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Abstract—Nowadays, the energy price is rising. The 

consciousness of environmental sustainability of governments 

and customers has been ever increasing. Consequently, 

manufacturing enterprises are increasingly motivated to reduce 

the energy cost involved in their production activities. This paper 

proposes a novel production scheduling method to minimize the 

energy cost involved in the production at the unit process level. 

Compared to the emerging energy-conscious production 

scheduling methods, this method builds the finite state machine 

based energy model from power data that are measured from the 

shop floor. By following the formulated mixed integer linear 

programming model, the power states and changeovers of a unit 

process can be additionally scheduled, and the potential multiple 

process idle modes can be optimally selected between two jobs. In 

addition, the process power consumption behavior can be 

predicted along with the optimal schedule. This method was 

demonstrated in an extrusion blow molding process in a Belgian 

plastic bottle manufacturer. Compared to two conventional 

schedules, i.e., “as-early-as-possible” and “as-late-as-possible”, 

the schedule given by the proposed method is able to reduce 21% 

and 11% of electricity cost for completing the same production 

task before a due date. 

Keywords—production scheduling; energy modeling; 

optimization; sustainable manufacturing; demand response 

I.  INTRODUCTION 

Currently, the expenditure on energy consumption is no 
longer ignored by global manufacturing enterprises, with the 
rising price of fossil fuels and enormous energy consumption 
in the manufacturing industry. Energy represents the second 
largest operating cost in many industries [1]. Electricity is 
extensively used in industry because it can easily be converted 
into diverse lower energy forms, e.g., light, heat, cooling, 
compressed air, and mechanical torque. For instance, in a 
typical Indian caustic-chlorine plant, the electricity cost 
accounts for almost 60% of the total production cost [2]. The 
annual electricity bill of an Australian bio-medical product 
manufacturer exceeds 1 million Australian dollars [3]. 

Besides, the electricity price is getting volatile, due to the 
penetration of renewable energy sources into the power grid 
and the increasing implementation of demand response [4] 
towards smart grid. This makes it increasingly difficult to have 

controllable expenditure on electricity consumption. By 
shifting production loads as many as possible to low-priced 
periods defined by the demand response and staying idle or 
even powered off during high-priced periods, factories are able 
to save the electricity cost, while proactively adjusting their 
electricity consumption behavior for the purpose of decreasing 
power demand during peak hours and enhancing the grid’s 
stability. This is able to further help reducing greenhouse gas 
(GHG) emissions, since a large number of thermal power 
plants, which produce high GHG emissions, are usually called 
on to meet the peak demand, instead of renewable energy, of 
which the supply is unstable depending on local weather. 
Therefore, it is of both economic and ecological (“double E”) 
significance for manufacturing enterprises to gain additional 
capacity of electricity cost control and optimization. Also, the 
added value of sustainability will help promote factories of the 
future (FoF), known as either the German Industry 4.0 or the 
American Industrial Internet [5]. 

To this end, production planning and scheduling at the 
management level is a promising roadmap. Production loads 
are automatically shifted by following the energy-cost-aware 
schedule which is assigned on manufacturing machines. 
Furthermore, through updating the software module of a 
manufacturing execution system (MES), the energy-cost-aware 
scheduling has the advantage of a low investment cost for 
factories, without any need for purchasing extra equipment.  

Based on the above philosophy, some energy-cost-aware 
production scheduling approaches can be found in literature 
[12-18]. Almost all these approaches emerged in the very 
recent years. They tend to have a simple assumption on the 
power data that should have been measured from the real 
machines, processed, analyzed, and input to the scheduling 
model. This leaves a gap between the scheduling theory and its 
industrial applicability.  

To unlock this common assumption, this paper proposes a 
novel power data driven electricity-cost-aware production 
scheduling method. Using the finite state machine (FSM), the 
process energy model is built from power data that are 
collected experimentally from the shop floor. A mixed integer 
linear programming (MILP) model is formulated for 
scheduling, including a joint consideration of jobs, process 



changeovers, power states, and idle modes. Metaheuristic 
optimization techniques, like a genetic algorithm (GA), are 
proposed to be used for finding an optimal or suboptimal 
schedule. As a result, production jobs, changeovers, and 
process power states can all be scheduled. Electricity price 
peaks are effectively avoided, valleys are highly used, and an 
optimal process idle mode is selected for the period between 
two jobs. 

II. LITERATURE REVIEW 

     The literature review was conducted over two domains, i.e., 

industrial energy monitoring and energy-cost-aware 

production scheduling. The former provides onsite power data 

to the latter, in order to enable the power data driven energy-

cost-aware scheduling method, proposed in this paper. 

A. Industrial energy monitoring/metering 

Although it is common to see a comprehensive breakdown 
of energy consumption for the residential and commercial 
sectors, the industrial energy consumption tends to be lumped 
together without indicating the percentage of energy consumed 
by each end user, e.g., space cooling, space heating, lighting, 
water heating, motors, and pumps [6]. Therefore, energy 
monitoring/metering plays a vital role in increasing the 
transparency of energy consumption of production machines. 
The revealed energy data in more details can not only stimulate 
concrete measures for enhancing industrial energy efficiency 
and energy cost effectiveness, but also enable factories to 
check the quality characteristics of the supplied electricity (e.g., 
variation in voltage magnitude and frequency). What is more, 
the authors in [7] point out that automated energy monitoring 
will enable better communication of manufacturing system 
demand data to the grid, facilitating a faster implementation of 
smart grid technologies (e.g., demand response) in factories. 

Energy monitoring/metering in factories can have three 
hierarchal levels: (1) factory, (2) process chain, and (3) unit 
process [3, 8]. On the factory level, the meter is placed on or 
near the interface between the electricity supplier and the 
factory inlet. It is the conventional method to enable electricity 
billing of the entire factory. On the department level, energy 
consumption is revealed within a sub-structure, which can be 
an organizational structure (department), a production line for a 
specific product, or a storage area. On the unit process level, 
meters are attached to machines or machine components (e.g., 
hydraulic systems, ventilation systems, and auxiliary pumps). 
Consequently, the most energy consumption details can be 
obtained. This level of details is normally required for energy 
optimized production planning. 

Some energy monitoring systems can be found in literature. 
A real-time energy management framework is introduced in 
[9]. Its prototype was implemented in a machining line 
compromising of 13 multi-operation machines in a major 
European automotive manufacturer. Average energy used 
during machine idling was revealed to take up 23% of annual 
energy consumption. Machine operators are authorized to shut 
down machines if they think the machine capacity will not be 
needed for a significant period of time. However, there is no 
tool to help them make optimal powering-on/off decisions. 

An online energy efficiency monitoring system was 
developed in [10]. It uses a low-cost power sensor to monitor 
the machine tool’s cutting power in real time besides the 
energy consumed by an entire machine. As a result, energy 
efficiency and its related parameters of machine tools, e.g., 
ready-for-operation time and idle time, can be captured and 
presented. 

What is more, with the emerging development of Internet-
of-Things (IoT) technologies (e.g., smart meters and sensors), 
wireless devices such as RFID and wireless sensor networks 
are utilized to gather real-time data from the shop floor. 
Besides energy consumption, the data that can be wirelessly 
collected are illustrated as machine status, inventory levels, and 
shipment progress [11]. With regard to industrial energy 
monitoring, the heterogeneous data are of practical importance 
to associate energy data in context with production activities.  

B. Energy-cost-aware production scheduling 

A mixed integer programming (MIP) model for flexible 
flow shops is formulated in [12] to minimize the peak power 
required by the entire shop floor. Based on the schedule which 
is output by the advanced production planning and scheduling 
(APS) system, it further modifies the start time of all the tasks 
without resequencing the jobs and the associated machine 
operations. Consequently, the involved energy cost is 
implicitly reduced due to the reduction of peak power 
consumption. A single-machine scheduling model is proposed 
in [13] to minimize the electricity cost for job processing under 
volatile electricity price. However, this model cannot assign 
job sequence, either. A lack of job sequencing function limits 
the potential of decreasing energy cost through energy-cost-
aware production scheduling. 

Further research progress can be found in literature to break 
the limitation on job sequencing. Electricity cost and makespan 
are jointly minimized by a hybrid flow shop scheduling 
approach in [14]. The solution is encoded as a permutation of 
jobs. A list schedule algorithm is used to construct the 
sequence by artificial ants and generate a complete schedule. 
Assumed power values for machine job processing and standby 
mode are involved in the optimization. In [15], multiple speeds 
are investigated for job processing. A higher speed is assumed 
to have higher electricity consumption. A weighted sum of 
energy consumption and total job tardiness is minimized 
through job sequencing and selecting an appropriate processing 
speed for each job.  

Furthermore, investigation on optimally determining 
machine idle and off states between jobs can even unlock more 
potential for energy cost saving via scheduling. An unrelated 
parallel machine scheduling problem is investigated in [16]. 
Idling and setup are explicitly defined as machine states, which 
require to be assigned. A fixed power is assumed for powering 
off a machine and powering it on later. Energy consumption 
and total tardiness are jointly minimized. An energy-aware 
flexible flow shop scheduling model is formulated in [17] to 
determine whether machine tools should be powered off when 
staying idle for a certain amount of time. The optimization 
objective is an optimal tradeoff between energy consumption 
and makespan. Energy cost is implicitly decreased by energy 
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Fig. 1. Method of data-driven energy-cost-aware production scheduling 
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consumption reduction. To further deal with the stochastic 
events on the shop floor, a rescheduling heuristic is proposed in 
[18], which keeps the energy-cost-effectiveness of a production 
schedule upon the occurrence of stochasticity. 

Nonetheless, little relevant literature has performed 
investigation on linking real power data to the scheduling 
model, which has also been pinpointed by recent literature on 
industrial energy monitoring [3, 9-11, 19, 20]. Instead, power 
data are usually assumed with a limited set of machine energy 
consumption states which are also presumed. Power data play a 
fundamental role in the whole energy-cost-aware scheduling 
approach, since the energy consumption and energy cost 
calculation are all based on them. A lack of power data leads to 
unknown or incomplete machine energy consumption behavior 
(e.g., powering on/off and idling), unprecise or even incorrect 
calculation, and eventually the inefficiency of scheduling. 
Overall, the ignorance of real power consumption in the 
scheduling model restricts the applicability of the energy-cost-
aware production scheduling approaches. 

III. METHOD 

The method of power data driven energy-cost-aware 
production scheduling for a unit process is introduced in this 
section. In order to fill the gap analyzed in the previous section, 
it discusses how to couple measured power data to a scheduling 
model, besides its capability to work with general volatile 
electricity price structures, to sequence jobs on a single 
machine, and to assign a specific energy saving mode (i.e., 
machine idling) for a machine along the production horizon. 

A. Overview 

The proposed method is presented in Fig. 1. It is composed 
of 6 sequential steps. In the first step, energy consumption of a 
unit process/machine is directly measured on the shop floor. 
This measurement can be either short term, midterm, or long 
term. A short-term measurement enables a fast reveal of the 
machine’s energy consumption behavior from several hours up 
to one day. Usually one type of product/part is processed 
during this short term. The midterm measurement is conducted 
from several days to several months. A long-term 
measurement, i.e., permanent onsite monitoring, facilitates a 
complete understanding of the machine’s energy consumption 
along with diverse types of products/parts flowing through the 
machine. However, a long-term measurement is more 
expensive from the economic perspective, since energy 
monitoring facilities (e.g., power meters and sensors) must be 
purchased, installed, and maintained. 

In the second step (see Fig. 1), so as to enable centralized 
data management in the pyramid plant organization structure, 
the collected energy data are advised to be integrated into 
common industrial IT systems, e.g., MES, ERP, APS, and 
manufacturing resource planning (MRP II). Various data 
formats can be used for the integration, e.g., XML, CSV 
(comma-separated values), and JSON (Java script object 
notation). Besides, MTConnectSM is emerging as a more 
structured XML-based format for unified communication 
among sensors, equipment, and other hardware in 
manufacturing via standardized interface [21]. 

In the third step (see Fig. 1), a complete process power 
profile is identified from the measured power data. A power 
profile can be characterized by a set of power states. Each state 
has its power consumption and retention time. This can be 
illustrated as the power profile of a 4kW CO2 laser cutting 
machine tool [22], which encompasses power states of machine 
tool startup, laser source startup, production ready, cutting at 3 
different power levels, and machine tool shutdown. The power 
states of a process can be extracted from the collected power 
data, or identified by clarifying the machine’s operational states 
which can be got from the machine’s specification or from the 
machine’s controller (e.g., a programmable logic controller or 
PLC). Once all the power states are identified, the power and 
retention time of each state can be statistically obtained based 
on the collected power data. For instance, the power of each 
state can be averaged from all the corresponding power 
samples. Besides, the time study and power study of the in-
depth approach, which is proposed in [23], serve as a 
systematic way to identify a complete power profile. In 
general, a machine should be operated such that all the power 
states can be involved during the measurement for ensuring a 
complete power profile identification.  

In the fourth step (see Fig. 1), the identified machine power 
profile is joint with a state-based energy consumption model. 
Rationalized transitions are established between these states by 
case study. A general state-based energy consumption model of 
a unit process can be found in our former work [22], which 
includes common states like off, startup, ready (for 
production), production, standby, and shutdown. This general 
model was further applied to a surface grinding process and 
implemented by FSM, which includes within the production 
state more specific sub-states for this process, i.e., grinding and 
dressing [22]. The energy consumption behavior of machine 
changeover and maintenance can be potentially mapped with 
states defined in the model. For instance, in an extrusion blow 
molding (EBM) process, the power consumption of a 
changeover can be modeled by one of the ProheatIdle and 
PreheatIdle states (see Sect. IV-B). The calculation of energy 
consumption of a process can be then performed by 
accumulating the power along with the time-indexed retention 
and transition of power states. 

In the fifth step (see Fig. 1), a MILP model is formulated 
for the energy consumption model based energy-cost-aware 
production scheduling. This mathematical formulation will be 
presented in Sect. III-B. In the sixth step, one of the 
metaheuristics for optimization, e.g., GA, ant-colony 
optimization algorithm, and particle swarm optimization 
algorithm, is implemented by adapting to the MILP model. 
This is common in literature, because scheduling is 



increasingly considered as an optimization problem, and these 
emerging metaheuristics tend to find optimal or near-optimal 
solutions within a reasonable time span. 

B. Scheduling model 

The proposed MILP formulation assigns job sequence and 
start  time,  as  well  as  power  states  to  a  unit  manufacturing 
process that performs machining operations on products under 
a volatile electricity price, and selects an optimal idle mode, in 
order to minimize the involved electricity cost. A changeover 
exists when the process shifts from one product type to 
another, which takes time and consumes electricity. Products of 
the same type are grouped into one job. Two adjacent jobs 
contain different types of products. The same job due date is 
set. There is no interdependence among jobs.  

The model notation is presented in Table I. The formulated 
model is an enhanced version based on the one in [24]. The 
electricity cost of changeovers has been additionally 
considered. Next to this, optimal selection among multiple 
machine idle states between jobs has been included for 
optimization. These enhancements enable the scheduling 
model to have an extensible integration with a variety of 
measured/monitored power data of a unit process.  

The objective function is described in (1). It assigns the job 
sequence and job start time, and selects machine idle states 
between jobs along the time-varied electricity price, such that 
the involved electricity cost is minimal. The total electricity 
cost comprises the cost of job processing, the cost of 
changeovers, and the cost of machine idling between two 
adjacent jobs. The methods for calculating the three cost parts 
are described in (2), (3), and (4), respectively. The production 
state is involved in job processing in (2). The set of sequential 
states involved in a changeover is considered in (3). In (4), the 
sets of states for switching to, staying at, and recovering from a 
standby mode or from the off mode are taken into account. The 
case where there is no idle period between two jobs is also 
included, which of course has zero electricity cost. Herein, a 
standby mode enables a process to keep its power consumption 
at a level lower than that of production and higher than zero 
during any given period. An idle mode includes the possibility 
to stay in a standby mode and to be totally powered off. 

 In (5) and (6), the current time is mapped to the 
corresponding electricity pricing time slot. For multiple 
standby mode, it is constrained in (7) that there must be one 
and only one idle mode (including the case of no idle duration) 
between two specific adjacent jobs. As described by (8) and 
(9), a selection of one idle mode must ensure that there is 
sufficient accommodating time between the end of the current 
changeover and the start of the next job. 
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TABLE I.  MODEL NOTATION 

Constant 

D  Time duration of the electricity pricing slot 

sD  Time duration of state s 

iDC   Duration of the ith scheduled changeover 

i

jDJ  
Processing duration for the job with ID j at the ith 

scheduling position 

DT   Due date of all jobs 

I   Set of job scheduling position {1, 2, …, 
JN } 

J   Set of job ID {1, 2, …, 
JN } 

JN  Total number of jobs to be scheduled 

SN  Total number of standby modes of a machine 

sP  Power of the machine power state s S     

S  Set of all power states of a machine 

CS  Set of power states involved in a machine changeover 

IS  Set of idle modes (standby modes, off, and none) 

OS  
Set of power states involved in switching to, staying at, and 
recovering from powered-off between jobs 

t  Basic time step for scheduling 

Variable 

iCC  Electricity cost of the ith scheduled machine changeover 

iCI  Electricity cost of the ith scheduled machine idling 

iCJ  Electricity cost of the ith scheduled job processing 

tsEP   Electricity price on the tsth time slot 

iETC  End time of the ith scheduled changeover 

iETJ  End time of the ith scheduled job 

iETSC   End time in slots of the ith scheduled changeover 

iETSJ   End time in slots of the ith scheduled job 

t

sP  
Power of the machine power state s at time t (It equals to 

sP when the power state at t is s; otherwise zero) 

t

pP  
Power of the machine power state ‘Production’ at time t (It 

equals to the power of ‘Production’ when the state at t is 

‘Production’; otherwise zero) 

iS  
Set of power states involved in switching to, staying at, and 

recovering from the 
i th idle mode of a machine 

i  The ith scheduled job position 

j  Job ID  

t   Time in t   

i  
Machine idle mode indicator (with a single value instead of 

a vector) for following the ith scheduled job 

ts   Time slot indicator 
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Fig. 2. Power profile identification of the extrusion blow molding process 
(power-time subfigures from the top to the bottom: main or general power 
supply of this process, hydraulic system, and extruder)  
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     As defined in (10), the end time of the job in the first 
scheduled position should consider the start time of this job, the 
duration for powering up the machine to get ready for 
production, and the job production duration. For jobs scheduled 
in the middle positions (i.e., all positions except the first and 
last ones) in (11), the start time and production duration of the 
job are taken into account. For the job scheduled in the last 
position in (12), its end time should consider the start time, 
production duration, and the duration for powering off from 
production state. For a changeover, its end time is its start time 
plus its duration, and it must be conducted just following the 
end of the current job, as defined in (13) and (14), respectively.  

     Only one job is executed at one time without preemption, as 
constrained in (15) and (16). All jobs should be scheduled to a 
unique position, as described in (17). The machine is defined 
by (18) to have only one state at a time point with constant 
power consumption. As limited in (19), before starting to 
process the job in the first scheduling position, the machine is 
powered off; and the machine is switched to off after 
completing all the jobs and before the due date. 

IV. CASE STUDY 

A case study was performed in a plastic bottle 
manufacturing plant at Flanders, Belgium. One of the 17 EBM 
processes is going to be extensively investigated for 
demonstrating the proposed method. 

A. Energy monitoring, data integration, and profiling 

Through a site survey, the continuous EBM process under 
investigation was found to comprise of three major electricity 
consumers, i.e., main system, hydraulic system, and extruder. 
Fig. 2 presents the whole process. The main system demands 

general power supply for the process. This general demand 
steers a series of energy-intensive operations, e.g., mixing, 
cutting, grinding, and pushing the input materials (raw plastic 
granules, color granules, and recycled plastic chips), heating, 
and melting. The hydraulic system consumes electricity to 
provision major mechanical movements of the process, e.g., 
clamping and closing the mold, cutting the parison, moving 
extruder continuously pushes the melt plastic through a die. 

Consequently, three Siemens PAC 3200 power monitors 
were installed on the three major consumers, respectively. The 
instantaneous effective power was captured every 30 sec, and 
stamped with time and other essential information, e.g., power 
unit, sensor name, and product name. The raw data were in 
ASCII format, communicated throughout Modbus protocol, 
and captured by a cabinet with PLC as the data collector. The 
data collector was connected with a PC via Ethernet, in order to 
enable data management and visualization. A midterm power 
measurement campaign was carried out during about one year. 
A variety of plastic bottles were produced during this 
measurement period.  

Eight power consumption states were identified, jointly by 
an onsite survey, communication with the machine operator, 
study on the literature about the EBM process, and 
investigation on the collected data. They are enumerated as 
Off, Startup, Idle, Preheat, PreheatIdle, Proheat, ProheatIdle, 
and Production, as shown in Fig. 2. 

More specifically, when it is turned on by an operator, the 
EBM machine goes through Startup and stays at Idle, followed 
by Preheat (see Fig. 2) which is also initiated by the operator. 
The plastic is heated in the barrel until a temperature of 140 °C 
is reached. The machine will then stay at PreheatIdle and hold 
the temperature until the operator starts Proheat. Afterwards, 
the temperature of the plastic will rise to a higher level between 
140 °C and 200 °C, depending on the type of bottles to be 
produced. When the higher temperature is achieved, the 
machine will stay at ProheatIdle. If the retention time of 
ProheatIdle surpasses 30 minutes, additional cooling should be 
activated to avoid a further temperature increment. Once a 
production command is given, the machine will transition to 
Production  state  for  producing  the  scheduled  plastic bottles. 
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Fig. 3. Complete power consumption behavior/power profile of the 

extrusion blow molding process 
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Fig. 4. Energy model of the extrusion blow molding processing 

 

 

 

As an intuitive summary of the working procedure of this EBM 
process in perspective of power, Fig. 3 illustrates the complete 
power consumption behavior of this process, based on the 
entire power profile which was identified from the measured 
data. 

B. Energy modeling 

The identified power profiles of the three major consumers 
of the process (see Fig. 2) were aggregated into one power 
profile for characterizing the power consumption behavior of 
the process. The aggregated profile and rationalized transitional 
relation between states were indicated in Table II.  

Plastic bottles in various types were produced, which may 
cause significant discrepancy in the power consumption of the 
Production state. However, the standard variation of power and 
cycle time was found to be quite minor, taking up 2% and 1% 
of the corresponding mean values, respectively. One important 
reason for this is that there are only bottle color changeovers 
(e.g., silver to white) in the collected data. As a result, the EBM 
process does not need to significantly change its configurations 
(e.g., plastic temperature and mold). Therefore, the power and 
cycle time for producing one type of bottles is randomly 
selected (5L-silver-M50-UN-160g-Y1 in this case) as the 
general power profile of the Production state (see Table II). 

The power profile and state transitions shown in Table II 
were further joint to build the FSM-based energy model, as 
demonstrated in Fig. 4. A random duration exists at 
ProheatIdle, PreheatIdle, Idle, and Off states, which therefore 
provides four idle modes (a loose assumption is made on 
ProheatIdle that its retention time can be random without 
considering the power demand of cooling). In the case of an 
idle period between two adjacent jobs, it depends on the 
scheduler to optimally select one of these four idle modes. In 
the other cases, a constant duration of 1200 sec is assumed for 
each retention time of ProheatIdle, PreheatIdle, and Idle. The 
four idle modes are presented in Table III, compared to the 
production mode. At the production mode, the three major 

components are powered on. In comparison, the extruder is 
powered off at ProhetaIdle and PreheatIdle states; both the 
extruder and hydraulic system are powered off at Idle state; all 
the components are powered off at Off state. The same 
component has distinct power demands at different modes. The 
four idle modes are further illustrated in Fig. 5. Given that a 
changeover must be conducted just following the end of a job, 
as constrained in (14), an idle period is the duration from the 
end of a changeover to the start of the next scheduled job. 
Since the idle period can be random in practice, and the four 
idle  modes’ power  profiles  are  different,  the required energy 

TABLE II.  POWER PROFILE AND STATE TRANSITIONAL RELATION OF 

THE EXTRUSION BLOW MOLDING PROCESS 

State 
Power 

(kW) 

Duration 

(sec) 
Next state 

Triggering 

event 

Off 0 ≥ 0 Startup PowerOn 

Startup 3.51 442 Idle Automatic 

Idle 1.19 ≥ 0 
Off PowerOff 

Preheat Preheat 

Preheat 17.52 1395 ProheatIdle Automatic 

PreheatIdle 8.15 ≥ 0 
Proheat Proheat 

Idle CoolDownIdle 

Proheat 16.95 810 ProheatIdle Automatic 

ProheatIdle 9.00 

≥ 0, and ≤ 

1800 if no 
cooling 

Production StartProduction 

PreheatIdle CoolDownPre 

Idle CoolDownIdle 

Production 46.35 17.92 

ProheatIdle CoolDownPro 

PreheatIdle CoolDownPre 

Idle CoolDownIdle 

TABLE III.  ENERGY MODES OF THE EXTRUSION BLOW MOLDING 

PROCESS AND MEASURED POWER CONSUMPTION 

Component 

(power in 

kW) 

Production  

(46.35) 

Proheat-

Idle  

(9.00) 

Preheat-

Idle 

(8.15) 

Idle 

(1.19) 

Off 

(0) 

Main 
On 
(25.22) 

On  
(6.51) 

On  
(5.66) 

On 
(1.19) 

Off 
(0) 

Hydraulic 
On 

(6.28) 

On 

(2.49) 

On 

(2.49) 

Off 

(0) 

Off 

(0) 

Extruder 
On 
(14.84) 

Off 
(0) 

Off 
(0) 

Off 
(0) 

Off 
(0) 



 

Fig. 6. Energy-cost-aware schedule of jobs and machine power states, and power consumption of the extrusion blow molding process 

 

 

 

TABLE IV.  POWER PROFILE OF A COLOR CHANGEOVER OF THE 

EXTRUSION BLOW MOLDING PROCESS 

Changeover 
Power consumption of 

the process (kW) 
Cycle time (sec) 

Silver -> White 13.60 28022 

White -> Dark blue 1 15.22 25841 

White -> Dark blue 2 10.00 1157 

Dark blue -> White 9.03 6088 

Silver -> Dark blue 9.11 5439 

Average 11.39 13309 

Standard deviation 2.54 11272 

 

consumption (i.e., shadowing areas in the subplots in Fig. 5) 
and energy cost are random and tend to be distinct, making it 
difficult to conduct human-based decision makings in a long 
term. This additionally highlights the need for an automated 
energy-cost-aware production scheduling method. 

Besides, the color changeover data are mapped with the 
collected power data, which provides an insight into the power 
consumption and cycle time of the process depending on the 
type of the color changeover. As indicated by Table IV, the 
power consumption and cycle time vary not only among 
different color changeovers, but also between two changeovers 
of the same type (i.e., white -> dark blue). The reason could be 
that a changeover highly depends on a specific human operator 
on the investigated shop floor, which may need different time 
and set different process parameters to conduct a changeover. 
For simplicity, the mean power and cycle time in Table IV are 
used as the power profile of a color changeover for scheduling. 
A changeover can be conducted at either ProheatIdle or 
PreheatIdle state. In this case study, it is assumed that the 
process always shifts to ProheatIdle for a changeover. 

C. Energy-cost-aware production scheduling 

The energy-cost-aware production scheduling model was 
developed by following the MILP formulation (1) - (19) in 

Sect. III-B, and optimized by a GA. Details on the fundamental  
implementation can be found in [24]. A specific scheduler for 
the EBM process was then built by integrating the energy 
model of the EBM process built in Sect. IV-B, including the 
power profile of a color changeover. As an illustration, 6 jobs 
are considered, with the job ID from 1 to 6, and the planned 
bottle quantity of 1000, 1500, 2000, 2500, 3000, and 3500, 
respectively. A job duration can be calculated through 
multiplying the cycle time by the quantity of bottles. With 
regard to the GA configurations, the population size, elitism 
rate, crossover rate, and mutation rate are 160, 0.1, 0.95, and 
0.07, respectively. The scheduling span is one week, from 26-
Oct to 2-Nov-2015, with the due date at 0 AM of 2-Nov-2015. 
The hourly-dynamic electricity price data come from Belpex, 
the Belgian electricity spot market.  

After a 4-min GA search, the optimal schedule for the EBM 
process is obtained and demonstrated in Fig. 6. It is clearly 
shown that all the six jobs together with the five changeovers 
are scheduled to the low-priced periods, and the high-priced 
periods are effectively avoided. Power states corresponding to 
the scheduled jobs are also indicated all over the scheduling 
span, thanks to the state-based energy model. For instance, the 
process stays powered off from the beginning (i.e., 0 AM of 
26-Oct 2015), and goes through a startup sequence (i.e., Off -> 
Startup -> Idle-> Preheat-> PreheatIdle -> ProheatIdle) before 
actually starting to process Job2. The idle mode is all selected 
as Off between jobs. This is evidently correct in terms of 
energy cost saving, since all the jobs are separated far enough 
in terms of time and the electricity price stays quite high during 
idle periods. The predicted power consumption curve of the 
EBM process is further visualized along with the schedule’s 
execution. This enables a fast overview of the instantaneous 
power consumption of the process. 

 The required electricity cost of this optimal schedule is 
122.15 €.  A  comparison  of  the  electricity cost for processing 



TABLE V.  ELECTRICITY COST SAVING PERFORMANCE OF THE ENERGY-
COST-AWARE PRODUCTION SCHEDULE 

Production schedule Electricity cost 
Electricity cost 

saving ratio 

Energy-cost-aware schedule 122.15 € - 

“As-early-as-possible” schedule 154.47 € 21% 

“As-late-as-possible” schedule 136.93 € 11% 

 
the 6 jobs is conducted between the optimal schedule and two 
classical schedules, i.e., “as-early-as-possible” schedule and 
“as-late-as-possible” schedule. The former classical schedule 
requires the process to be powered on from the beginning and 
execute the production without any idle modes between jobs. 
The latter classical schedule steers the process to be powered 
on, then start and complete the entire production without any 
idle mode such that the process is powered off just before the 
due date. As indicated by Table V, the energy-cost-aware 
schedule is able to save 21% and 11% of electricity cost, 
compared to the former and latter schedules, respectively. This 
clearly demonstrates the effectiveness of the proposed method 
for energy cost reduction for a unit manufacturing process.  

V. CONCLUSION 

A novel single-process production scheduling method is 
proposed in this paper for the purpose of effectively helping 
manufacturing enterprises to save energy cost involved in the 
production activities at the unit process level. Compared to the 
emerging energy-aware production scheduling methods, this 
method builds the FSM based energy model from the measured 
power data. This further enables a MILP model, which is 
formulated by considering to schedule process power states and 
changeovers in addition to jobs, and to select the optimal idle 
mode between jobs.  

The energy cost saving effectiveness of this method is 
demonstrated in an EBM process of a Belgian plastic bottle 
manufacturer. Moreover, a rich set of information on energy 
efficiency and energy cost can be revealed along with the 
optimal schedule. This provides machine operators a deeper 
insight into the machine energy consumption behavior along 
with the production activities, and facilitates plant managers to 
achieve better negotiation with energy suppliers.  

As to future work, an extension of the FSM energy model, 
the MILP scheduling model, and the metaheuristic-based 
optimization to a larger plant scale is envisioned, in order to 
fully exploit the energy cost saving potential of this method.  
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