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Summary 

 

Ever since Charles Darwin published “On the Origin of Species” in 1859, evolution as the essential 

concept for explaining the emergence of diversity and adaptability of life forms has been widely 

accepted and thoroughly investigated by the scientific community. At the same time, researchers 

from different fields have continuously expanded the connotations of evolution. For instance, 

evolutionary theory already has been separately introduced into the studies of genetics, artificial 

intelligence, economics, and psychology, to help explain certain phenomena or improving 

mechanisms of practical application [1-5]. These efforts certainly provided many novel and brilliant 

achievements in Science while at the same time they made the study of evolution becoming more 

and more interdisciplinary [6]. Today, people realize that evolutionary principles can actually be 

applied to various systems and these systems may not only include biological organisms but also 

market agents [7], cultural elements [2], or even computational programs [4]. Even in the physical 

world, some cutting edge research is exploring the possibility of connecting evolution with the 

concrete physical embodiment (i.e. [8]).  Inspired by such ideas, one of the initial motivations of the 

research presented here is that it utilizes the principles of evolution in biological organisms to 

improve the adaptability of (simulated) robots (also referred as computational agents [9]) under 

unpredictable and changing environments. Furthermore, during this research, we realized that the 

self-organized collective behavior demonstrated by the swarm bio-inspired (simulated) robots could 

also spontaneously emerge at different levels and that this is also an inherent feature of all 

evolutionary processes in nature. The origin of emerging self-organized behavioral patterns at 

different levels has a great effect on evolution and studying this is helpful for providing a more 

comprehensive understanding of the evolutionary processes in nature. 

 

The artificial genome and the bio-inspired model of gene regulatory 

networks 

 

In terms of biological evolution, it is the genes on the genome that eventually carry all evolutionary 

information. Moreover, genes usually do not work in isolation, but form intricate gene regulatory 

networks (GRN). For example, interactions between genes have important impact on many aspects 

of evolution such as gene expression regulation, phenotypic plasticity, epigenetic inheritance, and 

genetic mutations. One view, originally developed by the works of W. D. Hamilton [10,11], Colin 

Pittendrigh [12] and George C. Williams [13] and later popularized by Richard Dawkins in his books 

‘The Selfish Gene’ [14] and ‘The Extended Phenotype’ [15] considers the gene as the primary unit of 

selection. However, such gene-centered view of evolution also has been criticized as excessively 

"reductionist” by, for instance, Stephen Jay Gould [16]. Gould views selection as acting at many 

levels, and has called attention to a hierarchical perspective of selection. In fact, in this thesis, we try 

to combine these different kinds of views into one holistic view. On one side, we affirm the role of a 

gene as one of the evolutionary objects but on the other side, we agree that the gene is not the only 

evolutionary entity important for evolution. For instance, the organism is not simply a “vehicle” for 

genes but, in turn, acts also as an evolutionary object itself at a larger scale. In our model, evolution 

thus acts at multiple levels (see further). Back to the genetic level of evolution, due to the important 



 12

roles of genes and genomes, developing the appropriate artificial genome and gene regulatory 

network model is a critical and challenging task for mimicking the true biological genetic evolutionary 

system. Reading the current literature on hitherto developed models for artificial genes and 

genomes, it has become clear that this field still lacks a representation model that can represent 

genes as individual units of selection rather than passive genetic information recorders. Moreover, 

the interaction between the adaptation of a particular gene and the whole evolutionary process is 

ignored by many evolutionary models. Several principles and methods for improving previous gene 

and genome models are explored in this work. Furthermore, based on these  principles, a novel 

artificial genome and a corresponding GRN framework have been developed. Through 

implementation of the principles of biological GRNs, our framework allows individual genes as 

independent evolutionary objects to interact with each other and to adapt to a changing 

environment. We believe that our novel model offers a more realistic and holistic view on gene 

evolution by including the dynamic interaction between genes and the phenotype of the organisms. 

 

Using agent based simulation and swarm robots to study evolutionary 

systems as complex adaptive systems 

 

The essential driving force of biological evolution is evolving the necessary adaptive traits in a(n) 

(complex) environment. Therefore, one of the primary reasons of mimicking biological evolution in 

computational programs is to obtain similar adaptability in digital organisms as in biological 

organisms by using (some of) the same principles of evolution.  In general, the way adaptive 

phenotypes in biology evolve is completely different from the hitherto applied engineering 

approaches. Actually, the strong self-adaptability of biological organisms is based on a dynamic 

structure of interactions [17], which has been referred to as complex adaptive system (CAS) in 

complexity theory. In contrast to the traditional engineering system framework, CAS has a 

distributed structure and could be regarded as an aggregate of many independent interacting 

entities. The adaptability of CASs emerges from the collective behavior of these inner entities. 

Through the interaction of all inner entities and the environmental inputs, the collective behavioral 

pattern is continuously self-regulating to adapt to the current environment. Our approach described 

in this thesis aims to develop such CAS framework in computational systems and to develop an 

artificial system that also possesses the same self-adaptability capability as its biological counterpart. 

To achieve this goal, we adopted the principle of computational agents (see Introduction & Chapter 

2) to represent the corresponding inner entities of a biological CAS and simulated the interaction of 

these inner entities in silico. Moreover, we also mimic the ‘nested’ structure of CASs. In nature, CASs 

rarely acts at one single level because, if well adapted, the CAS tends to reproduce many times in the 

environment. Since CASs can also interact with each other, a collection of CASs together in the 

common environment will, in turn, form a population, which could be seen as a CAS at a larger scale. 

Furthermore, the adaptation of the CAS not only means that the CAS needs to respond to 

environmental changes but, in turn, through its evolution and adaptation will also invoke some 

changes on the environment itself. As a result, other CASs need to change themselves (adapt) to 

adapt with the changed CAS.  Such chain reaction will continue until all CASs reach a stable status. In 

terms of biological or gene evolution, for instance, we could consider the GRN in every individual 

organism as a CAS, but the collective behavioral patterns within the ecosystem actually forms 
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another kind of CAS at a higher level. Due to the inseparable and nested relationships amongst CASs 

in nature and to better understand its consequences, we have tried to implement a similar nested 

structure in our simulations. First, we developed the computational CAS, which represents the gene 

regulatory model in biological organisms and then implemented this into each swarm robot as the 

controller. Multiple swarm robots in the simulation then constitute the collective behavioral pattern 

through their interaction. Such patterns are also evolving and adapt with the evolution of individual 

organisms. In turn, for each individual robot, the evolutionary processes playing at the population 

and/or ecosystem level will have, in turn, an effect on the adaptation of the individual organisms.   

 

The adaptation of swarm robots under dynamically changing environments 

 

In this study, we assumed no static environment and/or explicit fitness function for the robots in the 

simulation experiments. It is our conviction that, ideally, the fitness function or fitness evaluation can 

change as a result of the changing environment. Like a natural biological environment, in our 

simulation, the environment can change as a result of the interaction to adaptations and is 

potentially evolving on the shorter or longer term.  In our simulations, all environmental conditions, 

as well as the adaptations of the robots, emerge based on the interaction between the swarm robots 

and between the swarm robots and the environment, so it is impossible to design a common explicit 

fitness function that applies to the behavior of all robots at all times. Instead of using an explicit 

fitness function, we chose to use the energy level of the robot as an estimation for the adaptation of 

the robots. The energy level of the robot is dynamically calculated based on the interactive behavior 

between the robot and its environment. For different time points and different robots, the energy 

level could be different but the survival and replication of all robots requires the energy to reach a 

certain level. Even with using a dynamic energy level as an indicator, identifying the particular 

adaptive behavior of each single robot in such changing environment is difficult because the 

adaptation only based on the energy level of the single robot ignores the environmental context. For 

example, increasing energy is easier in some environments than others for a certain robot. In our 

approach, we measure the adaptation of a group (swarm) of (simulated) robots instead of the 

individual robots and ensure that the initial environments are, on average, similar for different 

groups of robots (each group of robots start from independent simulation experiments in similar 

conditions). To examine the adaptability of the bio-inspired system and the functionalities of an 

artificial genome, we compared the different groups of robots in the same artificial life simulation 

scenario. The results show that, on average, our bio-inspired framework could improve the 

adaptability of robots more efficiently while the adaptive behavioral pattern of the bio-inspired 

systems also leads to higher diversity than more simple ANN based systems.  

 

Application to evolutionary robotics and artificial intelligence 

 

The application of the self-adaptive systems’ framework to evolutionary robotics and artificial 

intelligence is one of the interesting and critical tasks of the work presented here. Three concrete 

applications that have been investigated and discussed in more detail in this work are collision 
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avoidance, self-organizing robotic organism aggregation, and artificial life.  The results of the 

corresponding experiments, which are based on robotic simulations, show that our system’s 

framework carries the potential to self-adaption under various dynamically changing environments. 

 

A novel bottom up holistic perspective on evolution  

 

In our simulation experiments, we have simulated the process of self-organization and the 

emergence of certain behavioral patterns in populations and tried to connect the emergence of 

these patterns with particular genetic evolutionary processes. The results suggest that the 

emergence of collective patterns in a population has an effect on the local environments of individual 

organisms and in turn, the changed local environment can effect the evolutionary process in the 

individual organism.  Therefore, evolution actually results from various evolutionary processes acting 

at multiple levels. In addition, through comparison with a more traditional evolutionary model, we 

show that our multiple level evolutionary model helps the simulation to produce more realistic 

outcomes. Using such a holistic perspective on evolution can provide us with a more comprehensive 

understanding of how evolutionary processes might act at different levels. 

 

 

 

 

 
 

  



 15

Glossary of terms and definitions used  
 

In the interdisciplinary research described in this thesis, we have used a somewhat novel approach to 

look at and simulate artificial evolution. Due to the intersection of multiple disciplines, we here want 

to introduce some terms and concepts to describe our bio-inspired model for simulating artificial 

evolution that might be new or unfamiliar. In this section, we list and discuss those terms that are 

used throughout the thesis in a little more detail.  

 

Evolutionary process/evolutionary context: 

 

In our approach, evolution is considered a comprehensive process composed of many smaller-scale 

processes (see Fig 1). We refer to these as embedded evolutionary processes acting at different 

levels because all of them share the same evolutionary principles. In other words, they can be 

regarded as the miniatures or epitomes of overall evolution. For example, each gene evolves like an 

independent entity. Different genes interact with each other and they can all be under different 

selection pressures and have their own functional roles in Gene Regulatory Networks (GRNs), just like 

different organisms can have their own niche in an ecosystem. At a larger scale, this view is 

reminiscent of the Gaia hypothesis proposed by James Lovelock [18], where the whole biosphere is 

seen as some sort of super organism. We thus adopt the view that evolution forms a nested 

architecture, similar to the well-known Matryoshka dolls, however, of course much more complex.  

Every level at which evolution can act (a genome, an organism, a population, … ) can include several 

independent evolutionary processes at the same time. Although one might argue about the 

differences in detail, such as the different rules of interaction between different evolutionary 

processes or the various features of different evolutionary components, we still can observe certain 

commonalities such as selection, variation, competition among these components and they all share 

the similar bottom-up self-organization processes. In addition, the rules of interaction at lower levels 

also apply at the rules of interaction at higher levels. Stripped from the different evolutionary 

contexts (context here refers to all historical changes that are relevant with the interaction in 

evolution), all these evolutionary processes can be described by a common model (complex adaptive 

system [19]).  In conclusion, in our research an evolutionary process does not only refer to the 

overarching process of evolution but also to the subparts of evolution that can be considered 

different cases of the discussed common model.  For instance, a sub-evolutionary process can be the 

evolutionary process acting on the gene, the genome, a population, or the whole ecosystem.  In 

chapter 6, I will elaborate more on the reason why we (need to) distinguish between different 

evolutionary (sub)processes.  
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Figure 1 Multiple level evolutionary processes in our interaction-based evolutionary model. 

 

Evolutionary components: 

 

In this work, an evolutionary component refers to any functional entity (i.e. genes, proteins, 

organisms, and populations) that can interact with other functional entities (see Fig 1). Components 

are thus entities on which evolution acts but they can also independently interact with other 

components and they can accumulate changes (evolve). Actually, evolutionary components can be 

regarded as interactive modules in evolution. For example, in Fig 1, an organism is a component and 

the organism can interact with other organisms. Other organisms are external to this organism and 

therefore they are referred to as external components to this organism in our model. At the same 

time, this organism will also ‘interact’ with its internal entities (i.e. sleep behavior could affect the 

gene expression pattern and then the expression pattern will react on the behavior of organism later 

on [20,21]). We refer to these kinds of components as internal components to this organism. 

Furthermore, the corresponding environments of these two kinds of components are referred to as 

external or internal environments in our model. 
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Interaction and interaction-based evolution: 

 

In our evolutionary model, a particular evolutionary event is actually defined by the interaction of all 

relevant components.  Here, interaction refers to any causality on changes between two 

components. Changing one component can induce changes on another component, and such events 

between two components are referred to as interactions. All evolutionary contexts or events can be 

described as the consequences of such interactions. However, it should be noted that: 1) two 

interacting components can be derived from evolutionary events acting at different levels, i.e. a gene 

might have an effect on the phenotype of an organism, so gene and organism are from different 

‘evolutionary levels’; 2) interaction rules, i.e. the connection between two changes, are also part of 

the evolutionary context and can dynamically change during evolution (i.e. if a gene has lost its gene 

regulatory function, the interaction rules between this gene and others have changed); 3) 

interactions can have domino effects at later stages (i.e. one gene might have an effect on a GRN and 

the changed GRN can affect the behavior of an organism).  

In general, we assume that all evolutionary contexts (evolutionary changes and events) are based on 

dynamically changing interactions that occur continuously during evolution. 

The interactions between ‘multiple level’ components will determine the evolutionary context in our 

artificial simulations. We refer to this holistic model of evolution as interaction-based evolution. The 

simulation framework that was developed to implement this model thus aims to provide a more 

comprehensive evolutionary context where interactions between multi-level components (genes, 

genomes, organisms, populations, and ecosystems) are considered. In the new simulation model, 

interaction between different evolutionary components can dynamically affect different evolutionary 

processes and the relevant evolutionary context, such as fitness, selection pressure, gene mutation 

and so on. 

 

Environment/selection: 

 

In our multiple level model (see Fig 1), the selection pressure for a particular individual comes from 

two sides. On the one side, an individual has to adapt to its external environment. For instance, an 

organism (see Fig 1) has to adapt to other organisms and to local environmental changes. On the 

other side, the organism also has its own internal components (genes and gene products) and these 

internal components consist of an internal system that we can refer to as the internal environment of 

the organism. Adaptation of each of these internal components does not have to be beneficial to the 

individual organism explicitly (i.e. the “cheaters” may be harmful to the whole population but 

cheating behavior brings advantages to individuals temporarily [22]) and therefore the organism also 

has a selection pressure to have a more favorable internal environment (i.e. more mutations and 

novel traits arising in the population could increase the evolvability for adapting to changes of the 

external environment but the population also needs some kind of regulation mechanisms to avoid or 

remove possible mutations that may lead the cheating behaviors). Based on this model, adaptation is 

actually a trade-off between the external and internal environments of the system. In our study, we 

integrated both the external and internal environments into a common simulated evolution and 
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evolve any novel trait in the simulation based on the balance between the both external and internal 

environments.  

 

Artificial immune system: 

 

The field of Artificial Immune Systems (AIS) is concerned with ‘translating’ the structure and function 

of the immune system into computational systems, and investigating the application of these 

systems towards solving computational problems in mathematics, engineering, and information 

technology. AIS is a sub-field of Biologically-inspired computing and natural computation, with 

interests in Machine Learning and belonging to the broader field of Artificial Intelligence. Based on 

[23], “Artificial Immune Systems (AIS) are adaptive systems, inspired by theoretical immunology and 

observed immune functions, principles and models, which are applied to problem solving”. 

 

Neuroevolution: 

 

Neuroevolution is a form of machine learning that uses evolutionary algorithms to train artificial 

neural network. 

 

Artificial life: 

 

It is a field of study which seeks to synthesize the characteristics of life by artificial means, 

particularly employing computer simulation. 

 

The evolutionary process acts at multiple levels in our simulation: 

 

In our work, we assume that evolution acts at (at least) at three different levels. This framework is of 

course still a simplified model compared to biological evolution and the ‘three level’ architecture is 

just to demonstrate our ‘multiple level’ artificial evolution (the number of levels is initially specified 

but not necessary). In future research, we could increase the three level architecture to more or 

fewer levels depending on the research interests. Each particular level in our framework has at least 

one kind of interactive evolutionary component and can produce the self-organized structure 

through the interaction of these components. Since novel self-organized evolutionary components 

can emerge during evolution, new levels can emerge as well. For example, swarm robots can form 

groups (through aggregation or close cooperation patterns) and these groups may also interact with 

each other as individual modules. When we observe the self-organized pattern emerging from the 

interaction of groups, we will interpret this as the creation of a new level. In our simulation, we 

initially defined three levels and we use artificial genes, agents and swarm robots to represent the 

different evolutionary components at each level.         
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Gene level:    

1. Selection is based on nucleotide substitution, gene deletion or gene duplication. If the fitness 

of the organism improves due to a mutation in a gene, the mutation rate of the gene 

becomes lower and the duplication rate higher.   

2. Variation is based on the mutation operation and random genome initialization. 

3. Competition is based on the feedback of agents. The gene that has higher gene expression 

will create more agents and will receive more feedback. The feedback can increase the 

expression level of the gene (inducer) but also can decrease the expression level (repressor). 

GRN level: 

1. Selection is determined by the agent’s concentration decay rate, the lifetime of the agent 

and gene expression. Every time step, the concentration of the agents decreases while the 

age of agents increases. When the concentration level is lower than a certain threshold or 

the lifetime is higher than the maximum lifetime, the agent will be removed.  Gene 

expression (caused by particular gene binding) will increase the concentration level and 

decrease the age of the agent encoded by the GRN or create a new agent through the GRN. 

Gene expression can be activated by regulatory agents or signaling agents 

2. Variation is based on the different environmental inputs and the different genes in the 

genome. 

3. Competition is based on the concentration levels of the agents. The concentration levels of 

the agents are a combination of gene expression, environmental inputs, agent decay and 

agent interaction.  

Robot level: 

1. Selection is based on the energy cost, lifetime of the robot and robot replication. 

2. Variation is based on the different genomes and different GRNs.   The compositions of GRNs 

depend on the environmental context and the environmental conditions. 

3. Competition is based on the energy level of robot.    
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Figure 2 The evolutionary process acts at multiple levels. See text for details. 

 

Equilibrium: 

 

The condition of a system in which all competing influences are balanced. In our thesis, it refers to a 

variety based on the context. For example, it could means the balanced condition between food 

source growing and population extension or refers to the balanced focus on both food searching and 

robot prey behavior.  
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The study of evolution has attracted great interest from biologists and, more recently, also computer 

scientists, albeit that the motivations of studying evolution might be different for the two research 

fields.  In recent years, for biologists, one of the most interesting topics in evolution is the 

understanding of the evolutionary processes at the genome level. Understanding gene evolution 

helps the biologists to interpret the various phenomena and traits discovered in biological organisms. 

For instance, insights into the evolution of genes and genomes have helped explaining how species 

diversity has come about and how the tree of life could have been shaped[24-26]. On the other side, 

in terms of computer science, scientists have been fascinated with the inherent adaptability of 

natural evolutionary systems[27-29]. By mimicking the general mechanisms and principles of 

evolution, computer scientists aim to develop systems(i.e. [27,30,31]) that possess better 

adaptability in certain environments. Due to the different research interests in the two fields, people 

in each field have been separately investigating evolution for decades. However, through many 

evolutionary studies, more and more researchers realize that genetic evolutionary processes and 

adaptability are closely connected and evolutionary studies on both aspects require a close 

integration for extending our understanding of natural evolution. Moreover, scientists may have 

found biological evolution to be more complex than previously thought, because new evidence has 

shown for instance that biological evolution not only depends on the evolutionary processes at the 

genomic level but also is related with many other things such as the whole ecological environment 

[32], historical events [33], multiple level co-evolution processes [34] and so on.  For example, 

researchers recently realized that, in nature, adaptability usually depends on the particular 

evolutionary context while the evolutionary process in turn can also be affected by particular 

adaptations [35,36]. For instance, Alon and colleagues [37] have stated that one trait of an organism 

could be adaptive in one environment but deleterious in another environment. In fact, such different 

environments usually can be encountered at different time stages so the adaptive value of a 

particular trait is based on the context. Moreover, regarding the niche and the collective behavioral 

patterns between organisms, these adaptations, in turn, can have an important impact on the 

evolutionary process through offering various selection patterns at different times [38]. As a result, 

evolution is based on the interaction of many aspects, like the genetic evolutionary process, ecology, 

the adaptation of the individual organisms, and the behavior of the whole population, rather than on 

a single independent process. To better understand the complexity and essential mechanisms of 

evolution, we need to integrate the knowledge about evolution from different aspects into a 

common model. Actually, today, we believe that a more comprehensive view on evolutionary 

research can promote studies on all related aspects of evolution. Based on such idea, this thesis will 

introduce a new approach for studying artificial evolution that combines gene evolution, evolution in 

individual phenotypes and evolution at the ecological level into one simulation model. For our 

research, we will use computational agent-based simulation to simulate gene evolution in virtual 

organisms with open-ended evolutionary models (see further). The evolutionary process in each 

organism is self-organized and such self-organization is based on the interaction of multiple agents. 

Such evolutionary process of the whole organism influences the gene regulation and the 

corresponding phenotype.  Meanwhile, adaptation of organisms will influence the evolutionary 

process at a later stage as well. Furthermore, in our simulations, the organisms also interact with 

each other (as a population) and the interaction between organisms is recognized as part of the 

(changing) environment. With this approach, which is novel to the field of artificial evolution, we try 

to study evolutionary systems as dynamic developmental systems that include multiple interactive 

components. This way, both the evolutionary process and adaptation are integrated as two 
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interactive parts into a common framework and the interaction among different components of 

biological evolution also are being seen as providing the essential context that that can have a 

significant influence on evolution.  

The other sections of this chapter introduce the relevant background for this research.  The first 

section briefly introduces some previous simulation work in evolutionary biology and discusses 

evolutionary models. The second section discusses some typical approaches in computer science for 

evolving adaptability of programs. In the third section, we introduce some recent interdisciplinary 

research in complexity theory, biology and computer science, which exemplifies the cross 

hybridization of evolutionary models from the different study domains. 

 

1.1 Computational Evolutionary Biology 

 

The study of evolution plays a critical role in biology because it reveals the diversity of life on Earth. 

Due to the importance of evolution (‘Nothing in biology makes sense, except in the light of evolution’ 

- Theodosius Dobzhansky [39]), there is a special sub-field of biology for investigating the 

evolutionary processes, which is referred to as evolutionary biology. To study the evolutionary 

process, the traditional approach in evolutionary biology usually is to compare phenotypes and 

genetic features among multiple samples from different time stages or species. Based on such 

comparisons, the evolutionary process and model can be inferred. The conclusions gained by such 

approach are convincing but the approach itself is usually limited by factors of time and sample sizes. 

For example, evolutionary processes in organisms usually develop over millions of years and are 

based on large population sizes. Using only a few samples to compare makes it difficult to infer the 

whole evolutionary process. In addition, some samples are difficult to retrieve or to identify at 

particular times.  Such difficulties make that evolutionary studies usually depend on support from 

paleontology, molecular genetics, cell biology, ecology, and so on. Sometimes, experimental 

techniques and conditions critically influence the final conclusions and limit the applicability of 

results. For example, some have argued that the ‘boring’ experimental environment may bias the 

results and reduce variation [37]. Recently, computational simulations have started to provide new 

alternative solutions for solving problems in evolutionary biology that have been difficult to solve the 

more classical way.  

During the last decade, more and more researchers in evolutionary biology have started to use 

computer simulations as a supplementary approach to study evolution. Computationally simulating 

the evolutionary process could extend the population size and time scale of the samples while 

reproducing the interactions and events during the evolutionary process. During simulation, these 

evolutionary trajectories can be easily recorded for further analyses. All these advantages make the 

use of computational simulation increasingly popular in modern evolutionary biology research 

[40,41]. Nowadays, most simulation experiments for evolutionary biology have three different foci.  

The first focus is on genome evolution. Through applying artificial evolutionary operations and 

selection on an artificial sequence, one can replay evolutionary processes as observed in real genome 

sequences and store the evolutionary trajectories taken during the simulation. Antonio [42]divided 

such kinds of simulations into two subclasses according to the different platform types: those based 
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on coalescent simulators [43,44] and those based on forward simulators [45,46]. Coalescent 

simulators are based on the coalescent theory, which is a retrospective model of population genetics. 

In contrast to forward simulators, coalescent simulators start the simulation from genome samples 

of the current population and trace back evolution until a single ancestral copy. Generally speaking, 

these kinds of simulations can both efficiently run a long evolutionary process over many generations 

but they often ignore the complexity of the mapping between the genotype and the phenotype and 

lack the interaction between organisms and the environment. 

The second focus is on the dynamics of gene expression patterns. For compensating the lack of a 

sophisticated genotype-phenotype mapping and the influence of the environment, some researchers 

also pay specific attention to another kind of simulations that emphasize evolution at the gene 

regulation and gene expression level. Those new simulations can be recognized as the second kind of 

simulating approaches in evolutionary biology that we would like to discuss. Here, simulations are 

not only based on artificial genomes but also on the (encoded) gene regulatory network models. The 

representation of the Gene Regulatory Network (GRN) model can vary depending on the different 

research interests. As Hidde concluded [47], the GRN model representation could be based on many 

different formalisms like graphic [48], network (Bayesian [49], Boolean [50] or logical network [51]), 

differential equations [52] or predefined rules [53]. When considering gene regulation and 

expression, the simulations include the interaction between genes in evolution.  

The third focus is on the integration between the Marco and Micro scale of evolution. Except for the 

simulations discussed above, many recent simulation experiments also tend to investigate the 

correlation between the gene evolution and the dynamics of populations. In this kind of studies, the 

interaction between individuals and their collective behavior also have been considered as part of 

evolution and this part could exert a great influence on the evolutionary processes. Based on such 

ideas, the evolutionary model also has been extended to whole populations and the interaction 

between individuals. Such simulators often adopt the cellular automaton [54] or artificial life 

approach [55] to simulate the dynamic interactions between individuals. By comparing the emergent 

collective behavioral patterns or the genetic features of different populations in the simulation, 

researchers can deduce the corresponding evolutionary process or identify the evolutionary 

trajectories of the particular phenotype. Some typical examples of these kinds of experiments can be 

found in [56,57], where scientists have shown that with a process of random mutations on the 

simulated organisms, natural selection could force the population to evolve some complex features. 

Natural selection in these simulations is based on the competition between simulated organisms 

rather than from a completely predefined model. 

In terms of evolutionary simulations, each kind of simulation approach discussed above represents a 

certain perspective on evolution. However, natural Evolution is a complex combination of multiple 

aspects rather than a single one. Recently, more and more evolutionary studies attempt to 

synthesize the different kinds of simulating models described above into one integrated simulator.  A 

typical example of such approach has been described by Dada and Mendes[58].In their paper, 

authors integrated evolutionary processes acting at multiple levels into one simulator and suggested 

that multi-scale methodologies are playing or will play important roles in multi-scale problems in 

systems biology. Such integration allows scientists to study the evolutionary processes with a more 

comprehensive view.     
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1.2 Evolutionary Computing and Bio-inspired Computing 

 

In computer science, the use of evolutionary principles for automated problem solving started 

around 1950. There are several distinct pioneers of this field. Evolutionary programming was 

introduced by Lawrence J. Fogel [59], while John Henry Holland [60] called his method a genetic 

algorithm. In Germany, Ingo Rechenberg and Hans-Paul Schwefel introduced evolutionary strategies 

[61,62]. Later, these different terms and approaches were eventually unified as different 

representatives of one technology, called evolutionary computing. Simulation of artificial evolution 

using evolutionary algorithms and artificial life started with the work of Nils Aall Barricelli [63] in the 

1960s, and was later extended by Alex Fraser, who published a series of papers on simulation of 

artificial selection [64]. 

Generally speaking, in contrast to biological evolutionary research, computer science is usually more 

interested in solving problems corresponding to concrete tasks rather than in unraveling the details 

of evolutionary processes. Therefore, in traditional evolutionary computing studies, the genome and 

the relevant genetic evolutionary models usually are much simplified while selection during the 

simulation is more or less predefined by a particular task description. However, in recent years these 

features have become more and more interwoven because scientists were hoping to assign more 

complicated tasks to artificial evolutionary programs.   Artificial intelligence (AI) systems are the main 

application of evolutionary computation. During the last century, general task requirements for AI 

systems have been relatively simple; for instance, performing a certain procedure based on a few 

possible inputs, which is a rather ordinary task paradigm for such systems. The main aim of artificial 

evolutionary experiments given such relatively simple tasks is to identify the best response 

procedure to the corresponding environmental conditions. In most cases, the environmental 

conditions are finite and identifiable to the developers. Through an appropriately simplified 

evolutionary algorithm, the program can effectively reach the best solution within a relatively short 

time as long as the environmental conditions are limited and in an identifiable search space. 

Therefore, early studies in evolutionary computation have usually focused on the design of the 

algorithm and the relevant parameters in the framework. The mechanisms of the evolutionary 

process are relatively simple compared to their biological counterparts. More recently however, with 

the further development of AI systems, scientists have started to assign more complex and 

sophisticated tasks to the AI systems like robot exploration in novel environments [65,66]. These new 

kinds of tasks often require implicit task description and self-adaptability within an unknown 

environmental context. Some typical cases are for instance Mars exploration, disaster rescue, and 

deep-sea exploration[67]. These scenarios all require the AI systems to accomplish some open-ended 

tasks under an unknown environment, independently. Without people’s help and well pre-defined 

environmental knowledge, the systems have to ‘learn’ the environment during their adaptation 

process while the system also needs to evolve various mechanisms that could adapt with unexpected 

environmental changes. Such new changes on the task scenario of evolutionary computation require 

much more sophisticated evolutionary mechanisms; the traditional evolutionary framework 

discussed above becomes insufficient to cover these new requirements.  Considering these new tasks 

of evolutionary computation, with a dynamic and greatly extended search space, it is very hard to 

reach a static and optimal solution by the current engineering algorithms.  
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To deal with these new challenges, a new field has been established that has been referred to as 

biologically inspired computing or bio-inspired computing[66,68]. The main aim of bio-inspired 

computing is to mimic the evolutionary processes of biological systems to improve the adaptability 

and evolvability of the computational program in complex changing environments. The motivation of 

using these kinds of approaches is based on how biological systems adapt to complex environments. 

In nature, through the evolutionary process, biological systems have been usually well-adapted to 

complex changing environments and are generally regarded much more adaptive than any kind of 

artificial system. Such self-adaptability in biological organisms is evolved in a changing environment 

but not determined by any specific algorithm. To achieve the same adaptability as biological systems, 

bio-inspired computational approaches not only have to adopt similar frameworks and evolutionary 

operators as biological organisms but also need to simulate the general evolutionary processes that 

formed the corresponding structures and the operations during evolution. Evolutionary processes in 

nature usually use a bottom-up, decentralized way to gradually evolve a self-organized system[69,70] 

rather than following an explicit predefined system paradigm. This is very different from traditional 

engineering algorithms. Some typical examples of bio-inspired computing approaches can be seen in 

the relevant research on neuro-evolution[71,72], swarm intelligence[73,74] and artificial 

embryogeny [75]. Although these approaches vary in the details of their implementation and are 

applied in different contexts, they all share the same way of simulating the corresponding natural 

evolutionary context and using the bottom-up self-organizing principle to construct the systems’ 

structure. Neuro-evolution is based on the evolutionary model of the brain (evolution of the 

connections between nerve cells); swarm intelligence simulates the collective behavioral patterns 

evolving from the social interaction of the individuals in the population, while artificial embryogeny 

uses the developmental model of biological embryology, which is based on the evolution of cells and 

tissues. These novel approaches of bio-inspired computing give the artificial programs a certain self-

adaptability in the experiment while at the same time sharing more principles with evolutionary 

biology.  

 

1.3 Complex Adaptive Systems and Swarm Evolutionary Robotics  

 

Nowadays, besides the evolutionary process itself, another common interest in biology and 

computer science is adaptation. The importance of adaptation in evolution has been addressed by 

the American biologist Niles Eldredge in his book ‘Reinventing Darwin: the great evolutionary 

debate’[76], where he stated that "Adaptation is the heart and soul of evolution." However, 

adaptation still remains a hotly debated theme in evolutionary studies.  

As is well known, the environmental condition is a crucial factor for adaptation and it eventually 

determines the features of organisms (the phenotype) in evolution through selection. In nature, the 

actual environment is very complex and dynamically changing all the time. However, the predefined 

fitness functions usually describe adaptation as a rather static process. To overcome the complexity 

of adaptation, many researchers tend to use a reductionist perspective to understand adaptation as 

the sum of many small and limited partitions. For example, in some evolutionary simulations, 

adaptation has been regarded as a collection of particular phenotypic features and the model of 

adaptation is represented as a network between all phenotypes and conditions. Such perspective 
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tends to provide an accurately quantified network-based model to explain adaptation and it assumes 

that adaptation at the larger scale is just a collection of many sub-networks. However, others believe 

that adaptation is similar to many other complex phenomena in nature and follows a nonlinear style 

and such style is not supposed to be accurately represented by mathematical network-based models. 

This is because the interaction among molecules, genes and organisms in adaptation may produce a 

considerable domino effect through a chain reaction and such context-based domino effect could not 

be investigated separately part by part. For example, pleiotropy[77] may cause one gene to influence 

the expression of many other genes through a chain reaction process and such influence could be 

exaggerated on the phenotype in later stages. Such kinds of influences also may have an effect on 

the collective behavior of the organisms and eventually change the collective patterns of the 

ecological system.  Because the collective patterns change, selection also can be altered. All these 

potential effects are hardly addressed if one only focuses on a particular aspect of the adaptation 

process.  On the other hand, adaptation is a dynamic process. Through the collective interaction 

among different components (genes, organisms and the species), the adaptive status and relations 

among different components could be various based on the different context. Such facts make the 

static relations among finite conditions become insufficient to present adaptation over time. More 

details about the complexity of adaptation has been discussed in Wagner’s recent book  “Arrival of 

the fittest”[78]. In his book, Wagner emphasized that the adaptive innovation on phenotype is  

combinatorial and the origin of such innovation is depended on the interaction of many components. 

As the title shown, Wagner tried to explain the arrival of the fittest traits from a more holistic view in 

this book.  

Due to the limitations of the reductionist approach, we have to approach adaptation by a more 

holistic view and investigate the effect of particular features in adaptation based on the dynamic 

interactions between all interacting components on which evolution can work. In terms of a holistic 

model of adaptation, the Abelian sandpile model[79] could be a good metaphor to explain it. For 

such dynamic system models, the effect of one single unit (units refer the basic interactive 

components in the system like the single grain of sand in a sand pile) could be too small to explain 

the self-organizing structure of the whole system but any such small effect also could totally change 

the structure and redefine the relation among all units later by a chain reaction. In evolution, every 

gene, organism and so on could be regarded as the single unit as well and these single units could 

also give a fundamental effect to whole evolution through a chain reaction.  This phenomenon of 

such implicit effects has been referred to as the famous butterfly effect, which says that the 

movement of a butterfly wing can have effects thousands of miles further and these domino effects 

maybe enough to create a storm in the later time [80]. Adaptation is also a typical example of such 

dynamic system model but much more complex than the sand pile case. Here, a tiny change in the 

environment or in an individual organism, like a genetic mutation, a behavioral pattern switch, or 

even a small imperceptible weather change, could thoroughly change the evolutionary process and 

lead to unexpected effects on many other parts at later stages. This possibility makes any explicit 

local relationship based on the linear model of the adaptation become very vulnerable because such 

models lack the necessary context of evolution. Any missing information in the evolutionary process, 

even if it looks less important to us, could have a meaningful impact on the evolutionary process 

later. For example, let’s assume that the concerned object in an evolutionary study is the correlation 

between a particular mutation and adaptability. As discussed previously, such correlation could be 

different under different environmental contexts and the context could be affected by many 
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occasional events in history like famine, plague and so on. Although these occasional events may 

seem less relevant and it is not always possible to identify these during evolution, we could however 

not deny their domino effect in evolution (these domino effects may eventually change selection). 

Without knowing the environmental context, the observed correlation in simulation may be quite 

meaningless. In other words, the same mutation could variably affect adaptability depending on 

different context. Under such situation, we only can conclude that there are insufficient data to be 

able to precisely explain the phenomena that we observed. To more efficiently explain the complex 

phenomena that we discussed above, researchers have started to use a novel approach to 

investigate such kind of systems like the sand pile model or Lorenz weather model (see more 

examples in about Lorenz system in [81,82]) and referred to such systems as complex systems. Some 

of the complex systems like biological systems could self-adapt within their surrounding environment 

and these systems have been particularly referred to as complex adaptive systems (CAS) [83,84]. 

The modern scientific study of complex systems is relatively young in comparison to conventional 

fields of science but the development of the research field goes fast. In the early days of studies of 

complex systems, they have only been used to explain the nonlinearity and chaos in dynamic systems 

of physics and chemistry [85]. Later, people found that such systems also exist in many other 

domains and the study of CASs quickly extended to economics, artificial intelligence, biology and so 

on [86-88]. From the view of complex systems, adaptation is a kind of emerging equilibrium and it 

dynamically interacts with the environment during the evolutionary process[37,89]. In evolution, a 

particular environmental context determines adaptation while the adaptive behavior of all 

individuals, in turn, has an influence on the whole environment. All those interactions in evolution 

discussed above can be regarded as an entire complex system. The great advantage of this 

perspective is that it looks at evolution as a whole indispensable system and acknowledges the great 

complexity behind any phenomenon in such system. Deconstructing evolution could simplify such 

complexity but it will also make the eventual model become more limited because of lacking the 

necessary context[6,90]. Although studying the complex system is based on a holistic view, it also 

divides the system into many individual interactive components. The difference with other 

approaches though is that the new perspective does not emphasize the logic relations between these 

components nor does it tend to identify the sub-network based on the relations among components. 

Instead of studying the individual relationships, the complex system only defines the basic and 

common rules of interaction between all components and then simulates the interaction among the 

all components. By comparing the observed evolutionary patterns in one simulation with the results 

of other simulations, researchers can identify the common patterns of the collective behavior among 

these components. With the new approach, the behavior of the system emerges from the interaction 

during the simulation and the whole system is not divided into different sub networks that are 

studied separately. In fact, this holistic approach no longer wants to establish a precise model for 

representing the complex system before the simulation because the enormous complexity is too 

difficult to be predefined. On the other hand, it simulates the internal interactions of the system 

whose basic rules can be identified after which the program then creates the self-organizing complex 

system model through the simulated interaction. This way is not very good for presenting or 

predicting the concrete details of the system but it does provide a more convincing description about 

the systems’ behavior in general because it uses a similar environmental and evolutionary context 

during the simulation. As we discussed above, complex system models literarily exist in many natural 

systems and it is very easy to integrate the knowledge from many different subjects into one 
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common model because it’s inherent to the holistic view. This also renders the study of the complex 

system a real interdisciplinary field that allows investigating the common intersection of different 

study domains. Nowadays, evolutionary studies in both biology and computer science have shown a 

strong tendency to adopt the complex system concept and relevant examples can be seen in[91-95]. 

Furthermore, researchers from both different domains often cooperate to study evolution based on 

a common holistic perspective. In artificial life simulations, we can see many typical experiments 

based on such cooperation. By utilizing bio-inspired agents, researchers in artificial life mimic 

biological complex systems and study the emergent properties of societies of agents[96]. Platforms 

and approaches like Avida, EcoSim, Creatures Tierra, and others have been widely used in many 

studies in evolutionary biology and artificial intelligence recently[97-99]. Furthermore, with the aid of 

evolutionary swarm robotics, we can also use real robots instead of simulated agents to do similar 

experiments in the real world for practical scenarios (i.e. [100,101]).      

To implement the holistic approach and the corresponding simulation, people need a distributed 

system framework and the system structure has to be flexible enough to allow bottom up emergence 

and dynamic interaction in the system. Agent based modeling and swarm robotic systems inherently 

fit these requirements and have therefore become the primary research methods for studying 

complex systems these days[96,102]. In both evolutionary biology and bio-inspired computing, more 

and more studies have adopted agent-based simulation and swarm robotics to study evolution. For 

example, Lenski [57] and Foster [12] have separately investigated the evolution of microorganisms by 

the simulation of swarm digit bacteria (agents). In the bio-inspired computing field, with using swarm 

robots or computational agents based simulation, Dorigo et al [33], Floreano et al [103] and al-Rifaie 

et al [74] also have done pioneering work in using the above-mentioned approach in evolutionary 

studies.           

 

1.4 Artificial evolution based on computational simulation 

 

Artificial evolution in this PhD thesis is interpreted and implemented as follows. The population of 

control systems is specified by an artificial genotype.  This genotype evolves through various 

evolutionary approaches (i.e. genetic algorithm[104], Evolution strategy[61]). All individual 

(simulated) robots in the population follow Darwinian evolution in the sense that better adapted 

ones have a higher chance of survival and higher reproduction rates. Adaptability is based on the 

interaction of individual robots and the environment.  All interaction follows certain interaction rules. 

A crucial question in designing the artificial evolution experiments is to what extent complexity, 

mimicking real biological evolutionary processes, can be implemented.  Of course, completely 

simulating biological evolution is not feasible but we can at least try to adopt certain principles of 

biological evolution in the implementation of our artificial evolution. In our research, a main concern 

was to investigate interaction at different levels, i.e. among genes, GRNs and the environment and to 

test whether such interaction could help improving the adaptability of artificial control systems. In 

our artificial evolution experiments, artificial control systems have simplified genotypes, selection 

patterns and population context compared with real biological systems.  Therefore, connecting to 

real, well studied models in biology should be done with caution.  For biological studies, the 

framework that we discussed in this thesis is probably still insufficient to study concrete complex 
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phenomena in evolutionary biology.  However, due to the extensibility of agents and robots, it is 

always possible to add more sophisticated models or rules into the corresponding components in 

simulation (without reconstruct the whole framework).  Nevertheless, this framework can simulate 

some general complex patterns ( i.e  ‘prudent predator’ [105,106] ) in evolution which are based on 

the dynamic interaction of multiple levels.   we would hope that some of the observations made with 

our artificial ‘digital life’ system could be useful to help explaining certain biological observations.  

Furthermore, a second important application is to see whether we can use these principles to design 

better performing robots, which is interesting from an engineering point of view.  

Based on the consideration above, we simplified the evolutionary mechanism in our experiment and 

using the interaction based on general interaction rules to determine the corresponding selection 

patterns and population size during the simulation rather than specifying a model. For example, the 

population size of robots in the simulation is based on the survive of every robots instead of a certain 

size and the selection of robot is based on the current energy level (we initialized 100 different 

genomes in the beginning of each simulation but only a very few genomes survive and develop their 

own population during the simulation). Under our simulation environment, the energy level of robot 

is not only depended on robot’s phenotype but also highly influenced by other robot’s response and 

many stochastic events (i.e. the distribution of food and robots).  All these settings in this research 

tend to provide a simple example of general evolutionary scenario which is based on the interaction 

among genes, GRNs and environment. The principles in our scenario have universality in most of 

biological evolutionary processes although we did not adopt the particular parameters and models.  

 

1.5 Holistic simulation framework and the interaction at multiple levels 

 

In this research, we present a novel holistic simulation framework for artificial evolution. In previous 

evolutionary studies, scientists have shown that natural/biological evolution operates at multiple 

levels, from the genetic level to the organism level, to the population and even the ecological level 

[107-109] . Particular evolutionary processes usually act at a particular level after which they may sip 

through to other levels[110,111] . This implies that a process that is operational at a particular level 

can be affected by events that are operational at a different level, a different time or a different 

location. For example, an occasional change of an ecosystem long time ago could be responsible for 

the retention of a particular gene mutation that has become important much later [112] . All these 

effects from events that have occurred at other times or are regarded as a part of the evolutionary 

context. The evolutionary context actually determines all events in evolution (natural selection) and 

all of our research is focused on how to put the appropriate context into the common model for 

replaying the tape of evolution (life) computationally. Therefore, the next question is how to find the 

appropriate context for a particular evolutionary process. One way to retrieve the context is from 

previous data, like from experimental results. The disadvantage of this is that we usually do not have 

enough data to describe the context that we need in enough detail (more discussion about this 

further). Another way to retrieve the context is running a simulation and create the context from 

simulation. In most cases, we also do not have enough context data for running a comprehensive 

evolutionary simulation which means that we have to assume context from some previous 

experience  (i.e. predefined fitness function, mutation rates, environmental changes and so on).  
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The caveat here is that small differences in context can accumulate and may cause bigger effects 

later on [113,114] . In addition, the processes that cause so-called catastrophes in evolution[115,116] 

are dynamic and too complex to model by any static model. Such processes usually involve many 

factors and variables, while the interaction between these factors and variables makes it very 

difficult to establish a realistic static model in simulation. In our new simulation framework, we try to 

utilize the idea of interaction (referring to any causality on changes) between evolutionary 

components (genes, organisms, populations, …) to improve the implementation of dynamic context 

in our  artificial evolution experiments. 

 

1.6 Chapter Overview 

 

The chapters of this thesis summarize my research about modeling and simulation of evolution in the 

fields of biology and computer science. In this thesis, I have modeled and simulated biological 

evolutionary processes in a novel simulation platform and tried to identify the links between the 

principles of natural evolution and the adaptability of (artificial) organisms.  

Through using a novel holistic simulating framework, descripted in chapters 2 and 3, I simulated the 

evolutionary processes at the genetic and population level simultaneously.  While chapter 2 

discusses the simulating models at the genetic level, chapter 3 introduces the simulation models at 

the population level. In addition, chapter 3 also briefly discusses the unique advantages of this new 

simulation framework in evolutionary studies. 

Chapter 4 describes the improved adaptability of robotic organisms in our swarm robot simulation 

using bio-inspired principles of artificial evolution. These bio-inspired principles are inherent to 

natural evolution and they play an important role in enhancing the adaptability of organisms in a 

changing environment. Through some case studies, I illustrate the feasibility of using these principles 

in a computational system and show that such artificial evolution can improve the adaptability of 

artificial systems as well.  

In chapter 5, I discuss the interactive behavior at multiple levels and the fact that it produces an 

effect in evolution and adaptation of individual organisms and populations. Based on the simulation 

experiments, I provide some proof for these claims and based on examples of complex adaptation in 

dynamic environments.  

Finally, chapter 6 discusses the merging of the models for biological evolution, computer science and 

the complex system. The potential advantages and benefits of such merge are promising and 

exciting. By introducing bio-inspired principles and self-organizing models, computational systems 

can be based on more sophisticated artificial evolutionary processes and such processes can greatly 

enhance adaptability and evolvability in changing environments. On the other hand, by utilizing these 

bio-inspired computational systems, such as swarm evolutionary robots, researchers can simulate 

natural evolution in a novel bottom up way. In such simulations, after defining the basic interactive 

rules at a multi-level computational framework, the interaction among the swarm robots can self-

organize the evolutionary process and the corresponding adaptive patterns. This means that 

selection is based on the interaction between robots and that no predefined evolutionary models are 
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chosen in the simulation. The results of the simulations can also provide the relevant context and 

trajectories, which are not always available with other traditional simulation framework. Finally, 

some limitations and future work of this research are also discussed.    
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Chapter 2  

Artificial Genome and GRN  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Author contribution 

The content of this chapter was written by myself. It resulted from many fruitful discussions with 

both my promoters and all partners I had the chance to work with during my PhD studies. Figures 2.1 

and 2.2 are taken from the relevant papers (see references) and Figure 2.3 and 2.4 are from [117].  
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In this chapter, first a general introduction about the artificial genome and GRN in computational 

simulation is given. After the introduction, I will explain the development of the artificial genome and 

GRN in our simulation framework while briefly reviewing the relevant previous models in other 

studies.  Furthermore, the details about our genome and GRN models will also be described in 

greater depth in the following sections. Finally, I will discuss the implementation of the artificial 

genome and GRN in our simulations.  

  

2.1 Introduction 

 

Genomes are the blueprints of all biological life.  Every organism possesses a genome that contains 

the biological information needed to construct and maintain a living example of that organism. Most 

genomes, including those of all cellular life forms, are made of DNA (deoxyribonucleic acid) but a few 

viruses have RNA (ribonucleic acid) genomes. DNA and RNA are polymeric molecules made up of 

linear, unbranched chains of nucleotides (each nucleotide exist of one of four possible bases: A, C, G 

or T/U). Nucleotides are linked to one another by phosphodiester bonds to form a DNA polymer, or 

polynucleotide, which might be several million nucleotides in length. The biological information 

contained in a genome is encoded in the nucleotide sequence of its DNA or RNA molecules and is 

divided into discrete units called genes. A gene is a segment of the genome that is transcribed into 

RNA. If the RNA is a transcript of a protein-coding gene then it is called a messenger RNA (mRNA) and 

is translated into protein. If the RNA is non-coding, such as ribosomal RNA (rRNA), then it is not 

translated. Almost all genes contain coding regions known as exons, which are expressed, with 

intervening sequences, known as introns, which are not expressed. In addition to exons and introns, 

each gene contains a closely adjacent upstream (5') regulatory promoter region and other regulatory 

sequences including enhancers, silencers, and sometimes a locus control region. The promoter 

region contains specific sequences such as a TATA box, a CG box, and a CAAT box, which provide 

binding sites for transcription factors. The enhancer and silencer sequences fulfill a similar purpose, 

but are located at a greater distance from the coding sequences. The first and last exons contain 

untranslated regions, known as the 5' UTR and 3' UTR, respectively. The 5' UTR marks the start of 

transcription and contains an initiator codon that indicates the site of the start of translation. The 3' 

UTR contains a termination codon, which marks the end of translation [118]. The structure of a 

typical gene can be seen in Fig 2.1. 

 

Figure 2.1 Graphical representation of the structure of a gene, after Young (Cited from[118]) 
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In biological organisms, the phenotype is, amongst other things, determined by gene regulation that 

is a process where a cell determines which genes it will express where and when. A gene regulatory 

network (GRN) depicts a collection of DNA segments in a cell that interact with each other (indirectly 

through their RNA and protein expression products) and with other substances in the cell, thereby 

governing the rates at which genes in the network are transcribed into messenger RNA (mRNA). In 

general, each mRNA molecule goes on to make a specific protein (or set of proteins). These proteins 

ultimately determine the phenotype. In fact, gene regulation is a general term for molecular 

processes that conduct the cellular control of the functional product of a gene, which may be an RNA 

or a protein. In single-celled organisms, regulatory networks respond to the external environment, 

optimizing the cell at a given time for survival in that particular environment. In multicellular animals 

the same principle has been put in the service of gene cascades that control body-shape. This fact 

means that the adaptability of the organisms in nature is mainly dependent on the corresponding 

GRN.  

Due to the significant importance of the genome and GRN in evolution, researchers have paid 

considerable attention to develop suitable artificial genomes and GRNs in evolutionary simulations. 

The motivation for using artificial genomes and GRNs in simulations is twofold. On the one hand, 

artificial genomes and GRNs could help to simulate the corresponding genetic evolutionary process 

more realistically [119]. On the other hand, by using a bio-inspired genome and GRN, their inherent 

essential principles could help computational programs like robot controllers to adapt more 

efficiently to certain environments [103]. For these reasons, many versions of the artificial genome 

and GRN have been developed in previous research. In general, these artificial genomes can be 

divided into two classes, namely direct encoding and indirect encoding[120]. Direct encoding 

specifies all traits of the phenotype in the genome and the genes on the genome will directly 

determine the corresponding phenotypic traits. In contrast, indirect encoding only encodes the 

interactive rules between genes and the environment. Through the simulated gene regulation 

process, the phenotype will be self-organized during the simulation. Indirect encoding usually can 

hold more information (no specified details of phenotypic trait) and tends to be more flexible 

(allowing dynamic changes) than direct encoding[71,75].  On the other hand, direct encoding can 

efficiently simplify the complexity of the simulation and thereby reduces the chance of unpredictable 

behavior during evolution[72]. 

  

2.2 Artificial genome  

 

In our work, we choose the indirect encoding scheme.  The genome structure itself has been inspired 

by the model previously proposed by Reil [121] which consists of a randomly created string of digits 

(similar to DNA sequences which are essentially a string of nucleotides). Genes are not pre-specified, 

but identified in the randomly built genome as any occurrence of the sequence ’1010’, simulating the 

concept of a gene/transcript start site, followed by N digits that represent the actual coding gene).  

The region where no genes are present, i.e. the region between genes, is denoted as intergenic 

region. 
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Figure 2.2 Pattern of gene expression and regulation in the artificial genome, as proposed by 

Reil (Cited from[121]) 

Compared to the initial model of Reil [121], our model (Fig. 2.3) was modified as follows: an explicit 

distinction is made between signaling, regulatory and structural genes.  A gene indicator (one digit) 

indicates the gene type where 0 denotes that the respective gene has a regulatory function, 1 

denotes a structural gene and 2 denotes a signaling gene. Any gene, irrespective of its type, consists 

of a transcript start site (1010), a sequence specifying gene length (which is intended to avoid overlap 

between neighboring genes in the genome) and three other regions that are a binding site region (4 

digits), an expression level region (7 digits), which in turn consists of a ‘default’ and a ‘gene-specific’ 

expression region, and a gene content region. Structural, regulatory and signaling genes further differ 

in their gene content region. The content region of the regulatory genes has three parts: a target 

recognition site, which defines, in combination with the binding sites, which genes will be recognized 

and regulated by the regulatory gene, a region defining the regulatory type (being an activator (value 

1) or a repressor (value 2) (Fig. 2.3) and an intensity region that defines the extent to which the 

regulator will activate/repress its targets genes. The content region of structural genes defines which 

actuators the structural gene will influence (for each structural gene this is predefined by means of a 

number that ranges from 0 to 7 defining the outcome) and also determines the extent to which the 

gene will influence the actuators (the output parameter).  For signaling genes, the content region 

encodes an ANN structure that receives and integrates signals sensed by the robot (see Agent-based 

representation of the activated GRN).  In the current study, the total genome size consists of 10 

chromosomes of 10,000 characters. 
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Figure 2.3 The artificial genome and gene regulatory model as used in the current study 

(Cited from[117]) 

The genome structure has been inspired by the model previously proposed by Reil [121] and consists 

of a randomly created string of digits. Genes are not pre-specified, but identified in the randomly 

built genome as any occurrence of the sequence ’1010’, simulating the concept of a gene/transcript 

start site, followed by N digits that represent the actual coding gene). Compared to the initial model 

of Reil, our model was modified as follows: an explicit distinction is made between regulatory and 

structural genes.  A gene indicator (one digit) indicates the gene type where 0 denotes that the 

respective gene has a regulatory function and 1 denotes a structural gene. All genes consists of a 

transcript start site (1010), a sequence specifying gene length (which is intended to avoid overlap 

between neighboring genes in the genome) and three other regions that are a binding site region (4 

digits), an expression level region (7 digits), which in turn consists of a ‘default’ and a ‘gene-specific’ 

expression region, and a gene content region. The content region of the regulatory genes has three 

parts: a target recognition site, which defines, in combination with the binding sites, which genes will 

be recognized and regulated by the regulatory gene, a region defining the regulatory type (being an 

activator (value 1) or a repressor (value 2)) and an intensity region that defines the extent to which 

the regulator will activate/repress its targets genes. The content region of structural genes defines 

which actuators the structural gene will influence and also determines the extent to which the gene 

will influence the actuators.  The total genome size consists of 10 chromosomes of 10,000 characters. 
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2.2.1 Mutational events acting at the level of the artificial genome 

 

As evolutionary forces (changing the genome), we implemented both substitutions and duplications. 

Regarding substitutions, the implementation is as follows:  

In general, the intergenic part of the genome has a higher mutation rate than the ‘coding’ part. The 

mutation rates are gene specific and are dynamically determined by the fitness of the system: non-

functional sequences and genes that have not yet contributed to the individual’s fitness have a 

default mutation rate Nm (3*10
-5

).  However, a gene with a lower contribution to the fitness function 

will be assigned a higher mutation rate, whereas a gene with a higher contribution has a lower 

mutation rate. For each gene, the current mutation rate (Gm) is dependent on both the default non-

coding sequence mutation rate (Nm) and the genes’ adaptability value G1, as shown by the following 

equation: 

�� = (1 − �1
����) ∗ �� 

 

Where Gmax represents the maximum adaptability value (Constant).  

These gene specific evolution models thus mimic the long-term effect of natural evolution in which 

genes that are under selection pressure tend to be maintained more than genes that are not. 

Gene duplication is implemented as follows:  

There is a software module that, at every time step, will check the expression of all genes and copies 

the 10 genes with the highest adaptability values. When a gene is on the list of genes with highest 

adaptability for more than 10 time steps, it will be regarded as a gene that qualifies to be duplicated. 

Like with mutations, the system also has a common background rate for duplications. Every time step, 

when the system searches for target genes, it also checks whether there is a gap or intergenic region 

between genes on the genome. If there is a gap (the minimum length being 100 bases), the program 

will check if there are any qualified genes with a length smaller than the gap and select this one for 

duplication. When all conditions have been satisfied, the candidate gene will be duplicated into the 

gap and removed from the list of candidates to be duplicated (the gene might get back on the list as 

long as it keeps its high adaptability value). When the environmental pressure increases, most genes 

will receive a negative feedback and as a result, the adaptability value of their corresponding agents 

will decrease. As discussed previously, this will result in an increased mutation rate, which may cause 

destruction of the promoter region, and consequently the gene downstream of it.  Fewer genes on 

the genome will lead to more gaps and therefore higher duplication rates. More duplicates finally will 

introduce more variation to the genome, with the possibility of evolving novel GRNs.   

 

2.2.2 Conversion of digital encoding of regions into corresponding values 

 

Our artificial genome only includes digits but all sequence regions on the genome can be converted 

into numerical values. For all digital encodings, the following conversion into continuous numerical 

intervals is used:  for a ‘site’ consisting of N digits (Equation 1): 



 39

(Digit at position 1)*(4)
(N-1) 

+ (Digit at position 2)*(4)
(N-2)

 + …+ (Digit at position N)*(4)
0
 

So depending on N (the number of digits in a sequence site) the numerical ranges will differ. For 

example, the recognition between a binding site in a target gene and a TF recognition site is encoded 

as follows: both sites are converted into numerical values according to the equation described above. 

If the distance between the numerical value of the recognition site and the binding site is smaller 

than a predefined threshold, the gene is recognized by the TF, otherwise not. For example, the 

binding site 0120 is converted to 24 (0*4
3
+1*4

2
+2*4+0=24) whereas a recognition site of 0111 is 

converted to 21. The distance both sites equals 24-21=3. When the threshold is equal then or greater 

than 3, the binding between the TF and its target will be regarded as successful and the gene will be 

switched on (expressed). The different regions on the gene have their fixed length and their 

corresponding agent (see further in 2.3) could read all these sequence regions. Through the same 

decoding method discussed above, the agents could retrieve the numeric information from various 

regions on the gene. These numeric information could be used as the inputs or parameter values by 

agents. 

 

2.3 Agent-based representation of the activated GRN 

 

2.3.1 Agent based modeling 

 

Agent-based modeling (ABM), also termed individual based modeling (IBM), is a relatively new 

approach to modeling systems comprised of autonomous, interacting agents. Computational 

advances have led to a growing number of agent-based applications in a variety of fields. For 

example, agent-based models have been used to simulate the electric power market designed to 

investigate market restructuring and deregulation and to understand implications of a competitive 

market on electricity prices, availability, and reliability[54]. Agent-based models have also been used 

to study biological tissue patterning events, which have implications for both physiological and 

pathological function, arise from a cascade of complex processes and rely on interactions between 

cells, genomic information, and intra-cellular signaling[122]. The benefits of agent-based modeling 

(ABM) over other modeling techniques are threefold[123]: (1) ABM captures emergent phenomena; 

(2) ABM provides a natural description of a system; and (3) ABM is flexible. Essential to ABM is its 

ability to capture emergent phenomena, which result from the interactions of individual entities. By 

definition, they cannot be reduced to the system’s parts: the whole is more than the sum of its parts 

because of the interactions between those parts. Emergent phenomena can have properties that are 

decoupled from the properties of the part. ABM is, by its very nature, the canonical approach to 

modeling emergent phenomena[124]: in ABM, one models and simulates the behavior of the 

system’s constituent units (the agents) and their interactions, capturing emergence from the bottom 

up when the simulation is run. Further, ABM provides a natural description of a system. Finally, the 

flexibility of ABM can be observed along multiple dimensions. For example, it is easy to add more 

agents to an agent-based model. ABM also provides a natural framework for tuning the complexity of 

the agents: behavior, degree of rationality, ability to learn and evolve, and rules of interactions [123]. 
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Different modelers of agent-based systems have differing opinions on what constitutes an agent 

(see[125] for an overview). Macal and North [125]consider agents to have (amongst others) the 

following characteristics, which we adopt in our research:  An agent is an identifiable, discrete 

individual with a set of characteristics and rules governing its behaviors and decision-making 

capability. 

1. Agents have protocols for interaction with other agents, such as communication protocols, 

and the capability to respond to the environment. 

2. An agent is flexible, and has the ability to learn and adapt its behaviors over time based on 

experience. 

 

2.3.2 Gene regulation and gene expression    

 

In terms of biology, gene regulation is a process in which a cell determines which genes it will express 

where and when. One of the easiest ways to illustrate gene regulation is to talk about gene 

regulation in humans. Every cell in the human body contains a complete copy of that person’s DNA, 

with tens of thousands of potentially viable genes. Obviously, all of these genes cannot be expressed 

at once. Hence, cells must decide which genes to turn on and which genes to turn off. For example, a 

skin cell turns on the genes that make it a skin cell, while a bone cell would leave these genes turned 

off. Neither of these cells would need the genes that allow a cell to differentiate into a neuron, so 

these genes would be left of as well. In addition to being useful for cell differentiation, gene 

regulation is also valuable for cell function. As a cell moves through its life, it has different needs and 

functions, which can be addressed with the use of gene regulation to determine which genes are 

expressed and when. Likewise, cells can adapt to environmental changes such as an injury, which 

requires repair by activating new genes. For the cell, gene regulation can be accomplished in a 

number of different ways, with one of the most common simply being regulation of the rate at which 

RNA transcription occurs. Genes can also be deactivated by changing the structure of the DNA in an 

individual cell to turn them off or on. Unicellular organisms also utilize gene regulation to regulate 

their functions and activity. These organisms must be able to adapt genetic material quickly to adjust 

to changing circumstances and new environments. Failure to do so will cause not only death of the 

cell, but death of the organism itself. Gene regulation allows such organisms to do things which will 

allow them to fit into hostile and extreme environments and to adapt to changes such as the 

introduction of antibiotics into their environment. 

In our simulation framework, we try to mimic the same gene regulation and expression principles of 

true biological genomes. The artificial genome is used to build the corresponding GRN system and 

the outputs of the GRN system eventually control the actual behavior the virtual organism. From the 

artificial genome to the GRN, gene expression plays a key process.  In biological organisms, gene 

expression is the process by which information from a gene is used in the synthesis of a functional 

gene product. In our artificial genome, gene expression means that each gene on the genome can 

define a corresponding agent in the system based on its content information. When the individual 

gene is expressed (activated), its corresponding agent will be created in system as the gene product. 

These agents have their functions and could interact with each other. The whole GRN system is made 
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up of these agents and the collective behavior of these agents determinate the eventual output of 

the GRN system. The biological gene expression underlies several control mechanisms in biological 

organism, whereas the regulation of the transcription machinery constitutes the most important 

gene-regulatory mechanism. Regulators of transcription are mainly proteins, called transcription 

factors (TFs). However, the overall gene regulation is much more complex and includes processes 

such as transcript degradation, translational control, and post-translational modification of proteins. 

Thereby, apart from proteins, also other molecules like RNAs and metabolites participate in a 

regulatory manner. Finally, the genes, regulators, and the regulatory connections between them 

form a gene regulatory network. In single-celled organisms, regulatory networks respond to the 

external environment, optimizing the cell at a given time for survival in this environment.  

On the genome, some regulatory genes create the regulator agents rather than the TF agents 

(represent the RNA polymerase ) when they are expressed. The regulator agents also check the 

target genes like the TF agents but change the expression level of the target gene instead of trigging 

the gene expression. Due to that, matches between the target recognition regions in these 

regulatory genes and the binding site regions in other target genes define which regulatory genes will 

recognize which targets and thus define the connections in the GRN (matches are defined as 

described above). If a regulatory gene recognizes the binding site in a target gene, the expression 

level of this target gene will be redefined. The degree to which a regulator agent enhances/represses 

its target genes is determined by the intensity region of regulatory genes (which is converted into an 

intensity value according to equation 1). The actual expression level of a target gene is determined 

by a default and a gene-specific expression level (gene expression level = default expression level * 

gene specific expression level) and the default expression level of a gene is derived from its default 

expression region using equation 1. The default expression region can only be altered through 

mutational events. The gene-specific expression level is a sum of a contribution of the degree to 

which the gene is activated/repressed by its regulators (derived from the intensity values of its 

respective regulators) and a value derived from its gene specific-expression region using equation 

1.This latter region also allows for the accommodation of feedback from the gene’s agent and 

changes dynamically according to the adaptability value of the gene’s corresponding agent (see the 

details in the later section).  

 

2.3.3 Different agents in the artificial GRN model 

 

In our set up, the agent-based model is a representation of the condition-dependent instantiation of 

the GRN encoded by the AG (see Fig. 2.2 and Fig. 2.3).  More specifically, three types of agents have 

been defined, each corresponding to a specific gene type. The signaling (also call transcription factor 

agents or TF agents) agents are corresponding to the signaling genes and these agents mimic the way 

biological systems integrate environmental stimuli. These agents can activate the particular encoded 

GRN based on the specific environmental inputs. Each signaling agent includes a uniquely embedded 

Artificial Neural Network (ANN), which reads the sensor input values and establish combinations of 

sensor values in the (simulated) robot.  In other words, a single signaling agent does not correspond 

to a single sensor input, or a transformation thereof, but to a combination of different sensor inputs. 

The signaling agents channel the integrated sensor signals to the GRN by converting them into a 



 42

‘binding value’.  This ‘binding value’ is used to activate other genes in the network (using the same 

principle that discussed at transcriptional regulation and gene expression section). There is a diagram 

in appendix C (fig S.3) shown a concrete example how one signaling agent works in the GRN 

framework.  

Regulatory agents mediate signal transduction in the network by activating/repressing other 

regulatory or structural agents. In other words, every expressed regulatory gene invokes a regulatory 

agent. The regulatory agent identifies the target genes of its corresponding regulatory gene 

(determined by the match between the binding site region in the target and the recognition region in 

the regulator) and sends an instruction to its target genes to change their expression status (repress 

or enhance). The degree to which the expression of the target gene will change depends on the 

interpretation of the information encoded in its corresponding gene (expression region) and that of 

its regulator (intensity region). On the other hand, some regulatory agents directly activated the gene 

expression of other gene instead of giving the regulation.    

A structural agent will translate the encoded information of a structural gene to an output 

parameter, which drives the actuator (e.g. wheel) of the robot. Each actuator usually receives many 

parameter values from different structural agents and will average these into one final value that will 

then be used as the control parameter (output value) for this particular actuator (see also Robot 

functionalities).   
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Figure 2.4 Agent based system modeling the condition dependent instantiation of the GRN 

encoded by the artificial genome (Cited from [117])  

The agents based level is also essential in establishing the feedback from the environment to the 

system through the agents adaptability values which affect both the agents lifetime, genomic 

encoding, and mutations rate. 

 

2.3.4 Translation of the AG encoded GRN into the agent-based activated GRN 

 

When a gene becomes expressed in the artificial genome, a corresponding agent will be created. 

Genes with a minimal expression level will be translated into agents with a probability that depends 

on the value of the gene-specific expression region. If a gene is switched on, the concentration of its 

corresponding agent depends on its total expression level. The concentration of an agent decays with 

time, mimicking protein degradation according to the following equation (2): 
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Ci=(Ci-1*r*AV)/100 

where Ci represents the current concentration and Ci-1 the concentration value at a previous time 

step, r the decay rate for the agent (set at 20% decay rate of the concentration for structural agents 

and 30% for regulatory agents), and AV represents the adaptability of the agent. Initially, agents take 

the value derived from the gene-specific expression region as the adaptability value (AV). However, 

the adaptability value will be altered depending on the current fitness value (see the adaptation on 

the individual gene section). During its lifetime, the agents’ concentration and survival time will 

increase with an enhanced adaptability value. When the agent expires, its adaptability value will be 

used to alter the gene-specific expression region of the agent’s corresponding gene (through the 

gene specific value using the reverse of equation 1). In general, the more the gene will be expressed, 

the higher the concentration of its corresponding agent and the higher the influence of the agent on 

the final output.  If the concentration of the agent drops below a pre-set minimal level, the agent will 

be deleted. Signaling agents are treated differently and are initialized by activating 10 signaling 

genes. The system always ensures that during simulation always 10 signaling agents are active 

simultaneously by randomly activating a new signaling gene upon deletion of an expired signaling 

agent. To ensure signaling agents have a relatively long average lifetime, they are not decaying and 

every signaling agent will at least last for 50 time steps. They may be deleted after these 50 time 

steps when their AV drops below a predefined threshold.  

All existing agents interact with each other to constitute a dynamic complex system in the simulation, 

which can be considered the active part of the regulatory network encoded by the genome. For each 

gene, it has its own corresponding agents and adaptation and thus selection can also vary for 

different genes on the genome. 

   

2.3.5 Adaptation at the gene level 

 

In our dynamic GRN, the agents produced by the expression of genes need to interact with each 

other and adapt to their own local environments. This design aims to simulate the formation of GRNs 

in the biological organisms. The developmental process of the biological GRNs is a self-organizing 

process and such process is based on the interaction of multiple genes and their products. During this 

process, each gene can have a different evolutionary context and can evolve different features or 

collective patterns with other genes. Here, we used a simplified model to represent such interaction 

and adaptation of the genes. In the simulation, we use the overall energy level of each simulated 

swarm robot (see more details in chapter 4) as a measure of its global fitness, which is used to define 

the feedback from the environment to the agents and via the agents to the genes. This feedback is 

defined through the ‘adaptability value’. For each agent, the adaptability value (AV) is defined as a 

combination of the global fitness of the robot and additional values that express the dependence of 

the observed fitness on the specificities of a particular set of agents present in the robot at the time 

its fitness is evaluated. For instance, in our simulations, the adaptability value of a regulatory agent is 

determined by the global fitness (50%), by the overall average lifetime of the agents (assuming that 

an ‘agent-set’ with longer average lifetimes will have a greater long-lasting effect on the fitness) 

(30%), and by the number of agents active in the system, if this number ranges between 30 and 100 

(20%). If the number of agents is smaller than 30, we judge the network too small to be viable. If the 
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number of agents is larger than 100, we assume that it is hard to judge on the specificity of each of 

the agents. Consequently, in both cases we will decrease the contribution of the number of agents to 

the fitness. 

The details of the relevant calculation can be found in the following equations: 

The adaptability value on step � = Vi 

Adaptability value at the previous time step = Vi-1  

Energy level at step � = Ei 

Ei-1 the energy level of the robot at the previous time step; 

Fitness value at step � = Fi 

With Fi being equal to the average normalized change in energy of the robot between step i and i-1:  


� = 
�������
(�������)

∗ 100 

The number of agents at time step i = Ai  

The average life time of all agents at time step i = Li 

And the average life time value at the last time step is Li-1 

With Lf being equal to the average normalized change in lifetime of the agents present in the robot 

between time step i and i-1: 

Lf = 
��−��−1
(��+��−1)

∗ 100 

The concentration level (mimicking amount of protein product) of this agent = Ca 

The adaptability value of an agent present in a robot at time step i (in case the number of agents 

ranges between 30 and 100): 

Vi = (
� ∗ 50%+ �� ∗ 20%+ �� ∗ 30%) ∗ ��
� �! 

With Ca = the concentration level (mimicking the amount of protein product) of this agent and Cmax 

The final adaptability value at time step �:	AV = &����&�'  

With Vi being equal to the adaptability value at time step i and Vi-1 being equal to the adaptability 

value at the previous time step. 

Assuming the adaptability value of the agent is AV, the feedback effect from that agent on the gene 

specific expression is at a time step i: Gene specific expression (i) = 10 ∗ (&�')*))  + Gene specific 

expression (i-1). 

The Decay rate of the concentration level is connected with the AV of the agent and the higher AV 

gives the agent the lower decay rates. Eventually the AV of the agent will be regarded as the 
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feedback its corresponding gene and gives the influence to change the gene specific expression level 

of that gene. 

 

2.4 Comparison between our GRN framework and other bio-inspired 

computing frameworks 

 

2.4.1 The features of our GRN framework 

 

The design of this framework has a few new features compared with other bio-inspired computing 

frameworks.  

First, we adopted a GRN based indirect encoding approach to construct the controller. As many 

recent indirect encoding Neuroevolution (see definition in Glossary) frameworks (i.e. hyperNeat, 

AGE-ANN), the framework in our research also uses the encoded genotype to produce the 

phenotype which refers to a corresponding control system. The main advantages of indirect 

encoding are ([126,127]) : 1) Allow recurring structures or features in the network to form 

modularity;  2) rearranging and specifying the search space based on different tasks.  

Second, the main difference between our framework and many other indirect encoding network 

based frameworks is that our framework use genes to produce the individual agents instead of using 

genes to construct the particular network structure. This difference is reflected in the following 

aspects:    

• An agent based GRN framework breaks down the whole network structure into granular 

pellets. By this, the explicit connections between network nodes are replaced by dynamic 

interactions of agents. The real interactions between agents are not only based on the 

interaction rules (evolved by genes) but also based on environmental conditions. For 

example, an agent interacting with another agent is frequency and concentration based. 

The interaction events sometimes depend on the competition among agents (i.e. one 

unit - based on the concentration - agent A can only interact with other agents once at 

one step. When the concentration of agent A is not sufficient to interact with all of other 

agents, agent like B or C may compete the opportunity to interact with that particular 

agent A). For network based frameworks, as long as the structure or genes do not change 

the connection will be fixed. In addition, an agent that changes may have a domino effect 

on others through interaction and such effects can be exaggerated through time. 

• Network based frameworks can be formed based on the interaction of genes, but for 

agent based GRNs, the system is formed through the interaction between genes, agents 

and the environment.  For instance, a change on the strength of an input signal will not 

alter the network structure but it can affect gene expression and consequently the 

composition of agents.   

• In agent based GRNs, the encoded information in genes form the interaction rules for 

agent behavior and some of the agent behavior (structural agents) will determine the 

behavior of the robot directly. In network-based frameworks, the genetic information is 
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only used to form the network structure and it does not give direct effects to the robot’s 

behavior. For network based framework, the development of the control system and the 

control signal produce are based on two separate processes but agent based GRN 

integrate these two processes into one. 

 

2.4.2 The motivation of  our GRN framework  

 

The reason of using agents instead of networks is based on the following concerns: 

Under unknown and changing environments, the system needs to be able to dynamically change to 

respond to a particular context. Furthermore, in our research, we assume that the individual control 

system has no knowledge about the environmental situation at the initial stage and the individual 

controller also lacks the knowledge about the global task. Under such situation, evolving the 

particular solution schema (represented by the network structures) is not efficient because the 

optimal solution can be different at different times. Considering a changing environment, the ability 

to ‘know’ the current situation and providing a quick response is important for adaptation. The 

agent-based model could separate the complex environment information into variable features 

which are corresponding to the particular agents in the model. Considering possible interaction 

between agents, the interaction rules of agents will evolve by selecting the suitable agents through 

the GRNs. Such agent-based model has been utilized by studies of artificial immune systems (AIS) 

(see Glossary for the definitions) and it has been shown to perform well in a variable environment 

based on its inherent degeneracy ([128]).  

In complex adaptation, quickly responding to the particular environment might still not be sufficient. 

Proficient adaptation may need systems also to consider the context and have some mechanisms to 

regulate its responsive behavior based on different context. In our framework, we have extended the 

artificial immune system framework by encoding the artificial gene regulatory networks in a genome 

and the context based information (for example, agent A activates gene B and then agent A, B 

working together. Here, agent A represents the context of agent A and B working together) will be 

saved as the part of GRNs in each individual gene. Different to other artificial GRNs in bio-computing, 

I use the encoded genetic information to create the agents one by one (developmentally). This 

design gives the system a template in the genome to evolve while it also allows the system to flexibly 

rearrange such template during runtime based on the environmental and context feedback ( i.e.  

agent A could activate gene B or gene C, that is the description in template; however if gene B in the 

genome has been repressed as a consequence of previous events or a current environmental 

condition, agent A will then only be able to activate gene C).  

Because our framework has been specifically designed for a dynamically changing environment, 

some of its implementations could lead to poorer performance in a stable environment or for 

performing tasks that could be done based on certain predefined rules. Under stable conditions, 

network-based approaches can probably reach the optimum faster because of their more stable 

behavior (as sometimes observed for ANNs at the start of our simulations, see further). However, the 

potential more unstable behavior caused by the more variable performance of our agent-based 

implementation can be coped with under the swarm robots scenario because, from the whole 

population, only the most suitable robots are selected to survive and propagate. However, in a single 
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robot scenario, this might pose problems, especially when the task is not very complex. Therefore, 

this framework mainly aims to help swarm robots adapt to a changing environment (without a well-

defined task). Under a complex and dynamic environment, the variable self-organized behavior 

patterns can increase the adaptability of swarm robots (see details in chapters 4 and 5). 

 

2.4.3 The comparison in our research scenario 

 

To study the effect of the interaction between agents, we chose more classical network-based 

controllers as a comparison.  In our research, first we aim to test the potential of considering 

interaction and gene regulation in evolution and then compare the efficiency of particular 

approaches in certain tasks.  Based on these considerations, we firstly chose to develop a 

comparatively simpler evolutionary ANN-based controller instead of directly using other well-known 

frameworks such as those used in Neuroevolution (i.e. hyperNeat[129], AGE-ANN[71],H-GRN[130]). 

The reasons of doing this are the following:  

First, our framework is a first implementation and we feel there is still much room for improvement. 

For instance, if the results show that the interaction in GRN can indeed improve the adaptability, we 

still could continue to improve the performance of robots. So far, the GRN framework and the 

interaction rules are both comparatively simple. Therefore, the first comparison should focus on 

observing the effects of the interaction at multiple levels (i.e. gene level, GRN level and organism 

level) rather than making a comparison based on the practical task with other well tested network 

based approaches.   

Second, the efficiency of different controllers highly depends on the task and scenario. The well-

known frameworks (i.e. hyperNeat, AGE-ANN,H-GRN) in Neuroevolution usually focus on 

constructing the network topology and these methods study for a well-defined task scenario. In fact, 

as already stated, with a fixed task, network based controllers may have better results than our GRN 

controller. However, this does not mean that network based controllers are better for all scenarios. 

In our experiment, we emphasize the unknown tasks (‘unknown’ means the environment, 

methodology in the task is unknown or dynamically changing. i.e Mars exploration task) and changes 

in the scenario and this does not always fit the complex network based structure because more 

complex networks may need much time to adapt to a new environment or new methodology. 

Without an extra dynamic regulation (learning), more complex network topologies could not improve 

their performance under such scenarios (this has been clearly proved by randomly created the 

complex network based controller in our previous experiments). For example, when the environment 

suddenly become simpler (i.e. more food and fewer predators), robots may need to quickly change 

strategies like defense or hibernation and then focus on the simpler food searching task, because 

otherwise the robots will lose the opportunity to gain energy. With a dynamic regulation (like in our 

tested ANN, the learning program could tune the weight matrix of ANN based on the feedback of 

robot performance), network based controllers can also possess the ability for rewiring, however 

whether the complexity of the network structure make the rewiring more efficient is still an 

unknown question. We assume that the complexity of the efficient network needs a balance 

between the task and environmental context. However, the learning program in ANN can only 

interact with the feedback value individually and they cannot interact with other components within 
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the system. Lacking such interaction between agents renders the ANN fragile for network rewiring, 

especially when the network is complex. How to manage such a balance in ANN (like using agent 

based GRN to regulate such network rewiring instead of regulating gene expression) could be an 

interesting topic for future work. Since we do not know whether more complex networks will fit the 

dynamic regulation yet and removing the dynamic regulation will cause an unfair comparison 

between network based controller and our GRN controller, we choose a certain fully connected 

network in the ANN based controller. Of course, we aware that the indict encoding in GRN 

framework may give the system an advantage on scalability and variability but more variable and 

complex network structure also may limited the efficiency of network rewiring.  For making a fair 

comparison, we always ensure the maximum complexity of the GRN controller is less than the 

complexity of the ANN controller (by limited the number of the agent and the interaction frequency 

between agents in the GRN controller). By this, we ensure the GRN framework cannot have the 

direct advantage from its indirect encoding during the simulation. In future, we will continue to 

investigate the potentials of the indirect encoding ANN and make more comparisons between 

indirect encoding ANN and GRN. 

Third, comparing the efficiency of different controllers is related to many factors and the complexity 

on mechanisms is only one factor here. For launching a convinced benchmarking test scenario with a 

more complicated network based approach, it will require lots discussion and work to do. For the 

first test of the framework, we didn’t have enough time to cover this yet, however this is a necessary 

and interesting work in the future study. At the moment, this is work in progress. In our previous 

work, I try to make a proof of concept (identify the effect of the interaction at multiple levels) and 

compare with a simpler ANN in this research.  For future work, I’m planning to compare with more 

complex ANNs. 
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 Direct encoding 

Neuroevolution 

Network 

Indirect encoding 

Neuroevolution 

network 

AIS ANN in the 

experiments  

Agent 

based 

GRN 

Artificial 

genome and 

gene 

evolution 

Yes Yes Yes Yes Yes 

Complex 

Gene 

Regulation 

No Yes No No Yes 

Agent based 

model 

No No Yes No Yes 

Interaction 

between 

genes and 

environment 

No Yes/No No Yes Yes 

Interaction 

between 

agents 

No No Yes No Yes 

Network 

structure 

Yes Yes No Yes No 

    

Table 1:Comparison between different bio-inspired approaches 

The table above shows the different approaches (see them on each column) with different features 

(see them on each row). 

 

2.5 Conclusion 

 

Through gene regulation, biological organisms can present multiple phenotypes based on the same 

genotype in different environmental conditions. This feature gives biological organisms an advantage 

to adapt to a fluctuating environment. During the adaptation of the organisms, self-organized gene 

regulatory networks play an essential and critical role in the organisms and they are closely linked 

with the adaptability of the organisms. To achieve similar adaptability on simulated virtual (or digital) 

organisms (swarm robots), we mimic the same principles, which are inherent to the biological 

genome and GRNs. The following diagram (Fig 2.5) illustrates the general structure of the whole 

framework.  
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Figure 2.5 The dynamics of the GRN, encoded by the artificial genome and its interaction with 

the environment, are modeled by an agent-based system. 

The red arrows represent the feedback flow from the environment to the agents and from the agents 

to the genome. The blue arrows represent the information (signal) flow in the agent-based system. 

Boxed sequences represent genes on the genome that are turned into agents (mimicking the active 

part of the GRN). At the signaling level, signaling agents are a special type of agents that activate 

other genes, based on the integrated signals they receive from the environment.  At the regulatory 

level, the information flow mimics transcriptional regulation (from genes to agents to genes, …). 

Finally, structural genes encoding structural agents invoke a phenotypic behavior. 

With such artificial genome and GRN, the virtual organisms could alter their phenotype based on the 

current environment. In the virtual organism, different environmental inputs will activate the 

corresponding genes and produce different agents in the GRN. During this process, each selected 

gene will reach its own adaptation within a certain evolutionary context. Through the interaction 

between the genes and agents, the GRN model and the phenotype of the organism will emerge as a 

collective behavioral pattern of agents (gene products).  

On the other hand, for longer term changes in the environment,  the selection pattern on different 

genes could vary during evolution and the particular environments may give a particular selection on  

its relevant genes (the relevant gene here means that the gene could be activated by the signals of 

this particular environment ) on the genome. Furthermore, such influence of genetic regulation could 

be implicit and the gene activation could be presented as a chain reaction (interaction) in the GRN. 

Our simulation framework provides an efficient approach to address these kinds of far-reaching 
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implicit effects on genome evolution by replaying the similar context at the short term and long term 

levels of artificial evolution. 

The motivation of developing this framework is based on three aspects. First, in our simulation, we 

believe that a more realistic and dynamic evolutionary context should be based on a more fine-

grained interaction. Of course, there is no way to know the details of all interactions (over time) 

during the evolutionary process but some known interaction rules might offer a clue for extending 

the relevant context in simulations. Through imposing stable and well-identified rules of interaction 

between well-known components in simulation, we can, in our simulations, dynamically implement 

the possible interactions between different components or at different levels (i.e. based on gene 

regulation and the interaction between genes, we could infer the behavior of organisms and the 

interaction between organisms). These will create a more holistic context that is based on a few 

simple but well-identified interactive rules of evolution. Although such simulated context may still 

not really compare to real biological contexts due to necessary oversimplification, it can offer a more 

complex dynamic model that considers domino effects caused by interactions between genes, GRNS, 

organisms and the environment.   

Second, multiple level interaction in our simulation could provide a more interesting evolutionary 

process trajectory. Based on catastrophe theory [131], Small changes in a nonlinear complex system 

can cause equilibrium to appear or disappear, or to change from attracting to repelling and vice 

versa, leading to large and sudden changes of the behavior of the system. Such catastrophic changes 

also frequently happen during evolution and are regarded as evolutionary transitions. These 

evolutionary transitions are relevant in many evolutionary studies.  However, simulating such 

transitions is a great challenge because the whole system needs to go through numerous unstable 

but necessary states before transition happen and each of these intermediate states may be difficult 

to identify. In mathematics, people use potential functions (A mathematical function whose values 

are a physical potential) to describe a catastrophe dynamically but such functions only can include a 

limited number of variables. In a similar philosophy, our simulations use the interaction of individual 

components to describe catastrophe in evolution. In our simulations, every next time step is the 

derivative of the interaction at the current time and every local bifurcations (local bifurcation means 

when a parameter change causes the stability of an equilibrium to change [132]) in the process is 

determined by the particular interaction events). Based on a few interaction rules, we can simulate 

the effect of different environmental conditions in evolution to individual interaction and for each 

single interaction event, its relevant conditions will be modular and identifiable. After we identified 

all interactions at one time step, we can simulate possible domino effect, interactions and transitions 

at the next step in evolution(based on the interaction rules).  

Third, the influence of interactions could entail different time stages and levels of evolution, so it is 

also a good indicator to find correlations between events over different time stages or between 

different levels. Nature forms a nested architecture where evolutionary processes act at different 

levels and therefore we refer to biological systems as a nested architecture. Evolutionary systems are 

constituted by interactive modules that, in turn, are also a kind of evolutionary system at a lower 

level.  For instance, Sloan et al. [133] suggested that even social groups could act as ‘singletons’ in 

evolution. The following figs 2.6 give some examples about multiple level evolution and nested 

system structure.  
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Figure 2.6 An example of the different levels of evolution at the temporal and spatial scale. 

(Cited from[134])  

Based on previous research in evolution, we already know a great deal about how evolution happens 

at different levels. However, we still know little in general about how different evolutionary 

processes that play at different levels co-evolve in a common, complex and changing environment 

(like in the natural environment). In this case, the corresponding evolutionary context is unknown or 

dynamically changing. If we only consider evolution within a certain context only at one evolutionary 

level, many interactions (i.e. interaction between different evolutionary levels) may be greatly 

simplified or ignored. Under natural evolution, the context (like a particular selection pressure) 

actually always evolves so using a predefined context in simulation can definitely harm the reality of 

the evolutionary model. The contributed fitness effect on particular traits for adaptation is also 

dynamically changing and such changing is based on the evolutionary context which is determined by 

interaction of evolution. Acknowledging such multiple level interactions inevitable increases the 

complexity of the evolutionary model but this complexity is inherent to natural evolution and closely 

connected with the evolutionary process. Denied or over simplified complexity may lead to serious 

limitations in the interpretation of our simulation studies.  

To better understand how the evolutionary processes behave at the different levels, we need to 

know how they work together and we need to simulate the corresponding dynamic context during 

evolution with a holistic view. The traditional simulating framework usually is not sufficient to 

perform such simulation because they often lack implementation of multiple evolutionary processes 

occurring at different levels of evolution. In addition, these traditional frameworks also tend to 

ignore the interaction between the different evolutionary processes and predefine the context (such 

as selection pressures, fitness functions etc.). Compared with using fixed selection based on certain 

fitness measurements, using the multiple level interaction concept can help to create a more realistic 

and dynamic selection and fitness evaluation framework. Our recent simulations, taking into account 

interaction at multiple levels, have shown the emergence of complex adaptive patterns, where in 

experiments not considering these multiple level interactions, such complex adaptive patterns have 

not been observed (see the details in chapter 5).  Such results could be a clue and imply the 

interaction in evolution actually could accelerate the emergence of complex adaptation.   

The particular genome and gene design in this research is for supporting the variability of the agents 

in GRN. For example, the regulatory agents in this system could have more than 1000 different 

binding motifs and various regulation behaviors. This requires a corresponding extension on the gene 

structure. Such diversity inevitably brings extra complexity into the genome but it is also necessary 
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for agents to respond to the different environmental input patterns. Insufficient variability will lead 

to different environmental inputs actually giving the same influence to GRNs. In fact, for adaptation 

in a simple or static environment, such complexity and variation could be reduced (i.e. by reducing 

the length of genome, extending the binding range and so on) because the comparatively simple 

response behavior may be enough to deal with all possible situations. However, an over-simplified 

system and insufficient variability on behavior will be deleterious and unrealistic in a more the 

complex environment. In general, monotonous environmental inputs will activate fewer agents than 

complex environments and this corresponds to a small GRN. This way, the complexity of the real 

system is self-regulated based on the environment and can evolve during the simulation. 

Current limitations of the framework are pattern recognizing functions and a tracking system. For 

analyzing the influence of interactions more precisely, the simulation needs an efficient pattern 

recognizing function that could measure emergent behavior patterns during the simulation. The 

development of such functions is planned for future work.   
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Chapter 3 

Artificial life simulations and virtual robots   
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are cited from my previous paper.  
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The environment plays a critical role in natural evolution. Natural selection and adaptation are both 

greatly influenced by the interaction between organisms [135] and by occasional events occurring in 

the environment [136]. Therefore, the environment has a fundamentally important impact on the 

evolutionary processes. To better understand evolution in nature, we need to investigate the 

corresponding environmental context as well [137-140]. Artificial life simulation is one effective 

approach to provide such environmental context by which we can study the interaction between 

environment and organisms (i.e. [133,141]).   

In this chapter, I introduce the implementation of an artificial life simulation. In our artificial life 

simulation, we define the whole environment as a complex adaptive system and use virtual robots to 

represent the individual organisms in the environment.  

 

3.1 Introduction 

 

The phrase ‘artificial life’ was coined by Christopher Langton, who envisioned a study of life as it 

could be in any possible setting [142].  As Mark A. Bedau defined in [143], “the contemporary 

artificial life (also known as “ALife”) is an interdisciplinary study of life and life-like processes that 

uses a synthetic methodology”. Therefore, these kinds of studies mainly focus on imitating some 

aspects of biological phenomena through the use of simulations with computer models, robotics, and 

biochemistry. Despite the fact that there have been various implementations of the different ALife 

studies, all these studies share three common features. The first is that the simulations in ALife 

always involve complex adaptive systems and emerging behavior. The second is that the emerging 

models in the simulation are self-organized and the result of the interaction of the components at 

the lower level. The third is that the evolutionary processes in the ALife simulation are based on 

open-end evolution[144], meaning that the evolutionary models are not predefined and they actually 

could evolve themselves during the simulation. In fact, these features form also the common 

principles of biological systems and they are actually the main difference between biological 

organisms and traditional engineering systems.  ALife researchers use such bio-inspired principles to 

investigate biological phenomena and evolution in a different way than with more traditional 

approaches. The results of ALife research have been very promising and the artificial life techniques 

are becoming more and more accepted in mainstream evolutionary studies (see the examples in 

[143,145,146]). Tierra[99] and Avida [97] frameworks are the two typical and popular ALife platforms 

in this field. In both simulations, researchers use independent programs (with own memory and CPU 

time) to represent the particular virtual organisms. Each virtual organism has a piece of executable 

code as its genome. These genomes can be changed or reassembled during the replication of the 

organism and the different genomes could give the organism different functions during the 

simulation. The various organisms can adapt during the simulation and interact with each other 

based on their own functionality. The results of such simulation could show a complex collective 

behavioral pattern evolved in the population through the interaction among the individual 

organisms. A few examples and advantages of these kinds of simulations have been elaborated by by 

Bill O'Neill in [33]. In our simulation, we use a similar approach to simulate complexity in the 

environment. However, for identifying the correlation between gene evolution and the evolution in 

an ecosystem, we extended the above framework with an embedded GRN simulation. In our 
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framework, each virtual organism, instead of just executing some code, undergoes an independent 

simulation based on gene regulation (see more details in the chapter artificial genome and GRN). The 

output pattern of the GRN simulation will decide the different functions of the virtual organisms in 

our simulation. Hereby, the changes on the genome will not directly have an explicit effect on the 

phenotype, but implicitly influence the corresponding GRN. This setting gives us a chance to combine 

the evolutionary context at the genetic level and the ecosystem level into one holistic model and 

allow people to identify the possible correlations between these evolutionary processes. 

         

3.2 Methodology  

 

In our framework, the main aim of the artificial life simulation is to mimic the dynamics and 

complexity of natural environments to study evolution. To implement this, we adopted the principle 

of swarm evolutionary robots to present the organisms. On the one hand, each of these robots has a 

GRN and genome. On the other hand, these robots form interactive elements in the whole 

environment. Based on the collective behavior of these robots, the ecosystem and various local 

niches can emerge from a self-organization process. The whole environment in our artificial life 

simulation is regarded as a complex adaptive system and is constituted by the local niches of the 

robot organisms. Through the interactive behavior of all robotic organisms, this environment can 

dynamically change. For our simulations, we design the scenarios based on evolutionary game 

theory[147,148] and the dynamics of strategy change on one robot organism may have an effect on 

the strategies of other robot organisms. Such dynamic evolutionary context (the strategy changes 

and relationships of organisms in history) in a changing environment gives the artificial gene 

evolution a more realistic background. By comparing with the evolutionary trajectories in gene 

evolution, we can also identify the correlation between the evolution of the ecosystem and the 

genome.     

 

3.2.1 General scenario  

 

The simulation map is similar to the cellular automaton model, which is a discrete model studied in 

computability theory [149], mathematics [150], physics [151], complexity science [152], theoretical 

biology [54] and microstructure modeling [153]. Like the cellular automaton, the map in our 

simulation also consists of a regular grid of cells (90*90), each in one of a finite number of states. The 

possible states for these cells could be empty, occupied by food or occupied by the digital organisms. 

In fact, each cell here represents one of the basic spatial locations in the simulation. Swarm robots 

are distributed over the cells of the map during the simulation and each single robot occupies one 

cell at a certain time. Different from the cellular automaton is that the next state of each cell is not 

only based on the neighborhood but also on the behavior of the robots. Robots can move around 

and can also eat the discovered food sources. The subsequent effects of these behaviors change the 

states of the corresponding cell. Selection and fitness of the robots are all based on energy (in the 

form of food resources). For surviving during the simulation, robots have to consume a certain 

energy at every time step. Different robots can have different energy consumption styles, each of 
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which comes at a cost. For instance, maintaining aggregation with other robots will cost extra energy, 

but comes at the benefit of being able to acquire more costly food (see further). 

During every time step, the robots receive new sensor inputs. More specifically, they will sense the 

number of surrounding robots and food sources.  The robot then determines its next action based on 

its input and controller output signal values. Different robots will choose different actions and 

consume different amounts of energy, depending on their individual activated GRNs. As the 

environment changes dynamically, the activated GRNs could also change based on different 

environmental inputs and then the corresponding phenotype (behavioral patterns) may change 

through time.   

During the simulation, robots can choose different behaviours to obtain energy. The decision of 

choosing the appropriate behaviour is crucial for the adaptation of the robot. The available options 

include searching food for energy, attacking other robots for stealing energy or aggregating with 

other robots to share energy.  For instance, sharing can improve defence and food searching and 

preying ability.  

If a robot does not have enough energy to cover its basic living energy requirements, it will be 

regarded as dead and removed from the simulation. Detailed parameters that govern the simulation 

setup are given in Table 2.   

 

3.2.2 The models in the artificial life simulation 

 

As discussed above, the motivation of our artificial life simulation is to provide a realistic and 

dynamically changing environment for the evolutionary robots, very much like natural ecosystems. 

Based on this, we use the essential common model that can be found in most of ecosystems of 

nature. The model includes three important aspects such as organisms, food and environmental 

conditions. In this section, I will explain each these aspects separately in the following part. 

 

Organisms 

 

All organisms in the simulation are represented by the same kind of virtual robot.  These robots all 

have their own independent controller although they all have the same sensors and actuators. By 

having different controllers and genomes, every robotic organism actually can respond to the 

environment through a different behavior. Similar approaches also have been used in many previous 

simulations such as [57,154,155]. In our bio-inspired framework, the controller of the robot usually is 

a dynamic GRN while the output of the GRN simulation determines the behavior of the robot. In the 

control experiments, we also use an evolutionary neural network  (ANN) as the controller of the 

robot for comparing the differences between the behaviors of these two different frameworks. 

All resources of the robotic organisms have been abstracted as the energy of the robots. In every 

time step of the simulation, the robot status and all activities depend on the consumption of energy. 

If the energy of the robot drops below a certain threshold, the robotic organism will die. If the energy 
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of the robot becomes too small for a particular function, the robotic organism will not be able to 

perform the corresponding behavior.   

 

The common functionalities all robotic organisms   

 

Each robot has seven possible functionalities, each of which comes with a different energy cost 

(energy consumption style). Some functionalities need the controller to give the control signals when 

they are performed.    

1. The following functionalities are performed by default and not controlled by the controllers. 

Performing these functions don’t consume any energy: 

Sensing: At every time step, each robot can sense the number of other robots or food sources within 

a two-cell distance.   

The map or grid is divided into 8100 cells. During every time step, each robot can sense the 

surrounding regions and its located region. The sensing would tell the robot how many food 

resources and how many other robots exist in the sensing range.  

Preying: the robots can increase their energy level by consuming the food sources located in the 

same cell as the robot. For different sources of food, the preying might require the robot to 

possesses different amounts of energy in advance (see Table  3). If preying is successful (i.e. the robot 

has enough energy to take the food), the food will be removed and the energy content of the food 

will be added to that of the robot. As long as there is a food source in the same location as the robot, 

the robot will automatically try to eat the food. 

2. The following functions are driven by the signals of responsible controllers. Performing these 

functions require extra energy: 

Moving: a robot can move to the surrounding cells in the two-dimensional matrix. 

Energy cost: 5 

This function is controlled by two kinds of signals 

Controlling signals:  

Signal 1: Value  > 0 means forward; Value < 0 means backward; 0 value = no movement 

Signal 2: Value > 0 means go right; Value < 0 mean go left; 0 value = no movement 

Attacking: Every time step, the robot could choose to attack one other robot, which occupies the 

same cell. If the attack is successful, the attacking robot inherits the energy of the robot that has 

been attacked and the latter will be removed from the simulation.  

Energy cost: 2 

This function is controlled by one kind of signals 
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Controlling signals:  

Signal value   >= 0 means the robot will try to attack surrounding robots 

Signal value   < 0 means the robot will not try to attack surrounding robots 

Defending: robots can defend against an attack by another robot. This is simulated by investing a 

certain amount of energy (referred to as defense value). When the robot i is attacked by another 

robot, its defense value (def_i) plus its energy (Re_i) will be compared with the energy level (Re_h) of 

the attacking robot. If the attacking robot’s energy is higher (Re_h > def_i+Re_i), the defense will be 

broken and the attacked robot’s energy will be transferred to that of the robot who attacks. 

Otherwise, the defense is successful and costs nothing.  Defense values can also be accumulated 

during the lifespan of a robot.  

Energy cost: depends on the controlling signal (see further) 

This function is controlled by two kinds of signals 

Controlling signals:  

Signal 1 decides on defending behavior: 

Value >= 0 means the robot will increase the defense value  

Value < 0 means not increase the defense value 

Signal 2 decides on how much energy is used for defending (only available when Signal 1 decided on 

defending): 

Replication: when the energy level of robot i exceeds a minimal threshold (minRi), the robot can 

choose to replicate. For every time step, the chance of replication (Rc) for a given robot i is based on 

the following equation:  

Rc = (Rei-minRi)/500;  (CurR<MaxR) (Table 2).  

After replication, the residual energy of the replicating robot will be divided equally over the parent 

and daughter robot. New robots will have the same characteristics as the parental robot except for 

the defense value. When the maximum robot population size (it refers to the total population which 

is for all robots in the simulation) has been reached, the replication function will be disabled until the 

population has reduced again.  

Energy cost: 1 (and each robot will have the half of the rest energy ) 

This function is controlled by one kind of signals 

Controlling signals:  

Signal 1: This value determines the threshold for replication (provided the population size has not 

reached a maximal level) 
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Aggregating: At each time step, a robot can send an invitation to another robot. If the invited robot 

accepts the invitation, both robots will aggregate, merge their energy levels and form a new robot 

(referred to as robotic organism). The GRN controllers will be integrated into the new robot by fusing 

their Signal signals. At any point, one of the joined robots can stop the aggregation and become 

single again. Subsequently, the separated robots will receive their part of the total energy (total 

energy divided by the number of aggregated robots in the organism) of the previously joined robot. 

The advantage of aggregation is the joined ‘robotic organism’ will have more energy and greater 

defense capabilities. For example, the maximum energy of a robotic organism (including n robots) 

will be equal to ∑ ,��-(.).
.=1  (Table 2). Such robotic organism will perform better on preying, 

defense and attacking. The disadvantage of aggregation is that, for every time step, it comes with an 

energy cost (see Table 2). 

Energy cost: 1 

This function is controlled by two kinds of signals 

Controlling signals: 

Signal 1 decides whether to aggregate with another robot 

Signal 1 Value >= 0: the robot will aggregate with the surrounding robot value  

Signal 1 Value < 0: the robot will not aggregate with the surrounding robot 

Signal 2 Value: determines whether to disassemble (only available when the robot is part of a robotic 

organism): 

Signal 2 Value >= 0 the robot will stay aggregated 

Signal 2 Value < 0 the robot will disaggregate   
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Table 2:Parameters used in the artificial life robot simulations 

Symbol Explanation Default setup value 

X horizontal position in the matrix 90 

Y vertical position in the matrix 90 

MaxR The maximum number of robots in the simulation 200 

CurR The current number of robots in the simulation The default initial 

total population is 

100 

Fnum1 The number of food sources of type 1 (see Table 3) 500 

Fnum2 The number of food sources of type 2 (see Table 3) 100 

Fnum3 The number of food sources of type 3 (see Table 3) 50 

Fr The default rate for food increase 30% novel food 

sources/20 time 

steps 

Re The robot current energy level The default initial 

value is 500 

Be The basic energy consumption required for each time 

step 

7 

Ae The energy consumptions for actions based on the 

specific action (see 

Materials and 

Methods, main 

manuscript) 

Ee The extra energy consumption for aggregation during 

each time step 

1 

Maxe The maximum energy for a single robot in the 

simulation 

1200 

minR The minimal energy threshold for replication Given by the 

genome of the 

robot. The range of 

this value is from 

500 to 1200 

 

 

 

 

 



 63

Robotic organism energy consumption and behavior model  

 

During the simulation, at every time step each robotic organism checks its energy. If the energy level 

is above 0, the organism will sense the environment and update the controller. Based on the 

different environmental inputs, the controller will give a corresponding response. As discussed 

above, these responses could mean that the robot performs a particular function from the 

functionality lists. However, before performing any functions, the robot will check its energy level 

again and update the new energy level. Insufficient energy of a robot will stop its intended function 

performance. 

The total energy consumption for one robot during one time step is described by the following 

equation (with n corresponding to the number of functionalities in time step i): 

For a single robot: 

Total energy consumption = ∑ �-(�) + /-0
�1*  

For a robot that is part of a robotic organism (aggregate of robots): 

Total energy consumption = ∑ �-(�)0
�1* + /- + 2-  (see Table 3) 

Each function of the robot can only be performed once at one time step, but the effect of one 

particular behavior may be able to remain in the simulation for multiple time steps. For example, the 

sensing inputs at one time point can trigger the new agents in the corresponding embedded GRN and 

these new agents will have effects on the behaviors of the robot for many time steps. 

   

Food 

 

As stated, the robotic organisms live in a two-dimensional 90 by 90 matrix or grid in which a number 

of energy sources (e.g. food) are distributed. Several types of food source exist that differ from each 

other in the minimal amount of energy required to access the food source (see Table 3).  Initially, 

food sources are randomly distributed over the 90 x 90 grid and each cell can only contain one food 

source. After a pre-set number of time steps, the system will add new food sources with a certain 

replication rate (Pr) according to the following function: 

Pr =	34))�506 _!4)) 8 ∗ 
9	 
 

With Fnum_x being the current total number of food sources of type x that are already present in the 

simulation and Fr being the default food increase rate. In the simulation, the maximum energy level 

that a single robot can achieve is restricted to a value of 1200. 

The recovery policy of the food in this simulation imitates the growth of the producers in the food 

chain and we assume the food does not have the ability to move.  In addition, robots need to choose 

the suitable kind of food based on its own status. For example,  a single robot cannot take the type 3 

food alone because it requires the robot organism to have at least an energy level of 2000 to take the 



 64

type 3 food while a single robot can only gain an energy level of 1200 at most. Through this 

implementation, we force single robots to aggregates if they need to get access to food of type 3.   

Table 3:Different types of food sources used in the simulation 

Food type Food energy Distribution range (by 

coordinate value) 

Requirement 

Type 1 300 X:0-60;Y:0-90 No requirement 

Type 2 1000 X:61-80;Y:0-90 Can only be eaten by 

robots that have 

energy levels >= 800 

Type 3 3000 X:81-90;Y:0-90 Can only be eaten by 

robots that have 

energy levels >= 2000 

 

3.2.3 Environmental conditions 

 

Except the interaction between organisms and food, this simulation also considers the impact of the 

change on the general environmental conditions to adaptation and evolution. We have therefore 

simulated two kinds of common conditional changes in the simulated environment.    

 

Geographical diversity 

 

In initializing the simulation, we impose the tendency that food of the same kind prefers to be 

located close to each other. Therefore, in the different regions of the environment (the grid), the 

food distribution pattern will display significant diversity. Due to the food replication policy used in 

the simulation (see the last food section in 3.2.2 for more detail), one kind of food of will only 

produce the same kind of food in the surrounding area ( In our simulation, food is implicitly regarded 

as plant and this rule mimics the plant community in nature), therefore such geographical diversity in 

the environment could be kept during later stages and can profoundly influence the adaption of the 

robots. Robots in the nearby vicinity could use their behaviors to construct their own local niches and 

then develop different surviving strategies.  

    

Climate 

 

In the natural environment, the adaption of organisms depends on many environmental factors like 

the temperature, the oxygen concentration, altitude and so on. These factors actually frequently 

change during the life of organisms and such fluctuations are closely linked to the dynamics of 

adaptation. In our artificial life simulation, we provide a similar fluctuation in the environment by 

imposing artificial climate change. During the simulation, at certain times, all robotic organisms have 

to consume extra energy for movement and survival. The values of these extra energy costs differ at 
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different times during the simulation. Every 100 time steps, these values change for all robotic 

organisms. For every robot, these values are same at the same time point. During the simulation, 

there are four different extra energy cost rules that separately dominate the actual extra energy 

consumption of the robotic organisms in turn. Like seasonal changes in nature, the general 

conditions of the environment thus also change in our simulation. The Climate environmental 

condition is circular changing based on the time and it does not interact with the robot organisms. In 

our simulation, the climate refers to a null model of environmental circular changes in evolution.   

 

Figure 3.1 Overview of the bio-inspired framework in the simulation.(Cited from [117])   

The GRN-based controller actually consists of two separate layers. First, an artificial genome (AG) 

(top panel) encodes the full (core) regulatory network (lower panel, all nodes and edges), i.e. all 

potential interactions that can take place between signaling (yellow), regulatory (blue) and structural 

genes (green ‘nodes’). Evolutionary forces act at the level of this genome. Second, an agent-based 

layer (lower panel) that corresponds to the ‘activated’ regulatory network (colored nodes and full 

lines). The agent based layer mimics the translation of the core regulatory network into an activated 

network, following the rules embedded in the AG. Agents thus correspond to activated genes. The 

agent-based layer constitutes the active controller of the system and drives the behavior of the 

robots (left panel). Key to our approach is the condition-dependent activation of the core genome 

encoded by the AG into an activated network modeled by the agent based layer resulting in the fact 

that only the translated part of the core network will affect the robots behavior. 

 

 



 66

3.3 Conclusion 

 

The natural environment is complex and there is interaction with the organisms that live in the 

environment. In addition, there are many trade-off situations that require different adaptive 

strategies. For example, under starvation (i.e. few available food sources), saving energy could 

become more important than the search for new energy, but priorities may change when food 

becomes abundant again. These complex and dynamic interactions make adaptation and evolution in 

nature very different from what would happen in a simple and static environment. The main 

differences are that 1) there is no explicit best adaptive solution in a complex environment and thus 

adaptation in a complex environment will need to be a dynamic equilibrium rather than a certain 

optimization process, and 2) the previous evolutionary context will have an essential impact in the 

later environment and selection. The interaction between the evolutionary systems and the 

environment is ubiquitous in nature, therefore, the adaptability and fitness measurement in a 

complex environment are also implicit and are based on the context. Back to a static unchanged 

environment, the selection pattern could be always the same and the influence of the context could 

be ignored during the simulation because the previous behaviors cannot change the environment 

thoroughly.    

To simulate natural evolution and adaptation, our new simulating model particularly mimics specific 

features of natural environments. By imposing for evolutionary trade-off scenarios (e.g. aggregating 

other robots for sharing energy or preying on other robots for stealing energy) and considering the 

interaction between the robots and the environment, our artificial life simulation also can simulate 

dynamics and contexts observed in natural environments. Furthermore, the selection of the robotic 

organisms is dynamically changing during the simulation and is affected by the context as natural 

selection is.  

In conclusion, with this simulating environment, our framework separately runs the independent 

gene evolution and regulation in each individual robotic organism and then gives it the collective 

behavior of the robotic organisms based on the internal simulated GRNs.  

As can be observed from Fig 3.1, the different evolutionary processes at different levels (genetic 

level, phenotypic level and ecosystem level) can be regarded as one integrated complex system and 

the interaction among all components of this complex system will determine evolution and 

adaptation. Within this framework, adaptation of the different components and the corresponding 

selection are dynamically self-organized during the evolutionary process. As a result, the current 

simulator allows the evolutionary processes at multiple levels to interact with each other and whole 

evolution can be influenced by the corresponding evolutionary context. For evolutionary studies, the 

benefit of this new simulator is that it in particular can help to identify the effect of the interaction 

among different levels in evolution and provide the convinced trajectories or context for the 

simulated evolutionary processes(see more examples and details in the chapter 5). 
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Chapter 4 

Bio-inspired GRNs improve the adaptability of virtual robotic systems   
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The inherent principles of GRNs that we learn from biological organisms play an important role in the 

adaptation of organisms. Especially for adaptation in a changing environment, gene regulation 

through the action of GRNs provides phenotypic plasticity providing an advantage to organisms in 

response to variation in the environment. One of the main aims of our research is to investigate 

whether utilizing the principles of GRNs also improves the adaptability of artificial systems. For 

demonstrating the feasibility and potential benefits of using these bio-inspired principles, we used 

our artificial genome and GRNs as robot controllers in different robotic simulation experiments and 

observed the effects on the adaptability of the robots. Based on the different functions and tasks of 

the robots in the simulation, these previous experiments could be summarized into three different 

classes: 

1. Collision avoidance and exploration   

In this kind of experiments, robots need to avoid obstacles while exploring the map as widely 

as possible. Every single robot in the simulation has the necessary sensors to detect the 

obstacles. The input signals of the sensors will feed into the movement controller, which is 

developed based on our artificial GRNs. The output signals of the controller will determine 

the moving behavior of the robot. In this thesis, we test the feasibility of using our GRN 

controller in the real time movement control and test the adaptability of our robots in an 

unpredictable environment.    

2. Self-organizing robotic organisms 

This experiment adopts a simplified version of the GRN controller as in the simulated 

‘symbrion’ robots (see the detail in the section ‘the self-organizing robotic organisms’) to 

control robot aggregation. The task requires that the swarm robots need to aggregate and 

form a robotic organism to perform a certain task. In this experiment, the GRN controller can 

self-organize (based on the environmental inputs) the adaptive shape of the organism. 

Furthermore, the GRN controller will also control each swarm robot to complete the 

aggregation during the experiment. 

3. The virtual ecosystem 

The simulation platform and aims of this experiment will be discussed in greater detail in the 

last chapter. Here, we will focus on the experimental results and on the comparison of the 

adaptability between the GRN controller robots and the ANN controller robots.    

All above experiments have their own particular scenario and use different kinds of robots (see the 

detail in each corresponding section below). However, they all share the same bio-inspired GRN 

controller, which is used to provide artificial gene regulation to (the simulated) robots.  

 

4.1 Collision avoidance and area exploration  

 

This section 4.1 is partly reproduced from the following publication:  

Yao, Y., Baele, G., Van de Peer, Y. (2011) A bio-inspired agent-based system for controlling robot 

behaviour. Proceedings of the IA - 2011 IEEE Symposium on Intelligent Agents organized in IEEE 

Symposium Series in Computational Intelligence 2011 Paris, France. 
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4.1.1 Abstract 

 

In this section, we present an agent-based GRN controller to control a single robot’s moving 

behavior. This work is the early work of my research so the agent-based GRN system in here is a 

simpler version than the default version discussed in other place of the thesis. Both versions share 

the same principles. In this version GRN system, we also use agent-based modeling (ABM) to 

simulate a bio-inspired GRN based on the artificial genome, with the ultimate goal of providing 

phenotypic information for a simulated robot. We show that the presence of a feedback loop in the 

agent based system, along with the corresponding agent replacements, is essential to allow the robot 

to perform its tasks. 

 

4.1.2 Introduction 

 

The field of evolutionary dynamic optimization deals with the application of evolutionary algorithms 

to dynamic optimization problems (DOP)[156]. In these problems, the environment changes 

frequently or is completely unknown and the optimization methods need to adapt their proposed 

aim to time-dependent contexts. Previous research has seen different approaches to address such 

problems, such as a bio-inspired agent-based framework, which can be adapted to a highly changing 

environment with good scalability and flexibility[157]. Other research has shown that degeneracy of 

solution representation will improve the robustness and adaptiveness of dynamic optimization, aside 

from mentioning that degeneracy is the main feature of bio-system in natural evolution[158]. In 

short, these studies show that evolutionary algorithms (EA) have the possibility to solve the DOP by 

introducing bio-inspired principles. Further, the flexible agent-based structure is inherently suitable 

to implement such bio-inspired system. In this research, we present a layered structure with a 

dynamic feedback loop which is inherent properties of gene regulatory networks (GRNs), in order to 

develop a practical framework for achieving a self-adaptive robot in a simulated scenario. By 

mimicking the principles and features of GRN in our framework, we expect the agent-based system 

to efficiently deal with a highly changeable or unknown environment. 

 

4.1.3 Materials and Methods 

 

The GRN controller presented in this work has a little difference with the general GRN framework 

that I have discussed in the previous chapter. The GRN controller in this work is for supporting a real 

time control and it is only in charge of the movement of robots. Based on the task, this GRN 

controller is comparatively simpler than the general framework although it also shares the same 

principles and models of biological GRN.  
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Layered approach 

 

In order to simplify the complexity of our agent-based modeling approach, we distinguish three 

different layers in this agent-based system, which are shown in Fig 4.1. Separating the agent-based 

system into different layers results in agents that only have connections with the other agents in the 

same layer. This way, changes to a particular agent in a given (sub)network will only affect that same 

(sub)network. Further, interactions between agents in different layers can then be replaced by 

interactions between different layers, thereby simplifying the agent-based system’s design. 

 

 

Figure 4.1 The different layers in our developed agent-based system[159] 

The following layers can be distinguished in our agent-based system: 

• Signal path layer: the main functions of this layer are receiving the sensor values and 

transforming this sensory information to usable values/signals for the agent-based system. 

This layer can be regarded as a hardware abstraction layer, so that different types of robots 

(providing sensor inputs of different magnitudes) can be used in the agent-based model. This 

layer is hence the bottom layer which is connected to the actual sensor of the robots. Each 

signal path consists of a combination of sensory inputs, determined by a corresponding gene 

in the artificial genome, and is allowed to evolve through time. The loss of certain sensors 

(for example due to damaged hardware) or other kinds of unexpected changes in the sensory 

inputs will be taken care of by this layer. 
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• Transcription layer: this layer contains the agent-based equivalent of a gene regulatory 

network (GRN) in that it consists of a network of regulatory agents. This layer is the middle 

layer in our layered approach and does not directly interface with any hardware components 

of the robots. The main tasks of this layer is the optimization / emergence of the robot's 

behavioral / movement patterns, with the biological counterpart being the production of 

novel functions and patterns for the actuators. 

• Translation layer: this layer is the top layer in our system and interacts with the actuators of 

the robot. The translation layer consists of structural agents that take their information from 

the network of regulatory agents in the transcription layer. This layer then provides values 

for the actuators of the robots (in this case, the wheels of the robots). The main task in this 

layer is finding suitable strategies for each actuator in order to provide an adequate output 

pattern for the robot. 

The essential aim of our agent-based system is to optimize its structure to adapt with a changing 

environment. In order to efficiently do so, we adopt a layered approach in our agent-based system. 

While a layered approach has the same components and relationships as a non-layered approach 

(not shown), the layered structure has a better flexibility for coping with changes than the non-

layered structure, as it allows the components in each layer to be adapted independently from one 

another, without affecting the whole network at once. This opens up various possible approaches to 

deal with the information retrieved from the feedback loop, as it allows for each layer to react to this 

information in a specific way. 

 

Runtime fitness in the feedback loop 

 

In this experiment, we adopt an implicit fitness evaluation on the feedback loop and use that 

feedback to adapt the agents during runtime. This kind of feedback minimizes the direct reference to 

the patterns of robot behavior. The reason for using such an evaluation is because the output of 

single agent does not directly determine the behavior of the robot. Indeed, only through the 

cooperation of multiple agents can each agent’s behavior affect the robot’s behavior. To evolve 

every agent, the system cannot reward any agent’s behavior without its context. On the other hand, 

the pattern of robot behavior also doesn’t depend on any single agent. 

In this version, the fitness will consider four variables. The first variable is the movement distance 

between time steps (represented as d), representing the efficiency of the two actuators. The second 

variable is the exploration range of the robot (represented as e), representing the robot's general 

performance. The third variable is the replacement ratio of agents at every time step (represented as 

r), which represents how quickly the inner environment changes with respect to a single agent. The 

fourth variable is the current total number of agents, which gives information on the current 

complexity of the system (represented as n). To an agent, the better the efficiency of movement, the 

broader the search range, the smaller the replacement ratio and the simpler the system complexity, 

the higher the chance for that agent to accumulate a high fitness score. The following formula shows 

how we deal with the fitness in our current system   (� represents the current time step, : the weight 

parameters and ; the time): 
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As can be seen from the formula above, fitness in our simulation reflects a comparative situation 

rather than an absolute value. That means the fitness score will be compared with its previous record 

at first and then the ratio will be regarded as the final fitness. If there is no comparable record, the 

fitness level will be kept neutral. The final fitness is calculated by the following formulas: 
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Agents in the GRN controller 

 

In the GRN controller of the robot, we present the different types of agents that make up our agent-

based model. 

1) Genome agent: A genome agent reads the relevant genes from the artificial genome. This artificial 

(fixed length) genome consists of a sequence of randomly generated nucleotides (A,C, G, T). The 

main functionalities of the genome agent are: 

∙ Reading the artificial genome input file, if such a file is provided. 

∙ If an artificial genome is not provided, generate a random genome. 

∙ Look up a target gene in the genome when a binding site is provided by the signaling agent. 

∙ Altering a particular region of the artificial genome according to environmental conditions provided 

by the signaling agent (for example in order to enhance gene expression). 

∙ Mutating the artificial genome through random point mutations. 

∙ Provide a new (and possibly altered) copy of the artificial genome at the end of a robot’s lifetime. 

2) Signaling agent: An signaling agent reads the sensor inputs and establishes combinations of sensor 

values in the robot. In other words, a single signaling agent does not correspond to a single sensor 

input (or a transformation thereof), but to a combination (unweight sum) of the different sensor 

inputs. The resulting gathered sensory information of the signaling agent is then used as a binding 

site during the scan of the genome in search of a fitting gene, one for each combination of sensory 

inputs. When such a gene is found, the indicator region of that gene is scanned to check whether 

that gene is a regulatory gene or an expressed gene, for which a fitting agent (i.e. either a regulatory 

or an structural agent) is then created by the signaling agent. The main functionalities of the signaling 

agent are: 

∙ Update (i.e. read) the sensory input values of the robot at every time step. 
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∙ Every time step, the signaling agent evaluates the status of the robot (i.e. calculates the different 

combinations of the sensory inputs) and calculates feedback on the robot’s performance. 

∙ If the sensory information of the robot has changed (sufficiently), the signaling agent will detect 

different regions of the genome than in the previous cycle and create new agents (either regulatory 

or expressed). The old agents (of the previous cycle) are then considered at the end of their lifetime 

and are removed from the system. 

∙ Optimizing the combinations of the sensory inputs. The signaling agent will calculate the adaptation 

value for each combination at each time step and will then try to optimize those combinations. The 

general procedure of this approach is as follows. This agent evaluates each sensory input 

combination by its adaptation value (this value is based on the feedback, the number of agents and 

the importance of the output for the particular combination) and checks if the combination can be 

adapted to the current environment. The signaling agent will delete those combinations that have a 

lower adaptation value than a given threshold and produce a new sensory input combination by 

randomly reading a special-purpose gene. 

∙ Monitoring the gene regulatory network and ensuring the interactions of agents will not exceed the 

limitation. The signaling agent will check the number of agents to avoid that too many of them are 

created. The signaling agent will also delete those combinations of agents for which a corresponding 

gene cannot be found or for which the output value is too low/high. 

3) Regulatory agent: A regulatory agent regulates, for example enhances or represses, a particular 

gene and must hence retrieve the gene it expresses. The main functionalities of the regulatory agent 

are: 

∙ Finding the regulatory gene from the genome based on its corresponding signals. If there is an agent 

which shares the same gene in the system, the concentration degree of this existing agent will be 

increased. Otherwise, a new agent will be created and the new one will read the target gene to 

initialize itself. 

∙ Identifying the target gene and sending an instruction to the genome agent to change the gene 

status (repress or enhance). When agents have been created, the position of the target gene on the 

genome will be recorded by its agent. All agents will have a limited life cycle in the agent-based 

system. When the agent dies, every agent will modify the adaptation value of its target gene 

according to its own feedback. This way, an agent that performs well will enhance the adaptation 

value of its target gene. The higher the adaptation value of a gene, the more chance this gene has to 

be read from the genome at a future occasion. 

∙ Evaluating its own importance and adaptation in the system’s interactions. The agent needs to 

evaluate its adaptive status in the system and needs to know the influence of its outputs. If the agent 

has more outputs than others, it will be regarded as more important in interaction and it will also has 

more responsibility with respect to the feedback. The adaptive status for an agent indicates how 

good the performance of the robot is when the agent is active. The adaptive status of an agent will 

be used to affect the adaptation value of its corresponding gene. 

∙ Reading the artificial genome in order to find the gene, either regulatory or expressed, it regulates. 
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∙ Upon retrieval of the expressed gene, creating the structural agent. 

4) Structural agent: An structural agent translates the encoded information of its underlying gene to 

an actuator. The main functionalities of the structural agent are: 

∙ Binding with the corresponding actuators and output the value encoded in its underlying gene to an 

actuator. 

∙ Identifying the target expressed gene and sending the instruction to genome agent to change the 

gene status (repress or enhance). The genome agent will change the binding site of the expressed 

gene to increase or decrease the probability that it will be read at a future occasion. 

∙ Evaluating its own importance and adaptation in the system’s interactions. The importance (score) 

of an structural agent is the sum of its actuators multiplied by the concentration degree of this agent. 

The adaptation status of an agent is used to evaluate its performance. For an agent that performs 

well, the agent-based system will increase its concentration degree and life time. For an agent that 

does not perform well, there will be a tendency for deletion of this particular agent. 

∙ When multiple structural agents correspond to a single robot actuator, the different values in the 

expressed genes need to be aggregated into one output signal for the actuator.  

 

Agent and pathway replacement   

 

During runtime all agents and simulated pathways interact with their inner environment and connect 

to form an emerged dynamic structure. The creation of new agents is triggered by the constant input 

stimulations from the environment, while the replacements are always conducted by the inner 

feedback loop. A single agent replacement will be built up due to a particular signal combination 

from the environment. Signal pathways are initialized from the genome and are sensitive to its inner 

environment. Environmental changes could lead to a potential pathway being activated or the 

activated pathway being repressed. Agents also have their own lifetime and concentration value, 

something the pathways don’t have. Even if the calculated fitness from the feedback loop is good, an 

agent will still be replaced when it has run out of lifetime or when its concentration value is too low. 

When this happens, the replacement will be regarded as successful with respect to the individual 

agent and the built up gene of that agent will be enhanced in the genome. In other words, the gene 

will become more competitive to be read in a certain input range. The concentration value of an 

agent will hence increase or decrease corresponding to fitness. 

 

Simulation platform 

 

All experiments were performed in the Player/Stage simulation environment[160]. Classes necessary 

to read, store and manipulate robot genomes were written in C++ for cooperation with the 

programming code in Player/Stage. The simulation map consists of a rectangular area with several 

obstacles and corners where the robot can become cornered or stuck. The fitness of an individual 
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robot is a function of the amount of the environment the robot is able to explore (the more, the 

better). Inherent to this requirement for a high fitness value is the ability to perform obstacle 

avoidance. Simply calculating a measure to perform obstacle avoidance has the property those 

robots that simply turn in circles can also be regarded as ‘avoiding obstacles’, while it is not 

performing a useful task. The combination with map exploration fixes this problem. 

In our experiments, we have tested the developed agent based system using a randomly generated 

population consisting of 50 robots. In other words, a (different) random genome was generated 

automatically for each of the 50 individual robots. The 50 robots were tested individually by placing 

each of them in a separate copy of the environment. While the starting position within the 

simulation map was set to be identical for each robot, the starting orientation of the robot was 

randomly selected to avoid that robots perform well simply because they are oriented in a direction 

with no obstacles. 

We have used simulated e-puck robots in our experiments [161] . These robots have eight infrared 

(IR) proximity sensors (similar to the Khepera robots[162]) placed around the body which can be 

used to measure the closeness of obstacles and two stepper motors, controlling the movement of 

the two wheels. 

 

Figure 4.2 Illustration of the real e-puck robot. 

The simulated robot used in the player/stage simulation is based on the robot shown above. They 

share similar sensors and wheel actuators. 

 

4.1.4 Experiments and results 

 

Resolving collisions and repetitive motion  

 

The simulations performed using our developed agent-based system, based upon a large genome 

inspired by gene regulatory networks, show evidence of self-adaptive abilities (i.e. the ability to 

adapt itself depending on occurring problematic situations). These situations can be considered to be 
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getting stuck in a corner, not being able to move away from a wall or even just undesired behavior in 

terms of achieving a decent fitness level. In order to do this, the agent-based system was provided 

with a feedback loop to signal potential problems with the current environment of the robot. This 

feedback loop ensures that the robot can adapt to new situations or environments up to a certain 

level. This also means that as long as the feedback loop does not signal any problems to the agent-

based system, the robot’s behavior remains unchanged. 

An example of this type of behavior can be seen in Fig 4.3, 

 

Figure 4.3 Due to the agent-based system, the robot is able to resolve difficult situations. 

Starting from a fixed position near the center of the area (close to position 5), the robot encounters a 

series of problems, such as being stuck against a wall (positions 3 and 4) and being stuck in a corner 

(position 6). 

Fig 4.3 illustrates how the robot smoothly adapts its behavior during the runtime of the simulation. 

When the robot hits an obstacle, it will adapt its behavior slightly in order to solve the problem. 

Should small changes in the robot's behavior not be sufficient to resolve the current problem, 

additional changes to its behavior will be made by the agent-based system until the robot is able to 

free itself. The more problematic the situation, the longer it will take for the robot to resolve the 

problem. This is an important aspect of the agent-based system used here, as in other approaches 

(see e.g. [163]for a neural network approach). The emergence of optimal robot behavior is obtained 

by removing robots that do not perform well from the population, across a large number of 

generations. This is a process which may end up taking a huge amount of time, even though bio-

inspired approaches have been proposed to facilitate this process, i.e. to make the population of 

robot reach adequate fitness level at a faster pace. For example, Calabretta et al. have published a 

series of papers on the advantages of modeling gene duplications on the performance of a robot 

population[164-167]. A comparison between an approach with feedback enabled (such as our agent-
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based system) and an approach without such a feedback loop (for example, a simple artificial neural 

network) can be seen in Fig 4.4. 

 

Figure 4.4 The feedback loop incorporated into the agent-based system also allows the robot 

to detect when it performs repetitive movements, such as just turning in circles, which may 

occur in the absence of such a feedback loop. 

The way in which each robot’s decision and sensing mechanisms works is encoded in its genome and 

is essentially the responsibility of the signaling agent in the agent-based system. Hence, when the 

robot gets stuck, the feedback loop informs the appropriate signaling agent of this, after which the 

current sensory information combination will be removed and a new sensory input combination will 

be proposed to the system by reading and decoding different genes from the genome. 

 

Genome-dependent behavior 

 

Since the agent-based system relies upon an artificial genome to create its various components, 

different artificial genomes will lead to different types of behavior (and hence a difference in 

performance) for different robots.  
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Figure 4.5 Depending on the genome of the robot, different behavior can be observed, with 

the feedback loop making sure that the robot does not get permanently stuck.  

More complicated regions of the area (e.g. with only one possible escape direction) show a more 

dense trail as it takes longer for the robot to resolve the situation. 

In Fig 4.5 it can clearly be seen that there are various locations in the area which are difficult for the 

robots to explore, such as the top-left corner (situation A), the bottom left corner (situation B; same 

goes for the top-right corner) and the bottom-right corner (situation C). In none of these situations 

does the robot remain stuck however, although it is apparent that the bottom-left corner is the most 

difficult part of the area to escape from, hence the large amount of time that the robot spends there. 

Situations D and E in Fig 4.5 show robot behavior for two artificial genomes that allow the robot to 

explore large portions of the area, with little time being spent stuck in a corner or against a wall. 

Finally, situation F in Fig 4.5 shows robot behavior for an artificial genome that allows the robot to 

explore the entire area, visiting all the difficult to reach (and escape) areas of the map. A given agent 
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is able to autonomously select better-suited genes in order to achieve its goals. For example, if the 

behavior of a given robot in the current environment is rewarded, the corresponding agents 

responsible for the robots behavior will be automatically rewarded as well and the gene(s) that set 

those agents will also be slightly enhanced. Such enhancements can accumulate on the genome and 

eventually render those genes easier to read by agents, leading to next-generation agents that will 

tend to select better-suited genes to achieve the robots goal(s). 

 

Agent dynamics and robot’s performance 

 

The agents in our agent-based system can be replaced by new ones during runtime. Such 

replacements may result in a positive influence on the robot's behavior in terms of a robot's ability to 

adapt to its environment. In other words, a change in environment can mean the transition from a 

problem-free environment (when the robot does not encounter any obstacles or other difficulties) to 

a problematic environment (i.e. being stuck in a corner or against a wall). Agent replacements will 

hence occur most in difficult environments, driven by the data in the feedback loop, while there is no 

need for such replacements in problem-free environments. This way, each robot possesses a self-

adaptive ability when confronting a new environment. For instance, we show in Fig 4.6 and 4.7 an 

example of a robot's behavior (i.e. its phenotype) and the corresponding agent dynamics within the 

agent-based system (i.e. its genotype). Fig4.6 shows the movement trail of the robot in the 

simulation map (with numbers indicating the different situations), whereas Fig 4.7 shows the 

corresponding agent dynamics during those time steps. As can be seen from Fig4.6 the robot 

encounters four difficult situations during its runtime (i.e. at situations 2, 3, 4 and 5), which results in 

a temporary halt in the robot's task to explore the simulation map. 

          

Figure 4.6 The movement trail of the robot during 200 time steps (i.e. input/output cycles). 

Numbers 1 through 8 indicate (in order) the various situations the robot can be found in. 
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Figure 4.7 The replacement rates of agent and signal pathways are correlated with the 

robot’s activity degree, which is the main measurement of fitness in this simulation. 

The black curve represents the activity degree, while the green curve represents the signal pathway 

replacement rate and the red curve represents the agent replacement rate. 

These problematic situations can be resolved through agent and signal pathway replacements in 

order to change the robot's current behavior, which will allow the robot to overcome the problem 

rather than to remain stuck. This will result in an increased performance of the robot, as otherwise 

the robot would remain stuck (see Fig  4.6 ). For example, the difficult situations the robot has to 

overcome occur after 50 time steps (situation 2 in Fig 4.6), 90 time steps (situation 3 in Fig 4.6), 120 

time steps (situation 4 in Fig 4.6 ) and 145 time steps (situation 5 in Fig 4.6 ). Fig 4.7 shows a clear 

increase in agent and signal pathway replacement rate corresponding to these reported time steps. 

In other words, in order to resolve the fact that the robot is stuck in a difficult environment, agents 

and/or signal pathways are replaced in order to equip the robot with a suitable behavioral pattern, fit 

to the changed environment (i.e. corner or obstacle). Indeed, when a robot gets stuck, its ``activity 

degree'' (i.e. its ability to explore the area) drops to very low levels, indicating the need for a 

different behavior in order to be able to continue performing its task adequately. Following this drop, 

both the replacement rates of agents and signal pathways increase, after which the activity degree of 

the robot is seen to increase again. 

 

4.1.5 Discussion and Conclusions 

 



 81

In this research we presented a simple version of an agent-based system aimed at controlling robot 

behavior. The main benefit of this system is the robot’s ability to resolve problematic situations at 

runtime, in its goal to explore as much of a rectangular area, filled with obstacles, as possible. 

Currently, the area in which the robot performs its task is static, i.e. does not have any moving 

obstacles, and the robot’s task is not overly complicated. The current set-up is however adequate to 

test our developed agent-based system as we aim to add more complexity to the robot’s tasks and 

the simulation area as well. For example, it would be more realistic that a robot has a limited 

lifetime, depending on battery power, a scenario where the robot would not only have to explore a 

given area but also make sure that it doesn’t run out of battery power. This is the subject of ongoing 

work. The structure of the artificial genome is currently a drastic simplification of the real-life 

workings of gene regulatory networks. Hence, the representation by the agent-based system of the 

gene regulatory networks in the artificial genome is oversimplified as well. The work presented in 

this paper however serves as a proof of principle and we aim to increase the complexity of our 

artificial genome to resemble biological reality more closely in future work. 

We have shown the adequate performance of our developed agent-based system, which uses a bio-

inspired artificial genome based upon current knowledge on the workings of gene regulatory 

networks. Robots equipped with our agent based system are able to find their way out of difficult 

situations, allowing them to continue performing their task. This is specifically due to the presence of 

a feedback loop in our agent-based system, which signals potential problems to the system, allowing 

for a solution to be found. Further, the desired behavior of the simple task in this paper (exploring a 

simulation map) is brought about without the need for an evolutionary strategy. However, we expect 

that more difficult simulation scenarios will require an evolutionary strategy in order to yield 

adequate results. 

 

4.2 The self-organizing robotic organisms 

 

This section 4.2 is partly reproduced from the following publication (in press): 

Yao, Y., Marchal, K., Van de Peer, Y. (2015) Adaptive self-organizing organisms using a bio-inspired 

gene regulatory network controller- for the aggregation of evolutionary robots under a changing 

environment  (Handbook of Research on Design, Control, and Modeling of Swarm Robotics) 

 

4.2.1 Abstract 

 

Here, we describe the biologically inspired concept of gene regulatory networks to develop a 

distributed swarm robot self-organization approach.  In particular, we show that by using this 

approach, multiple swarm robots can aggregate together to form a robotic organism that can adapt 

its configuration as a response to a dynamically changing environment. In addition, we examined 

different evolutionary operators such as mutations and duplications and show that these also may 

have important roles in accelerating the adaptive process of evolving robotic organisms. 
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4.2.2 Introduction 

 

Self-organization is a phenomenon that has been observed in disciplines as diverse as physics, 

molecular chemistry and biology. For example, in biological self-organizing, hundreds to even billons 

of homogeneous or heterogeneous cells can aggregate to form colonies or tissues. Social insects such 

as ants, termites, bees, or even schools of swimming fish can be regarded as self-organizing systems 

where coordination arises out of the local interactions between entities of an initially disordered 

system, which allows the system as a whole to perform more complex tasks than those performed by 

the individual entities [168]. In robotics, one of the most widely adopted approaches that mimic this 

biological behavior is swarm robots and robotic organisms [169-172]. Swarm robotics systems are 

self-adaptive systems in which individual swarm robots can aggregate and form a robotic organism 

with an emerging global behavior [173,174]. Ideally, such systems should have the potential to be 

adaptable by changing their configuration in different situations in an unbiased way[175]. In other 

words, swarm robots should decide themselves when and how to assemble, depending on 

environmental cues and the current configuration of the robotic organism. Configuration here refers 

to the topological 2D or 3D plan according to which individual swarm robots assemble into a more 

complex ‘organism’. Ideally, such configuration of the robotic organism is the emerging result of the 

interaction between robots and the environment [176] and thus should not be predicated on 

predefined configurations that should be adopted under different predefined settings. This is difficult 

to achieve with robots driven by a global and explicit algorithm in which the configuration of the 

robots is predefined, the reasons being that an explicit algorithm cannot easily alter predefined 

topologies according to environment changes that occur during the aggregation process and 

environmental changes can be too many to be all considered in the program.  Furthermore, since 

environments may be unknown to the developer it is very difficult to predefine a suitable adaptive 

configuration.  

Previously, we have explored the adaptive potential of simulated robots that contain a genomic 

encoding of a gene regulatory network (GRN) [117].  In this study, we build upon this GRN based 

model to develop self-organization robotic organisms that can react to a changing environment. The 

developmental process of the organism to be assembled is driven by the current environmental 

situation. This way, the configuration of the robotic organism emerges from the interactions 

between individual robots and the environment. To test our approach using the concept of a gene 

regulatory network as implemented and described previously [117], we show through simulations 

that newly assembled robotic organisms can flexibly adapt to a changing environment by each time 

developing the most optimal configuration. 

 

4.2.3 Materials and Methods 

 

Aggregation model 

 

In our approach to evolve and develop robotic organisms, we have implemented artificial gene 

regulatory networks, as described previously, that control the aggregation signals of the swarm 
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robots. In the first step, we distinguish between swarm robots that have been selected for 

aggregation and those that have not (referred to as free living swarm robots, see further). Swarm 

robots have the ability to communicate with each other and can receive a message to aggregate 

from robotic organisms (this communication ability is supported by the LED-based communication of 

the robot). Our GRN-based controller is only activated in those robots that engage in the aggregation 

process.  Depending on the environmental input, each robot will then activate a GRN encoded by its 

genome. The resulting activated genes (determined by their ‘gene expression’ values) will determine 

the status and the functionality of each single robot. As the genome evolves during adaptation, the 

activated GRNs of the different robots will change concomitantly during its adaptive process. Based 

on the signals of its activated GRN and its prespecified functionality, the robot will know how to 

aggregate and interact with other robots and to identify its position in the robotic organism (see 

further).  When all robots in the organism eventually have identified their position and role, the 

robotic organism will be formed. Through local interactions and the collective behavior of swarm 

robots to shape the complex self-organizing patterns (i.e. the formation of the larger robotic 

aggregated organism) is the approach of our aggregation model and this method have been proved 

as a very efficient way in many recent studies[177-179]. In this study, we have adopted such an 

interaction driven aggregation method with an artificial gene regulatory network. The function of the 

artificial gene regulatory network is to connect the environmental conditions with the developmental 

aggregation process.  As a result, artificial evolution of the genome and GRNs of robots could 

optimize the aggregation based on the different environmental backgrounds.   

        

Swarm robotic platforms and the GRN controller 

 

As we focus here only on aggregation, we have not explicitly tested or implemented controllers for 

other kinds of behavior control. To separate the aggregation control from other behavioral control of 

the robot, we perform our experiments in two ways. First, we use the 2D simplified simulation to 

simulate the aggregation of the swarm robots. This way, other behavioral controls for aggregation 

like communication, movement or alignment are ignored and the robot controller only decides which 

robots will aggregate with each other and on the position of each robot in the multiple robot 

organism. Furthermore, we test our controller on the well-developed Symbrion robot[172] (see Fig 

4.8) and run the same simulation in the robot3d simulator(simulator developed based on Delta3d 

[180])(Fig 4.9). This way, we could use the developed controllers in the Symbrion robots to control 

other relevant behaviors and perform aggregation in a real environment. With the real robot 

hardware and robot3D simulator, we test the feasibility of our approach in practical applications.  

The Symbrion robot is the basic component of a self-evolving swarm robotic platform which is 

developed in the framework of the EU project Symbrion [67] and the project also developed a 

corresponding robot simulator called robot3D, reflecting the physical features of the Symbrion robot. 

By adopting the open-source game engine Delta3D, robot3D can provide a realistic 3D physical 

environment for the robotic simulation. However, it also has a limitation at the scale of the 

simulation due to the high computational resource requirement. Due to these limitations, in practice 

we could not run larger scale robot aggregation on the real hardware or robot3D simulator within a 

reasonable time so the real symbrion robot and robot3D simulator are only used to examine the 
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feasibility and compatibility of our approach. The evolvability and adaptability of our controller is 

therefore tested on the simplified 2D simulation. 

 

Figure 4.8 Prototype of the Symbrion robot. 

 

Figure 4.9 Screenshot for the robot3D simulation 

Our proposed platform is the Symbrion robot, which has a 32-bits Blackfin microprocessor[181]  and 

64MB memory. In this limited amount of memory, it needs to store several other controllers for 

other behavioral control so the available memory space for our controller is not much. Therefore, to 

reduce the occupied memory space of our GRN controller in the real robotic systems, we have 

simplified the GRN controller instead of using the previous model described higher (using agent-

based systems). Here, gene products are only effective for one time step, rather than allowing them 

to be dynamically altered during several time steps, as in our previous work[117].  In this GRN based 

model, gene regulation is optimized by the continuous feedback of the robot’s performance. Positive 

feedback will enhance the gene expression level, while negative feedback will repress the gene 

expression level. Positive feedback and improved adaptability (basically measured as success in 

finding energy sources, see further) will thus influence particular ‘gene expression’ patterns in 
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subsequent time steps.  In other words, if a robotic organism performs well, feedback loops will 

make sure the same genes in the genomes of its constituting robots will be expressed at higher 

levels, while if a robotic organism performs poorly, negative feedback will decrease the expression 

level of certain genes in the robots. In addition, the genes on the genome can, at each time step, 

undergo substitutions and duplication [182]. The rate of mutations in a gene depends on the (history 

of the) feedback as well.  Under more positive feedback, the rate for mutations will be lower 

(mimicking purifying selection, i.e. a gene that performs well should not be changed too much), while 

the duplication rate will increase (if a gene performs well, it might be good to increase dosage of the 

gene).The implementation of such bio-inspired evolutionary processes tends to protect the more 

‘adaptive’ genes while accelerating variation in the rest of the genome [117,183]. 

 

Multiple robot organism development 

 

In our simulation, multiple swarm robots can aggregate to develop a robotic organism. Every swarm 

robot has four sides (based on the Symbrion robots) that are available for docking with another 

robot. Fig 4.10 shows a simple example of the aggregation possibilities for a single robot. The 

formation of the robotic organism will start from a swarm robot population (Fig 4.11).  

 

Figure 4.10 Aggregation based on one single robot.    
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Figure 4.11 Example of developing robot organisms during the simulation. 

Each square on the map represents a cell in the grid that can contain one robot. Every non-green 

colored square represents one robot in. Different colors represent robots with a different status. 

Numbers in squares represent the order in which the robots have joined the robotic organism.  

Energy packets are not shown. 

In the population, after a certain number of time steps, the system will randomly select some robots 

(i.e. Thus selected for aggregation) and give them a random genome. This corresponds to the 

activation of our GRN based controller that drives the aggregation process by determining their 

status. The decision for the current robot status (i.e. growing/aggregating or not) is based on the 

environmental inputs of that robot. In our simulation, the environmental inputs for one individual 

robot consist of six different values. These are: 

(1) The number of surrounding robots (more surrounding robots will promote the decision to 

generate robotic organisms consisting of more individuals) 

(2) The energy level of the robot 

(3) The rank order in which the robot was added to the robotic organism: the joining of the robotic 

organism by individual swarm robots can be represented by a tree structure. The rank gives 

information on when the robot was added to the robotic organism.  

(4) The size of the robotic organism, which is represented by the number of the individual robots in 

the robotic organism.  Robotic organisms of different sizes can have different growing strategies. 
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Always extending the size of the body might not prove the most adaptive. This information input 

should allow the robot to evolve an ideal size in a particular environment 

(5) The time the robot has waited before docking with other robots 

(6) The increasing or decreasing rate of the energy level of the robot 

Depending on the robot’s status (growing/aggregating or not) an instruction will be generated on 

how to interact with other robots. According to its status, each robot will verify its corresponding 

interaction functionalities during the developmental process. If the status of the robot is ‘growing’, 

the embedded GRN will decide the corresponding docking strategy of that robot. For instance, it will 

need to determine which side(s) of the robot needs to dock with another robot, after which the 

docking side(s) will send docking messages to attract other robots to join the robotic organism. In 

other words, for every robot for which the status is ‘growing’, the GRN controller will determine a 

local configuration (fig 4.10) and will develop the corresponding functionality of the robot. The 

swarm robots that have not obtained a genome and are controlled by a simple movement program 

will search randomly for the growing robots until they receive a message to dock or aggregate with 

other robots. 

A new swarm robot that joins the robotic organisms will inherit the genome from the robot that 

directly recruits it and will then develop a GRN itself. For these newly recruited robots, the status 

‘growing’ is the default, but not necessarily the final status. For all robots that have the status 

‘growing’, at every time step, the local GRN will re-decide the status of the robot and check whether 

the new status is still ‘growing’ or has changed its status to ‘stop growing’. The status of the robot 

will always change to ‘stop growing’ when the robot has reached its local configuration plan by 

aggregating with other robots at all proposed docking sides. The ‘stop growing’ status will stop all 

aggregating functions of the individual robots. In addition, when and only when the status has 

changed to ‘stop growing’, the local GRN controller will be shut down and the robot‘s status will no 

longer be able to change until the end of this robotic organism’s lifecycle. Through this 

morphogenesis process, each robot in the organism will tend to achieve its local topology by 

aggregating with other swarm robots. When all included robots have achieved their own proposed 

local topology, this process will eventually lead to a self-assembled organism. Another characteristic 

of this process is that the robotic organism can flexibly adapt to the environment during 

development.  Unexpected environmental changes (like robots breaking down or not sufficient 

robots having been discovered for docking) during development will not terminate development of 

the robotic organism but will be overcome by developing a novel configuration plan. 

 

4.2.4 Results 

 

We developed a particular simulation scenario to assess to what extent our GRN-based controller 

would allow self-assembling organisms to flexibly develop and rethink their configuration plan under 

changing environments. More specifically, we simulated a 2D grid in which energy sources are 

provided according to a certain 2D pattern (topology). Robots that aggregate into a configuration 

that follows the food distribution topology will be able to consume more energy and obtain higher 

fitness levels (see more details in appendix D). Robots thus should learn to assemble according to a 
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specific topology. To mimic fluctuating conditions, the food distribution topology was altered with a 

predefined frequency. 

Concretely, in our simulation, during every time step, the individual robots in the robotic organism 

will consume a certain amount of energy.  As a result, the robotic organism has to find enough 

energy otherwise it will disassemble. During every time step, the simulation will distribute energy 

packets over the simulation matrix (a 90 by 90 cell grid) according to a certain pattern. The robotic 

organism can detect such energy packets and harvest their energy content. Absorbed energy will be 

divided over all robots in the robotic organism. When the energy of the robotic organism cannot 

satisfy the energy consumption of all robots in the organism, the organism will disassemble and all 

robots will be re-initialized as independent swarm robots (Fig 4.10). Contrarily, if the energy of the 

robotic organism reaches a predefined maximum level, the genome of the organism might get 

replicated(with a 1% probability) and the replicated genome will be transferred to a randomly 

selected swarm robot, which can then start developing a new robotic organism. In our set up, a 

robotic organism can only grow but cannot move during the simulation.  As a result, the 

configuration of the robotic organism is the sole factor determining the efficiency of energy 

collection. Furthermore, every particular topology has a different possibility to overlap with each 

certain energy distribution pattern on the simulated map and the more overlap between the robotic 

organism and the energy distribution pattern, the more energy will be collected. 

For investigating the adaptability of the robotic organisms under a changing environment, we 

frequently change the pattern of the energy packets distribution, which simulates environmental 

change (we use four different distribution patterns that are altered every 200 time steps).  The 

average energy level of the robotic organism and the number of robotic organisms that survive 

during the simulation are used as an indication of the average adaptability of the robotic organisms 

in a changing environment. Hereby we assume that more ‘adaptive’ organisms will, on average, have 

Figure 4.12 a) Evolution of the average energy level of all robotic organisms during 

15,000 time steps.  b) Evolution of the number of robotic organisms over 15,000 

time steps. 
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higher energy levels, while more ‘adaptive’ genomes will lead to more organisms that survive.  

Therefore, we evaluated the average energy level of all robotic organisms as well as the number of 

surviving organisms in our simulation after every ten time steps. All simulations were performed with 

300 robots.  At the start of the simulation, 200 robots act as swarm robots that have a random 

controller that allows the robot to move around and turn to avoid obstructions.  The remaining 100 

robots are defined as ‘organism robots’ that have a genome and are ready to develop a robotic 

organism by aggregating with the swarm robots.  ‘Organism robots’ cannot move.  Through time, the 

number of both kinds of robots will dynamically change but the total number of the robots always 

amounts to 300.  Indeed, some swarm robots will join the organism robots and become part of the 

robotic organisms, while some robotic organisms will disassemble and become swarm robots again.  

The simulation starts with 100 individual robots selected for aggregation.  However, the actual 

number lies around 50 because about 50% of the initial robots will also actually develop into a 

robotic organism.  In turn, most of these initial robotic organisms cannot successfully survive in the 

simulated environment, which explains the drop in the number of robots early in the simulation.  

Only when the robotic organisms become more adapted, their number steadily increases. 

In Fig 4.12a, we show the average energy level of all robotic organisms during runtime in one 

simulation experiment, while Fig 4.12b shows the evolution of the number of surviving robotic 

organisms during runtime.  In this simulation, we have set the default mutation rate on the artificial 

genome as 5*10-6 (changes per site in the genome per time step; see further). The fluctuations that 

can be observed in Fig 4.12a and b are caused by the changes of the environment (determined by the 

topology of the energy sources but also by the number of swarming robots that can possibly 

recruited to dock).  However, in general, we can see that there is a continuous increase in the 

average adaptability of the organisms during runtime and the robotic organisms develop more 

adaptive configurations in a frequently changing environment, amongst other things because the 

optimal behavior under a certain condition is getting encoded in the genome of the robot. 

To test the added value of having a mutation rate that is varied according to the fitness function 

towards adaptability, we have compared results from simulations obtained with robots that either 

have a fixed non variable default mutation rate versus robots that have a variable but different 

mutation rate (Fig 4.13).    
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Figure.4.13 Evolution of the number of robotic organisms as a function of different mutation 

rates. The red curve represents the increase in the number of robotic organisms when the 

genome has a default mutation rate of 5*10-6 but different regions in the genome evolve at 

different rates (from 3*10-6 to 9*10-6), while the green curve represents a mutation rate of 

3*10-6 and the blue curve represents a mutation rate of 9*10-6. 

 

As can be observed in Fig 4.13, a genome with variable mutation rates will lead to better adaptation 

than a single mutation rate applied to the whole genome. This result also shows that too many 

mutations will damage the adaptability by destroying the adaptive genetic features on the genome 

and GRN, but on the other hand, too few mutations will not bring about sufficient variation to adapt 

fast enough to a changing environment.  Similarly, We also compared simulations obtained with 

robots with or without the gene duplication as a mutational event. Fig 4.14 shows that organisms 

have a better chance of survival when gene duplication is allowed, which implies that also 

evolutionary processes such as gene duplication can indeed improve the average adaptability of the 

robotic organisms. 
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Figure 4.14 Evolution of the number of robotic organisms during 15,000 time steps. The red 

curve represents the evolution of the number of robotic organisms when gene duplication is 

not invoked; blue represents the result when gene duplication has been turned on. 

 

4.2.5 Conclusions 

 

In this research, we developed a distributed swarm robot self-assembling approach, using the 

biologically inspired concept of gene regulatory networks. The 2D Simulation experiments show that, 

by using this approach, multiple swarm robots can aggregate together to form a robotic organism 

that can adapt its configuration as a response to a dynamically changing environment. In addition, 

we examined different evolutionary operators such as mutations and duplications and show that 

these may have important roles in accelerating the adaptive process. On the other hand, we design 

and tested our approach based on the real Symbrion robot. Due to the limitation of resource, we 

only tested our controller with the single Symbrion robot for compatibility and performed the swarm 

robots simulation with a limited scale on robot3D simulator. (see Fig 4.15) These experiments proved 

the feasibility of our approach in the practical environment.   
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Figure 4.15 Screenshot for the aggregation in robot3D. 

 

4.3 Surviving scenario in an artificial ecosystem 

 

This section 4.3 is partly reproduced from the following publication: 

Yao, Y., Marchal, K., Van de Peer, Y. (2014) Improving the adaptability of simulated evolutionary 

swarm robots in dynamically changing environments. PLOS One 9,e90695. 

 

4.3.1 Abstract 

 

One of the important challenges in the field of evolutionary robotics is the development of systems 

that can adapt to a changing environment. However, the ability to adapt to unknown and fluctuating 

environments is not straightforward. Here, we explore the adaptive potential of simulated swarm 

robots that contain a genomic encoding of a bio-inspired gene regulatory network (GRN). An artificial 

genome is combined with a flexible agent-based system, representing the activated part of the 

regulatory network that transduces environmental cues into phenotypic behavior. Using an artificial 

life simulation framework that mimics a dynamically changing environment, we show that separating 

the static from the conditionally active part of the network contributes to a better adaptive behavior. 

Furthermore, in contrast with most hitherto developed ANN-based systems that need to re-optimize 

their complete controller network from scratch each time they are subjected to novel conditions, our 

system uses its genome to store GRNs whose performance was optimized under a particular 

environmental condition for a sufficiently long time. When subjected to a new environment, the 

previous condition-specific GRN might become inactivated, but remains present. This ability to store 

‘good behavior’ and to disconnect it from the novel rewiring that is essential under a new condition 

allows faster re-adaptation if any of the previously observed environmental conditions is 
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reencountered. As we show here, applying these evolutionary-based principles leads to accelerated 

and improved adaptive evolution in a non-stable environment. 

 

4.3.2 Introduction 

 

An important goal in evolutionary robotics is the development of systems that show self-adaptation 

in dynamically changing environments[184,185]. Searching for the ‘fittest phenotype’ is only one 

aspect of the self-adaptive behavior of such so-called complex adaptive systems (CASs), because 

under a dynamically changing environment, a solution that is optimal at a certain time might be 

different from an optimal solution at a later time. A truly self-adaptive system thus should not only 

reach higher performance in one particular environment, but should also evolve a better self-

innovating ability that allows it to survive under different and changing conditions. This requires the 

ability to learn from past experiences, because although environmental changes are unpredictable, 

they are likely to reoccur. 

Being naturally occurring examples of complex adaptive systems, biological systems provide an 

important source of inspiration [17,75,186,187]. The molecular mechanisms underlying the 

adaptability of biological systems are Gene Regulatory Networks (GRNs), which are composed of 

interacting genetic entities such as genes and proteins[138,188,189]. These networks transduce 

signals rising from environmental cues into a proper phenotypic behavior that allows the organism to 

flexibly respond to environmental changes. The signaling networks active in a cell are the result of an 

underlying genetic encoding, provided by the genome. Evolutionary processes acting on this genome 

gradually can lead to novel emerging circuits (evolutionary network rewiring). 

Several bio-inspired systems have been developed that use an artificial genome (AG) and a 

corresponding controller, usually a network structure represented by an Artificial Neural Network 

(ANN)[72,190]. Here, a distinction can be made between systems that rely on a direct versus an 

indirect encoding. Systems that make use of direct coding use an ANN network design with an a-

priory defined structure that directly determines the robots' phenotype. Such systems are generally 

well suited to efficiently evolve an optimal behavior towards a particular predefined task because 

they have very good learning abilities [72]. Systems that use indirect coding do not impose a 

predefined network structure, but only predefine rules. For instance, a ‘gene’ will define a node in 

the ANN, but this node will find and connect with other nodes in the ANN based on the given 

conditions. The ultimate structure of the network will therefore develop itself, according to the 

predefined rules. Compared to a system that makes use of a direct coding scheme, one that uses 

indirect coding in general allows for a more compact and flexible encoding of the genome and its 

corresponding GRN, mainly because not all details of the network structure need to be predefined 

and the GRN structure can evolve during the developmental process[191,192]. Such indirect coding 

approach is therefore more suitable to develop self-adaptive systems. Recent indirect coding 

approaches encode their ‘rules’ with a more biologically realistic version of an AG that mimics 

features of real biological genomes, for instance by means of mimicking an encoding of 

transcriptional interactions between TFs and their targets[1,71,103,193,194]. 
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However, most earlier implementations have in common that, irrespective of their structure and 

implementation specificities, the evaluation of fitness or performance acts directly on the network 

controller by either affecting its structure or the weights of its interactions whereas the AG serves as 

nothing more than a convenient encoding of the GRN on which the evolutionary algorithms are 

applied. In contrast with real biological systems, most of these previously developed approaches do 

not allow for an uncoupling between the genomic encoding and the part of the genome that is 

activated in a condition-dependent network structure. In real biological systems, this uncoupling is 

achieved through different regulatory mechanisms. Condition-dependent activation of genes is, for 

instance, mediated through transcriptional regulation. Upon certain environmental cues, only part of 

the genome is translated into an active network. Short-term environmental feedback can then be 

achieved by post-transcriptional or post-translational modification of this activated part of the 

network, whereas long-term adaptation is largely the result of selection acting at the level of the 

genome. 

In this study, we developed a self-adaptive system, which combines a ‘bio-inspired’ artificial genome 

with agent-based modeling (further generally referred to as our GRN-based controller) to mimic the 

condition-dependent way in which only part of the genome is activated following the interaction 

between the robot and its environment. Using a simulated dynamically changing environment, we 

demonstrate that the condition-dependent activation of the GRN and its uncoupling from the 

genomic encoding increases the potential to evolve and adapt in a non-stable environment.   

 

4.3.3 Material and Methods 

 

Design of the bio-inspired GRN based controller 

 

We assume that the genomic encoding of the cellular regulatory network and the way this encoding 

is translated into an activated GRN is a feature of natural systems that is key to flexible and robust 

adaptation. Fig 2.4 provides a general overview of our framework.  To implement the uncoupling 

between the genomic encoding and the part of the network that is activated in a condition-

dependent way, our GRN-based controller consists of two distinct encodings of the GRN (see the 

following Materials and Methods sections for an extensive description).  The ‘core GRN’ is encoded 

by the AG that defines the genes and all their possible interactions. In this AG, genes are not pre-

specified, but identified in a randomly created string of digits.  Potential interactions between genes 

are encoded in this genome by mimicking the encoding of a transcriptional network ( see more 

details on section 2.2 in chapter 2 ).  Although this AG encoded GRN defines all possible interactions 

between genes, the set of interactions that will be activated is condition-dependent.   

The condition-dependent instantiation of the core GRN is mimicked by an agent-based system. 

Agents can be considered as the translation products of the corresponding genes in the AG.  For each 

gene type, a matching agent type has been defined (see more details on section 2.3 in chapter 2). 

Which part of the AG will be translated into the agent-based instantiation of the GRN depends on the 

encoding of the interactions in the AG: upon a certain environmental cue, a sensory agent will 

activate a regulatory or structural agent, according to the interaction rules that are currently present 
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in the AG. Once this agent is activated, in turn, this agent can activate another agent following the 

interaction rules in the AG and so on. The action of the sensory and regulatory agents thus mimics 

the way biological systems integrate environmental stimuli and pass them to the regulatory network. 

Structural agents transduce the signals perceived from the network into a pre-specified phenotypic 

behavior, such as moving, docking, etc.  

Rather than relying on a pre-programmed static GRN, defined by the AG [195], the GRN and its 

genomic encoding will evolve through the effect of evolutionary forces such as mutations and 

duplications acting on the genome. Because the long time scale over which newly evolved strains 

originate through mere Darwinian evolution in biological systems is very impractical in evolutionary 

robotics, we increased the adaptive potential of our robots by also allowing for a direct feedback 

from the environment on the evolvability of the GRN.  Agents are central in this feedback mechanism 

(through their adaptability value): upon increasing fitness values, agents will be able to extend their 

own life time (mimicking higher protein levels), allowing to directly influence the active part of the 

GRN. In parallel, agents will also act at the level of the genomic encoding of the GRN, e.g. by lowering 

the mutation rate of their respective genes, using a gene specific evolution model.  This localized 

feedback, both at the level of individual genes and agents, allows introducing the flexibility and 

robustness, characteristic of complex adaptive systems. 

 

Implementation of the GRN based controller 

 

The GRN-based controller actually consists of two separate layers: a bio-inspired AG and an agent-

based layer. The AG is based on the model of Reil [121]. For a detailed description of the genome 

structure, we refer to chapter 2. Key to our model is the explicit distinction between signaling, 

regulatory and structural genes, which all have the same basic structure but differ in their ‘content 

region’, which specifies their functionalities. For signaling genes, the content region encodes a 

potential ANN structure that receives and integrates signals sensed by the robot, while for regulatory 

genes the content region defines the connectivity of the regulatory network, i.e. for each regulator it 

defines which targets the regulator can potentially interact with and the mode and extent to which 

the regulator can activate its targets. For structural genes, the content region defines the robot's 

actuators on which the structural gene can potentially act. All functions and interactions of the genes 

encoded in the AG are referred to as ‘potential’ because they will only become activated upon the 

translation of the gene into a corresponding agent. The bio-inspired AG thus encodes the core GRN 

(the full regulatory network or entire collection of genes and all its possible interactions). The core 

GRN is an emergent system that changes over time by the evolutionary forces acting at the level of 

the genome. The total genome size consists of 10 chromosomes of 10,000 characters. 

The second layer consists of an agent-based system that represents the condition-dependent 

instantiation of the core GRN (see Fig 2.4). Three types of agents have been defined, each 

corresponding to a specific gene type. Agents can be seen as the translation product of the genes. 

The agents that correspond to the gene type execute the action defined by the gene type: signaling 

agents include an embedded ANN, which reads the sensor input values and establishes combinations 

of sensor values in the (simulated) robot and channel the integrated sensor signals to the GRN by 

converting them into a ‘sensed value’. This ‘sensed’ value is used to activate genes in the network. 
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Regulatory agents correspond to regulatory genes, which mediate signal transduction in the network 

by activating or repressing other regulatory or structural agents according to rules that are defined in 

the AG. A structural agent will translate the encoded information of a structural gene to an output 

parameter, which drives the actual actuator (e.g. wheel) of the robot. Each actuator usually receives 

many parameter values from different structural agents and will average these into one final value 

that will then be used as the control parameter (output value) for this particular actuator (see 

chapter 3 for the section ‘The common functionalities all robotic organisms’ ). 

If a gene is translated into an agent, the ‘concentration’ of this agent depends on the expression level 

of the gene (which is determined by the rules encoded in the AG). In general, the higher the 

concentration of the agent, the higher the influence of the agent on the final output. Once 

translated, the concentration of the agent decays with time, mimicking protein degradation. If the 

concentration of the agent drops below a pre-set minimal level, the agent will be deleted. The 

change in concentration of an agent is determined by a default decay rate and the so-called 

adaptability value (AV) of the agent (see chapter 2 for ‘The adaptation on the individual gene’). 

Adaptability values, which express the ‘added value of the agents’ presence' for the phenotype, 

depend on the current fitness value. During its lifetime, the agents' concentration and survival time 

will increase with an enhanced adaptability value. Adaptability values of agents are thus key towards 

incorporating feedback from the environment. 

 

Mutational events acting at the level of the artificial genome 

 

As evolutionary forces acting on the AG, we implemented both substitutions and duplications  (see 

chapter 2 section 2.2.1). The mutation model in our system follows the adaptive mutation model, 

described earlier [196]. In general, the intergenic part of the genome has a higher mutation rate than 

the ‘coding’ part. Also signaling genes have lower mutation rates than other genes, to guarantee that 

the environmental signals perceived by the robot remain relatively stable during a minimal time 

span. The mutation and duplication rates are gene specific and are dynamically determined by the 

fitness of the system. Genes with high expression levels are assumed to be under selection pressure. 

Therefore, the mutation rate of those genes will be lowered, mimicking the long-term effect of 

natural evolution in which genes that are under selection tend to be more conserved, or will be 

preferentially duplicated. 

 

Simulation framework and scenarios 

 

We have used artificial life simulation[57,143,197,198] to see how our GRN-based simulated swarm 

robots perform in a changing environment. In our simulations, every robot has seven different 

functionalities, each of which comes with a different energy cost and energy consumption style (see 

detail in chapter 3: table 2 and 3). The total energy consumption for one robot during one time step 

depends on three factors, namely 1) a basic energy consumption required for each time step, 2) the 

energy consumption for performing certain functionalities, and 3) extra energy consumption for 

aggregation, if this takes place. The robots live in a two-dimensional 90 by 90 matrix or grid in which 
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a number of energy sources (e.g. food) are distributed. During every time step, the robots will sense 

the number of surrounding robots and food sources, after which the robot will determine its next 

action based on its input and GRN controller values. As previously stated, selection and fitness of the 

robots are all based on energy (in the form of food sources). Several types of food sources exist that 

differ from each other in the minimal amount of energy required to access the food source (see 

Table 3). Robots can have different energy consumption styles, each of which comes at its own cost. 

For instance, food sources of Type 3 require a minimal energy level that is higher than the maximal 

energy level a single robot can possess. These food sources are therefore only available to robots 

that have aggregated with other robots. At the same time, maintaining the aggregation with other 

robots will cost extra energy, but comes at the benefit of being able to acquire more costly food. 

Such complex functions allow robots to explore more complex behavior[199,200]. If a robot does not 

have enough energy to cover its basic living energy consumption, it will be regarded as dead and 

removed from the simulation. Depending on the experimental set up, different simulations were 

performed. The details of the simulation parameters can be found in chapter 3. Note that in the 

simulations, the distribution of food (energy) not only depends on a random distribution function, 

but also on the interaction of the robots with their environment.  

The different experiments were as follows: 

Four different experimental designs were used to test different aspects of the robots. For each set 

up, 50 simulations were obtained. 

Experiment 1: Comparing the adaptive behaviour of ANN and GRN-based robots. Here we run the 

simulations using the parameter setting described above for both the GRN and ANN based robots. 

Food sources were randomly initialized. Simulations were run for 4000 time steps. When the number 

of robots in the population drops below 100, food resources are initialised again. Robotic AGs were 

randomly initialized.  

Experiment 2: Competition experiment. The simulation set up is identical as the one mentioned 

above except that robots with the two different controllers (ANN and GRN based) were competing in 

the same simulation and could mutually influence each other. 

Experiment 3: Test to assess memory behaviour: The simulation set up is identical as the one 

mentioned for experiment 1, except that the simulation was run longer (and shown for 7000 time 

steps only). The experimental set up was run for several consecutive cycles in a row allowing the 

robots to continuously adapt their GRN. All simulations were repeated 50 times. In the main text, 

only few representative results are shown, as due to stochasticity, the behavior is not always exactly 

the same. The 50 other simulations resulted in a similar behavior, which we assessed as follows: 

1. the difference between the maximal energy level between the last and the first cycle as a 

measure of the global energy gain and averaging those figures over the 50 simulations.    

2. by calculating for how many simulations the energy is monotonically increasing over the 

different cycles (no fall-backs) 

3. by calculating the average energy increase between two consecutive cycles (also assessed at 

the point where in each cycle the maximal energy level is obtained) 

 

Experiment 4: Set up was identical as the one in experiment 3 except that here we compared the 

performance of:  
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• the GRN-based controller with full condition feedback (that is feedback of the environment 

on the life time of the agents, the gene specific mutation rate, and the condition dependent 

activation of the AG in activated agents 
• the GRN-based controller with reduced feedback i.e. the feedback from the environment on 

the life time of the agents and the gene specific mutation rate (through the AV values) is 

disabled, but these robots can still uncouple the core network encoded by the AG from the 

condition-dependent activated network (data not shown) 
• All input from the environment was disabled 

 
All simulations were repeated 50 times. In the main text, only few representative results are shown, 

because, due to stochasticity the behavior is not always exactly the same. The 50 other simulations 

resulted in a similar behavior, which we assessed as in experiment 3. 

 

Related controller types 

 

To assess the extent to which a GRN-based controller results in an improved adaptability in a 

dynamically changing environment, we have compared the performance of our evolutionary GRN-

based controller with that of two other types of controllers. The first one is a simple controller, 

implemented as a static, non-evolvable ANN that transduces environmental signals over a randomly 

initialized network structure (referred to as a Random ANN). The second controller is an evolutionary 

ANN controller that uses similar genome and evolutionary operations as the one used in Bredeche et 

al.[201]. All control parameters, including the nodes and the weights of all edges of the ANN have 

been randomly initialized and the controller will respond to the environmental inputs based on these 

control parameters. To make the comparison between ANN and GRN controllers as fair as possible, 

we have limited the maximum number of agents of our GRN controller to 200, thereby reducing the 

inner complexity and the size of the dynamic network in our simulation. On the other hand, we also 

used similar feedback loop and local optimization methods for the ANN as the ones used for the GRN 

controller. More specifically, the ANN controller we implemented makes use of a distributed learning 

function that allows every edge between two nodes in the ANN to change its vector and weight value 

based on the feedback of the robot performance. The weights of all edges in the network structure 

will be optimized separately at each time step. So just as in the agent-based system, the connections 

and the weights of the connections between the nodes (taking the role of the agents in the GRN-

based controller) in the ANN are changing dynamically in response to the environment. Changing the 

network structure thus corresponds to the genetic alteration in our bio-inspired artificial genome, 

whereas changing the weights of the edges corresponds to the changes we impose on the agents. 

This implementation therefore uses principles that are similar to the ones used by Subagdja et 

al.[202] and Yu et al.[203]. In the ANN controller, each edge corresponds to an agent that responds 

to the global fitness of the robot’s Fi in the following way (as determined by its adaptability value) 

The adaptability value of the agent present in the ANN at time step i is: 

AV� =

��* + 
�
2  
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Two parameters (AVmax and AVchange) will be assigned to each agent. These two parameters can differ 

amongst different agents. If AVi is smaller than AVmax, the agent will calculate the value AVdistance at 

time step i: 

AVdistance(i)= (AVmax-AVi)+ AVdistance(i-1) 

If AVdistance(i) is greater than  AVchange, the agent will change the weight parameter at that time step 

otherwise the agent will keep the same weight parameter. If AV is greater than AVmax , AVdistance will 

become 0. 

If the agent decides to change the weight parameter (W), it will add or subtract a certain value, 

based on AVdistance. The value increase C at time step i is determined as:   

C = AVdistance *Rchange 

 

Where Rchange is randomly assigned in the range of 0% to 50%, decided by the gene. 

The mutation rate of the genome is based on the energy level of the robot. The lower the energy 

level, the higher the mutation rate.  The mutation rates ranges from 2*10
-4

 to 0 (for the 350 genes in 

genome). 

 

Assessment of the adaptability of robot controllers in simulation experiments 

 

The average energy level of the robot population, the average energy gain of the robot population 

between subsequent time steps, the number of ‘untouched’ food sources, the number of robots that 

survive, and the population size are all parameters used to assess the general adaptability of the 

robot population. The energy level reflects, for each robot, its energy at a certain time point. The 

average energy level then corresponds to the average of the energy levels of all robots present in the 

population at a certain time step (i.e. total energy of all robots divided by the population size). The 

energy gain between consecutive time steps reflects, for each robot separately, the net increase in 

energy level between the considered time points, irrespective of the historical context of the robot. 

The average energy gain is defined as the average of the energy increase of all robots in the 

population between consecutive time points (i.e. total energy gain of all robots divided by the 

population size). 

In our set up, robots with increased adaptability will have higher energy levels, which will lead to 

fewer deaths and more offspring, both of which result in larger population sizes. Based on the 

indicators mentioned above, the average adaptability of the robots is assessed. Besides measuring 

the overall energy level of the robots as a measure of their adaptability, we also traced their overall 

phenotypic behavior. More in particular, we assessed the evolution of the population size, and 

occurrences of attacks and aggregations (docking) during every time step over the whole population. 
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4.3.4 Results 

 

Performance of GRN-based versus ANN-based controllers  

 

Our GRN-based controller is different from previous controllers in several aspects. One of the most 

prominent features of our GRN-based controller is the uncoupling between the core and activated 

genome, which is achieved through the interaction between the ‘agent based layer’ and the ‘bio-

inspired AG’ that defines the rules according to which the core network is translated into an 

activated network. To test the specific contribution of this combination to the performance of the 

controller, we compared with an ANN that is very similar in set up to our GRN-based controller, 

except for the design of its artificial genome, which does not allow for such uncoupling. As such, we 

hypothesize that most of the observed differences in adaptability of robots controlled by either 

controller can be attributed to the differences in the design of their respective artificial genomes.  

We compared the performances of both controllers under a dynamically changing environment 

(simulation parameters are described in the chapter 3).  As a baseline we also assessed the 

performance of a simple non-evolutionary ANN based controller (referred to as a random controller).  

As expected, under all simulations, robots with an evolutionary controller greatly outperformed 

those with a random controller (not shown). The differences in adaptability, using average energy 

levels as indicators, between robots with evolutionary-based ANN and GRN controllers are shown in 

Fig 4.16. From these plots it is clear that, despite their similar performances at the beginning of the 

simulations, after a certain time, robots with a GRN based controller are more efficient in finding 

food sources (not shown) and therefore reach higher average energy levels than the ANN based 

robots. For all types of controllers, the energy levels drop after having reached an optimum for some 

time, which is due to food exhaustion (not shown). Interestingly, robots driven by a GRN-based 

controller show more variation in obtained energy levels between individuals than the ANN 

controller-based robots, reflecting the difference between robots with ANN and GRN-based 

controllers in exploring the search space and dealing with constraints imposed by the changing 

environment. 
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Figure 4.16 Comparison of the dynamics of the average energy level between robots with 

GRN (a) and ANN-based controllers (b). The x-axis represents running time measured in time 

steps, while the y-axis represents the populations' average energy level. 

The populations' average energy levels are summarized for 50 independent simulations by means of 

box blots in which the solid line in the box represents the median value of the average energy of all 

simulations, the box borders correspond to respectively the first and third quartile and the extreme 

values correspond to respectively the lowest and highest average energy values observed in any of 

the 50 simulation experiments. When the number of robots in the population drops below 100, food 

resources are initialized again. 
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Besides measuring the overall energy level of the robots as a measure of their adaptability, we also 

traced their general phenotypic behavior. For instance, Fig 4.17 shows the area explored by ANN and 

GRN robots, respectively. As can be observed, GRN robots explore the environment more evenly 

than ANN robots. The difference in area exploration between the two different types of robot 

controllers is a reflection of their more variable movement behavior. The fact that, for ANN robots, a 

considerable number of cells are ‘visited’ many times (Fig 4.17a), implies either that, during the 

simulation, some robots wander around the same place for a long time or, alternatively, that more 

robots gather together at the same place. Considering the search for food sources and resource 

limitation in the environment, both situations are not ideal for the performance (adaptability) of the 

robots. GRN-based robots on the contrary tend to less frequently get ‘trapped’ in a certain situation 

(Fig 4.17b). They show generally more variation in the areas that get explored and therefore are less 

repetitive in their behavior. This implies that GRN robots more easily change movement strategies 

depending on the environmental situation in which they reside.   
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Figure 4.17 Movement behavior for (a) ANN and (b) GRN-based robots. The X-axis represents 

the number of robot visits, over 50 simulations, while the Y-axis represents the number of 

cells that have experienced that specific number of visits (non-cumulative).  

Cells that have seen many visits (which is mainly true for the ANN robots) represent robots that 

spend much time visiting the same cell (i.e. robots have been trapped in these cells for a 

comparatively longer time), which implies that they do not explore the area as efficiently. 
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Figure 4.18 The statistic analyze on the robot visits record. 

The figure above directly shows the range of the robot visits in the ANN and GRN robot simulations. 

The result clearly indicates that the robot visits in GRN robot simulation show a more even 

distribution (we only retrieve the data when the cells number and robot number in both kind 

simulations become constant and same, so more even robot visits distribution means better 

exploration under this situation ). 

T test report: 

p-value < 2.2e-16 

alternative hypothesis: true difference in means is greater than 0 

sample estimates: 

mean of ANN  =     49.01080;   mean of GRN= 26.47368 

To directly compare the adaptability of our GRN controller with that of an ANN-based controller, we 

also performed competition experiments in which both controller types were run together in the 

same simulation environment (see details on section ‘Simulation framework and scenarios’). In this 

experiment, the size of the initial swarm robot population was the similar for both controller types. 

As can be seen in Fig 4.18, the population of ANN-controlled robots in general adapts faster to the 

initial environment than the GRN-based robot population, as is shown by the more rapid initial 

increase of its population size, assessed as a higher value of the first derivative of the population 

ANN robot GRN robot 
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increase over the first 1000 time steps, a behavior that was observed in 80% of the simulations. 

However, after this initial fast increase in robot population size, when food sources become more 

limiting and finding food more challenging, GRN-based robots tend to outcompete ANN-based 

robots, indicating that they can better cope with the changes in environmental conditions. 

Disappearance of the competitors decreases the competition imposed on the GRN-based robots, 

leading to a faster increase of the GRN-based population, a behavior that was observed for all (100%) 

simulations, for an average running time of 4000 time steps. At the end, the rapidly increasing 

population causes the food resources to become exhausted, resulting again in a decrease of the GRN 

population. 

 

Figure 4.19 Evolution in population size of ANN and GRN-based robots in a (representative) 

competition experiment. 

The X-axis represents the different time steps during the simulation. The red curve shows the 

population size (Y-axis) of GRN-based robots while the blue curve shows the population size (Y-axis) 

of the ANN-based robots. The green curve shows the number of available food sources. Increases in 

the number of food sources are due to the fact that the system will add new food sources with a 

certain rate after a pre-set number of time steps. 

The results of these (and other, data not shown) simulations suggest that in general the GRN-based 

robots gain a higher fitness and show richer phenotypic behavior (better explore the search space, 

show more variable phenotypes, and are more resistant to limitations in the food resource) than 

ANN based robots. We hypothesize that this difference in behavior can be mainly attributed to the 

uncoupling between the core and activated network which is a main feature of our GRN based 

controller: by mimicking the presence of condition-dependent transcriptional activation through the 
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encoding of ‘transcriptional interactions’, an environmental condition activates only part of the ‘bio-

inspired’ genome. Only this activated part of the genome will contribute to or adversely affect the 

robots fitness, whereas its ‘non-active’ part will randomly change (due to evolutionary operators) 

without directly interfering with the fitness, allowing the system to more easily escape from local 

optima and to explore the search space more efficiently. For the ANN-based controller on the other 

hand, any alteration in the network structure will cause a global influence. So once the system has 

reached some optimum, a small change will often have a deleterious effect, making it hard to escape 

from the local optimum[204].   

  

The ‘bio-inspired genome structure’ contributes to improved memory behavior 

 

The specific way in which the GRN-based controller reaches its optimal energy levels reflects another 

important characteristic of GRN-based robots. In contrast to an ANN-based robot that re-optimizes 

its network each time it is subjected to a novel condition, our GRN-based system uses its bio-inspired 

AG to ‘store’ behavior that was optimal under a particular environment for a sufficiently long time. 

When subjected to a novel environmental condition, the previous condition-specific structure might 

become inactivated, but remains present. This ability to store ‘good behavior’ and to potentially 

disconnect it from the novel rewiring that is essential in a novel condition, allows fast re-adaptation if 

any of the previously observed environments is reencountered. In other words, GRN-based robots, as 

implemented in this study, theoretically leave a historical imprint in the system, here referred to as 

memory behavior. 

To further demonstrate this behavior, we devised the following experiment in which we repeatedly 

imposed the same initial environmental condition and tested to what extent the GRN-based robots 

tend to rely or fall back on a previously evolved network to more efficiently adapt to a major switch 

in the environment (Experiment 3). As with all simulations, food sources were restored to their initial 

levels as soon as the robot population drops below 100 individuals. Also here, we compared the 

results to those obtained with an ANN-based controller that does not make use of the ‘bio-inspired 

genome’ and thus should lack the memory behavior. 

Results are presented in Fig 4.19 and clearly show that the GRN-based controllers are more efficient 

than ANN-based controllers in finding food (or alternatively prey other robots), while they also 

survive longer, when an initial condition re-occurs, which can be inferred from the fact that the 

average fitness of the population (here assessed by the average increase of energy over ten time 

steps) is increasing despite the condition-resets. For the ANN-based controllers this behavior is less 

pronounced, and sometimes even reversed. For instance, we have calculated the rate of the average 

energy increase from the start of the environment reset to the next environment reset. For ANN 

robots, the rate of the average energy increase is 12.9 energy units/10 time steps and 14,85 energy 

units/10 time steps for the first and second condition reset, respectively. For GRN robots, these 

values are 15.91 and 21.74, respectively (computed and averaged over 10 different simulations). The 

fact that the GRN-based robots adapt faster suggests their controller can, upon a condition reset, 

invoke a stored part of the GRN (or the set of agents representing the GRN) that was already 

previously ‘optimized’ for survival on the encountered conditions. The fact that fitness increases, 

suggests that the robots continue to improve an already partially optimized network structure and 
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do not have to start evolving the network from scratch again after each condition reset.

 

 

Figure 4.20 Average increase in energy for robots with ANN versus GRN controllers. 

The Y-axis represents the average (of the entire robot population) increase in energy measured over 

ten time steps, while the X-axis represent running time measured in time steps. a) Four consecutive 

simulations are shown for robots with ANN controllers. b) Four consecutive simulations are shown 

for robots with GRN controllers. Drops are caused by food resource exhaustion. When the number of 

robots in the population drops below 100, food resources are initialized again, causing the 

population to recover. 
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Disentangle the effect of the environmental feedback from the bio-inspired genome 

 

Besides the condition dependent activation of the agent-driven activated network (encoded by the 

AG core network), feedback from the environment is also used locally and can affect individual 

network components (more in particular the agents' life time and the gene specific mutation rates). 

Although we implemented an ANN-based system that can also cope with feedback acting locally on 

single genes and edges and that only differs from our GRN based system in not having the condition 

dependent activation of the AG, we cannot completely rule out that the improved performance of 

our GRN-based robots over the ANN-based robots can also be attributed to the differences in the 

way this local feedback is implemented in both systems. 

Therefore, to unequivocally assess the relative impact of the way feedback is dealt with versus the 

conditional uncoupling of the core from the activated network, we disentangled the impact of both 

factors in the GRN-based system: we compared the fully functional GRN-based controller with, 

respectively, a GRN-based controller in which all feedback has been disabled (i.e. the feedback from 

the environment on the mutation rate and the agents' life time as well as the feedback responsible 

for the condition-dependent activation of the core genome into an agent driven activated GRN) and 

a GRN controller in which only the feedback from the environment on the mutation rate and the 

agents' life time was disabled.   

Fig 4.20 shows the overall differences in adaptability of a controller where all feedback has been 

disabled and a controller in which all feedback has been enabled. As expected, in general, fully 

functional GRN-based controllers reach higher fitness, again measured as the average increase of 

energy over time. Although the initial performance of the robots without feedback is similar to the 

ones where feedback has not been disabled, the fully functional GRN robots show much better 

performance, particularly after the environment has been ‘reset’, suggesting that the feedback 

mechanisms are instrumental for the improved performance, hence adaptability, of the robots. 

Importantly, simulations where only the feedback from the environment on the mutation rate and 

the agents' life time was disabled, show a performance that is quite similar (only slightly improved) 

to that of fully enabled systems (data not shown), suggesting that it is indeed mainly the feedback 

responsible for the condition-dependent activation of the GRN that is crucial for improved 

adaptation. 
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Figure 4.21 Comparison of the GRN controller robots with and without feedback. 

The Y-axis represents the average (of the entire robot population) increase in energy measured over 

ten time steps, while the X-axis represent running time measured in time steps. a) Three consecutive 

simulations are shown for robots with GRN controllers with all feedback disabled. b) Three 

consecutive simulations are shown for robots with GRN controllers with feedback enabled. Drops in 

average energy increase are caused by food resource exhaustion. When the number of robots in the 

population drops below 100, food resources are initialized again, causing the population to recover. 

The difference of performance is mainly represented by two values. The first value is the maximum 

energy level that robots have reached in the simulation. For the feedback enabled group, before 
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resetting the environment, the maximum energy level is in the range of 200-250 but the value has 

increased after the environment has been reset (the new range is about 290-320). The second value 

is the surviving time for the whole population. When the population size is above 100, we regard the 

population as surviving. How long the population can survive during the simulation represents the 

adaptability of the population. This value (indicated by the interval time between environment 

resets) also has apparently increased after the environmental reset in the feedback enable group 

(the actual extension of surviving time is variable based on each experiment but it always have a 

clear extension about 15%-30% compared with the one before environment reset). For the feedback 

disable group, we did not observe any apparent increase on both of these values after the reset.  

 

4.3.5 Conclusions 

 

The self-innovating nature or evolvability of biological systems depends on their ability to store 

information acquired during the past that can be reused on later occasions. For instance, bacterial 

systems that have been subjected to reoccurring conditions have been shown to develop memory 

behavior after several rounds of training[205]. Another key factor contributing to the evolvability of 

biological systems is the presence of epistasis or the ability to explore a vast combination of 

mutations, some of which can be neutral or even deleterious to the fitness but of which the 

combination can largely enhance fitness values[206,207]. Being able to explore the search space 

trough fitness valleys therefore is a key factor of evolving novel emergent behavior[208]. In this 

work, we hypothesize that key to this memory behavior and ability to release epistatic interactions is 

the decoupling of the genomic information encoding the full regulatory network (here referred to as 

the core GRN) from the activated part of the network. This is, amongst others, proven by the fact 

that cryptic variation in genomes, i.e. variations that can occur without directly interfering with the 

fitness, have been shown to contribute largely to the evolvability of natural systems[184,209]. In 

addition, billions of years of evolution have shaped the genetic contingency of natural systems to be 

highly modular and degenerate. This modularity (e.g. presence of well-defined pathways) and 

degeneracy is the result of selecting systems that can efficiently anticipate on novel conditions 

without the requirement of a network rewiring that would prove detrimental in other 

conditions[210,211]. 

Here, we tested whether imposing such bio-inspired design in which the genome and the activated 

part of the network are uncoupled could also improve the evolvability of an artificial self-adaptive 

system. To this end, we developed a robot controller that combines an artificial genome with an 

agent-based system that represents the activated part of the regulatory network. As in biological 

cells, the full regulatory network is encoded in the genome, here represented by an artificial genome 

consisting of both regulatory and structural genes. Depending on the environmental signals or cues, 

part of the encoded network is activated following the rules of transcriptional regulation. The 

activated part, modeled by an agent-based system, is responsible for sensing the environmental 

signals (signaling agents), transducing these signals through the network (regulatory agent layer, 

reflecting the gene products of the corresponding genes) and translating them into the proper 

behavior (mediated through the structural agents). Whereas the artificial genome represents the 

encoding of the transcriptional network, the agents can be seen as the functional gene products (i.e. 
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proteins) of the encoded genes. This way, the agent-based system mimics the active regulatory 

network and signal transduction system that is also present in naturally occurring biological systems. 

Our simulations indeed show that separating the static from the conditionally active part of the 

network by using a bio-inspired design contributes to a better adaptive behavior. We believe that the 

specific ‘memory’ behavior and improved ability to deal with changing conditions can be mainly 

attributed to the ‘bio-inspired genome’ that allows uncoupling between the static and the condition-

dependent part of the network. It should be noted that this work represents only a first 

implementation of our approach and more work is necessary to see how we can further improve on 

the realistic mimicking of gene regulation in artificial life forms. 
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Chapter 5  

A novel simulation framework for simulating multiple level 

interaction-based evolution with a nested system architecture 
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5.1 Introduction 

 

To achieve our aims introduced earlier, namely to set up a computational framework to study 

adaptation in complex systems as a response to a changing environment, we have implemented 

multiple level interactions in our simulation framework, which thus includes the robot level, the GRN 

level and the gene level. In chapters 2 and 3, we have separately discussed artificial gene regulation 

and artificial life simulation. Artificial gene regulation focuses on processes that happen inside an 

organism (GRN level and gene level), while artificial life simulation emphasizes the interaction 

between different organisms in the same population and simulates various adaptations of the 

different organisms dynamically (robot level). In our simulation experiments, we have integrated 

these two parts in one simulation providing a holistic view on evolution. We embedded artificial gene 

regulation (through GRNs) in every simulated robot. The output of the artificial gene regulatory 

process determines the phenotype of the organism, while the environmental cues such as the 

number of food sources or the number of surrounding organisms can also affect gene regulation 

through feedback mechanisms.   

In chapter 4, we have demonstrated that our framework can improve the adaptability of the robots 

in a changing environment. In this chapter, we will further discuss and demonstrate the relation 

between complex adaptation and the multiple level interactions using the same artificial evolution 

simulation experiments as used in chapter 4. 

 

5.1.1 Emergent complex adaptation 

 

For a trait to be adaptive, this usually requires the cooperation of several genes while their 

contribution to fitness is influenced by many factors. For instance, even when the external 

environment is stable, the importance of a particular trait is still dynamically changing because of 

changing behavioral strategies, dynamic niches, aging processes and so on. In addition, adaptation of 

an organism is not based on any single trait but usually involves several traits. This makes adaption 

complex and therefore we talk about complex adaptation [206,212,213]. To understand how 

complex such integration between different traits can be, we will take the metaphor example of 

company mergers or recruitments. For a small company, integration may be not really being a 

problem because the cooperation is simple and every position has a clear function. However, for 

huge international organizations, making a successful merger or recruitment almost becomes an 

impossible mission even for experienced HR experts. The only way to integrate such complex 

organizations is allowing enough time for interactions between individuals to evolve gradually. 

Through interactions, integration will grow organically and will become self-organized in the system. 

Suddenly inserting a novel individual or entity in a complex system can lead to an unpredictable 

result even with careful design and preparation. The more complex the system is, the more risk it will 

take for introducing changes. Therefore, the complexity of adaptation is actually often difficult to 

understand. One consequence of complex adaptation, as discussed by Michael Lynch [207], is that 

“character alterations require more than one novel mutation to yield a functional advantage”. Even if 

one single ‘mutation’ could lead to a novel trait (for instance in the case of genetically modified 

organisms), the novel trait still needs to ‘exist’ and ‘persist’ in a biological context (non-genetic 
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factors such as niche, culture and so on).  It is clear that any novel adaptive trait requires interaction 

with other traits and any one of these seems not likely to adapt with the novel trait without a clear 

biological context[214-216]. Therefore, it is hard to see how complex adaptation of organisms can 

emerge from random and discrete mutations. If a single mutation does not solely lead to a certain 

adaptive trait, it will tend to be removed from the genome under selection pressure.  As a result, to 

explain why novel adaptations continuously occur during evolution, some argue that the pleiotropic 

effects of genes and phenomena such as gene duplication can counteract the effect of individual 

mutations (by for instance increasing the redundancy)[217]. However, Fisher, Wagner, and Orr also 

brought up another problem about pleiotropy and gene duplication in their evolutionary studies 

[218-220], which is referred to as the “cost of complexity”. Pleiotropy and gene duplication will 

inevitably increase the complexity of gene regulation[220]. Based on Fisher’s geometric model, the 

rate of adaptation decreases quickly with the rise in organismal complexity (also see again the 

example of company mergers), because complexity makes mutations to have more pleiotropic 

effects on the phenotype. To balance all these effects and then reach the subtle equilibrium in 

adaptation eventually will require more precise changes. In addition, it is obvious that the adaptive 

status with higher complexity is easier to be destroyed by random changes. For complex systems, the 

more random changes that occur, the more damage they can cause. All in all, higher complexity 

tends to require more precise mutations to form an adaptive alteration while it decreases the 

tolerance of the system to random trial and error. Based on the traditional systems’ framework 

(without considering interaction at multiple levels), the contradiction discussed above makes it 

difficult for the system to overcome the “cost of complexity” (see more details in [221]) and to 

achieve novel complex adaptation in evolution. However, we assume that considering interaction at 

multiple levels of evolution can help the system to avoid this problem. Interaction at multiple levels 

can separate the whole complexity into individual agents. Through selectively picking the particular 

agents at different time, the system can always rearrange the evolutionary modules in a dynamic 

way, which increases the robustness of the whole system during evolution and the possibility of 

evolving complex adaptation. Ulieru and Doursat [222]  proposed a similar idea of using a ‘bottom–

up‘ design to improve the efficiency of the system under a complex context and they referred to the 

way of such system design as “emergent engineering”. In our research, we implemented ‘emergent 

engineering’ by an agent-based system and simulated complex adaptation in our artificial evolution. 

The results (see also chapter 4) suggests that our new model can accelerate the adaptive emergence 

of complex behavior under a complex scenario.  

 

5.2 Methodology 

 

5.2.1 General description of the simulations 

 

In this particular experiment, we have run 100 different simulations (based on the same simulations 

discussed in section 4.3 but we use the different part of the result). The general environmental 

setting was the same for all simulations (see also chapter 4). Half of the simulations used GRN robots 

and half used ANN robots. Detailed information on the simulation environment can be found in 

chapter 3. What is different in the result part discussed in this chapter is that we focus on analyzing 
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the collective behaviors of robots here and the result does not include the part after food sources 

have been restored to the initial situation. The population will be regarded as experienced an 

extinction when the population size is smaller than 100 (robots). After the environment restored, the 

result will be influenced by the previous evolutionary context (variable replication rates and the 

population partition on each simulation make the result between simulations are less comparable) 

and this makes the demonstration too complicate so we only analyze the result before the 

environment restore in this chapter. The more complicated scenario ( i.e adding the extra external 

changes like the environment restore) will be investigated in future work. There is no explicit fitness 

function. The energy level of each individual robot is the only critical factor for its survival or 

reproduction but its energy level is not directly responsible for any particular trait or behavioral 

pattern (robots can have various strategies to obtain or save energy during the simulation, so the 

energy level of robots is always the combination of multiple strategies and various environmental 

conditions). The energy level of the robot is completely dependent on the interaction of the robot 

and other robots.   

Through the simulations, we compare the adaptations of the two kinds of evolutionary robotic 

models in a dynamically changing environment. This simulated changing environment mimics the 

features of a natural environment (see the details in the chapter 3). The environment dynamically 

‘interacts’ with the robot’s behavior during the simulation and the corresponding adaptation of every 

individual robot also can be different based on the specific context.  

To compare the result of our novel agent-based framework (discussed in detail in Chapter 2) with 

other network-based frameworks, we also implemented an artificial neural network (ANN) into the 

robotic organisms. For the ANN robots, we use a direct encoding method to produce an ANN to 

represent regulation. We also set reinforcement learning [223,224] on each edge of the ANN to 

optimize the structure of the ANN.  The details of the ANN robot can be found in Chapter 2 and the 

appendix. 

 

5.2.2 Comparing GRN and ANN-based robots 

 

The experiment that will be discussed in this chapter is a same implementation as the one discussed 

in section 4.3.  

As stated before, in the GRN robots, we use a bio-inspired genome (while the ANN genome is a 

randomly generated string of numeric values) that is based on a 4-digit sequence while the agents 

are corresponding to a particular gene product (see chapter 2). The function of the agents is not the 

tuning of the parameters between one gene and one particular function but rather defining/deciding 

on the binding with a particular genetic region (i.e. binding region, different genes can have the same 

binding region) on the genome or on the interaction with other agents. Gene regulation in the GRN 

robots is actually defined by the interaction between all agents (which forms the translated GRN). 

Compared to the ANN robots, there are three main differences:  

The first important difference is that the pattern of selection in the ANN is unique and only based on 

the performance of the robot. In other words, there is no multiple level selection in the ANN robot. 
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For the GRN robots, the pattern of selection has a multiple level architecture, as described before. At 

the level of the single organism, selection is based on the behavior and the environmental context of 

the organism, however at the agent level, each agent in the robot can have its own particular pattern 

of selection based on the ‘inner environment’ (the local situation in the same robot: i.e the 

concentration level of other agents in the same robot) and the ‘functional features’ of the agent (i.e 

the similarity of the binding motifs between agents). At the genetic level, the pattern of selection can 

vary from gene to gene based on the performance of the corresponding agent (see chapter 2 for 

details).  

The second difference is that the behavior of the GRN robots emerges from the interaction between 

agents (i.e. gene products, robots) at multiple levels (e.g. the genes will be selected based on the 

long term context while the agents (gene products) will be selected based on the short term 

context). The behavior of the ANN robots is based on the explicit network structure and the current 

environmental inputs, so they assume less interaction (between nodes in the network). For instance, 

when one connection in the ANN has changed, the vector and weight parameters of other 

connections will not adapt to that change (output values will change but not the parameters). 

Therefore, the effect of one change in the ANN is certain. In the GRN on the contrary, changes in one 

gene may lead to the activation or repression of other genes and as such not only change the output 

but can also influence the selection pressures and local environment (context) of these affected 

genes or agents. So changes in the GRN may propagate into directions that cannot really be 

predicted or anticipated (emergence), while this is much less the case for the ANN robots. 

The third difference concerns the nature of mutations. Our ANN robots use a genome that uses 

direct encoding, in other words, the genome directly encodes the initial parameter values of the 

ANN. In contrast to bio-inspired genomes, the effect of mutations on the direct encoded genome is 

limited by the predefined genome structure.  In the bio-inspired genome, mutations at different 

positions will have different effects on gene regulation and gene expression while such diversity of 

mutational effects is greatly reduced in the direct encoding genomes of ANNs, because every 

mutation in the direct encoding genome will explicitly change only one corresponding parameter of 

the ANN network. In addition, the mutation rate of the ANN genome is fixed while the mutation rate 

can vary according to the ‘adaptation’ of each gene in the GRN robot (feedback mechanism, see 

Chapter 4). 

The way of selection, the use of a simpler ‘context’ (fewer interactions) and the global mutation 

process simplifies the evolutionary process on the ANN genome and the role of genes as 

independent evolutionary objects.  This is evident from our simulations comparing ANN and GRN 

based robot controllers (see further).  However, it should be stressed again that the aim of study is 

not so much to show the superiority of the GRN model over the ANN model (because there are 

limitations in comparing both models), but rather to show and evaluate the potential of the GNR 

approach in adaptation of complex system behavior, which we do feel is more likely to occur in the 

GRN based approach(or the similar emergent engineering approaches). 
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5.3 Results 

 

In this section, I will present the results of our most recent experiments.  

The result includes the simulation running with GRN robots and ANN robots. At the population level 

of our simulation experiments, the collective behavioral pattern is always evolving during the 

artificial life simulation (same for GRN robots and ANN robots); at the genetic level, for GRN robots, 

both the genes (through mutations) and the GRN (through the interaction of the individual agents) 

are evolving in the robot.  For the ANN robots, the whole artificial neural network directly interacts 

with the environment and the robot’s behavior through learning programs too (see Appendix), but 

the components in the network (i.e. the weight parameters of the different edges and the number of 

nodes) are not dynamically influenced by the interaction between learning programs after the ANNs 

have been formed. Therefore, GRN robots have a more comprehensive system of interaction 

between genes, and expression and phenotypic features. 

Such difference between GRN and ANN robots makes GRN controllers in the robots focus on 

reaching an equilibrium rather than on the certain system structure. In other words, the GRNs in the 

robots have a group of dynamic statuses and the transitions among these statuses are based on the 

interaction of agents, genes and environmental conditions.  Contrary, in the ANN robots, there is no 

corresponding interaction to influence the individual components inside of ANN, so only the whole 

network interacts with the environment but not the particular sub-components. 

By comparing the evolutionary trajectories in the GRN robot and ANN robot simulations separately, 

we hope to get more insight in the complex interactions that occur during the artificial evolutionary 

process and complex adaptation. In addition, the result also demonstrates that simulating the fine-

grained interaction at multiple levels accelerates the emergence of novel adaptive patterns during 

the artificial evolution.  

During the simulation, we track different features (i.e. energy level, the number of prey actions, the 

number of new agents and so on) of the robots every 10 time steps. 

 

5.3.1 Evolution of collective behavior  

 

The collective behavior of organisms reflects the interaction at the robot level, while the collective 

behavior of a population in turn determines the local environment of the individuals in the 

ecosystem.  In other words, the collective behavioral pattern of the population can also influence the 

organisms’ local niche and a changing niche or environment, in turn, can effect the further 

adaptation of the organisms. Here, during our simulations, we specifically analyzed the evolutionary 

process regarding the collective behavior of organisms. The collective behavioral pattern in a 

population is based on the interactive behavior of each individual organism while the behavior itself 

is dynamically evolving during the whole evolutionary process. In our scenario, here, we particularly 

focus on prey and aggregation behavior, since these two kinds of behavior represent some basic 

relationships of interaction during evolution[225,226]. The prey behavior represents the competitive 

relationship between robots, while the aggregation behavior represents the cooperative relationship 
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between robots. It should be noted that before the predator actually preys, it needs to do an attack. 

An attack action does not always result in preying: if predators are comparatively weaker, an attack 

action will only cost more energy.  

In the simulated environment, there is a basic equilibrium that robots need to reach for surviving. 

The equilibrium concerns the food resources and the food consumption (food consumption is related 

to food searching efficiency, robot population size and so on). As we introduced in chapter 3, new 

food replication (similar to plant growth for instance) is based on the number of the current food 

sources and is inversely proportional to food consumption and the population size. If robots consume 

the food too fast, food resources will get exhausted rapidly, which will lead to extinction of all robots. 

On the opposite, if the robot cannot find and consume the food efficiently, the particular robot will 

become weak or will even die of starvation. All robots that survive and the whole population need to 

adapt their behavior to reach a state of equilibrium during the simulations. 

In our scenario, efficient searching behavior can help robots to find more food but it also may lead to 

overly-fast food consumption rates. Anyway, the searching behavior will be optimized during 

evolution since it could directly increase the adaptability of individual robots in a short time. To slow 

down the total food consumption of the whole population, some robots can prey others to gain 

energy instead of searching for food, if that would turn out to be the better strategy. However, prey 

behavior requires an extra energy cost and it needs the predator robot and target robot to be in the 

same cell space. Compared with searching for static food sources, finding moving robots and 

attacking them to gain additional energy will be more risky (i.e. pursuing and attacking other robots 

does cost extra energy) when food sources are abundant. On the other hand, robots could choose to 

aggregate to share the energy and be able to better defend against possible attacks. For joining the 

aggregated multiple robot organisms, every robot will also ‘pay’ an extra risk for the integration (the 

different GRN controllers on each aggregated robot may have disagreement on the common 

behavioral control of the robotic organisms and each aggregated robot has to share its energy with 

the others). At every time step, every robot in the simulation can decide its next behavior based on 

the inside GRN or ANN controller.  

Comparing the GRN robots simulation with the ANN robots simulation, we found that both robots 

show different collective behaviors. At first, as can be seen in figure 5.1, both prey and aggregation 

behavior happens more frequently in the ANN robots.  During the simulation, the GRN robots explore 

the grid more efficiently than the ANN robots (see further, and chapter 4) and this simply reduces the 

possibility of attacks or aggregation, simply because the robots ‘avoid’ each other.  However, more or 

less prey and aggregation behavior does not necessarily indicate better adaptability of robots 

because adaptation needs cooperation between several different kinds of behavior and behavior can 

be completely different for GRN robots than for ANN robots. Therefore, in our experiments, more 

than comparing ANN and GRN robots (comparisons have their limitations, as discussed before), we 

are interested to investigate the change in behavior for the same sort of robots but at different times 

or situations (see how they evolve and adapt during the experiment/simulations). 

Maybe a bit unexpectedly, in both simulations (GRN and ANN), aggregation behavior does not look 

very pronounced. We assume that this can be explained by the fact that aggregation requires extra 

cooperation between multiple robots and evolving such cooperation needs a longer time than 

evolving other kinds of behaviors. This will be investigated in future simulations with longer run times.  
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Furthermore, in our current scenario, the aggregated robotic organism has all the single robots’ 

controllers running and the organism is driven by the average of all controllers’ output. Moreover, 

the evolving context based on the single robot’s adaptation could be deleterious for the cooperation 

(i.e. different members have their previous strategies and such strategies have been evolved 

individually. After joining the group, all members have to use the same strategy and neutralizing their 

individual strategies could be deleterious to most members). To really to be able to evolve 

interesting aggregation patterns in our simulations, we probably need to simplify integration and 

cooperation in the multiple robotic organism (i.e. give a common controller instead of neutralizing all 

controller’s outputs), otherwise the adaptation will repress aggregation as we think we observe now.     

Regarding prey behavior, in the GRN robot simulations, unlike in the ANN robot simulations, we 

often observe that the occurrence of prey behavior greatly increases in the population during later 

stages of the simulation (see the example in Fig 5.1a). For the ANN robot simulations, (Fig 5.1b), high 

prey frequency distribute more evenly during the experiments and do not seem to be a specific 

adaptation when food becomes more scarce (more details will be discussed later). 
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(a) 

 
(b) 

 

Figure 5.1 Comparison of the frequency of successful prey and aggregation actions in ANN 

and GRN simulations. (a) shows the result of GRN robots in the simulation, as observed in 

several cases (about 10% of the simulations).  (b) shows the typical result for ANN robots in 

the simulation (1 Evaluation time=10 time steps). 

 

Figure 5.1 only shows one comparison between two simulations. In fact, many GRN robot simulations 

show very similar tendencies (more examples shown in the figure 5.2). However, based on different 

initial genomes and food distributions, increasing prey behavior in different GRN robot simulations 
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usually emerge at slightly different times. As mentioned above, the aggregation patterns did not 

change much during the simulations due to the integration cost, and therefore we have here only 

focused on prey behavior. 

 

 

 

 

Figure 5.2 Additional examples of prey behavior adaptation in the GRN robot simulations. 

 

When food is becoming scarcer, in some simulations, prey frequency often rapidly increases for GRN 

robots (see examples in figures 5.1a and 5.2). This likely represents an adaptation of the population 

because prey behavior can become more important when the food becomes scarce. Prey behavior 

reduces the population size but increases the energy of the surviving robots.  On the other hand, 

prey behavior also comes with a risk and costs energy to every individual robot in the population 

(defence and attacks both cost extra energy).  In the simulation, both kinds of robots will gradually 

optimize their food searching ability. When food becomes scarce, prey behavior cannot only be more 

feasible for the individual robot to gain energy but also to keep the balance between the population 

size and food availability. Therefore, increasing prey frequency is a form of adaptation when food 

becomes scarcer, while it also keeps the necessary balance between food availability and population 

size. 

In the GRN robot simulations, increased prey frequencies seem to emerge only when the food 

sources become really scarce and reach the lowest levels.  In these cases, evolving prey behavior 
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could be seen as some sort of last resort in order for the population to survive (longer).  In general, 

already without adaptation for prey behavior, GRN robots can survive much longer with fewer food 

sources than the ANN robots.  While on average, the ANN robot population dies when no more than 

120 food sources are available, the GRN robots survive until the number of food sources has been 

reduced to, on average, 80 or less (see Fig 5.3).  

 

 
 

 

Figure 5.3 Comparison on the number of food sources left before extinction of the population 

(sample estimates: mean of GRN=78.38889, mean of ANN=119.52174: Significantly different 

based on two sample t-test:  p-value < 2.2e-16). 

 

The fact that the GRN robots can, on average, survive much longer, is probably due to the fact that 

they are better in finding the food sources (and in exploring the grid, see also further in section 4.3), 

also when these become scarcer.  This has also been demonstrated previously (see Chapter 4, figure 

4.17). Finally, as observed before, GRN robots have higher overall fitness (evaluated based on the 

energy level) than the ANN robots at similar times in the simulation (see Fig. 4.16). We thus conclude 

that the (average) adaptation of the GRN robots is much better than that of the ANN robots.  

In conclusion, we observe that the GRN robots survive (much) longer with fewer food sources. GRN 

robots explore the grid more efficiently (as already shown in chapter 4), while they also seem to 

evolve alternative strategies, such as prey behavior (as shown here), as adaptations to food scarcity.  

We think that such dynamic adaptation resembles natural evolution more closely and shows that 

considering the relevant context and equilibrium is important in evaluating adaptability.  In some 

cases, fitness measured at one particular level (e.g. the fitness of a single organism) is not sufficient 

to fully describe adaptability, since the entire context is important and the overall adaptation of the 

population might not necessarily reflect the fitness of the individual.   
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Based on the design, we assume that the interaction of agents encoded by the GRN is the main 

reason for the difference in showing prey behavior between ANN robots and GRN robots.   While 

prey behavior occurs in the ANN robot population, unlike of what happens in the GRN population, it 

does not seem to be an active choice (adaptation) due to food sources becoming too scarce.  The 

ANN robots in the simulation are expected to achieve a good network model for adapting within the 

environment. Through evolving the weight parameters of the network that is encoded by the genes, 

ANN robots may ultimately efficiently reach a good network model for a certain task.  However, 

achieving equilibrium (between the food source availability and the population size) and balancing 

between multiple unidentified tasks (such as preying, defending, replicating) is still hard for an ANN, 

especially when such equilibrium has to be reached in a changing context and environment. Although 

equilibrium can possible be reached by the ANN, it will cost extra time to allow the ANN to evolve 

such corresponding network structure. In addition, when the environment has changed, the 

equilibrium may change as well and the previous structure could prevent to reach a new equilibrium 

point efficiently.       

The GRN robots directly connect the environmental information to the particular agents and through 

the interaction of these agents at the GRN level, the agents and GRN will remain active as long as 

performance is good. This way, a self-organized GRN will emerge in the robot. The formation of the 

GRN itself is a process to reaching the equilibrium between agents and each individual agent could 

be seen as part of the task solution. The key feature or goal of the GRN is not to find the solution 

procedure for a particular environment or task but to reach a dynamic equilibrium in a changing 

environment.  Through selecting the right agents (without having a direct influence on the system as 

a whole), GRN robots are more tolerant to changes. Moreover, when the equilibrium has changed 

because of a different environmental context, the GRN robots only need to activate and re-organize 

the corresponding agents instead of evolving all connections again. In our GRN controller, if the 

previous agents become irrelevant in the current situation, the environment will quickly repress 

them and there is no more interference from them. Based on the interaction of highly modular 

agents (attached with various environmental conditions), the GRN is more flexible to respond to 

environmental changes and more sensitive to the equilibrium in the environment.               

 

5.3.2 Complex adaptation in artificial evolution  

 

Adaptation in the natural environment usually requires a cooperation and balance of several 

particular traits rather than just one, which greatly increases the difficulty of a single level 

evolutionary model to reach a certain adaptation. To allow the evolution of complex adaptation, we 

adopted a multiple level evolutionary model in the GRN robot. We believe that, with the multiple 

level evolutionary framework, the system allows different sub-modules (i.e. the agents in GRN, or the 

robots in population) to independently evolve at the lower level while the cooperation pattern 

among multiple modules is evolving at the higher level through the interaction of all activated 

modules.  In other words, the system can separately evolve different traits at different evolutionary 

levels and subsequently evolve the relationships of interaction of these different traits.  

In our scenario, successful preying not only depends on the preference of robots and the energy 

(determining the success of an attack or defense) but is also highly influenced by the position of 

other robots (as suggested previously). The robot cannot prey others if they are not in the same cell 
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of the grid. Therefore, prey behavior also needs a corresponding moving behavior, otherwise preying 

will not happen. On the other hand, the food searching behavior also requires corresponding 

movement behavior and the interesting point is that food searching behavior usually goes against 

prey behavior. Robots flocking together is ideal for preying but it will be disadvantageous for 

searching food. The most adaptive strategies seek a balance between prey and food searching. When 

food is plenty, food searching should be encouraged, otherwise, preying could be more 

advantageous. Such adaptation is based on the dynamic balance present and is more complex than 

adaptation based on a certain fixed task scenario.  

For tracking the movement behavior of the robots, we have also evaluated all environmental 

conditions over different stages based on the number of food sources. Since it is difficult to discuss 

the moving trajectories for all robots during multiple experiments, we have used the average 

neighbour robot number (the sum of all neighbour robots/the number of robots*100) as a way to 

represent the movement of robots. This number directly influences the prey and food searching 

during the simulation. 
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(a) GRN robot simulation 

 
(b) ANN robot simulation 

Figure 5.4 Comparison of the average number of neighboring robots in different robot 

simulations 

The number of food resources 

The number of food resources 

T
h

e
 a

v
e

ra
g

e
 n

u
m

b
e

r 
o

f 
n

e
ig

h
b

o
ri

n
g

 r
o

b
o

ts
 

T
h

e
 a

v
e

ra
g

e
 n

u
m

b
e

r 
o

f 
n

e
ig

h
b

o
ri

n
g

 r
o

b
o

ts
 



 126

 

In the comparison (50 plus 50 runs) above, we see that both kinds of robots tend to have more 

neighbors when food is abundant or scarce. When the food is abundant, the robot’s energy level is 

usually higher and this enhances the reproduction rates of all robots. Offspring will be created in the 

same cells as their parents, which will increase the number of neighbors. When the food becomes 

scarcer, we assume that some robots will stop moving for saving energy and some of other robots 

will tend to flock together for having better prey conditions or for competing for the limited food 

sources.  Although both kinds of robots are following basically the same strategies, they will differ in 

the detailed behavior. First, the GRN robots spread more efficiently over the grid (see higher), and as 

a result, GRN robots have fewer neighbors most of the time. More efficient dispersion corresponds 

to wider exploration area and more efficient searching and thus leads to better food searching 

abilities.  Second, when food becomes scarcer, in some cases GRN robots can start to see having 

much more neighbors. The interesting fact is that such fluctuations in the numbers of neighbors is 

also reflected by the prey behavior of GRN robots. When the food is abundant, such correlation 

between the numbers of neighbors and prey frequency is not as apparent as when there is food 

scarcity. This implies that such correlation is based on some kind of cooperation rather than random 

coincidence.  On the one side, spreading more evenly over the grid could help the search for food, 

but on the other side, flocking together could increase competition and prey behavior when this is 

considered necessary. Moreover, when food becomes scarce, searching food and preying may 

become both important (compared to the situation when food is abundant, searching food will 

become more important) and it requires a new balance between the two strategies. Based on the 

comparison between GRN and ANN robots, GRN robots show a greater fluctuation (larger range data 

distribution) on both prey behavior and average neighbour number and the fluctuations are more 

synchronous when food is scarce. These features of the GRN robots imply that GRN robots generally 

better adapt to a changing environment. Under the same complex scenario, ANN robots shown less 

fluctuation (variation) when similar changes (food reduced) occur in the environment and usually 

show weaker adaptation, proven by their considerably less long survival time.  

 

The reason for the more fluctuated behavioral pattern of GRN robots is due to the structure of the 

GRN. Through the interaction of agents encoded by the GRN, the agents are dynamically activated or 

replaced until the GRN reaches a stable status (adaptive status for the robot). During this process, 

the environmental conditions and the relevant modules can gradually connect with the particular 

agents in the GRN (through feedback mechanisms) and the interaction between agents make all 

existing agents in the GRN tend to reach a common stable status constantly. When new 

environmental conditions occur, this will infer the activation of new corresponding agents in the GRN 

and these new agents may change the current equilibrium.  At that time, we will observe a 

corresponding change in robot behavior. Later, the agents (both new agents and the already existing 

agents) will tend to cooperate (exist together) and they will reach equilibrium again. Therefore, 

behavior will fluctuate to adapt to changing conditions. Such fluctuations can happen many times 

until the GRNs in the robots reach a new equilibrium or, alternatively, the robot dies (when not 

adapted). Therefore, re-balancing processes are inherent to the GRN robot framework. Contrary, in 

ANN robots, every new environmental change will directly influence the selection on the whole 

network and the selection will only have two possible outcomes: either the rewired network fits the 

new environment or the rewired network does not fit. There is no efficient re-balancing process after 
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rewiring of the network in the individual ANN and the behavioral pattern for a certain ANN (without 

any change on the genes) is global rather than local or based on the modular organization.  

  

Using interactions at different levels let the system more efficiently reach a balance between 

multiple traits and make the whole system become more robust to environmental changes. 

Moreover, it can accelerate complex adaptation. When some modules might not be beneficial right 

away, the system still has a chance to regulate the cooperation of modules (i.e. switch off 

inappropriate agents in the GRNs, but still remain the corresponding genes in the genome), instead 

of entirely fail in the selection process.  

               

In the Fig. 5.5, I present a comparison of the distribution of GRN robots and ANN robots in one 

example.  
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(a) 

 
(b) 

 

 
(c) 

 
(d) 

Figure 5.5 Comparison of the distribution patterns during simulations for ANN (right) and 

GRN (left) robots.  

The diagram presents the distribution of the GRN and ANN robots at different time steps during the 

simulation. The matrix (i.e. grid) corresponds to the simulated environment. Each cell of the map 

represents one basic space that can be occupied by a robot. All cells are marked in colors dependent 

on the number of surrounding robots. Cells in dark blue represent cells where no robots are present 

in surrounding cells while cells in red represent cells with larger numbers of robots surrounding 

them.  (a) time step 500 (current number of food sources: GRN 324, ANN 455); (b) time step 1500 

(current number of food sources: GRN 190, ANN 286); (c) time step 2800 (current number of food 

sources: GRN 107, ANN 122).  For the GRN result (left diagram), we can start observing colonies to be 

formed; (d) result at time step 3300 (current number of food sources: GRN 97, ANN 105) 
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As can be seen, at later stages of the simulation, the GRN robots still seem to show some structure in 

the distribution of robots occasionally, while for the ANN robots, robots seem to be randomly 

distributed over the grid all the time. Different with being trapped in one place for a long time, the 

colonies in the simulation dynamically move or change. Therefore, such colonies do not bother the 

food searching too much.     

 

From Fig 5.5 (c,d), at different time steps, we can see some novel patterns emerging in the GRN 

population, while for the ANN population, robots always seem to be positioned on the grid in a less 

structured manner. Furthermore, ANN robots often prefer to stay at the same point for a long(er) 

time (see also Chapter 4). 

 However, it is important to note that, for the GRN robots, the specific robot distribution patterns as 

shown in Fig. 5.5 only emerges when the food sources become scarce. Based on this fact, we could 

partly explain the large range fluctuation on figure 5.5 (left panel). When such pattern emerges, the 

neighbor number will quickly increase. However, these patterns are dynamically changing all the 

time and can quickly varnish so we also observed many low neighbor number records before or after 

the high records as well. 

 

5.4 Conclusions 

 

In this chapter, we have compared a GRN robot population with an ANN robot population. Based on 

the results of the simulation, we believe that the agents that are relevant for prey behavior, food 

searching behavior and moving behavior, closely interact and are not independent from one another. 

The equilibrium and cooperation between these behaviors in our simulations can be regarded as an 

example of complex adaptation in a changing environment. In our simulations, such complex 

situation usually appears at later stages when the robots have consumed most of the food sources 

and they need to change their strategies (adapt) to survive.  As we discussed above, only the 

combination of a limited number of food sources and large population sizes make prey action a trait 

for selection and therefore an advantageous adaptation. If food sources maintain to be abundant to 

the population, simply searching for food is obviously a more easy and efficient option than preying. 

Therefore, we do not observe the combination of prey and flocking together behavior evolving at the 

early stages of our simulations when food resources are still abundant.  
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Chapter 6  

Discussion and future prospects 
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Evolution is a complex process that includes numerous interactive causalities[227](we refer to these 

as interactions) at multiple levels (see chapter 5). Evolutionary studies of artificial evolution are often 

limited by the use of oversimplified models to describe these interactions. This work aims to use a 

novel computational framework to mimic the (interaction between) different evolutionary processes 

at work and to help researchers investigate evolution in a more realistic context. To this end, we 

modeled evolution and the different evolutionary processes as a complex adaptive system (CAS) with 

a nested architecture. In our simulations, each CAS model is represented by a bio-inspired (swarm) 

robot or agent. Through the collective behaviors of robots or agents, we can simulate the different 

evolutionary processes at play at multiple levels, as in real biological evolution. Furthermore, the 

novel framework can also deal with a dynamic evolutionary context (a changing environment), which 

is usually not possible in other simulation platforms. Using our approach, researchers could therefore 

simulate the dynamic evolution of self-adaptable robotic controllers. On the other hand, such 

simulations could also be used to identify the evolutionary “relationships of interaction” at different 

levels. For instance, experiments based on our simulation framework could identify how a few 

mutations can affect the composition and evolution of GRNs and the cooperation between 

organisms at later stages. Having implemented more comprehensive contexts and more realistic 

evolutionary trajectories will allow researchers to have a more holistic view on evolution, at multiple 

levels and at different time frames. In this chapter, I want to summarize the unique features of this 

research and briefly discuss what we have learned so far. 

 

6.1 Self-adaptive robot controllers in a changing environment 

 

In this work, I have developed several kinds of robot controllers based on the bio-inspired principles 

of evolution. These controllers are able to evolve the robot’s behaviors to adapt to environmental 

changes. As described, with adopting these controllers, environmental input activates the 

corresponding gene regulatory network on the artificial genome of the robot while the 

corresponding gene products are then represented as agents in the robot. The collective behavior of 

these agents then determines the phenotype of the robot (see chapter 2). Also, the feedback of the 

robot’s behavior will influence the adaptation of these embedded agents. Through the signals from 

the environment and the feedback, each agent will evolve and form part of a more ‘adaptive’ GRN. 

Actually, the evolving GRNs in the robot form the main body of the controller in each robot. We have 

shown that, in unpredicted and unknown environments, this approach can efficiently help the robot 

to improve its adaptability[117]. 

 

6.1.1 Controller for area exploration and collision avoidance  

 

This controller that we have used for area exploration and collision avoidance is based on the E-puck 

robot (Fig 4.2) while the experiments were implemented in the player/stage robotic simulator (see 

chapter 4, section 4.1). For a giving unknown maze environment, the controller could develop a real 

time strategy to avoid collision and at the same time explore the area maximally. The results showed 

that the robots equipped with our (simplified) GRN controllers had a certain self-learning ability. 
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Based on our simulations, it was shown that the controller could self-adapt to new situations in the 

environment. The controller mimics biological gene regulation and gene evolution through 

environmental cues that activate an artificial GRN in the robot after which the GRN controls the 

behavior of the robot.          

  

6.1.2 Controller for the multiple robot aggregation 

 

This controller that has been developed for the aggregation of swarm robots was based on the 

Symbrion robot while the simulation experiments were performed by both the Robot3D simulator 

and the 2D cellular automaton simulator. Except for the simulation experiments, we also tested the 

controller on single real Symbrion robots for potential future practical applications. This version of 

the controller could determine the interactive behavioral pattern of each swarm robot based on the 

local environment after which the collective behavior between these swarm robots will self-organize 

into the most suitable robotic organism to achieve a certain task. The main function of the controller 

is, based on the particular environmental condition, to determine the shape of the robotic organism 

and the possible aggregation process of each independently involved swarm robot. Different tasks or 

environments require different kinds of robotic organisms, but these mapping relations are usually 

unknown to people and robots a priori. Through feedback of the previous aggregation, our controller 

can optimize the aggregating behavior for each robot. This way, every robot can learn how to help 

making a more adaptive multiple robot organism under a particular environment. The basic 

mechanism of this controller is inspired by cell specification, gene regulation and gene evolution.    

 

6.1.3 Controller for complex adaptation 

 

This controller follows similar principles as controllers described previously, but the simulation 

scenario has been separated from the particular tasks and robot platforms. This controller is 

designed for all sorts of complex tasks under unknown and changing environments. We have tested 

this controller in an artificial life simulation with multiple virtual swarm robots and compared the 

performance of this controller with other ANN based controllers. Based on our simulations, we could 

show that the controller with the artificial GRN leads, on average, to a better adaptability than the 

ANN based controller.  

 

6.2 Artificial evolution and its nested architecture 

 

Starting from the artificial genome and GRNs developed in this study we introduced a particular 

embedded genetic regulation and evolutionary process in each robot. During the whole simulation, 

we simulate evolution at different levels (the genetic level, the organism level and the ecological 

level) and all those levels are simultaneously evolving.  After given the simulated evolution this 

nested architecture, we can not only observe the effects of the genetic changes to a particular robot 
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but can also identify the correlation between the genetic changes and the changes of the collective 

behavioral patterns. Furthermore, all models in our simulation are self-organized through the 

interaction of the different interactive components. In general, in our simulations, artificial evolution 

has the following features[117]: 

• Agent-based genetic regulation and gene evolution in the single robot: In each simulated 

robot, there is one evolutionary process based on the artificial genome and gene regulation. 

This also represents the bottom level of our artificial evolution while the other evolutionary 

processes (such as the interaction between robots and between robots and the 

environment) are all based on it. Through the interaction and expression of genes, the 

corresponding gene regulatory networks are also dynamically formed as a self-organizing 

process. The phenotype of the robot is based on the dynamics of the GRN while the activated 

genes on the genome will be selected by the adaptation of their corresponding agents. 

• Niche construction and symbiosis: Based on the different phenotypes of the robots, 

individual robots can establish various relationships with others in their local environment 

and such relations could have a corresponding effect on the adaptation of the robots at later 

stages. Such relationships could become stable after evolution and the corresponding stable 

local environment is called a niche. Such niches are evolving as well as the phenotype of the 

robot.   

• Evolving context in the virtual ecosystem:  At a larger scale, the different group of robots 

also interact with each other at the population level. Like different species in a biological 

ecosystem, the role and functions of these different groups of robot are various and these 

features are dynamically evolving. At the top level of our simulations, we identify the 

emergent behavioral patterns in the population and keep track of all events of the 

interactive behaviors for each robot. 

• The holistic view on evolution:  Simulating the various evolutionary processes at different 

levels synchronically allows us to identify the effect of the different evolutionary processes 

on the whole of evolution and the relationships of interaction between these evolutionary 

processes. This knowledge may give us a chance to reveal the potential mechanisms of 

evolution or inspire us to invent more efficient approaches for improving the adaptability 

and evolvability of the computational system. 

• The evolutionary context based on the interaction: In our artificial evolution experiments, 

the evolutionary models are self-organized and form a developmental system through their 

interactions. Therefore, all events may experience a different context at different times (like 

genes may be under different selection or have different mutation rates at every time step). 

Compared with predefining the context (predefine explicit selection rules or mutation rate) 

in the simulation, it avoids the problems of a missing or (too) artificial context. The results of 

the simulation are therefore more realistic.  

 

6.3 Interaction-based Evolution at multiple levels  

 

In our experiments, we have simulated the nested architecture that is commonly observed in 

biological evolution (see Fig. 1). From our point of view, biological systems are also complex adaptive 
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systems and based on complex theory.  The reason for such architecture existing in nature is related 

to the origin of complex systems. In the natural environment, when enough interactive components 

are present, these components always tend to construct a complex adaptive system through 

complex interactions [228]. Therefore, all complex adaptive systems in nature are inherent to a 

nested architecture.  

Another inherent feature of complex adaptive systems that should be mentioned is that every 

complex adaptive system always dynamically adapts to its environment [229]. When we consider 

these two facts, we actually could infer that such nested architecture should be the common feature 

of all natural evolutionary systems since all such systems could be regarded as complex adaptive 

systems [230].  

An important implementation in our work on artificial evolution is the extension of the concept of 

evolution. The commonly agreed consensus defines evolution as a developmental process based on 

selection. Initially this definition applied to all biological systems but later it gradually extended to 

non-biological objects like computer programs, ecological niches, memes and so on. This extension 

was not only because these follow similar principles as biological evolution but also due to the fact 

that at least some of them are part of an evolutionary context. Actually, the evolutionary context 

determines the selection pressure and is closely connected to all aspects of evolution. Therefore, an 

improved model or concept of artificial evolution should include the environment and context of 

evolution as evolving components since they are evolving as well. Another new concept in our 

approach of artificial evolution has to do with the selection of evolution. As discussed above, 

evolution is based on selection, but the concept does not explain the reason of selection because it 

has been assumed to depend on the environment and the environment is usually predefined in 

artificial evolution experiments. Based on our new model, we suggest that selection actually comes 

from the interaction between different parts (different levels) of evolution while all components of 

evolution form the environment. This explains and emphasizes that the different parts of evolution 

can have different selection pressures while such selection pressures can be evolving as well, just as 

any other evolutionary component.  

In contrast to the traditional artificial evolutionary model, evolution in our new model has to be 

regarded as a kind of  co-evolutionary process acting at multiple levels, and should be motivated by 

the interaction among all interactive components rather than a single evolutionary process based on 

selection in a given environment. To emphasize this difference is important because it leads to many 

new perspectives on the view of artificial evolution and it could help us to design a better 

evolutionary framework in both the simulation and engineering fields. In the next paragraphs, I 

would like to give some examples to show how the new model could help us in future research.   

First, the traditional evolutionary model usually imposes evolutionary context by using random 

events or predefined rules, such as for example gene mutation rate or the distribution of food in the 

environment, the fitness evaluation and so on. However often, the simulated cases are far removed 

from reality, while in real life also the evolutionary context (environment) keeps changing at all time. 

With a holistic approach, the solution to the problem above is to replay the context based on  rules 

of interaction among components. Compared to identify the concrete context, the rules of 

interaction and possible components in evolution are easier to be identified. Since all contexts are 

based on dynamic interactions in evolution, replaying these dynamic contexts from  interaction rules 
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is  a more feasible approach to predict the real case than using random or fixed context. Considering 

the complexity of adaptation and subsequent changes can have a domino effect in evolution, the 

effect on the ultimate result could be huge. Furthermore, new model also give us a more open view 

on some phenomena such as the orphan genes.  

Second, the new evolutionary model   could be applied to improve artificial evolution in programs. In 

the artificial system, there is often a tradeoff between evolvability and complexity. However, this 

contradiction is rarely observed in biological systems. Biological systems have much better 

evolvability and adaptability than any artificial system. Based on our view, we assume that these 

differences between biological and artificial systems are partly explained by recently discovered new 

features of evolution. There is an essential principle that has been observed not only in genetic 

evolutionary process, but in all kinds of biological evolutionary processes.  All these evolutionary 

processes are based on interaction. This principle has been investigated by Margulis [231], Duffin 

[232], Watson [233] and others. Numaoka [234] and Webster[235] for instance concluded that all 

evolutionary units, from replicating molecules to organisms, have “relationships of interaction” with 

others and there is no system that can survive independently as an autonomous form in evolution. 

These relationships of interaction have been evolving all the time through the interaction between 

evolutionary units and they all contributed to forming new evolvable units at higher levels during 

evolutionary transitions. Based on each particular evolutionary unit, the evolutionary process has 

been directly driven by two kinds of forces.  On the one hand, we distinguish an extrinsic force as the 

interaction relationships of the units that have evolved in an external environment.  On the other 

hand, we consider the inside of the unit that we refer to as the intrinsic force. The intrinsic force is 

represented by the evolved interactive pattern of internal components and it directly determines the 

characteristics of the unit. The transitions in natural evolution discussed above actually are linked to 

both kinds of evolutionary forces. For example, from the single cell organism to the multicellular 

organism, the multicellular organismic form presents a remarkable progress regarding adaptability 

and complexity. However, the single cell form is still contained in the new multicellular organism and 

the interaction of all internal single cells regulates the growth of the multicellular organism. Such 

nested architecture is ubiquitous in all evolutionary units of nature and the listed transitions could be 

regarded as the emergence of new adaptive forms at higher levels. The new form (i.e. the 

multicellular organism) has been directly evolved from the interaction of previous forms at lower 

levels or smaller scales (i.e. the single cell), so we also could say that it evolves as the extrinsic 

environment of small-scale forms and the higher level or larger-scale form is an adaptive pattern of a 

group of relationships of interaction. Furthermore, the small-scale forms may also include the same 

nested architecture and they are dynamically evolving by an intrinsic force. Apparently, these two 

kinds of evolutionary forces are closely connected with each other. As Watson and Pollack stated 

[236], this composition of pre-adapted extant entities into a new system is a fundamentally different 

source of variation from the gradual accumulation of small random variations and it has some 

interesting consequences for issues of evolvability. Based on the paper of Clune et al. [123], a key 

driver of evolvability in biological organisms is the widespread modularity of networks — their 

organization as functional, sparsely connected subunits. Clune et al. [123] also show that an imposed 

selection to maximize network performance and minimize connection costs could improve the 

modularity and adaptability of systems. As an extension to Clune’s hypothesis, we suggest that such 

modularity is not only based on the imposed selection from the external environment but is a kind of 

inherent attribute based on the iteration of the nested evolutionary processes discussed below. Self-
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organized evolutionary units organize into new systemic forms at larger scales through interactions. 

After the formation of the larger-scale new systems, those small-scale unit forms become 

“functional, sparsely connected subunits” and well-adapted modules. This way, we can explain major 

transitions in natural evolution, the continuous increase in complexity and the correlations among 

modularity, evolvability and adaptability based on the same evolutionary mechanism. To adapt to 

new environments, the natural system always tends to minimize the impact of changes through the 

interaction of modules that are part of the nested architecture. In other words, compared with the 

random rewiring of a part of the whole system, evolving the new interaction relationships among a 

few modules could greatly reduce the necessary changes to reach a novel adaptive status. As a 

result, few introduced changes will influence the relationships between the different modules but 

will leave the inside of the modules unaffected. A similar idea has recently been mentioned by Marc 

W. Kirschner as well. In his papers [237,238], he defined such multiple level modularity as facilitated 

variation and discussed the advantages of facilitated variation to evolution.  

Moreover, in natural evolution all modules are pre-adapted entities, which means that those self-

organized modules possess a certain self-adaptability. This self-adaptability potential of modules 

makes the whole system more evolvable than systems only including predefined modules because 

the re-adaptation process here is not only based on random mutations but also depends on the 

context (“memory”) of the modules. The new adaptive status emerges as part of interaction through 

a developmental process while the process is regulated through feedback from external and internal 

environments. The current artificial evolutionary models suffer from the “cost of complexity” 

because these models usually do not consider the above-mentioned interactive context and nested 

architectures. Without those, artificial models will lose the corresponding self-organized modularity 

and developmental adaptation that biological evolutionary systems have. In our study, we presented 

a novel bio-inspired evolutionary framework that aims to mimic the interactive context and nested 

evolutionary processes observed in natural evolution, and apply this to artificial evolution. We 

believe such a framework could significantly improve the adaptability and evolvability of artificial 

evolutionary systems [117].  

Third, combining with the assumed multiple levels evolutionary model, interaction and nested 

evolutionary architecture could better explain many questions in evolution that we have met with 

the traditional evolutionary model. For example, the origin of modularity in biological evolution has 

been debated for decades in evolutionary biology. Based on our new model, this can be easily 

explained by the two-side selection  (interaction) and evolution at different levels. Because there are 

different evolutionary processes self-organized at multiple levels , the various interactions will evolve 

the different patterns on each level separately. At a higher level, cooperation of evolutionary 

components at lower levels can be recognized as the particular modules. When stable cooperation 

between lower level evolutionary processes have  enough time to be evolved as a module, new 

evolutionary components at higher level evolutionary processes are possible to self-organize through 

interactions as discussed above. As a result, we can observe biological systems to include an inherent 

modularity since they all evolved according to this bottom up style. Another question could be 

explained by interaction between multiple levels is why we observe sudden extinctions [239] 

company with sudden eruptions [240] on the majority of species in history. Elimination on higher 

level will encourage the mutual components surviving at lower level and the consequent changing 

environment usually shuffle all none-mutual components as well. More examples like red queen 
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hypothesis [241] and so on also could be well explained by our new model while they are difficult to 

reconcile based on single level evolutionary processes.  

 

6.4 Limitations and future works 

 

Complex biological systems are difficult to understand or describe by simple models. Biological 

organisms obey the laws of physics and chemistry, but these basic laws do not explain for example 

their behavior.  Each component of a complex system participates in many different interactions and 

these interactions generate unforeseeable, emergent properties[242]. Our research aims to provide 

an approach that could help people to simulate such complexity from a bottom up way and 

investigate the relationships of interaction between the various evolutionary components at 

different levels. Based on our proposed approach we observed that adaptive patterns self-emerged 

at multiple levels of the evolutionary process and identified the impact of the nested architecture in 

evolution. However, to build a sophisticated simulator for evolutionary biology, our artificial 

evolutionary framework is still limited and the simulations need to be further improved for 

investigating real biological evolutionary phenomena.    

The main limitations of our current simulations are the following.  First, the scale of the simulations is 

still limited by the computational resources available. In the experiments described in this thesis, 

both the population sizes and the genome length are limited by the amount of computer memory 

available and the speed of the computational platform.  To allow fast enough simulations, we also 

have to simplify the interactive rules and the functions of the agents. These limitations may have an 

effect on the formation of the collective behavioral pattern and the functionality of the evolutionary 

operations. To remedy these at least partly, I have recently adapted our simulator to make it 

compatible with paralleling computing platforms (cluster computer) and can thus run on multiple 

processors[243]. With the new version of the simulator, we can hopefully greatly extend the 

population size and flexibly evolve the genome length during the simulation.   
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Figure 6.1 The parallel computing framework for the GRN robot simulations 

As shown in Fig 6.1, in the parallel computing framework, the artificial life simulation and the GRN 

simulations in the robot will be divided over different processors. All processors share the same basic 

models and knowledge of the interactive rules and each processor can communicate with the others 

by sending messages. This framework ensures the consistency of the whole simulation while it allows 

the simulation to extend the number of simulated robots by adding extra processors. 

The second limitation is that the artificial genome and the basic interactive rules used in our previous 

simulations are still too simplistic and may need to be made more complex to simulate real biological 

gene evolution in organisms. For example, in the previous simulations, the agents always start 

reading the genome sequence from the same start point. In later versions of our simulator, we have 

changed this and allow the agents to randomly start reading the gene sequence from any location of 

the genome. This new change makes the location of gene having less effect on gene expression but 

binding motifs having more effect.  In addition, we also have changed the structure of the genes to 

allow a more flexible and realistic gene regulation (for instance, multiple binding sites for one gene, 

various gene products based on a different regulation context and so on).  The details of the gene 

regulation mechanism may not be very necessary to evolve the adaptive virtual organism in 

computing science, because these details may correspond to the particular evolutionary context in 

biological evolution, but they are critically important to researches that aim to investigate particular 

biological evolutionary phenomena. Moreover, the basic interactive rules between the agents also 

need to be further improved in the future. In the current simulating framework, the agents represent 
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the various gene products or chemical compounds encoded for by the GRN. The possible chemical 

reactions between those ‘gene’ products are also complex. To better describe the possible 

interaction between various products (such as proteins or metabolites), we have started developing 

a knowledge base that can be used to define certain rules used by the different agents.  

With the improvements discussed above, future work of this research is twofold. First, we will extend 

the artificial evolution at a larger scale, thus with larger population sizes and longer time frames. In 

this case, we hope to be able to observe more complex self-organizing patterns emerging at multiple 

levels and thus we hope to evolve more sophisticated artificial evolutionary systems. Second, we will 

further try to make our simulations more realistically. The simulation platform and the agents still 

need to mimic biological evolution more closely, we think. For instance, we hope to also include 

information on the metabolism in our simulations. Chemical reactions and cellular signaling in cell 

metabolism will be represented by particular agents and the corresponding reaction mechanisms will 

be stored in the corresponding knowledge base. We hope that by adding this particular knowledge, 

we could simulate biological evolution even more realistically.  
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Appendix B 

ANN in this research: 

 

Regarding the ANN robots in our simulation, we keep the same settings for the ecological 

environment and actuators but, in every robot, have replaced the gene regulation implementation 

with an artificial neural network. Instead of an emerging GRN, the genotype-phenotype mapping is 

an ANN that is constructed by the artificial genome of the robot. A similar robot framework has been 

introduced before by Floreano and Keller [103]. However, our implementation differs from the one 

of Floreano and Keller  [103], with respect to 1) The genome of the ANN based framework is based 

on direct encoding and each gene on the genome provides an explicitly defined effect to the 

corresponding ANN; 2) The ANN is a fully connected network and we only evolve the vector and 

weight of each connection. The reason of fixing the number of nodes of the ANN is to make a better 

contrast with the GRN robot (more discussion in section 2.4.3 about dynamic regulation). The 

constructed ANN in each robot will receive the environmental inputs and then determines the 

behavior of the robot through output signals. For the rest of this section (see also Chapter 4.3, 

Chapter 5), we will refer to this kind of robots as ANN robots (compared to the GRN robots).  

  

Figure S.1 ANN framework in the simulation 

program 



 144

The connection between input node and middle node is given by genes, which is the same as the 

mapping between the signaling agent and inputs   

14 output signals * 25 middle node = 350 edges 

On each edge, one learning program is able to optimize the weight parameter on the particular edge 

based on the feedback of robot. When the feedback value has reached a particular threshold, the 

learning program will change the vector and value of the weight parameter. The changing rules for 

redefining the weight parameters are encoded in the genome of ANN robot and these rules are 

evolved during the simulation (mutation and gene recombination).        
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Appendix C 

More details about the GRN agent’s loop: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S.1 The life circle process of an agent in GRN 
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Figure S.2 An example of the signal path in the GRN 
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Appendix D 

Pseudo codes: 

 

Pseudo code for the single robot in artificial life simulation: 

Run LoadGenome() function random create or load artificial genome from other robot; 

If loaded the genome from others, running a mutation operation on the genome;  

While condition:the robot is alive; 

1. Updating the fitness of robot based on the previous performance; 

2. Sensing the environment and get sensor inputs S1,S2…S10 ; 

3. Creating the signaling agents based on the  sensor inputs; 

4. Running all agent sub-loops in the robot ; 

5. Checking the output signals: T1,T2….T14; 

6. Using the output signals to set the parameters of actuators;  

7. Checking whether the robot has enough energy preform the behavior of 

actuators; 

8. If energy is ok 

9. Then implement the behavior and cost energy; 

10. Else do nothing; 

11. Check the energy and record the behaviors; 

12. Calculating the fitness of robot for next step; 

13. Updating the information of robot to simulation; 

14. Checking whether the robot has enough energy to live or life time has reach 

the threshold; 

15. If true out of while loop, robot is dead; 

End while; 

Delete robot and release memory; 

Pseudo code for the artificial life simulation loop: 

Initialize the robots and foods on the map; 

While conditions: there are alive robots and the simulation is not over ; 

1. Check the simulation time and change the environmental 

parameters every 400 time steps (the energy cost for live and move, 

the food grow speed); 

2. Checking each remain food and decide whether the food can 

replicate itself based on the grow speed; 

3. Running all robot sub-loops and updating the situation of foods and 

robots; 

4. Referee the interaction behavior of all robots;   
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5. Read the updates of each robots and store the information; 

6. Output the robot information to the files at every 10 time steps; 

End while; 

Pseudo code for the self-organizing simulation loop (for the simulation in section 4.2): 

Initialize the robots on the map; 

While conditions: there are robots waiting for aggregation and the simulation 

is not over ; 

1. Check the simulation time and change food distribution; 

2. Running all robot sub-loops and updating the situation of robot; 

3. If the position of aggregated part of robot organisms are overlapped 

with the food distributed position, the organism can have a certain 

energy reward;   

4. If the swarm robot is in the range for aggregation; 

5. Then the swarm robot will become aggregated robot; 

6. All aggregated robot organisms cost a certain energy based on the 

number of aggregated robots 

7. If the aggregated organism has too low energy; 

8. Then its all aggregated robots become swarm robots again and the 

organism will be removed; 

9. Read the updates of each robots and store the information; 

10. Output the robot information to the files at every 10 time steps; 

End while; 
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