et al. 2012). In contrast, in Bombyx mori the ILP bombyxin facilitates the use of stored energy 

reserves (Satake et al. 1997). ILPs are part of a complex regulatory network along with, among 

others, adipokinetic hormones, vitellogenin, the juvenile hormone, USP and EcR (reviewed in 

Nässel and Vanden Broeck 2016). Also, the number of ILPs is vastly different over different species 

and the function of these proteins extends further to also include major roles in growth and 

development in Drosophila (Brogiolo et al. 2001; Zhang et al. 2009) and caste differentiation and 

social behavior in honeybees (Nilsen et al. 2011; Wang et al. 2013). In this study, we used the ILPs 

as a proxy for metabolic status. It seems that elevated levels of ILP correspond with an immuno-

compromised status, as was also seen in the razor clam after bacterial infection (Niu et al. 2016a) 

and in Anopheles after Plasmodium infection (Marquez et al. 2011). However, straightforward 

conclusions cannot be drawn about how exactly the ILPs interact with the energy metabolism as a 
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result of viral infection. For that, more information is needed on their physiological role and 

regulation. 

A limitation of the proteomic part of this study is the lack of well-annotated genomic and 

proteomic information for B. terrestris. Although the bumblebee genome is published, the NCBI 

database still mostly consists of computational predictions based on other insect homologs such 

as A. mellifera and D. melanogaster. Therefore, it cannot be ruled out that some protein 

identifications are ambiguous, especially for highly similar proteins or protein domains. 

Additionally, GO enrichment analysis had to be performed on the A. mellifera orthologs and use 

an A. mellifera reference set. It has been shown that the majority of bumblebee genes has 

orthologs within all bee species, however 118 bumblebee genes did not have a honeybee 

ortholog (Sadd et al. 2015), so they have fallen out of this analysis. As the reference set is solely 

used to calculate the percentage of genes belonging to certain GO categories and these 

bumblebee-specific genes are not enriched in certain groups (except possibly olfactory receptor 

function (Sadd et al. 2015)), we believe the impact of these shortcomings on our findings is 

limited. However, it would be advisable not to draw conclusions on the importance of one specific 

protein; the power of this analysis lies in the global overview of the biological processes. For 

future reference, the dataset was submitted to ProteomeXChange database for further 

examination when the genome of B. terrestris is better annotated. 

Another interesting aspect of this work is the use of proteomic data. Inherent to their biogenesis, 

protein levels generally lag behind on their corresponding mRNA levels. Moreover, recently more 

and more information is emerging that there is an extra layer of regulation at the translation 

steps, with protein levels not necessarily mimicking their corresponding mRNA levels (Lee et al. 

1993). As of yet, scant proteomic data, looking at viral infections in insects, is available although 

proteins are the true effectors of the cellular pathways. Therefore, this work should incite 

researchers in invertebrate pathology to make use of various novel mass spectrometry 

approaches having increased differentiating and quantifying power. Additionally, metabolomics 

studies, in which the end-products of glycolysis, beta oxidation and the citric acid cycle could be 

assessed, would reveal important information about the impact of viral infections on invertebrate 

cellular pathways. As a conclusion, this study indicates that IAPV infection causes strong 

disruptions of some essential cellular processes in the ovaries, such as protein homeostasis and 

energy metabolism. 

 



 

 

 

 

 

 

 

 

 

 

7 CHAPTER VII:  

GENERAL DISCUSSION AND FUTURE PERSPECTIVES 
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The large variability in RNAi efficiency, both at species and individual level, has puzzled RNAi-

entomologists for almost a decade. In Chapter I we have identified several reasons which might 

contribute to this variability and selected two to focus on. In this final chapter, some conclusions, 

interesting remaining questions and future perspectives will be discussed for both factors. 

Additionally, links with undiscussed factors will be drawn throughout the subsections. For a better 

comprehension of this chapter, an overview is presented again: 

 Factors inherent to the experimental setup: life stage, siRNA or dsRNA, dsRNA length, 

delivery method, dose, target gene (region, protein turnover,…), evaluation timepoint, 

examined tissue, etc. 

 Factors inherent to the insect species: dsRNA degradation in the saliva/midgut (Yue and 

Genersch 2005; Christiaens et al. 2014; Wynant et al. 2014c), dsRNA sequestering in the 

hemolymph (Wynant et al. 2014a), different (efficiencies of the) dsRNA uptake mechanisms 

(Chapter III), absence/presence of RNAi core genes (Chapter II), absence/presence of 

systemic and/or environmental RNAi, low expression levels of RNAi core genes, etc. 

 Factors inherent to the insect individual: nutritional status, immunological status, viral 

infections triggering enhanced systemic properties (Saleh et al. 2009), virus-produced 

suppressors of RNAi (Chapter V), etc.   

7.1 DsRNA uptake and transport in insects 

In Chapter III, CPB homologs of genes, proven to be involved in dsRNA uptake in Drosophila and 

other insects, were identified. A sensitive RNAi-of-RNAi assay was developed to determine which 

of these genes were necessary for an optimal RNAi response. Using this assay, we confirmed the 

involvement of both clathrin-dependent endocytosis, and probably also the sid-1-like genes in 

dsRNA uptake but for these latter two genes the rescue was too small to be completely 

convincing. 

Since these observations were published, a similar assay has been undertaken in a CPB pupal fat 

body-derived cell line. In this screening, 50 RNAi-related genes, including the dsRNA uptake 

related genes, were tested. In agreement with our results, several endocytosis-associated genes 

and the two sid-1-like genes were needed for an complete RNAi response (Yoon et al. 2016). 

Unfortunately, due to the immortalization and continuous passages of cell lines, they may not 

accurately reflect the natural situation anymore. Additionally, it is impossible to assess the exact 

role of these pathways in the RNAi response in the whole CPB body.  
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 What do these results mean for dsRNA uptake in CPB midgut epithelial cells? 7.1.1

We were the first to report a simultaneous involvement of the two known uptake mechanisms in 

dsRNA uptake in the insect body (which was later confirmed in vitro). But what exactly happens at 

the epithelial cell surface of the CPB midgut when dsRNA enters the cell remains unclear. Two 

questions arise:  

1) Do the two different Sid-1-like proteins function independently or not?  

2) Do the Sid-1-like proteins and the endocytosis pathway interact with each other to internalize 

dsRNA? 

The various models for dsRNA uptake are depicted in Figure 28. For the nematode C. elegans, a 

model has been suggested where SID-1 and SID-2 interact with each other to take up dsRNA with 

SID-2 functioning as the receptor at the cell surface, needing at least a part of endocytic pathway, 

and SID-1 as the channel protein needed for release in the cytoplasm (scenario A; McEwan et al. 

2012). These proteins have significant structural differences, e.g. SID-2 has only one 

transmembrane domain and thus cannot form a channel like SID-1 does. In insects however, the 

Sid-1-like proteins all share the same structure as the SID-1 protein in C. elegans and probably all 

form channels through the cell membrane. In CPB, two Sid-1-like proteins are present and 

involved in dsRNA uptake: SilA and SilC. One possibility is that they function independently 

(scenario B). The extracellular carboxyterminal end of these proteins is likely responsible for the 

receptor function and as it differs significantly between SilA and SilC, it could have a different 

affinity for different types of dsRNA or other macromolecules. Another option is that one of the 

Sid-1-like proteins is present at the epithelial surface and internalizes the dsRNA and that the 

other plays a role in dsRNA release from vesicles (scenario C), or is involved in dsRNA transport to 

the neighboring cell layers (scenario D). As the assay evaluated RNAi response in the midgut as a 

whole, also the underlaying muscle layers were included, so an impairment of this short-distance 

dsRNA transport would also give a positive result. 

With these hypotheses, how can the endocytic dsRNA uptake processes be included? Again, the 

systems could be completely independent with, based on our results, endocytosis having the 

largest contribution to the dsRNA uptake process as a whole. The receptor which recognizes 

dsRNA to trigger endocytosis is not identified yet, but scavenger receptors on the cell surface 

have been suggested (Ulvila et al. 2006). However, it is also possible that both uptake mechanisms 

are linked and that the Sid-1-like proteins act as receptors, triggering endocytosis (scenario E). 

Additionally, it is possible that all dsRNA is first taken up in endocytic vesicles and that it is only in 

the release of dsRNA from the vesicles that the Sid-1-like proteins enter the picture (scenario F). 
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However, in this scenario we would expect a much larger decrease in RNAi efficiency after 

silencing of both sid-1-like genes simultaneously, unless they are not essential, only aiding. 
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 What do these results mean for RNAi in the CPB body? 7.1.2

As the assay evaluated RNAi efficiency in the midgut, only uptake from the gut lumen - so 

environmental RNAi - was at play here. We have tried to also examine other instances of dsRNA 

uptake by injecting dsRNA against the target genes in the hemocoel and examining the RNAi 

efficiency in gut and brain. This setup could tell us if those same genes are involved in dsRNA 

uptake on cell surfaces that are not lining the midgut. Epithelial columnar cells have microvilli and 

specialized uptake systems at the cell surface facing the lumen and these features are not present 

in other cell types (Klowden 2007). However, when looking at the two dsRNA uptake systems 

identified so far, there is no reason to expect that they are not present in other cell types; 

endocytosis is a universal and indispensable cellular pathway and sid-1-like mRNAs have been 

detected in various tissues (Tian et al. 2009; Bansal and Michel 2013; Wynant et al. 2014b). 

However, it is certainly possible they function less efficiently in those cells which are not 

specialized in uptake of macromolecules. Additionally, it is possible that the unknown dsRNA 

receptor(s) is/are presented more on the epithelial surface of the midgut than on the cell 

membrane of other cell types.  

 What do these results mean for other insect species? 7.1.3

As discussed in Chapter III, our results, which show an involvement of both pathways, are not in 

agreement with most other publications on this topic in other insects. Complications arise from 

the fact that in most studies, only one of the pathways was tested, either because of the author’s 

disinterest or because of technical limitations. Additionally, the experimental design might 

influence the results. For example, RNAi through feeding does not work (efficiently) in both S. 

gregaria and T. castaneum, therefore dsRNA uptake was evaluated only through injection. As 

mentioned before, dsRNA uptake in hemocoel-surrounding tissues may happen differently than in 

the midgut epithelium. 

To obtain a better understanding of the role of both pathways in dsRNA uptake across all insect 

orders, further studies are needed in a wide range of insects. Preferably, a cross-species study 

would be needed, targeting identical gene regions and using the same reporter gene, both 

through feeding and injection. This would tell us whether the involvement of the uptake pathways 

can be explained from an evolutionary point of view. In this case, dsRNA uptake would occur 

similarly in closely related insects, and the reason that this similarity has not been reflected by 

similar RNAi efficiencies could be because it was obscured by other RNAi-limiting factors. Some 

evidence for this evolutionary conservation can be found in the distribution of the number of Sid-
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1-like proteins over the different insect orders, which makes sense from an evolutionary point of 

view, as shown in Figure 14. 

 Future perspectives on RNAi in insects – fundamental knowledge 7.1.4

On the subject of RNAi in insects, there is a substantial lack of fundamental knowledge. It is 

becoming clear that the RNAi pathways are more complex and more interacting than is depicted 

in most overviews. When applied to the case of CPB, the aforementioned screening of genes 

essential for the siRNA process included many core genes from the miRNA and piRNA pathways 

(Yoon et al. 2016). It is possible these pathways are truly interacting, but it could also be that their 

regulation is overlapping. Additionally, it is still unclear whether duplication of RNAi genes, like for 

dcr-2 and ago-2 in CPB (Chapter II), contributes to a stronger RNAi response. 

One of the most alluring remaining questions is the manner in which the RNAi signal is 

transported in the insect body. From the nematode C. elegans it is known that the SID proteins 

play distinct roles in uptake and transport of the RNAi signal (Feinberg and Hunter 2003; Jose et 

al. 2009; Hinas et al. 2012; Jose et al. 2012; McEwan et al. 2012), which is thought to be a dsRNA(-

derived) molecule (Ivashuta et al. 2015). As discussed in Chapter III, these conclusions cannot 

simply be transferred to the class of the insects as there are no clear homologs of the different 

SID proteins. Instead there are multiple Sid-1-like proteins, or none, and another process, 

receptor-mediated endocytosis, also seems to play an important role. From a fundamental point 

of view, it is important to identify how exactly this signal is spreading in the insect body. It is likely 

that after the transport mechanisms are identified, impediments will be found, explaining some of 

the inconsistencies observed in RNAi experiments.  

Also, the identification of the dsRNA receptor would open up possibilities. As stated before, it 

could explain some of the variability in RNAi efficiency between insect species and tissues. For 

example, in locusts it was shown that there was no dsRNA uptake in the oocytes and follicle cells 

in the ovaries and thus no RNAi response (Ren et al. 2014). A similar unresponsiveness of the 

ovaries to dsRNA was also seen in Chapter V. Whether this impaired uptake is caused by a lack of 

dsRNA receptors or uptake mechanisms, remains unknown. If identified, expressing the 

receptor(s) in a cell line would reveal whether they contribute to an efficient RNAi response. This 

could lead to innovative ways to enhance the RNAi response or even direct dsRNA to specific 

tissues. 
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 Future perspectives on RNAi in insects – applications 7.1.5

Fortunately, the considerable lack of fundamental knowledge on the specifics of the RNAi process 

has not impeded the development of RNAi-based crop protection applications. Recently the first 

RNAi-based transgenic crop - corn in which a Cry toxin, glyphosate resistance and RNAi against the 

western corn rootworm are combined - has been approved by the Canadian Food Inspection 

Agency (Canadian Food Inspection Agency 2016). Also against other Coleoptera such as the 

Colorado potato beetle, substantial R&D efforts have been made, both through transgenic crops 

and sprayable products. 

However, filling out the gaps in our fundamental knowledge could help considerably in the 

development of RNAi-based crop protection in non-beetle species. As stated before, the 

mechanisms by which the dsRNA is taken up by the cells and spread throughout the body, might 

contribute to RNAi ineffectiveness. Identifying limiting factors might open up possibilities for an 

enhanced RNAi response. Delivery molecules could be designed which specifically bind to the 

dsRNA receptor, or aid in the binding of dsRNA to this receptor. Or, compounds could be 

administered which trigger or enhance the systemic capabilities. Additionally, this knowledge 

could tell us more about the possibility of resistance development against RNAi-based crop 

protection. It is thought that resistance would develop more slowly because long dsRNA 

encompasses many different siRNAs and multiple target genes can be combined, so that multiple 

mutations would be required. However, direct alterations of the core RNAi pathway or the dsRNA 

uptake or systemic properties could lead to an insensitivity of the insect to dsRNA. In the RNAi-

based crops, currently being developed, the chance of this type of resistance occurring is 

diminished by combining the RNAi trait with Cry toxins so that resistance against two very 

different mechanisms would need to occur for the insect to survive. 
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7.2 Viral infections influencing RNAi efficiency 

Viral infections can have an enormous impact on the RNAi system. A complex network of 

interactions is at play from the moment the virus infects the individual, both at a cellular and a 

whole body level. The results discussed in Chapters IV, V and VI shed some light on these 

convoluted interactions. 

 RNAi efficiency in the bumblebee 7.2.1

In general, B. terrestris does not have an efficient RNAi response. High doses of dsRNA are 

needed, and the results are often disappointing. Where for CPB, the silencing efficiency on mRNA 

level was consistently over 80% (except for laccase2), with 400 ng of dsRNA added, for 

bumblebees, 50% was the maximum silencing reached after administering 20 µg of dsRNA and 

this only after experimental design optimization. Of course, the difference in body weight could 

play a role but when adjusting for this factor the dose amounts to approximately 66 ng dsRNA / 

mg wet body weight for the bumblebee and 40 ng dsRNA / mg wet body weight for CPB. This 

minor difference is not likely to be the cause of this huge difference in RNAi efficiency.  

Through the work of colleagues, we found no degradation of dsRNA as a result of enzymatic 

breakdown or instability at non-neutral pH levels in the midgut juice (Vanlede 2014). Additionally, 

the behavior of dsRNA in the hemolymph was examined by incubating dsRNA-containing 

hemolymph with proteinase K. This resulted in the expected dsRNA band being visible on an 

agarose gel, whereas in the control (without proteinase K) it was not. This suggests binding of the 

dsRNA to a protein present in the hemolymph, impeding its movement through the gel (Snoeck 

2015). These proteins have not been identified, but could be similar to the lipophorins in locusts, 

where they were found to bind to dsRNA in the hemolymph (Wynant et al. 2014a). Whether this 

binding is responsible for an improved or diminished RNAi response is unclear, but the fact that 

the RNAi response after injection is very strong in locusts (Wynant et al. 2012), suggests it is not a 

major impediment. It could even be that these lipophorins are essential for the systemic 

properties of RNAi. 

In literature, various instances in which RNAi has been used to examine gene function in bees, can 

be found. In bumblebees, in several publications by the same research group 20 µg of the target 

gene was injected, which is similar to the dose used in this thesis (Kim et al. 2009; Hu et al. 2010a; 

Hu et al. 2010b; You et al. 2010; Kim et al. 2011), but one publication managed to achieve an RNAi 

response using only 1 µg (Deshwal and Mallon 2014). In honeybee research, RNAi is used to 

examine, among others, caste differentiation, foraging behavior and growth and development. 
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The injected doses in adults and larvae range between 5 µg and 30 µg (Amdam et al. 2003; Wang 

et al. 2010; Chan et al. 2011; Wang et al. 2013; Li et al. 2016), but in embryo’s and specific tissues, 

such as brain lobes, much lower doses can be used (Beye et al. 2002; Farooqui et al. 2003; Mussig 

et al. 2010; Mustard et al. 2010). In feeding assays, the concentrations used range between 100 

µg/ml and 500 µg/ml (Patel et al. 2007; Nunes and Simoes 2009; Mutti et al. 2011a; Mutti et al. 

2011b).  

Within bumblebee RNAi experiments, a considerable variability was observed, depending on the 

experimental design. The most important factors were found to be the target gene, sampling time 

point and examined tissue. In general, the largest drop in mRNA levels was obtained 48 hours 

after dsRNA administration. It also proved to be important to look at separate tissues instead of 

the whole body. As the bumblebee is a fairly large insect, a uniform RNA extraction over different 

samples is difficult to achieve. Moreover, the results may be distorted by a low RNAi response in 

unresponsive tissues such as the ovaries or a delayed response in peripheral tissues such as the 

brain. The highest RNAi efficiency was observed in the fat body, perhaps because of its direct 

contact with the hemolymph in which the dsRNA was injected. The ovaries seemed to be 

insensitive to RNAi, possibly because of  barriers that the ovaries form to block out dsRNA (Ren et 

al. 2014). Similar to the way in which the dsRNA uptake mechanisms were evaluated in the CPB 

midgut in Chapter III, it would be interesting to look at the way in which dsRNA enters the ovaries 

and how efficiently this process occurs compared to other tissues. Unfortunately, this would 

require a similar optimization of the setup as was described for the evaluation of dsRNA spreading 

mechanisms throughout the body, and this proved to be difficult.  

 RNAi enhancement as a result of viral infection 7.2.2

In this work, we set forward to identify a suppressor of RNAi in an important bee pathogen, IAPV. 

The suspects we had identified, 1A (a known suppressor in some closely related viruses) and orfX 

(an in silico predicted gene with no confirmed translation nor functionality), were not found using 

HDMSE. However, the most compelling argument for the lack of suppressor functionality in IAPV 

came from the RNAi assay. Where a reduced RNAi efficiency was expected, a significant 

enhancement of the silencing effect was observed. The cause(s) of this enhancement, however, 

are still unknown.  

The most obvious explanation is the activation and upregulation of the RNAi pathway after 

recognition of IAPV or IAPV-derived proteins or siRNAs. Indeed, a small upregulation of the RNAi 

core genes was detected, but this upregulation is rather small compared to the upregulation 



 

106 CHAPTER VII  

caused by another virus, CrPV, which presence did not cause an RNAi enhancement. However, in 

this case, it is possible that an enhancement is occurring, but counteracted by a viral suppressor 

of RNAi. If this is true, maybe the two-fold upregulation of, for example, dcr-2 after IAPV infection 

is enough to cause an increased RNAi efficiency. Here it is also important to realize that, although 

increased mRNA levels generally lead to heightened proteins levels, the degree of increase may 

be different and it may be delayed. A second, albeit hypothetical explanation, could be that the 

virus alters the way in which the RNAi-related proteins work, making them more efficient. 

Another enticing possibility is that the IAPV infection puts the insect body into an ‘virus aware’ 

state with enhanced dsRNA transport capabilities, an improved systemic status, etc.  As many of 

the biological markers to study these factors have not been elucidated yet fully (see 7.1.4), we 

were unable to uncover the exact cause of the improved RNAi efficiency. 

 VSR activity  7.2.3

Although various VSRs have been identified in plant and insect viruses, little is known about their 

consequences outside of the lab. Many hypotheses have been expressed concerning the concept 

of optimal virulence, with virulence defined as the capacity of the virus to damage the host. On 

the one hand, it is beneficial for the virus to limit its virulence to secure transmission. On the 

other hand, a certain degree of virulence is needed to ensure that the virus is not outcompeted by 

other pathogens and that sufficiently high titers are reached to be able to infect other individuals. 

Some viruses are characterized by a high virulence and fast transmission between individuals, 

while others have evolved to a perfect pathogen-host co-existence. In this case, the virus is 

present latently (at low numbers) and chronically (no viral clearance) without damaging the host, 

hiding throughout the body or in certain tissues. In situations where the viral titers are low, it is 

easier for the RNAi system to combat the virus (and maybe even clear it from the body). 

Therefore, it would be beneficial for latent/chronic viruses to diminish the RNAi efficiency, 

possibly through the use of a VSR. 

In the aforementioned cases, only the presence of one viral species was considered. However, 

when expanding this reasoning to the situation where multiple viral species are present in the 

same host, as is often the case in bees (Chen et al. 2004; Wu  et al. 2015), other factors need to be 

considered. Here, the selective advantage of the VSR for a virus to evolve to a latent or chronic 

infection may be lost. The VSR of slow replicating virus A, attenuating RNAi to ensure virus A is not 

eradicated, can result in massive proliferation of a co-infecting virus B as the bee is immune-

compromised. As observed in Chapter V for the combination IAPV/CrPV, there is a strong effect of 

competition for resources during viral co-infections, so the presence of a VSR could be 



 CHAPTER VII 107 

unfavorable to the encoding virus. Moreover, one could hypothesize that a fast-replicating virus 

such as IAPV, which by itself is potent enough to overcome the RNAi defense mechanism, would 

not produce a functional suppressor to ensure its own competitiveness towards other bee 

viruses.  

VSR activity can also have interesting repercussions for virus adaptation to new hosts. As a 

confirmation of the usability of the functional RNAi assay in IAPV, CrPV was included in the 

testing.  A minor reduction in RNAi efficiency was observed, but because the control did not have 

a convincing RNAi effect (because of the aforementioned variability in bumblebees), it cannot be 

concluded with 100% certainty the 1A suppressor of CrPV is functional in bumblebees. Broad host 

range functionality of the 1A suppressor would not be surprising as, cross kingdom functionality 

has already been proven for some of the plant and insect VSRs (Li et al. 2002; Lakatos et al. 2004; 

Guo and Lu 2013). New host adaptation is commonly characterized by a lower infectivity than in 

the original host, as a result of unfamiliar barriers, giving the host time to combat the virus 

(Parrish et al. 2008). However, once the infection is established in a new host, the virulence is 

generally higher than in the original host, because of a lack of co-evolution. If the immune system 

would be impaired, it could give the virus enough time to break through the barriers, increasing 

the chances of a successful infection. It is possible that a broad-spectrum VSR grants a virus the 

possibility of infecting a broad range of hosts, but this remains mere speculation.  

 Other viral products affecting RNAi efficiency 7.2.4

Besides proteins, viruses can also encode miRNAs, which can influence their own or the host’s 

gene expression. Many of such miRNAs have been found in human DNA viruses (Kincaid and 

Sullivan 2012), but in insects only a few of these virus-encoded miRNAs have been reported and 

those were all dsDNA viruses (Hussain et al. 2008; Singh et al. 2010; Wu et al. 2011; Zhu et al. 

2013). As transcription of DNA viruses occurs within the nucleus, miRNAs can be processed by the 

cellular miRNA machinery, which resides there. The functions of these insect virus-encoded 

miRNAs are the autoregulation of late stage viral replication, to avoid too strong effects on host 

survival, and the switch to latent infection (Wu et al. 2011; Zhu et al. 2013). The one known 

instance where the host is affected is the Bombyx mori nuclear polyhedrosis virus, which impedes 

host miRNA export from the nucleus (Singh et al. 2012). Although there are some hypotheses why 

RNA viruses would not encode miRNAs (destruction of their own genome, no miRNA processing in 

the cytoplasm), there is evidence that these limitations could be bypassed, suggesting that RNA 

virus-encoded miRNAs probably will be found eventually (Kincaid and Sullivan 2012; Asgari 2015). 

Aside from miRNAs, other ncRNAs, able to influence viral replication or the host machinery, could 
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arise from the viral RNA genome. For instance, the sfRNAs that originate during Dengue virus 

infection and inhibit Dicer-2 functionality (Hussain et al. 2010), are sometimes classified as 

miRNA-like.  

This raised the question whether similar ncRNAs, either miRNAs or longer subgenomic RNAs, 

could be encoded by IAPV. Therefore, a small RNA dataset of IAPV-infected bumblebees was 

examined for virus-derived miRNAs, but no potential candidates were found. However, a set of 

host miRNA upregulated after IAPV infection was identified (Niu 2015). Further studies will 

elucidate to what extent these miRNAs affect viral replication, host immune defense or other host 

pathways. 

 How host factors can influence RNAi efficiency 7.2.5

There are various ways in which the host can alter RNAi efficiency during viral infection, both 

directly and indirectly. The first one is the triggering and upregulation of the RNAi machinery that 

is typically seen after virus infection (Lan et al. 2016; Niu et al. 2016b). But the RNAi efficiency can 

also be diminished: 1) when large amount of viral siRNAs saturate the siRNA pathway, 2) when 

viral RNA and proteins saturate the cellular pathways and therefore interfere with the production 

of RNAi-related proteins or 3) when viral proteins manipulate host metabolic or immunogenic 

pathways to their advantage, which might interfere with the RNAi response. Finally, when 

infection has evolved far enough to significantly compromise the health status of the host, the 

RNAi machinery will be shut down, together with most other cellular pathways because of a lack 

of resources.   

It is known that dicistroviruses can have a massive impact on the cellular pathways of the host, 

especially the translation machinery. For CrPV it has been shown that the translation of host 

proteins is inhibited by over 80% 4 hours post infection in the Drosophila S2 cell line. This 

corresponded to a massive increase of viral proteins. This shift from host product translation to 

viral product translation is attributed to a dissociation and inactivation of various eukaryotic 

translation initiation factors (eIFs), which are not needed for translation from the viral 5’ UTR or 

intergenic IRES, thus limiting only host translation (Garrey et al. 2010). In this scenario, probably 

very little RNAi core proteins would be produced. It is important to note that this is an artificial 

and very robust infection in a cell line, and that it may not be completely representative of the in 

vivo situation where 1) the initial infection dose would probably be significantly lower, 2) cells 

which are so massively overrun by the virus would enter the apoptosis process, protecting the 
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neighboring cells/tissues. In the meantime, these other cells/tissues could have been triggered by 

the systemic RNAi signal and primed for an upcoming infection.  

Examining a proteomic dataset of IAPV-infected ovaries using GO analysis, we observed a clear 

disruption of essential metabolic and proteostatic processes in the ovaries, while there was no 

complete disruption of the essential processes that would typically be seen in diseased and dying 

insects. One major implication is a lack of energy production, in the form of ATP, in this tissue. 

Drosophila Dicer-2 has been shown to function in an ATP-dependent manner, a feature which is 

thought to be conserved in insects (Liu et al. 2003; Welker et al. 2011; Ghosh et al. 2014). 

Therefore, a lack of ATP generation could result in a diminished dicing capacity, greatly affecting 

the RNAi efficiency.  

 Viral infections in social insects 7.2.6

As described above, viral infections could explain the RNAi variability between individuals. These 

interactions apply to insects in general, but it is interesting to look at the way (bumble)bee 

behavior affects the possibility of these interactions occurring. Are there reasons to believe that 

(bumble)bees carry more viruses than other insects and does this result in different immunity 

characteristics? For starters, the eusociality of bumblebees and honeybees, characterized by high 

population densities and low genetic variability, promotes pathogen transmission. Moreover, the 

unique way in which these pollinators collect resources might contribute to virus spreading. As 

every flower is visited by many different bees, and every bee visits multiple flowers there is a 

considerable opportunity for virus transmission between different bee species and even genera. It 

has been speculated this is the reason why many of the bee viruses have a considerable host 

range spanning multiple genera. Additionally, it was shown that bees (including solitary bees) 

have fewer immune genes than other insects, and that this reduction was not the result of 

sociality (Barribeau et al. 2015). This could make them more susceptible to pathogens, but from 

an evolutionary point-of-view it would be logical that there are some factors counteracting this. In 

agreement with the last conclusion, if viruses are more common in social species, one would 

expect a particularly strong RNAi response in these insects, which does not seem to be the case. 

An interesting concept to be considered here is what constitutes an immunological entity; the 

individual bee or the colony? Analogies have been drawn between individual and social immunity 

as pathogens have to cross similar type of barriers. The defense mechanisms of both the 

individual and the colony start with border defenses to prevent pathogen intake, followed by 

body defenses that prevent the establishment and spread of the pathogen between the body's 
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cells or the social insect workers. Lastly, germline defenses are employed to inhibit infection of 

the reproductive tissue or the reproductive individuals in colonies (Cremer and Sixt 

2009). Moreover, social immunization has been observed in a few cases, in which contact with 

pathogen-exposed individuals promotes reduced susceptibility in their nest mates to the same 

pathogen (reviewed in Masri and Cremer 2014). Whether it would be possible for bee individuals 

to signal their infected state and trigger enhanced RNAi capabilities in their nest mates, remains 

wild speculation.  

As a consequence of the ambiguity regarding the immunological entity, adaptions that do not 

seem to make sense from an evolutionary perspective on the individual level, may have been 

favorited because they lead to an advantage for the colony. In this work, a downregulation of 

various metabolic and proteostatic processes was observed in the ovaries of bumblebee workers. 

As this tissue is potentially redundant in the context of colony success, it is possible it is ‘switched 

off’ to optimize resource mobilization to combat the virus and limit the spread of virus within the 

colony. 

 Future perspectives on viral infections in bees – fundamental knowledge 7.2.7

One of the major limitations in virus research in bees is the lack of a continuous cell line which can 

be infected by the bee viruses. For a while, a honeybee cell line was available in which bee viruses 

could proliferate (Goblirsch et al. 2013; Carrillo-Tripp et al. 2016), but it proved very difficult to 

maintain and has now been lost (own experience and personal communication with prof. B. 

Bonning and prof. Kurtti). Ideally, the cell line would originate from bee tissues, but sometimes 

viruses can also infect cell lines derived from non-natural hosts. As many of the intracellular 

pathways, needed for viral replication, are universal, we speculate that virus particle uptake into 

the cell could be the major limiting factor here. As a consequence, the use of more intrusive virus 

application methods, such as transfection reagents, electroporation, etc. could enhance the 

intracellular uptake of bee viruses in non-susceptible cell lines. 

Using cell lines can sometimes be preferable to in vivo experiments as the scale reduction allows 

for large screenings and many of the confounding factors (hormonal regulation, signaling, 

accessibility, …) are absent. Although they do not always reflect the natural condition, and not 

every research question can be tackled using them, they are useful in a number of situations. For 

starters, virus production using a cell line is more practical than in vivo, like the bumblebee pupae 

used in this study. If the cell line can be kept virus free, the chance of viral contaminants is much 



 CHAPTER VII 111 

smaller. Additionally, the clean-up of the viral stock requires less effort. Second, cell lines are ideal 

environments to tackle some fundamental questions in bee virology.   

For example, many of the known VSRs and their mode of action have been identified in cell lines 

as it is relatively straightforward to express the VSR in a virus-free cell line and evaluate its effect 

on the RNAi machinery (van Rij et al. 2006; Singh et al. 2009; Nayak et al. 2010; Schnettler et al. 

2012). During this doctoral dissertation we have attempted to express the orfX of KBV, a bee virus 

closely related to IAPV, in both the S2 (Schneider 1972) and Hi5 (Granados et al. 1994) cell line. 

This orfX was predicted computationally, based on a surprisingly lack of stop codons in an out-of-

frame segment (Firth et al. 2009; Sabath et al. 2009). Unfortunately, no corresponding protein 

was detected. This indicates that this protein cannot be translated and/or folded correctly (and 

thus does not exist) or that specific host factors are needed for proper translation and/or folding, 

in which case a bee-derived cell line would be necessary. 

One of the most intriguing remaining questions is the recognition of the viral pathogen, the 

dicistrovirus, by the bee host. Here two processes need to be looked at: 1) recognition of viral 

coat proteins (or regions thereof) by the extracellular domain of a receptor, triggering uptake of 

the viral particle and 2) the recognition of the viral pathogen-associated molecular patterns 

(PAMPs) by the immune system. It also possible that these two processes are combined into one 

event. Random mutagenesis of a dicistrovirus and evaluating the infection potential in the cell line 

would reveal which part of the virus is recognized by the receptor. Doing this for multiple 

dicistroviruses would give an indication on whether they could bind on the same host receptor or 

not. A similar setup could be used to determine which part of the virus is recognized by the 

immune system, but it could also be that the intracellular recognition of dsRNA intermediaries by 

Dicer-2 is the only PAMP recognition event and that this causes other antiviral immune pathways 

to be triggered (Paradkar et al. 2012). 

 Future perspectives on viral infections in bees – ecological aspects and applications 7.2.8

At the moment, dsRNA-dependent products are being developed to help honeybees combat 

typical bee viruses (Maori et al. 2009; Monsanto 2016). These are based on a continuous 

administration of dsRNA, targeting the viral mRNA, to the hive. Once a bee is infected, there is 

little chance of clearing the infection from the body, so it is more a preventive than a curative 

measure. But there are other principles that antiviral therapeutics in bees could be based on. 

First, if the virus encodes a VSR, compounds could be administered that block VSR functionality, 

for example by blocking the catalytic/binding site, without impeding the RNAi pathway. Other 
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options are based on the fact that the genes involved in immune pathways are not expressed 

constitutively, but are activated once there is a pathogenic threat (Kemp et al. 2013; Johnston et 

al. 2014). So in moments when there is a genuine threat to the hives (disease symptoms in the 

hive, outbreaks in the vicinity, …), the immune pathways could be triggered artificially. This would 

require a minimal extra investment of resources by the bee, but the health benefits could be 

major. On the one hand, compounds which trigger the aforementioned ‘virus-aware’ state, with 

enhanced systemic RNAi properties, could be administered. This could give the bee an advantage 

because the time between the first recognition of the virus and the spread of the systemic RNAi 

signal to peripheral tissues would be reduced. This way, the RNAi defense system would be up 

and running at the time of virus entry in those distant tissues. On the other hand, the way in 

which the bee recognizes the virus could be used to develop a therapeutic. If the PAMP is a region 

of a coat protein, it could be produced in vitro and given to the bees, so that the immune 

pathways are triggered, even without the virus being present yet. However, it seems like, at least 

for the RNAi pathway, the trigger is the dsRNA by itself (Garbutt and Reynolds 2012; Lozano et al. 

2012; de Faria et al. 2013) and then we need to look at dsRNA-based applications again.  A final 

option is the use of the social immunization trigger as a therapeutic, to place the whole colony 

into a ‘virus-aware’ state. However, before all these possible applications could ever be 

developed, much more fundamental knowledge is needed; both about viral recognition in bees 

and systemic RNAi spreading in insects, so for now, they remain purely hypothetical. 

From the above sections it is clear that the interactions between virus and host, and in particular 

the RNAi mechanisms of the latter, are complicated. But, they become even more complex when 

adding various ecological aspects. It is believed that the bee decline that has been observed since 

the 1950’s is caused by a combination of factors such as a change in land use and agricultural 

practices, resulting in a lack of resources, which in turn makes the bees more vulnerable to other 

stressors such as pathogen attacks,  pesticides, etc. (Goulson et al. 2015) In the last years, there 

have been indications that pesticide exposure results in an increased susceptibility of bees to virus 

attacks (Di Prisco et al. 2013). Chemical components in pesticides may directly affect bee health, 

weakening its defense mechanisms against pathogen attacks. But there could also be indirect, 

synergistic effects. One possibility that should be assessed here is the way in which chemical 

components in pesticides might affect RNAi efficiency.  

  



 CHAPTER VII 113 

As viruses are an inherent part of all ecosystems and generally are not a major concern in many 

other insect species in nature, the question arises whether developing therapeutics for virus 

control is the most useful and effective way to protect the health of domesticated bees. Would it 

not be better to limit the various stressors which make the bees more vulnerable to pathogen 

attacks, for example by ensuring adequate floral resources, limiting the use of noxious pesticides, 

limiting transport etc.? As is often the case, it seems like combination of various strategies might 

be the way to go. Also for wild bees, it is important to look at viral research in a way that takes 

into account the wide range of interactions between host, virus and environment when 

developing new practices aimed at improving wild bee health. 
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Supplementary Table 1. List of the accession numbers used as queries during RNAi core gene annotation.  

 D. melanogaster A. mellifera B. terrestris T. castaneum L. decemlineata 

dicer-1 NP_524453.1 NP_001116485.2 XP_003401955.2 XP_008199045 / 

dicer-2 NP_523778.2 XP_016773223.1 XP_012163127.1 EEZ99277 AKQ00041.1; 
AKQ00042.1 

drosha NP_477436.1 XP_016766928.1 XP_003394274.1 KYB24989 / 

argonaute-1 NP_725341.1 XP_006571833.1 XP_012170889.1 EFA09197.2 / 

argonaute-2 NP_648775.1 XP_395048.4 XP_012168271.1 EFA11590.1; 
EFA04626 

AKQ00044.1; 
AKQ00045.1 

argonaute-3 NP_001036627.2 XP_016771437.1 XP_012170834.1 EFA02921.1 / 

aubergine NP_476734.1 
NP_001159378.1 XP_012171701.1 EFA07425.1 / 

piwi NP_476875.1 

loquacious  NP_723813.1 / XP_003398995.1 EFA09556.1 / 

r2D2 NP_609152.1 XP_006560091.1 XP_003395928.1 EFA05903.1 / 

pasha NP_651879.1 XP_006559675.1  XP_003397039.1 EFA05197.1 / 

sid-1-like N/A XP_006565236.1 XP_012170554.1 ABU63672.1; 
ABU63673.1; 
ABU63674.1 

ALG36906.1; 
ALG36907.1 

N/A: this gene is not present/found in this species. /: the gene was found, but no genbank identifier is 

available as of yet. Drosophila (D.) melanogaster,  Apis (A.) mellifera, Bombus (B.) terrestris, Tribolium (T.) 

castaneum and Leptinotarsa (L.) decemlineata.  
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Supplementary Figure 1. Hydrophobicity plots for the coleopteran Sid-1-like proteins, as well as Sid-1 and 
Chup-1 of C. elegans. 
The plots were calculated using the TMHMM transmembrane prediction tool (Krogh et al. 2001). The y-axis 
represents the chance that an amino acid belongs to a certain category: transmembrane region (grey), the 
extracellular part of the protein (green) or the intracellular part of the protein (blue). All proteins show a 
similar distribution of 11 transmembrane regions over the whole sequence. The grey sections at half height 
in the N-terminus of Ld-SilA, Tc-SilB and Tc-SilC are probably signal peptides, which are often hydrophobic in 
nature. 
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Supplementary Figure 2. Supplementary experiments illustrating the fact that ppia levels remain stable 
after virus infection or dsRNA treatment.  
All bumblebees were injected with 500 particles of IAPV (in 5 µL), 5 µL of PBS, 20 µg of dsRNA or not 
injected (i.e. mock treatment). The effect of the treatment on the expression  of the reporter gene ppia was 
evaluated using RT-qPCR, normalized to rpl23 levels. Statistical analysis was performed using Student’s t-
test (panel A and B) or Analysis of Variance (Tukey’s HSD post-hoc comparisons; panel C and D) on log2 
transformed data. The columns represent the treatment mean ± SD and statistical differences on an α= 0.05 
level are denoted by different letters. All other appropriate comparisons are not statistically different. The 
stability of ppia during the course of an IAPV infection is shown in panel A, whereas panel B proves stability 
over the different tissues. Panel C shows the reproducibility of these results, with a mock infection as extra 
control and panel D depicts the stability of this gene after non-targeting dsRNA treatment. In one instance 
there is a minor downregulation of ppia 3 days after IAPV infection, but only compared to the mock 
treatment, so this is probably caused stress after injecting, supplemented with biological variation.  
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Supplementary Figure 3. Gene Ontology enriched graph as produced by the Blast2GO software for proteins 
upregulated in the IAPV-infected ovaries.  
Significantly enriched GO terms (FDR=0.1) are colored pink or red according to their FDR value. White boxes 
are not enriched, but show parent-child relationships. In this case, only in the domain of biological 
processes enriched GO terms were found: GO: 0048584 and GO:0080134. 
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Supplementary Figure 4. Gene Ontology enriched graph showing the cellular component domain, as 
produced by the Blast2GO software for proteins downregulated in the IAPV-infected ovaries.  
Significantly enriched GO terms (FDR=0.1) are colored pink or red according to their FDR value. White boxes 
are not enriched, but show parent-child relationships. 
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Supplementary Figure 5. Gene Ontology enriched graph showing the molecular function domain, as 
produced by the Blast2GO software for proteins downregulated in the IAPV-infected ovaries.  
Significantly enriched GO terms (FDR=0.1) are colored pink or red according to their FDR value. White boxes 
are not enriched, but show parent-child relationships. 
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Supplementary Figure 6. Gene Ontology enriched graph showing the biological process domain, as 
produced by the Blast2GO software for proteins downregulated in the IAPV-infected ovaries.  
Significantly enriched GO terms (FDR=0.1) are colored pink or red according to their FDR value. White boxes 
are not enriched, but show parent-child relationships. Detailed sections of this images are shown on the 
following pages, as denoted by the different panels. 
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Without a doubt, RNA interference (RNAi) is an invaluable tool in entomology. Its ability to silence 

genes in a sequence-specific manner, coupled with its easy applicability has led to many 

applications, both as a research tool and in commercial products (some of them still under 

development). However, molecular entomologists have been puzzled over the variability in RNAi 

efficiency that is seen between and among insect species. In this doctoral thesis, we have 

enumerated factors that could affect RNAi efficiency and have selected two factors to focus on: 

double-stranded RNA (dsRNA) uptake mechanisms and viral suppressors of RNAi (VSRs). For each 

factor an appropriate test environment was chosen, for the former the Colorado potato beetle 

(CPB) and for the latter, the bumblebee Bombus (B.) terrestris.  

Before studying these complicated processes in detail, the presence of the RNAi core genes was 

confirmed in both species in a collaboration with, at the time ongoing, genome annotation 

projects. Most results matched with those obtained in related species, but for CPB an interesting 

duplication of two core genes was observed.  

To examine which pathways contribute to oral dsRNA uptake in the CPB midgut, an assay based 

on the RNAi-of-RNAi principle was devised. From literature, two pathways were known possibly to 

be involved,  Sid-1-like (Sil)-dependent transmembrane transport and receptor-mediated clathrin-

dependent endocytosis. Therefore, representative genes were selected from both pathways. 

Using the assay, a strong contribution of the clathrin heavy chain gene and a smaller one for one 

of the two selected subunits of the vacuolar H+ ATPase was observed, proving that endocytosis 

plays a major role. For the two sid-1-like genes, silA and SilC, there was some involvement, but it 

was less pronounced. To further elucidate the contested association between sid-1-like genes and 

dsRNA uptake in insects, these last two genes were examined through phylogenetic and 

hydrophobicity analysis. Altogether, these results confirmed for the first time the involvement of 

two pathways in dsRNA uptake in an insect species at the same time. In the general discussion 

some propositions are made on the various ways these two pathways could interact with each 

other (or not) and what these results might mean for other insect species. During the course of 

these experiments, it also became clear that the clathrin heavy chain gene had great potential as 

a target gene for RNAi-based CPB control, with an LC50 value that was comparable to the best 

targets that have been reported so far. 
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The next part of this work began by identifying a virus with a known VSR, that can infect B. 

terrestris. The most promising candidate was Cricket paralysis virus (CrPV) because of its known 

VSR 1A, its broad host range and its relatedness to some important bee viruses within the family 

of the Dicistroviridae, in particular Israeli acute paralysis virus (IAPV). A negative strand-specific 

tag-based assay was developed to evaluate replication of this virus, both in B. terrestris and other 

insect species. Delivering the viral particles trough micro-injection, complete mortality was 

observed at the high dose of 106 particles per individual, and partial mortality at 104 particles per 

individual. Using RT-PCR and the tag-based assay, a chronic infection was confirmed in the 

surviving bumblebees. These same techniques were also used to compare virus replication 

between different tissues, both for CrPV and IAPV.  In all tissues, replication was detected, but to 

a varying degree, and with higher viral titers often, but not always, corresponding with higher 

levels of replication. Additionally, viral infection was also observed in some bumblebees fed with 

virus-containing faeces, suggesting that CrPV infections in nature are possible for B. terrestris. 

In a following step we examined whether IAPV also encodes for a functional VSR, using a two-fold 

approach. Through a functional RNAi assay, we observed an enhancement of the RNAi system 

after IAPV infection instead of its suppression, despite only minimal upregulation of the genes 

involved in RNAi. Moreover, the presence of the candidate small viral proteins could not be 

confirmed using high definition mass spectrometry. In parallel, when bumblebees were infected 

with CrPV, with its known VSR, no increase in RNAi efficiency was seen and there may even be 

indications of suppressor activity. For both viruses, pre-infection with one virus led to decreased 

titers of the other virus, indicating a major effect of competition. The implications of these results 

in the context of multi-virus/multi-host are discussed here. 

During the VSR experiments for IAPV in B. terrestris, some interesting discrepancies were 

observed. Although both ovaries and fat body had similar viral titers, they showed a remarkably 

different RNAi response. Therefore, the proteomic dataset of the IAPV-infected ovaries was 

examined to assess how IAPV alters the host’s proteome. Differentially expressed proteins were 

identified and analyzed using Gene Ontology information. This revealed a number of 

downregulated processes, with the most notable being proteostasis and energy generation. This 

attenuated metabolic status of the ovaries was not a consequence of total system failure in the 

bumblebee, as for instance the fat body was still capable of increasing important immune genes. 

These observations could be linked with the reduced reproductive potential of bumblebee 

workers after IAPV infection and raise interesting questions concerning the role of non-essential 

reproductive tissues in social insects during virus infection. 
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In a final part, some general conclusions and future perspectives were discussed. This doctoral 

thesis contributed to the knowledge on RNAi in insects; on the one hand by proving for the first 

time the involvement of both dsRNA uptake pathways in the same experiment, on the other hand 

by identifying various direct and indirect ways viral infections can influence the RNAi machinery of 

their host. 
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RNA-interferentie is ongetwijfeld een onmisbare techniek in entomologische studies. De manier 

waarop genen sequentie-specifiek gesilenced kunnen worden, gecombineerd met het 

gebruiksgemak, heeft geleid tot vele toepassingen, zowel voor onderzoeks-  als commerciële 

doeleinden (waarvan sommige nog in de ontwikkelingsfase). Desalniettemin breken moleculaire 

entomologen zich al lange tijd het hoofd over de variabiliteit in RNAi-efficiëntie die tussen en 

binnen insectensoorten gezien wordt. In deze doctoraatsthesis werden factoren opgelijst die de 

RNAi-efficiëntie kunnen beïnvloeden. We focusten ons op twee factoren: opnamemechanismen 

van dubbelstrengig RNA (dsRNA) and virale suppressoren van RNAi (VSRs). Voor elke factor werd 

een gepaste testomgeving gekozen, voor de eerste de Coloradokever (CPB), voor de laatste de 

hommel Bombus (B.) terrestris. 

Alvorens deze ingewikkelde processen te bestuderen, werd de aanwezigheid van de belangrijkste 

RNAi-genen bevestigd in beide soorten. Dit gebeurde in samenwerking met genoomannotatie-

projecten die op dat moment lopende waren. De meeste resultaten kwamen overeen met die in 

sterk verwante soorten, maar voor CPB werd een interessante genduplicatie van twee genen 

geobserveerd. 

Met als doel te onderzoeken welke pathways bijdragen tot de opname van dsRNA in de 

middendarm van de CPB werd een assay ontwikkeld, gebaseerd op het RNAi-of-RNAi principe. Uit 

de literatuur was reeds gekend dat twee pathways mogelijk betrokken konden zijn: 

transmembraantransport doorheen Sid-1-like eiwitten of receptor-gemedieerde clathrine-

afhankelijke endocytose. Voor elk van beide pathways werden een aantal representatieve genen 

gekozen. Met behulp van de assay werd een duidelijke betrokkenheid van clathrine en één van de 

subunits van het vacuolair H+ ATPase aangetoond, wat erop wijst dat endocytose een belangrijke 

rol speelt. Voor de twee sid-1-like genen, SilA en SilC, werd ook een betrokkenheid vastgesteld, 

maar in mindere mate. Om deze associatie, die vaak in twijfel wordt getrokken, verder uit te 

klaren werden de sid-1-like genen onderworpen aan een fylogenetische en 

hydrofobiciteitsanalyse. Samengebracht bevestigen al deze resultaten voor het eerst de 

betrokkenheid van beide pathways tegelijk in dsRNA-opname in een insectensoort. In de 

algemene discussie werden een aantal mogelijkheden geopperd over de manier waarop deze 

pathways (al dan niet) met elkaar interageren. Gedurende deze experimenten werd ook duidelijk 

dat clathrine een goede target voor RNAi-gebaseerde bestrijding van CPB zou kunnen zijn, met 

een LC50 waarde die vergelijkbaar was met de beste gerapporteerd tot nu toe. 
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De volgende sectie van dit werk begon met het identificeren van een virus met een gekende VSR 

dat B. terrestris zou kunnen infecteren. Een veelbelovende kandidaat was het Cricket paralysis 

virus (CrPV) omwille van zijn gekende VSR 1A, zijn brede host range en zijn verwantschap met 

enkele belangrijke bijvirussen binnen de familie van de Dicistroviridae, meer bepaald met het 

Israeli acute paralysis virus (IAPV). Een assay werd ontwikkeld die specifiek de negatieve streng 

van het virus kon oppikken via een getagde primer om zo de replicatie van het virus te kunnen 

bevestigen, zowel in B. terrestris als andere insectensoorten. Wanneer met behulp van micro-

injectie de hommels geïnfecteerd werden, werd een volledige mortaliteit gezien bij de hoge dosis 

van 106 viruspartikels per individu en een gedeeltelijke mortaliteit bij 104 partikels per individu. 

Gebruik makende van de tag-assay en RT-PCR werd een chronische infectie bevestigd in de 

overlevende hommels. Diezelfde technieken werden ook toegepast om virusreplicatie te 

vergelijken tussen verschillende weefsels, zowel voor CrPV als IAPV. In alle weefsels werd 

replicatie gedetecteerd, maar in afwisselende mate. Hierbij kwamen hoge virale titers soms, maar 

niet altijd, overeen met meer replicatie. Daarnaast werd infectie ook aangetoond in een aantal 

hommels die gevoed waren met faeces dat virus bevatte, wat suggereert dat CrPV-infecties in de 

natuur mogelijk zijn bij hommels. 

In de volgende stap onderzochten we of IAPV ook codeert voor een functionele VSR via een 

tweevoudige benadering. Met behulp van een functionele RNAi-assay werd een verbetering van 

de RNAi-efficiëntie waargenomen in tegenstelling tot de verwachte suppressie, ondanks dat er 

slechts een beperkte opregulatie van de RNAi-genen was. Daarenboven kon de aanwezigheid van 

de kandidaat VSRs, kleine virale eiwitten, niet aangetoond worden via hoge definitie 

massaspectrometrie. Voor beide virussen leidde een pre-infectie met één virus tot een verlaagde 

titer van het ander virus, wat wijst op een sterk effect van competitie. De implicaties van deze 

resultaten in de context van multi-virus/multi-host netwerken werden hier ook besproken. 

Tijdens deze VSR-experimenten in B. terrestris werden enkele interessante onregelmatigheden 

opgemerkt. Alhoewel de ovaria en het vetweefsel vergelijkbare virale titers vertoonden, werd een 

verschillende RNAi-respons geobserveerd. Daarom werd de proteoomdataset van IAPV-

geïnfecteerde ovaria onderzocht om na te gaan hoe IAPV het proteoom van de gastheer kan 

veranderen. Differentieel geëxpresseerde eiwitten werden geïdentificeerd en geanalyseerd met 

behulp van Gene Ontology informatie. Hieruit bleek dat een aantal processen neergereguleerd 

was, met de meest opvallende proteostase en energieproductie. Deze verzwakte metabole status 

van de ovaria was niet het resultaat van een algemene stopzetting van de biologische processen 

in de hommel, aangezien in het vetweefsel nog een aantal belangrijke immuungenen 
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opgereguleerd waren. Deze resultaten kunnen gelinkt worden met gereduceerde reproductie in 

de werksters van hommels na IAPV-infectie en roepen vragen op in verband met de rol van niet-

essentiële reproductieve weefsels in sociale insecten tijdens virale infecties. 

Allerlaatst werden enkele algemene conclusies en toekomstperspectieven besproken. Deze 

doctoraatsthesis heeft bijgedragen aan de kennis van RNAi in insecten, enerzijds door voor het 

eerst de betrokkenheid van beide opnamesystemen aan te tonen in éénzelfde experiment, en 

anderzijds door verschillende directe en indirecte manieren te identificeren, waarop virusinfecties 

de RNAi-machinerie van de gastheer kunnen beïnvloeden. 
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