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Abstract— Microscopy is one of the most essential imaging
techniques in life sciences. High-quality images are required
in order to solve (potentially life-saving) biomedical research
problems. Many microscopy techniques do not achieve sufficient
resolution for these purposes, being limited by physical diffrac-
tion and hardware deficiencies. Electron microscopy addresses
optical diffraction by measuring emitted or transmitted elec-
trons instead of photons, yielding nanometer resolution. Despite
pushing back the diffraction limit, blur should still be taken
into account because of practical hardware imperfections and
remaining electron diffraction. Deconvolution algorithms can
remove some of the blur in post-processing but they depend
on knowledge of the point-spread function (PSF) and should
accurately regularize noise. Any errors in the estimated PSF or
noise model will reduce their effectiveness. This paper proposes
a new procedure to estimate the lateral component of the
point spread function of a 3D scanning electron microscope
more accurately. We also propose a Bayesian maximum a
posteriori deconvolution algorithm with a non-local image prior
which employs this PSF estimate and previously developed
noise statistics. We demonstrate visual quality improvements
and show that applying our method improves the quality of
subsequent segmentation steps.

I. INTRODUCTION

Optical microscopy devices using short wavelength light
are physically limited to approximately 200 nm in lateral
and 600 nm in axial resolution due to photon diffraction.
Confocal or super-resolution microscopy significantly alle-
viates the magnitude of this problem by excitation response
or light temporal behavior modeling. Recent developments
in this research area have brought optical microscopy into
the ‘nanometer domain’ [1]. As super-resolution microscopy
targets specific biological structures, information of the struc-
tural content that was not targeted is mostly not available,
limiting the field of view. An alternative to mitigate the
diffraction limit without losing a complete sample overview
is electron microscopy (EM). Because of the much smaller
wavelength of electrons, EM is able to differentiate objects
at nanometer scale. The most recent transmission EM (TEM)
devices are even capable of imaging at sub-nanometer res-
olution, allowing researchers to visualize data on a molec-
ular level [2]. However, for users interested in volumetric
biomedical analysis, 3D scanning EM (SEM) might be a
better choice because of its slice by slice imaging workflow,
yielding high-resolution 3D images.

Unfortunately, pushing back the diffraction limit does not
allow us to discard blur from the image model. Even under
perfect hardware conditions, EM remains physically limited
to 1-20 Ångström resolution (depending on the accelerating
potential) due to electron diffraction, which causes blur at
this resolution. Additionally, hardware imperfections such as
magnetic lens aberration are nearly unavoidable. The latter
source of blur can be reduced by sophisticated expensive
lens systems, but even this solution cannot overcome the
diffraction limit. An alternative to mitigate blur is post-
processing image deconvolution. In this process, the image
is modeled as a convolution of the original image and the
so-called point spread function (PSF). The original image is
then estimated by inverting the convolution (hence ‘deconvo-
lution’). Two important issues have to be taken into account
when applying deconvolution algorithms: sensitivity to PSF
estimation errors and improper noise modeling.

There has been very little research concerning PSF es-
timation in EM. Most proposed estimators are only valid
for specific samples [3], [4], which makes these techniques
inapplicable for general practical purposes. Image deconvo-
lution is a very popular research subject in image restoration
including microscopy applications [5], [6]. These techniques
are, in the case of SEM data, more likely to suffer from noise
amplification artifacts because of incorrect noise modeling.
In contrast, proper image denoising has been actively stud-
ied in EM [7], [8]. Nonetheless, deconvolution algorithms
exploiting the specific noise and blur characteristics in SEM
imaging are hard to find in the literature. In this paper, we
propose a PSF estimation procedure for SEM by acquiring
images with specific frequency characteristics. Next, we
propose a Bayesian deconvolution algorithm with a non-
local regularization based on the latter PSF estimation and
previously determined noise statistics [8], specifically for
SEM data.

In Section II, we will explain our notations and image
model. We discuss the estimation of the PSF in Section
III. Next, we will describe the proposed deconvolution al-
gorithm in Section IV. Section V illustrates the potential
improvements that can be achieved for visualization and
image analysis purposes. Lastly, we conclude this paper in
Section VI.
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II. IMAGE MODEL

In general, noise should be modeled as a composition
of signal-dependent (i.e. Poisson) and signal-independent
(Gaussian) noise [9]. Recent research in SEM has indicated
significant noise correlation due to line scanning effects [8].
Additionally, blur should also be taken into account in the
model. We therefore propose a correlation and blur extension
of the model proposed in [9]:

y = Hx + D(x)Cn (1)

where y and x represent the acquired and underlying latent
image, respectively. The blur kernel (i.e. the PSF of the
imaging system) is modeled by a circulant matrix H, n is
a mixed Poisson-Gaussian vector of uncorrelated variables
with unit variance, C is a circulant matrix which models
the effects of line scanning noise correlation and D(x) is a
diagonal matrix which models the standard deviation of the
noise. According to [9], this should be:

(D(x))i,i =
√
σ2 + αxi.

In this equation, σ2 denotes the variance of the signal-
independent (Gaussian) part of the noise, α is a positive
parameter expressing the ‘amount’ of signal dependency. For
specific estimation of the noise related parameters in SEM
we refer to [8].

III. ESTIMATING THE SEM PSF

Before discussing our proposed PSF estimation workflow,
it is important to understand how the sample choice can
influence PSF estimation accuracy. Therefore, we start with
a theoretical discussion on PSF estimation and derive impor-
tant sample characteristics.

A. Necessary sample conditions

In principle, the PSF can be estimated by imaging a
point-like test sample with known shape and thus known
ideal image x. The PSF can then be estimated in the
Fourier domain from F(y)(ω)

F(x)(ω) where y is the observed image.
This approach requires that |F(x)(ω)|2 is non-zero at all
frequencies; adequate numeric conditioning also requires that
it remains well above zero at all frequencies. Impulse signals
are ideal for this purpose because of their corresponding
non-zero flat frequency spectrum (Figure 1a). In practice, a
sub-resolution structure of known size and shape is imaged
[10]. For example, fluorescent beads are commonly used in
fluorescence microscopy for this purpose. However, samples
like these are less common in EM. Therefore, we acquired
SEM images with two expected intensities and predictable
geometric characteristics (in our case, crosses, see Figure 2),
which allows us to make a proper estimation of the latent
image that should consist of crisp edges switching between
the two intensities. These ‘edge images’ also have a complete
non-zero spectrum (see Figure 1a).

Note however that typically y also consists of an additional
noise signal influencing the PSF estimation as noise may
cause small frequency responses for y (Figure 1b) that will
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Fig. 1. Frequency spectrum of (a) a one-dimensional impulse
and crisp edge signal and (b) noisy, blurred impulse and
edge. Figure (c) illustrates the true PSF frequency spectrum
F(H)(ω) (blue line) and the variability of the corresponding
estimated coefficients when random noise is added to the
signal. Because of noise, more frequency outcomes approach
zero (especially high frequencies), causing significant vari-
ability in estimating the PSF coefficients.

be greatly amplified in the division with a small frequency
response of x and yield noisy PSF estimations (Figure 1c).

To summarize, the acquired images y should contain as
little noise as possible and the underlying latent image x
should have a significant non-zero frequency response for
any frequency in order to guarantee a more accurate PSF
estimation.

B. Airy disk

By examining the physical wave-like behavior of electrons
in EM, we expect an Airy disk PSF. This PSF is given by:

HA(r, θ) =
1

Z

(
2J1

(
2π
λ NAr

)(
2π
λ NAr

) )2

(2)

where (r, θ) are polar coordinates relative to the center
position of the PSF, Z a normalizing parameter such that
HA(r, θ) integrates to 1, λ the electron wavelength, NA the
numerical aperture of the EM and J1 the Bessel function of
the first kind:

J1(x) =

∞∑
m=0

(−1)m

m! Γ(m+ 2)

(x
2

)2m+1

Note that the Airy disk is rotationally invariant (an important
property we will assume in the PSF estimation) and defined
for two dimensions; its 1D variant hA can easily be obtained
by evaluating HA(r, θ) for θ = 0 and θ = π. A second
remark is that, according to Equation 2, an Airy disk PSF
is fixed for a specific EM experiment since the numerical
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Fig. 2. PSF estimation workflow

aperture is fixed by the EM and the electron wavelength
is determined by the accelerating electrical potential used in
the experiment. In practice, because of theoretical conditions
that are not always satisfied (imperfect vacuum, relativistic
effects, etc.), the observed PSF is a stretched version of
Equation 2, which can be obtained by the substitution r 7→
τr (where τ ∈ R+). We will denote these PSFs by HA,τ

and hA,τ in the 2D and 1D case, respectively.

C. PSF estimation

The complete PSF estimation workflow is visualized in
Figure 2. Given an image y and latent image x (satisfying the
necessities pointed out in Section III-A as much as possible),
edges are located and combined into a 1D signal. Note,
we can restrict the estimation to one dimension because of
the assumed rotational invariance of the estimated PSF. The
obtained signal is blindly deconvolved and the corresponding
PSF estimation is fit to an Airy disk model. Because of the
fact that Airy disks are computationally relatively complex,
we will also fit the data according to a Gaussian model (de-
noted by HG,σ and hG,σ in 2D and 1D, respectively), which
is a very accurate, yet computationally and mathematically
less complex approximation of an Airy disk.

In our experimental setup, we created cross-like patterns
in a homogeneous sample using a focused ion beam. By
design, the acquired images should have two intensities (the
inside and outside of the crosses) and crisp edges. In practice,
however, this will not be the case due to imperfect sample
fabrication, noise, blur, etc. The amount of noise is reduced

by increasing the dwell-time of the SEM (i.e. the time
that is used to detect emitted electrons). Remaining noise
is reduced by averaging multiple versions yi of the same
sample. Note the acquired images require perfect alignment
before averaging. This was taken into account by least
squares registration in advance. The obtained cross image
yM contains a smaller amount of noise compared to the
original acquired images. The latent image x is estimated
by applying a Gaussian filter to yM (in order to remove all
the noise) and by Otsu thresholding [11] and binarization.

Given the latent binary image, it is easy to find edges
corresponding to a certain direction ϕ. Along these edges,
we sample one-dimensional signals (red lines in the top right
image of Figure 2) orthogonal to the edge direction up to
a certain distance D (in our experiments D = 50). Note
that, because of sample imprecisions, there might be texture
in areas that are assumed to have constant intensity. These
signals are left out by thresholding the variance in constant
intensity areas. If we compute the average of all these signals,
we obtain a one-dimensional noise free signal y′ that should
be a binary signal b (see middle left plot in Figure 2). The
signal is a one-dimensional convolution of the unknown PSF
h and b:

y′k =

2D+1∑
i=0

hibk−i

= µ1

D−k+1∑
i=0

hi + µ2

2D∑
i=D−k

hi (3)

where µ1 and µ2 are the two unique intensities in b. Note
y′ is a vector corresponding to a one-dimensional signal and
should not be confused with the vector y in Equation 1,
which corresponds to the two-dimensional acquired image.
We remark that Equation 3 is a linear system of equations in
the unknown variables hi that can be solved exactly provided
µ1 6= µ2.

Next, the resulting PSF h is fit to an Airy disk and Gaus-
sian estimate. These PSFs are completely defined by their
stretching parameter τ and standard deviation σ, respectively.
We minimize the corresponding least square errors:

τ̂ = arg min
τ
‖hA,τ − h‖2

σ̂ = arg min
σ
‖hG,σ − h‖2

The fitted PSFs hA,τ̂ and hG,σ̂ are shown at the bottom of
Figure 2 and can easily be extended to their corresponding
2D PSF estimates (HA,τ̂ and HG,σ̂ , respectively) due to
the assumed rotational symmetry. Because of the fact that
the Airy disk PSF estimate is very similar to the Gaussian
estimate, it is computationally most interesting to use the
latter in deconvolution algorithms.

IV. PROPOSED DECONVOLUTION ALGORITHM

Our proposed deconvolution algorithm is based on the
non-local means denoising algorithm. We will briefly intro-
duce this technique and its application as an image prior
before discussing the proposed deconvolution algorithm.



A. Non-local means as a Bayesian regularization prior

The non-local means denoising algorithm (NLMS) [12]
has proven to be very effective in restoring noisy (mi-
croscopy) images [13], [14]. The restored pixel value x̂i
estimates xi as:

x̂i =

MN−1∑
j=0

wi,jyj

MN−1∑
j=0

wi,j

(4)

where y is the observed, noisy image and wi,j are the NLMS
weights expressing local similarity between pixels xi and
xj . We denote that Equation 4 is equivalent to the Bayesian
estimator with non-local image prior [15]:

x̂ = arg min
x
‖y − x‖22 + λ

MN−1∑
i,j=0

wi,j ‖(Ti −Tj)x‖22 (5)

where λ is a regularization parameter and Tix is a vector
with xi on the first position, i.e. (Tix)j = δj,0xi (where δ
denotes the Kronecker delta).

In previous work [8], we found that noise in SEM is
both signal-dependent and highly correlated. We proposed
alternative NLMS weights w′i,j in order to take this into
account. Therefore, we will use the weights w′i,j proposed in
[8] (NLMS-SC) instead of the original ones that were used
in [12] when deconvolving SEM data.

B. Bayesian deconvolution algorithm

Our deconvolution algorithm is a MAP estimator extend-
ing the Bayesian estimator with non-local prior from the
previous section to a deconvolution estimator, i.e. the PSF
estimate from Section III is incorporated as well:

x̂ = arg min
x
‖y −Hx‖22 + λ

MN−1∑
i,j=0

w′i,j ‖(Ti −Tj)x‖22 .

(6)
For fixed Ti and Tj , the energy function in Equation 6 is
a convex function. As a result, an iterative procedure like
steepest descent is guaranteed to converge to the minimum
in order to solve Equation 6. Note that this procedure requires
an initial solution x0. For this, we used an NLMS-SC filtered
version of the acquired image. We denote our algorithm
further on with NLMS-SCD.

V. RESULTS

Quantitative evaluation of image restoration algorithms on
EM data is not straightforward, because of the absence of
ground truth images. The main purpose of acquiring EM
data is twofold: on the one hand biological researchers want
to visualize ultrastructural content as clear as possible, on
the other hand the data serves as input for subsequent image
analysis, which usually starts with (automated) segmentation.
Even though we have convinced biological experts that the
images are improved in terms of visual quality, this does
not offer a numerical evaluation. Therefore, we also have
applied a training based segmentation algorithm on raw

(a) (b) (c)

Fig. 3. Crops of (a) a raw SEM image containing noise and
blur, (b) denoised NLMS-SC result and (c) the proposed
NLMS-SCD deconvolution. Due to correct PSF modeling,
the latter image is considerably sharper than the denoised
and original image.

and deconvolved 3D SEM data, which can be evaluated
quantitatively.

A. Visual evaluation

Figure 3 shows a noisy and blurred SEM image and the
corresponding NLMS-SC denoised and proposed NLMS-
SCD deconvolved result. The deconvolved image was ob-
tained using the Gaussian PSF estimate (i.e. H = HG,σ̂)
and λ = 0.01. The NLMS-SC algorithm has removed all
the noise, but seems to introduce some edge and texture
blurring artifacts. Additionally, blur that was introduced
during acquisition has not been suppressed. The NLMS-SCD
algorithm solves the latter issue by suppressing noise using
non-local means as a regularizer, while jointly modeling the
acquired image as a blurred version of the latent image. The
resulting NLMS-SCD estimation is considerably sharper than
the denoised solution and is revealing ultrastructural details
that were previously hard to isolate.

B. Pre-processing deconvolution for segmentation

Next, we show quantitatively that automated segmenta-
tion can be improved by pre-processing deconvolution. The
processed data is a 1188× 1188× 89 pixel 3D SEM image
acquisition of a lung cell. Using the freely available software
tool ilastik [16], we train a pixel classifier on the original and
deconvolved data. For this, we apply the same training on
both data sets (i.e. the same features are computed of the
same pixels). This training is solely based on intensity and
Laplacian features of a slightly Gaussian (with corresponding
standard deviation σT ) filtered version of the input data.
We then apply the classifier on the complete data sets.
As we have manual annotations available of the data, we
can evaluate the segmentation quality. For this, we use the
recall (R) and Hausdorff distance (HD) metrics. The recall
expresses the amount of correctly classified segment pixels
compared to the number of incorrectly classified segment
pixels. The Hausdorff distance finds the closest segmentation
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Fig. 4. Automatically generated segmentation crop on (a) raw
and (b) deconvolved SEM data indicated by purple and red
boundary lines, respectively. The ground truth annotations is
shown in green. The raw data contains a substantial amount
of noise, which leads to irregular edges.

boundary for every ground truth boundary pixel and averages
all the corresponding distances.

The following table shows the average recall and Haus-
dorff distances along the z-direction.

σT Raw NLMS-SCD
HD 0.7 1.91 3.02
R 0.7 0.968 0.979
HD 1.0 2.75 3.63
R 1.0 0.977 0.981
HD 1.6 3.26 4.01
R 1.6 0.980 0.982

We denote that the recall is generally higher for the
deconvolved images, although the corresponding difference
with the original data decreases since features are computed
on a more blurry version of the image. This is according to
our expectations because the original, noisy data will become
very similar to the deconvolved data since they are both
being low-pass filtered with increasing σT . Secondly, we
notice that the mean Hausdorff distance is smaller for noisy
images. This is because the Hausdorff distance searches
segment boundaries in the vicinity of the ground truth
boundaries. Because of the noise along ground truth edges,
the corresponding distances are typically smaller in the raw
data (see Figure 4). For most applications however, a more
continuous object border is desired.

VI. CONCLUSION

It has been established that electron microscopy (EM)
images typically contain a substantial amount of noise
and blur despite the small electron wavelength. Therefore,
deconvolution is a crucial step for both visualization and
subsequent (automated) image analysis. As deconvolution
quality is typically very sensitive to point-spread function
(PSF) estimation errors and noise, it is important to model
these aspects as accurately as possible. In this paper, we
proposed a generic PSF estimation workflow based on the
physical expectations of an EM PSF (i.e. an Airy disk) and
samples satisfying specific criteria. Secondly, we proposed a
Bayesian MAP estimator regularized according to our PSF
estimation and previously analyzed noise statistics. We have

shown that the restored images can benefit both visualization
and image segmentation.
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