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Abstract

Growing travel and trade threatens biodiversity as it increases the rate of biological inva-

sions globally, either by accidental or intentional introduction. Therefore, avoiding these

impacts by forecasting invasions and impeding further spread is of utmost importance. In

this study, three forecasting approaches were tested and combined to predict the invasive

behaviour of the alien macrophyte Lemna minuta in comparison with the native Lemna

minor: the functional response (FR) and relative growth rate (RGR), supplemented with a

combined biomass-based nutrient removal (BBNR). Based on the idea that widespread

invasive species are more successful competitors than local, native species, a higher FR

and RGR were expected for the invasive compared to the native species. Five different

nutrient concentrations were tested, ranging from low (4 mgN.L-1 and 1 mgP.L-1) to high (70

mgN.L-1 and 21 mgP.L-1). After four days, a significant amount of nutrients was removed by

both Lemna spp., though significant differences among L. minor and L. minuta were only

observed at lower nutrient concentrations (lower than 17 mgN.L-1 and 6 mgP.L-1) with higher

nutrient removal exerted by L. minor. The derived FR did not show a clear dominance of the

invasive L. minuta, contradicting field observations. Similarly, the RGR ranged from 0.4 to

0.6 d-1, but did not show a biomass-based dominance of L. minuta (0.5 ± 0.1 d-1 versus 0.63

± 0.09 d-1 for L. minor). BBNR showed similar results as the FR. Contrary to our expecta-

tions, all three approaches resulted in higher values for L. minor. Consequently, based on

our results FR is sensitive to differences, though contradicted the expectations, while RGR

and BBNR do not provide sufficient power to differentiate between a native and an invasive

alien macrophyte and should be supplemented with additional ecosystem-based experi-

ments to determine the invasion impact.

Introduction

Environmental degradation and biodiversity loss are considered to be important consequences

of the globally increasing rate of biological invasions [1, 2]. Due to increased travel and trade,

organisms are continuously transported outside their native range both intentionally and
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accidentally [3]. Introduction of such an alien organism in a yet non-colonized environment

can, subsequently, result in its establishment and spread, thereby threatening current commu-

nities, economic activities and human health [4–6]. Consequently, the ability to forecast and

impede future introductions, establishment and spread of alien species is of utmost impor-

tance to develop time- and cost-reducing measures.

Identifying potential introductions, avoiding establishment and impeding further spread of

invasive alien species (IAS) by detection and subsequent large-scale eradication requires finan-

cial input and highly destructive measures [5]. As not all traits of the invader are known, new

functions can be introduced without changing the community composition drastically (e.g.,

niche differentiation resulting in an increase in total ecosystem biomass) [7]. However, intro-

duction of completely new traits is limited [8], underlining that knowledge and early detection

is required from a conservation point of view. Understanding the process of invasion provides

the possibility of counteractive management to limit invasion impact and re-establish native

communities [9, 10] on a large scale. In contrast, small-scale eradication of invasive species is a

more preferred action as it is less destructive and can be successfully applied when an alien spe-

cies is discovered rapidly [5], though it requires a lot of time, effort and capital [11].

Forecasting invasion impact, on the other hand, is a challenge in invasion biology [9, 12,

13], as each organism interacts differently with its surrounding [4], making it hard to deter-

mine a general effect of biological invasions. With competition being theorised as one of the

major mechanisms supporting successful invasion [9], several authors have been investigating

the competitive interaction between native and alien species as a first signal of alien or native

dominance (e.g., Vilà and Weiner [7], Njambuya et al. [14], Gioria et al. [15]). A competitive

advantage depends on a difference in functional identity, which is hypothesised to be involved

in determining the final impact of invasion [9, 16]. The competitive advantage is, in general,

ascribed to the species with the highest functional trait value, while the intensity of the advan-

tage is defined by the difference between the functional trait values. Therefore, approaches

describing a difference in one (or more) functional trait(s) are applied to predict a species’

invasive behaviour, for instance the functional response (FR), relative growth rate (RGR),

nutrient content and specific leaf area (SLA) [12, 13, 15, 17]. These differences in functional

traits are also expected to be expressed at the sub-individual level (e.g., molecular, cellular, his-

tological) allowing the application of biomarkers to identify the factors that influence invasive

behaviour of closely related species [18]. Biomarkers should therefore be able to differentiate

between a native and an invasive species. Despite being able to identify differences at the sub-

individual level, appropriate extrapolation to population and community level remains unclear

[19] and, considering a high physiological linkage, a similar response among different species

is to be expected [18]. An additional drawback of this technique is the poor knowledge of

appropriate biomarkers for investigating macrophyte species, when compared to biomarkers

for animal research [20]. Therefore, subsequent selection of the FR and RGR is based on their

reported applicability, their ease of application, their link with population and community

dynamics, and their focus on either input (resource use, FR) or output (biomass production,

RGR).

The functional response is a known concept in general ecology, but it is only recently intro-

duced in invasion ecology for comparing the per-capita resource uptake rate of native and

alien species in function of the resource density (e.g., Haddaway et al. [21], Dick, Alexander

[13], Alexander et al. [22], Médoc et al. [23]). It states that an invasive alien species has a higher

functional response compared to the native, because of its higher resource use efficiency [13].

In contrast to the functional response, which focuses on resource use (input-based), the rela-

tive growth rate focuses on the increase in biomass (output-based) to determine the invasion

potential of an alien species and is considered as proxy for the species’ fitness [15]. Therefore,
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several authors have been investigating the difference in RGR between native and alien species

to predict the invasion potential of an alien species (e.g., Grotkopp et al. [24], Njambuya, Stiers

[14], Gérard et al. [25], Riley et al. [26]).

Despite a knowledge gap related to the behaviour of invasive macrophytes [27], application

of the RGR to determine the invasive potential of macrophytes is rather limited to rooted mac-

rophytes (e.g., Barrat-Segretain [28], Hussner [29], Eller et al. [30]), with less attention towards

floating macrophytes (e.g., Netten et al. [31], Njambuya, Stiers [14]). Although the FR concept

has proven to be successful for fish and macroinvertebrates (e.g., Alexander, Dick [22], Dodd

et al. [32]) it has, to our knowledge, not been applied to plants. Among these floating macro-

phytes, duckweeds (Lemnoideae) are frequently occurring and well-known for their high

reproduction rate and protein content [25, 33]. Consequently, their potential in treating eutro-

phic (waste)waters in combination with biomass production has been explored for decades

(e.g., Culley et al. [34], Oron et al. [35], Hammouda et al. [36], Yu, Sun [33]). On the other

hand, duckweed presence in natural systems is frequently characterised by dense mats that

decrease light penetration and oxygen concentration, thereby negatively affecting aquatic life

underneath these mats [37, 38].

In Belgium, five different Lemna spp. occur [39, 40], among which the native Lemna minor
Linnaeus and the alien Lemna minuta Kunth. The latter is considered to be invasive in Bel-

gium and is described as ‘widespread with a moderate impact’ (http://ias.biodiversity.be/).

This offers the opportunity to test both FR and RGR on their ability to predict the invasive

potential of a known invasive macrophyte.

The aim of this paper is: (1) to determine the potential applicability of the functional

response for predicting a macrophyte species’ invasive potential, (2) to determine the potential

applicability of the relative growth rate for predicting a macrophyte species’ invasive potential,

and (3) to determine whether both approaches result in a similar conclusion or whether they

provide additional information. The outcome of this research can be used to support the man-

agement of invasive alien plants and to predict their potential impact.

Materials & Methods

Test setup

A pure culture of Lemna minor was ordered from Blades Biological (UK, http://www.blades-

bio.co.uk). Lemna minuta was collected from the Bourgoyen (51.062253, 3.673827) situated

near Ghent (Belgium). Permission for Lemna collection was granted by the city of Ghent.

About 20 fronds of each species were placed separately in plastic aquaria containing 2 L of

nutrient medium based on OECD and ISO guidelines for chemical testing with L. minor and

will be referred to as the modified Steinberg medium [41]. Fluorescence lamps were used to

provide 16 hours of light, followed by 8 hours of darkness, with an intensity of 45–58 μmol.m-

2.s-1. Temperatures of the growth medium varied between 21.6˚C and 24.0˚C. Every two to

three days new medium was provided and aquaria were rinsed with tap water. Fronds showing

the start of algae growth were removed or rinsed carefully. Selected Lemna spp. plants were

grown in these conditions for at least two weeks to acclimate.

Tests were performed with similar light and temperature conditions as growth conditions.

All recipients were covered at the sides with aluminium foil to constrain algae growth. The

original modified Steinberg medium (C0) was diluted with deionised water to obtain the fol-

lowing series of concentrations: C0, 0.5C0, 0.25C0, 0.125C0, and 0.0625C0, from now on

described as the following series: C1, C2, C3, C4, and C5. Of each concentration, 0.25 L was

poured into a glass recipient and about 500 mgfw of L. minor or L. minuta was added. A third

series, without any plants, was created as a control. Each combination of nutrient

FR and RGR of Invasive Lemna minuta

PLOS ONE | DOI:10.1371/journal.pone.0166132 November 18, 2016 3 / 18

http://ias.biodiversity.be/
http://www.blades-bio.co.uk
http://www.blades-bio.co.uk


concentration and species presence was performed in triplicate, resulting in a total of 45 recipi-

ents per test. In total, two tests were run, resulting in six replicates for each combination. A

schematic overview of the experimental set-up for one single series is shown in Fig 1.

Each test lasted for four days (96 h), as preliminary experiments pointed out that nutrient

concentrations were noticeably lower and algae growth was still limited. Deionised water was

added daily to account for evaporation. After two days, recipients were cleansed to remove

algae starting to grow on the recipient’s walls. After four days plants and growth medium were

separated for further analysis. Tests were performed in October and November 2015.

Data collection

Growth medium samples were collected at the beginning and at the end of the test and stored

at 4˚C in the dark prior to analysis. Within 36 hours after sampling, nutrient analysis was per-

formed spectrophotometrically using Merck field kits for total nitrogen (test kits 1.14963.0001

and 1.14773.0001, operational range from 0.5 to 20 mgN.L-1) and total phosphorus analysis

(test kit 1.14541.0001, operational range from 0.05 to 5 mgP.L-1). For each batch of samples, a

blank and standard were used to determine the background signal and overall destruction effi-

ciency, respectively. Medium samples of C1, C2, and C3 were diluted ten times with deionised

water in order to comply with the operational range of the test kits. Each sample was measured

thrice of which the average value represents the nutrient concentration for further

calculations.

Initial dry weight content was determined by drying representative subsamples of both L.

minor and L. minuta for at least 48 hours at 60˚C. After two days, plant total fresh weight was

determined and adapted to about 500 mgfw in each sample, as to keep biomass as constant as

possible (FR is considered as the per-capita resource uptake). Leftover biomass was weighed

and dried (48 hours at 60˚C) to determine the dry weight content and the estimated overall

dry weight after two days of exposure. After four days, Lemna plants were harvested to deter-

mine both fresh weight and dry weight (48 hours at 60˚C).

Calculating characteristic values

Based on the obtained nutrient concentrations, nutrient mass (expressed as mgN or mgP) was

derived by taking into account the volume of growth medium (0.25 L). Nutrient removal was

determined as the difference in initial and final nutrient mass. For this, the initial nutrient

mass was determined as the average of all six replicates per concentration. Finally, the func-

tional response (nutrient mass removed in function of initial nutrient concentration) was

determined.

Next to the absolute nutrient removal, relative nutrient removal was calculated (Eq 1),

resulting in a relative nutrient removal for each individual sample.

R ¼
ðm0;avg � m4Þ

m0;avg
� 100% ð1Þ

With R the relative nutrient removal (%), m0,avg the average nutrient mass at day 0 (mg)

and m4 the nutrient mass at day 4 (mg).

The (estimated) dry biomass after exposure was determined after two and four days and

compared with the initial (at day 0) and adapted (at day 2) dry weights, respectively. Similar to

the observed nutrient removal, biomass increase was expressed both in absolute (dry weight

increase) and relative (relative growth rate) terms of which the latter was calculated based on

FR and RGR of Invasive Lemna minuta
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Eq 2, representing the relative growth rate (RGR) between day 2 and day 4.

RGR ¼
lnDW4 � lnDW2

t
ð2Þ

With RGR the relative growth rate (d-1), DW4 the dry weight after four days (mg), DW2 the

adapted dry weight after two days (mg) and t the time interval (d).

Subsequently, nutrient removal and biomass increase were combined in a single variable to

determine a more species-specific nutrient removal. Nutrient removal was expressed per gram

biomass, with the latter being rather dynamic, resulting in three different values: initial dry

weight, final dry weight and net dry weight increase. Both initial and final dry weight were

used to determine the range of nutrient removal rate, for which time was included (mgN.

gDW-1.d-1 and mgP.gDW-1.d-1). The net dry weight increase was used under the assumption

that duckweed allocates nutrients directly for new biomass instead of enriching already exist-

ing biomass [42]. This suggests that an increase in nutrient uptake is related to an increase in

biomass production. Follow-up of this nutrient uptake per gram newly created biomass allows

to determine whether new biomass has a continuous nutrient content or whether additional

nutrients are stored. A species with a higher storage capacity has an advantage towards future

Fig 1. Schematic overview of the experimental set-up. Relative initial nutrient concentrations are shown on top and were sampled at the start.

Darkness represents the dilution state of the growth medium (black equals original modified Steinberg medium). Each recipient was filled with 0.25 L of

its respective nutrient solution and was performed in triplicate.

doi:10.1371/journal.pone.0166132.g001
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disturbances. To determine this biomass-based nutrient removal (BBNR), Eq 3 was applied.

BBNR ¼
m0;avg � m4

ðDW4 � DW2;adÞ þ ðDW2 � DW0Þ
ð3Þ

With BBNR the biomass-based nutrient removal (mg.mgDW-1), m0,avg the average initial

nutrient mass (mg), m4 the final nutrient mass (mg), DW4 the biomass dry weight after four

days (mg), DW2,ad the estimated biomass dry weight at the beginning of the second period of

two days (mg), DW2 the estimated biomass dry weight at the end of the first two days (mg)

and DW0 the estimated initial biomass dry weight (mg).

Statistical analysis

Obtained data of both tests were merged into one dataset and subsequently analysed using

MS1 Excel1 and R [43]. Outliers were identified by Cleveland dotplots and boxplot construc-

tion [44], though were not removed from the dataset for subsequent statistical analysis. Not

removing any value from the dataset was based on the fact that all analyses were performed by

the authors and that randomisation was applied when possible, thereby limiting the amount of

valid arguments for outlier removal. During a second run, extreme values were removed to

investigate their influence on the reported results.

Secondly, normality was tested using the Shapiro-Wilk test. When no significant difference

from the normal distribution was observed (p> 0.05), paired Student’s t-tests were performed,

in all other cases (p< 0.05) the paired Wilcoxon signed-rank test was applied. All p-values

were considered as part of a multiple comparison setup, for which a correction of the signifi-

cant threshold value is required. This correction is necessary as multiple comparisons increase

the odds of observing a significant difference, though it increases the possibility of a type II

error (accepting null hypothesis while alternative hypothesis is correct) [45]. In short, a Bon-

ferroni correction was applied for determining a new threshold value for each batch of five

comparisons (i.e. α = 0.01).

Results

Nutrient removal

Nutrient analyses performed at day 0 and day 4 resulted in the average nutrient concentrations

provided in Supporting Information (S1 and S2 Tables) for total nitrogen (TN) and total phos-

phorus (TP), respectively. Recovery of a standard solution ranged from 93 to 99% for nitrogen

and from 95 to 98% for phosphorus.

As the initial nitrogen concentration of C5 (i.e. 4.22 ± 0.04 mgN.L-1) was already quite low,

measurements of the final nitrogen concentrations happened to be below the detection limit of

0.5 mgN.L-1. These results were set to zero prior to determining average nitrogen concentration.

Subsequently, nutrient masses (expressed in mgN and mgP) were inferred from the mea-

sured nutrient concentrations (volume of 0.25 L), resulting in a similar nutrient content for L.

minor and L. minuta (see Figs 2 and 3). Both total nitrogen and total phosphorus differed sig-

nificantly (p-values< 0.01) from the initial mass when L. minor or L. minuta was present at

high (concentration C1) or low (concentration C5) nutrient concentrations (see Table 1). At

intermediate concentrations, both significant and non-significant differences were observed

(see Table 1). The reference series (i.e. no plants) did not show a significant difference (all p-

values> 0.01) for nitrogen mass, though some series (C1 and C2) showed a significant differ-

ence (p-values < 0.01) for phosphorus mass,. Correcting for the analysis efficiency (based on

the recovery of a standard solution), however, resulted in p-values not exceeding the threshold

FR and RGR of Invasive Lemna minuta
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level of 0.01. Consequently, it can be stated that, in general, the presence of both Lemna minor
and Lemna minuta after four days significantly affects the nutrient content of the provided

growth medium.

No significant differences in nutrient removal were found between L. minor and L. minuta,

except for nitrogen at concentration C4 (t = -5.3557, df = 5, p = 0.003) and phosphorus at con-

centration C3 (t = -6.1281, df = 5, p = 0.002) (see Figs 2, 3 and Table 2). Relative nutrient

removal, as calculated with Eq 1, showed that at low concentrations, relatively more nutrients

were removed (Fig 4). Still, a slightly higher relative removal was observed for L. minor in com-

parison with L. minuta, with similar significant differences for nitrogen at concentrations C4

and for phosphorus at concentration C3. In short, the FR is able to identify a difference in nutri-

ent removal, though it is limited to only one out of five concentration levels for each nutrient.

Biomass increase

At three different moments in time (day 0, day 2 and day 4) both fresh and dry weight of

Lemna biomass were determined, with biomass dry weight at day 0 and day 2 being

Fig 2. Absolute nitrogen removal by L. minor (black) and L. minuta (grey). A: nitrogen mass present at

beginning (white bars) and after four days (grey and black bars). B: amount of nitrogen removed in function of

the initial amount of nitrogen, representing the functional response.

doi:10.1371/journal.pone.0166132.g002
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estimations based on the observed dry matter content of collected subsamples. Six samples

(three for each species) were removed from the dataset as not enough biomass was present to

determine the dry weight content. The resulting average dry weights (estimations, except for

day 4) are provided in Supporting Information (S3 and S4 Tables).

Fig 3. Absolute phosphorus removal by L. minor (black) and L. minuta (grey). A: phosphorus mass

present at beginning (white bars) and after four days (grey and black bars). B: amount of phosphorus removed

in function of the initial amount of phosphorus, representing the functional response.

doi:10.1371/journal.pone.0166132.g003

Table 1. Obtained p-values after comparing initial and final nutrient masses. Significant differences (p < 0.01) can be found at high (C1) and low (C5)

nutrient concentrations and at several intermediate nutrient concentrations.

Nitrogen Phosphorus

L. minor L. minuta L. minor L. minuta

C1 < 0.001 < 0.001 0.002 < 0.001

C2 0.031 0.031 0.001 0.031

C3 0.31 0.007 < 0.001 < 0.001

C4 < 0.001 < 0.001 0.031 < 0.001

C5 < 0.001 < 0.001 < 0.001 < 0.001

doi:10.1371/journal.pone.0166132.t001
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The increase in biomass dry weight of L. minor between day 2 and day 4 was relatively simi-

lar among different concentrations (all p-values > 0.01) as it ranged from 31 mgDW at con-

centrations C2 and C4 to 35 mgDW at concentration C1. In contrast, there was more

fluctuation in the biomass increase of L. minuta, showing the highest increase (32 mgDW) at

concentration C2 and the lowest increase (18 mgDW) at concentration C4 (see Fig 5), though

Table 2. Obtained p-values for three applied approaches showing minor similarities among the three approaches. Significant differences (p < 0.01)

are underlined and were only observed at the nutrient level.

C1 C2 C3 C4 C5

Concentration Nitrogen (mgN.L-1) 69.3 ± 0.7 33.0 ± 0.8 16.2 ± 0.9 8.8 ± 0.2 4.22 ± 0.04

Phosphorus (mgP.L-1) 20.99 ± 0.04 10.73 ± 0.06 5.43 ± 0.03 2.58 ± 0.01 1.334 ± 0.004

FR Nitrogen 0.520 0.156 1.000 0.003 0.034

Phosphorus 0.563 0.520 0.002 0.438 0.056

RGR 0.110 0.790 0.220 0.052 0.620

BBNR Nitrogen 0.088 0.062 1.000 0.046 0.260

Phosphorus 0.190 0.280 0.016 0.026 0.540

doi:10.1371/journal.pone.0166132.t002

Fig 4. Relative removal of nutrients by L. minor (black circles) and L. minuta (grey circles). A: nitrogen

removal. B: phosphorus removal. At low nutrient concentrations relatively high nutrient removal efficiencies

are observed.

doi:10.1371/journal.pone.0166132.g004
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no significant difference was observed. These fluctuations seemed to become less severe when

considering the relative growth rate of L. minuta, ranging from 0.37 (± 0.07) d-1 at concentra-

tion C4 to 0.5 (± 0.1) d-1 at concentration C5 without any significant difference (all p-

values> 0.01). In contrast, the relative growth rate of L. minor seemed to fluctuate more when

compared with its related absolute biomass increase, as it ranged from 0.52 (± 0.06) d-1 at con-

centration C3 to 0.63 (± 0.08) d-1 at concentrations C1 and C5 (see Fig 5). Nevertheless, these

growth rates were considered to be similar as no significant difference was observed (all p-

values> 0.01).

Net biomass increase between day 2 and day 4 differed significantly between L. minor and

L. minuta at concentration C4 (t = 5.3484, df = 4, p = 0.006) (Fig 5). In contrast, at concentra-

tion C2, L. minor and L. minuta were characterised by an almost identical biomass increase

(t = -0.0772, df = 4, p = 0.942). In relative numbers however, the relative growth rate of L.

minor did not differ significantly compared with L. minuta (all p-values > 0.01), even at con-

centration C4 (t = 2.7358, df = 4, p = 0.052). In short, the RGR did not result in a significant

difference at a single concentration level and is, therefore, not able to differentiate between L.

minor and L. minuta.

Fig 5. Change in biomass for L. minor (black bars) and L. minuta (grey bars). A: absolute increase in

biomass dry weight (mgDW) starting from day 2 (estimation) until day 4. B: Relative Growth Rate (RGR, d-1) in

a period of two days. Concentrations range from high (C1) to low (C5).

doi:10.1371/journal.pone.0166132.g005
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Nutrient decrease versus biomass increase

Throughout the four day experiment, L. minor removed a maximum total amount of 2.1 mgN,

while L. minuta removed 1.7 mgN (see also Fig 2), resulting in an approximated maximal aver-

age removal rate of 0.525 and 0.425 mgN.d-1, respectively. Therefore, biomass-based nitrogen

uptake rates were situated in between 2.1 mmolN.gDW-1.d-1 (lowest observed dry weight of

17.6 mg) and 0.8 mmolN.gDW-1.d-1 (highest observed dry weight of 49.1 mg) for L. minor and

in between 1.5 mmolN.gDW-1.d-1 (lowest observed dry weight of 20.2 mg) and 0.6 mmolN.

gDW-1.d-1 (highest observed dry weight of 47.7 mg) for L. minuta. Similarly, phosphorus was

removed at a maximal average removal rate of 0.19 and 0.25 mgP.d-1 for L. minor and L. min-
uta, respectively. Resulting biomass-based phosphorus removal rates were situated between

0.4 and 0.1 mmolP.gDW-1.d-1 for both Lemna species.

Nutrient removal in function of biomass increase (“biomass-based nutrient removal”) var-

ied between 20 and 65 mgN.gDW-1 and between 6 and 30 mgP.gDW-1 and combined the fluc-

tuations in nutrient removal and biomass increase. In seemingly all cases a higher nutrient

removal per gram newly formed biomass was observed for L. minor, though no significant dif-

ferences were observed (all p-values> 0.01) (see Fig 6 and Table 2).

Fig 6. Nitrogen (A) and phosphorus (B) removal per gram newly formed biomass after four days for L.

minor (black circles) and L. minuta (grey circles). Similar patterns as in Figs 2 and 3 can be observed,

though differences between both Lemna spp. are influenced by the increase in biomass (see Fig 5).

doi:10.1371/journal.pone.0166132.g006
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In short, BBNR seemed to observe similar differences in nutrient removal between L. minor
and L. minuta as the FR, though it was not as powerful considering that all p-values were

higher than the threshold value (α = 0.01) A summary of the obtained p-values for each of

these approaches is provided in Table 2.

Discussion

Nutrient removal

Overall net nutrient removal by Lemna minor was higher than the nutrient removal exerted by

Lemna minuta and contradicts our expectations of the latter having a higher functional

response than the native L. minor. Even after removal of potential extreme values (three in

total), no additional significant differences were observed. Furthermore, the difference in

nutrient removal can also be noticed when considering relative nutrient removal, showing that

at low nutrient concentrations both species are efficient in using the provided nutrients. This

efficiency decreases with increasing concentrations, though in general, L. minor seems to be

characterised by a higher resource use efficiency. These results are not in line with field obser-

vations of L. minuta dominating L. minor in Belgian water bodies. A similar contrast between

field observations and experimental results was obtained when comparing two subspecies of

the macrophyte Phragmites australis. Mozdzer et al. [46] clearly observed the expected pattern

of higher nutrient removal by the alien subspecies, but, when applied in practice, Rodrı́guez

et al. [47] observed a slightly higher nutrient removal by the native subspecies, especially

towards phosphorus removal efficiency. According to Rodrı́guez and Brisson [47], this dis-

crepancy can be related to the higher root biomass of the native P. australis, allowing it to take

up more nutrients. This confirms both our observations and reported findings of L. minor hav-

ing longer roots [14], and supports the vital role of roots in nitrogen uptake by L. minor as

highlighted by Cedergreen et al. [48]. Additionally, these contrasting findings underline the

idea that a clear difference between phylogenetically related species is hard to find and that fur-

ther development and knowledge of appropriate testing methods is recommended. For

instance, Colin, Porte [18] already mentioned the potential in applying biomarkers for identi-

fying differences between native and invasive species at the sub-individual level, but also recog-

nises the currently existing knowledge gap inhibiting its widespread application.

Our findings suggest that, despite its shown applicability at higher trophic levels (i.e. preda-

tor-prey interactions, see Dick, Alexander [13]), the functional approach does not show a

higher nutrient removal by the known invader and therefore, does not allow to predict the

invasive potential of L. minuta, solely based on nutrient removal. In combination with the con-

trasting results when comparing Phragmites australis [46, 47], the functional response

approach does not seem to be an appropriate method in predicting the invasiveness of alien

macrophytes.

Biomass increase

In general, no significant differences were found in both absolute and relative biomass produc-

tion between native and invasive Lemna plants. Similar to the functional response, extreme

value removal (eight in total) did not result in additional significant differences with respect to

the RGR. Still, L. minor seemed to perform better than L. minuta, except for condition C2,

where an almost similar biomass increase was observed. This is in line with the higher observed

nutrient removal by L. minor described in previous section, suggesting an overall higher effi-

ciency in nutrient uptake by L. minor. Relative growth rates (RGR) during this period ranged

from 0.5 to 0.6 d-1 for L. minor and from 0.4 to 0.5 d-1 for L. minuta. These values are higher

than reported RGRs of duckweed, which are situated around 0.1 d-1 [14, 42] up to 0.3 d-1
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[25, 48]. This might be related to their applied test duration of 14 to 20 days, potentially leading

to overcrowding and related decrease in growth rate [49]. In contrast, Körner and Vermaat

[42] only applied a duration of 3 days and observed a similarly low RGR of 0.1 d-1. Yet, they

used domestic wastewater as a growth medium, which differs from an ideal growth medium as

defined by the OECD guidelines. Nevertheless, the applied test duration of 4 days might have

been too short to observe clear significant differences as nutrient concentrations might not

have been depleted sufficiently to invoke a reaction at the species’ biomass level. The observed

RGRs suggest that L. minor is more effective in creating new (dry) biomass. However, when

focusing on fresh weight (see Supporting Information, S5 and S6 Tables), the overall biomass

increase is larger for L. minuta than for L. minor (639 (± 35) mgFW versus 406 (± 19) mgFW,

respectively), but a lower dry weight content reduces this difference (34 (± 1) mgDW versus 31

(± 1) mgDW, respectively). Despite the lack of clear significant differences in RGR on a dry

weight basis, L. minor might still be suppressed by L. minuta producing more new, fresh bio-

mass with a lower dry weight content. This difference in dry weight content indicates an

important drawback of using RGR for dominance prediction because some field-related infor-

mation is not taken into consideration. Additionally, Henry-Silva et al. [50] investigated the

effect of nutrient conditions on three different aquatic weeds and observed that RGR on a dry

weight basis does not suffice to accurately predict the infestation potential of a species. They

suggest to complement the RGR data with biomass density to obtain more precise information

about potential invasion problems.

In general, our findings do not fully support the idea that invasive plants have a competitive

superiority over native plants due to their higher growth rates [24, 51, 52]. Moreover, our

results underline the fact that comparing RGRs of monocultures only depicts the potential

direct competition and neglects more important indirect competition and interactions on the

long run [53]. Consequently, the relative growth rate provides information on biomass-based

competition and dominance [50], though is insufficient to describe or predict the invasive

potential of macrophytes as no significant differences in RGR were observed.

Nutrient decrease versus biomass increase

Biomass-based nitrogen removal rates of both Lemna spp. fluctuated between 0.6 and 2.3

mmolN.gDW-1.d-1 and, thereby, included the range observed by Cedergreen and Madsen [48]

for L. minor (0.6–0.9 mmolN.gDW-1.d-1). Higher maximal nitrogen removal rates were

obtained by L. minor when compared to L. minuta, which might be related to the observation

of L. minor plants having longer roots, potentially increasing their nutrient uptake [48]. Addi-

tionally, this difference in nutrient uptake was amplified by a higher net increase in biomass of

L. minuta when compared with L. minor (Supporting Information, S3 and S4 Tables), resulting

in a difference in biomass-based nutrient removal rate in favour of L. minor.

Even so, under the assumption that Lemna spp. reallocate nutrients for biomass increase

rather than biomass enrichment [42], nitrogen contents of both L. minor and L. minuta (rang-

ing from 20 to 63 mgN.gDW-1) are comparable to the values obtained by Körner and Vermaat

[42], being 18.5–56.5 mgN.gDW-1, but are higher than reported by Cedergreen and Madsen

[48], being 5.6–27.3 mgN.gDW-1. In contrast, phosphorus content of both Lemna spp. (rang-

ing from 6 to 30 mgP.gDW-1) is observed to be higher than reported by Körner and Vermaat

[42], being 3.6–7.2 mgP.gDW-1, which might be related to a difference in phosphorus content

of the growth medium (1–21 mgP.L-1 versus 1–14 mgP.L-1, respectively). Duckweed is known

to be a P-hyperaccumulator and to store phosphorus as a precaution to future depletion [25],

which explains the increase in phosphorus removal at higher initial concentrations (see Fig 6).

Nevertheless, biomass-based nutrient removal remains higher for L. minor, suggesting that L.
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minor requires more nutrients to produce new fronds (i.e., higher nitrogen and phosphorus

content), while L. minuta biomass consists of more water. This is also supported by the obser-

vation of higher dry weight content of L. minor when compared to L. minuta.

In short, BBNR provides information about the efficiency of nutrient uptake per unit bio-

mass, but lacks the ability to discriminate native from invasive species. Observed differences

between both species were only marginally significant at the individual concentration level

and were non-significant when accounting for multiple testing. Therefore, similar to FR and

RGR, BBNR is not recommended to be used as the only technique to determine a macro-

phyte’s invasive potential, despite combining nutrient uptake and biomass increase.

Individual traits versus ecosystem-based techniques

Combining nutrient removal (input) and biomass increase (output) does not allow to clearly

differentiate between the native L. minor and invasive L. minuta. Overall, when looking at all

three approaches, only two conditions were considered to be significantly different (see

Table 2). Only the functional response showed a significant difference in phosphorus at con-

centration C3 and nitrogen at concentration C4. Firstly, this suggests that the FR is more sensi-

tive towards differences between species, while the RGR is the least sensitive. In other words,

differences are easier to be observed at the input-level than at the output-level. Secondly, the

differences between L. minor and L. minuta are clearer at lower nutrient concentrations, and

require further research, while the absence of significant differences at high concentrations

(C1 and C2) suggests that L. minor and L. minuta have a similar nutrient removal and biomass

increase. Based on these individual specific traits, the invasive character of L. minuta could not

be confirmed as L. minor displayed a higher nutrient removal and a higher relative growth

rate. Consequently, taking into account L. minuta’s alien origin, the increasing in-field obser-

vations and its classification as ‘widespread with moderate impact’, the applied methods are

considered to be insufficient for predicting a macrophyte’s invasive potential. Nevertheless,

the combined information provided by the individual traits (nutrient use and wet biomass

increase) insinuates the presence of dominant behaviour of L. minuta, though this was not

confirmed by the BBNR approach due to a highly fluctuating biomass increase.

Invasiveness is rarely determined by a single functional trait, but rather by a combination of

factors [54]. These factors include, among others, meteorological conditions, climate, resource

availability of current environment, community complexity, frequency of disturbances, phe-

notypic plasticity, evolutionary adaptation and predator size (see for instance, Alpert et al.
[55], Levine, Vilà [9], Riis et al. [56], Gioria and Osborne [15], Baldy et al. [57]). Therefore,

experiments applying the FR, RGR or BBNR to determine a macrophyte species’ invasive

behaviour, should be supplemented with more complete and more complex ecosystem-scale

research (e.g., Kovalenko et al. [58]). Additional attention can be given to look for appropriate

biomarkers not only to study the differences between closely related species at sub-individual

level, but also to increase knowledge about the existing pathways and reactions to stress. As

such, both policy makers and managers can be supported by data reflecting natural conditions

more accurately instead of relying on the FR, RGR or BBNR to investigate the performance of

different macrophyte species with respect to nutrient removal and biomass increase.

Conclusion

One input-based and one output-based approach were applied and supplemented with a third

combined approach to test their applicability for predicting the invasive behaviour of Lemna
minuta when compared to the native Lemna minor. The FR approach did not meet the expec-

tations of a higher resource removal by the invasive species, as it was observed that L. minor
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removes more nutrients than L. minuta, with significant differences at low nutrient concentra-

tions. The net dry biomass increase was higher for L. minor at low nutrient concentrations,

though no significant differences were observed when comparing the RGR of both species. In

contrast, the increase in fresh weight was higher for L. minuta, which supports field observa-

tions of L. minuta dominating L. minor. As such, despite not meeting the expectations of a

higher FR and RGR, the low nutrient requirement and high fresh weight increase support the

idea of L. minuta being more invasive than L. minor. In the observed range no dominance of

the invasive alien macrophyte could be clearly inferred by applying a single approach, suggest-

ing that other functional traits (e.g., temperature resistance, germination period, . . .) or envi-

ronmental conditions might provide a competitive advantage [56]. Therefore, it is

recommended to supplement currently existing functional traits with more in-depth and eco-

system-based research as the former, when applied individually, lacks the ability to identify

and predict an invasive alien species with a moderate impact.
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27. Thiébaut G. Invasion success of non-indigenous aquatic and semi-aquatic plants in their native and

introduced ranges. A comparison between their invasiveness in North America and in France. Biol Inva-

sions. 2006; 9(1):1–12. doi: 10.1007/s10530-006-9000-1

28. Barrat-Segretain M-H. Competition between Invasive and Indigenous Species: Impact of Spatial Pat-

tern and Developmental Stage. Plant Ecol. 2005; 180(2):153–60. doi: 10.1007/s11258-004-7374-7

29. Hussner A. Growth and photosynthesis of four invasive aquatic plant species in Europe. Weed Res.

2009; 49(5):506–15. doi: 10.1111/j.1365-3180.2009.00721.x

30. Eller F, Alnoee AB, Boderskov T, Guo W-Y, Kamp AT, Sorrell BK, et al. Invasive submerged freshwater

macrophytes are more plastic in their response to light intensity than to the availability of free CO2 in air-

equilibrated water. Freshwat Biol. 2015; 60(5):929–43. doi: 10.1111/fwb.12547

31. Netten JJC, Arts GHP, Gylstra R, van Nes EH, Scheffer M, Roijackers RMM. Effect of temperature and

nutrients on the competition between free-floating Salvinia natans and submerged Elodea nuttallii in

mesocosms. Fundamental and Applied Limnology / Archiv für Hydrobiologie. 2010; 177(2):125–32. doi:

10.1127/1863-9135/2010/0177-0125

32. Dodd JA, Dick JTA, Alexander ME, MacNeil C, Dunn AM, Aldridge DC. Predicting the ecological

impacts of a new freshwater invader: functional responses and prey selectivity of the ‘killer shrimp’,

Dikerogammarus villosus, compared to the native Gammarus pulex. Freshwat Biol. 2014; 59(2):337–

52. doi: 10.1111/fwb.12268

33. Yu C, Sun C, Yu L, Zhu M, Xu H, Zhao J, et al. Comparative Analysis of Duckweed Cultivation with Sew-

age Water and SH Media for Production of Fuel Ethanol. PLoS ONE. 2014; 9(12):e115023. doi: 10.

1371/journal.pone.0115023 PMID: 25517893

34. Culley DD, Epps EA. Use of Duckweed for Waste Treatment and Animal Feed. Journal Water Pollution

Control Federation. 1973; 45(2):337–47.

35. Oron G, de-Vegt A, Porath D. Nitrogen removal and conversion by duckweed grown on waste-water.

Water Res. 1988; 22(2):179–84. http://dx.doi.org/10.1016/0043-1354(88)90076-0.

36. Hammouda O, Gaber A, Abdel-Hameed MS. Assessment of the effectiveness of treatment of wastewa-

ter-contaminated aquatic systems with Lemna gibba. Enzyme Microb Technol. 1995; 17(4):317–23.

http://dx.doi.org/10.1016/0141-0229(94)00013-1.

37. Janes RA, Eaton JW, Hardwick K. The effects of floating mats of Azolla filiculoides Lam. and Lemna

minuta Kunth on the growth of submerged macrophytes. Hydrobiologia. 1996; 340(1):23–6. doi: 10.

1007/BF00012729

38. Janse JH, Van Puijenbroek PJTM. Effects of eutrophication in drainage ditches. Environ Pollut. 1998;

102(1, Supplement 1):547–52. http://dx.doi.org/10.1016/S0269-7491(98)80082-1.

39. Van Landuyt W. Herkenning van de vier in België voorkomende drijvende Lemna-soorten. Dumortiera.
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