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Abstract 

 This two-part paper deals with the coordination of the control actions in a network of many 

interacting components, where each component is controlled by independent control agents. As a 

case study we consider voltage control in large electric power systems where

ever-increasing pressures from the liberalization and globalization of the electricity market has led 

to partitioning the power system into multiple areas each operated by an independent Transmission 

System Operator (TSO). Coordination of local control actions taken by those TSOs is a very 

challenging problem as poorly coordinated operation of TSOs may endanger the power system 

security by increasing the risk of blackouts. This second part of the paper presents simulation results 

on a 12-bus 3-area test system, using the distributed model predictive control paradigm in order to 

design a coordinating model-based feedback controller. Coordination requires that each agent has 

some information on what the future evolution of its power flows to and from its neighbors will be. 

It will be shown that how the communication between agents can avoid voltage collapse in 

circumstances where classical uncoordinated controllers fail.  

 

I. Introduction 

In this second part of the paper we look for a very weak form of coordination, where control agents 

operate as independently as possible, taking into account however the need for global stability of the 

system. Large scale networks of interacting systems may become unstable as a result of a local 

incident, that triggers a sequence of perturbations in the neighboring areas, in case the local 

controllers of each area would only react to local information. Indeed the control action in one area 

might cause further perturbations in neighboring areas, and eventually global interactions may lead 

to collapse of the whole system. In order to avoid such a collapse of the global system, the local 

control agents must have some way of anticipating how the input port variables generated by 

neighboring components will evolve in the future. This can only be achieved if the control agents 

exchange information about their future control actions, and if each local control agent knows 

enough about the model of its neighbors in order to predict how these future plans will influence the 

evolution of the variables at the input ports. Using information on the input signals from neighbors 

that can be expected to occur as a result of the neighbors announced plans, and using the detailed 

local model of its own component, a local agent can try to optimize the local behavior. This leads in 

some sense to a dynamic Nash game, where each agent at each decision moment (and the decision 

moments at different agents may not be the same) assumes that the other players will stick to their 

announced control plans. Under this assumption one cannot expect that the system will in general 

perform as well as would be the case if some global supervisor would apply a global feedback 

control law. However we have shown under limiting conditions that this strategy can stabilize a 



 

system in cases when a completely decentralized strategy, without any communications, leads to 

collapse. 

This coordination strategy can be applied to many other networks of interacting components where 

a local perturbation can lead to global performance degradation. Some examples are: traffic lights in 

an urban traffic network, on-ramp metering in control of freeway traffic taking overflow into 

neighboring roads into account, flood control where controllable gates can regulate the flow of 

water. 

This paper presents simulation results on a 12-bus 3-area power system as a case study, using the 

distributed cooperative model-based predictive control paradigm in order to analyze how the 

communication between agents can avoid voltage collapse in circumstances where classical 

uncoordinated controllers fail. The time scale of the long-term voltage control of interest for this 

paper is in the period of several minutes after a disturbance. The long-term dynamics of interest thus 

are driven typically by Load Tap Changing transformers (LTCs), Over eXcitation Limiter (OXL) of 

synchronous generators, and exponential recovery loads.  

This paper is organized as follows. Section II formulates the Distributed Model Predictive Control 

(D-MPC) as our coordination methodology, taking into account the abstraction of the neighboring 

areas. Section III applies the proposed D-MPC coordination scheme to the problem of voltage 

coordination in 3-area 12-bus power system. The performance of the distributed coordination 

scheme will be compared with the decentralized uncoordinated scheme, showing its significant 

performance. Finally, conclusions are provided in section IV. 

II. Coordination Control Design  

A. Available Control Actions 

  The voltage control is accomplished, in decreasing order of priority, through switching of 

Capacitor Banks (CBs) or FACTS devices, adjustment of terminal voltage setpoints of synchronous 

generators, adjusting parameters of local controllers of LTCs, and load shedding. Short-term voltage 

control to eliminate rapid voltage variations, at the primary level of hierarchy, is achieved by fast 

control of reactive power injections from generators and by switching CBs. Long-term voltage 

control, the secondary level of hierarchy, is mostly achieved through LTC controls, and at an even 

higher level by load shedding. LTC controls, as the most likely driving mechanism for voltage 

control but also as a possible cause of voltage collapse in the long-term, is of special interest. LTCs 

are slowly acting discrete devices. Under traditional deadband control of LTC, the transformer ratio 

is changed one step at a time if the voltage error at the designated side of the transformer (usually 

the distribution side) remains outside a deadband longer than a specified time delay [1]. Currently 

used LTC control strategies are implemented in several ways such as blocking, locking, reversing 

and setpoint reduction, using local voltage measurements only [2]. However, those heuristic rules 

may not suffice to face all possible voltage instability scenarios in large-scale power system. 

According to the literature, uncoordinated operations of LTCs may increase the risk of voltage 

collapse [3]. Hence, coordination of LTC actions in the large-scale multi-area power systems must 

be carefully addressed. 

B. Control Methodology 

Model Predictive Control (MPC), also called receding/ moving horizon control, uses an estimate of 

the current state and an explicit model of the plant in order to predict the future output behavior, for 

a set uα, α∈A. A is a set of allowable control sequences uα(k), uα(k+1), …, uα(k+N). MPC compares 

the performance for a finite number of elements α∈A and selects the best sequence α
*
. The control 

value uα* (k) is then applied to the system during the time interval [tk, tk+1).  

These calculations are repeated, using new observations at the next time step tk+1. 



 

At present, MPC is the most widely used algorithm to deal with multivariable constrained control 

problems in industry (but not for power systems). Soft or hard operating constraints on both control 

inputs and controlled outputs can be explicitly represented in the MPC optimization problem. The 

requirement that a dynamical model must be known is certainly a limitation, especially for electrical 

power systems. However, the inherent feedback of an MPC provides robustness against modeling 

errors [4-7]. 

C. Distributed MPC (D-MPC) Formulation Taking External Equivalent Models into 

Account 

Suppose that, for computional and physical reasons but also as a result of the market liberalization, 

the overall power system has been decomposed into I interacting TSOs. Either one single LTC or a 

group of several LTCs located in TSOi , i∈{1, … , I}  is controlled by MPCi. 

Assuming one LTC per TSOi (controlled by MPCi), a set of possible control actions 
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where 0 refers to having no tap movement, +1 to an upward tap movement, and -1 to a downward 

tap movement. Note that tap movements are considered only over the control horizon N, while no 

tap movement is considered in the remainder of the prediction in the interval [tk+N,tk+P].  Different 

combinations of values of Nkkllu
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define the different possible feedback control input 

sequences for each LTC in each TSOi. If Si
k
 sequences of tap positions are possible at a given time 

step k then MPCi, knowing only the detailed model of its own area and a reduced model of its 

neighboring TSOs j∈I/i, generates the corresponding Si
k
 trajectories and selects the one with lowest 

local cost that satisfies all local constraints. The controller then applies the first action )(*
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 letting the system evolve till the next time step tk+1. furthermore, TSOi also sends 

the selected optimal sequence ∗

i

u
α

 of the local control actions (information on the planned tap 

switching sequences over a finite window in time) to its adjacent TSOs j∈I/i. The neighboring 

TSOs take this information into account in solving their optimization problem for the next time step 

tk+1. This procedure is repeated for each TSO and for each time step. 

Assuming that TSOi knows at least an approximated model for predicting how control actions of 

neighbors j∈I/i influence interaction variables (active/reactive power flows through tie-lines, 

voltages at buses at the end of each tie-lines), this knowledge allows TSOi to passively coordinate 

its action with what neighboring TSOs j∈I/i are planning to do. 

Each agent-wise optimization problem can be formulated as a non-linear programming problem of 

the following form:  
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The performance index Ji may include a weighted integral of the local bus voltage deviations from 

their reference values Vi in TSOi, plus a fixed cost per tap changes. 
ji

uuxi αα
,,   are the sequence of 

predicted state and control variables in local TSOi and its adjacent TSOs j∈I/i. Fi is the next-state 

predictor based on the local system model. Gi represents the control specification of maintaining bus 

voltages within acceptable bounds e.g. [0.9,1.1] p.u. Hi is the additionally imposed equality 

constraint for TSOi to model its neighboring TSOs with approximated model parameters P. 

Infinitely fast dynamics, network voltages and currents in load flow equations, are represented by y. 

One can think that exchange of predicted voltage trajectories themselves among TSOs, will require 

no need to abstract the neighboring areas. We are currently investigating whether this assumption, in 

the context of competitive electricity market, is feasible.    

III. Simulation Results 

The performance of the proposed distributed coordination methodology has been tested on a 3-area 

12-bus power system, for two different scenarios. The system, shown in Fig. 1, is taken from [8]. It 

consists of three topologically almost identical areas connected together via three double tie lines as 

transmission system. The generators in Areas 2 and 3 are equipped with AVR and OXL, while area 

1 is fed by an ∞-bus. The distribution substation in each area is equipped with an LTC and a CB. 

The agent-wise specification is to keep all bus voltages within  the interval e.g. [0.9, 1.1] p.u. by 

applying the D-MPC methodology to coordinate control actions taken by different LTCs. So we 

consider the integral of the squared deviation (Vt -1p.u.)
2
 as part of our cost function. It is also 

highly desirable to minimize the number of LTC moves as tap changes cause transients on the 

system voltages as well as mechanical wear on the LTC itself. This will be taken care of by adding a 

term in the cost function penalizing the LTC moves. 

 

 

 

 

 

 

 

 

 
Fig. 1: One-line diagram of a 12-bus power system 

 A. Line Tripping 

Figures 2 resp. 3 shows the load voltage, LTC and OXL behavior following the tripping of the 

double tie-line between areas 1 and 3 at t=98 s with decentralized deadband control resp. distributed 

MPC approach. 

A.1. Decentralized Deadband Control 

In this case LTCs operate based on only the local measurements. Tap changes occur, after 

mechanical time delay, if the voltage at the load bus lies out of deadband for more than 1s. 

Instability occurs and the solver fails to solve the non-linear equations of the system at t=470.54 s 

when simulation stops. Directly following the fault, load voltages in each area drop, but soon after a 

short-term equilibrium, with all load voltages settling down close to respective reference voltages, is 

established. After this point the mechanism driving the system response is OXL and LTC together 

with load dynamics. After the fault the generator field voltage in area 2 jumps to 2.02 p.u. which 

exceeds Ifdlim =1.88 p.u. for this generator. This initiates the inverse time characteristic of the OXL 

and eventually the OXL is activated at t=139 s. At that time the voltage support provided by this 



 

generator is withdrawn. This results in a further reduction of the load voltage causing the LTC to 

increase the tap position until its maximum tap limit is reached, and the voltage drops suddenly at 

t=470.54 s when the generator can no longer deliver the consumed reactive power. 

A.2. Distributed MPC Approach 

Now for exactly the same system conditions with all parameters the same as for the previous 

simulation, but operation of LTCs based on distributed MPC approach, the simulations are repeated. 

Note that, here the fault detection time of 2 s is considered and the controller is initiated at t=100 s. 

For the first initialization of the controller, each agent takes the initial tap positions of its 

neighbor(s) into account. The MPC, with a sampling time of 10 s, control horizon of 30 s and 

prediction horizon of 80 s, calculates the optimal control action at t=100 s by simulating the system 

till t=190 s. After solving local optimization problem for each area (one LTC in each area), all LTCs 

select “no tap movement” as the local optimal control action at t=100 s. The procedure is repeated at 

next sampling instant t=110 s simulating the system till t=200 s, again “no tap movement” for all 

LTCs offers the lowest local cost. The controller is updated every 10 s, till t=500 s and all agents, 

subject to local cost and local constraints, always prefers having “no tap movement”. At t=500 s, the 

load voltages are close to their reference values. The OXL for generator in area 3 is not activated at 

all while the one for generator in area 2 gets activated at t=144.4 s, OXL output signal goes up to the 

value 0.033 p.u. and then stays saturated at 0.029 p.u. Thus one can conclude that the distributed 

controller avoids the voltage collapse, by predicting the future behavior of the system and 

communicating among agents. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2: Response to the line tripping with decentralized control 

 
B. Load Variation 

Load variation is simply considered by suddenly increasing some reactive load in area 2 and 

decreasing it in area 3 at t=98 s. Figures 4 resp. 5 shows the system response to this sudden change 

of reactive load with decentralized deadband control resp. distributed MPC approach. 

 
B.1. Decentralized Deadband Control 

Here the first tap change for LTC in area 1 occurs at t=110 s, as it moves one tap down while at the 

same time the LTC in area 3 moves one tap up. At t=154.5 s the OXL of generator in area 3 gets 

activated acting as a driving force for 3 subsequent upward tap movements of LTC in area 3 starting 

at t=167 s. The OXL output signal at t=400 s is is 0.0552 p.u. 
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Fig. 3: Response to the line tripping with distributed control 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4: Response to the load variation with decentralized control 

 
B.2. Distributed MPC Approach 

For exactly the same system conditions, the optimal control actions for LTC in area 3, suggested by 

the distributed MPC, asks for 4 subsequent upward tap movements at t=110, 120, 130 and 140 s. At 

t=400 s all voltages are close to their reference voltage and within the deadband. The OXL output 

signal at t=400 s is 0.0592 p.u. So it is observed that one less tap movement is required with D-

MPC as compared to the deadband approach. Note that in the deadband approach, LTC3 initially act 

on the local voltage at t=110 s and stays in this position till t=167 s. At t=154.5 s the OXL2 gets 

activated and as a result LTC3 again act on the OXL activation while D-MPC does in advance 

advantageously anticipate the activation of OXL (in this case, t=150 s) and thus start acting early at 

t=110 s. This means that system voltages in D-MPC settles down to their reference values about 50 

s earlier than that of deadband approach. 

Summary 

This paper, as continuation of the first part, has developed a design methodology for voltage control 

based on distributed MPC as a tool for coordinating LTCs in adjacent control areas. Via simulation 
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on a reasonably sized 12-bus 3-area power system, the paper shows that this coordination control 

can avoid voltage collapse in cases where traditional uncoordinated decentralized controllers fail. 

The case study of the distributed MPC considered in this paper deals with a network that is small 

enough so that each local simulator knows and implements the hybrid dynamical model of the 

complete system. However for realistic applications the local simulator will only know and 

implement a detailed mdoel of its own control region, and will need to represent the dynamics of the 

adjacent regions via more abstract models. This approach is under investigation for the well-known 

Nordic32 test system. The D-MPC coordination scheme will also be investigated as a tool for 

designing controllers for medium voltage grids and µ-grids including distributed generation and 

storage. 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 
 

Fig. 5: Response to the load variation with distributed control 
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