
Automatic SMT Threading for OpenMP Applications
on the Intel Xeon Phi Co-processor

Wim Heirman1,2 Trevor E. Carlson1 Kenzo Van Craeynest1
Ibrahim Hur2 Aamer Jaleel3 Lieven Eeckhout1

1 Ghent University, Belgium
2 Intel, ExaScience Lab 3 Intel, VSSAD

ABSTRACT
Simultaneous multithreading is a technique that can im-
prove performance when running parallel applications on
the Intel Xeon Phi co-processor. Selecting the most effi-
cient thread count is however non-trivial, as the potential
increase in efficiency has to be balanced against other, po-
tentially negative factors such as inter-thread competition
for cache capacity and increased synchronization overheads.

In this paper, we extend CRUST (ClusteR-aware Under-
subscribed Scheduling of Threads), a technique for finding
the optimum thread count of OpenMP applications run-
ning on clustered cache architectures, to take the behavior
of simultaneous multithreading on the Xeon Phi into ac-
count. CRUST can automatically find the optimum thread
count at sub-application granularity by exploiting applica-
tion phase behavior at OpenMP parallel section boundaries,
and uses hardware performance counter information to gain
insight into the application’s behavior. We implement a
CRUST prototype inside the Intel OpenMP runtime library
and show its efficiency running on real Xeon Phi hardware.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management—
Threads; C.5.1 [Computer System Implementation]:
Large and Medium (“Mainframe”) Computers—Super (very
large) computers

Keywords
Simultaneous multithreading, OpenMP, auto-tuning

1. INTRODUCTION
Modern processor architectures support SMT, or multi-

ple hardware threads per core. Running more than one
thread per core can improve utilization of the core’s execu-
tion resources, and help in hiding memory access latencies [6,
9]. However, increasing the application’s thread count can
also lead to increases in synchronization overhead and load

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ROSS ’14, June 10, 2014, Munich, Germany
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2950-7/14/06 ...$15.00.
http://dx.doi.org/10.1145/2612262.2612268

imbalance, or inflate per-core working set sizes which (as
threads share TLB and cache capacity, among other re-
sources) can transform well-behaving cache-fitting applica-
tions into cache-trashing ones making their performance lim-
ited by off-chip bandwidth [4]. Selecting the best per-core
thread count is therefore an important optimization prob-
lem. Architectures such as the Intel Xeon Phi (codenamed
Knights Corner), which support running up to four threads
on each of its 60+ cores, are especially susceptible to this
behavior.

Common practice is for application designers to test per-
formance of their application using a range of thread counts,
and make recommendations to users as to which thread
count works best. Yet, as we will show in Section 2, ap-
plications do not necessarily have a single optimum thread
count, as this optimum can shift depending on the input set
used. Also, for more complex applications that exhibit phase
behavior, a thread count that is optimum for one phase may
not necessarily be the right choice for other phases.

Curtis-Maury et al. propose dynamic concurrency throt-
tling (DCT), an automated way of running the optimum
thread count – which is often lower than the number of
cores available in the system – at each point during the ap-
plication’s execution [2]. The DCT methodology collects a
number of performance counters for each application phase
in a limited number of configurations (consisting of thread
counts at various hierarchical levels, e.g., active cores and
SMT threads per core), and uses a hardware-specific predic-
tion model to extrapolate application performance for each
configuration. DCT allows the optimum thread count to
be selected for each application phase, using OpenMP pro-
gram semantics to extract phase behavior (each omp paral-

lel statement is considered as a distinct phase). Heirman
et al. propose ClusteR-aware Undersubscribed Scheduling of
Threads (CRUST), a variation on DCT specialized for clus-
tered last-level cache architectures; and argue that clustered
caches in combination with DCT-like techniques make the
performance of future many-core designs more resilient to
variations in application behavior [4]. In contrast to DCT,
CRUST avoids using prediction models and uses direct mea-
surement of application performance.

In this paper, we extend CRUST to incorporate the ef-
fects of simultaneous multithreading, which in addition to
competition for cache capacity, exhibits additional effects
incurred by core resource sharing. We implement this im-
proved version of CRUST inside the Intel OpenMP runtime
library [1] and explore its performance when running on
Xeon Phi hardware.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

bt cg ft is lu sp mg ua

R
e
la

ti
v
e
 e

x
e
c
u
ti
o
n
 t
im

e
All benchmarks - B input set

Threads per core
1 2 3 4

Figure 1: Application performance as a function of
per-core thread count, normalized to the optimum
thread count for each application.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

W A B C D

R
e
la

ti
v
e
 e

x
e
c
u
ti
o
n
 t
im

e

BT benchmark - all inputs

Threads per core
1 2 3 4

Figure 2: Performance of bt with different inputs,
as a function of per-core thread count, normalized
to the optimum thread count for each input set.

2. MOTIVATION
We first explore the effect of various static per-core thread

counts, i.e., we run the complete application with a fixed
thread count set at startup using the OMP_NUM_THREADS en-
vironment variable. Each application is run with 60, 120,
180 or 240 threads, corresponding to 1. . . 4 threads on each
of 60 cores. KMP_AFFINITY=scatter was used to distribute
threads evenly over cores. We run the NAS Parallel Bench-
marks [7] with varying number of SMT threads on an Intel
Xeon Phi 7120A system (see Section 5 for more details on
the methodology used). Figure 1 shows the resulting execu-
tion time for all benchmarks from the NAS suite with their
B input set. Results are normalized to the optimum thread
count for each application and input set combination.

Performance clearly vary across benchmarks. Most appli-
cations run best when at least two SMT threads are used.
For some benchmarks (ft and is), performance degrades
when too many threads (three or four) are spawned, while
in one case (mg), running just a single SMT thread is the
better option by some margin.

An important, but often overlooked determining factor in
this is the working set of the application. In Figure 2, we
single out the bt benchmark and run it with five different in-
put sets of increasing size. In this application, a larger input
set also increases the per-thread working set. Input sets A

0.0

0.5

1.0

1.5

2.0

2.5

WABCD WABCD WABCD WABC WABCD WABC WABCD WABCD

R
u
n
ti
m

e
 (

re
la

ti
v
e
 t
o
 b

e
s
t
s
ta

ti
c
)

bt cg ft is lu sp mg ua

1

4

4

4

4

4

4

4

4

4

1

4

1

4

4

4

4

4

4

4

2

3

3

3

3

3

3

3

3

3

1

2

1

2

2

2

3

2

1

4

2

4

4

4

3

4

4

4

1

4

2

4

4

4

4

4

1

1

1

1

1

1

2

1

3

1

1

2

2

2

2

2

3

2

3

2

Figure 3: Application performance, relative to the
best thread count, when optimizing each application
using a single input set (input B).

and B exhibit the behavior often seen on Xeon Phi machines:
a single thread has low performance because of the core’s
front-end restrictions (each thread can dispatch two instruc-
tions but only every other cycle) while two threads suffice
to saturate the core. Three or more threads do not provide
any benefit over two SMT threads per core for this work-
load. Moving to larger input sets (C and D), the applica-
tion becomes significantly DRAM latency bound. Here, ex-
tra threads beyond two per core do improve performance as
this increases the number of outstanding memory requests,
which allows more of the DRAM latency to be hidden. The
smallest input set W, however, exhibit the opposite behavior
where low thread counts perform better. Here, the working
set is small enough to fit into the core’s private caches if only
a single thread is run per core. With two or more threads
per core, the threads compete for cache capacity. This in-
flates the cache miss rate and leads to an increase in off-chip
memory accesses, and performance suffers significantly.

The optimum thread count thus depends on the applica-
tion and the input set size. The application-dependent part
is known by most users, who determine a per-application
optimum thread count and record this into the application’s
best practices; however, this is often done using a single
input set only. Figure 3 shows the performance of this op-
timization method. We determine the best thread count for
each application using the middle B input set, then run the
program with all other input sets using the thread count
that performed best for input B. All results are again nor-
malized to the optimum thread count for each benchmark
and input combination. Numbers inside the graph denote
the per-core thread count that was used, in the optimum
case (numbers inside the bars, all corresponding to a rela-
tive execution time of 1.0) and for the case optimized using
the B input (numbers above the bars). Clearly, many appli-
cations perform significantly worse when running them with
a thread count that was optimized for a different input set.

In addition to input size dependence, real applications are
often a complex compositions of multiple compute kernels,
each of which may have its own distinct working set size and
hence optimum thread count. The dynamic concurrency
throttling methodology therefore argues for an automated
approach of determining thread count at sub-application gran-
ularity [2]. In the next section, we propose a simple DCT

approach that is geared at the Intel Xeon Phi and show how
it can be easily integrated into the Intel OpenMP runtime.

3. AUTOMATIC OPENMP THREADING
DCT exploits application phases, and assumes OpenMP

parallel sections are a good indicator of phase behavior.
Indeed, each parallel loop signifies a distinct part of the
source code, with its own instruction mix and working set
size — both of which are the most important properties
that affect execution resource and cache capacity sharing,
and hence optimum thread count. DCT will find the op-
timum thread count for each parallel section, and execute
an omp_set_num_threads call to update the thread count at
the start of each section. This automatically triggers the
OpenMP runtime to change data partitioning accordingly.

The CRUST methodology from [4] assumed a clustered
cache hierarchy, where a small number of cores share a last-
level cache. This restricts thread interaction to capacity
sharing in the last-level cache. When applying this method
to SMT threads sharing all of the core’s execution resources,
the sharing behavior becomes more complex, invalidating
some of CRUST’s assumptions. Its basic premise, which is
to find per-section optimum thread counts while being cog-
nisant of cache miss rates, remains valid. Concretely, we will
use the CRUST-descend variant, but remove its early-exit
clause. We also add aggregation of small sections, a sug-
gestion made but not fully evaluated by [4]. Compared to
the general DCT approach from [2], CRUST is much more
straightforward to implement in that no hardware-specific
model has to be constructed. In addition, CRUST can be
implemented using just two hardware performance counters
(which is the maximum number of counters that can be re-
liably instantiated on the Intel Xeon Phi), whereas the orig-
inal DCT methodology requires a much larger number of
performance counters to feed its performance models.

3.1 Per-section tuning
The CRUST algorithm treats each OpenMP parallel sec-

tion individually, and goes through a number of phases as a
given section occurs during execution of the application.

The first occurrence of each section is ignored. In many
cases, subsequent occurrences of a single section operate on
the same data. This makes the first occurrence different
in that it potentially incurs many more (cold) cache misses.
By ignoring the first occurrence we effectively allow for cache
warmup before measuring a section’s performance.

Starting with the second occurrence, CRUST enters its
calibration phase. Occurrences two through five are run with
different per-core thread counts, starting with four for the
second occurrence to using just a single thread per core for
the fifth. During each section occurrence, hardware perfor-
mance counters are used to measure instruction count and
second-level cache miss rates. In addition, the rdtsc in-
struction is used to measure elapsed time (in clock cycles).
This allows CRUST to compute IPC (instructions per cy-
cle) and L2 MPKI (L2 read misses per 1,000 instructions) as
performance metrics corresponding to each per-core thread
count option.

Once all options have been profiled, the best-performing
one is selected for use during the remainder of the appli-
cation. Determining the ‘best’ option is not straightfor-
ward, however. If the amount of work, and the number
of instructions needed to perform that work, were equal

in all occurrences of the section used in calibration, the
best-performing option would be that with the lowest cycle
count, or the highest IPC (both metrics would be equivalent
as they are related through a constant factor, instruction
count). However, program semantics can be such that the
amount of work varies across occurrences of the same sec-
tion, while spin loops can inflate instruction count even when
the amount of work is constant. The original DCT approach
of Curtis-Maury [2] uses an architecture-specific model to re-
construct useful performance based on a variety of hardware
performance counters, hence eliminating the spinloop prob-
lem. However, the Xeon Phi can only support a limited num-
ber of simultaneously active performance counters, which
are potentially shared with other auto-tuning or application
analysis libraries. Models that require a plethora of perfor-
mance counter inputs are therefore not feasible for imple-
mentation in production OpenMP libraries. In CRUST, we
simplify the implementation by assuming that spin loops are
the more common problem, and choose to pick the thread
count that minimizes cycle count.

As a guard against changes in application behavior (such
as the amount of work per parallel section), CRUST keeps
monitoring instruction count and cache miss rates even af-
ter the calibration phase. At the end of each occurrence,
these values are compared to those values recorded during
calibration. If either the instruction count or the MPKI
value change significantly, we assume a change in workload
behavior has occurred and the section is recalibrated. We
used a 30% relative change as the threshold, in addition to
an MPKI of at least 3 misses per 1,000 instructions to avoid
recalibration when miss rates are insignificantly low.

3.2 Aggregating small sections
While most applications use large parallel sections, some

employ fine-grained parallelism leading to parallel sections of
just a few million instructions long. Here, there is often data
sharing across parallel sections. Good cache performance
therefore requires that the data partitioning is not changed
from one section to another. Hence, thread count should
stay constant as well, which requires that small sections are
tuned together rather than in isolation.

In CRUST, each OpenMP section starts off as being large,
and is therefore individually tuned. At the end of each sec-
tion, its runtime is compared to a threshold value. Shorter
sections are marked as being small and will, the next time
they are encountered, be aggregated into larger chunks of at
least 50 million cycles each. The aggregated section is seen
as one additional section, in addition to all large sections,
and is tuned in the same way. For the aggregated section,
maximum IPC is used rather than minimum cycle count, as
the amount of work in each occurrence can be different when
it consists of differing collections of small sections.

The optimum threshold to separate large from small re-
gions was empirically determined at 50 million clock cycles
(around 40.4 ms at our Xeon Phi’s 1.238 GHz clock). This
value is of the same order of magnitude as the average life-
time of data in the L2 caches. Indeed, sections smaller than
this value cannot warm up the cache with their own data
and rely on data reuse across sections — requiring a con-
stant thread count and hence data partitioning. For larger
sections, cache warmup effects at the beginning of the sec-
tion can be amortized and it is more beneficial to tune the
section individually.

main thread worker threads

(serial code)
#pragma omp parallel
__kmpc_fork_call

o

o

(serial code)

CRUST-section-begin
omp_set_num_threads

CRUST-section-begin-thread
rdpmc

CRUST-section-end-thread
rdpmc

CRUST-section-end
(collect statistics)

__kmp_run_before_invoked_task
o

(parallel code)

__kmp_run_after_invoked_task
o

CRUST hooks

Figure 4: Flow of CRUST hooks and their triggers.

4. IMPLEMENTATION

4.1 OpenMP runtime library integration
We integrated CRUST into the open source version of

the Intel OpenMP runtime library [1]. CRUST itself is a
separate, reusable library, while the Intel OpenMP library
was extended with a number of hooks that trigger CRUST
functionality. This makes it easy to port CRUST to other
OpenMP runtime libraries, or even non-OpenMP parallel
runtimes such as Intel Threading Building Blocks (TBB) or
Cilk Plus. By keeping all changes confined to the runtime,
application changes are not needed — they can simply link
dynamically to a CRUST-enabled runtime. An overview of
the various hooks that implement CRUST, their main func-
tionality and how they are integrated into the Intel OpenMP
runtime library, can be found in Figure 4.

Inside of Intel’s OpenMP library, the main functionality
of OpenMP sections is implemented by __kmpc_fork_call

which is called once for each #pragma omp parallel in the
application source code. We added calls to CRUST’s be-
gin and end section hooks at the top and bottom of this
function. Its loc argument uniquely identifies the current
parallel section allowing CRUST to tune each section indi-
vidually. In the begin section hook, the algorithm deter-
mines the number of threads that are to be used for the
upcoming occurrence of that section. This will be either
the next thread count to try in the calibration phase, or the
optimum thread count for that section as previously deter-
mined. CRUST then calls omp_set_num_threads to update
the active thread count accordingly. The end section hook
collects performance metrics for the section that just exe-
cuted, and decides when to stop aggregation in case small
sections are encountered.

For all experiments, each thread is pinned to a private
hardware context. We set KMP_AFFINITY=scatter so threads
0,1,. . . 59 end up at the first SMT thread of cores 0. . . 59;
threads 60. . . 119 are pinned to the second SMT thread of
cores 0. . . 59, etc. This way, setting the number of OpenMP
threads to 60, 120, 180 or 240 always utilizes exactly 60 cores
and runs between one and four SMT threads on each of
them. The 61st core of the chip is left free for the OS.

4.2 Performance counters
The Xeon Phi processor includes a number of hardware

performance counters, which can be accessed through the

Intel Xeon Phi 7120A
Active cores 61
Clock frequency 1.238 GHz
On-board memory 16 GB
ECC enabled
Kernel version 2.6.38.8+mpss3.1.2
MPSS Version 3.1.2-1

Table 1: Hardware characteristics.

usual perf infrastructure available in recent Linux kernels.
These are used by CRUST to obtain per-thread instruc-
tion counts and L2 miss rates. However, reading perfor-
mance counters for all cores through the default kernel in-
terface requires making a system call which takes millions
of clock cycles to complete. Since CRUST requires perfor-
mance counter information at the start and end of each (po-
tentially small) parallel section, the overhead of using perf
directly is too substantial.

Instead, we employ the rdpmc instruction directly, which
reads one of the performance counters on the local core.
This instruction can be executed from userspace once the
proper setup is done.1 At the start of the application, we
use the regular perf interface to initialize the processor’s per-
formance counter infrastructure to record instruction count
(INSTRUCTIONS_EXECUTED event) and the number of L2 cache
misses (L2_READ_MISS). We then add hooks from inside the
__kmp_run_{before,after}_invoked_task functions of the
OpenMP runtime, which are executed by all threads at the
start and end of a parallel section. Each executes the rdpmc

instruction to read the hardware performance counters of
the local core. Results are stored in a global data struc-
ture that can be read by CRUST’s optimization algorithm
running in the main thread.

5. RESULTS
We now evaluate the performance of CRUST by running

the NAS Parallel Benchmarks [7] with a CRUST-enabled
OpenMP runtime on an Intel Xeon Phi 7120A system (see
Table 1 for its main features). All benchmarks are run in
native mode, i.e., they execute directly on the Xeon Phi
co-processor without interaction with the host processor.

5.1 CRUST performance
Figure 5 compares the execution time of CRUST-enabled

applications with both the best (fastest) and worst (slowest)
static per-core thread count. Results are normalized to the
fastest (static) case. For comparison, the worst static case
is also plotted (dark bars). The numbers inside the bars
denote the static per-core thread count for both the fastest
and slowest options.

In most cases (except for ft), the best (static) case for
the smallest input set (W) is to run a single thread per core,
whereas utilizing all SMT contexts (four threads per core)
is consistently the worst option. For the largest input set D,
however, this situation reverses and one thread per core is

1Access to the rdpmc instruction from userspace is regulated
by the processor’s CR4.PCE configuration bit and is disabled
by default, we implemented a small kernel module to enable
this. Performance counter initialization uses the existing
perf interface and requires no further kernel modifications.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

WABCD WABCD WABCD WABC WABCD WABC WABCD WABCD

R
u
n
ti
m

e
 (

re
la

ti
v
e
 t
o
 b

e
s
t
s
ta

ti
c
)

bt cg ft is lu sp mg ua

Dynamic Worst-case static

1

4

4

1

4

1

4

1

4

1

1

4

1

4

4

1

4

1

4

1

2

4

3

1

3

1

3

1

3

1

1

4

1

4

2

4

3

1

1

4

2

1

4

1

3

1

4

1

1

4

2

1

4

1

4

1

1

4

1

4

1

4

2

4

3

1

1

4

2

4

2

1

3

1

3

1

Figure 5: Relative execution time of CRUST-
enabled applications relative to their best static
thread count.

 0

 0.05

 0.1

 0.15

 0.2

 0 0.5 1 1.5 2 2.5 3 3.5

1

2

3

4

C
y
c
le

s
 (

⋅
1

0
9
)

T
h

re
a

d
s
/c

o
re

Instructions (⋅10
9
)

cg/W

 0

 1

 2

 3

 4

 5

 0 5 10 15 20 25 30

1

2

3

4

C
y
c
le

s
 (

⋅
1

0
9
)

T
h

re
a

d
s
/c

o
re

Instructions (⋅10
9
)

cg/C

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60
1

2

3

4

C
y
c
le

s
 (

B
)

T
h

re
a

d
s
/c

o
re

Instructions (B)

Section duration Thread count

Figure 6: Through-time behavior of cg, W and C
inputs.

always the slowest option while either three or four threads
are needed to obtain the best performance.

CRUST, our dynamic technique, is able to obtain an exe-
cution time that is close to the optimum for almost all bench-
mark/input set combinations. The largest deviations occur
for the smallest W input set, which for most benchmarks
does not have enough iterations to amortize the calibration
overhead.

5.2 Through-time behavior
In Figure 6, the through-time behavior of the CRUST al-

gorithm can be observed, for the cg benchmark with two of
its input sets (the smaller W input set on the left, and the
much larger C set on the right). cg has just a single signif-
icant OpenMP section. Its first occurrence is run with the
maximum thread count, CRUST ignores its results to make
sure cache warmup effects do not distort calibration. Next,
CRUST successively tries out running this section with four,
three, two and one threads per core. Out of these four op-
tions, one thread per core is best (i.e., lowest cycle count)
for the W input while four threads per core perform best for
the C input set. This optimum thread count is used for the
remainder of the application.

Figure 7 plots the through-time behavior of a more com-
plex benchmark. CoMD from the Matevo suite [5] is a molec-
ular dynamics simulation mini-application. Most of its time
is spent computing interatomic forces which is a compute-
bound problem that scales relatively well to multiple cores.

0

20

40

60

 0 1 2 3 4 5

1

2

3

4

A
g

g
re

g
a

te
 I

P
C

T
h

re
a

d
s
/c

o
re

Time (seconds)

IPC Thread count

Figure 7: Through-time behavior of CoMD.

This phase consists of a single OpenMP parallel section, and
is denoted by light grey boxes in Figure 7. The darker boxes
consist of multiple serial and parallel phases, each shorter
than 50 million clock cycles, and are therefore aggregated
by CRUST and tuned as a single monolithic phase. Af-
ter calibration, the light grey phase is selected to use four
threads per core, which is the option that was found to min-
imize cycle count (and on this graph, maximize aggregate
IPC) in the calibration phase. The other phase is mostly
memory bound, here two threads per core are selected. For
this benchmark, calibration ends after 1.6 seconds of run-
time, the complete benchmark runs for 29 seconds (using a
40 × 40 × 40 input domain). Using CRUST even provides
a slight (2%) reduction in execution time over the fastest
static case (which uses three threads per core for all sec-
tions), while the slowest case (one thread per core) increases
execution time by 43%.

5.3 Power and energy consumption
To determine power consumption and possible energy sav-

ings resulting from CRUST, we measured instantaneous power
consumption of the Xeon Phi co-processor while running the
CRUST-enabled benchmarks. This was done by periodically
reading from /sys/class/micras/power in a background
thread. We then compute average power and cumulative en-
ergy consumption for the duration of each benchmark, and
plot the results in Figure 8. Note that CRUST itself cur-
rently does not use power values in its algorithms, although
an adaptation of the algorithm that is tuned to optimize
energy savings rather than performance can be envisioned.

The slowest static option activates fewer core resources,
and usually has a lower power draw associated with it as
well. However, since the execution time is (often much)
longer, the slowest option is the least energy-efficient one.
Since CRUST is able to find the best thread count in most
cases, its power and energy consumption are close to that of
the fastest static option as well.

6. EXTENSIONS AND FUTURE WORK

Nested parallelism. We currently do not invoke any of the
CRUST routines in nested parallel sections. While use of
nested parallelism is therefore allowed when running CRUST,
only the boundaries of the outermost level of parallelism
are considered to represent phase behavior. A more de-
tailed analysis of parallelism at all nesting levels may be able
to expose more detailed phase behavior, and hence lead to

 100

 120

 140

 160

 180

 200

 220

A B C D A B C D A B C D A B C A B C D A B C D A B C A B C D

P
o

w
e

r
(W

)

bt cg ft is lu mg sp ua

Fastest static Dynamic Slowest static

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A B C D A B C D A B C D A B C A B C D A B C D A B C A B C D

R
e

la
ti
v
e

 e
n

e
rg

y

bt cg ft is lu mg sp ua

Fastest static Dynamic Slowest static

Figure 8: Power (top) and energy consumption (bottom) of the Xeon Phi co-processor while running the
NAS benchmarks.

finer-grained thread count adaptation and potentially more
efficient execution.

Undersubscription. In this work, we always utilize 60 cores
of our 61-core Xeon Phi co-processor. Some applications, or
some phases inside them, do not scale to this large number of
cores. One extension of CRUST could be to, in addition to
varying the number of threads per core, also change the num-
ber of active cores. This can lead to reductions in synchro-
nization overheads, or for bandwidth-bound applications, al-
low cores to be disabled which saves energy while not affect-
ing performance. To this end, CRUST could be combined
with Synchronization-Aware Threading and/or Bandwidth-
Aware Threading [8] (which could piggy-back on the already
available L2 miss rate to estimate DRAM bandwidth). Al-
ternatively, a multi-dimensional DCT model could be used
— assuming a sufficiently accurate prediction model can be
constructed based on the limited set of available hardware
performance counters.

Recommendations for future hardware. As this paper
and many others show, hardware performance counters are
an extremely useful way of finding execution bottlenecks at
runtime and adapting application behavior to avoid them.
However, several restrictions on how performance counters
can be accessed on current architectures make their use in
runtime libraries cumbersome.

Only a small number of performance counters (just two in
the Intel Xeon Phi) can be active simultaneously. This re-
stricts the axes along which the application can gain visibil-
ity into its behavior, or requires the use of sampling (which
has its own set of trade-offs). It also reduces orthogonality of
adaptive runtime techniques, and requires that different run-
time libraries that each may want to perform different types
of optimizations need to coordinate to share performance
counter resources. Adding a larger set of fixed-function,
always-available counters that at least capture high-level ap-
plication characteristics can help in this respect.

In addition, collecting performance counter information
should be low-overhead and user-space only, encouraging
fine-grained measurements and allowing small code regions

such as spinlocks to be excluded. Finally, performance coun-
ters that indicate a direct impact on execution time, such
as the top-down approaches presented in [3] and [10], are
more useful than pure event counts or miss rates as the lat-
ter require extra modeling steps and (potentially invalid)
assumptions to translate their observation into achievable
performance gains.

7. CONCLUSIONS
We explored the performance of using different per-core

thread counts on an Intel Xeon Phi system, and showed
how the optimum thread count varies across applications,
when changing the input set of some applications, and even
within a single application when it is composed of multi-
ple kernels. We then proposed our SMT-aware extension
to CRUST, a methodology based on dynamic concurrency
throttling which can determine the optimum thread count
automatically. CRUST can be integrated easily into the
OpenMP runtime library; by combining application phase
behavior and leveraging hardware performance counter in-
formation it is able to reach the best static thread count for
most applications — and can even outperform static tuning
on more complex applications where the optimum thread
count varies throughout the application.

8. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable feed-

back. This work is supported by Intel and the Institute for
the Promotion of Innovation through Science and Technol-
ogy in Flanders (IWT). Additional support is provided by
the European Research Council under the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013)
/ ERC Grant agreement no. 259295. Experiments were run
on computing infrastructure at the ExaScience Lab, Leuven,
Belgium.

9. REFERENCES
[1] Intel OpenMP runtime library. Available at

http://www.openmprtl.org/.

[2] M. Curtis-Maury, F. Blagojevic, C. Antonopoulos, and
D. Nikolopoulos. Prediction-based power-performance

adaptation of multithreaded scientific codes. Parallel
and Distributed Systems, IEEE Transactions on,
19(10):1396–1410, Oct. 2008.

[3] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. Smith.
A top-down approach to architecting CPI component
performance counters. Micro, IEEE, 27(1):84–93,
2007.

[4] W. Heirman, T. E. Carlson, K. Van Craeynest, I. Hur,
A. Jaleel, and L. Eeckhout. Undersubscribed
threading on clustered cache architectures. In
International Symposium on High Performance
Computer Architecture (HPCA), Feb. 2014.

[5] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M.
Willenbring, H. C. Edwards, A. Williams, M. Rajan,
E. R. Keiter, H. K. Thornquist, and R. W. Numrich.
Improving performance via mini-applications. Sandia
National Laboratories, Tech. Rep. SAND2009-5574,
2009.

[6] H. Hirata, K. Kimura, S. Nagamine, Y. Mochizuki,
A. Nishimura, Y. Nakase, and T. Nishizawa. An
elementary processor architecture with simultaneous
instruction issuing from multiple threads. In ACM

SIGARCH Computer Architecture News, volume 20,
pages 136–145. ACM, 1992.

[7] H. Jin, M. Frumkin, and J. Yan. The OpenMP
implementation of NAS Parallel Benchmarks and its
performance. Technical report, NASA Ames Research
Center, Oct. 1999.

[8] M. A. Suleman, M. K. Qureshi, and Y. N. Patt.
Feedback-driven threading: power-efficient and
high-performance execution of multi-threaded
workloads on CMPs. In Proceedings of the
International Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS), pages 277–286, 2008.

[9] D. M. Tullsen, S. J. Eggers, and H. M. Levy.
Simultaneous multithreading: Maximizing on-chip
parallelism. In ACM SIGARCH Computer
Architecture News, volume 23, pages 392–403. ACM,
1995.

[10] A. Yasin. A top-down method for performance analysis
and counters architecture. In Proceedings of the 2013
IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2013.

