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Samenvatting

Technieken en tools om programma’s te reverse engineeren en aan te
passen zijn veel softwareontwikkelaars niet vreemd. Kwaadwillige ge-
bruikers kunnen ze echter gebruiken om software aan te vallen met
verschillende doeleinden, waaronder softwarepiraterij, malware-injectie
en diefstal van de intellectuele eigendom die ingebed is in de software.
Om hun software te beschermen tegen reverse engineering en geau-
tomatiseerde aanvallen kunnen softwareleveranciers zich wenden tot
obfuscatietechnieken. Deze technieken transformeren programma’s om
ze complexer te proberen maken, met als doel hun interne werking te
verbergen, potentiële aanvallers af te wenden en aanvalstools te verwar-
ren. Zo zullen controleobfuscaties bijvoorbeeld proberen om het verloop
van een programma te verbergen achter vals controleverloop, terwijl
dataobfuscaties zullen proberen om de werkelijke gegevens waarop een
programma berekeningen uitvoert te verbergen.

Controle- en dataobfuscaties volstaan in vele gevallen om binaire
programma’s te transformeren zodat het moeilijker wordt om deze te
analyseren. Voor bytecode-programma’s is dit echter niet het geval.
Bytecode-programma’s bevatten namelijk veel meer meta-informatie in
de vormvan typehiërarchieën, casts, declaraties van velden en signaturen
van methoden. Deze overvloed aan meta-informatie vergemakkelijkt
niet alleen just-in-time-compilatie en bytecode-verificatie; ze kan ook
gebruikt worden door potentiële aanvallers.

Om de meta-data die in bytecode-toepassingen is ingebed te obfus-
ceren hebben onderzoekers reeds verschillende technieken voorgesteld
om, onder andere, de namen van klassen en hun methoden en velden te
vervangen door nietszeggende, willekeurig gegenereerde namen. An-
deren hebben dan weer voorgesteld om het ontwerp van applicaties te
verbergen door klassen te splitsen of samen te voegen, of door valse
overervingsrelaties te creëren tussen ongerelateerde klassen, waardoor
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het lijkt alsof deze verwant zijn.
In dit doctoraat gaan we een stap verder in het obfusceren van het

ontwerp van applicaties. We presenteren drie complementaire obfusca-
tietechnieken voor Java bytecode-programma’s. Gecombineerd obfus-
ceren deze technieken een belangrijk onderdeel van het ontwerp van
een applicatie en veel van de aanwezige type-informatie. Onze eerste
transformatie, class hierarchy flattening (CHF), heeft als doel de klassenhi-
ërarchie van een programma maximaal af te vlakken door de subtype-
relaties tussen de klassen zoveel mogelijk te verbreken. Zodoende zal
CHF al een deel van de type-informatie mee verwijderen, maar deson-
danks zal een aanvaller toch nog veel informatie kunnen afleiden uit de
types die toegewezen zijn aan velden en methodeparameters, en uit de
types die gebruikt worden in casts en bij het aanmaken van nieuwe ob-
jecten. Om ook deze informatie te verbergen presenteren we twee extra
transformaties: interface merging (IM) en object factory insertion (OFI).

Interface merging vermindert de hoeveelheid type-informatie in een
programma door meerdere interfaces samen te voegen tot één interface.
Op die manier implementeren meer klassen dezelfde interface, waar-
door variabelen en velden wiens types interfacetypes zijn naar meer
verschillende types objecten kunnen verwijzen. Object factory insertion
vervangt code die nieuwe objecten aanmaakt door code die zogenaamde
factory-methoden oproept. Deze methoden kunnen op hun beurt veel
verschillende constructors kunnen oproepen en zo veel verschillende
types objecten teruggeven. In combinatie met CHF en IM zorgt OFI er-
voor dat het moeilijk wordt om het exacte type van het object te bepalen
waarnaar velden, variabelen of parameters verwijzen op verschillende
plaatsen in het programma, zonder het programma effectief uit te voeren.
Ten gevolge hiervan zal niet alleen een aanvaller het moeilijker hebben
om een geobfusceerd programma te begrijpen; ook de prestatie van zijn
tools die steunen op type-informatie zal hier onder lijden.

Om na te gaan hoeveel bescherming onze transformaties bieden en
hoeveel overhead ze teweegbrengen, hebben we ze geïmplementeerd
in een obfuscator, en daarmee programma’s uit de DaCapo benchmark
suite geobfusceerd. Op basis van complexiteitsmetrieken uit het software
engineering-domein tonen we aan dat onze obfuscaties programma’s
minder verstaanbaar maken voor een menselijke aanvaller en dat pro-
gramma’s tevens steeds complexer worden naarmate onze obfuscaties
agressiever worden toegepast. Daarnaast tonen wij ook aan dat onze
technieken het aantal types objecten waarnaar velden, variabelen en
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argumenten kunnen verwijzen tot twaalf keer in grootte doen toenemen,
waardoor ze de prestatie van statische analyse-tools die gebruik maken
van precieze type-informatie sterk verminderen.

Net als vele andere obfuscatietransformaties kunnen ook de onze een
aanzienlijke kost met zich meebrengen. Voor de meeste testprogramma’s
is de vertraging en de extra hoeveelheid geheugen dat nodig is om
het programma uit te voeren beperkt. Sommige sterk geobfusceerde
versies van één van onze testprogramma’s werden echter meer dan
acht keer trager dan het origineel. Verder maten we voor bijna alle
testprogramma’s een grote toename in de grootte van hun geobfusceerde
versies. In sommige gevallen liep die toename zelfs op tot 700%.

Onze experimenten toonden aan dat de grootste toename in uit-
voeringstijd veroorzaakt werd door object factory insertion, terwijl de
grootste toename in applicatiegrootte te wijten was aan method mer-
ging (MM), een techniek die we ontwikkeld hebben om de toename in
applicatiegrootte ten gevolge van class hierarchy flattening en interface
merging te verminderen. Zowel OFI als MM combineren de signaturen
van verschillende methoden, zij het om factory-methoden te construe-
ren die verschillende constructors kunnen oproepen, of om methoden
samen te voegen. In beide gevallen kunnen de parametertypelijsten van
methoden zodanig lang worden dat zij voor veel overhead zorgen. In
het geval van OFI zorgt het grote aantal parameters ervoor dat het oproe-
pen van een factory-methode vele malen duurder is dan het oproepen
van de individuele constructors, gezien veel meer argumenten moeten
meegegeven worden telkens een object moet worden aangemaakt. In het
geval van MM kunnen de samengevoegde parametertypelijsten zodanig
lang worden dat meer ruimte nodig is om deze lijsten op te slaan als
deel van de meta-informatie in het programma, dan dat er ruimte wordt
vrijgemaakt door methoden samen te voegen.

Om de overhead van deze transformaties te verminderen, hebben
we ons gericht op een aantal van hun gebreken. We hebben verschil-
lende verbeteringen aangebracht aan het method merging-algoritme en
het uitgebreid met een model dat de impact van verschillende merge-
operaties op de applicatiegrootte nauwkeurig kan inschatten. Op die
manier kan het algoritme steeds die methoden samenvoegen die zorgen
voor de grootste vermindering in applicatiegrootte. Een ander voordeel
dat verbonden is aan het gebruik van dit model is dat het algoritme nu
ook eenvoudig kan stoppen met het samenvoegen van methoden indien
het merkt dat de grootte van de applicatie anders zou toenemen.
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Verder hebben we OFI aangepast zodat deze transformatie construc-
tors nu verdeelt over verschillende factory-methoden op basis van hoe
vaak elke constructor wordt uitgevoerd, in plaats van alle constructors
onder te brengen in één factory-methode. Op die manier kunnen vaak
uitgevoerde constructors gegroepeerd worden in factory-methoden met
weinig argumenten, om zo de overhead in uitvoeringstijd te beperken.

Bijkomende experimenten tonen aan dat onze technieken door boven-
vermelde verbeteringen weinig moeten inboeten op vlak van beveiliging,
maar dat de overhead van geobfusceerde programma’s wel veel lager is.
Gemiddeld daalt de overhead in programmagrootte met meer dan 30%,
terwijl de overhead in uitvoeringstijd met meer dan 40% daalt. Ten
gevolge van deze dalingen kunnen onze verbeterde technieken, in ver-
gelijking met hun originele varianten, niet alleen gebruikt worden om
vergelijkbare bescherming aan te bieden in ruil voor minder overhead;
ze kunnen ook gebruikt worden om betere bescherming aanbieden in
ruil voor dezelfde overhead.



Summary

Reverse engineering and modification of software are well-understood
and common practices. Malicious users can use them to attack software
with the goals of software piracy, software IP theft, data theft, and mal-
ware injection. To protect their software against reverse engineering
attempts and automated attacks, software vendors may turn to obfus-
cation techniques. These techniques transform programs in an attempt
to make them appear more complex, to make it more difficult to extract
certain parts of information from them, to confuse potential attackers,
and to reduce the effectiveness of attack tools. Control obfuscations, for
instance, try to hide the actual flow of the application by introducing
spurious control flow, while data obfuscations try to hide the actual data
values a program operates on.

In many cases control and data obfuscations are sufficient to make bi-
nary applications more difficult to analyze. However, for bytecode appli-
cations they usually fall short. Bytecode applications inherently contain
much more meta-information, which they expose through type hierar-
chies, casts, field declarations and method signatures. This abundance
of meta-information not only facilitates just-in-time (JIT) compilation
and bytecode verification; it also helps potential attackers.

To obfuscate the meta-data embedded in bytecode applications, sev-
eral researchers have suggested techniques to replace the names of classes
and their members with randomly generated ones. Others have sug-
gested to obfuscate the design of the application by splitting or merging
classes, or by introducing fake inheritance relations between unrelated
classes to make it seems as if they are related.

In this work, we take design obfuscation one step further. We present
three complementary obfuscation techniques for Java bytecode appli-
cations that, when used in combination, obfuscate an important part
of an application’s design, and much of its type information. Our first
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transformation, class hierarchy flattening tries to get rid of an application’s
class hierarchy by maximally removing the subtype relations between its
classes. In doing so, it already removes some type information. However,
even after flattening, programs generally still containmuch type informa-
tion in the form of field andmethod signatures, casts, and object creation
expressions. To also hide this information, we present two additional
transformations: interface merging (IM) and object factory insertion (OFI).

Interface merging reduces the amount of type information in a pro-
gram by replacing multiple interfaces by a single one. That way, more
classes implement the same interface, and variables and fields whose
types are interface types can point to more different types of objects. The
object factory insertion transformation replaces object creations by calls
to obfuscated factories that can call many different types of constructors
to return many different types of objects. In combination with CHF
and IM, OFI makes it more difficult to narrow down the exact type of
object pointed to by fields, local variables and method parameters at
different points in the program without actually executing it. By hiding
this information from an attacker, he will not only have a more difficult
time understanding the program, but it will also reduce the effectiveness
of his tools that rely on precise type information.

To evaluate the protection-wise effectiveness of our obfuscations, as
well as the overhead they introduce in transformed applications, we im-
plemented them in a prototype obfuscator, which we used to obfuscate
real-world Java applications from the DaCapo benchmark suite. Using
software complexitymetrics from the domain of software engineeringwe
demonstrate that our obfuscations effectively reduce the understandabil-
ity of transformed program versions, with program versions becoming
less understandable as more aggressive obfuscation settings are used.
Additionally, we show that our techniques increase the points-to set
sizes of variables, parameters and fields in applications up to twelve
times, thereby significantly reducing the effectiveness of static analysis
techniques that rely on precise type information.

Like many other obfuscating transformations, ours can also come at
a considerable cost in terms of application size and run-time overhead.
For most benchmarks, the execution time overhead and the additional
memory required to during execution are limited. However, some heav-
ily obfuscated versions of one benchmark were more than eight times
slower than the original version of the benchmark. For almost all the
application size overhead was very large, with increases of up to 700%.
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Experiments showed that most of the execution time overhead was
caused by object factory insertion, whereas most of the application size
overhead was caused bymethodmerging (MM), an additional technique
we developed to reduce the application size overhead of class hierarchy
flattening and interface merging. Both techniques involve merging the
signatures of methods, be it either to create factory methods that are
able to invoke many different constructors, or to create merged methods
by combining the parameter type lists of two methods. In both cases the
parameter type lists of methods can become so large that they result in
significant overheads. For OFI the large number of parameters means
that invoking a factory method is many times more expensive than
invoking the individual constructors, as many more arguments need
to be passed each time an object has to be created. For MM the large
parameter type lists often mean that more space is required to store the
merged parameter type lists as part of the application’s meta-data than
the transformation is able to save by merging the methods.

To reduce the overhead of these transformations, we addressed sev-
eral of their flaws. We made a number of improvements to the method
merging algorithm and extended it with a model that enables it to ac-
curately estimate the impact of different potential merge operations on
an application’s size, so that it can choose the best possible ones, and
actually stop merging methods when this is no longer beneficial. Addi-
tionally, we modified OFI such that it is able to distribute constructors
over multiple factory methods, based on how many times each construc-
tor is invoked, instead of generating a single factory method that invokes
all constructors. That way, the algorithm can group frequently invoked
constructors in factory methods that require few arguments, to reduce
the overall execution time overhead.

An evaluation of our improved techniques shows that they offer
comparable levels of protection as their original versions, but at much
lower overheads. On average, our improvements reduce application
size overhead by over 30%, and execution time overhead by over 40%.
Given these large reductions, our improved techniques can now be used
not only to offer comparable levels of protection at lower overheads
compared to their original versions, but also to offer more protection at
similar levels of overhead.
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Chapter 1

Introduction

The business model of many companies that distribute software as (part
of) their main products relies on the fact that their software is not tam-
pered with, and that any proprietary data and algorithms embedded in
it remain secret. However, trying to achieve this in today’s world is prov-
ing to be a difficult problem, as reverse engineering and modification
of software are well-understood and common practices. With a few tar-
geted Internet searches malicious users can easily obtain a wide array of
free reverse engineering tools, including disassemblers [3, 25, 49], debug-
gers [2, 6], and decompilers [1, 4, 20], as well as detailed instructions on
how to use them. Even state-of-the-art commercial reverse engineering
tools [31, 41] can easily be obtained through illegal channels. Malicious
users can use these tools with the goals of software piracy, software IP
theft, data theft, and malware injection.

Fortunately, despite the abundance of attack tools, attackers often
still have to invest time and effort to understand an application’s code at
least partially before being able to modify it, abuse it, or extract valuable
information from it. How much time and effort is required greatly
depends on the experience of the attacker, the quality of existing tools,
his familiarity with those tools, his ability to create his own tools, his
familiarity with the libraries used by the application, and the target
platform for which it was compiled, as well as the complexity of the code,
and whether or not any protection mechanisms are in place. Nowadays,
these last two often go hand in hand; software protection mechanisms
are put in place to make code artificially more complex, in an effort to
ward off potential attackers. In practice, these protectionmechanisms are
commonly referred to as obfuscations, or obfuscating transformations.
Collberg et al. [22] more formally define these transformations as follows.
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Definition 1.1. Obfuscating transformation

Let P T→ P ′ be a transformation of a source program P into a target
program P ′. P T→ P ′ is an obfuscating transformation, if P and P ′ have
the same observable behavior. More precisely, in order for P T→ P ′ to be
a legal obfuscating transformation the following conditions must hold:

• If P fails to terminate or terminates with an error condition, then
P ′ may or may not terminate.

• Otherwise, P ′ must terminate and produce the same output as P .

Collberg et al. [22] define observable behavior loosely as behavior
experienced by the user. This means that the transformed program may
have certain side effects that the original program does not have, as long
as these side effects are not experienced by the user.

However, under this definition any behavior preserving transforma-
tion is an obfuscating transformation. Ideally, obfuscating transforma-
tions should be potent and resilient [22]. That is, they should make it
more difficult to understand programs or to extract certain information
from them, and it should be difficult to undo these transformations
by means of an automatic deobfuscator. Another desirable feature is
low cost, which means that transformations should have little impact
on the performance and/or size of the resulting applications. Stealth,
which is important for transformations that add, e.g. run-time checks
to implement integrity verification for tamper-detection, is often less
important for obfuscation transformations. In fact, some of the most
effective obfuscation transformations are also some of the least stealthy.

In an ideal world, obfuscators transform programs in such a way
that an attacker is unable to learn anything from them except for their
input-output behavior. However, realistically speaking, such complete
obfuscation is impossible in general. Barak et al. [11] proved this by
constructing a family of functions that cannot be obfuscated completely.
Despite this proof, obfuscations still prove useful in practice. They may
not be able to completely stop an attacker, but they may make attacks
too complex or too time-consuming to be economically viable. With this
goal in mind, many obfuscation techniques have been developed in the
past. Collberg et al. [22] divide them into four categories.
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Layout transformations target information that is not required for the
correct operation of programs [12, 18]. They remove debugging infor-
mation such as line number information and information about local
variables, or replace it by bogus information to cause confusion. Some
layout transformations operate on source code programs, in which case
they may change the formatting, remove the comments, or scramble the
identifiers. Nowadays, they are commonly used to obfuscate JavaScript
code. Certain layout transformations can also be applied to programs
distributed in bytecode formats, such as Java bytecode or CIL [56].

Control transformations make the control flow of a program appear
more complex [22, 23, 43, 52, 53, 59, 62, 75]. These transformations gen-
erally operate on the control flow graphs of an application’s functions,
making them more complex by adding additional nodes and edges, or
by splitting or merging them. To obfuscate control flow, researchers have
also suggested transformations from the domain of compiler optimiza-
tions, including inlining, outlining, and several loop optimizations, such
as loop unrolling and loop tiling [7].

Several control transformations rely on opaque predicates [23]. These
predicates are constructed in such a way that their value is known at
obfuscation time (when they are inserted in the program), but for which
it is difficult to prove what their value will be during the execution of
the program. Commonly used opaque predicates are those that either
always evaluate to true, or to false. These so-called one-way predicates
can be used to guard complex (nonsensical) code that was inserted by
an obfuscator, but that should never be executed.

Data transformations target the data values used and produced by
a program [22, 80]. Their goal is to obscure the data values in such a
way that they only make sense to the program and not to an attacker.
Examples of data transformations include variable splitting andmerging,
and converting static data into procedural data, such that it is generated
at run time [22].

Preventive transformations target tools that are used for reverse en-
gineering, such as decompilers. Their goal is to introduce code that
exploits certain weaknesses in these tools to make them generate incor-
rect source code, or even crash them [12]. Some of these transformations
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target specific versions of certain tools, which may limit their resilience
when other reverse engineering tools are used.

To protect against decompilers and static analysis tools, a specific
class of preventive transformations typically implemented by so-called
packers [45] replace an application by a stub that decompresses and/or
decrypts the actual application code at run time. Without access to
the specific algorithms used for compression and encryption (and the
required decryption keys), the actual program code cannot be uncovered
unless at least part of the program is executed.

With the exception of the last category, which specifically targets tools,
obfuscation transformations either target an application’s control, its
data, or its meta-data. To obfuscate binary C and C++ programs it
is often sufficient to only use control and data obfuscations. This is
because binary programs are typically stripped to remove symbolic
information, which means that they contain little meta-data that is easily
accessible to an attacker. The meta-data that remains is often implicitly
embedded in the program, which may make it difficult to retrieve. For
instance, with the exception of those compiled to contain run-time type
information (RTTI) [69], C++ programs do not explicitly contain the
subtype relations between their classes. In fact, the concept of classes
does not even exist anymore in the compiled binaries. Instead, (part
of) the subtype information is implicitly embedded when creating a
program’s virtual function pointer tables, or vtables during compilation.
Recovering the original class hierarchy from an application’s vtables may
require some effort.

1.1 Bytecode Obfuscation

For Java bytecode applications, control and data transformations alone
do not provide sufficient protection. This is because all of their meta-
data is encoded explicitly, such that it can be used by virtual machines to
execute the applications and to support features such as bytecode verifi-
cation, just-in-time (JIT) compilation, reflection, and garbage collection.
Even though such features aim at increasing programmer productivity,
by not requiring programmers to manually fine-tune their code or con-
cern themselves with garbage collection, they do come at a high cost
in terms of information that is made available to a potential attacker.
In fact, bytecode applications contain so much meta-information that
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unobfuscated ones can be decompiled into source code programs that
closely resemble the programs before compilation.

To remove some of this information, software protection researchers
have proposed layout transformations to obfuscate the identifiers of
methods, fields and classes, and the names of packages [12, 18]. How-
ever, the meta-data of a bytecode application consists of much more than
just identifier names; it also contains type information and information
about the application’s design. Just as this information helped the orig-
inal programmers manage the complexity of the program, it can also
improve an attacker’s understanding of how the program works. This is
because during development each class is carefully constructed to model
a single logical unit of an application, and the inheritance relations and
interactions between the classes are chosen in a meaningful way such
that they contribute to the overall understanding of the program. Hence,
even though an attacker may not have access to the original identifier
names after they have been scrambled, he still has access to a program
in which each class represents a well-defined logical unit, and for which
the corresponding class file contains a complete description of the class’
members, including their signatures, and references to class’ superclass
and the set of interfaces it implements.

To provide an additional layer of protection, several techniques can
be used to also obfuscate a program’s design and type information.
Sosonkin et al. [66] propose three design obfuscation techniques; class
coalescing, class splitting, and type hiding. The first two can be used to
merge multiple classes into one, or split one class into several different
ones, respectively. The type hiding transformation makes each class
implement several interfaces. That way, instances of those classes can be
used as instances of many different types throughout the program.

Gone and Stamp [37] combine design pattern detection techniques
with class coalescing and class splitting to hide commonly used, and
easily recognizable, well-understood software design patterns [36]. Fur-
thermore, the false factoring transformation by Collberg et al. [22] takes
advantage of the fact that classes are perceived to be related in some
way when they share a common ancestor. It makes originally unrelated
classes share the same superclasses to make it seem as if they are related.

In the work presented in this dissertation, we take design obfuscation
one step further. Instead of merely modifying an application’s type
hierarchy, we propose class hierarchy flattening (CHF) to get rid of it
altogether. CHF strives to maximally remove subtype relations, resulting
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in a hierarchy in which classes are siblings rather than subtypes and
supertypes. Furthermore, to avoid that method signatures, casts, and
object creation sites still yield type information in flattened code, we
combine CHFwith two additional transformations: interface merging (IM)
and object factory insertion (OFI). Interface merging reduces the amount of
type information in a programby replacing different interfaces by a single
one. That way, more classes implement the same interface, and variables
and fields can store more different types of objects. In combination
with the object factory insertion transformation, which replaces object
creations by calls to obfuscated factories that can return many different
types of objects, it becomes more difficult to narrow down the exact
types of objects stored in fields, local variables, and method parameters
at different points in the program. By hiding this information from an
attacker, he will not only have a more difficult time understanding the
program, but it will also reduce the effectiveness of his tools that rely on
precise type information.

1.2 Motivating Example

We illustrate the issues our transformations tackle by means of an exam-
ple media player application. The application consists of three parts: the
player initializer, support for media files, and support for media streams
in those files. Figure 1.1 shows the corresponding class hierarchy sub-
trees. Figure 1.2 illustrates their interaction. For the sake of clarity, we use
meaningful method and type identifiers. In a real obfuscated program,
they would of course be replaced by meaningless ones [12, 18].

Themainmethod of class Player creates an array ofMediaFile objects to
be played (line 10). It then queries them for their media streams (line 12),
which are initialized by accessing the file with the readFile method. Fig-
ure 1.2 shows this for the MP3File class, which represents MP3 files
containing MPEG audio streams. During playback, the player checks
the run-time type of the MediaStream objects (lines 13 & 15) to decide
where they need to be output. They are either cast to AudioStream or
VideoStream, such that the correct play method is invoked (lines 14 & 16).
The play methods essentially output the raw bytes of the media streams
to a specific output device. Those bytes are obtained, decrypted (lines 33–
34) and decoded (line 35) with the getRawBytes method declared in
MediaStream. Because the decoding process is different for each type of
stream, the decodemethod is declared as abstract, and is implemented
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java.lang.Object

AudioStream
# audioBuffer : int[]
# decode(byte[]) : byte[]
# decodeSample() : byte[]

VideoStream
# videoBuffer : int[][]

 

# decode(byte[]) : byte[]
# decodeSample() : byte[]

MediaFile
# filePath : String

 

# readFile() : void
+ getStreams() : MediaStream[]

# mediaStreams : MediaStream[]

 
MediaStream

- data : byte[]
 

# decode(byte[]) : byte[]
+ getRawBytes() : byte[]

- KEY : byte[]

Player
+ main(String[]) : void

 

+ play(AudioStream) : void
+ play(VideoStream) : void

MP3File
# readFile() : void

MP4File
# readFile() : void

DTSStream
# decodeSample() : byte[]

 
MPGAStream

# decodeSample() : byte[]
 

XvidStream
# decodeFrame() : byte[]

 

Figure 1.1: Standard UML representation of the class hierarchy of a simple
DRMmedia player.

by subclasses of MediaStream. The decryption process, by contrast, is
the same for each type of media stream and is therefore handled by the
MediaStream class.

From a software-engineering perspective, the code is well structured.
The inheritance relations are meaningful and code shared between dif-
ferent classes is located in a common superclass. To further improve the
quality of the code, we could have also factored out casts and run-time
type checks. However, we chose not to do so for didactic purposes.

From a security perspective, there are some issues. First, the hi-
erarchy informs attackers about the abstraction levels of the classes’
functionalities. Classes higher in the hierarchy typically provide more
abstract functionality. Secondly, code reuse through inheritance en-
ables attacks in which compromising one class can compromise all of its
subclasses. For instance, all media streams are decrypted with Media-
Stream.getRawBytes(). Hence, when an attacker reverse-engineers this
method, he can decrypt all supported media stream types. Finally, we
observe that even though local variables are untyped in bytecode, the
code still reveals type information through method signatures, casts,
and object creation sites. For example, the allocation of a Player on line 9
allows a type inference tool [13] to narrow the type of the player variable
to Player. The instanceof checks and casts on lines 13–16 also restrict
the possible types of objects to which the variable ms can point. This
abundance of type information is important for an attacker because it



8 Introduction

public class Player { 
   public void play(AudioStream as) { 
      /* send as.getRawBytes() to audio device */ 
   } 
   public void play(VideoStream vs) { 
      /* send vs.getRawBytes() to video device */ 
   } 
   public static void main(String[] args) { 
      Player player = new Player(); 
      MediaFile[] mediaFiles = ...; 
      for (MediaFile mf : mediaFiles) 
         for (MediaStream ms : mf.getStreams()) 
            if (ms instanceof AudioStream) 
               player.play((AudioStream)ms); 
            else if (ms instanceof VideoStream) 
               player.play((VideoStream)ms); 
   } 
} 
public class MP3File extends MediaFile { 
   protected void readFile() { 
      InputStream inputStream = ...; 
      byte[] data = new byte[...]; 
      inputStream.read(data); 
      AudioStream as = new MPGAStream(data); 
      mediaStreams = new MediaStream[]{as}; 
      return; 
   } 
} 
public abstract class MediaStream { 
   public static final byte[] KEY = ...; 
   public byte[] getRawBytes() { 
      byte[] decrypted = new byte[data.length]; 
      for (int i = 0; i < data.length; i++) 
         decrypted[i] = data[i] ^ KEY[i]; 
      return decode(decrypted); 
   } 
   protected abstract byte[] decode(byte[] data); 
} 
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Figure 1.2: Partial implementations of the original Player, MediaStream and
MP3File classes.

simplifies his mental understanding and his tools’ formal models of
the code. In compiler terminology, it reduces points-to set sizes and it
simplifies the call graph by omitting unrealizable edges [67].

These issues can be solved by rewriting the well-structured hierarchy
into the unstructured collection of Figure 1.3. To determine how classes
are related, an attacker can then no longer rely on a hierarchy. He instead
has to analyze all classes. Furthermore, as all classes are provided with
a (diversified) copy of all fields and methods declared in their former
superclasses, they have become independent. Code is no longer shared
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+ decode(byte[]) : byte[]

+ merged1(Common) : byte[]
+ merged2(Common) : Common[]

+ getRawBytes() : byte[]

« interface » Common

XvidStream
- videoBuffer : int[][]

+ decode(byte[]) : byte[]
+ getRawBytes() : byte[]

- data : byte[]
- KEY : byte[]

+ merged1(Common) : byte[]
d merged2(Common) : Common[]

MP3File
- filePath : String

d decode(byte[]) : byte[]
d getRawBytes() : byte[]

- mediaStreams : Common[]

+ merged1(Common) : byte[]
+ merged2(Common) : Common[]

MediaFile
- filePath : String

d decode(byte[]) : byte[]
d getRawBytes() : byte[]

- mediaStreams : Common[]

d merged1(Common) : byte[]
+ merged2(Common) : Common[]

MediaStream
- data : byte[]

d decode(byte[]) : byte[]
+ getRawBytes() : byte[]

- KEY : byte[]

d merged1(Common) : byte[]
d merged2(Common) : Common[]

MP4File
- filePath : String

d decode(byte[]) : byte[]
d getRawBytes() : byte[]

- mediaStreams : Common[]

+ merged1(Common) : byte[]
+ merged2(Common) : Common[]

AudioStream
- audioBuffer : int[]

+ decode(byte[]) : byte[]
+ getRawBytes() : byte[]

- data : byte[]
- KEY : byte[]

d merged1(Common) : byte[]
d merged2(Common) : Common[]

VideoStream
- videoBuffer : int[][]

+ decode(byte[]) : byte[]
+ getRawBytes() : byte[]

- data : byte[]
- KEY : byte[]

d merged1(Common) : byte[]
d merged2(Common) : Common[]

MPGAStream
- audioBuffer : int[]

+ decode(byte[]) : byte[]
+ getRawBytes() : byte[]

- data : byte[]
- KEY : byte[]

+ merged1(Common) : byte[]
d merged2(Common) : Common[]

DTSStream
- audioBuffer : int[]

+ decode(byte[]) : byte[]
+ getRawBytes() : byte[]

- data : byte[]
- KEY : byte[]

+ merged1(Common) : byte[]
d merged2(Common) : Common[]

+ main(String[]) : void
d decode(byte[]) : byte[]
d getRawBytes() : byte[]
+ merged1(Common) : byte[]
+ merged2(Common) : Common[]

Player

Figure 1.3: Type-obfuscated class hierarchy of the media player.

between related classes, so one can no longer attack many classes at once
by patching their common superclass.

Code analysis has also become harder. Figure 1.4 displays much less
type information than the original code. All declarations declare type
Common, all invoked methods are implemented by all classes, and all
casts have been removed. An obfuscated, typeless isInstance method
replaces instanceof, and factories returning instances of type Common
replace type-specific allocations. These factories can be obfuscated in-
ternally, such that static analysis cannot determine the precise type of
the returned objects. As a result, call graph construction [40], points-to
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public class Player implements Common { 
   public byte[] merged1(Common as) { 
      /* send as.getRawBytes() to audio device */ 
   } 
   public Common[] merged2(Common vs) { 
      /* send vs.getRawBytes() to video device */ 
   } 
   public static void main(String[] args) { 
      Common player = CommonFactory.create(…); 
      Common[] mediaFiles = ...; 
      for (Common mf : mediaFiles) 
         for (Common ms : mf.getStreams()) 
            if (myCheck.isInst(0, 1, ms.getClass())) 
               player.merged1(ms); 
            else if (myCheck.isInst(1, 1, ms.getClass())) 
               player.merged2(ms); 
   } 
} 
public class MP3File implements Common { 
   public byte[] merged1() { 
      InputStream inputStream = ...; 
      byte[] data = new byte[...]; 
      inputStream.read(data); 
      Common as = CommonFactory.create(…); 
      mediaStreams = new Common[]{as}; 
      return data; 
   } 
} 
public class MediaStream implements Common { 
   public static final byte[] KEY = ...; 
   public byte[] getRawBytes() { 
      byte[] decrypted = new byte[data.length]; 
      for (int i = 0; i < data.length; i++) 
         decrypted[i] = data[i] ^ KEY[i]; 
      return decode(decrypted); 
   } 
   public byte[] decode(byte[] data){ … } 
} 
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Figure 1.4: Type-obfuscated versions of the Player,MediaStream andMP3File
classes. Transformed code is shown in red.

analyses [67] and type inference [13] will yield less precise results.
Furthermore, as all classes now implement the whole Common inter-

face, many of them now implement more methods. For example, in the
obfuscated program all classes implement merged1, which replaces play,
decodeSample, decodeFrame, and readFile. An attacker’s static analysis
cannot determine that of all ten implementations of merged1, only six
will actually be executed. In AudioStream, VideoStream,MediaStream and
MediaFile, the merged1 methods are dummies (indicated by the letter ’d’
instead of their visibility modifier in Figure 1.3) that can be filled with



1.3 Contributions 11

arbitrary code to complicate static analysis even further.
In the next chapters we discuss the stepwise code obfuscation. Class

hierarchy flattening (Chapter 2) first replaces the type hierarchy by a
flat collection of classes. In doing so, it introduces a single interface
for each subtree of the original class hierarchy. However, despite the
use of these interface types, the flattened program may still encode a
considerable amount of type information. We therefore use interface
merging (Chapter 3) to merge separate interfaces into a common one. As
a result, method signatures feature less diverse types and many casts can
be removed. This leads to a reduction in type information and enables
object factory insertion (Chapter 4) to further remove type information
from object allocation sites for optimal protection. Furthermore, to re-
duce the overhead of our transformations and improve their practical
usefulness, we present several improvements to them in Chapter 6.

1.3 Contributions

The major contributions of this dissertation are the following.

• Better protection. We present class hierarchy flattening, interface
merging, and object factory insertion, three complementary obfus-
cation techniques that obfuscate much more type information than
several existing obfuscations. Our transformations not only make
code more difficult to understand by a human attacker, but they
also make automatic analysis tools less effective. In some cases
they even improve the applicability of other transformations.

• Cheaper protection. We present effective methods and heuristics to
limit the overhead of our transformations and to trade it off for the
level of protection. On some levels, our transformations are not
only more cost-effective than some existing obfuscations, they can
also reduce the cost of some of these transformations.

• Automatic protection. We present a tool flow that is able to apply
our obfuscations fully automatically on complex, real-world appli-
cations that heavily depend on reflection and custom class loaders.
However, to operate correctly our tool flow does require that the
entire application is available at obfuscation time.

• Measurable protection. Our evaluation includes metrics related to
human code understanding as well as to automated static analysis
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tools that help attackers reverse-engineer bytecode. To the best of
our knowledge, we are the first to evaluate and report obfuscations
of this complexity on large, real-world applications.

In Chapter 2 we explain class hierarchy flattening in more detail. In
doing so, we pay special attention to previously unpublished transfor-
mation steps, such as how static initializers are handled, how array types
are updated, and how exception classes can be transformed. The work
in this chapter has led to the following conference publication.

A Novel Obfuscation: Class Hierarchy Flattening
Christophe Foket, Bjorn De Sutter, Bart Coppens, and Koen De
Bosschere
In International Symposium on Foundations & Practice of Security,
2012 [32].

Chapters 3 and 4 report on interface merging and object factory
insertion, respectively. In Chapter 4, we also explain in more detail our
version of the type inference algorithm by Gagnon et al. [35], which we
use to create more effective object factories. The work in Chapters 3
and 4, combined with the work in Chapter 2 and the evaluation of our
techniques in Chapter 5, has led to the following journal publication.

Pushing Java Type Obfuscation to the Limit
Christophe Foket, Bjorn De Sutter, and Koen De Bosschere
In IEEE Transactions on Dependable and Secure Computing, 2014 [33].

In Chapter 6, we present and evaluate several improvements for the
transformations described in Chapters 2 to 4 to reduce the code size and
execution time overhead of the transformed applications. As part of the
work in this chapter, we present a model for tracking changes in the size
of an application during transformation, as well as a way of managing
the overhead of object factory insertion. The work in Chapter 6 has led
to a journal article that is currently under submission.

Cost-effective Java Type Obfuscation
Christophe Foket, Bjorn De Sutter, and Koen De Bosschere
Submitted to IEEE Transactions on Dependable and Secure Computing,
July 2015.

For our obfuscation tool flow, we rely on the following open-source
tools, to which we have made several contributions.
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Soot is a program analysis and transformation framework with sup-
port for Java source code, Java bytecode, and Android bytecode [74].
It features several static analysis techniques, including call-graph con-
struction techniques, points-to analyses, and liveness analysis. It also
offers support for template-driven intra-procedural and inter-procedural
data-flow analyses [15]. Over the years, several tools have been built
around Soot, of which the Java ByteCode Obfuscator (JBCO) [12] and
the Design Obfuscator for Java (DOJ) [66] are two examples.

Unlike many other bytecode transformation frameworks, Soot does
not require users to work close to or at the bytecode level [17, 27]. Instead,
users can choose from several intermediate representations at different
abstraction levels. Unless otherwise noted, all transformations presented
in this dissertation operate on Jimple code, a three-address intermediate
representation that is both high level and easy to transform.

TamiFlex is a collection of tools created to facilitate the analysis and
transformation of applications in the context of reflection and custom
class loaders [16]. In this work we primarily rely on two of the tools: the
Play-out Agent and Booster. The TamiFlex Play-out Agent is a dynamic
instrumentation tool that outputs all classes that are loaded during
the execution of an application, and a list of all reflective operations
performed during the execution. Booster is a static tool that uses the
list of reflective operations output by the Play-out Agent to inline a
program’s reflective operations, replacing them by direct operations on
the involved classes, methods, and fields, such that static analysis tools
that cannot model reflective operations can still analyze the program.

WALA is a static analysis framework, primarily oriented at analyzing
Java bytecode [30]. It features highly configurable implementations of
state-of-the-art pointer analyses and call graph construction algorithms.
We mainly use WALA as an attack tool to evaluate how well our trans-
formations succeed in confusing static analyses, in an effort to measure
our transformation’s effectiveness against automated attacks.

We give a detailed overview of our contributions to these tools, as well
as several other tools that we developed to evaluate our transformations
when we discuss our experimental setup in Chapter 7.
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Chapter 2

Class Hierarchy Flattening

In this chapter we discuss class hierarchy flattening. The goal of this
transformation is to remove as many subtype relations from a class hier-
archy as possible. For example, in our media player example introduced
in the previous chapter,MP3File andMP4File should no longer inherit
from MediaFile. In practice not all subtype relations can be removed,
however. Any class hierarchy transformation is constrained by type
correctness requirements imposed by external libraries that cannot be
transformed, and by uses of reflection that cannot be easily transformed.
CHF therefore proceeds in six steps. First, subtrees that can be flat-
tened are selected from an application’s class hierarchy. In five following
steps, all necessary transformations are performed to flatten the selected
subtrees without changing the behavior of the application.

2.1 Subtree Selection

Assume that an application consists of a set of application types (i.e. classes
and interfaces) A that use or extend classes and interfaces from a self-
contained set of library types L that includes java.lang.Object. Types
in L are never considered for transformation. In practice, L usually
corresponds to the standard library, while A contains all classes and
interfaces that make up the actual application. Let ts, ts : (A ∪ L) 7→
P(A∪L) be the functions that map a type x to the sets ts(x) and ts(x) of
all x’s (transitive) subtypes and supertypes, respectively, x included.

As we cannot rewrite external library classes, we cannot change their
position in the hierarchy, nor can we adapt their method signatures.
To maintain type correctness, this implies that any application class in
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ts(l) with l a library class needs to stay a subclass of l. This is similar to
limitations imposed on other refactorings. Those limitations have been
formalized in literature [73], so we do not repeat them here. Further-
more, CHF is not applicable to a specific subset of classes X ⊂ A because
changing those classes’ position in the hierarchy could alter program
behavior. This includes classes on which the program might (depending
on the input) perform reflective operations such as getInterfaces() (which
can make the program dependent on the number of interfaces imple-
mented by a class), getSuperclass(), isAssignableFrom(), getMethod(), etc.
There can also be practical reasons for not flattening some classes. For
instance, our prototype tool considers classes of which multiple different
or identical definitions exist on the class path as non-transformable, as
well as classes that are subtypes of java.lang.Throwable. The latter are
usually exception classes. Implementing tool support for these classes
would require a large engineering effort and not buy much in terms of
obfuscation. That aside, ensuring that these classes can be transformed
is conceptually not very difficult; we provide an algorithm for doing
this in Section 2.8. Note, however, that this algorithm is currently not
implemented in our prototype tool. Instead, our tool simply adds classes
that (indirectly) extend java.lang.Throwable to X as non-transformable.
All classes in X face similar limitations as those in L.

During subtree selection the classes inA are partitioned into a setT of
transformable classes and a set X of non-transformable classes. T is then
further partitioned into disjoint subtrees Ti according to the following
four rules:
align center

1. T =
m⋃

i=1
Ti

2. ∀ i : Ti ⊂ A \ X

3. ∀ i, j : Ti ∩ Tj = ∅

4. ∀ c ∈ Ti : ts(c) ⊆ Ti

These rules express that each subtree Ti consists of a unique set of
transformable classes such that if Ti includes a class c, it also includes
all of its subclasses. Figure 2.1 depicts the selection of four subtrees in
a hierarchy with an external library class L and a non-transformable
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Figure 2.1: Selected subtrees in a class hierarchy.
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Figure 2.2: Flattened class hierarchy subtrees.

application class X. In the media player of Figure 1.1, the three subtrees
of java.lang.Object are selected.

In the following five sections we explain how each subtree is trans-
formed into a flat set of classes that become siblings of the tree’s root.
For each flat set of classes, our algorithm inserts an interface that these
classes implement. Figure 2.2 shows the result with four new interfaces
for the original class hierarchy of Figure 2.1.

2.2 Preparing Subtrees for Flattening

We prepare subtrees in three steps. First, we encapsulate instance fields
in subtree classes with getters and setters, and replace field accesses by
calls to those getters and setters1. This provides access to instance fields
in the subtree classes, even though interfaces cannot declare instance
fields. Secondly, we make each class functionally independent of its
superclasses. We traverse each subtree Ti breadth-first. For each class
c ∈ Ti and each direct subclass d of c, we first copy the instance fields and

1For brevity, we did not perform this step in our running example.
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concrete instance methods from c to d, renaming them if necessary to
avoid collisions with original fields and methods of d. For constructors,
which cannot be renamed, we avoid collisions by adding artificial, distin-
guishing parameters. We then rewrite field references and super calls in
d and d’s subclasses such that they reference d’s copies. References from
outside d and its subclasses need not be rewritten. First, external field
references have already been replaced by getters and setters. Secondly,
when a method needs to be renamed or needs to get a distinguishing
parameter to avoid a signature collision, this implies that shadowing
already prevented external references to the original method in c.

Finally, we rewrite the static initializers of the subtree classes to
preserve the order in which classes are initialized. In Java, a class is
initialized automatically by the Java Virtual Machine the first time one of
itsmethods is invoked, one of its fields is accessed, or one of its subclasses
is initialized2. In the latter case, the static initializer of the class is invoked
automatically before the static initializer of its subclass. To ensure that the
initialization order of the classes is preserved after flattening, we rewrite
the program such that the static initializer of each class is executed
before the static initializer of its subclasses in a way that does not depend
on the subtype relations between the classes. Unfortunately, the Java
Virtual Machine Specification does not allow programs to call static
initializers directly. The static initializer of a class can only be invoked
by the virtual machine. To preserve the classes’ initialization order we
therefore rewrite the static initializers of subtree classes such that each
class’ static initializer performs an operation on that class’ superclass
that triggers the initialization of the superclass. We do this by computing
for each class c ∈ T the closest ancestor d in the same subtree as c that
has a static initializer. If d exists, we proceed as follows:

1. Let f be a random public static field of d. If d does not contain any
public static fields, create one first.

2. Let m be the static initializer method of c. If c does not contain
such a method, create it first.

3. Prepend the code inmwith code that reads field f .

To cause the Java Virtual Machine to invoke the static initializer of
dwe can also insert code that writes to one of d’s fields, calls one of its

2These are the most common events that trigger class initialization. For a complete
overview, we refer to the Java Virtual Machine Specification [48].
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methods, or invokes certain reflective methods on it. We chose to add
code that reads one of d’s fields because it is easy to implement, and
because it is guaranteed not to have side-effects.

2.3 Interface Insertion

For each subtree we create a new supertype interface, and insert it into
the directory or archive that contains the root class of the subtree. The
interface declares all instance methods of all classes in the subtree and
is implemented by all its classes. Whenever an original class does not
implement all the required methods of the interface, dummy methods
are added. Since these were not present in the original program, and
as we are not changing the behavior of the program, they will never be
executed. We can therefore provide nonsensical implementations for
them to confuse static analyses.

For the media player, we create three interfaces: Common1, Common2,
and Common3, corresponding to the subtrees rooted at Player, MediaFile,
andMediaStream, respectively.

2.4 Subtree Type Abstraction

Next, we make the program independent of the subclass relations that
we will remove in the next step. We replace all references to types in T by
their corresponding interface supertypes. This comes down to replacing
the types of local variables, fields, array creations3, and the types used in
method signatures. The only timewe still refer to the actual classes in the
subtree is for object creation and dynamic type checks. Figure 2.3 shows
a partially obfuscated version of the Player class. Various declarations
have been replaced by the three supertypes Common1, Common2, and
Common3, but new and instanceof expressions have not yet been replaced.

Like the operation described in Section 2.2, this abstraction operation
sometimes requires fields ormethods to be renamed, or additional distin-
guishing parameters to be added to constructors to avoid cases in which
a class defines multiple members with the same signature. Consider,
for instance, the two play methods in Figure 1.2, which have different
parameter types. After changing their parameter types to Common their

3In Section 2.7 we explain in more detail how array creation expressions are updated.
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public class Player implements Common1 { 
   public void play(Common3 as) { ... } 
   public void play1(Common3 vs) { ...} 
   public static void main(String[] args) { 
      Common1 player = new Player(); 
      Common2[] mediaFiles = ...; 
      for (Common2 mf : mediaFiles) 
         for (Common3 ms : mf.getStreams()) 
            if (ms instanceof AudioStream) 
               player.play(ms); 
            else if (ms instanceof VideoStream) 
               player.play1(ms); 
   } 
} 
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14 

Figure 2.3: Intermediate obfuscated Player class.

signatures become identical. To differentiate them, one of them was
renamed to play1, as shown in Figure 2.3.

As for cast operations, many of them can be omitted because they
have become superfluous after interfaces are used to replace concrete
types in declarations. Not to reveal any type information, we also want
to omit the remaining ones. So we replace them by code that tests a type
with instanceof and throws a ClassCastExceptionwhenever a run-time cast
would have failed in the original program. To minimize the number of
types that need to be tested and hence revealed in the code, we perform
a points-to analysis on the original program [42, 61]. This treatment of
casts is similar to that in other code refactoring techniques that change
type hierarchies [73].

We should also note that at some program points, the transformation
requires us to add casts. This happens whenever an object is passed
to a library function as a parameter. In Figure 2.1, consider a method
void m0(L x) of library class L. In the original program, the following
code sequence is valid:

L o = ...; A a = ...; o.m0(a);.

After rewriting the declarations, we have to insert a cast:

L o = ...; I1 a = ...; o.m0((L)a);.

This cast is needed for type correctness, but does not provide attackers
additional type information, as the type in the cast was already present
in the library method’s signature anyway.
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2.5 Subtree Flattening

We can now remove the class inheritance relations within the subtrees.
Traversing each subtree Ti breadth-first for each class c ∈ Ti and for each
direct subclass d of c, we first make d implement the same interfaces as c
to preserve assignment-compatibility between variables and fields of the
interface types and objects of type d. Next, we make them siblings by
setting d’s superclass to c’s. Except for dynamic type checks, the program
now no longer depends on the subtype relations between classes.

2.6 Converting instanceof

The behavior of run-time type checks inserted by the programmer or
during subtree type abstraction depends on the structure of the class
hierarchy. Before flattening the subtrees of Figure 1.1, the expression
ms instanceof AudioStream on line 13 of Figure 1.2 evaluated to true for
ms pointing to objects of either type DTSStream or MPGAStream. In the
flattened subtree, however, it evaluates to false for objects of those types.

To preserve the program semantics, we replace all occurrences of
instanceof by table lookups. The table encodes at least those original
subtype relations necessary to preserve the behavior of the instanceof
occurrences. Each row in the table initially corresponds to one of the
expressions oi instanceof Aj in the original program. The columns cor-
respond to the classes in the points-to sets computed for all oi. For the
media player, Table 2.1 represents the initial table. In real programs, the
table will be much bigger. To mitigate analysis by attackers, the table can
be inflated by adding additional classes as columns. Additional rows can
also be added for dummy instanceof operations injected into the dummy
methods created in previous steps.
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ms instanceof false DC DC true true DC DC DC DC DCAudioStream
ms instanceof true DC DC false false DC DC DC DC DCVideoStream
mf instanceof DC DC DC DC DC true DC DC true falseMediaFile

Table 2.1: instanceof lookup table

As most of the classes will typically not occur in all points-to sets
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of all instanceof occurrences, a considerable number of elements in the
table will be “don’t care” (DC) values. As is done in the optimization of
multi-output boolean functions for optimizing circuits [54], we can freely
choose between true or false to replace each DC. In our case, we want to
minimize the amount of useful type information in the table. Consider,
for example, the MPGAStream and DTSStream classes. The similarity
between their columns in Table 2.1 indicates that they originate from
the same subtree. To hide this from attackers analyzing an inflated table,
we can instantiate their DC values in a way that makes the classes’ cast
behavior look different. Alternatively, we can make, e.g., XvidStream and
Player, which are not related at all, look related by choosing their DC val-
ues such that their behavior becomes identical. Likewise, we can merge
the last two, different occurrences of instanceof by choosing their DCs
appropriately. This way, originally completely unrelated cast operations
look as if they cast related types. In short, by choosing the DC values
in the possibly inflated table, we can again reduce its size and make
unrelated classes and casts look related and vice versa. Furthermore, we
can use hashing and white-box crypto techniques [19] to prevent static
analysis of the table and involved code.

Each expression oi instanceof Aj in the program is then replaced by
a call myCheck.isInst(ri,j , n, oi.getClass())where ri,j is the (possibly en-
crypted or hashed) row index of the lookup table entry that corresponds
to the given instanceof expression, and n is the number of dimensions
of Aj . The latter is required to handle instanceof expressions involving
array types. Consider, for example, the expression oi instanceof A[][].
For this expression to evaluate to true two conditions must be met. First,
the number of dimensions of oi’s type must match the number of di-
mensions of A[][], which is two. Second, the base type b of oi’s type
(i.e., the dimensionless version of this type) must be an element of ts(A).
Or, in other words, objects of type b must be instances of type A. The
first condition can be verified by matching the number of dimensions of
oi.getClass() against n. For the second we can use the lookup table.

Lines 13 and 15 of Figure 2.4 show the results for the media player.

2.7 Updating Array Creation Expressions

As part of the subtree type abstraction process described above, we need
to correctly update the types used in array creation expressions. Un-
fortunately, this is not as straightforward as updating the types of local
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public class Player implements Common1 { 
   public void play(Common3 as) { 
      /* send as.getRawBytes() to audio device */ 
   } 
   public void play1(Common3 vs) { 
      /* send vs.getRawBytes() to video device */ 
   } 
   public static void main(String[] args) { 
      Common1 player = new Player(); 
      Common2[] mediaFiles = ...; 
      for (Common2 mf : mediaFiles) 
         for (Common3 ms : mf.getStreams()) 
            if (myCheck.isInst(0, 1, ms.getClass())) 
               player.play(ms); 
            else if (myCheck.isInst(1, 1, ms.getClass())) 
               player.play1(ms); 
   } 
} 
public class MP3File implements Common2 { 
   public void readFile() { 
      InputStream inputStream = ...; 
      byte[] data = new byte[...]; 
      inputStream.read(data); 
      Common3 as = new MPGAStream(data); 
      mediaStreams = new Common3[]{as}; 
      return; 
   } 
} 
public class MediaStream implements Common3 { 
   public static final byte[] KEY = ...; 
   public byte[] getRawBytes() { 
      byte[] decrypted = new byte[data.length]; 
      for (int i = 0; i < data.length; i++) 
         decrypted[i] = data[i] ^ KEY[i]; 
      return decode(decrypted); 
   } 
   public byte[] decode(byte[] data){ … } 
} 
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Figure 2.4: Partial implementations of the Player, MediaStream and MP3File
classes after class hierarchy flattening. Changes compared to the original code
are shown in red.

variables and method parameters. Consider, for instance, the code frag-
ment in Figure 2.5(a), taking into account the class hierarchy shown in
Figure 2.1. Assuming for a moment that CHF does not update the types
used in array creation expressions, this code fragment would be trans-
formed into the incorrect one shown in Figure 2.5(b). The flattened class
hierarchy corresponding to this code fragment is shown in Figure 2.2.
Because classes H and K are no longer subclasses of G and H, respectively,
lines 4 and 5 of the code fragment will result in ArrayStoreExceptions.
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B[][][] b = new B[1][][]; 
G[][] g = new G[1][]; 
H[] h = new H[1]; 
h[0] = new K(); 
g[0] = h; 
b[0] = g; 

1 
2 
3 
4 
5 
6 

(a)

B[][][] b = new B[1][][]; 
I4[][] g = new G[1][]; 
I4[] h = new H[1]; 
h[0] = new K(); 
g[0] = h; 
b[0] = (B[][])g; 

1 
2 
3 
4 
5 
6 

(b)

B[][][] b = new B[1][][]; 
I4[][] g = new K[1][]; 
I4[] h = new K[1]; 
h[0] = new K(); 
g[0] = h; 
b[0] = (B[][])g; 

1 
2 
3 
4 
5 
6 

(c)

Figure 2.5: Updating types used in array creation expressions. (a) Original
code. (b) Code after flattening with original types. (c) Code after flattening
with updated types. In (b) and (c) a cast was added to ensure type-correctness.

To ensure that the assignment on line 4 succeeds, we could replace
new H[1] by new I4[1] on line 3. After doing this, new G[1][] should be
replaced by new I4[1][] on line 2 to ensure that the assignment on line 5 is
valid. Unfortunately, doing so will result in a ClassCastException on line 6.
Replacing new H[1] by new I4[1] is hence not valid, since the behavior
of the program is not preserved. Alternatively, we could also replace
new H[1] by new K[1]. Updating new G[1][] accordingly results in a valid
type assignment, as shown in Figure 2.5(c). Note, however, that this code
is only valid because h only stores elements of type K. If, for example, h
also has to store elements of type H, the code would not be valid.

The above example illustrates only some of the ways in which a
program’s behavior can be altered as a result of incorrectly updating
the types of its arrays. In practice, updating those types incorrectly
will not always result in ClassCastExceptions and ArrayStoreExceptions,
which may cause the program to terminate with an error message. It
is also possible that such exceptions are masked, or that the result of
instanceof expressions changes. In those cases the effects may be more
subtle. Nonetheless, the program is then transformed incorrectly.

In summary, to ensure that the behavior of the program is preserved,
any algorithm that updates the types used in array creation expressions
should ensure that the following conditions hold for each array a.

C.1 All store operations involving a that succeed/fail before transfor-
mation must also succeed/fail after transformation.

C.2 All type checking expressions that succeed/fail for a before trans-
formation must also succeed/fail after transformation.

Based on these conditions, one could build an algorithm that models
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the relationships between the arrays, their elements, and the type checks
using a system of type constraints [71]. Such a systemwould, for instance,
express line 4 of Figure 2.5(a) as a constraint that enforces that it should
always be possible to store the array created on line 3 in the array created
on line 2, regardless of their types. Expressing lines 5 and 6 as similar
constraints would then result in a system of constraints that can be solved
to obtain the new type for each array.

However, even though an algorithm that builds a constraint system
will generally yield the best results, implementing such an algorithm
also requires a rather large engineering effort. This effort is especially
large when taking into account that in practice only 5% of the classes
in an application are used in array creation expressions4. Because we
did not find this approach worth the extra engineering effort, we instead
developed an algorithm that computes the new array types using a few
simple rules. Despite being simple and easy to implement, we found it
performs really well in practice.

To keep our algorithm simple wemake it operate on base types rather
than array types. For each base type b it computes a new base type b′ such
that all expressions that create arrays with base type b can be replaced
by ones that create arrays with base type b′. The benefit of this approach
is that each array creation expression can simply be represented by the
base type of the arrays it creates. The expressions do not need to be
taken into account individually, which means our algorithm does not
require an allocation-site-sensitive points-to analysis. To further simplify
our algorithm, we make it express conditions C.1, and C.2 in terms of
sets of types each replacement type should be a subtype/supertype of.
In doing so, the new types can be computed directly from those sets,
without the need for an iterative constraint solver.

To compute the new array base types our algorithm operates in three
steps that are discussed in more detail in the next sections. First, the
algorithm computes for each array base type the sets of types that con-
strain its replacement type. Next, it filters out the base types for which it
cannot prove that it can replace themwithout altering the behavior of the
program. Finally, for the remaining types it determines the replacement
type from the sets constructed in the first step.

Before we go into the details, it is worth noting that our algorithm
may not always find a suitable replacement type for a given set of array

4Computed over the 12 applications from the DaCapo benchmark suite that we
worked with.
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creation expressions. In such cases, it will terminate early after discov-
ering that transforming certain classes may violate one or more of the
above conditions. The recommended strategy is then to mark those
classes as non-transformable and restart the algorithm. However, when
additional classes are marked as non-transformable, some of the subtrees
will no longer be valid, which means the subtree selection process and
all subsequent steps must be repeated. To avoid this, we propose to
include the algorithm as part of the subtree selection process. That way,
the algorithm can be invoked iteratively, and classes can be marked as
non-transformable until it terminates successfully. At that point, the
results of the algorithm can be saved and used to update the types of
array creation expressions during the subtree type abstraction step.

2.7.1 Computing the Type Sets

Let B be the subset of T (defined in Section 2.1) for which each type
occurs as the base type of an array creation expression. Furthermore, for
each type t ∈ A ∪ L, we define the following sets.

• e(t) is the set of base types of all elements that the program tries
to store in arrays with base type t. For convenience, we define the
base type of a non-array type n to be the type n itself.

• h(t) is the set of base types of all variables and array instances in
which the program tries to store array instances with base type t.

• c(t) is the set of base types of all array instances a for which there
exists (i) a cast expression that casts a to a type with base type b,
or (ii) an instanceof expression that checks the type of a against a
type with base type b.

To constrain the replacement types as little as possible, e(t), h(t), and
c(t) are best computed using precise points-to information about the
program, rather than imprecise points-to information obtained using
class hierarchy analysis [29] or rapid type analysis [8]. A type u should
hence only be added to e(t) if the program contains a statement a[i] = x
for which a can point to an array with base type t and x can point to an
instance with base type u. Similar restrictions apply to h(t) and c(t).

For the code in Figure 2.5(a) e(B) = {G}, e(G) = {H}, and e(H) = {K}.
Additionally, h(B) = {B}, h(G) = {G,B}, and h(H) = {H,G}. Finally,
c(t) is empty for all types t ∈ {B,G,H}.
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Algorithm 2.1: Computing e(b), h(b), and c(b).

foreach b ∈ B do
e(b)← e(b)
h(b)← h(b)
c(b)← c(b)

repeat
foreach b ∈ B do

foreach o ∈ e(b) do
e(b)← e(b) ∪ e(o)

foreach o ∈ h(b) do
h(b)← h(b) ∪ h(o)
c(b)← c(b) ∪ c(o)

until e(b), h(b), and c(b) did not change during this iteration;

For each type b ∈ B, our algorithm computes e(b), h(b), and c(b),
the transitive closures of e(b), h(b), and c(b), respectively, as shown in
Algorithm 2.1. The use of transitive closures is our algorithm’s way of
modeling how arrays of different types are used in relation to each other.
It enables the algorithm to take into account type information about (i)
all instances that can be (in)direct elements of an array awith a certain
base type, (ii) all the arrays of which a can be an (in)direct element, and
(iii) all type checks and casts involving those arrays.

2.7.2 Filtering Out Problematic Cases

To simplify the computation of the replacement types, our algorithm
filters out cases where updating the base type of arrays could affect
the result of instanceof expressions or mask potential ArrayStoreExcep-
tions or ClassCastExceptions. It does this by marking certain classes as
non-transformable if it cannot prove that all stores and type checking
operations involving arrays of those classes will always succeed. This
happens as follows.

1. Create a new empty set Y.

2. For each type b ∈ B, add b to Y if

(a) e(b) 6⊆ ts(b), or
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(b) h(b) 6⊆ ts(b), or
(c) c(b) 6⊆ ts(b).

3. If Y is not empty, mark all types in Y as non-transformable and
terminate early. In this case the algorithm should be restarted.

If the algorithm does not terminate early, the result of this step is that
the replacement type b′ for a given base type b can be determined by only
taking into account the types of which b′ should be a subtype/supertype.
The algorithm does not need to take into account the set of types of which
b′ cannot be subtype/supertype, which makes determining b′ easier.

Note that it is sufficient to perform the checks in steps 2(a) and 2(b)
using the sets ts(b), ts(b), e(b), and h(b), all of which contain base types.
We do not need the original array types to also check their dimensions.
The fact that the bytecode of the program under transformation is valid
already guarantees that for each assignment a = x and each array store
operation a[i] = x the dimensions of a and x are compatible.

For type checking expressions we do not have this guarantee. As
a result, our algorithm may not always filter out all cases for which
instanceof expressions or casts may fail. However, in practice this is not a
problem since it only happens for type checks and casts that always fail
for a particular array, regardless of its type. Consider, for instance the
expression (X[][])a, which casts an n-dimensional array a with base type
b. The only way this cast can fail when b ∈ ts(X) is if the dimensions
of the array types do not match, i.e., if n is not equal to 2. However, this
also means that replacing b by any other type will always cause the cast
to fail, because the dimensions of the array types will never match. The
behavior of this cast can hence not be affected by the transformation,
which means it is not necessary to mark b as a non-transformable class.

2.7.3 Computing the Replacement Types

For each type b ∈ B, let the T be subtree to which b belongs. To compute
the type b′ by which b should be replaced in array creation expressions,
we use the following prioritized set of rules.

R.1 i, the subtree interface of T if

(a) c(b) ⊆ {java.lang.Object}, and
(b) h(b) ⊆ {java.lang.Object} ∪ T .
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b e(b) h(b) c(b) b′

G {H,K} {B,G} ∅ S
H {K} {B,G,H} ∅ K

Table 2.2: e(b), h(b), c(b), and new array base types for the code in Figure 2.5(a).

R.2 b, if e(b) = ∅.

R.3 x, if e(b) = {x}.

R.4 s, a new subtree superclass of T if

(a) ∀ u ∈ T . c(b) ⊆ ts(u), and
(b) ∀ u ∈ T . (h(b) \ T ) ⊆ ts(u).

If rule 4 applies, a new abstract class5 s should be created that is
inserted directly above the root of the subtree T , such that it is a common
superclass of all classes in T . Furthermore, s should also implement i,
the subtree interface of T , as well as all interfaces in c(b) and h(b) \ T .

If there are multiple possible replacement types for the same type
b, the one corresponding to the first matching rule is chosen. That way
rule 1 has priority over rule 4, which also holds whenever rule 1 holds.
As a result fewer subtree superclasses are created. This is desirable
because each subtree superclass gives away some type information.

If none of the above rules apply for a type, that type is marked as
non-transformable, and the algorithm terminates early. In that case new
subtrees should be selected, and the algorithm should be invoked again,
as discussed above.

2.7.4 Example

To illustrate how our algorithm works, we demonstrate how it computes
new types for the array creation expressions shown in Figure 2.5(a). Ta-
ble 2.2 shows the sets e(b), h(b) and c(b) for each type b ∈ B = {G,K}.
Note that as a result of the transitive closure, e(G) also contains K, which
means this type is also taken into account when computing the replace-
ment type for G.

5We use an abstract class such that it does not have to implement any of the methods
declared in its interfaces.
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By applying the rules formulated in step 3 of the algorithm, we obtain
the replacement types shown in the last column of Table 2.2. For G rule 4
applies, so a new subtree supertype S is created. For H rule 3 applies,
so the corresponding replacement type is K. Note that even though this
solution differs from the one shown in Figure 2.5(c), it is still valid. It
is, however, less optimal because a new subtree supertype S needs to
be created. Our algorithm did not find the optimal solution because it
computes the replacement type for each base type individually. As a
result, the fact that K is a suitable replacement type for H is not taken
into account when determining the replacement type for G. This means
that e(G) cannot be simplified to {K}, and that rule 4 applies instead
of rule 3. However, in practice this is not a problem, since rule 4 only
applies in around 4% of the cases, on average.

2.7.5 Correctness

To prove that the above algorithm is correct, we must show that each
array is assigned a new base type in such a way that program behavior
is preserved. Because our algorithm filters out type checks and array
stores that may fail, it is sufficient to prove Theorem 2.1 and Theorem 2.2,
which are less strict versions of conditions C.1 and C.2. The proof of
Theorem 2.1 is based on the following lemmas, for which the proofs can
be found in Appendix A.

Lemma 2.1. ∀ b ∈ B . e(b) ⊆ ts(b′) after class hierarchy flattening.

Lemma 2.2. ∀ b ∈ B . (h(b) \ T) ⊆ ts(b′) after class hierarchy flattening.

Lemma 2.3. For each array with base type b ∈ B in which an array with base
type c ∈ B is stored, it holds that c′ ∈ ts(b′) after class hierarchy flattening.

Theorem 2.1. All store operations involving arrays with base type b ∈ B
succeed after class hierarchy flattening.

Proof. For this theorem to hold, the following two statements must hold.

1. Each array with base type b ∈ B in the untransformed program
can store the same elements after flattening. This statement holds
because of Lemma 2.1.
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2. Each array with base type b ∈ B in the untransformed program
can be stored in the same variables v and arrays a after flattening.
To prove that this statement holds we make a distinction based
on whether or not the base types of the variables v and arrays a
belong to T in the original program.

(a) If the base types of v and a are not inT in the original program,
the statement holds because of Lemma 2.2.

(b) If t is the base type of v in the original program, with t ∈ T,
let i be the interface of the subtree to which t belongs. In
this case the condition holds because the base type of v is
replaced by i during subtree type abstraction, and our algo-
rithm only computes new base types that are elements of ts(i)
after transformation.

(c) If t is the base type of a in the original program, with t ∈ T,
and hence t ∈ B by construction, the statement holds because
of Lemma 2.3.

Since both statements hold, the theorem also holds.

Theorem 2.2. The behavior of all type checking expressions involving arrays
with base types b ∈ B is unaffected by our algorithm.

Proof. First, the theorem holds for rule 1 because condition R.1(a) en-
sures that there are no type checks of arrays with base type b against any
type with a base type other than java.lang.Object. This is because the re-
placement type i is an interface, whose only supertype is java.lang.Object.

Second, the theorem also holds for rule 4 because of condition R.4(a),
which states that each type in c(b) should be a supertype of all classes in
the subtree that contains b, and the fact that the subtree superclass s is
a subtype of all types in c(b). As a result, all subtype relations between
the types in b’s subtree and the types in c(b) are preserved.

Finally, the theorem holds for rules 2 and 3. In both cases b is replaced
by a type b′ that has at least the same supertypes as b in the original
program. As a result, any checks of b′ against types outside b’s subtree
will be unaffected. Additionally, any checks of b′ against types inside
the subtree are handled using our custom instanceof implementation
described in Section 2.6. Note that even though b may be replaced by
one of its subtypes, there is no risk of type checks suddenly succeeding
where they failed in the original program, since our algorithm filters out
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public void m(){ 
   stmt0 
   try{ 
      stmt1 
      try { 
         stmt2 
      } 
      catch(ExceptionA ex0){ 
         handler0 
      } 
      catch(ExceptionB ex1){ 
         handler1 
      } 
      stmt3 
   } 
   catch(ExceptionC ex2){ 
      handler2 
   } 
   stmt4 
   return 
} 
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(a)

public void m(){ 
   stmt0 
   stmt1 
   stmt2 
   goto 9 
   handler0 
   goto 9 
   handler1 
   stmt3 
   goto 12 
   handler2 
   stmt4 
   return 
} 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

Exception table: 
 from to target type 
 4 5 6        Class ExceptionA 
 4 5 8 Class ExceptionB 
 3 10 11 Class ExceptionC 

(b)

Figure 2.6: Example program with exception handlers. (a) Pseudo-Java code.
(b) Pseudo-bytecode.

such cases. Also note that any casts (t[][])o, with t ∈ T do not require
special treatment since they are converted to (i[][])o, with i the interface
type corresponding to the subtree to which t belongs, and guarded by
an expression o instanceof t[][], as discussed in Section 2.4.

2.8 Flattening Throwable Classes

Direct and indirect subclasses of class java.lang.Throwable differ from
other classes in that the virtual machine uses their subtype relations to
determine which exception handlers to invoke. We illustrate how this
happens using the method in Figure 2.6(a). This method’s code con-
tains exception handlers for three different types of exceptions: Excep-
tionA, ExceptionB, and ExceptionC, all of which are (in)direct subclasses
of java.lang.Throwable. When an exception is thrown, the virtual machine
decides which of the handlers to invoke based on the type of the excep-
tion, andwhere it was thrown. Assume, for instance, that an exception of
type X is thrown while executing stmt2. In that case, the virtual machine
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will traverse all exception handlers for stmt2, and invoke the first one
that can handle exceptions of type X. Exception handlers are traversed
in a specific order: In source code terms, traversal starts at the most
deeply nested try block that contains stmt2. For that block, all associated
catch blocks are traversed in declaration order. If there is a catch block
for which the thrown exception is an instance of the declared exception
type, control is transferred to that block. If no such block can be found,
traversal continues at a higher nesting level. If no handler can be found
at the highest level, the exception is passed to the calling method, or
the program terminates if there is no calling method. If we assume that
in our case X is a subtype of ExceptionB, control will be transferred to
handler2. That is, of course, assuming that X is not also a subtype of
ExceptionA, in which case control would be transferred to handler1.

Because the virtual machine relies on subtype information to deter-
mine which exception handler it needs to invoke, flattening an appli-
cation’s exception classes may cause the virtual machine to invoke the
wrong exception handler, or even no exception handler at all. Because
we cannot modify the virtual machine from our application, we modify
the application to take over part of the work of the virtual machine. That
is, we rewrite the exception handlers of each of the application’s methods
to handle exceptions of all possible types. Then, using a series of gotos,
and instanceof checks on the thrown exception, we redirect the flow of
control to code that can handle the exception.

Before we go into more detail on how our algorithm works, it is
important to first explain how exception handling is implemented in
bytecode. In bytecode there are no instructions that correspond to the
try and catch primitives in source code. Instead, code is laid out as
if there were no try blocks, and gotos are inserted to redirect control
around the code in the catch blocks, as shown in Figure 2.6(b). The actual
exception handling information is stored in an exception table. Each row
in this table corresponds to a single handler and contains the range of
instructions it covers, the offset of its first instruction, and the type of
exceptions it handles. Handling an exception using the information in
this table is straightforward. Whenever an exception occurs, the virtual
machine looks for the first entry in the table for which the offset of the
instruction that caused the exception is in the range [from, to[, and for
which the exception is an instance of the handler’s type. If such an entry
is found, control is transferred to the instruction at the target offset.

Given the bytecode representation (or a similar intermediate rep-
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from to target type
4 5 6 ExceptionA
4 5 8 ExceptionB
3 4 11 ExceptionC
4 5 11 ExceptionC
5 10 11 ExceptionC

Table 2.3: Exception table with split entries.

resentation) of a method, our algorithm first splits the entries in the
method’s exception table into multiple entries in such a way that the
ranges of any two entries either do not overlap, or fully overlap. The
result for the exception table in Figure 2.6(b) is shown in Table 2.3.

Then, to create the method’s new exception table E, our algorithm
traverses the split exception table S obtained in the previous step from
top to bottom. For each entry (from, to, target, type) ∈ S it performs
the following actions.

1. Let e be the handler in E that handles exceptions in the range
[from, to[. If such a handler does not exist, create it, and register it
as a handler for exceptions of type java.lang.Throwable.

2. Add code to e that checks whether the caught exception is an
instance of type, and if it is, redirects the control flow to the instruc-
tion at offset target.

Finally, our algorithm appends to the code of each handler in E code
that rethrows the caught exception, such that it can be handled by the
calling method when the current method does not handle it. Note that
rethrowing the exceptions does not cause problems, as their stack traces
are not modified; the stack traces of exception objects are filled in when
they are created, not when they are thrown.

The result for the method in Figure 2.6(b) is shown in Figure 2.7. In
this case the algorithm has created three new exception handlers, starting
at lines 14, 21, and 24, respectively. The first one handles exceptions of
type ExceptionA, ExceptionB, and ExceptionC (in that specific order). The
other two only handle exceptions of type ExceptionC. Note that for this
simple example it is not strictly necessary to generate separate code for
the last two handlers. Our algorithm could have simply set the target
of these handlers to the instruction on line 18. However, in practice
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public void m(){ 
   stmt0 
   stmt1 
   stmt2 
   goto 9 
   handler0 
   goto 9 
   handler1 
   stmt3 
   goto 12 
   handler2 
   stmt4 
   return 
   if ex instanceof ExceptionA 
      goto 6 
   if ex instanceof ExceptionB 
      goto 8 
   if ex instanceof ExceptionC 
      goto 11 
   throw ex 
   if ex instanceof ExceptionC 
      goto 11 
   throw ex 
   if ex instanceof ExceptionC 
      goto 11 
   throw ex 
} 
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Exception table: 
 from to target type 
 4 5 14        Class java/lang/Throwable 
 3 4 21 Class java/lang/Throwable 
 5 10 24 Class java/lang/Throwable 

Figure 2.7: Method in Figure 2.6(b) after rewriting its exception handlers.

such optimizations may be difficult, especially when try blocks have
multiple associated catch blocks for different types of exceptions, or
when a method’s exception handlers have been transformed to obfuscate
control flow or to thwart decompilers [12].
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Chapter 3

Interface Merging

In the code in Figure 2.4 much type information can still be inferred from
declarations and method signatures. This will lead to small points-to
sets and more precise analyses. Additionally, an attacker can determine
which classes belonged to the same subtrees in the original program
based on the subtype relations between classes and interfaces.

To limit the amount of available type information, we can merge
multiple unrelated interfaces into a single one. For the media player
example, the interfacesCommon1,Common2 andCommon3 can bemerged
into an interface Common that declares all their methods. The result is
shown in Figure 3.1 and Figure 3.2. To complete the classes’ interface
implementation, it is again necessary to add dummy methods. This can
result in considerable code size overhead. For example, methods play
and play1 are now implemented by all classes, while they were originally
only implemented by the Player class.

To enable developers to trade off the number of interfaces merged
for the incurred overhead, we merge interfaces in several steps. First, we
partition the subtree interfaces into mergeable sets of a tunable size n.
Smaller sets will result in merged interfaces with fewer methods, and
hence less dummy methods and less overhead. In the second step, each
set is merged into a single interface. In the remaining steps, methods are
selected and merged to minimize the overhead.

3.1 Interface Partitioning

Other than to avoid excessive code size overhead, there is another reason
for which we cannot merge all interfaces into a single super interface.
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XvidStream
- videoBuffer : int[][]

+ decode(byte[]) : byte[]
+ decodeFrame() : byte[]

- data : byte[]
- KEY : byte[]

d decodeSample() : byte[]
+ getRawBytes() : byte[]
d play(Common) : void
d play1(Common) : void
d readFile() : void
d getStreams() : Common[]

AudioStream
- audioBuffer : int[]

+ decode(byte[]) : byte[]
d decodeFrame() : byte[]

- data : byte[]
- KEY : byte[]

d decodeSample() : byte[]
+ getRawBytes() : byte[]
d play(Common) : void
d play1(Common) : void
d readFile() : void
d getStreams() : Common[]

VideoStream
- videoBuffer : int[][]

+ decode(byte[]) : byte[]
d decodeFrame() : byte[]

- data : byte[]
- KEY : byte[]

d decodeSample() : byte[]
+ getRawBytes() : byte[]
d play(Common) : void
d play1(Common) : void
d readFile() : void
d getStreams() : Common[]

MPGAStream
- audioBuffer : int[]

+ decode(byte[]) : byte[]
d decodeFrame() : byte[]

- data : byte[]
- KEY : byte[]

+ decodeSample() : byte[]
+ getRawBytes() : byte[]
d play(Common) : void
d play1(Common) : void
d readFile() : void
d getStreams() : Common[]

DTSStream
- audioBuffer : int[]

+ decode(byte[]) : byte[]
d decodeFrame() : byte[]

- data : byte[]
- KEY : byte[]

+ decodeSample() : byte[]
+ getRawBytes() : byte[]
d play(Common) : void
d play1(Common) : void
d readFile() : void
d getStreams() : Common[]

MP3File
- filePath : String

d decode(byte[]) : byte[]
d decodeFrame() : byte[]

- mediaStreams : Common[]

d decodeSample() : byte[]
d getRawBytes() : byte[]
d play(Common) : void
d play1(Common) : void
+ readFile() : void
+ getStreams() : Common[]

MediaFile
- filePath : String

d decode(byte[]) : byte[]
d decodeFrame() : byte[]

- mediaStreams : Common[]

d decodeSample() : byte[]
d getRawBytes() : byte[]
d play(Common) : void
d play1(Common) : void
d readFile() : void
+ getStreams() : Common[]

MediaStream
- data : byte[]

d decode(byte[]) : byte[]
d decodeFrame() : byte[]

- KEY : byte[]

d decodeSample() : byte[]
+ getRawBytes() : byte[]
d play(Common) : void
d play1(Common) : void
d readFile() : void
d getStreams() : Common[]

MP4File
- filePath : String

d decode(byte[]) : byte[]
d decodeFrame() : byte[]

- mediaStreams : Common[]

d decodeSample() : byte[]
d getRawBytes() : byte[]
d play(Common) : void
d play1(Common) : void
+ readFile() : void
+ getStreams() : Common[]

Player
+ main(String[]) : void
d decode(byte[]) : byte[]
d decodeFrame() : byte[]
d decodeSample() : byte[]
d getRawBytes() : byte[]
d play(Common) : void
d play1(Common) : void
+ readFile() : void
+ getStreams() : Common[]

+ decode(byte[]) : byte[]

+ decodeSample() : byte[]
+ getRawBytes() : byte[]

+ decodeFrame() : byte[]

« interface » Common

+ play(Common) : void

+ readFile() : void
+ getStreams() : Common[]

+ play1(Common) : void

Figure 3.1: Class hierarchy of the flattenedmedia player after interface merging.
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public class Player implements Common { 
   public void play(Common as) { 
      /* send as.getRawBytes() to audio device */ 
   } 
   public void play1(Common vs) { 
      /* send vs.getRawBytes() to video device */ 
   } 
   public static void main(String[] args) { 
      Common player = new Player(); 
      Common[] mediaFiles = ...; 
      for (Common mf : mediaFiles) 
         for (Common ms : mf.getStreams()) 
            if (myCheck.isInst(0, 1, ms.getClass())) 
               player.play(ms); 
            else if (myCheck.isInst(1, 1, ms.getClass())) 
               player.play1(ms); 
   } 
} 
public class MP3File implements Common { 
   public void readFile() { 
      InputStream inputStream = ...; 
      byte[] data = new byte[...]; 
      inputStream.read(data); 
      Common as = new MPGAStream(data); 
      mediaStreams = new Common[]{as}; 
      return; 
   } 
} 
public class MediaStream implements Common { 
   public static final byte[] KEY = ...; 
   public byte[] getRawBytes() { 
      byte[] decrypted = new byte[data.length]; 
      for (int i = 0; i < data.length; i++) 
         decrypted[i] = data[i] ^ KEY[i]; 
      return decode(decrypted); 
   } 
   public byte[] decode(byte[] data){ … } 
} 
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Figure 3.2: Partial implementations of the Player, MediaStream and MP3File
classes after class hierarchy flattening and interface merging. Changes com-
pared to the code after flattening are shown in red.

Interfacemerging (IM), like class hierarchy flattening, is limited by restric-
tions imposed by custom class loaders. For example, merging interfaces
from different archives can result in linkage errors or class resolution
errors from custom class loaders. We therefore limit the merging to
sets of interfaces of which the subtrees originate from within the same
directories or archives. The merged interface can then be packaged in
those same directories and archives, such that custom class loaders can
find them precisely when and where they need them.
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First, we partition all subtree interfaces according to the archives
that contain them. Next, each set of interfaces is further partitioned
using a first-fit decreasing bin packing strategy [44] that considers the
number of classes in a subtree as the size of the corresponding interface.
This groups interfaces and their subtrees into a minimal number of bins
smaller than or equal to a selected size n. When the interfaces in a bin are
later merged, the merged interface will therefore be implemented by at
most n classes. For small enough values of n, the resulting packing over
similarly sized bins distributes the points-to set sizes in the transformed
program evenly.

3.2 Interface Merging

Given a partitioning of all subtree interfaces into n mergeable sets
I1, . . . , In. For each set Ij perform the following actions.

1. Create a new interface k that declares all methods declared in all
interfaces in Ij .

2. Add k to the directory or archive that contains the interfaces in Ij .

3. For each class c in the application, replace all references to interfaces
in Ij by references to k. If c implements one of the interfaces in Ij ,
make c implement k and add dummy methods to c to complete
the implementation of k.

4. Remove all interfaces in Ij from the application.

Figure 3.1 shows the resulting hierarchy, with the non-standard ’d’
annotation denoting dummy methods. The total number of dummy
methods is 59, while there are only 21 non-dummymethods. To limit the
overhead of these dummy methods, we merge dummy methods with
non-dummy methods in the next steps. In the context of this disserta-
tion, merging a set ofmmethods means giving the methods identical
signatures and names such that an interface only needs to declare one
method instead ofm ones, and such that the classes implementing that
interface need to implement only one non-dummy method instead of
one non-dummy plusm− 1 dummy methods.

In the hierarchy of Figure 3.1, we merge play, decodeSample, decode-
Frame, and readFile into merged1, and getStreams and play1 into merged2,
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public class Player implements Common { 
   public byte[] merged1(Common as) { 
      /* send as.getRawBytes() to audio device */ 
   } 
   public Common[] merged2(Common vs) { 
      /* send vs.getRawBytes() to video device */ 
   } 
   public static void main(String[] args) { 
      Common player = new Player(); 
      Common[] mediaFiles = ...; 
      for (Common mf : mediaFiles) 
         for (Common ms : mf.getStreams()) 
            if (myCheck.isInst(0, 1, ms.getClass())) 
               player.merged1(ms); 
            else if (myCheck.isInst(1, 1, ms.getClass())) 
               player.merged2(ms); 
   } 
} 
public class MP3File implements Common { 
   public byte[] merged1() { 
      InputStream inputStream = ...; 
      byte[] data = new byte[...]; 
      inputStream.read(data); 
      Common as = new MPGAStream(data); 
      mediaStreams = new Common[]{as}; 
      return data; 
   } 
} 
public class MediaStream implements Common { 
   public static final byte[] KEY = ...; 
   public byte[] getRawBytes() { 
      byte[] decrypted = new byte[data.length]; 
      for (int i = 0; i < data.length; i++) 
         decrypted[i] = data[i] ^ KEY[i]; 
      return decode(decrypted); 
   } 
   public byte[] decode(byte[] data){ … } 
} 
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Figure 3.3: Partial implementations of the Player, MediaStream and MP3File
classes after class hierarchy flattening, interface merging, and method merging.
Changes compared to Figure 3.2 are shown in red.

as shown in Figure 1.3 and in Figure 3.3. As a result only 19 dummy
methods remain.

Method merging (MM) involves merging parameter type lists and
return types. Somemergedmethodswill have larger parameter type lists,
while some previously void methods now return a value. These changes
come at a cost. For instance, for each extra parameter to a method and
for each invocation of the method an extra argument has to be passed. To
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limit these costs and to ensure that program behavior is preserved, MM
proceeds in two steps. First, it selects sets of related methods that can be
merged. Next, it selects increasingly more expensive combinations of
these sets and merges them greedily.

3.3 Method Set Selection

Changing the signature of a method requires making similar changes
to the signature of overridden and overriding methods [73]. The MM
transformation therefore operates on sets of methods instead of single
methods. Each set consists of methods that at all times should have the
same signature.

• Let I be the set of subtree interfaces after CHF or IM,M the set of
all methods, and T = A ∪ L the set of all classes and interfaces.

• LetM : T 7→M, withM(t) all methods declared in t.

• Let S : M 7→ P(M) the function that returns the set of methods
S(m) that should have the same signature asm.

• Let f : M 7→ {false, true}, with f(m) indicating whether the
signature ofm can be rewritten. When it cannot, e.g., because it is
referenced via reflection, we can often wrap it in a method whose
signature can be changed.

do we do this?

The set of method sets that can be merged can now be computed as

S = {S(m) | ∃ i ∈ I . m ∈M(i) ∧ ∀ n ∈ S(m) . f(n)}.

Inwhat followswe extend the notions of signature, return type, name,
and parameter type list from single methods to sets of methods in S. This
makes sense, because each S ∈ S is a set of same-signature methods.

3.4 Method Set Merging

Several constraints limit method merging. For example, since a method
can only declare one return type, two methods with different non-void
return types cannot be merged. Furthermore, we must avoid merging
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Algorithm 3.1: Greedy method merging.

while S = {{Si, Sj} ⊂ S | {Si, Sj} is mergeable} 6= ∅ do
s = arg min

si∈S
C(si)

ŝ = merge(s)
S = S ∪ {ŝ} \ s

multiple methods with non-dummy implementations and hiding imple-
mentations of existing methods by overriding them. While it may seem
counter-intuitive that MM in flattened hierarchies can result in methods
being overridden, it is possible. Consider for instance the flattened class
hierarchy in Figure 2.2, in which the transformable class B does not im-
plement one of the subtree interfaces. Merging I2 and I3 into I results in
the hierarchy of Figure 3.4. In this hierarchy, the method sets of I:m1 and
I:m2 cannot be merged into I:m, because the resulting merged methods
E:m and F:m would erroneously hide B:m.

To verify whether or not methods can be merged, we will check for
reaching implementations in the merged hierarchy. A class c has a reaching
implementation for a method m if c or one of its superclasses has an
implementation form. In the class hierarchy of Figure 3.4, methods m1
and m2 could not be merged because classes E and F have a reaching
non-dummy implementation for both of them. Based on this observation,
we can formalize the merge condition: A collection of method sets can
be merged iff all sets with a return type other than void have the same
non-void return type t, and there is no class that has a reaching non-
dummy implementation for two or more methods from different method
sets. Based on this condition, we propose the greedy method merging
algorithm shown in Algorithm 3.1. In this algorithm, C : P(S) 7→ R+ is
a cost function for which C(s) gives the cost of merging all sets in s as a
result of the increase in arguments and the change in return type. The
merge subroutine does the actual merging. Given a set s = {Si, Sj} ⊂ S
that adheres to the merge condition, it performs the following steps.

1. Compute the signature s = <r, n, p> for the merged methods.

2. Create an empty set ŝ that will hold the merged methods.

3. Compute for each class c the set N(c) of methods to merge as

N(c) = {m ∈M(c) | ∃ Sk ∈ s . m ∈ Sk}.
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Figure 3.4: Class hierarchy after merging I2 and I3. Dummy methods intro-
duced by merging have been omitted for clarity.

4. For all classes c for which N(c) is not empty:

(a) Create a new method m with signature s. The body of m
becomes the body of the non-dummymethod inN(c) if there
is one, or the body of a random method in N(c) otherwise.

(b) Rewrite invocations of methods in N(c) to invocations ofm,
adding dummy arguments as needed.

(c) Remove all methods in N(c) from c.
(d) Addm to c and to ŝ.

5. Return ŝ.

In step 1 we compute s = <r, n, p> as follows. The return type r
is void if all method sets in s return void, else it is the non-void type
t of the merge condition. The name n is chosen as a unique random
string. The parameter type list p is chosen as a random permutation of
the smallest unordered list of types that contains all parameter type lists
of the method sets in s. For example, for two type lists [int, int] and [float],
the merged list can be [int, int, float] or any permutation thereof.
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Object Factory Insertion

Even after interface merging some statements still expose type infor-
mation. For example, after the allocation on line 9 of Figure 3.2 the
player variable points to an object of type Player. From this information,
points-to analyses can deduce points-to sets of many local variables. In
turn, other analyses that construct call graphs [39, 72] or compute pro-
gram slices [70, 79] will also regain some precision to the advantage of
attackers. For instance, knowing the exact type of the object bound to the
player variable allows an attacker to resolve the calls on lines 14 and 16
of Figure 3.2 to methods defined in class Player.

To prevent the propagation of precise type information from allo-
cation sites, we replace allocations by calls to object factories [36] that
can return multiple types of objects. The effect of this object allocation
obfuscation, when not undone by an attacker, will be that no points-to
analysis, however complicated, will compute more precise results than
class hierarchy analysis (CHA) [29], which as a result of CHF and IM
will not be very meaningful. To achieve this effect the transformation
proceeds in two steps. First, it preprocesses the program to maximize
the effectiveness of the next step. Then, it creates the object factories and
replaces object creation expressions by calls to those factories.

4.1 Code Preprocessing

We want to replace allocations like Common player = new Player()
by calls to factories like Common player = MyFactory.create(...). For
maximal obfuscation, the factory would return objects of all subtypes
of java.lang.Object. However, the return type of a factory must be
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assignment-compatible with the variable or field to which the returned
object is assigned. In our example MyFactory.create() therefore has to re-
turn an object whose type is equal to or a subtype of Common. To enable
the factories to return as abstract, information-less types as possible, we
first make the local variable types as abstract as possible by means of
type inference.

Type inference algorithms use type information from uses and defini-
tions to determine the best suited type for each local variable. Definitions
impose a lower bound on a type, uses impose an upper bound. The al-
gorithm by Gagnon et al. tries to determine the most concrete possible
type for each local variable [35], because more concrete types can aid
analyses such as CHA [29] that rely on this type information.

Because more abstract types reduce the available information, we
adapted the algorithm to be use-driven instead of definition-driven.
When determining a type, we select an upper bound for a local variable
based on how it is used. We only use information from definitions to
disambiguate between multiple possible upper bounds. For example,
assume that method m1 in class B of Figure 3.4 is implemented as in
Figure 4.1(a). The types of x1 and x2 were not changed by CHF or IM
because these variables are of the non-transformable type X. Classes
C and E are transformable, so the types of c and e have been changed
to interface type I. With our type inference, the type of x1 becomes L,
because x1 is only used by the invocation of method m0 defined in L.
The type of x2 becomes B, because x2 is only used by the invocation of
method m1, which is defined in B. The type of c does not change, as m2
is defined in I. Figure 4.1(c) shows the resulting code.

In the next section we give an overview of Gagnon et al.’s algorithm,
and we discuss in more detail how we modified it to fit our needs.

4.1.1 Inferring Abstract Types

The type inference algorithm by Gagnon et al. [35] was designed to
operate on a 3-address intermediate representation of a program’s byte-
code, called Jimple [74]. Overall, Jimple code is closely related to Java
source code. One important concept is expressed differently in both
representations, however. In Jimple, object creations are implemented
using two different instructions, like in bytecode, whereas in Java source
code an object is created with a single statement. Figures 4.1(a) and 4.1(b)
illustrate this difference. Note that in Jimple each allocation of the form
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public void m1() { 
  X x1 = new X(); 
 
  x1.m0(); 
  X x2 = new X(); 
 
  x2.m1(); 
  I c = new C(); 
 
 
  c.m2(); 
} 

1 
2 
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4 
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8 
9 

10 
11 
12 

(a)

public void m1() { 
  X x1 = new X 
  x1.<X: void <init>>() 
  x1.<L: void m0>() 
  X x2 = new X 
  x2.<X: void <init>>() 
  x2.<B: void m1>() 
  C c_ = new C 
  c_.<C: void <init>>() 
  I c = c_ 
  c.<I: void m2>() 
} 

1 
2 
3 
4 
5 
6 
7 
8 
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10 
11 
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(b)

public void m1() { 
  L x1 = LFactory.create(key1); 
 
  x1.m0(); 
  B x2 = BFactory.create(key2); 
 
  x2.m1(); 
  I c = IFactory.create(key3); 
 
 
  c.m2(); 
} 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

(c)

Figure 4.1: Example of object factory insertion. (a) Original code. (b) Simplified
typed Jimple code. (c) Code with factories.

new Y must be followed by a call to one of Y’s constructors, as indicated
by the calls to Y: <init>. In Java source code these two statements are
combined into a single constructor call.

Note that the code shown in Figure 4.1(b) is actually typed Jimple
code, as each local variable is already assigned a type. Typed Jimple code
is what almost all Jimple transformations, including our obfuscations,
operate on1. However, whether or not Jimple code is actually typed does
not matter for type inference algorithms, because they were designed
to work on untyped Jimple code anyway. Since they cannot rely on
type information from local variables in untyped Jimple code, they use
different information to infer a type for each variable. Our obfuscations
can hence simply invoke type inference algorithms on the code they are
operating on, without first converting that code to untyped Jimple.

To compute the types of local variables of (un)typed Jimple code,
the type inference algorithm by Gagnon et al. builds a system of type
constraints, which it expresses as a graph. Each graph has three different
types of components: hard nodes, soft nodes, and directed edges connecting
those nodes. Hard nodes represent explicit types, while soft nodes
represent variables. Each edge a← b in the graph represents a relation
that indicates that b should be assignable to a. The graph itself is created
by iterating over the Jimple instructions and adding edges between
hard and soft nodes as implied by the instructions. Once the graph is
constructed, the type inference problem is solved by merging hard and

1The only exceptions are type inference algorithms and a handful of optimizations.



48 Object Factory Insertion

Object L

I B

T(x1)

4

CT(c)

11

X

T(x2)

7

T(c_)

9 6 310 8 5 2

(a)

Object L

I B

X
T(x1)
T(x2)

C
T(c_)

T(c)

(b)

Object L

I B

X
T(x1)
T(x2)

C
T(c)
T(c_)

(c)

Figure 4.2: Type inference graphs constructed using the algorithm by Gagnon
et al. [35]. Soft nodes are circled once, hard nodes twice. (a) Initial graph.
(b) Graph after collapsing connected components. (c) Final graph.

soft nodes. A solution to the type constraint problem has been found
when each soft node is merged with a hard node, and hence when each
local variable is assigned a type2.

Hard and soft nodes are merged in three steps. First, the algorithm
computes the set of connected components (i.e. cycles) in the graph. Each
component is then collapsed into a single node to turn the graph into a
DAG. Next, all transitive constraints, with the exception of hard node to
hard node constraints (which represent the type hierarchy), are removed
from the DAG to simplify it. Finally, nodes that have only one parent or
child constraint are simplified. Figure 4.2 illustrates the process.

Figure 4.2(a) shows the initial type inference graph for the code frag-
ment in Figure 4.1(b). By convention each soft node representing a
variable a is labeled T(a), which corresponds to the currently unknown
type of the variable. Furthermore, for convenience we have labeled each
edge with the line number of the Jimple instruction that implies the
corresponding constraint. The graph contains two connected compo-
nents consisting of {T(c_),C} and {T(x1),T(x2),X}, respectively. Both
components contain a single hard node, which means they can each be
collapsed into a single hard node as shown in Figure 4.2(b). Since the
resulting graph does not contain any transitive constraints that involve

2In some cases the algorithmmay not be able to merge certain hard and soft nodes. It
then fails to determine a type for some variables. The authors provide details on how to
deal with such cases. However, since they only account for 0.2% of all cases in practice,
we do not discuss them here.
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Figure 4.3: Type inference graphs constructed using our modified algorithm.
(a) Initial graph. (b) Graph after first round of merging. (c) Final graph after
second round of merging.

soft nodes, we can skip the second step of the algorithm. In the final
step, the last remaining soft node T(c) is merged with its single child
constraint node “C T(c_)”. As stated by the authors, merging with child
nodes results in more precise types for the variables.

However, this is not what we want. We want variables to have more
abstract types. To achieve this, we modify the algorithm in two ways.
First, we ensure that soft nodes are merged with their parents, and not
their children, whenever possible. Second, we also modify how the type
inference graph is constructed to reduce the number of connected com-
ponents that involve variables used in object creations. This is desirable
because the algorithm generally assigns very precise types to those vari-
ables. If, by contrast, we ensure that there is no connected component
that contains those variables, we can assign them a more abstract type.

Because of the way object creations are expressed in Jimple, all vari-
ables that hold objects from the point they are allocated (with a new
expression) until they are initialized (with an <init> call) will always be
part of a connected component. Furthermore, that component will also
always include a hard node representing the type of object that is created:
Each definition x = new X adds a constraint of the form T(x)← X, while
each call a.<X:<init>>(...) uses x as a variable of type X, and hence adds
the constraint X ← T(x) to the type inference graph. As a result, both
the lower and the upper bound for T(x) are equal to X, which means X
is the only possible type that can be assigned to x.
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To have more freedom in selecting a new type for each variable, we
construct the type inference graphs without taking into account the
<init> calls. This is not a problem since these calls will be replaced by
factory calls anyway. Figure 4.3(a) shows the resulting graph for the
code in Figure 4.1(b). In this graph there are no connected components,
so the nodes for T(c_), and T(x1) and T(x2) are not merged with those
for C and X, respectively. There are also no transitive constraints that
can be simplified, only single constraints.

Our modified algorithm simplifies single constraints with the follow-
ing prioritized set of rules:

1. Merge y with x if y is a soft node, x is a hard node, and x ← y is
the only parent constraint for y.

2. Merge y with hcd(y) if y a soft node of which all parents are hard
nodes, and hcd(y) is unique.

3. Merge y with x if both x and y are soft nodes, and x ← y is the
only parent constraint for y.

In rule 2 we compute hcd(y) as follows. LetH be the set of all highest
common descendants of y’s parents, and letC be the set of all hard nodes
from which y can be reached. hcd(y) is unique and equal to h if h is the
only type in H for which it holds that ∀ c ∈ C . h ∈ ts(c).

Rule 3 is the same as in the original algorithm, whereas rules 1 and 2
can be seen as the complement of their corresponding rules in the original
algorithm. However, technically our version of rule 2 is more generic
than the original, which only applies in case all hard nodes represent
class types. Our version also works when the hard nodes represent
interface types. In that case there is a likelihood that the highest common
descendant is not unique. However, by also taking into account the
hard nodes from which a node can be reached (which correspond to
definitions in Jimple code), our algorithm often finds a unique solution.

Given the graph in Figure 4.3(a), rule 1 can be applied to T(x1), T(x2),
and T(c) to yield the graph in Figure 4.3(b). In this graph T(c_) now
also has a single hard parent, which means rule 1 can be applied once
more. The resulting graph is shown in Figure 4.3(c), which represents
the same type assignment as the one used in Figure 4.1(c).

It is important to note that our algorithm will not be able to fully
simplify all type inference graphs. When tested on the applications from
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the DaCapo benchmark suite [14], our algorithm fails for around 0.5%
of all methods. The reason is that many of the DaCapo benchmarks
contain references to types for which neither they, nor their libraries
(including the Java standard library) contain a definition. Since little is
known about these types and their position in the type hierarchy, our
algorithm cannot create hard nodes for them, and it fails. Note that
the fact that the algorithm fails is not a result of the changes we made
to it; the original algorithm by Gagnon et al. faces the same problem.
However, in practice it is not really an issue when our algorithm fails. In
those cases we can simply use the original types of the variables.

4.2 Object Factory Creation

In this step OFI replaces object creation expressions by calls to object
factorymethods. For each object creation o : x = new C(...), whereC ∈ A,
and the declared type of x is X, it performs the following steps.

First, it determines the properties of the factory method. In doing
so it constructs U = {u ∈ ts(X) ∩ ts(C) | u ∈ JC}, where JC is the jar or
archive that contains class C. Given U , it computes the return type of the
factory method as

R = arg max
u ∈ U

|q(u)|,

with q : A 7→ P(A), and q(u) = {d ∈ A ∩ ts(u) | d ∈ JC}.
It may seem strange to compute R in this manner, or even that R has

to be computed at all, as X clearly is the best choice for the return type.
After all, this type is the most abstract type that could be assigned to
x. As a result, it has more subtypes that any other type in ts(X), and is
hence the best choice when creating factory methods that must be able
to return many different types of objects.

However, it is not always possible to choose X as the return type,
because doing so may lead to class loading errors. By default, we can
only assume that when the object creation o is executed, class C has been
loaded. Or, more importantly, this means that there is a class loader
that, before executing o, can load class C, and other classes located in
the same directory or archive as C3. Hence, when o is replaced by a call
to a factory method, we must ensure that the return type of the factory

3Note that it is possible to write custom class loaders for which this does not hold.
While we did encounter custom class loaders during our experiments, we did not
encounter ones that exhibited such behavior.
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public class Player implements Common { 
   public byte[] merged1(Common as) { 
      /* send as.getRawBytes() to audio device */ 
   } 
   public Common[] merged2(Common vs) { 
      /* send vs.getRawBytes() to video device */ 
   } 
   public static void main(String[] args) { 
      Common player = CommonFactory.create(…); 
      Common[] mediaFiles = ...; 
      for (Common mf : mediaFiles) 
         for (Common ms : mf.getStreams()) 
            if (myCheck.isInst(0, 1, ms.getClass())) 
               player.merged1(ms); 
            else if (myCheck.isInst(1, 1, ms.getClass())) 
               player.merged2(ms); 
   } 
} 
public class MP3File implements Common { 
   public byte[] merged1() { 
      InputStream inputStream = ...; 
      byte[] data = new byte[...]; 
      inputStream.read(data); 
      Common as = CommonFactory.create(…); 
      mediaStreams = new Common[]{as}; 
      return data; 
   } 
} 
public class MediaStream implements Common { 
   public static final byte[] KEY = ...; 
   public byte[] getRawBytes() { 
      byte[] decrypted = new byte[data.length]; 
      for (int i = 0; i < data.length; i++) 
         decrypted[i] = data[i] ^ KEY[i]; 
      return decode(decrypted); 
   } 
   public byte[] decode(byte[] data){ … } 
} 
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Figure 4.4: Partial implementations of the fully type-obfuscated versions of the
Player,MediaStream andMP3File classes. Changes compared to Figure 3.3 are
shown in red.

method, the class declaring the factorymethod, and the declaring classes
of constructors called by the factory method are located in the same
directory or archive as C, such that they can be loaded by the same class
loader that loads C. The return type is therefore chosen as the type that
is assignment-compatible with X, that is located in the same directory or
archive as C, and that has the most subtypes in that directory or archive.
The latter condition ensures that the set of classes whose constructors
the factory should be able to call is as large as possible.
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From R, the OFI algorithm computes the set of constructors that will
be called by the factory method as

K = {m ∈M(d) | d ∈ q(R) ∧m is a constructor}.

Second, given R and K, let RKFactory be the factory class with a
method create with return type R that creates objects using the construc-
tors inK. If this class does not exist, OFI creates one in JC. The parameter
list of create consists of the combined parameter lists of the constructors
inK and one or more extra parameters e. Based on key values that are
passed to the factory through e and that identify the original allocation
site, the body of the create method invokes the original constructor. The
relation between the allocation site, the key passed and the invoked
constructor can be hidden behind hashing or white-box crypto.

Finally, replace x = new C(...) by a call to

RKFactory.create(...).

For the example of Figure 4.1(a), our algorithm creates LFactory,
BFactory, and IFactory and rewrites the allocations as in Figure 4.1(a).
Without preprocessing, it would have created XFactory to handle the
object creations for x1 and x2. That factory would have had the potential
to return only seven different types. By contrast, LFactory and BFactory
can return twelve and ten different types, respectively.

Technically, LFactory requires U to also include library types,
which it does not.

For the media player, Figure 4.4 shows the resulting code.
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Chapter 5

Evaluation

In this chapter we give an overview of the experimental results obtained
using our type obfuscations. We also discuss some of the limitations and
restrictions of our obfuscations, address their correctness, and go into
the effects they have on reliability andmaintainability of the transformed
programs. Finally, we compare our obfuscations to related work.

As part of the evaluation we implemented class hierarchy flattening,
interface merging, and object factory insertion in Soot 2.5.0 [46, 74], an
analysis and transformation framework for Java bytecode. As our tool
rewrites bytecode packaged in a collection of jar files, it does not require
access or changes to source code.

Our implementation consists of several transformers and a refactor-
ing toolkit. The transformers implement CHF, IM, and OFI as a Soot
SceneTransformer, such that they can be applied together with Soot’s
whole program transformations. Our refactoring toolkit offers a series
of refactoring transformations, including encapsulate field, rename field-
/method, and variations of push down field/method and extract interface that
are required to implement CHF, IM andOFI [34]. In our proof-of-concept
tool, the dummy method bodies are empty.

5.1 Limitations and Restrictions

Clearly, our transformations build on a closed-world assumption, as the
whole program to be obfuscated needs to be available for computing
points-to sets. To detect the set of non-transformable classes and to
ensure that all Java features like reflection and custom class loading are
handled correctly in our experiments, we relied on the TamiFlex Play-out
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Agent, a tool developed specifically for enabling static analysis of Java
programs that use such features [16]. This profile-based tool relies on the
whole program to be available and on the developer to provide inputs
that generate enough coverage.

Alternatively, a developer can manually complement the coverage of
the TamiFlex Play-out Agent with his knowledge of how the program
depends on reflection and class loaders. Because we want to evaluate the
potential of fully automated type obfuscation, including of third-party
software, we chose not to provide any such complementary information.

We know of no automated analysis that enables safe transformations
in the presence of arbitrary class loaders. So we impose two restrictions
on applications eligible for our type obfuscations. First, each class loader
only loads classes and interfaces of which the definition is known at
obfuscation time. Second, each class loader (i) only loads classes from a
fixed set of directories or archives, and (ii) is able to load new classes and
interfaces from those directories and archives. With these restrictions we
can determine exactly in which directory or archive to insert new classes
and interfaces such that they are loaded by the correct class loader.

Furthermore, it is important to note that by inserting interfaces and
flattened classes into the existing jars, rather than in new jars, the ob-
fuscated application does not need to be combined with class loading
intervention tools such as the TamiFlex Play-in Agent. Our obfuscated
applications are hence as self-contained as the original ones.

5.2 Benchmarks

We used the DaCapo 9.12 benchmark suite [14] to evaluate the protec-
tion effectiveness and the performance efficiency of our obfuscations.
This suite consists of 14 real-world applications ranging in size from
medium to large. We opted for the “9.12 bach” release of the DaCapo
suite because the TamiFlex tools have previously been tested on this
version (http://dacapobench.org/soot.html). Of the 14 benchmarks, 12
meet the above requirements on class loaders. Their main properties
are listed in Table 5.1. Only eclipse and tomcat have enough archives
with few classes to have their obfuscation significantly limited at the
boundaries of archives. For all but one benchmark the large majority
of all classes are transformable. The only exception is jython, a Python
interpreter that dynamically generates Java classes for the Python code
it interprets. As we cannot adapt that highly input-dependent dynamic
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Benchmark # application # transformable # jar code size (MB)
classes interfaces classes (CHF) files pre IO post IO

avrora 1836 83 1657 (90%) 2 4.1 2.9
batik 3787 856 3383 (89%) 7 12.5 9.3
eclipse 5213 1261 3886 (75%) 49 25.7 17.2
fop 4033 446 3105 (77%) 8 11.0 8.8
h2 1843 78 1454 (79%) 5 9.3 7.0
jython 3702 166 941 (25%) 8 11.8 10.6
luindex 605 28 510 (84%) 4 1.9 1.2
lusearch 608 28 510 (84%) 4 1.9 1.2
pmd 1999 451 1508 (75%) 7 5.6 4.4
sunflow 679 59 557 (82%) 3 2.0 1.6
tomcat 2173 268 1538 (71%) 27 10.1 7.1
xalan 2460 426 2111 (86%) 6 9.6 7.6

Table 5.1: Overview of DaCapo 9.12-bach benchmarks before and after Identi-
fier Obfuscation (IO).

code generation, we cannot transform the static jython classes referenced
by the dynamically generated classes either.

The two benchmarks not shown in Table 5.1 are tradebeans and trade-
soap, which are based on the Apache DayTrader J2EE workload1. We
are uncertain whether these applications meet the requirements for
transformation, because we did not invest time in analyzing their class
loaders. The reason for this is twofold. Not only is the class loader
behavior of these benchmarks more complex than for the others, they
also contain race conditions that may ormay not get triggered depending
on the code layout. Hence, even if these benchmarks would meet the
requirements, we would still not be able to transform them reliably.

As a baseline for comparison, we use the original DaCapo bytecode,
but with identifier names obfuscated [21]. Identifier obfuscation (IO)
is orthogonal to CHF, IM, and OFI; any Java obfuscator would apply it.
We applied it for our evaluation baseline to present realistic results for
obfuscated programs, in particular with respect to code size andmemory
footprint, both of which heavily depend on the length of identifiers.

Fromeach baseline program,we generated versionswith andwithout
CHF, and with and without OFI. On flattened versions, we applied IM
at subtree size threshold values of 0 (i.e., no IM), 10, 20, 30, 40 and 50.
For each benchmark and each of the 14 combinations of transformations
and threshold values, we generated ten different versions with different
seeds for the pseudo-random number generators used for bin packing

1http://geronimo.apache.org/GMOxDOC22/daytrader-a-more-complex-
application.html
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Figure 5.1: QMOOD understandability

and MM. We report the average results for those ten versions.

5.3 Provided Protection

Like all obfuscation researchers, we face the problem of measuring our
techniques’ potency. And as in all of the literature except a few studies
involving human subjects, we know of no direct metrics to measure the
resistance to reverse-engineering. So instead we rely on established soft-
ware complexity metrics from the domain of software engineering. Here,
we use the static QMOOD metrics by Bansiya and Davis [10]. QMOOD
stands for QualityModel for Object-OrientedDesign. It includes ametric
for understandability that is defined as a linear combination of other
complexity metrics that measure different aspects of a program’s design,
including abstraction, encapsulation, coupling, cohesion, polymorphism,
complexity, and design size [10]. This understandability metric is a rel-
ative metric that can only be used to compare two program versions.
Given an original program with a normalized understandability score of
-0.99 [10], less understandable versions will have lower scores. Figure 5.1
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Figure 5.2: Average points-to set sizes. Dark bars denote sizes obtained without
OFI, light bars denote sizes with OFI.

displays the relative understandability for our benchmarks after CHF,
IM with different thresholds, and OFI. Without OFI, the charts would
be almost identical, because OFI does not contribute significantly to the
static metrics considered in QMOOD. The charts show that CHF and IM
do reduce QMOOD understandability significantly, with understand-
ability dropping as more interfaces are merged. Overall, there is little
correlation between the QMOOD result and the benchmark properties
of Table 5.1. For jython, with only 25% of its classes transformed, the
result is comparable to benchmarks that have more than 70% of their
classes transformed. This illustrates the limitations of QMOOD.

As a representative sample, Figure 5.3 shows the relative contribution
of the different QMOOD metrics to lusearch’s understandability, for the
same program versions as in Figure 5.1. Positive/negative contributions
mean that higher/lower values of a metric contribute to lower under-
standability. In the original programs, all metrics contribute ±33%. In
combination with the results for lusearch in Figure 5.1, this chart shows
that most of the understandability reduction results from increases in
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the amounts of coupling, polymorphism and complexity as defined in
QMOOD. As more IM is applied, the growing QMOOD complexity,
which basically equals the growing number of (dummy) methods, be-
comes more dominant. Since the dummy methods are empty in our
current implementation, the observed increase in QMOOD complexity
does not reflect a real complexity increase, however. So also in this re-
gard, we hit an important limitation of QMOOD. In summary, while
QMOODmetrics hint that our obfuscations provide some real protection,
QMOOD clearly needs to be combined with other metrics before we can
draw more conclusions.

To complement QMOOD, we evaluate the obfuscations’ ability to
confuse static analyses. In practice, the precision of many important
client analyses, including call graph construction and virtual call res-
olution, can drop significantly as the result of an imprecise points-to
analysis. At the same time, the memory footprint and execution time of
those analyses increase with less precise points-to analyses because the
constructed call graphs become bigger. Hence, reducing the precision
of points-to analyses by causing them to return larger sets will directly
reduce the effectiveness and efficiency of several static analyses that are
fundamental for static attacks.

For this part of our evaluation, we relied on the robust and config-
urable T.J. Watson Libraries for Analysis (WALA, http://wala.sf.net)
to compute points-to sets using simple class hierarchy analysis [29],
context-insensitive 0-CFA [40], and the partially context-sensitive, 0-
1-CFA and 0-1-container-CFA of WALA. Here we only report results
obtained with 0-1-container-CFA, the strongest of the four. To ensure
that WALA’s call graph construction includes the program parts that
are reachable through reflection, we ran WALA on benchmark versions
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in which TamiFlex Booster had replaced indirections through reflection
by direct invocations [16]. Figure 5.2 presents the average points-to set
sizes for all local variables and parameters of methods for the different
benchmark versions. Four key observations are to be made.

First, many points-to sets in jython are huge because of its dynamic
class generation. Its presence devastates the precision of the analysis in
large parts of the program. Many points-to sets become so large they are
not meaningful anymore. CHF, IM, and OFI can then not damage the
analysis any further.

Secondly, the leftmost light bar of several other benchmarks shows
that the points-to sets do not always grow when only OFI is applied.
This results from the fact that the declared return types of the inserted
factories have very few subtypes in the original class hierarchy. As
such, they cannot obfuscate a lot of type information. After CHF and
aggressive IM, by contrast, OFI always increases the points-to set sizes.

Thirdly, on some benchmarks CHF applied in isolation reduces the
average points-to set sizes. This is due to the this pointers in methods
of flattened classes, which by construction have singleton points-to sets.
As the methods’ first implicit parameter, this pointers contribute to the
computed average points-to set sizes. Their negative effect is even more
pronounced because the inserted getters and setters are very small meth-
ods that only contribute their this pointer but no local variables or other
parameters. A similar effect plays when more aggressive IM is applied.
In that case parameters added during MM contribute very small points-
to sets that bring down the average sizes. Depending on the benchmark,
CHF and/or IM can or cannot obfuscate enough type information in
other places of the programs to compensate the effects of the this pointers
and of added parameters.

One way to increase the points-to set sizes of a method’s added
parameters is to have the method’s callers pass objects bound to their
local variables, instead of just null dummy arguments. However, the
calling methods may not always have references to objects of the correct
type, and even if they do, these references may not always be available
at the point that the method that requires them is invoked. Alternatively,
new dummy objects to be passed as arguments can also be created
directly, or by means of object factories. However, in those cases the
run-time overhead of method invocations may increase significantly.

Fourthly, without OFI, even aggressive IM typically does not make
the points-to set grow. This is because WALA’s advanced analysis can
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extract and propagate a lot of type information from allocation sites.
Only the obfuscation of that information by OFI makes the points-to
sets grow. The light bars growing from left to right for each benchmark
indicate that OFI becomes more effective with more aggressive IM.

Combined, CHF, IM, and OFI increase the average points-to set sizes
(excluding jython) with a factor 4.67 on average, ranging from a factor
1.78 for batik to a factor 11.98 for luindex.

5.4 Overhead

The dark bars in Figure 5.4(a) show how code size grows with more
obfuscation. The lighter bars on top indicate the code size saved bymeans
of MM, i.e., what the size would be without MM. As expected, more
IM implies more code. The increase in code size varies, but overall the
price of the obfuscations is quite large. For most benchmarks, MMworks
well. The only exception is eclipse, where the unbounded merging of
parameter lists in our current implementation introduces more overhead
than the merging of methods actually saves.

The run-time overheads reported in Figure 5.4(b,c) include all 10
runs of the benchmarks in their harness. This includes the warm-up
runs during which the JIT compiler is very active. Figure 5.4(b) depicts
the relative total number of bytes allocated on the heap by the differ-
ent program versions. As objects do not grow in size because of our
obfuscations, the obfuscated programs require very little additional
heap memory. When more is needed, this mainly results from class
loaders now loading bigger class files. For pmd, the increase is caused
by the program analyzing its own bytecode by means of the included
ASM library (http://asm.ow2.org). Because the program classes have
grown, much more objects are allocated on the heap for ASM’s internal
bytecode representation. A program taking itself as input in this way
obviously constitutes very atypical behavior, so its heap overhead is not
representative of the overhead on other programs.

For some benchmarks, the amount of data allocated on the heap does
not increase monotonically with the amount of IM. This is due to the
sampling-based JIT compiler behaving differently on different bench-
mark versions. Experiments with JIT optimization levels vs. interpreted
execution revealed that less data is allocated on the heap when more
aggressive JIT compilation is used, because escape analysis enables the
allocation of data on the stack instead of the heap [55]. For some bench-
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marks, like h2, the escape analysis accidentally performs better on some
more heavily obfuscated versions.

Figure 5.4(c) depicts overhead in terms of the run-time non-heap
memory high-watermark. The non-heap memory is mainly used to store
code. The overhead is hence proportional to the code size overhead. On
average, the non-heap memory is many times smaller than the heap. The
run-time memory overhead of our obfuscations is hence limited.

In contrast to the previously discussed levels of overhead and ob-
fuscations, which do not depend on random seeds used, we observed
that the performance overhead can vary significantly within a set of 10
benchmark versions generated with identical IM thresholds, but with
different random seeds. This can be seen in Figure 5.4(d), which shows
the measured steady-state performance overhead using standard box
plots. For most benchmarks, the performance overhead is very limited.
For eclipse, however, the median slowdown is 670%. For this benchmark,
additional measurements revealed that CHF is responsible for 20–27
percentage points (pp), mainly because of our instanceof replacement
and to some extent also because of the introduced getters and setters.
As a flattened hierarchy contains much more getter and setter imple-
mentations than an unflattened one, they are inlined less efficiently by
the JIT compiler. OFI causes 56–393 pp of the slowdown. This grows
so much with increasing IM, because as factories become more generic,
they incorporate more constructors, of which all parameter type lists
are merged into the factories’ parameter lists. The slowdown results
from having to pass values for all those parameters at all factory calls.
Similarly, more IM implies more MM, and hence also longer parameter
lists, resulting in an additional overhead of up to 250 pp.

From the variation in overhead observed for some versions of eclipse,
fop, h2, and xalan that were generated with different random seeds but
that feature similar levels of obfuscation, as well as from the fact that
the unbounded application of MM did not benefit eclipse’s code size, we
learn that there is much potential for reducing the overhead of our obfus-
cations by making the currently partially randomized and unbounded
application of mergingmore tuned, controlled, and limited. In Chapter 6
we go into more detail on how this can be achieved.
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5.5 Correctness, Reliability and Maintainability

A formal validation of CHF, IM, and OFI is out of the scope of this
dissertation. Several observations can, however, increase confidence
in their soundness and preservation of program semantics. First of
all, we checked that all benchmark versions passed type verification
and produced correct output. These checks were not limited to the
12x14x10 versions reported in the previous section. We also checked
many other versions generated while studying alternative heuristics for
IM and MM, some of which were reported in our conference paper [32],
as well as intermediate program versions generated by the individual
transformation steps discussed in chapters 2, 3, and 4. All of these
experiments were stressing Soot, WALA, and TamiFlex beyond their pre-
existing capabilities, so we had to fix numerous bugs in these tools. One
debugging technique consisted of comparing the constructed call graphs
and points-to sets of the programs boosted with TamiFlex before and
after the obfuscations. Once we had fixed all bugs, we verified that the
graphs and sets obtained after obfuscation completely cover the graphs
and sets before obfuscation. As for the TamiFlex Play-out Agent and
Booster, we point to the literature for a discussion of their validity [16].

As mentioned earlier, our obfuscations are quite similar to existing
refactorings [34, 68, 73]. Tip et al. express the valid refactoring space by
means of type constraints [73]. Based on the original program’s code and
points-to sets, a set of type constraints is constructed that constrain the
types that can be used in the program’s declarations. These constraints
determine the freedom to alter declarations in the program without
affecting type correctness and without changing the program’s func-
tionality. This is done taking into account the interfaces with external
libraries that cannot be rewritten, occurrences of shadowing and over-
riding, the dynamic behavior of casts and array stores, etc. From this
original set of constraints, a new set of constraints is derived that needs to
be met by a refactored program. For advanced refactorings that involve
code duplication and/or replacing classes by other classes with equiv-
alent functionality, the new set of constraints allows original methods
and classes to be replaced by their new counterparts while still meet-
ing all constraints related to type-correctness, libraries, and all dynamic
program behavior.

While we did not implement a type constraint system and solver as
done by Tip et al., we did carefully check that the limitations imposed
on our obfuscations, e.g., with respect to external library types, are in
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line with the constraints imposed by Tip et al.. We also checked that the
bytecode produced by our tool, including the rewritten cast operations
and merged methods, meets all requirements for maintaining program
behavior, i.e., that at all places and at all times, the same exceptions will
be thrown as in the original program, and that the same or equivalent
(e.g., merged) methods are invoked.

Finally, the class loader restrictions imposed in Section 5.1 allow us to
ensure that each flattened class is loaded by the exact same class loader
that originally loaded its unflattened counterpart. As our obfuscations do
not require any changes to where code is loaded from, who signs code (if
anyone), and what default permissions are granted, this ensures that all
security policies, domains and permissions implemented for the original
application by means of the Java SE Platform Security Architecture [38]
remain intact.

Besides providing obfuscation and introducing overhead, our trans-
formations come with some important side effects. Firstly, user bug
reports on obfuscated programs are harder to interpret. However, since
there is a 1-to-m mapping between the classes, methods and fields in the
original program and those in the obfuscated program, it is straightfor-
ward to translate traces back from the obfuscated to the original code.

Secondly, as our transformations alter the execution speed of different
code fragments differently, they may expose or hide race conditions in
multi-threaded code. In this regard, our transformations do not differ
from other static or JIT code optimization, or virtual machine tuning.

Finally, our obfuscations have limited impact on maintainability. Be-
ing applied on the bytecode after testing and right before the code is
distributed to customers, the obfuscations do not affect the source devel-
oper directly. However, since the obfuscations build on whole-program
analysis, simple patches in one class’ source code require the reappli-
cation of the obfuscation to the whole program, which may well result
in changes to most of the obfuscated bytecode. So distributing updates
may require more bandwidth.

5.6 Comparison to Related Work

As far as we know, we are the first to automate class hierarchy obfus-
cations in a tool that can handle complex applications that heavily use
reflection and custom class loading.
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To obfuscate an application’s design, its class hierarchy and the type
information contained in its code, Sosonkin et al. proposed class coalesc-
ing, class splitting, and type hiding by introducing interface types and
by replacing declarations of class types with declarations of those inter-
faces [66]. In its most extreme form, their class coalescing transformation
can coalesce all transformable classes in the program into a single class,
effectively removing the whole program design, beyond what CHF can
achieve. For example, when all classes are coalesced, all points-to sets
become singletons that contain all types in the program. In other words,
points-to sets become completely useless. The main disadvantage of
class coalescing is that the number of member fields in coalesced classes
grows far beyond the number of original member fields in the original
classes and all their superclasses. As a result, their instances also grow
bigger, which results in a much larger memory footprint. The authors
acknowledge this potential issue, but their experimental evaluation is
limited to execution time measurements of relatively small and simple
programs (up to 307 classes). For those, they measure slow-downs up to
130% even with limited coalescing. Furthermore, their evaluation does
not contain any criteria related to software protection, software under-
standability, or software complexity. Additionally, they mostly attribute
limitations to the applicability of their transformations to immaturity of
their tool, instead of discussing more fundamental issues. By contrast,
we proposed transformations that from the very start maximally remove
the class hierarchy, and of which their overhead in terms of code size,
memory footprint, and performance, as well as their impact on program
understandability are evaluated for a set of large real-life programs. Fur-
thermore, rather than being immature, our prototype tool pushes the
application of our obfuscations to the fundamental limits relating to
external libraries, dynamic class loading and reflection.

CHF can be combined with class coalescing. In particular, CHF
enables more efficient coalescing. Coalescing MP3File and VideoStream
in Figure 1.1 would requireMediaFile andMediaStream to be coalesced as
well. This would increase the number of fields in all classes that inherit
from the coalesced class. After CHF, MP3File and VideoStream can be
coalesced without affecting the size of objects of other classes.

The false factoring transformation by Collberg et al. [22] refactors a
program in such a way that two or more unrelated classes come to share
a superclass, thereby giving the impression that they are related. CHF
can prepare a program for false factoring [22]. In Figure 1.3 all classes
inherit directly from java.lang.Object and dependencies on the original
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inheritance relations have already been removed, so the classes can easily
be reorganized in a fake hierarchy by inserting random superclasses.

Given a set of transformable classes, the obfuscation techniques in-
troduced by Sakabe et al. [62] first change the signature of all methods in
the classes such that each class implements the same set of overloaded
methods. These methods are then defined in an interface implemented
by the classes and used in declarations instead of the original classes. To
hide the actual type of objects bound to variables of the interface type,
they propose to replace single object creations by a set of object creations
guarded by opaque predicates.

Like Sakabe et al., we use interfaces as common super types. To limit
the number of methods in these interfaces, their approach requires the
use of special parameter and return objects that have to be created for
each method call and return. Because this can result in large run-time
overheads, we instead use method merging to make method signatures
more uniform. This generally has a much smaller performance impact.
Our object factory insertion transformation also differs from their type
hiding transformation. First, we use factory methods rather than inline
code to create new objects. These factories can become larger and more
complex without inflating the code too much. Additionally, because
of our custom type inference, each factory we create can return the
maximum number of possible types of objects.

The Java Binary Enhancement Tool (JBET) developed as part of the
Self-ProtectingMobile Agents (SPMA) project [9, 28] implements a series
of techniques that break down semantically rich Java structures such as
classes, method invocation, virtual method dispatch, exception handling,
data representations, and garbage collection. In the most extreme case,
JBET is able to collapse an entire program into a single method that
contains all the code in the application, that only constructs objects of
a single Memory class representing a generic data structure, and that
implements its own mechanisms for dynamic method dispatch, excep-
tion handling, and garbage collection, all while staying within the Java
bytecode domain.

As part of its obfuscation routine JBET uses function flattening [76–
78] to flatten all the methods in the program, after which it merges
them into a single flattened method to hide the boundaries between the
original methods. Additionally, JBET expresses instances of the original
program’s classes using instances of class Memory, such that the original
classes can be removed. Instances of theMemory class are also used to
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implement virtual method tables for dynamic method dispatch, and to
implement activation records to store local variables, and to pass data
between methods after these have been flattened and merged.

In general, JBET is able to obfuscate more type information than the
transformations presented in this thesis, but at significant overheads.
Programs transformed using JBET can become up to 10 times larger, and
between 4 and 20 times slower. The main difference between our tech-
niques and the ones implemented in JBET is that our techniques try to get
rid of as much type information as possible while still relying on funda-
mental concepts such as method and classes, and on the mechanisms for
dynamic method dispatch, exception handling, and garbage collection
provided by the run-time system. Programs transformed using JBET
implement many of these concepts and mechanisms themselves, which
may explain the rather large overheads2.

Even though JBET’s transformations differ significantly from CHF,
they are also able to remove a program’s class hierarchy, albeit by getting
rid of the program’s classes and by representing their instances asMemory
objects. However, an important drawback of JBET is that transformed
programs implicitly encode information about the original type hierarchy
in the tables that are used to implement virtual dispatch. Whenever a
class B in the original program inherits a method from its superclass
A, the virtual tables associated with theMemory instances representing
the instances of classes A and B will contain the same entry for that
method. The authors of JBET acknowledge this fact and even state that
their automatic deobfuscator is able to exploit it to recover information
about a program’s original class hierarchy. In general, we expect that
setting up a similar attack against CHF will be more difficult because
CHF copies methods from superclasses to their subclasses, after which
the copies are treated as separate methods during obfuscation. This
means that finding related classes will not be as simple as finding virtual
call tables that contain the same entries.

Snelting and Tip [64, 65] presented a method for analyzing and re-
engineering class hierarchies by extracting information on the use of
an application’s class hierarchy, from which they construct a concept
lattice that provides insights on how to improve the hierarchy to better
match the way the classes interact. Their analysis can detect where class
members can be moved to a subclass or identify where it is beneficial

2JBET is not available for experimentation, so it is difficult to ascertain what the exact
causes of overhead are.
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to split classes. This analysis has been extended and implemented in
the refactoring tool KABA [68]. This tool uses the results from the con-
cept analysis to present several refactorings to the user, who can then
interactively modify the class hierarchy. Potentially, Snelting and Tip’s
work could help an attacker find related classes in a flattened hierarchy
by allowing him to see through the smokescreen of specially crafted
dummy method implementations and by detecting unrelated classes
implementing merged interfaces. It remains an open question to assess
to which extent their tool would be useful in practice.

Another attack approach could build on diffing tools, such as Sand-
Mark3 and Stigmata4. Such tools can assist in inferring the original class
hierarchy by identifying duplicated methods and fields in the flattened
classes. To distract such tools, we could introduce artificial differences
or similarities by choosing appropriate dummy method bodies.

Malicious users may also resort to dynamic techniques to attack pro-
grams obfuscated using our techniques. To defeat object factory insertion
an attacker could instrument the application under attack to log which
constructor is invoked at each factory call site. Given enough coverage
he or she may be able to replace all calls to object factories by calls to the
original constructors, and completely remove the factory classes from an
obfuscated program. This is possible because at each object creation site
in the original program only one constructor is invoked, and because
OFI preserves this property by replacing each constructor call by a call
to a factory method that invokes that constructor.

After successfully defeating OFI, an attacker can try to split the large
interfaces created during IM into smaller ones that are implemented
by fewer classes. To this end he or she may take advantage of the fact
that even though many variables, parameters, and fields are of generic
interface types and can theoretically store objects of many different types,
in practice many of them will only store objects of the same (small) set
of types as they did in the untransformed application5. As a result, in-
formation on which types of objects are stored in the same variables,
parameters, and fields, together with information on which classes im-
plement the same set of interfaces and inherit from the same (library)
superclasses may help partition classes into related sets and give insights
into how to best split the large interfaces created during IM.

3http://sandmark.cs.arizona.edu
4http://stigmata.sourceforge.jp
5Figure 5.2 shows a large difference in points-to sets sizes between program versions

depending on whether or not OFI has been applied.
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So far, this section focused on related work that involves class hi-
erarchy transformations. That work, like CHF, IM, and OFI has little
in common with the decompilation, identifier, data flow, and control
flow obfuscations mentioned in Chapter 1. In fact, the different types
of obfuscation are mostly complementary. CHF, IM, and OFI do not
hinder decompilation in any way, and neither do they aim for getting
nasty decompiled code. They only aim for bytecode (and corresponding
decompiled source code) that provides as little as possible static type
information. Moreover, we combined them with identifier obfuscation
for our experimental evaluation. Still, it is noteworthy that our transfor-
mations’ resulting larger points-to sets and larger call graphs likely open
up opportunities for alias-based obfuscations [21–23, 51].
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Chapter 6

Reducing Obfuscation Cost

Like many other obfuscating transformations, class hierarchy flattening,
interface merging, method merging, and object factory insertion come at
a certain cost in terms of code size and execution time of the transformed
programs. Even though these obfuscations are effective in terms of pro-
tection, they use rather naive cost functions that poorly reflect the actual
changes in code size and execution time. As a result, some transformed
applications became up to six times larger and up to eight times slower.

For local transformations that, e.g., insert opaque predicates [23],
this cost can be managed easily. The overhead in terms of code size
can simply be computed from the size of the predicate and the number
of times it was inserted. Additionally, profile information can be used
to avoid inserting the opaque predicates in frequently executed code
sections. However, for global transformations such as ours, it is much
more difficult to keep track of potential code size and execution time
overhead during transformation, as many classes are involved in each
of the different transformation steps. Yet, failing to keep track of this
information accurately can result in programs that are unacceptably large
or slow, which may limit the practical usefulness of the transformations.
To avoid this, we present improved versions our transformations that can
accurately estimate the impact of different obfuscation steps on the size
and execution time of programs, and act accordingly. For these improved
transformations, our results not only show significant reductions in
overhead, but also that these reductions can be obtained with limited
impact on the level of protection offered by the transformations.

The remainder of this chapter is organized as follows. First, Sec-
tion 6.1 addresses several issues with our transformations as presented
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in previous chapters, and motivates the need for improvements. Next,
Sections 6.2 and 6.3, and 6.4 present improved versions of method merg-
ing and object factory insertion, respectively. Finally, we evaluate the
proposed optimizations in Section 6.5.

6.1 Motivation

We illustrate the problems with class hierarchy flattening, interface merg-
ing, method merging, and object factory insertion using an example
program of which part of the code is shown in Figure 6.1(b). The class
hierarchy of the application is shown in Figure 6.1(a). It consists of two
subtrees of java.lang.Object, rooted at X1 and Y1, respectively.

6.1.1 Class Hierarchy Flattening

The class hierarchy flattening transformation described in Chapter 2
removes subtype relations from an application’s class hierarchy. For
our running example, the flattened class hierarchy, in which classes are
siblings rather than subtypes and supertypes, is shown in Figure 6.3.
The corresponding code after flattening is shown in Figure 6.2(a).

To preserve the semantics of the application, instance fields andmeth-
ods in the original program are copied from classes to their subclasses,
and interface types are created to offer a common interface that would
otherwise be provided through inheritance. The interface types are used
throughout the application’s code whenever possible; the types of vari-
ables, fields, andmethod parameters are replaced by their corresponding
interface types to get rid of much of the original type information.

Before instance fields and methods are copied, the fields are first
encapsulated to make them accessible through the interface types. In
our example, methods getB/setB and getS/setS are added to X1 and Y2,
respectively. During the copying, methods and fields are renamed as
needed to avoid collisionswith existing ones. Constructors, which cannot
be renamed, are given an extra, distinguishing parameter. Examples
include method m, which is renamed to m1 after being copied from X1
to X3, and the constructor with parameter type list [A,B], which is given
an extra argument of type D after being copied from X1 to X2.

Each interface created during flattening declares all methods defined
in the classes that implement the interface. This is done to ensure that
after the declared type of variables is changed to one of the interface types,
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X1
- b : B
+ X1(A, B)  
+ m() : void

X2
+ X2(A, B)
+  n() : void

X3
+ X3(A, C, short)
+  m() : void

java.lang.Object

Y1
+ Y1()
+  p(X1) : void

Y2
- s : short
+  Y2(int, B)
+  p(Y1) : void

(a)

class X3 extends X2{ 
  X3(A a, C c, short s){ 
    super(a, c); 
    X2 x2 = new X2(a, c); 
    x2.n(); 
    Y2 y2 = new Y2(s, c); 
    y2.p(x2); 
    y2.p(y2); 
  } 
  void m(){ 
    X1 x1 = new X1(null, b); 
    x1.m(); 
    super.m(); 
  } 
} 

1 
2 
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4 
5 
6 
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8 
9 
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14 
15 

(b)

Figure 6.1: Example program. (a) Original class hierarchy. (b) Original code.

class X3 implements I1{ 
  X3(A a, C c, short s){ 
    this(a, c); 
    I1 x2 = new X2(a, c); 
    x2.n(); 
    I2 y2 = new Y2(s, c); 
    y2.p(x2); 
    y2.p(y2); 
  } 
  void m(){ 
    I1 x1 = new X1(null, b); 
    x1.m(); 
    m1(); 
  } 
} 
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(a)

class X3 implements I{ 
  X3(A a, C c, short s){ 
    this(a, c); 
    I x2 = IFactory.create(a, _, c, _, _, …); 
    x2.mrg1(); 
    I y2 = IFactory.create(_, _, c, _, s, …); 
    y2.mrg4(x2, _); 
    y2.mrg2(y2); 
  } 
  void m(){ 
    I x1 = IFactory.create(null, _, c, _, _, …); 
    x1.m(); 
    mrg3(_); 
  } 
} 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

(b)

Figure 6.2: Code of Figure 6.1(b) after transformation. (a) Code after CHF.
(b) Code after CHF, IM, MM, and OFI. In both figures copied fields and meth-
ods, and dummy methods have been omitted for brevity. In (b) underscores
represent arguments that can be chosen arbitrarily.

methods can still be invoked on the objects bound to those variables.
Interface I1, for example, declares method m such that m can still be
invoked on x1 after the declared type of x1 is changed to I1. Furthermore,
to ensure that each class defines all themethods in its governing interface,
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X3
- b : B
+ X3(A, C, short)
+ X3(A, B)
+ m() : void
+ m1() : void
+ getB() : B
+ setB(B) : void
d n() : void

X1
- b : B

 

+ X1(A, B)
+ m() : void
d n() : void
d m1() : void
+ getB() : B
+ setB(B) : void

X2
- b : B
+ X2(A, B)
+ X2(A, B, D)
+ n() : void
+ m() : void
+ getB() : B
+ setB(B) : void
d m1() : void

Y1
+ Y1()
+ p(I1) : void
d p(I2) : void
d getS() : short
d setS(short) : void

Y2
- s : short
+ Y2(int, B)
+ Y2()
+ p(I1) : void
+ p(I2) : void
+ getS() : short
+ setS(short) : void

« interface » I1
+ m() : void
+ n() : void
+ m1() : void
+ getB() : B  
+ setB(B) : void

« interface » I2
+ p(I1) : void
+ p(I2) : void
+ getS() : short
+  setS(short) : void

Figure 6.3: Class hierarchy of Figure 6.1(a) after CHF.

dummy methods are added. In Figure 6.3, the dummy methods are
shown with a letter ’d’ instead of their visibility modifier.

6.1.2 Interface Merging and Method Merging

As discussed previously, flattening the class hierarchy is in many cases
not sufficient to remove most of the type information. From the class
hierarchy in Figure 6.3, for instance, an attacker can still deduce that
classes X1, X2, and X3 were related in the original hierarchy, because
they implement the same interface. Furthermore, since each interface
is implemented by a (relatively) small number of classes, much type
information can still be deduced from the assignments and method
signatures in Figure 6.2(a). To remove this information, we proposed
interface merging. This technique combines multiple interfaces created
during flattening, resulting in fewer interfaces that are implemented
by more (unrelated) classes. However, an important side-effect of this
technique is that, as the total number of interfaces decreases, the number
of methods per interface increases. Hence, additional dummy methods
need to be added to the implementing classes to ensure that each class
defines all methods declared in its corresponding merged interface.

In practice, the number of dummymethods can increase quickly, even
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for small programs with only a few interfaces. As shown in Figure 6.4,
merging interfaces I1 and I2 from Figure 6.3 increases the number of
dummymethods from 7 to 29. This can be problematic, as dummymeth-
ods can contribute significantly to the size of an application, even when
their bodies are empty1. To remove them, we presented method merg-
ing in Chapter 3. This technique iteratively and greedily selects sets of
same-signature methods to merge. It operates on sets of same-signature
methods rather than on individual methods to keep the relationship
between overridden and overriding methods intact. In each iteration
of the algorithm, a pair of method sets (Si, Sj) is selected for merging.
Selection happens based on the number of changes that will have to be
made to the signatures of the methods when the sets are merged. Pairs
that result in few changes are chosen first, while those that result in
many changes will only be chosen in later iterations. During merging,
each pair of methods mi ∈ Si and mj ∈ Sj declared in the same class
is replaced by a new methodmij whose parameter type list and return
type consist of the merged parameter type lists and return types ofmi

and mj . To avoid having to merge to two non-empty method bodies,
method merging requires that each pair of methods contains at least one
dummy method. The algorithm terminates when a pair of method sets
for which this holds can no longer be found.

Figure 6.5 shows the class hierarchy after method merging. In this
hierarchy, void n() and short getS() have been combined into short g1(),
B getB() and void p1(I) into B g2(I), void m1() and void setS(short) into
void g3(short), and void p(I) and void setB(B) into void g4(I,B). At this
point, there are only 11 dummymethods left, which cannot be further be
merged into other methods. Changes to the code as a result of method
merging are shown on lines 5, 7, 8, and 13 of Figure 6.2(b). On lines 7
and 13 additional arguments are provided because g4 and g3 require
more arguments than p and m1, respectively.

6.1.3 Object Factory Insertion

After CHF, IM, and MM, some type information can still be deduced
from object creation sites. The object factory insertion transformation
tries to remove it by replacing constructor calls by calls to obfuscated
object factories. For maximum effect, each factory is constructed such
that it can create objects of as many different types as possible. This

1Note the large differences in application size overhead between program versions
obtained with and without method merging, as shown in Figure 5.4(a).



78 Reducing Obfuscation Cost

X3
- b : B

 + X3(A, C, short)
+ X3(A, B)
+ m() : void
+ m1() : void
+ getB() : B
+ setB(B) : void
d getS() : short
d setS(short) : void
d p(I) : void
d p1(I) : void
d n() : void

X1

- b : B
+ X1(A, B)
+ m() : void
d n() : void
d m1() : void
d p(I) : void
+ getB() : B
+ setB(B) : void
d getS(): short
d setS(short) : void
d p1(I) : void

X2
- b : B
+ X2(A, B)
+ X2(A, B, D)
+ n() : void
+ m() : void
+ getB() : B
+ setB(B) : void
d getS() : short
d setS(short) : void
d p(I) : void
d p1(I): void
d m1(): void

Y1
+ Y1()
+  p(I) : void
d n() : void
d m() : void
d m1() : void
d p1(I) : void
d getB() : B
d setB(B) : void
d getS() : short
d setS(short) : void

Y2
- s : short

 + Y2(int, B)
+ Y2()
+ p(I) : void
+ p1(I) : void
+ getS() : short
+ setS(short) : void
d getB() : B
d setB(B) : void
d m() : void
d m1() : void
d n() : void

« interface » I
+ m() : void 
+ n() : void
+ m1() : void
+ p(I) : void
+ p1(I) : void
+ getB() : B
+ setB(B) : void
+ getS() : short
+ setS(short) : void

Figure 6.4: Class hierarchy after CHF and IM.

makes it more difficult to narrow down the exact type of object that will
be created at different program points.

Applying OFI to the running example results in the single object
factory shown in Figure 6.6. It has a single createmethod that can return
instances of all five classes in the application. To enable this, the factory
method’s parameter type list consists of a combination of the parameter
type lists of the classes’ constructors. This is done to ensure that argu-
ments can be provided for all eight constructors, any of which may be
called. Selecting which constructor to invoke is done by choosing the
appropriate values for a number of additional parameters, indicated by
the dots on line 2. For instance, to replace the object creation on line 6
of Figure 6.2(a), the values of these parameters should be chosen such
that the expression in the if-statement on line 9 of Figure 6.6 evaluates to
true. The values for factory method parameters that are not passed on
to the selected constructor can be chosen arbitrarily, as indicated by the
underscores on line 6 of Figure 6.2(b).
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X1
-

 

b : B
+ X1(A, B)
d g1() : short
+ m() : void
+ g4(I, B) : void
d g3(short) : void
+ g2(I) : B

X2
-

 

b : B

 + X2(A, B)
+ X2(A, B, D)
+ g1() : short
d g3(short) : void
+ g4(I, B) : void
+ g2(I) : B
+ m() : void

X3
-

 

b : B

 + X3(A, C, short)
+ X3(A, B)
+ m() : void
+ g3(short) : void
+ g4(I, B) : void
+ g2(I) : B
d g1() : short

Y1
+ Y1()
+ g4(I, B) : void
d g1() : short
d m() : void
d g2(I) : B
d g3(short) : void

Y2
- s : short

 + Y2(int, B)
+ Y2()
+ g4(I, B) : void
d g2(I) : B
+ g3(short) : void
d m() : void
+ g1() : short

« interface » I
+ g3(short) : void
+ g1() : short
+ m() : void
+ g4(I, B) : void
+ g2(I) : B

Figure 6.5: Class hierarchy after CHF, IM, and MM.

6.1.4 Causes of Overhead

For small applications like our running example, the overhead intro-
duced by CHF, IM, and OFI is minimal. However, as we experienced
during our evaluation in Chapter 5, the overhead can be very large for
realistic applications. For heavily obfuscated versions of the eclipse
benchmark, we measured increases in application size2 and execution
time of over six and eight times, respectively. The two main causes of
overhead were found to be method merging and object factory creation.

Effect of Method Merging

Method merging is based on the idea that removing dummy methods
by merging them into other methods will reduce application size. While
this generally holds during the first iterations of the method merging
algorithm presented in Chapter 3, it does not always continue to hold as

2In the remainder of this dissertation we use application size rather than code size
to denote the size of an application. This is because Java applications consist of more
than just code. They also contain much meta-data that is stored in constant pools and
attributes. During transformation, this meta-data also needs to be updated, and the size
of the application may change as a result of those updates.
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class IFactory { 
  static I create(A a, B b, C c, D d, int i, short s, …) { 
    if(…) return new X1(a, b); 
    if(…) return new X2(a, b); 
    if(…) return new X2(a, b, d); 
    if(…) return new X3(a, c, s); 
    if(…) return new X3(a, b); 
    if(…) return new Y1(); 
    if(…) return new Y2(i, b); 
    return new Y2(); 
  } 
} 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Figure 6.6: Factory class created by OFI.

more and more methods are merged. This is because method merging
only reduces the size of an application as long as the space saved by
removing dummy methods is larger than the extra space needed to store
(i) the descriptors3 of the merged methods, and (ii) the code required to
push dummy arguments onto the stack. However, because the existing
algorithm is unbounded, sets of methods are simply merged until a
pair of mergeable sets can no longer be found. As a result, the methods’
parameter type lists and descriptors can grow so large that method
merging actually increases the size of the application. For the eclipse
benchmark, for example, method descriptors can make up 68% of the
total size of the application, as a result of excessive method merging.

To avoid such cases, one could introduce an upper bound on the
length of method descriptors. However, this coarse-grained approach
does not solve the underlying problem and still leads to results that are
far from optimal. This is because choosing an upper bound that is too
low may result in missed opportunities for reducing an application’s
size, while choosing a larger one may lead to unwanted increases in the
application’s size. Furthermore, we expect the optimal upper bound to
be application-dependent, which is not desirable. Ideally, we should
have a metric that determines for each merge operation whether or not
it will lead to a decrease in application size, and that can be computed
efficiently and used effectively during method merging.

An additional problem with the existing method merging algorithm
is that method sets aremerged suboptimally. Duringmerging, the names
and parameter type lists of merged methods are randomized to avoid

3Human-readable strings consisting of a method’s return type and parameter types.
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collisionswith existingmethods. As a result, manymethods have unique
signatures. From an application size perspective, this is very inefficient,
because a separate name and descriptor has to be stored for each method.
It is much more space-efficient to have multiple methods with similar
signatures, such that their names and/or descriptors can be shared.

Hence, what we need is a method merging algorithm that stops
whenever merging is no longer beneficial, and that reduces the variation
in method signatures to avoid excessive application size overhead in the
form of constant pool entries that represent unique method names and
descriptors. In Section 6.2 we present such an algorithm.

first reference ever to constant pool, make sure it is introduced
before. introduction seems like the place

So far we have only focused on application size. However, long
parameter type lists generated during method merging also impact the
performance of applications, since they imply that more arguments need
to be passed for each method invocation. In this dissertation we do
not provide a targeted solution to this problem. Instead, we show by
means of experimentation that our new method merging algorithm
automatically results in less performance overhead, because it generates
parameter type lists that are much shorter on average.

Effect of Object Factory Insertion

Our evaluation in Chapter 5 revealed that object factory insertion is
the most expensive transformation in terms of execution time overhead,
accounting for 393 of out 670 percentage points of the measured slow-
down in extreme cases. The main cause of this overhead are the many
additional arguments that need to be passed to the factory methods,
compared to when the constructors are invoked directly. Even for our
running example already more than six additional arguments are re-
quired to create an instance of class Y1 using the factory in Figure 6.6.
For realistic applications, this number can become much larger. For in-
stance, the factory methods of heavily obfuscated versions of the eclipse
benchmark require on average 32 arguments more than the individual
constructors. In extreme cases, the difference can even be as large as 70.

The performance overheads observed for OFI are hence not surpris-
ing, especially since the algorithmmakes no attempt at reducing the cost
of the factories. Instead, it just tries to confuse static analyses maximally
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by constructing factory methods that invoke as many constructors as
possible. While this is desirable from a type obfuscation point of view,
it can also result in much overhead. The main problem with OFI as
presented in Chapter 4, is that each factory class only contains a sin-
gle factory method that invokes all possible constructors. As a result,
each factory method needs to be able to provide arguments for many
different constructors that often require a different number of arguments
and/or arguments of different types. In many cases, combining all these
constructors’ parameter type lists results in parameter type lists for the
factory methods that are much larger than those of the constructors.

So far, we have only discussed the reasons why the parameter type
lists of the factory methods are so large. However, the overhead of OFI
is not solely determined by the number of arguments of the factory
methods. The number of times each factory method is invoked is equally
important. This is because the overhead of a factory method will only
truly be noticeable when it is invoked frequently.

Based on the above observations, we developed an algorithm that
tries to reduce the number of factory method parameters by limiting the
variation in their types. It uses profile information to construct factory
methods intelligently based on how many times each constructor is
invoked and on how many additional arguments are required when
calls to the constructors are replaced by calls to factory methods. An
overview of the algorithm is given in Section 6.4.

6.2 Cost-effective Method Merging

Based on the observations made in Section 6.1.4, we developed a
boundedmethodmerging algorithm that iteratively and greedilymerges
method sets that result in the largest decrease in application size. It
works as follows.

• Let I be the set of all subtree interfaces after class hierarchy flatten-
ing or interface merging,M the set of all methods, C the set of all
classes, T the set of all types, and N the set of all natural numbers.

• Let Nk be a set of possible method names that can be stored in k
bytes or less.

• LetM : T 7→M, withM(t) the set of all methods declared in t.
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Algorithm 6.1: Cost-effective method merging.
S = {s = (S1, S2, n, p, r, g) ∈ S× S×Nk × T∗ × T× N | valid(s)}
while S 6= ∅ do

(S1, S2, n, p, r, g) = arg max
s∈S

s.g

S = merge(S1, S2, n, p, r)
S = S ∪ {S} \ {S1, S2}
update(S, S1, S2, n, p, r, S)

• Let S : M 7→ P(M) be the function for which S(m) is the set of
methods that at all times should have the same signature asm.

• Let f : M 7→ {false, true}, with f(m) indicating whether the
signature ofm can be changed.

• Let S = {S(m) | ∀ i ∈ I ∀m ∈M(i) ∀ n ∈ S(m). f(n)} be the set of
all method sets that can be merged.

• Let N : C× S2 7→M, with N(c, Si, Sj) the methods of class c that
will be merged when Si and Sj are merged, i.e.,

N(c, Si, Sj) = M(c) ∩ (Si ∪ Sj).

The algorithm can now be written as shown in Algorithm 6.1. Each
tuple (S1, S2, n, p, r, g) in S corresponds to a potential merge operation
and consists of the twomethod sets S1 and S2 that will bemerged, as well
as the namen, parameter type list p, and return type r of themethods that
will be created when S1 and S2 are merged. Each tuple also contains the
gain g in number of bytes as a result of performing the merge operation.

In the following sections we explain the subroutines valid, merge,
and update used by Algorithm 6.1 in more detail. First, we state the
conditions that must hold for a tuple to be considered valid. Then, we
discuss how method sets are merged. Next, we explain how the set S is
updated after each merge operation. Finally, in Section 6.2.4 we discuss
how the gain of each tuple is computed.

6.2.1 Valid Merge Operations

The set S only contains valid tuples. A tuple (S1, S2, n, p, r, g) is valid if,
and only if the following conditions hold:
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C.1 p is a normalized version of the merged parameter type lists of the
methods in S1 and S2.

C.2 All methods in S1 and S2 either have the same return type r, or for
one set the return type is void, and for the other it is r.

C.3 No class has a reaching non-dummy implementation for two or
more methods from S1 ∪ S2.

C.4 Each class c for which N(c, S1, S2) is not empty

(a) does not declare a methodm with signature <r, n, p>, unless
m ∈ N(c, S1, S2);

(b) does not have a reaching implementation for a method with
signature <r, n, p>, unlessN(c, S1, S2) contains amethodwith
that signature, orN(c, S1, S2) only contains dummymethods.

C.5 There is no tuple (S1, S2, nm, p, r, gm), with nm 6= n and gm > g for
which C.4 also holds.

As defined in Section 3.4, a class is said to have a reaching implemen-
tation for a method if that class or one of its superclasses provides an
implementation for that method.

Conditions 2 and 3 express the merge condition of the original
method merging algorithm presented in Chapter 3. They ensure that
two non-dummy methods are never merged, that the methods in S1 and
S2 will not erroneously override each other after merging, and that their
return types are compatible.

Condition 4 prevents merged methods from incorrectly replacing or
overriding methods that are not being merged. In the original algorithm
there was no need to check for this, as potential collisions were trivially
avoided by assigning unique random names to the merged methods.
However, because the new algorithm tries to reduce application size by
decreasing the variation in method names and descriptors, collisions are
likely and must be avoided.

It may seem counter-intuitive that in one case, condition 4 (b) does
allow merged methods to override other methods. However, this only
happens if the set N(c, S1, S2) only contains dummy methods. In that
case the merged method will also be a dummy method, and because
it overrides another method, it can (and must be) removed from the
program. This happens in the merge subroutine.
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Conditions 1 and 5 ensure that the algorithm effectively reduces
application size by ensuring that the names and the descriptors of the
merged methods are chosen optimally. Condition 1 requires that the
merged parameter type lists are normalized. This increases the likeli-
hood that multiple methods have the same descriptor, and that fewer
constant pool entries are needed. The original algorithm does not have
this requirement. Hence, when merging the parameter type lists [A, B]
and [C], it can generate any of the six different permutations of [A, B, C],
which each require a separate constant pool entry. The new algorithm, by
contrast, will alwaysmerge these parameter type lists into their canonical
form [A, B, C]. It will never generate any of the other permutations.

Finally, condition 5 states that the names of merged methods should
be chosen greedily to maximize the decrease in application size. If there
are multiple names that result in the same maximum gain, one of them
is chosen at random.

6.2.2 Merging Method Sets

Given a valid tuple (S1, S2, n, p, r, g), the merge subroutine on line 4 of
Algorithm 6.1 performs the following steps:

1. Create an empty set S to hold the merged methods.

2. For each class c for which the set Nc of all methods to merge, with
Nc = N(c, S1, S2), is not empty:

(a) Create a new methodmwith name n, parameter type list p,
and return type r.

(b) Make the body of m the body of the single non-dummy
method inNc if there is one, or the body of a randommethod
in Nc otherwise.

(c) Remove all methods in Nc from c.
(d) Addm to c and to S.

3. Rewrite invocations ofmethods in S1∪S2 to invocations of their cor-
responding methods in S, adding dummy arguments as needed.

4. Remove from S and from their declaring classes all dummy meth-
ods that override methods.

5. Return S.
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Step 4 handles the case where condition 4 (b) allows dummymethods
to override regular methods.

6.2.3 Updating the Set of Valid Merge Operations

Each time a merge operation is performed, the program being trans-
formed changes, as methods are added and removed, and signatures
are rewritten. As a result, some previously considered merge operations
may no longer be valid, and others may become available. The goal of
the update subroutine on line 6 of Algorithm 6.1 is to ensure that after
merging, S again contains all valid merge operations. It performs the
following steps:

1. Remove from S all tuples involving S1 or S2.

2. For each tuple (S1i, S2i, ni, pi, ri, gi) ∈ S for which (i) condition 4
does not hold and <ri, ni, pi> equals <r, n, p>, or (ii) condition 5
does not hold and Ĉ(S1i, S2i) ∩ Ĉ(S1, S2) 6= ∅:

(a) remove (S1i, S2i, ni, pi, ri, gi) from S;
(b) find a name nj ∈ Nk such that conditions 4 and 5 hold for

sj = (S1i, S2i, nj , pi, ri, gj). If such an nj exists, add sj to S.

3. Create new valid merge operations involving S, if they exist, and
add them to S.

In this algorithm, Ĉ is defined as Ĉ : S2 7→ P(C), with Ĉ(Si, Sj) the
set of all classes whose size may change as a result of merging Si and
Sj . This set includes all classes that declare and/or refer to any of the
methods in Si or Sj , because these classes have constant pool entries for
those methods.

6.2.4 Computing the Change in Application Size

In order to decide whether a merge operation is beneficial and a corre-
sponding tuple should be added toS, the algorithm needs to determine
the change in application size the merge operation will induce. In other
words, it needs to compute the gain g for that tuple. For Java applications,
this comes down to computing the change in size of all class files affected
by the merge operation. Unfortunately, this is not straightforward, be-
cause program transformation tools such as obfuscators generally do
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not operate directly on class files. Instead, obfuscators are often built
on top of tools such as ASM [17], BCEL [27], and Soot [74] that use an
intermediate representation of the class files to allow for easier analysis
and transformation. Because these representations hide many details of
the underlying class file format, accurately determining the (change in)
size of an application from its intermediate representation is difficult.

The easiest way to circumvent this problem is to convert the pro-
gram’s intermediate representation (IR) to class files, and do the calcu-
lations directly on the class files. However, this approach is extremely
slow4. In order to compute the effect a merge operation will have on
the application’s size, the merge operation needs to be performed on
the program’s IR, class files need to be generated from the IR, and the
changes to the IR need to be undone such that the effect of the next
operation can be computed, or a merge operation can be performed. For
heavily obfuscated versions of some large benchmarks there are easily
tens of millions of potential merge operations. To compute the gains
for all of these, billions of class files would need to be generated, which
makes this approach impractical.

As a better solution to this problem, we developed a model for ap-
plication size. This model maps each class’ intermediate representation
to a light-weight representation of the class file that is generated when
the class is written to disk. During merging, the model is updated to
reflect the changes to the application as a result of merge operations.
By keeping the model up to date, the class file representations do not
need to be regenerated each time application size calculations need to
be made. Furthermore, rather than trying out merge operations on the
program’s IR, they can be performed on the model. Afterwards, the state
of the model can be reset easily to compute the effect of another merge
operation. We give an overview of our model in the next section.

6.3 A Model for Application Size

For (S1, S2, n, p, r, g) to be a valid tuple, g must be equal to the gain
in application size after calling merge(S1, S2, n, p, r). To compute g the
method merging algorithm therefore needs to compute how each of the
individual steps of the merge subroutine affect the size of the application.

4For some benchmarks it takes on average 15 ms per class to convert the class’ IR into
an in-memory class file whose size can be computed. For those applications it can take
multiple days to generate a single transformed program version.



88 Reducing Obfuscation Cost

In doing this, it makes a distinction between changes in size as a result of
meta-data changes, and those as a result of changes to themethod bodies.
The latter are easy to compute based on the size of the instructions that
are added or removed. Tracking changes in the size of the meta-data is
more complex, because the meta-data in class files is stored as a directed
graph. Whenever a node is removed from this graph, other nodes may
also no longer be needed, depending on whether they are still referenced
or not. Hence, without proper knowledge of the references between
different parts of the meta-data, the algorithm cannot know whether or
not removing a certain method will also allow it to remove the constant
pool entries that hold its name and descriptor. As a result, it also cannot
compute the change in meta-data size.

To enable the algorithm to track changes in the meta-data, and com-
pute changes in its size as a result of method merging, we developed
meta-data graphs.

6.3.1 Meta-data Graphs

The meta-data graph (MDG) of a Java class is a simplified graph rep-
resentation of that class’ underlying class file. In Java, each class file
contains the definition of a single class or interface. This definition in-
cludes the name of the class, the names of its superclass and interfaces,
and a description of the class’ fields, methods, code, and attributes, as
well as a description of other classes, fields, and methods referenced
from the class’ code. In a class file, this information is organized in a
variable-length ClassFile structure defined in the Java Virtual Machine
Specification [48]. This structure is essentially a serialized representa-
tion of a directed graph of (variable-length) structures in which the root
represents the class itself and every other node represents a constant
pool entry, a field, a method, or an attribute.

Meta-data graphs are simplified versions of those graphs. They also
contain a separate node for each instance of each of the structures in a
class file. However, each node only contains its type and its size, no actual
data. The size of each node is computed as the size of the corresponding
structure, as defined in the Java VirtualMachine Specification [48]. There
is one exception: since we only use the graphs to model changes in the
size of meta-data, we assume that instructions occupy no space.

Figure 6.7 shows partial MDGs5 for two classes A and B. Class A has
5For clarity, we omitted many of the nodes. In practice, meta-data graphs can easily
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three methods: void a(), void b(), and void c(int) that do not invoke any
other methods. Class B has a single method void b() that calls method
void b() defined in class A. The MDG for class A contains one node
corresponding to the ClassFile structure that represents the class. This
node refers to a node of type UTF8_info6 that represents the class name.
The ClassFile node also refers to three method_info nodes, one for each
of A’s methods. Each method_info node further refers to UTF8_info
nodes for the name and the descriptor of the method. Additionally, each
method_info node has an associated Code_attribute node that represents
the method body. In our case, each Code_attribute has the same size,
since we do not take into account the size of instructions, only the size of
the meta-data. For class B, there is an edge from the Code_attribute node
for method void b() to aMethodref_info node that represents method void
b() defined in class A. TheMethodref_info refers to two additional nodes:
a Class_info node that represents class A, and a NameAndType_info node
that represents the signature of the invoked method. From this node,
there are two more edges to UTF8_info nodes that represent the name
and the descriptor of the invoked method, respectively.

Computing the gain in meta-data size for a class using its MDG is
straightforward. Whenever an edge in the graph is removed, and a node
can no longer be reached from the root node as a result, the gain is
increased by the size of that node. Similarly, when an edge is added
and a node becomes reachable, the gain is reduced by the size of that
node. Determining the gain in a program’s meta-data size as a result of a
merge operation is hence just a matter of performing the right operations
on the MDGs of its classes.

6.3.2 Modeling High-level Changes

The merge subroutine of Algorithm 6.1 performs three tasks that can
affect the size of an application: removing methods, adding methods,
and updating method invocations. They are performed in steps 2 (c)
and 4, 2 (d), and 3, respectively, as described in Section 6.2.2.

For efficiency reasons, we do not model method removal andmethod
addition for the exact methods described in the algorithm. Instead, we
only model method removal for dummymethods. For all other methods,

contain hundreds to thousands of nodes of over thirty different types.
6In the Java Virtual Machine Specification, all structures that define constant pool

entries have a name that starts with CONSTANT_. For brevity, we dropped this prefix.
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UTF8_info : 4 “c” 

UTF8_info : 7 “()V” 
ClassFile : 24 

class A 
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method_info : 8 
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method_info : 8 

void b() 
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Figure 6.7: Partial meta-data graphs for classes A and B.

we model signature changes. The reason is that during merging, non-
dummy methods will never be removed permanently from the program.
They are removed temporarily in step 2 (c) of the merge subroutine,
only to be added again (with a possibly different signature) as one of
the merged methods in step 2 (d). Hence, if we would model method
removal and addition separately, we would first deduct the size of the
methods’ instructions and their meta-data, only to add it back when the
merged method is added.

By avoiding this, our model is not only more efficient, but also much
simpler, because it does not have to compute changes in bytecode size
for arbitrary methods. In fact, as we will see in the next sections, it
only has to compute changes in size as a result of changes to high-level
return and call instructions. This is an important advantage, because
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some program transformation frameworks use virtual register-based
intermediate representations that do not directly map to the stack-based
bytecode [12, 74]. In such cases, computing the size of the bytecode
instructions from the high-level statements can be hard without at least
(partially) simulating the conversion of these statements to bytecode.

To summarize, ourmodel has support for three operations: removing
dummy methods, updating method signatures, and updating method
invocations. In the next sections, we explain how these operations are
modeled, and we show how the gain in application size for our running
example is computed when methods void b() and void c(int) of class A
are merged into void a(int). For demonstration purposes, we assume that
method c is a dummy method, and method b is a non-dummy method.

Removing DummyMethods

Each time a dummy method would be removed from a class in step 2 (c)
or step 4 of the merge subroutine of Algorithm 6.1, the edge from that
class’ ClassFile node to the method’s method_info node needs to be re-
moved. In our case, removing dummy method void c(int) would reduce
the application’s size by 37 bytes, because after the edge from class A’s
ClassFile node to c’s method_info node is removed, the method’s Code_-
attribute node and the nodes representing its name and descriptor are
no longer reachable.

Considering that we previously stated that the bodies of dummy
methods are empty, one would expect that removing a dummy method
has no impact on the size of the code. However, this is not true, since it
is not allowed for a method to have a truly empty body. At the very least,
each method’s body should contain a return instruction that returns a
value that is compatible with the return type of the method. For void
methods, a simple return instruction can be encoded in one byte, while
for non-voidmethods returning zero or null requires two bytes. Since c
is a void method, only one additional byte is saved by removing it. This
brings the total gain for this step to 38 bytes.

Updating Method Signatures

For methods whose bodies would be selected in step 2 (b) of the merge
subroutine, we model signature changes. For each such method m of
which the signature differs from the new signature <r, n, p> the algo-
rithm does the following.
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1. If the name ofm is equal to n, do nothing. Otherwise, delete the
edge fromm’s method_info node to the UTF8_info node represent-
ing its name. Then, add an edge fromm’s method_info node to the
UTF8_info node for n. If such a node does not exist, create it first.

2. Repeat step 1 for the method descriptor.

For the running example, the signature of void b() is changed to
void a(int). Because both the name and the descriptor of b need to be
updated, we first remove the edge from b’s method_info node to the
UTF8_info nodes for "b" and "()V". As a result, the node for the string
"b" becomes unreachable, and we gain 4 bytes in application size.

Next, we add edges from b’s method_info node to the nodes corre-
sponding to the new name and descriptor, which are "a" and "(I)V",
respectively. This increases the size of the application by 7 bytes, because
the node for "(I)V" has become reachable again. The node for "a"was
already reachable from the method_info node for a, so adding an addi-
tional edge to it does not affect the size of the application. The net result
of this step would hence be an increase in application size of 3 bytes, or
a gain of -3 bytes.

Updating Method Invocations

After the signature of a method is updated, changes need to be made
to the instructions that call that method. Furthermore, if the number of
arguments of the method has increased, additional instructions need to
be added that push (fake) arguments onto the stack. For each methodm
whose signature is updated in the previous step, we do the following.

For each class c that has a method that callsm, perform the following
operations on its MDG:

1. Let mref be the Methodref_info node describing m. Remove the
edge frommref to the NameAndType_info node representing the
old signature ofm.

2. Create UTF8_info nodes form’s new name and descriptor, if these
do not exist.

3. Add an edge frommref to the NameAndType_info node represent-
ingm’s new signature <r, n, p>. If the latter does not exist, create
it and add edges from it to the UTF8_info nodes representingm’s
new name and descriptor.
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Also, for each invocation in any of c’s methods, decrease the gain in
application size estimated for this merge operation by the difference in
length betweenm’s old and new parameter type lists. This step models
the fact that for each extra parameter, one additional byte is required to
encode an instruction that pushes either zero, or null onto the stack.

Since method void b() of class B calls void b() in class A, we need to
update theMDGof classB. More specifically, we need to remove the edge
from A: void b()’sMethodref_info node to the NameAndType_info node
for void b(). This increases the gain by 3 bytes. Next, we createUTF8_info
nodes for the name "a" and the descriptor "(I)V", because these do not
yet exist. Finally, we create a new NameAndType_info node for the new
signature A: void a(int), and add an edge from the Methodref_info node
to that node, and an edge from that node to the nodes for "a" and "(I)V".
Adding these edges reduces the gain by 3, 4, and 7 bytes, respectively.

Assuming that B: void b() contains only one call to A: void b(), only
one extra push instruction is required when the signature of A: void b()
is changed to A: void a(int). As a result, the size of application increases
by 1 byte. If we now add up the total gains for each of the steps, we get
that merging void b() and void c(int) of class A into void a(int) results in
a total gain in application size of 23 bytes.

6.3.3 Undoing Changes

In between computing gains in application size for different merge oper-
ations, the model needs to be reset. This is where the model really shows
its strength, being much simpler and faster to reset than the program’s
intermediate representation. One of the reasons why the model is faster
is that it never changes any of the program’s instructions. As a result,
our algorithm does not need to restore the method bodies, only the meta-
data. Furthermore, since changes to the meta-data are modeled using
MDGs, restoring them is just a matter of undoing the operations on those
graphs. To do this, the algorithm simply needs to keep track of which
nodes and edges have been added and removed while performing the
operations discussed in the previous sections. After each computation, it
can then simply remove newly created edges and nodes, and restore the
old edges. Nodes do not need to be restored, as they are never removed;
they only become unreachable. As a result, the code that undoes the
operations on the MDGs is fast and simple. It just needs to iterate over
a list of nodes and edges and add or remove them as necessary. By not
having to invoke any high level APIs to restore the program’s IR, we
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avoid potential overhead from extra objects that need to be created, or
caches that need to be updated.

If one of the merge operations is selected and actually performed
on the program’s intermediate representation, the model is updated
alongside it, just like it would when computing the gain. The main
difference is, of course, that the model is not reset afterwards.

6.3.4 Limitations

In some cases, the gain computed by the application size model differs
from the actual gain. Because the model only computes changes in
instruction size as a result of return instructions that are removed, or
invoke instructions that are altered, it assumes that the size of all other
instructions remains the same. However, in practice this is not always
true. A program transformation framework may decide to generate
different instructions, depending on the specific index of the constant
pool entry an instruction refers to. For instance, if the index of a constant
that needs to be pushed onto the stack can fit in a single byte, tools
may choose to generate an ldc instruction, instead of the larger ldc_w
instruction which encodes two-byte indices.

A similar problem occurs with bytecode offsets. As more instruc-
tions are generated to push arguments onto the stack, the body of a
method may become so large that offsets can no longer be encoded in
two bytes. As a result, the framework may need to generate additional
code to implement trampolines, or use wide versions of the goto and jsr
instructions, which encode 4 byte offsets.

In practice, the error is small. For instance, in all our experiments, we
have never encountered caseswhere bytecode offsets became so large that
additional trampoline code had to be inserted, or that goto_w or jsr_w
instructions needed to be generated. We have only encountered single-
byte errors as a result of ldc instructions begin generated instead of ldc_w,
or vice-versa. These errors are mostly negligible, since the indices of
constant pool entries do not change drastically during method merging,
and because ldc and ldc_w only account for 3% of all instructions.

6.4 Cost-effective Object Factories

As discussed in Section 6.1.4, the overhead of OFI increases with each ad-
ditional argument required by the factory methods, and with each object
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created using those methods. Unfortunately, we cannot easily reduce the
number of objects created during the execution of an application without
altering the application’s semantics. We therefore opted to lower the
overhead by limiting the number of arguments of each factory method
based on how many times each of the constructors it invokes need to be
executed. To achieve this, we developed a new profile-driven algorithm
for creating object factories. Contrary to the algorithm from Chapter 4,
which generates a single factory method for each set of constructors, the
new algorithm may generate multiple factory methods that each call a
subset of the constructors, or one large factory method that invokes all of
them. The main benefit of having multiple factory methods is, of course,
that each factory method requires fewer arguments, as they each have to
provide arguments for a smaller set of constructors.

Another important difference compared to the algorithm presented
earlier, is that the new algorithm initially treats each constructor as if
it only accepts arguments of type java.lang.Object, and of the primitive
types int, long, float, and double. All other types are mapped to these five.
In doing this, it significantly reduces the number of different types that
can occur in the parameter type lists of the constructors, which results in
factory methods that require far fewer arguments. Of course, when the
constructors are actually invoked, arguments of the correct types need
to be passed to them. In that case, the generic arguments passed to the
factory methods are cast to the types expected by the constructors.

As an example, Figure 6.8 shows an object factory for the applica-
tion in Figure 6.1(b), obtained using our new algorithm. Because the
algorithm treats the parameter type lists of the eight constructors of X1,
X2, X3, Y1, and Y2 as [Object, Object], [Object, Object], [Object, Object,
Object], [Object, Object, int], [Object, Object], [], and [int, Object], and
[], respectively, they can be combined into [Object, Object, Object, int]
instead of [A, B, C, D, int, short]. As a result, the new factory method
requires two arguments less than the one shown in Figure 6.6. Lines 3-7
and 9 of Figure 6.8 include the type casts needed to cast the arguments of
the factorymethod, which are passed as instances of type java.lang.Object
and values of type int, to the types A, B, C, D, and short that are expected.

The factory shown in Figure 6.8 is just one of the possible factories
the new algorithm can generate. If, based on the profile information, the
algorithm decides that generating two different factory methods will
result in less overhead, it may generate the factory shown in Figure 6.9. In
this case, calls to the original constructors are split between two different
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class IFactory { 
  static I create(Object o1, Object o2, Object o3, int i, …) { 
    if(…) return new X1((A)o1, (B)o2); 
    if(…) return new X2((A)o1, (B)o2); 
    if(…) return new X2((A)o1, (B)o2, (D)o3); 
    if(…) return new X3((A)o1, (C)o2, (short)i); 
    if(…) return new X3((A)o1, (B)o2); 
    if(…) return new Y1(); 
    if(…) return new Y2(i, (B)o1); 
    return new Y2(); 
  } 
} 
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Figure 6.8: New object factory with a single factory method.

class IFactory { 
  static I create(Object o1, Object o2, Object o3, …) { 
    if(…) return new X1((A)o1, (B)o2); 
    if(…) return new X2((A)o1, (B)o2, (D)o3); 
    if(…) return new X3((A)o1, (B)o2); 
    if(…) return new Y1(); 
    return new Y2(); 
  } 
static I create(Object o1, Object o2, int i, …) { 
    if(…) return new X1(); 
    if(…) return new X2((A)o1, (B)o2); 
    if(…) return new X3((A)o1, (C)o2, (short)i); 
    if(…) return new Y1(); 
    return new Y2(i, (B)o1); 
  } 
} 
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Figure 6.9: New object factory with two factory methods.

factorymethods. Also, an additional call to a newly created no-argument
constructor for class X1 is added on line 10 to ensure that each factory
method invokes at least one constructor of each class.

To construct factories such as the ones in Figures 6.8 and 6.9, our algo-
rithm operates in three steps. In the first step, information about object
creation sites in the program is gathered to determine the properties of
the object factories. While collecting this information, each constructor
is modeled as a separate low-overhead factory method. In the next step,
these simple factorymethods aremerged into increasinglymore complex
ones until a user-defined overhead threshold is reached. In the last step,
a new class is created for each object factory, and constructor calls are
rewritten to invocations of the factories’ methods. Each step is explained
in more detail in the following sections.
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As previously illustrated in Chapter 4, the effectiveness of any algo-
rithm that creates object factories greatly depends on the actual types
assigned to local variables in a program’s intermediate representation.
More abstract types generally result in fewer factories that create ob-
jects of more different types, and as a result, have a greater potential of
confusing pointer analyses. In what follows, we therefore assume that
the program has been preprocessed using the type inference algorithm
described in Section 4.1.1, which assigns to each local variable the most
abstract type possible.

6.4.1 Collecting Information

In this step, our new OFI algorithm builds a key-value pair mapping F
that contains information about all the object creations and constructors
in the program, as well as the object factory classes (and their methods)
that need to be generated. Each key in the mapping consists of a 2-
tuple (r,D) representing a factory class, where r is the return type of
the factory’s methods, and D is the set of all classes whose constructors
the factory should be able to call. Each tuple (r,D) in F maps to a list
F of tuples that each contain information about one of the factory’s
methods. Each tuple (K,O) ∈ F consists of a list of constructorsK the
factory method should call, and a set of object creations O that should
be replaced by calls to the factory method. Given an application, the
mapping F is constructed as follows.

• Let A be the set of all application classes and interfaces, L the set
of all library classes and interfaces, and T the set of all types.

• Let j : (A ∪ L) 7→ P(A ∪ L), be a function where j(t) gives the set
of all classes and interfaces in the same directory or archive as t.

For each object creation o : x = new C(...) in the application that
calls a constructor k, where the declared type of x is X, and C ∈ A, our
algorithm determines the properties of the corresponding object factory.
To do this, it constructs the set of potential factory return types as

R = {r ∈ A ∩ ts(X) ∩ j(C) | C ∈ ts(r)}.

From R it computes the return type r of the factory methods as the
most abstract type, i.e., the type with the most subtypes:

r = arg max
ri∈R

|ts(ri) ∩ j(C)|.
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Note that the reason why we compute the return type of the factory
methods as r, instead of simply choosing X has already been explained
in Section 4.2. We therefore do not discuss it in more detail here. Once r
has been determined, the set of classesD whose constructors the factory
should be able to call is computed as D = ts(r) ∩ j(C).

The tuple (r,D) now uniquely identifies the factory class that will
contain themethod that should be invoked to replace the object creation o.
To add this information to F, the algorithm operates as follows.

1. Let F be the list of tuples for key (r,D) in F. If F does not contain
a mapping for (r,D), create it as follows.

(a) Create a new empty list F .
(b) Let KD be the set of all constructors in all classes in D. For

each element ki ∈ KD

i. Create a new singletonK = {ki}.
ii. Create a new empty set O.
iii. Add the tuple (K,O) to F .

(c) Map (r,D) to F in F.

2. Find the tuple (K,O) in F for whichK = {k}, and add o to O.

Note that since the actual factory methods have not yet been created,
step 2 just adds information to F indicating that o needs to be replaced
by a call to whichever factory method invokes k.

At the end of the current step each tuple (K,O) represents a factory
method that invokes exactly one constructor. In the next step, our new
object factory insertion transformation merges pairs of these tuples to
create more effective factory methods that invoke multiple constructors.

6.4.2 Merging Factory Methods

The algorithm we developed to merge factory methods is shown in
Algorithm 6.2. It makes use of the following definitions.

• Let e be the function for which e(o) gives the number of times the
object creation o is executed on average.

• Let u : T 7→ T be the function that maps any reference type to
java.lang.Object, the primitive types boolean, byte, char, short, and
int to int, and all other types to themselves.
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• Let K be the set of all constructors in the application.

• Let p : K 7→ T∗ be the function for which p(k) gives the parameter
type list of constructor k, and let pu : K 7→ T∗ be the function for
which pu(k) gives the parameter type list p(k) in which each type t
has been replaced with u(t).

• Let mu : P(K) 7→ T∗ be the function for which mu(K) gives the
parameter type list obtained after merging all parameter type lists
in the set {pu(k) | k ∈ K}.

• Let a be the number of arguments each factory method uses to
determine which constructor to invoke.

To limit the overhead of the factory methods, the algorithm is con-
trolled by a user-defined threshold τ , which represents the maximum
ratio by which the dynamic number of arguments required to create
objects is allowed to increase. In order to know when this threshold
is reached, the algorithm starts by computing the dynamic number of
arguments required when creating objects by invoking the constructors
directly, and when creating objects using the factory methods created in
the previous step. These numbers are stored in the variables acon and
afac, respectively. When computing acon, the algorithm computes the
number of arguments of a constructor k as |p(k)|+ 1 rather than |p(k)|.
This is because the object to be initialized by the constructor is passed as
an implicit argument. The value of afac is computed in two steps. First,
the algorithm computes afac as the dynamic number of arguments that
need to be passed to the factory methods. Then, afac is increased by
acon to also count the arguments that need to be passed from the factory
methods to the constructors.

After acon and afac have been computed, the algorithm constructs
the set K of tuples that correspond to possible factory method merge
operations. Each tuple (r,D, l1, l2) consist of a pair (r,D) that identifies
a factory class, and two elements l1 and l2 that each contain information
about one of the factory’s methods that will be merged. The algorithm
then continues by greedily and iteratively selecting tuples from K that
will result in the smallest increase in the dynamic number of arguments
required to create objects. This increase is computed by means of the
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Algorithm 6.2: Factory method merging.
acon = afac = 0
foreach (r,D) 7→ L ∈ F do

foreach ({k}, O) ∈ L do
foreach o ∈ O do

acon = acon + (|p(k)|+ 1) · e(o)
afac = afac + (|p(k)|+ a) · e(o)

afac = afac + acon

K = {(r,D, l1, l2) | l1, l2 ∈ F(r,D) ∧ l1 6= ł2}
while ∃ k ∈ K . afac + c(k) ≤ acon × τ do

k = arg min
ki∈K

c(ki)

afac = afac + c(k)
merge_update(K, k)

function c, which is defined as follows.

c(k) = c(r,D, l1, l2) = c(r,D, (K1, O1), (K2, O2))
= (|mu(K1 ∪K2)| − |mu(K1)|)

∑
o1∈O1

e(o1)

+ (|mu(K1 ∪K2)| − |mu(K2)|)
∑

o2∈O2

e(o2).

Once a merge operation has been selected, it is performed, and the
set of possible merge operations is updated. This is done using the
merge_update subroutine, which performs the following steps when
provided with a reference to K and a tuple k = (r,D, l1, l2).

1. Create a new tuple lm = (K1 ∪K2, O1 ∪O2), where (K1, O1) = l1
and (K2, O2) = l2.

2. Remove l1 and l2 from F(r,D).

3. Remove from K all tuples involving l1 or l2.

4. Add a new tuple (r,D, l, lm) to K for each l ∈ F(r,D).

5. Add lm to F(r,D).
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6.4.3 Generating Factory Classes

In this final step, the algorithm generates the factory classes based on the
information in F, and replaces constructor calls by calls to those classes’
methods. For each entry (r,D) 7→ L in F, it proceeds as follows.

1. Add a no-argument constructor to each class in D that does not
already have one.

2. Create a new class f with a unique name in the directory or archive
that contains type r.

3. For each tuple (K,O) ∈ L

(a) Compute D′ as the set of classes that declare the constructors
inK, and add toK the no-argument constructor of each class
d ∈ D \D′.

(b) Initialize a new parameter type list p tomu(K).
(c) Extend pwith types corresponding to the parameters that will

be used to decide which of the constructors inK to invoke.
(d) Create a new factory methodm in f with return type r and

parameter type list p. The body of f contains calls to all con-
structors inK, as well as logic that decides which constructor
to invoke based on the values of the additional parameters
added in (c). The arguments to the constructors are cast from
their mapped types u(t) to their required types t.

(e) Replace all object creations in O with calls to m. Provide
dummy arguments as necessary.

For our running example from Figure 6.1(b) our new algorithm may
generate the factory class shown in Figure 6.8, as described above. Note
that the only reason that the createmethod of this class requires three
parameters of type java.lang.Object is because the constructor of class
X2 requires three arguments of instance types. If that constructor re-
quired fewer such arguments, the factory method would also require
one argument less. To keep the number of factory method parameters
low, it is therefore important that each constructor only requires as many
parameters as absolutely necessary. In light of this, the next section
discusses how class hierarchy flattening can be improved to significantly
reduce cases in which a distinguishing parameter needs to be added to
the constructors during flattening.
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6.4.4 Improving Class Hierarchy Flattening

CHF, when used in combination with OFI, may sometimes result in
factory methods that require more arguments than strictly necessary.
This is because during subtree flattening, potential constructor colli-
sions are avoided by adding artificial, distinguishing parameters to the
constructors being copied from the super classes to the subclasses. As
a better alternative, we therefore propose to resolve collisions by first
trying all possible permutations of a constructor’s parameter type list
before adding a new distinguishing parameter to it. In general, for a
constructor with parameter type list p, the number of permutations that
can be tried before a new parameter needs to be added is equal to

|p|!∏n
i=1 fi!

,

where {ti | ∀i ∈ [1, n]} is the set of types occurring in p, and fi is the
number of times each type ti occurs in p. In many cases, the number of
permutations is large enough to avoid adding an additional parameter.

As an example, consider the constructor X1(A,B) from Figure 6.1(a).
When this constructor is copied to class X2 using the original class hier-
archy flattening algorithm, an extra parameter of type D is added to it,
because class X2 already declares a constructor with parameter type list
[A,B]. Our improved algorithm for CHF, by contrast, will not add a distin-
guishing parameter if there exists a permutation of the parameter type
list [A,B] for which X2 does not have a corresponding constructor. This is
the case for permutation [B,A], so the constructor X1(A,B)will be copied
as X2(B,A) instead of X2(A,B,D). As a result, OFI will be able to create a
factory method that requires one parameter of type java.lang.Object less
than the factory method shown in Figure 6.8.

Note that the technique presented here can be extended so that it can
serve as a generic preprocessing step for OFI that removes unnecessary
arguments from constructors, reordering their arguments to avoid colli-
sions if necessary. However, as the usefulness of this extension may be
limited in practice, we decided not implement it.

6.5 Evaluation

For our evaluation in Chapter 5 we implemented CHF, IM, MM, and OFI
as part of an obfuscatorwe built on top of Soot. To evaluate the techniques
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# application # transformable app. size (MB)
classes interfaces classes (CHF) pre IO post IO

avrora 1836 83 1657 (90%) 4.1 2.9
batik 3787 856 3383 (89%) 12.5 9.3
eclipse 5213 1261 3886 (75%) 25.7 17.2
fop 4033 446 3105 (77%) 11.0 8.8
h2 1843 78 1454 (79%) 9.3 7.0
jython 3702 166 941 (25%) 11.8 10.6
luindex 605 28 510 (84%) 1.9 1.2
lusearch 608 28 510 (84%) 1.9 1.2
pmd 1999 451 1507 (75%) 5.6 4.4
sunflow 679 59 557 (82%) 2.0 1.6
tomcat 2173 268 1538 (71%) 10.1 7.1
xalan 2460 426 2111 (86%) 9.6 7.6

Table 6.1: Overview of DaCapo 9.12-bach benchmarks before and after Identi-
fier Obfuscation (IO).

discussed in this chapter, we extended this obfuscator’s implementation
of CHF with the improvement discussed in Section 6.4.4, and we added
implementations of the improved versions of MM and OFI.

Before we continue, it is worth noting that the improvements pre-
sented in this chapter do not affect which classes, methods, and fields
can be transformed. They also do not fundamentally change how classes
and their members are transformed. The transformations presented in
this chapter use the same set of basic operations as the transformations
discussed in Chapters 2-4, albeit in a different order, or under differ-
ent circumstances. As a result, the same limitations and restrictions
apply, and all previously asserted statements with respect to correctness,
maintainability, and reliability remain valid.

6.5.1 Benchmarks

We evaluated our implementation of the techniques we present in this
chapter on benchmarks from the 9.12-bach release of the DaCapo bench-
mark suite [14]. To allow for easier comparison, we use the same bench-
marks as in Chapter 5. Table 6.1 gives an overview of them.

Below we present the results obtained using seven different configu-
rations of our obfuscator. First, as a baseline for our comparison, we use
the original version of the benchmark from the DaCapo suite, but with
field and method identifiers obfuscated. This obfuscation technique is
also applied in all other configurations. Doing so is important to make
meaningful application size comparisons, as identifier names make up a
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large portion of the total size of an application. This is confirmed by the
two right-most columns of Table 6.1, which show rather large differences
in application size before and after identifier obfuscation.

For the second configuration, we generated benchmark versions us-
ingCHF,MM, andOFI, butwithout interfacemerging. For the remaining
five configurations, we used CHF, MM, OFI, and IM with thresholds
10, 20, 30, 40, and 50, respectively. The threshold for interface merging
indicates how aggressively it should be applied. It corresponds to the
maximumnumber of classes bywhich each interface can be implemented
before merging stops. For all configurations involving OFI, we set τ to 3.

For each configuration, except the baseline, we generated ten different
versions of each benchmark obtained using ten different random seeds.
The random seeds are used to group interfaces during IM, and to break
ties during MM and OFI. In the next sections, we report average results
for those ten versions. As in Chapter 5, the method bodies of dummy
methods simply consist of a return statement.

6.5.2 Overhead

Figure 6.10 and Figure 6.11 show the overhead of our transformations
in terms of application size and execution time, respectively. Results
obtained using the techniques described in Chapters 2-4 are shown as
diamonds. As shown in Figure 6.10, our improved method merging
strategy greatly outperforms the old one. For an IM threshold of 50 the
application size overhead is reduced by 31% on average. The largest
reduction was observed for eclipse, for which the overhead dropped
from 525% to 295%, which amounts to a reduction of 44%. Furthermore,
whereas heavily obfuscated versions of half of the benchmarks were
originally more than five times larger than the original applications,
almost all versions of the benchmarks are now less than four times larger.
The only exception is batik, for which the size is 4.1 times larger.

Figure 6.11 shows the median relative execution time of obfuscated
versions of our benchmarks during steady-state execution. In this stage
of the execution the virtual machine has performed most of its opti-
mizations, and the bytecode is no longer interpreted. As a result, the
execution times measured in this phase most closely resemble the ac-
tual execution times of the applications, as there is little overhead from
the virtual machine. To be able to compare the results of the techniques
presented in this chapter to the ones in Chapters 2-4, wemeasured the ex-
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Figure 6.10: Application size overhead of the obfuscations. All values are
relative to the original benchmarks.
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Figure 6.11: Median relative execution time overhead of the obfuscations.
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ecution times of all benchmark versions on computing nodes consisting
of dual-socket Intel Xeon L5520 processors with 12 GB of memory.

For nearly all versions of eclipse, fop and h2, and some versions of
xalan we obtained considerable improvements in execution time. Es-
pecially for eclipse, the obtained reductions in execution time are very
large. For the most heavily obfuscated versions of this benchmark, our
optimizations reduce the execution time overhead by 95%. For lusearch,
sunflow and tomcat the absolute improvements in execution time are
smaller than for some of the other benchmarks. However, we are still
able to reduce their overhead between 16% and 69%, on average.

Most of the performance improvements are a result of OFI, as factory
method parameter type lists are on average 65% shorter. However, the
improved version ofMM also has a positive impact on performance, with
parameter type lists of regular methods being 27% shorter, on average.

For some of our benchmarks the improvements presented in this
chapter have little effect on their execution time. However, for most of
these benchmarks, the execution time overhead of the transformations
was already small. Furthermore, as discussed in Chapter 5, some of the
overhead is also attributed to CHF, for which we did not present any
performance improvements.

In summary, our techniques result in overall size improvements, and
more acceptable run-time overheads. Furthermore, because the new
object factory insertion technique uses profile information, the overhead
of the factories can be controlled better, and is hence more consistent.
As a result, we no longer have large variations in execution time as we
did for the unimproved versions of our transformations.

6.5.3 Provided Protection

As in Chapter 5, we measured the observable level of protection offered
by our techniques using twodifferentmetrics. Tomeasure the complexity
of transformed applications from the perspective of an automated static
analysis tool, we used the average points-to set size as a metric. Large
values for this metric imply that the results of other reverse engineering
processes, such as virtual call resolution and call graph construction
become less precise. Furthermore, additional analysis techniques, such
as program slicing [70, 79], that rely on this information also become
less precise, and often also slower and more memory-intensive, because
more information needs to be tracked and propagated.
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Figure 6.12: Level of protection offered by the obfuscations.

In Figure 6.12, the graphs above the x-axis shows the average points-
to set size of the different benchmark versions, obtained using WALA’s
01-container-CFA analysis, the most precise pointer analysis offered by
the tool [30]. As shown in this figure, the techniques presented in this
chapter cause a small reduction compared to previous results. This
reduction is mainly caused by the fact that the transformed programs
contain more local variables that correspond to method parameters,
and that the points-to set sizes of those variables are smaller. The main
culprit of the latter is method merging. Because fewer methods are
merged, method parameters and their points-to sets are not merged as
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aggressively. As a result, more parameters with smaller points-to sets
remain, which causes the average points-to set size to decrease.

To measure the complexity of transformed programs from the per-
spective of a human attacker, we used the QMOOD understandability
metric [10], as we did in Chapter 5. In Figure 6.12, the charts below
the x-axis give an overview of the understandability scores for each of
the benchmark versions relative to their respective baselines. For five
of the benchmarks, we obtained understandability scores that are com-
parable to those obtained using the old techniques. For batik, eclipse,
fop, h2, pmd, and xalan, we obtained slightly worse scores. Further
research revealed that these scores were caused by the improved method
merging technique presented in this chapter, which can reduce the cou-
pling component of QMOOD’s understandability metric. The coupling
metric measures the average number of classes each class refers to by
means of its field and method signatures. In order to be cost-effective,
the new method merging algorithm often terminates before the original
one would. As a result, the parameter type lists of merged methods are
shorter, and include parameters of fewer different types.

For avrora, we observed a slight reduction in understandability. This
was caused by an increase in the understandability metric’s complexity
component, which corresponds to the average number of methods in
each class. Again, because fewer methods are merged, more dummy
methods remain, which causes the perceived complexity to increase.
This effect was most noticeable for avrora. We also observed it for other
benchmarks, but in those cases it was often masked by a (larger) re-
duction in coupling. However, the fact that additional empty dummy
methods can lead to increases in the complexity of a program highlights
an important flaw in QMOOD’s complexity metric. While we do believe
that the number of methods influences the complexity of an application
to some extent, it is a poor complexity metric in itself.



Chapter 7

Prototyping and Practical Issues

Enabling the transformations discussed in the previous chapters on
the applications in the DaCapo benchmark suite [14] required a signifi-
cant engineering effort. We not only had to make changes to Soot [74],
WALA [30], and TamiFlex [16], but we also had to develop several tools
to collect additional information required during transformation. In
this chapter we give an overview of these tools, and discuss some of the
technical challenges we had to overcome.

7.1 Experimental Setup

Our experimental setup consists of two parts. The first part focuses on
transforming applications using our obfuscator. The second part focuses
on evaluating the protection-wise effectiveness of our transformations,
and measuring the overhead of transformed applications.

7.1.1 Transformation

As mentioned in Chapters 5 and 6, we implemented our transformations
in an obfuscator on top of Soot, a program analysis and transformation
framework for Java. To transform applications correctly and with limited
overhead, we use Soot in combination with TamiFlex and several tools
we developed to collect and construct the input files for our obfuscator.
Figure 7.1 gives an overview of these tools and their required inputs.

To transform an application, say the h2 benchmark from the DaCapo
suite, we first use our unpacking tool to gather all the application’s classes
in a single directory, such that they can be loaded easily by our obfusca-
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Figure 7.1: Transformation setup

tor. We do this because the DaCapo benchmark suite is distributed as a
single jar file that contains a test harness and all fourteen benchmarks.
Inside this jar file multiple directories and archives store the inputs for
the benchmarks, as well as their code and several libraries they depend
on. Note that even though this is an effective way of storing the bench-
marks such that they can be invoked and distributed easily, it does make
transforming these applications less straightforward.

To gather an application’s classes, our tool requires a description
file that tells it which directories and archives to unpack. When it is
finished, it generates an expanded description file that contains for each
directory and archive the classes gathered from it. This file is used by our
obfuscator to look up the location of each class in the original program,
and determine which classes belong to the same directory or archive.

Next, we use our Java Virtual Machine Tool Interface (JVMTI)
agent [58, 60], and TamiFlex’s Play-out Agent to collect information
about reflective calls performed during the execution of the application.
We also instruct the Play-out Agent to output all classes loaded by the
virtual machine in the directory in which we unpacked the application.
We do this to ensure that any classes that are dynamically generated by
the application are also analyzed by our obfuscator.

Third, we use our profiling library to collect the execution counts
required by our improved object creation insertion transformation.

Finally, we collect points-to information about the program using
WALA. Because WALA is unable to fully analyze programs that con-
tain reflective operations, we first rewrite the application with Booster.
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Booster takes two inputs; an application in the form of a set of classes,
and a list of reflective operations performed by the application. It outputs
a rewritten application (also as a set of classes) in which each reflective
operation has been replaced by explicit method calls or operations. We
then use WALA to perform a 01-container-CFA points-to analysis on the
rewritten program and output the results to file.

When provided with the necessary input files, our obfuscator trans-
forms the application’s class files and outputs them to a specified target
directory. It also outputs a file (not shown in Figure 7.1) containing
information about which class files in the original application should
be updated, which new class files were created during obfuscation, and
where those classes should be inserted in the application.

7.1.2 Evaluation

We evaluated the effect of our transformations using the setup depicted
in Figure 7.2. Given the class files output by our obfuscator we compute
several static metrics, such as application size and understandability.
To measure dynamic metrics, we first use our packer tool to assemble
the obfuscated class files into an actual obfuscated application. Starting
from the original application, the set obfuscated class files, the expanded
description file, and information from our obfuscator about which new
class fileswere added, our packer tool updates the original application by
replacing existing class files by their obfuscated version, and by adding
the new class files created by our obfuscator. The result is a new stand-
alone application that can be executed in the same way as the original
one. For the resulting application we compute several dynamic metrics,
including execution time and memory consumption.

Finally, we use the Play-out Agent to collect a list of reflective calls for
the transformed application, such that we can transform it using Booster,
and use WALA to compute the points-to sets.

7.1.3 Unpacking and Repacking Applications

The main reason we developed tools to unpack and repack applications,
is that Soot is not capable of analyzing and transforming applications,
such as those in the DaCapo benchmark suite, that consist of a nested
collection of archives and directories. In the past, this problem has been
circumvented by using the Play-out Agent to dump all classes loaded
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Figure 7.2: Evaluation setup for the h2 benchmark from the DaCapo suite.

during the execution of an application, transform those classes with Soot,
and then reinsert the transformed classes at run-time with the Play-in
Agent [5, 16]. We opted against this approach for several reasons.

Firstly, our transformations operate under a closedworld assumption,
which means that all classes must be available at obfuscation time. The
Play-out Agent only dumps classes that are loaded during the execu-
tion of an application. Hence, relying solely on the Play-out Agent can
significantly limit the number of classes Soot has access to, depending
on the inputs used when running the application under the agent. The
same holds for the list of reflective calls and the set of dynamic classes
output by the agent. Whether or not certain calls will be collected, or
certain dynamic classes are generated, also depends on the coverage of
the inputs. However, in practice it may be much easier to define a set of
inputs that cover all reflective calls and all dynamically generated classes
(of which there are usually few) than it is to define a set of inputs that
causes all classes to be loaded.

Secondly, the Play-out Agent does not provide information about
the directories or archives a class was loaded from. This information
is important for our transformations to preserve class loader behavior.
One may argue, however, that we do not need to take into account the
location of each class file during transformation, and that we can simply
use the Play-in Agent to load the transformed classes as they are needed.
However, even though the Play-in Agent was designed to dynamically
replace the definition of a set of classes, using it would not allow us
to ignore class loader behavior. The reason is that the agent is imple-
mented as a java.lang.instrument.ClassFileTransformer, which is part of
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Java’s instrumentation API. Classes that implement ClassFileTransformer
are given the opportunity to change the definition of a class after it has
been loaded, but before it is actually defined by the virtual machine.
Hence, to preserve program behavior the class should already have been
loaded by the correct class loader at the point the agent is invoked.

Furthermore, even if the agent would be invoked before the class
was loaded, and would hence operate as a class loader, it would still not
know when it is allowed to load a specific class from its collection of
transformed classes. There may be some unlikely cases where one of
the program’s class loaders is able to load a class with a certain name,
but another class loader is not. Since the task of both these class loaders
would be taken over by the Play-in Agent it would be very difficult, if
not impossible to automatically determine in which case the agent is
allowed to load a specific class.

Thirdly, the Play-out Agent dumps all classes in a single directory,
regardless of whether they are application classes or library classes.
Without additional information, Soot is unable to determine whether
or not a certain class in this directory is a library class that it cannot
transform. Even though Soot does allow the user to manually specify by
means of inclusion and exclusion rules which classes are library classes
and which are not, we found this to be impractical.

Finally, even if we would have all the necessary information to trans-
form the classes and load them correctly using an agent, we would still
need to rely on this agent for the program to operate correctly. This
makes the application less self-contained, which is not what we want.
Note that it is of course possible to include the Play-in Agent as part of
the application. However, we chose not to do so. Instead, we developed
our packing and unpacking tools to solve all of the above problems.

original use: original classes still there, cannot for obfuscation,
maybe empty ones, also by name, not obfuscatable, but we do not
do that

Our unpacking tool operates fully automatically, but it does require
a description of an application’s directories and archives in XML format.
As an example, Figure 7.3 shows part of the description file for the h2
benchmark from the DaCapo suite. Note that the file explicitly specifies
which jar files to include from the “jar” directory. This is because this
directory contains all 50 jar files that make up the different benchmarks.
Since we only transform one benchmark at a time, we only select the
archives relevant to that benchmark.
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<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE file SYSTEM "ClassContainer.dtd">
<container path="dacapo-9.12-bach.jar">

<container path="jar/derbyTesting.jar"/>
<container path="jar/junit-3.8.1.jar"/>
<container path="jar/h2-1.2.121.jar"/>
<container path="jar/tpcc.jar"/>

</container>

Figure 7.3: User-specified XML-description of the h2 benchmark.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE container SYSTEM "ClassContainer.dtd">
<container path="dacapo-9.12-bach.jar">

<container path="jar/derbyTesting.jar">
<classfile filename="FullCollationTests.class"

name="org.apache.<...>.lang.FullCollationTests"
package="org/apache/<...>/lang" path=""/>

...
</container>
...

</container>

Figure 7.4: Automatically generated XML-description of the h2 benchmark.

From the description file in Figure 7.3 our tool knows exactly which
directories to traverse and which archives to unpack. As it is doing
this, it expands the description file as shown in Figure 7.4. This file
contains for each directory and archive which classes they contain, and
for each class the name of the file that contains the class file definition,
as well as the name of the class, and the package to which it belongs.
The path attribute is only required in case the class file does not reside
in a directory structure that corresponds to its package. The resulting
expanded file serves a dual purpose. Ourmodified version of Soot uses it
to figure out which of the provided classes are actual application classes,
and where they are located. The expanded description file is also used
by our packing tool to repack the application after transformation, such
that it can be executed without the Play-in Agent.

7.1.4 Combining Soot and WALA

To determine the new base types for array creation expressions our class
hierarchy flattening transformation relies points-to information about
casts and instanceof expressions that involve array instances, which we
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compute using WALA’s 01-container-CFA pointer analysis. Unfortu-
nately, the internal representations used by Soot and WALA are incom-
patible; our Soot transformations operate on Jimple code, whereasWALA
internally represents code in single static assignment (SSA) form [26].
Thismakes it difficult to link points-to information computed forWALA’s
SSA instructions to Jimple instructions. Fortunately, when converting
a program to its internal representation, both tools tag the instructions
in their respective internal representations with the source line number
information of the corresponding bytecode instructions. Since there is
no need for an obfuscator to preserve the line number information, we
remove it, and replace it by specially crafted line number information
that we can use to uniquely identify relevant instructions. That way, we
can correlate the information computed by WALA on its SSA representa-
tion while transforming Jimple code in Soot. After it is no longer needed
during transformation, the custom line number information is removed
to reduce the size of the application.

7.1.5 Profiling Library

To count how many times each constructor is invoked to create a new
object, we instrumented each of our benchmarks statically. We devel-
oped a simple tool based around the same set of utility classes that we
originally developed for our obfuscator. Our tool prepends each call to
an application class constructor used to create a new object (i.e., not a
super call) with a call to an instrumentation method in a simple profil-
ing/tracing library. Assuming that class loaders in an application are
well-behaved, meaning that they resort to the system class loader when
they are not able to load a class themselves, our library can simply be
loaded by adding it to the boot class path of the virtual machine.

Note that even though the Java Virtual Machine offers two APIs for
dynamic instrumentation, i.e., the JVMTI [58] and the java.lang.instrument
API [57], which do not require programs to be rewritten up front, we
decided not to use either of them. The reason is that the JVMTI does
not provide a means of intercepting object creations in a fine-grained
manner. While it is possible to register callbacks for when objects are
created and when methods are entered/exited, figuring out whether
or not an invocation of a constructor constitutes an object creation or a
super call simply from the information passed to the callback routines
can be very hard, if not impossible for arbitrary bytecode.

Furthermore, if we had used the java.lang.instrument interface, which
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enables more fine-grained control over the application, we would have
had to create a ClassTransformer to insert the tracing code. In doing so,
we would have needed to either re-implement part of our utility classes
to work with ASM [17], a bytecode manipulation framework commonly
used in combination with ClassTransformers, or find a way to interface
with our utility classes, which heavily depend on Soot. We decided to
use neither of the approaches, and just instrument the code statically.
Even though applications then need to be rewritten before they can be
profiled, we feel this is an acceptable compromise, especially given the
code that was already available.

Furthermore, because the actual profiling code is not part of the
applications, we only had to rewrite the applications once to inject the
calls, after which we could develop the profiling library separately.

7.1.6 JVMTI Agent

To complement the output of TamiFlex’s Play-in Agent with information
about previously unsupported reflective calls, we developed a JVMTI
agent to intercept calls to two additionalmethods: java.lang.Class.getSuper-
Class() and java.lang.Class.isAssignableFrom(...). Preserving the input-
output behavior of these methods is especially important since they
query the subtype relations between a program’s classes, which may be
altered by our transformations if not taken into account. Because these
methods have native implementations, we were not able to intercept
them in the sameway the Play-in Agent does, which is by adding logging
calls before the return instructions in the bytecode. Fortunately, it was
easy to create wrappers for these methods to log their arguments using
the JVMTI.

7.2 Changes to Soot

Soot was an excellent tool to use as a starting point for our obfuscator,
because its high-level intermediate Jimple representation enabled us
to work at a high abstraction level. This meant that we did not have
to take into account any details about the underlying bytecode, unless
we absolutely wanted to. Unfortunately, as far as the implementation
of our techniques goes, we had little (refactoring) support in Soot to
build on. For instance, in Soot it is possible to change the name of a
method, and doing so will result in all the necessary internal caches
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being updated such that the change is reflected in the final bytecode.
However, changing the name of a method only does exactly that. The
version of Soot from which we started was not capable of computing
the set of methods that should keep the same signature as the method
whose name is changed, and of updating those methods’ names as well.

The authors of JBCO [12], another obfuscator that also features
method renaming, had already made an attempt at code to do this.
However, we found that their implementation did not always compute
the method sets correctly, and that it was difficult to reuse and configure.
So rather than trying to fix their implementation, we created our own.
Overall, we had to implement most of the refactoring support for our
transformations ourselves, including techniques to encapsulate fields,
to analyze whether the visibility of class members can be changed, to
detect object creations, etc.

Because Soot is under active development, we decided to make as
few changes to its original source code as possible. Instead, we built
our obfuscator on top of it, and only made changes to Soot if they were
unavoidable. Most of these changes are very small and are required
to install additional callbacks such that our tool can be informed when
Soot has performed certain actions. One of the callbacks installed by our
obfuscator notifies it when Soot has finished loading all classes. When
this callback is triggered, our obfuscator uses the application’s expanded
description file to mark each class either as an application class, or as a
library class. Unfortunately, it cannot always use the information in this
file as is. This is because our transformations assume that all application
classes build on a set of self-contained library classes. However, some
of the DaCapo benchmarks redefine classes from the standard library.
Since these classes are part of a benchmark, they would hence be treated
as application classes. For some benchmarks this leads to cases where
actual library classes depend on library classes that were redefined as ap-
plication classes. Since this conflicts with our requirements, we extended
Soot to iteratively mark application classes as library classes until the set
of library classes is self-contained, essentially turning the application
classes into non-transformable classes. Besides reflection, this is also one
of the reasons why the number of transformable classes in Table 5.1 is
less than the actual number of classes that make up the application.

Other than to add support for callbacks, we also made some changes
to Soot to improve the reproducibility of our results. Thismainly involved
providing implementations of hashCode for classes implementing Soot’s
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data structures. Furthermorewe added support for several small features
needed to transform the DaCapo benchmarks. For instance, we made
sure that Soot can handle classes whose names do not match the name
of the class file they are defined in.

Finally, we added support for several additional reflective operations
whose information was not yet tracked by Soot, and made it easier to
track information about new reflective operations. Originally, whenever
support for such an operation was needed, code had to be edited in
different locations. To avoid this, we refactored the code and removed
the parts that were specific to each reflective operation. These parts can
now be generated automatically from a simple configuration file that
contains a single entry for each reflective operation. Additional reflective
operations can now be supported simply by adding a new entry to this
file; the supporting code is generated automatically.

7.3 Missing Classes and Interfaces

Many of the DaCapo benchmarks refer to classes and interfaces that are
not part of the application itself, nor of the standard library. Special care
must be taken when transforming programs that contain such references.
Because the referenced types do not exist, they cannot be loaded by any
class loader. Furthermore, any classes and interfaces that (indirectly)
extend or implement these types can also not be loaded, because the
definition of at least one of their supertypes is missing. In what follows,
we simply refer to all missing types, and all other classes and interfaces
that cannot be loaded because of them, as unloadable types.

To preserve program behavior, our transformations must sometimes
treat code that references unloadable types differently than code that
does not. This is because certain changes to the code can affect whether
or not a virtual machine tries to load an unloadable type, which in turn
may affect program behavior. Unfortunately, we cannot avoid this added
complexity by removing all references to those types from the application.
This is because the behavior of the program may depend on the fact
that these types cannot be loaded, or that they do not exist. In rare
cases a program may, for instance, expect a ClassNotFoundException or a
NoClassDefFoundError when trying to execute a certain code fragment1.

1Note that this would be considered the opposite of good programming practice.
However, it is possible in practice, so we need to take it into account.
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One case in which we pay special attention to unloadable types is
method merging. We can, for instance, not merge two method sets for
which the return type of the methods in the first set is void and the return
type of the methods in the second set is an unloadable type. If one of
the methods in the first set was executed in the original program, the
virtual machine will try to load the unloadable type in the transformed
program, which may result in a change in program behavior.

Despite taking into account unloadable types during transformation,
at some point we were still having problems with the fop benchmark.
Transformed versions of this benchmark failed with a ClassNotFoundEx-
ception for a class that did not exist. We did not expect such behavior be-
cause none of the executed code contained any references to unloadable
types. While debugging we discovered that the exception was actually
triggered by the bytecode verifier, because the transformed program
executed without problems when we disabled bytecode verification. By
researching the verification process and instrumenting the Java HotSpot
Virtual Machine to gain additional insights into the verification process,
we discovered that the problemwas caused by a combination of our trans-
formations, Soot’s Jimple to bytecode conversion process, and the fact
that the bytecode of the fop benchmark does not contain StackMapTables.

StackMapTables were introduced in Java 1.6 to speed up bytecode
verification by having each method contain type information about its
local variables. That way, the bytecode verifier does not have to compute
this information using a (slow) iterative data flow algorithm2. Instead,
a single pass over each method’s code suffices. However, because fop’s
bytecode does not contain StackMapTables, the types of its method’s
local variables are computed using the iterative data flow algorithm.

This algorithm operates as follows. As long as no fixed point is
reached, it propagates the possible types of all local variables and stack
locations from instructions to their successors. At instructions that have
multiple predecessors, it merges the type information. In doing so, it
checkswhether there exists a type for all variables and stack locations that
is assignment-compatible with all the types computed for the respective
variables and stack locations at each of the instructions’ predecessors.
Depending on the different types of values assigned to each variable,
it may be necessary to load additional types to perform these checks.

2Even though local variables are untyped in bytecode, the verifier still performs
checks to ensure that at all points in the code they hold values of the correct type, such
that it can verify that assignments, method calls, etc., are type-safe.
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static void m(int i){ 
   A a; 
   if(i > 0) 
      a = new B(); 
   else 
      a = new C(); 
   a.m(); 
} 

1 
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4 
5 
6 
7 
8 

(a) source code

static void m(int i){ 
   iload_0 
   ifle 15 
   new B 
   dup 
   invokespecial B."<init>":()V 
   astore_1 
   goto 23 
   new C 
   dup 
   invokespecial C."<init>":()V 
   astore_1 
   aload_1 
   invokevirtual A.m:()V 
   return 
} 
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8 

11 
12 
15 
18 
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22 
23 
24 
27 

(b) bytecode

Figure 7.5: Source code fragment using a single local variable to hold objects
of two different types, and its corresponding bytecode.

It is important to note, however, that additional types are only loaded
when potentially conflicting type information needs to be merged. For
instance, when all of an instruction’s predecessors have computed the
same type for a variable, the virtual machine will not load this type,
because there is no potential conflict.

To get a better understanding of how the algorithm works, consider
the method in Figure 7.5(a). Its corresponding bytecode in Figure 7.5(b)
uses a single local variable with index 1 to store the results of new B
and new C at bytecode offsets 11 and 22, respectively. At the aload_1
instruction at offset 23 (which has predecessors at offsets 12 and 22) this
information is merged, and the type of the variable is computed as A,
the lowest common ancestor of types B and C. This information is then
further used to verify whether or not the invocation a.m() is type-safe.

Now, consider the method in Figure 7.6(a), which uses two differ-
ent local variables b and c to store the results of new B() and new C(),
respectively. This method can be compiled to a number of different
bytecode methods, two of which are shown in Figures 7.6(b) and 7.6(c).
The bytecode in Figure 7.6(b) uses a single local variable to hold the
instances of classes B and C. This bytecode can be generated because the
scopes of b and c do not overlap. However, it is also possible to generate
bytecode that uses a separate local variable to hold each of the instances,
as shown in Figure 7.6(c). In that case, the result of new B is stored in
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static void m(int i){ 
   if(i > 0) 
      B b = new B(); 
   else 
      C c = new C(); 
} 

1 
2 
3 
4 
5 
6 

(a) source code

static void m(int i){ 
   iload_0 
   ifle 15 
   new B 
   dup 
   invokespecial B."<init>":()V 
   astore_1 
   goto 23 
   new C 
   dup 
   invokespecial C."<init>":()V 
   astore_1 
   return 
} 
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(b) bytecode version 1

static void m(int i){ 
   iload_0 
   ifle 15 
   new B 
   dup 
   invokespecial B."<init>":()V 
   astore_1 
   goto 23 
   new C 
   dup 
   invokespecial C."<init>":()V 
   astore_2 
   return 
} 
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23 

(c) bytecode version 2

Figure 7.6: Source code fragment using separate local variables to hold objects
of two different types, and two of its possible bytecode versions. In (c) the
change compared to (b) is shown in red.

local variable 1, whereas the result of new C is stored in local variable 2.
Even though both bytecode versions seem semantically equivalent,

they cause different verifier behavior when class A is missing. In that
case, the bytecode in Figure 7.6(b) results in an error during verification,
whereas the code in Figure 7.6(c) does not. The reason is as follows. With
the exception of the call to a.m(), the bytecode in Figure 7.6(b) is identical
to the code in Figure 7.5(b), which means that type information about its
local variables is propagated and merged in the same way. As a result,
the bytecode verifier will try to load class A when merging the type
information for local variable 1 at bytecode index 23, just like it would for
the code in Figure 7.5(b). However, for the bytecode in Figure 7.6(c) no
type information needs to be merged at the return instruction, because
variables 1 and 2 can only each contain instances of a single type. As a
result, the lowest common ancestor of classes B and C does not need to
be computed, and the virtual machine will not try to load class A.

The behavior of an application may hence change depending on
whether or not (and where) the local variables and stack locations of
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its methods are reused. In our case, the behavior of the fop bench-
mark changed because two local variables in the original bytecode were
merged into a single one after transformation, which made the virtual
machine try to load a non-existing supertype3. The original variables
were merged as a result of the fact that our transformations sometimes
introduce additional local variables, and because they operate on Jimple
code, instead of directly on bytecode. The reason is as follows. Before
Soot hands over control to our transformations, it first loads all provided
class files and converts their bytecode to Jimple code. In doing so, it
converts all local variables and stack locations used in the bytecode to
Jimple local variables. Before exiting, Soot converts the Jimple code back
to bytecode, in which case it translates the Jimple local variables back
to local variable and stack locations in the bytecode. Because our trans-
formations sometimes introduce additional variables, they may affect
which Jimple variables are mapped to the same variables in bytecode.
As a result, they can unintentionally affect whether or not the verifier
will try to load unloadable types, even if the part of the code they modify
does not contain references to such types.

However, even if the Jimple code is not touched by our transforma-
tions, the generated bytecode may still differ from the original bytecode.
This is because Soot performs several optimizations on the Jimple code
before converting it to bytecode. One of the optimizations is local variable
packing. This optimization tries to reduce the number of local variables
needed in bytecode by trying to reuse the same local variables in the
bytecode for different Jimple local variables, similar to register allocation
in traditional compilers [7]. As is done during register allocation, an
interference graph is constructed based on the live ranges of the vari-
ables. Whenever two variables do not interfere, they can be mapped to
the same bytecode local variable.

To prevent the local variable packer from merging variables of un-
loadable types with other variables, we modified the algorithm to create
artificial interferences between each Jimple local variable declared of an
unloadable type and all variables of other types. That way all Jimple
variables of unloadable types are mapped to their own local variable in
bytecode. As a result, the virtual machine will not try to load unloadable
types during bytecode verification. Admittedly, even though this solved
the problem in our case, it does not solve the problem in general. For

3As a comparison, a similar problem would occur when the bytecode in Figure 7.6(c)
is transformed into the code in Figure 7.6(b), assuming that class A is missing.
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instance, assume that a program relies on the fact that the method in
Figure 7.6(b) cannot be verified when class A does not exist. When this
method is transformed into the one in Figure 7.6(c), the behavior of the
program changes. Note that even though we expect such cases to be rare
in practice, a more general approach to this problem is needed.

One such approach (which we did not implement or evaluate) could
be the following. For bytecode that contains references to unloadable
types, we would still allow Soot to generate Jimple code, so that all
analyses and transformations that operate on such code can still be used.
However, in that case we should also instruct Soot to treat such Jimple
code as non-transformable, and make sure that it outputs the original
bytecode for that Jimple code, instead of its own optimized version.

As a side note, it is worth mentioning that in the case of Figure 7.6(b)
there is actually no real need to merge the type information at the return
instruction, since the original variables in the source code programwould
have been out of scope at that point. However, the bytecode verifier still
merges the type information because it does not take into account which
instructions may follow (if any), nor does it know the source code for
which the bytecodewas generated. As far as it is concerned, the bytecode
could be generated for the method in Figure 7.5(a), in which case the
type information needs to be merged.

All of this changes when the code is compiled to contain StackMap-
Tables. In that case, the bytecode actually contains some information
about how the variables are used in source code. The corresponding in-
structions of the methods in Figures 7.5(a) and 7.6(a) can still be identical,
with the exception of the aload_1 and invokevirtual instructions required
to implement the call a.m(). However, their respective StackMapTables
will contain different information. The StackMapTable for the method in
Figure 7.5(a) will indicate that the type of local variable 1 at the instruc-
tion at offset 23 has type A, like the source code variable. By contrast,
the StackMapTable for the method in Figure 7.6(a) will contain no such
information, from which the verifier can deduce that the corresponding
source code variables went out of scope, and that the type of the variable
does not need to be merged because it no longer matters. As a result,
neither of the bytecode versions shown in Figures 7.6(b) and 7.6(c) would
result in an exception during verification when class A is missing.

It is important to note that, even though StackMapTables can be used
to avoid changes in the behavior of the bytecode verifier for our simple
example program, we have not investigated whether or not they can
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be used to avoid this problem in general, nor have we looked into how
program transformation frameworks should treat the StackMapTables of
methods whose code contains references to unloadable classes.

7.4 Changes to TamiFlex and WALA

During development we made several changes to TamiFlex’s Play-in
Agent and Booster. We primarily extended the Play-in Agent to add sup-
port for additional reflective calls as needed to transform the DaCapo
benchmarks in a behavior-preserving way. Our incentive for extending
Booster was mainly to obtain more precise call graphs and points-to
analyses when using WALA. Despite using WALA in combination with
Booster, we were at first not getting the expected results. More specifi-
cally, the call graphs computed by WALA did not always include meth-
ods of which we were sure they were executed at run time. Normally,
one would expect that the static call graphs computed by WALA should
at least cover the dynamic call graphs constructed during execution. This
was not always the case, however.

To track down the problem more easily, we created a Java Virtual
Machine agent based on the JVMTI. We opted for this interface because
it can be used to trace method calls by registering callbacks for Method-
Entry and MethodExit events. Using our agent we could easily construct
dynamic call graphs, which we could then automatically compare to
the static call graphs constructed by WALA to detect missing nodes
and edges. From the differences between the call graphs we were able
to quickly diagnose why some nodes and edges were missing, and fix
several bugs in Booster and WALA.

To improve WALA’s analyses we extended Booster to add explicit
calls to the static initializer methods of classes at all program points
where the virtual machine could potentially invoke them. We did so to
ensure that static initializer calls are also modeled correctly by WALA.
Admittedly, using Booster to perform this task is somewhat discouraged,
because applications are not supposed to call the static initializers of
their classes directly. However, in practice this is not really a problem,
since we never plan on executing the boosted applications, and only use
them for static analysis with WALA. Still, in the future it may be worth
the effort to investigate how the edges can be added directly in WALA,
such that they are also present in the call graphs of programs that have
not been rewritten by Booster. In our case it was just easier to add the
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calls in Booster, because we had to use Booster to inline the reflective
calls in our benchmarks anyway, and because we were more familiar
with the code base of Booster, which is based on Soot.

7.5 Evaluation and Debugging

Over the years we have generated and evaluated many thousands of
transformed program versions. Because generating and evaluating all
these applications was a resource-intensive task, we relied on the Flem-
ish tier-1 Supercomputer4 to carry out some of our experiments. To
coordinate our experiments, we built a framework. Based on a config-
uration file that specifies which applications should be used as input,
which transformations should be applied, and which metrics should be
computed, it automatically runs all necessary experiments on this super-
computer. Our framework submits experiments in the form of jobs to a
cluster of computers. It allows modeling the dependencies between jobs,
such that jobs can wait for each other to complete, or run simultaneously.
For instance, we can enforce that a program must first be transformed
before its execution time is measured. However, the latter can be done
in parallel with measuring its memory consumption, or running Booster
and WALA on it. For easy post-processing our framework outputs the
results of all jobs to an SQLite database.

Even though we were able to solve many problems by analyzing
dumps of the Jimple code, we also had to do a fair amount of run-time
debugging. For this we used a combination of off-the shelf debuggers
and tools we wrote ourselves. The latter were mostly modified versions
of the virtual machine agents we had already written to perform certain
logging or tracing tasks. One particular debugging method that turned
out to be very effective was intercepting all exceptions thrown by an
application during its execution and comparing the stack traces of these
exceptions before and after transformation. In many cases the exceptions
thrown by a program are caught at one point or another during execution,
in which case the user is not presented with an exception stack trace.
Even if the user is presented with a stack trace, it does not always contain
relevant information, because multiple exceptions may have occurred
before the program finally crashed. In those cases the actual cause of
the problem can often be found by looking at the stack traces of all the
exceptions thrown during the execution of the program.

4https://www.vscentrum.be/
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While performing research presented in this dissertation, we not
only modified our agents for debugging purposes. We also adapted
them to compute several overhead metrics, such as the total dynamic
number of arguments over all methods, as well as the heap and non-heap
memory used by an application. Many of the results obtained using
these modified agents are presented in Chapter 5 and in Section 6.5.

7.6 Open Sourcing

Many of our bug fixes for Soot, WALA, and TamiFlex have already been
made public. The source code of all other modifications and extensions
to these tools, as well as the source code of all tools and scripts that we
developed to perform the research presented in this dissertation can be
found at http://gujto.elis.ugent.be.

http://gujto.elis.ugent.be


Chapter 8

Conclusions & Future Work

8.1 Conclusions

In this dissertation we presented class hierarchy flattening, interface
merging, and object factory insertion, three obfuscations for object-
oriented programs written in managed programming languages. With a
prototype tool initially featuring unoptimized versions of these transfor-
mations, we obfuscated complex real-world Java applications from the
DaCapo benchmark suite that feature reflection and custom class loaders.
Our experiments showed that all three transformations are needed in
order to achieve good results. Combined, our transformations provide
measurable protection against both human understandability and auto-
mated program analysis. QMOOD understandability decreased with
factors 7–11, and average points-to set sizes increased with factors 2–12.

Using the unoptimized versions of our transformations, obfuscated
program versions were typically, but not always, obtained with low
performance and memory footprint overhead, but at a significant appli-
cation size overhead of up to a factor 6. By allowing users to specify a
threshold for interface merging, we provided a simple way of trading off
overhead for protection. However, the large variations in performance
overhead observed for different versions of some benchmarks with simi-
lar levels of obfuscation, and the lack of application size improvements
through method merging for one benchmark, suggested that a more
effective approach for reducing our obfuscations’ overhead was needed,
in the form of more controlled and tuned heuristics.

To fulfill these needs, we proposed improved versions of class hier-
archy flattening, method merging, and object factory insertion. More
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specifically, we reduced the number of parameters of constructors copied
during flattening, and modified method merging to reduce the variation
in the descriptors of merged methods. Furthermore, we developed a
model to efficiently and accurately estimate the effect potential method
merging operations will have on the size of an application under trans-
formation. Using this model, we are able to stop method merging at the
exact point at which it is no longer beneficial.

To reduce the overhead of object factory insertion, we replaced the
initial version of the algorithm by an iterative, greedy, profile-driven
algorithm that is able to divide classes’ constructors over multiple factory
methods, instead of combining all of them in a single one. This new
algorithm can be tuned by means of a parameter that specifies by how
much the dynamic number of arguments required to create objects is
allowed to increase. Based on the value of this parameter the algorithm
strategically chooses which constructors to place in the same factory
methods, not to exceed the user-specified overhead threshold.

We implemented the improved versions of class hierarchy flattening,
method merging, and object factory insertion in the same prototype
obfuscator that features the original versions of these techniques, and
evaluated them on the same set of applications from the DaCapo bench-
mark suite. Our results showed that our improved techniques offer
comparable levels of protection as their original versions, but at much
less overhead. On average, our improvements reduce application size
overhead by over 30%, and execution time overhead by over 40%. Com-
pared to their original versions, our improved techniques can now be
used not only to offer comparable levels of protection at lower overheads,
but also to offer more protection at similar levels of overhead.

8.2 Future Work

We envision future work in several directions: stronger protection, re-
duced overhead, more extensive evaluation, and extended support.

8.2.1 Stronger Protection

First, we see a lot of potential in alternative interface merging strategies
that do not focus on filling bins but instead focus onmaximal obfuscation.
Such strategies could, e.g., try to estimate the effect of merging different
interface combinations on points-to set sizes. Alternatively, interface
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merging could be driven by a developer’s categorization of more and less
sensitive code portions. Furthermore, the larger points-to sets and larger
call graphs obtained after our transformations open up opportunities
for alias-based program obfuscations. Different combinations of such
techniques should be explored.

Secondly, we can improve the effectiveness of method merging as
an obfuscation technique. For now, this technique was mainly used to
remove dummy methods as a means to reduce application size. As a
result, we did not pay much attention to the dummy values provided
for the extra parameters generated during method merging. Instead, the
values for these parameters are chosen as either zero or null. However,
whenever null is used as a parameter to a method, instead of a variable
that may actually point to an object, we miss out on an opportunity to
increase the points-to set size of that parameter. Hence, the points-to set
sizes reported in this work may be lower than the maximum sizes that
can be achieved in practice.

Additionally, we can also fill dummymethods that remain in the pro-
gram after method merging with code copied from different parts of the
application, or with randomly generated valid bytecode. This technique
can be used not only to confuse static analysis tools that, e.g., compute
call graphs or points-to sets, but also to create artificial differences and
similarities between classes to improve the resilience of class hierarchy
flattening against diffing tools. It is important to note, however, that fill-
ing dummy methods in this manner may result in significant increases
in application size. Assuming that we fill each dummy method with
instructions for an average of 66 bytes per method1, we expect increases
in application size of between 8% for lightly obfuscated applications (no
IM) and 50% for heavily obfuscated applications (IM(50)), on average.
To reduce this overhead while still filling dummy methods it may hence
be more effective to outline existing code into the dummymethods. This
will not only require us to fill fewer dummy methods with arbitrary
code, but it will also make the dummy methods more useful, as they
will actually be invoked during program execution.

Furthermore, we can also extend method merging to allow it to
merge pairs of non-dummy methods, similar to the method interleaving
transformation presented by Collberg et al. [22]. A combination of each
of the method bodies’ unused parameters can then be used to decide
which of the original method bodies should be executed. Additionally,

1The average size of a Java method as reported by Collberg et al. [24].
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CHF can be combined with other transformations that operate on the
type hierarchy of applications. False factoring [22] can be used to create
a fake hierarchy after the existing hierarchy has been flattened, while
class coalescing [66] can be used to merge classes after flattening. Using
a combination of these techniques and ours, it is likely that applications
can be obfuscated even more effectively.

8.2.2 Reduced Overhead

An initial optimization that can be performed after class hierarchy flat-
tening is the removal of abstract classes. Since these classes cannot be
instantiated, and other classes do no longer inherit from them, they can
often be removed.

To further reduce the size of applications, we can also limit the max-
imum number of copies that can be created of each method body. A
simpleway of doing this, is by outlining the code of each instancemethod
that is to be copied during flattening into a new static method that takes a
reference to the this object as an explicit parameter. In doing so, the class
hierarchy flattening transformation will not copy the methods’ original
code several times. Instead, it will copy the (often much smaller) code
that invokes their original code. Then, after flattening, we can create as
many (diversified) copies of each outlined method m as allowed, and
replace calls tom by calls to any of its copies.

Even though this technique may effectively reduce code size, it may
also degrade performance, because of the extra level of indirection that
is added. However, since our transformations result in more application
size overhead than execution time overhead, it may be worthwhile to at
least partially trade off these overheads by applying this technique to
large methods that would otherwise have to be copied many times.

Finally, merging pairs of non-dummy methods as described in the
previous section may also help reduce code size. For instance, in some
cases it may be beneficial to merge a few pairs of non-dummy methods
if also many dummy methods would be removed in the process. Of
course if this approach is chosen, our method merging algorithm and
our application size model have to be adapted to also compute the cost
of the extra decision logic required to select which method body needs
to be executed in case two non-dummy methods are merged.
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8.2.3 More Extensive Evaluation

For the experiments presented in this work, we only used identifier
renaming to obfuscate field and method names, because our tools and
transformations were not able to deal with class name and package name
changes. The reason is that when we first developed our tools, we did
not anticipate that we would ever have to obfuscate class names, so we
stored the location of each class as a single path string. In retrospect
this was a bad decision, because given these strings, our tools could not
always determine correctly which part of the path represents the class’
package, and which part represents its actual path. The reason is as
follows. Typically, a class a.b.C is stored in a class file C.class, located
under a/b/, which results in the path a/b/C.class. However, given a path
a/b/C.class, the package name of the class may be a, a.b, or even d.e.f, in
case the file C.class actually stores class d.e.f.C.

Because of the large engineering effort required to support class name
changes, we have not supported class renaming for a long time. At the
time of writing this dissertation, we have refactored our tools, and added
support to Soot to track and update the locations of our class files when
their name or package changes2. Even though class renaming should
now be fully supported, we have not had time to sufficiently experiment
with this feature to present results as to its impact on application size.
That aside, we do expect the application size overhead of our transforma-
tions without method merging to be much less, as many descriptors will
become shorter. However, despite this, we still expect method merging
to be an effective technique for reducing code size.

Furthermore, it may be interesting to perform a sensitivity analysis
of the τ parameter that controls the maximum overhead of our improved
object factory insertion transformation to see how high it can be chosen
before the execution time of transformed programs starts to increase
drastically, and what the impact of this parameter is on the ratio of
no-arguments constructors to constructors that do require arguments.

Finally, we would like to perform a more extensive evaluation involv-
ing more security metrics and actual attack tools. In doing so, it may
be interesting to look into automated refactoring techniques that try to
improve the class hierarchy of applications [63].

2Figure 7.3 already shows our improved description file format.
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8.2.4 Extended Support

Our obfuscator currently does not support Java bytecode programs that
contain native code. To transform such programs correctly, our trans-
formations need information about which methods, fields, and classes
are referenced from the native code, such that they can be treated as
non-transformable. Additionally, WALA needs information about which
native methods call which Java methods to construct a sound call graph
and compute sound points-to sets. At present, we do not have tools
that can compute this information, and Soot and WALA are not able to
extract this information themselves from the native code.

To collect the required information we can use a dynamic approach,
similar to the one used by the TamiFlex Play-out Agent to collect informa-
tion about reflective operations. We expect this approach to work well,
because the native part of a Java application is only allowed to interact
with its Java part through a through a well-defined interface known as
the Java Native Interface (JNI) [47]. In the same way we created wrapper
functions to intercept the arguments and return values of the GetSuper-
Class and IsAssignableFrom functions as described in Section 7.1.6, we can
also create wrapper functions to collect information about all other JNI
functions using a custom JVMTI [58] agent.

Alternatively, we could also try to collect the required information
statically, using a technique similar to the reflection analysis technique by
Livshits et al. [50]. Their technique uses a points-to analysis to determine
all the possible sources of strings that are used as class names, in an
effort to determine the targets of reflective operations. For instance, by
tracking all strings s that can be used as inputs to a call Class.forName(s),
their technique is able to determine statically the names of classes that
are loaded as a result of the reflective call. Even though their technique
works well for reflective Java code, its usefulness may be limited for
native code; it can be difficult to track points-to information precisely
through the native code, which may forge pointers from memory or
involve arbitrary pointer arithmetic.

Another interesting research opportunity could involve applying
our techniques to Android applications to complement the transforma-
tions currently offered by obfuscators such as Proguard3 and DexGuard4.
Overall this should be straightforward, as we can rely on Soot to convert

3http://sourceforge.net/projects/proguard/
4https://www.guardsquare.com/dexguard
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Android dex files to a set of Jimple class files. However, our transfor-
mations may need to be updated to take into certain features specific to
Android applications, or the Dalvik virtual machine.
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Proofs of Lemmas

Lemma 2.1. ∀ b ∈ B . e(b) ⊆ ts(b′) after class hierarchy flattening.

Proof. For rules 2 and 3 this holds, since ∅ ⊆ ts(b), and {x} ⊆ ts(x),
respectively. For rules 1 and 4 it holds that e(b) ⊆ T , since b ∈ T , and
e(b) ⊆ ts(b) (otherwise b would be non-transformable). After transfor-
mation it will therefore either hold that T ⊆ ts(i), or that T ⊆ ts(s), and
hence that e(b) ⊆ ts(i), or that e(b) ⊆ ts(s), respectively.

Lemma 2.2. ∀ b ∈ B . (h(b) \ T) ⊆ ts(b′) after class hierarchy flattening.

Proof. For rule 1 it must hold that (h(b) \ T) ⊆ {java.lang.Object}. This
is always the case, since each class is a subtype of java.lang.Object.

Furthermore, before transformation it holds for each type b ∈ B
that h(b) ⊆ ts(b) (otherwise bwould be non-transformable), and hence
also that (h(b) \ T) ⊆ ts(b). Because CHF does not affect the subtype
relations between classes outside the subtrees (which are considered
non-transformable) and classes inside the subtrees, (h(b) \ T) ⊆ ts(b)
also holds after transformation. As a result, the lemma holds for rule 2.
For the same reason, the lemma also holds for rule 3, because x belongs
to the same subtree as b before transformation.

In case rule 4 applies, a new class s is created for which it holds that
(h(b) \ T ) ⊆ ts(s). Hence it also holds that (h(b) \ T) ⊆ ts(s), since h(b)
cannot contain any types in T other than those in T .

Lemma 2.3. For each array with base type b ∈ B in which an array with base
type c ∈ B is stored, it holds that c′ ∈ ts(b′) after class hierarchy flattening.
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c
rule 1 rule 2 rule 3 rule 4

b
rule 1 (i, i) (i, c) (i, x) (i, s)
rule 3 (c,i) (c, c) (c, c) (c,s)
rule 4 (s,i) (s, c) (s, x) (s, s)

Table A.1: Possible combinations of replacement types for types b and c when
an array with base type c is stored in an array with base type b.

Proof. Let ab be the array with base type b and ac the array with base
type c. To prove this lemma, we will disprove its inverse. In other words,
we will prove that our algorithm cannot compute replacement types b′
and c′ for ab and ac such that c′ 6∈ ts(b′). Given that ac is stored in ab,
Table A.1 shows all possible combinations of types our algorithm can
generate for each of the rules that may apply for b and c.

Each cell in the table contains a tuple (b′, c′) consisting of the replace-
ment types for b and c, given that the rules corresponding to the tuple’s
row and column apply for b and c, respectively. Note that the table con-
tains no row for rule 2. This is because rule 2 cannot apply for b, since
e(b) cannot be empty when ac is stored in ab. Also note that if rule 3
applies for b, e(b) is equal to {c}, and the replacement type for b is c.
Furthermore, if rule 3 applies for both b and c the replacement type for
c is also c. This is because when ac is stored in ab, e(c) is a subset of
e(b) = {c} by construction. Since e(c) cannot be empty for rule 3 to apply,
it can only be equal to {c}. The replacement type for is c is hence c itself.

Table A.1 contains three tuples (b′, c′) for which c′ 6∈ ts(b′) after trans-
formation. These tuples are highlighted in bold. To prove that our
algorithm cannot generate such combinations of types, it suffices to
prove that if rule 1 does not apply for b, it cannot apply for c (Lemma
A.1), and that rule 4 cannot apply for c if rule 3 holds for b (Lemma A.2).
Since both these statements hold, the theorem also holds.

Lemma A.1. Given an array with base type b ∈ B in which an array with base
type c ∈ B is stored. If rule 1 does not apply for b, it does not apply for c.

Proof. If rule 1 does apply for b, c(b) or h(b) contain types that cause
conditions 1(a) or 1(b) not to hold. As a result, conditions 1(a) and 1(b)
will not hold for c, because c(c) and h(c) are supersets of c(b) and c(b),
respectively. Rule 1 therefore does not apply for c.
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Lemma A.2. Given an array with base type b ∈ B in which an array with base
type c ∈ B is stored. If rule 3 applies for b, only rules 2 and 3 can apply for c.

Proof. Rule 3 can only apply for b if rule 1 does not apply, because rule
1 has higher priority. Consequently, rule 1 also does not apply for c,
because of Lemma A.1. Furthermore since rule 3 applies for b, and ac

is stored in ab, e(b) is equal to {c}. As a result of the way e(b) and e(c)
are computed using Algorithm 2.1, it also holds that e(c) ⊆ e(b). This
means that there are two possible cases for e(c).

1. e(c) = ∅, in which case rule 2 applies.

2. e(c) = {c}, in which case rule 3 applies.

Since either rule 2 or rule 3 applies for c, rule 4 does not apply, because
it has lower priority.
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