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ABSTRACT

Background: Left ventricular (LV) afterload is composed of systemic vascular resistance (SVR) and com-
ponents of pulsatile load, including total arterial compliance (TAC), and reflection magnitude (RM). RM,
which affects the LV systolic loading sequence, has been shown to strongly predict HF. Effective arterial
elastance (Ea) is a commonly used parameter initially proposed to be a lumped index of resistive and pul-
satile afterload. We sought to assess how various LV afterload parameters predict heart failure (HF) risk
and whether RM predicts HF independently from subclinical atherosclerosis.
Methods: We studied 4345 MESA participants who underwent radial arterial tonometry and cardiac output
(CO) measurements with the use of cardiac MRI. RM was computed as the ratio of the backward (Pb) to
forward (Pf) waves. TAC was approximated as the ratio of stroke volume (SV) to central pulse pressure.
SVR was computed as mean pressure/CO. Ea was computed as central end-systolic pressure/SV.
Results: During 10.3 years of follow-up, 91 definite HF events occurred. SVR (P = .74), TAC (P = .81),
and Ea (P = .81) were not predictive of HF risk. RM was associated with increased HF risk, even after ad-
justment for other parameters of arterial load, various confounders, and markers of subclinical atherosclerosis
(standardized hazard ratio [HR] 1.49, 95% confidence interval [CI] 1.18–1.88; P = .001). Pb was also as-
sociated with an increased risk of HF after adjustment for Pf (standardized HR 1.43, 95% CI 1.17–1.75;
P = .001).
Conclusions: RM is an important independent predictor of HF risk, whereas TAC, SVR, and Ea are not.
Our findings support the importance of the systolic LV loading sequence on HF risk, independently from
subclinical atherosclerosis. (J Cardiac Fail 2016;22:988–995)
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With the aging of the population, the incidence of heart
failure (HF) is expected to rise.1 Some of the strongest risk
factors for the development of HF include hypertension, di-
abetes, and atherosclerotic disease, making their appropriate
treatment an important part of HF prevention.1 Clarifying the
role of novel modifiable risk factors is of paramount impor-
tance to stem the tide of new HF cases.

Blood pressure (BP) represents the complex interplay
between cardiac function and the opposition to flow imposed
by the arterial system (arterial load).2,3 Arterial load is complex
and can be understood in terms of its resistive (ie, systemic
vascular resistance [SVR]) and pulsatile (total arterial com-
pliance [TAC], characteristic impedance of the aorta, and
indices of wave reflections) components.4 Wave reflections
arise in the peripheral arterial tree when the forward wave
generated by the heart encounters sites of impedance
mismatch.3 Wave reflections travel back to the heart, increas-
ing mid-to-late systolic load. We have recently identified
reflection magnitude (RM), the ratio of the reflected (Pb) to
forward waves (Pf), as a strong predictor of incident HF5 in-
dependently from BP and multiple confounders. However, BP
is not an index of arterial load, because the latter depends on
the ratio of pressure to flow. Whether RM predicts HF inde-
pendently from indices of load that account for the flow
generated by the heart (stroke volume or cardiac output [CO])
is unknown.

Effective arterial elastance (Ea), the ratio of end-systolic
pressure to stroke volume (SV), is a commonly used param-
eter of arterial load. Ea was initially proposed as a lumped
index of “effective” resistive and pulsatile afterload.6,7 However,
Ea has been shown to be almost entirely dependent on heart
rate and SVR,8 therefore insensitive to pulsatile load, includ-
ing the left ventricular (LV) loading sequence imposed by wave
reflections.
In the present study, we expand on our previous work5,9

by assessing (1) how RM compares to other metrics of ar-
terial load (SVR, TAC, Ea) as a predictor of incident HF in
the general population, and (2) how various indices of arte-
rial load relate to incident HF after adjustment for subclinical
atherosclerosis.

Methods

Study Sample

The Multi-Ethnic Study of Atherosclerosis (MESA) en-
rolled 6,814 men and women aged 45–84 years of diverse
ethnic backgrounds from 6 centers across the United States.
Subjects self-reported their ethnicity as African-American,
Asian-American (predominantly Chinese), Caucasian, or His-
panic. All subjects were free of clinical cardiovascular disease
by self-report at baseline. Subjects were enrolled from 2000
to 2002 and contacted every 9–12 months for assessment of
clinical end points. All participants were followed through
December 31, 2011. Follow-up telephone interviews were
completed in 92% of living participants, and medical records
were obtained for 98% of hospital admissions.10 The study
was approved by the Institutional Review Boards of partici-

pating centers, and every participant signed an informed
consent.

HF Event Adjudication

Two physicians independently reviewed copies of medical
records and death certificates for hospitalizations and outpa-
tient cardiovascular diagnoses. End points were classified with
the use of prespecified criteria.11 The diagnosis of HF was
established by “definite” criteria, which required clinical
symptoms (eg, dyspnea) or signs (eg, edema), a physician’s
diagnosis, and medical treatment for HF in addition to ob-
jective evidence: (a) pulmonary edema/congestion on chest
X-ray and/or (b) a dilated LV or poor function on
echocardiography or ventriculography, or LV diastolic
dysfunction.11

Data Collection

BP was determined at the baseline visit with the use of a
standardized method.11 Brachial systolic (SBP) and dia-
stolic (DBP) BPs were also obtained before and after the
magnetic resonance imaging (MRI) scan while the subject
was on the MRI table, with the results averaged.12 There was
good correlation between the BP obtained at the time of the
MRI and the standardized BP measurements from the base-
line visit (SBP: r = 0.66, P < .0001; DBP: r = 0.61; P < .0001;
mean arterial pressure [MAP]: r = 0.62, P < .0001). Serum
cholesterol was obtained after a 12-hour fast.10 Diabetes mel-
litus was defined as a fasting glucose ≥126 mg/dL or use of
diabetic medications. Hypertension was defined according to
the Sixth Report of the Joint National Committee on Detec-
tion, Evaluation, and Treatment of High Blood Pressure.13

Assessment of Cardiac Output

Cardiac MRI was performed with the use of 1.5-Tesla field
strength systems to determine LV mass and volume as pre-
viously described.14 Short-axis images of the LVwere acquired
with the use of a gradient-echo cine sequence (time to
repetition/time to echo 8–10 ms/3–5 ms, flip angle 20°, 6 mm
slice thickness, 4 mm gap, flow compensation, in-plane res-
olution 1.4–1.6 mm [frequency] × 2.2–2.5 mm). Endocardial
and epicardial borders were traced with the use of a
semiautomated method (MASS 4.2; Medis, Leiden, the
Netherlands).11 Myocardial volume was defined as the dif-
ference between epicardial and endocardial areas for all slices
at end-diastole, multiplied by the sum of slice thickness and
the interslice gap. SV was determined as the difference
between end-diastolic and end-systolic volumes. This method
of LV quantification has been shown to have excellent
reproducibility.14 CO was determined by multiplying the SV
with the heart rate at the time of the MRI.

Hemodynamic Measurements

Radial arterial waveform recordings were obtained at the
baseline visit in the supine position. In all study centers, 30
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seconds of data were recorded with the use of the HDI/
Pulsewave-CR2000 tonometry device (Hypertension
Diagnostics, Eagan, Minnesota) and digitized at 200 Hz for
offline processing. Custom-designed software was written in
Matlab (Mathworks, Natick, Massachusetts) for analysis of
waveforms and to generate an averaged waveform for each
individual, as previously described in detail.5 A generalized
transfer function was subsequently applied to radial artery pres-
sure waveforms to arrive at the central pressure waveform.15

All pressure waveforms were visually inspected by 1 inves-
tigator (JAC) for quality and physiologic consistency. We
excluded averaged waveforms that met any of the following
criteria: (1) a nonphysiologic appearance (usually from bi-
geminy, trigeminy, or contamination of the averaged signal
by aberrantly-conducted complexes); (2) cardiac cycle du-
ration variation ≥10%; (3) pulse height (beat-to-beat pulse
pressure) variation ≥20%; (4) <10 adequately recorded cycles
available for signal averaging; and (5) inability to clearly iden-
tify key landmarks of the pressure waveform required for wave
separation using an averaged physiologic flow approach.

Determination of Arterial Load Parameters

After application of the generalized transfer function, the
subject-specific central pressure waveform was analyzed to
determine the duration of flow (onset of pressure until the di-
crotic notch) and the timing of peak flow (coincident with
P1 in the pressure waveform). This subject-specific timing in-
formation was then used to produce a physiologic flow
waveform. This subject-specific scaled waveform was then
applied to each individual’s central pressure waveform to sep-
arate the forward-traveling (Pf) and backward-traveling
(reflected, Pb) waves, as previously described in detail.5,16 RM
was calculated as:

RM
Pb backward wave amplitude

Pf forward wave amplitude
= ( )

( )

To determine MAP, a subject-specific form factor (FF) was
computed for each individual based on the radial tonomet-
ric waveform, as described previously17,18:

Form Factor FF

Radial Mean Pressure Radial Diastolic Pressure

R

( )

= −
aadial Systolic Pressure Radial Diastolic Pressure−

MAP was calculated based on BP measurements at the
time of the MRI as follows: diastolic pressure + FF × (pulse
pressure [PP]). SVR, expressed in Wood units, was calcu-
lated as the ratio of MAP to CO, both obtained during the
MRI. Calculation of SVR using the blood pressure from the
baseline exam did not alter our findings (data not shown).
TAC was approximated as the ratio of the SV to the central
PP obtained using arterial tonometry. Ea was computed as
the ratio of central end-systolic pressure to SV.8 Given that
arterial load is highly dependent on body size,4 we indexed

TAC, SVR, and Ea for body surface area (BSA) by dividing
TAC by BSA and multiplying SVR and Ea by BSA.4 Such
linear indexation is justified because absolute allometric
exponents relating TAC, SVR, and Ea to BSA are approxi-
mately (and not significantly different from) unity.19

Assessment of Subclinical Atherosclerosis

Trained technicians performed B-mode ultrasound exam-
ination of both common carotid arteries. Maximum common
carotid intima-media thickness (IMT) was calculated as the
mean of the maximum IMT of the near and far walls
bilaterally.20 Coronary artery calcium (CAC) was measured
using computerized tomography and referenced to a phantom
of known calcium concentration that was included in the field
of view. Each participant was scanned twice to determine the
average phantom-adjustedAgatston score.20 During these scans,
calcification within the thoracic aorta was measured and quan-
tified as for CAC.12 The ankle brachial index (ABI) was
determined for each lower extremity using a hand-held Doppler
probe. The numerator was set as the higher of the 2 pres-
sures between the dorsalis pedis and posterior tibial arteries
for each leg. The denominator was the higher brachial artery
pressure between both arms. The lower ABI of the 2 legs was
recorded.21,22

Statistical Methods

Baseline characteristics of the cohort are presented as
mean ± SD or as median (interquartile range [IQR]). Cox pro-
portional hazards models were created to assess the
independent risk for each metric of arterial load for HF. Vari-
ables known to predict HF were included in sequential models
to adjust for potential confounders.1 Given the known risk of
HF conferred by atherosclerotic disease,1 additional adjust-
ment for markers of subclinical atherosclerosis in different
vascular territories (CAC,ABI, common carotid IMT, and as-
cending thoracic aorticAgatston score) was performed. Finally,
subjects who developed HF on the same day or after a myo-
cardial infarction (MI) were censored at the time of the MI
to mitigate any confounding between MI, the metrics of ar-
terial load, and the development of HF. Metrics of arterial
load were divided by their respective SDs before being entered
into the models. Hazard ratios (HRs) presented correspond
to a 1-SD increase for each metric. Log-transformation was
applied to improve the normality of data distribution as needed.
In an unadjusted linear regression model, Pb equals 0.84

× Pf, with an intercept not significantly different than unity.
Given the strong correlation between Pb and Pf (r = 0.98;
P < .0001), we determined residual values for the observed
Pb versus the predicted Pb for any given Pf (Pb,res). These re-
sidual values were used to determine the impact of Pb after
taking the magnitude of Pf into account. A type I error rate
of ≤.05 was taken to be significant. All analyses were per-
formed with the use of Stata 13.1 (Statacorp, College Station,
Texas).
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Results

Baseline demographic, laboratory, anthropomorphic, and
clinical data are presented in Table 1. Of the 6336 subjects
enrolled in MESAwho had radial tonometry, 5989 (95%) had
sufficiently reliable digitized tonometric records to permit cal-
culation of RM. Of these individuals, 1582 did not have
information on CO, 42 did not have BPmeasurements during

the cardiac MRI, and 20 were lost to follow-up, leaving a final
cohort of 4345 subjects. Subjects were followed for a median
of 10.3 years (IQR 9.7–10.8 y). A total of 91 definitive HF
events occurred over this time period (2.1%).

Arterial Load and Definitive Heart Failure

Proportional hazards models relating RM, SVR, and TAC
to incident HF are presented in Table 2. After adjustment for
confounding variables, resistive load (SVR) was not associ-
ated with increased HF risk in any model. TAC was similarly
not associated with incident HF. In contrast, RM bore im-
portant relationships to HF in an age and sex–adjusted model
(model 1: HR 1.52, 95% CI 1.21–1.90; P < .001). After ad-
justment for additional demographic, clinical, and laboratory
data, each SD increase in RM remained associated with in-
cident HF (model 2: HR 1.47, 95% CI 1.17–1.84; P = .001).
This relationship was unaltered by inclusion of the markers
of subclinical atherosclerosis (model 3: HR 1.49, 95% CI 1.18–
1.88; P = .001). Censoring individuals who had an MI on the
same day or before the development of HF did not mean-
ingfully alter these relationships (Supplemental Table 1).

Pb Versus Pf and Incident Heart Failure

Table 3 presents models in which RM was replaced by its
components: Pf and Pb,res. Consistent with Table 2, neither SVR
nor TAC bore significant relationships to HF. In contrast, Pb,res

was a significant predictor of incident HF. After age and sex
adjustment, increasing Pb,res was associated with increased HF
risk (HR for each SD increase 1.39, 95% CI 1.14–1.69;
P = .001); whereas, Pf was not (P = .43). The relationship
between Pb,res and HF was maintained after adjustment for de-
mographic, clinical, and laboratory risk factors (model 2: Pb,res

HR 1.39, 95% CI 1.15–1.69; P = .001; Pf P = .19). Further
adjustment for markers of subclinical atherosclerosis did not
alter these relationships (model 3: Pb,res HR 1.43, 95% CI 1.17–
1.75; P = .001; Pf P = .17), nor did censoring individuals who
developed an MI on the same day or before the onset of HF
(Supplemental Table 2).

Arterial Elastance, Mean Arterial Pressure, and HF

The association between Ea and HF was assessed in anal-
ogous models. Ea was not significantly associated with HF
(Table 4). Additional models were created in which RM and
Ea were both included (Supplemental Table 3). In all models,
RM was independently associated with HF risk (P = .001),
whereas Ea was not (P > .20).
Finally, models were created in which SVR was replaced

by MAP alone (Supplemental Table 4). MAP was indepen-
dently associated with HF in an age and sex–adjusted model
(model 1: HR for each SD increase 1.33, 95% CI 1.09–
1.63; P = .005); however, further adjustment rendered the
relationship non-significant (model 2: P = .26; Model 3:
P = .38). RM retained its significant independent associa-
tion with HF risk in these models (P = .001).

Table 1. Baseline Demographic, Clinical, Anthropomorphic, and
Laboratory Data for Study Participants

Variable

Overall
Population
(n = 4345)

Age (y), median (IQR) 61.0 (53.0–69.0)
Male, n (%) 2109 (48.5)
Race, n (%)

White 1658 (38.2)
Black 1080 (24.9)
Chinese 589 (13.6)
Hispanic 1018 (23.4)

Height (m), mean ± SD 1.66 ± 0.10
Weight (kg), mean ± SD 77.03 ± 16.11
Body mass index (kg/m2), mean ± SD 27.71 ± 4.95
Diabetes, n (%) 505 (11.7)
Estimated glomerular filtration rate (mL/min/1.73 m2),

mean ± SD
78.52 ± 15.85

Urine microalbumin:creatinine ratio (μg/mL), median
(IQR)

5.2 (3.3–10.2)

Total cholesterol (mg/dL), mean ± SD 194.17 ± 35.23)
LDL cholesterol (mg/dL), mean ± SD 117.01 ± 31.24
HDL cholesterol (mg/dL), mean ± SD 51.02 ± 14.87
Triglycerides, median (IQR) 113.0 (78.0–163.0)
Statin use, n (%) 619 (14.3)
Current smoking, n (%) 1531 (35.2)
Hypertension, n (%) 1826 (42.0)
Hypertension medication, n (%) 1512 (34.8)
Brachial systolic blood pressure (mmHg), mean ± SD 134.02 ± 20.55
Brachial diastolic blood pressure (mmHg), mean ± SD 77.43 ± 11.06
Brachial mean arterial pressure (mmHg), mean ± SD 100.82 ± 14.00
Aortic systolic blood pressure (mmHg), mean ± SD 127.42 ± 19.27
Aortic diastolic blood pressure (mmHg), mean ± SD 75.02 ± 10.25
Aortic pulse pressure (mmHg), mean ± SD 52.40 ± 14.60
Heart rate (beats/min), mean ± SD 63.79 ± 9.84
Markers of subclinical atherosclerosis

Ankle-brachial index, mean ± SD 1.12 ± 0.11
Maximum common carotid intimal-medial thickness

(mm), mean ± SD
0.86 ± 0.18

Coronary artery calciumAgatston score, median
(IQR)

0 (0–70.29)

Ascending thoracic aorta Agatston calcium score,
median (IQR)

0 (0—0)

Arterial parameters
SVR (Wood units), mean ± SD 18.76 ± 5.68
Indexed SVR (Wood units × m2), mean ± SD 34.37 ± 10.11
TAC (mL/mm Hg), mean ± SD 1.78 ± 0.63
Indexed TAC (mL/mm Hg/m2), mean ± SD 0.96 ± 0.31
RM, (mean ± SD) 0.84 ± 0.05
Pf (mm Hg), mean ± SD 30.65 ± 8.58
Pb (mm Hg), mean ± SD 25.70 ± 7.35

Residual Pb given Pf, mean ± SD 0 ± 1.53
Effective arterial elastance (mm Hg/mL),

mean ± SD
1.40 ± 0.41

Indexed effective arterial elastance
(mm Hg × m2/mL), mean ± SD

2.55 ± 0.70

Form factor, mean ± SD 0.41 ± 0.04

IQR, interquartile range; Pb, magnitude of backward wave; Pf, magni-
tude of forward wave; RM, reflection magnitude; SVR, systemic vascular
resistance; TAC, total arterial compliance.
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Discussion

In this community-based study of adults free from cardio-
vascular disease, we demonstrate that RM bears important
independent relationships to incident HF, whereas SVR, TAC,
and Ea do not. These relationships were unaltered by adjust-
ment for known clinical and laboratory risk factors for HF,
such as age, hypertension, smoking, diabetes, and renal
function.1,23–26 Finally, because atherosclerosis is a major risk
factor for HF and relates to arterial hemodynamic properties,1,27

we performed additional adjustment for markers of subclini-
cal atherosclerosis. In these models, the hazard ratios for RM,
Pb,res, and Pf were largely unchanged. This suggests that the
risk of HF associated with RM and Pb,res operate through
mechanisms other than atherosclerosis. Furthermore, the im-
portance of RM in all models suggests that the relationship
between Pf and Pb (ie, the greater the Pb relative to Pf), rather
than their absolute amplitudes, is the significant factor for in-

cident HF. Importantly, when assessed simultaneously in
regression models, Pb,res bore a significant relationship with
definite HF events, whereas Pf did not. Because Pb and Pf

impose their hemodynamic effects on the LV at different times
during systole (early systole for Pf and late systole for Pb),
this finding reinforces the importance of the LV loading se-
quence on HF.
In the absence of aortic stenosis, the arterial system imposes

the load opposing LV ejection during systole. Arterial load
is composed of several components that influence the inter-
action between the LV and the arterial system. The resistive
load, summarized by SVR, is largely determined by the ar-
terioles and is the primary determinant of the absolute level
of overall wall stress experienced by the myocyte during ejec-
tion for any given ventricular geometry.4,28 Pulsatile load, on
the other hand, is complex but can be described by a number
of different arterial properties: characteristic impedance of
the proximal aorta (Zc), TAC, RM, and reflection timing, which

Table 2. Proportional Hazards Models for SVR, TAC, and RM per SD Increase

Metric of Load

Model 1 Model 2 Model 3

HR (95% CI) P Value HR (95% CI) P Value HR (95% CI) P Value

Indexed SVR 0.94 (0.74–1.19) .59 0.98 (0.78–1.22) .85 0.96 (0.76–1.21) .74
Indexed TAC 0.77 (0.56–1.06) .11 0.93 (0.68–1.28) .66 0.96 (0.70–1.32) .81
RM 1.52 (1.21–1.90) <.001 1.47 (1.17–1.84) .001 1.49 (1.18–1.88) .001

Model 1 adjusted for age and sex (n = 4345; 91 heart failure events). Model 2 adjusted for age, sex, diabetes, diagnosis of hypertension, treatment with
antihypertensive medications, race, estimated glomerular filtration rate, log microalbumin:creatinine ratio, and heart rate (n = 4318; 91 heart failure events).
Model 3 adjusted for age, sex, diabetes, diagnosis of hypertension, treatment with antihypertensive medications, race, estimated glomerular filtration rate,
log microalbumin:creatinine ratio, heart rate, ankle-brachial index, maximum common carotid intimal-media thickness, log Agatston coronary artery calcium
score, and log Agatston ascending thoracic aorta calcium score (n = 4263; 90 heart failure events). CI, confidence interval; HR, hazard ratio; other abbrevia-
tions as in Table 1.

Table 3. Proportional Hazards Models for Resistive Versus Pulsatile Load per SD Increase

Metric of Load

Model 1 Model 2 Model 3

HR (95% CI) P Value HR (95% CI) P Value HR (95% CI) P Value

Indexed SVR 0.97 (0.76–1.23) .79 1.04 (0.83–1.30) .75 1.02 (0.80–1.29) .89
Indexed TAC 0.87 (0.59–1.29) .49 1.12 (0.76–1.67) .56 1.17 (0.79–1.74) .44
Pb, adjusted for Pf (mm Hg) 1.39 (1.14–1.69) .001 1.39 (1.15–1.69) .001 1.43 (1.17–1.75) .001
Pf (mm Hg) 1.11 (0.86–1.44) .43 1.22 (0.91–1.64) .19 1.24 (0.91–1.68) .17

Model 1 adjusted for age and sex (n = 4345; 91 heart failure events).
Model 2 adjusted for age, sex, diabetes, diagnosis of hypertension, treatment with antihypertensive medications, race, estimated glomerular filtration rate,

log microalbumin:creatinine ratio, and heart rate (n = 4318; 91 heart failure events). Model 3 adjusted for age, sex, diabetes, diagnosis of hypertension, treat-
ment with antihypertensive medications, race, estimated glomerular filtration rate, log microalbumin:creatinine ratio, heart rate, ankle-brachial index, maximum
common carotid intimal-media thickness, log Agatston coronary artery calcium score, and log Agatston ascending thoracic aorta calcium score (n = 4263; 90
heart failure events). Abbreviations as in Tables 1 and 2.

Table 4. Proportional Hazards Models for Indexed Arterial Elastance per SD Increase

Metric of Load

Model 1 Model 2 Model 3

HR (95% CI) P Value HR (95% CI) P Value HR (95% CI) P Value

Effective arterial elastance 1.16 (0.99–1.36) .064 1.02 (0.84–1.23) .86 0.98 (0.79–1.20) .81

Model 1 adjusted for age and sex (n = 4345; 91 heart failure events). Model 2 adjusted for age, sex, diabetes, diagnosis of hypertension, treatment with
antihypertensive medications, race, estimated glomerular filtration rate, log microalbumin:creatinine ratio, and heart rate (n = 4318; 91 heart failure events).
Model 3 adjusted for age, sex, diabetes, diagnosis of hypertension, treatment with antihypertensive medications, race, estimated glomerular filtration rate,
log microalbumin:creatinine ratio, heart rate, ankle-brachial index, maximum common carotid intimal-media thickness, log Agatston coronary artery calcium
score, and log Agatston ascending thoracic aorta calcium score (n = 4263; 90 heart failure events).
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is itself determined by aortic pulse-wave velocity and the dis-
tance between the LV and the reflection sites.4 Proximal aortic
Zc defines the early systolic pressure-flow relationship and
is an important determinant of early (within the 1st 100 ms)
ventricular afterload and PP.28–30 TAC represents the “total”
compliance of the arterial system, although it is in large part
composed of the compliance of the large conduit arteries.4

RM is the ratio of the incident (ie, forward, Pf) pressure wave
generated by LV contraction to that of the reflected (ie, back-
ward, Pb) pressure waves generated when the forward wave
encounters sites of impedance mismatch.31 Importantly, Pb and
RM selectively impose their load on the LV during mid-to-
late systole and bear little relation to early ventricular wall
stress.28 Although Pb is represented as one discrete number,
it represents the summation of myriad reflected waves that
are generated as the forward wave propagates throughout the
arterial system.32 Furthermore, given that Pb represents a portion
of Pf that is reflected, the amplitude of Pb should always be
interpreted while taking Pf into account (either by comput-
ing the residual component of Pb for a given Pf, or by
computing RM, which is the ratio of Pb/Pf).

Earlier animal and human studies demonstrate that
the loading sequence (early vs late load) is an important
determinant of LV hypertrophy and fibrosis,33,34 diastolic
dysfunction,35–39 and HF risk.5,9 Our previous work in this
cohort demonstrated that RM and the presence of promi-
nent late systolic hypertension (defined as the ratio of late
to early pressure-time integrals during systole) are strongly
predictive of incident HF, independent of the absolute BP.5,9

However, whether this is independent from arterial load
indices that are dependent on both arterial pressure and the
flow (or SV) generated by the heart is unknown. We
demonstrate that RM, but not commonly used arterial load
indices (SVR, TAC, and Ea), is predictive of incident HF.
Similarly, we extend our previous observations by showing
that RM is predictive of incident HF independent of sub-
clinical atherosclerosis.
We demonstrate that Ea, an index commonly assumed to

incorporate both resistive and pulsatile load, is not related to
HF risk in the general population. We recently demon-
strated that Ea does not reflect pulsatile load and does not bear
any relationship to arterial wall stiffness.8 Ea is indeed an almost
perfect function of the product of systemic vascular resis-
tance and heart rate8 and intrinsically neglects important
information about pulsatile load and the loading sequence.
Recent American Heart Association guidelines recommend
against the use of Ea for the assessment of LV pulsatile load
or arterial stiffness.40 Given the important limitations of Ea,
it is not surprising that it did not predict incident HF in this
cohort.

The mechanism whereby late-load adversely affects the
myocardium is incompletely understood. It is known that the
myocardium can better adapt to loads imposed early in systole
by increasing myofilament cross-bridge formation. In con-
trast, loads imposed late in systole do not lead to increased
cross-bridges, instead increasing the load on each individu-
al cross-bridge. This could lead to an earlier onset, but slowed

rate, of relaxation41,42 and potentially the activation of unfa-
vorable signaling pathways that promote maladaptive
hypertrophy. Further work is needed to understand the mo-
lecular mechanisms by which late systolic load may affect
myocardial remodeling and failure.

Study Limitations

Our work must be interpreted in the context of its strength
and limitations. Strengths of this MESA substudy include its
large size and detailed phenotypic analysis of its partici-
pants including tonometry, cardiac MRI, adjudicated definite
HF events, and a comprehensive assessment of subclinical
atherosclerosis in numerous territories. Several limitations
should also be noted. Given the large number of phenotypic
measures, about one-third of the overall MESA cohort were
excluded from this substudy owing to incomplete data
(Supplemental Table 5), limiting the generalizability of our
conclusions.We used a pseudoflow approach to perform wave
separation,16 because flow was not directly measured. The
physiologic waveform applied to each subject’s central pres-
sure waveform was generated in a younger population than
in this substudy of MESA. This technique, and the lack of
invasively derived flow waveforms, may have introduced noise
into the quantification of RM (and Pb/Pf). Furthermore, because
time-resolved flow measurements were not available, we could
not calculate the Zc for each subject. However, the latter pri-
marily affects Pf, which was included in regression models.
We approximated TAC as the ratio of SV to central PP. This
method neglects venous run-off of blood during systole, al-
though adjustment for SVR in the models should diminish
this source of error. Additionally, our use of FF to derive in-
dividual MAP recordings relied on radial tonometry
measurements that were then applied to the brachial BP. This
neglects differences in brachial-to-radial PP amplification.
Because this method was applied in all individuals, however,
it is unlikely to have introduced significant bias. Finally, we
were not able to distinguish between HF events that oc-
curred with reduced (HFrEF) versus preserved (HFpEF)
ejection fractions, and the pathophysiologic mechanisms
between these may be different. The relationship between RM
and HFpEF versus HFrEF should be the focus of future
research.

Conclusion

In a large multiethnic cohort of individuals free of inci-
dent cardiovascular disease, we demonstrate that metrics of
late systolic load, namely RM and Pb,res, bear important re-
lationships to the development of HF that persist despite
comprehensive adjustment for SVR, TAC, and measures of
atherosclerosis. Ea, in contrast, did not predict incident HF.
We also demonstrate that SVR was not associated with HF
risk, further highlighting the importance of pulsatile versus
resistive load on LV performance. Our findings demonstrate
the importance of the loading sequence during systole on the
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LV, with greater risk for HF conferred by loads applied during
mid-to-late systole, which is consistent with previous exper-
imental and human observations.

Disclosures

Dr Chirinos has received consulting fees from OPKO
Healthcare, Bristol-Myers Squibb, Merck, Microsoft Re-
search, and Fukuda Denshi, receives research funding from
the National Institutes of Health, Veterans Affairs Adminis-
tration, American College of Radiology Network, Bristol-
Myers Squibb, and Fukuda Denshi, and is named as inventor
in a University of Pennsylvania patent application for the use
of inorganic nitrate/nitrite for HFpEF. The other authors report
no potential conflicts of interest.

Appendix: Supplementary Data

Supplementary data related to this article can be found at
doi:10.1016/j.cardfail.2016.04.011.

References

1. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH,
et al. 2013 ACCF/AHA guideline for the management of heart failure:
a report of the American College of Cardiology Foundation/American
Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol
2013;62:e147–239.

2. Segers P, Stergiopulos N, Westerhof N. Quantification of the contribution
of cardiac and arterial remodeling to hypertension. Hypertension
2000;36:760–5.

3. Chirinos JA, Segers P. Noninvasive evaluation of left ventricular
afterload: part 1: pressure and flow measurements and basic principles
of wave conduction and reflection. Hypertension 2010;56:555–62.

4. Chirinos JA, Segers P. Noninvasive evaluation of left ventricular
afterload: part 2: arterial pressure-flow and pressure-volume relations
in humans. Hypertension 2010;56:563–70.

5. Chirinos JA, Kips JG, Jacobs DR Jr, Brumback L, Duprez DA, Kronmal
R, et al. Arterial wave reflections and incident cardiovascular events and
heart failure: MESA (Multiethnic Study of Atherosclerosis). J Am Coll
Cardiol 2012;60:2170–7.

6. Sunagawa K, Maughan WL, Burkhoff D, Sagawa K. Left ventricular
interaction with arterial load studied in isolated canine ventricle. Am J
Physiol 1983;245:H773–80.

7. Sunagawa K, Maughan WL, Sagawa K. Optimal arterial resistance for
the maximal stroke work studied in isolated canine left ventricle. Circ
Res 1985;56:586–95.

8. Chirinos JA, Rietzschel ER, Shiva-Kumar P, De Buyzere ML, Zamani
P, Claessens T, et al. Effective arterial elastance is insensitive to pulsatile
arterial load. Hypertension 2014;64:1022–31.

9. Chirinos JA, Segers P, Duprez DA, Brumback L, Bluemke DA, Zamani
P, et al. Late systolic central hypertension as a predictor of incident heart
failure: the Multi-ethnic Study of Atherosclerosis. J Am Heart Assoc
2015;4:e001335.

10. Martin SS, Blaha MJ, Blankstein R, Agatston A, Rivera JJ, Virani SS,
et al. Dyslipidemia, coronary artery calcium, and incident atherosclerotic
cardiovascular disease: implications for statin therapy from the Multi-
ethnic Study of Atherosclerosis. Circulation 2014;129:77–86.

11. Bluemke DA, Kronmal RA, Lima JA, Liu K, Olson J, Burke GL, et al.
The relationship of left ventricular mass and geometry to incident
cardiovascular events: the MESA (Multi-ethnic Study ofAtherosclerosis)
study. J Am Coll Cardiol 2008;52:2148–55.

12. Al-Mallah MH, Nasir K, Katz R, Takasu J, Lima JA, Bluemke DA, et al.
Thoracic aortic distensibility and thoracic aortic calcium (from the
Multi-ethnic Study of Atherosclerosis [MESA]). Am J Cardiol
2010;106:575–80.

13. The sixth report of the Joint National Committee on prevention, detection,
evaluation, and treatment of high blood pressure. Arch Intern Med
1997;157:2413–46.

14. Natori S, Lai S, Finn JP, Gomes AS, Hundley WG, Jerosch-Herold M,
et al. Cardiovascular function in Multi-ethnic Study of Atherosclerosis:
normal values by age, sex, and ethnicity. AJR Am J Roentgenol
2006;186:S357–65.

15. Karamanoglu M, O’Rourke MF, Avolio AP, Kelly RP. An analysis of
the relationship between central aortic and peripheral upper limb pressure
waves in man. Eur Heart J 1993;14:160–7.

16. Kips JG, Rietzschel ER, de Buyzere ML, Westerhof BE, Gillebert TC,
van Bortel LM, et al. Evaluation of noninvasive methods to assess wave
reflection and pulse transit time from the pressure waveform alone.
Hypertension 2009;53:142–9.

17. Zamani P, Bluemke DA, Jacobs DR Jr, Duprez DA, Kronmal R, Lilly
SM. Resistive and pulsatile arterial load as predictors of left ventricular
mass and geometry: the multi-ethnic study of atherosclerosis.
Hypertension 2015;65:85–92.

18. Segers P, Mahieu D, Kips J, Rietzschel E, de Buyzere M, de Bacquer
D, et al. Amplification of the pressure pulse in the upper limb in healthy,
middle-aged men and women. Hypertension 2009;54:414–20.

19. Chirinos JA, Rietzschel ER, de Buyzere ML, de Bacquer D, Gillebert
TC, Gupta AK. Arterial load and ventricular-arterial coupling:
physiologic relations with body size and effect of obesity. Hypertension
2009;54:558–66.

20. Folsom AR, Kronmal RA, Detrano RC, O’Leary DH, Bild DE, Bluemke
DA, et al. Coronary artery calcification compared with carotid intima-
media thickness in the prediction of cardiovascular disease incidence:
the Multi-ethnic Study of Atherosclerosis (MESA). Arch Intern Med
2008;168:1333–9.

21. Criqui MH, McClelland RL, McDermott MM, Allison MA, Blumenthal
RS, Aboyans V, et al. The ankle-brachial index and incident
cardiovascular events in the MESA (Multi-ethnic Study of
Atherosclerosis). J Am Coll Cardiol 2010;56:1506–12.

22. Ix JH, Katz R, Peralta CA, de Boer IH, Allison MA, Bluemke DA, et al.
A high ankle brachial index is associated with greater left ventricular
mass MESA (Multi-ethnic Study of Atherosclerosis). J Am Coll Cardiol
2010;55:342–9.

23. Wilhelmsen L, Rosengren A, Eriksson H, Lappas G. Heart failure in
the general population of men—morbidity, risk factors and prognosis.
J Intern Med 2001;249:253–61.

24. Butler J, Kalogeropoulos A, Georgiopoulou V, Belue R, Rodondi N,
Garcia M, et al. Incident heart failure prediction in the elderly: the health
ABC heart failure score. Circ Heart Fail 2008;1:125–33.

25. Kalogeropoulos A, Georgiopoulou V, Kritchevsky SB, Psaty BM, Smith
NL, Newman AB, et al. Epidemiology of incident heart failure in a
contemporary elderly cohort: the health, aging, and body composition
study. Arch Intern Med 2009;169:708–15.

26. Pfister R, Cairns R, Erdmann E, Schneider CA. A clinical risk score
for heart failure in patients with type 2 diabetes and macrovascular
disease: an analysis of the PROactive study. Int J Cardiol 2013;162:112–
6.

27. Tsao CW, Pencina KM, Massaro JM, Benjamin EJ, Levy D, Vasan RS,
et al. Cross-sectional relations of arterial stiffness, pressure pulsatility,
wave reflection, and arterial calcification. Arterioscler Thromb Vasc Biol
2014;34:2495–500.

28. Chirinos JA, Segers P, Gillebert TC, Gupta AK, de Buyzere ML,
de Bacquer D, et al. Arterial properties as determinants of time-varying
myocardial stress in humans. Hypertension 2012;60:64–70.

29. Mitchell GF, Conlin PR, Dunlap ME, Lacourcière Y, Arnold JM, Ogilvie
RI, et al. Aortic diameter, wall stiffness, and wave reflection in systolic
hypertension. Hypertension 2008;51:105–11.

30. Mitchell GF, Lacourciere Y, Ouellet JP, Izzo JL Jr, Neutel J, Kerwin
LJ, et al. Determinants of elevated pulse pressure in middle-aged and

994 Journal of Cardiac Failure Vol. 22 No. 12 December 2016

http://dx.doi.org/10.1016/j.cardfail.2016.04.011
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0010
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0010
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0010
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0010
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0010
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0015
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0015
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0015
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0020
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0020
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0020
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0025
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0025
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0025
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0030
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0030
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0030
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0030
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0035
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0035
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0035
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0040
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0040
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0040
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0045
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0045
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0045
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0050
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0050
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0050
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0050
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0055
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0055
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0055
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0055
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0060
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0060
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0060
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0060
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0065
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0065
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0065
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0065
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0070
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0070
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0070
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0075
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0075
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0075
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0075
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0080
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0080
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0080
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0085
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0085
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0085
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0085
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0090
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0090
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0090
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0090
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0095
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0095
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0095
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0100
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0100
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0100
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0100
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0105
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0105
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0105
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0105
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0105
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0110
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0110
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0110
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0110
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0115
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0115
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0115
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0115
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0120
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0120
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0120
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0125
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0125
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0125
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0130
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0130
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0130
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0130
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0135
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0135
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0135
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0135
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0140
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0140
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0140
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0140
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0145
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0145
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0145
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0150
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0150
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0150
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0155
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0155


older subjects with uncomplicated systolic hypertension: the role of
proximal aortic diameter and the aortic pressure-flow relationship.
Circulation 2003;108:1592–8.

31. Westerhof N, Sipkema P, van den Bos GC, Elzinga G. Forward and
backward waves in the arterial system. Cardiovasc Res 1972;6:648–56.

32. Westerhof N, Westerhof BE. Wave transmission and reflection of waves:
“The myth is in their use.” Artery Res 2012;6:1–6.

33. Kobayashi S, Yano M, Kohno M, Obayashi M, Hisamatsu Y, Ryoke
T, et al. Influence of aortic impedance on the development of pressure-
overload left ventricular hypertrophy in rats. Circulation 1996;94:3362–8.

34. Hashimoto J, Westerhof BE, Westerhof N, Imai Y, O’Rourke MF.
Different role of wave reflection magnitude and timing on left ventricular
mass reduction during antihypertensive treatment. J Hypertens
2008;26:1017–24.

35. Hori M, Inoue M, Kitakaze M, Tsujioka K, Ishida Y, Fukunami M, et al.
Loading sequence is a major determinant of afterload-dependent
relaxation in intact canine heart. Am J Physiol 1985;249:H747–54.

36. Kohno F, Kumada T, Kambayashi M, Hayashida W, Ishikawa N,
Sasayama S. Change in aortic end-systolic pressure by alterations in

loading sequence and its relation to left ventricular isovolumic relaxation.
Circulation 1996;93:2080–7.

37. Chirinos JA, Segers P, Rietzschel ER, de Buyzere ML, Raja MW,
Claessens T, et al. Early and late systolic wall stress differentially relate
to myocardial contraction and relaxation in middle-aged adults: the
Asklepios study. Hypertension 2013;61:296–303.

38. Gillebert TC, Lew WY. Influence of systolic pressure profile on rate
of left ventricular pressure fall. Am J Physiol 1991;261:H805–13.

39. Gillebert TC, Sys SU, Brutsaert DL. Influence of loading patterns on
peak length-tension relation and on relaxation in cardiac muscle. J Am
Coll Cardiol 1989;13:483–90.

40. Townsend RR, Wilkinson IB, Schiffrin EL, Avolio AP, Chirinos JA,
Cockcroft JR, et al. Recommendations for improving and standardizing
vascular research on arterial stiffness: a scientific statement from the
American Heart Association. Hypertension 2015;66:698–722.

41. Brutsaert DL, Sys SU. Relaxation and diastole of the heart. Physiol Rev
1989;69:1228–315.

42. Gillebert TC, Leite-Moreira AF, De Hert SG. Load dependent diastolic
dysfunction in heart failure. Heart Fail Rev 2000;5:345–55.

Pulsatile Load and Heart Failure • Zamani et al 995

http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0155
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0160
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0160
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0165
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0165
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0170
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0170
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0170
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0175
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0175
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0175
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0175
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0180
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0180
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0180
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0185
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0185
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0185
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0185
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0190
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0190
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0190
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0190
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0195
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0195
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0200
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0200
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0200
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0205
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0205
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0205
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0205
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0210
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0210
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0215
http://refhub.elsevier.com/S1071-9164(16)30055-0/sr0215

	 Pulsatile Load Components, Resistive Load and Incident Heart Failure: The Multi-Ethnic Study of Atherosclerosis (MESA)
	 Methods
	 Study Sample
	 HF Event Adjudication
	 Data Collection
	 Assessment of Cardiac Output
	 Hemodynamic Measurements
	 Determination of Arterial Load Parameters
	 Assessment of Subclinical Atherosclerosis
	 Statistical Methods

	 Results
	 Arterial Load and Definitive Heart Failure
	 Pb Versus Pf and Incident Heart Failure
	 Arterial Elastance, Mean Arterial Pressure, and HF

	 Discussion
	 Study Limitations
	 Conclusion
	 Disclosures
	 Supplementary Data
	 References


